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Coherent modulation of the sea-level annual cycle
in the United States by Atlantic Rossby waves
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Changes in the sea-level annual cycle (SLAC) can have profound impacts on coastal areas,

including increased flooding risk and ecosystem alteration, yet little is known about the

magnitude and drivers of such changes. Here we show, using novel Bayesian methods, that

there are significant decadal fluctuations in the amplitude of the SLAC along the United

States Gulf and Southeast coasts, including an extreme event in 2008–2009 that is likely

(probability ≥68%) unprecedented in the tide-gauge record. Such fluctuations are coherent

along the coast but decoupled from deep-ocean changes. Through the use of numerical and

analytical ocean models, we show that the primary driver of these fluctuations involves

incident Rossby waves that generate fast western-boundary waves. These Rossby waves

project onto the basin-wide upper mid-ocean transport (top 1000m) leading to a link with

the SLAC, wherein larger SLAC amplitudes coincide with enhanced transport variability.
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The sea-level annual cycle (SLAC) can have local peak-to-
peak amplitudes comparable to the global average sea-level
rise over the 20th century (~16 cm). These annual varia-

tions in sea level have a profound effect on coastal areas. They
affect the habitat availability, nutrient budgets, and productivity
of estuaries1, 2; enable substantial coastal erosion to an extent
comparable, over a year, to that caused by a hurricane3; and
modulate coastal groundwater dynamics and discharge4. In low-
lying areas, large annual variations can also contribute to nui-
sance flooding, which occurs during clear-sky conditions due to
the combination of high mean sea level and spring tides5. In
addition, they can compound the effect of sea-level rise and
expose the coastline to increased risk of flooding by raising the
baseline for storm surges.

The SLAC is primarily associated with the response of the
ocean-atmosphere system to changes in solar insolation by season
and latitude, although it includes also a small gravitational con-
tribution6. Such response is governed by a complex interplay
between local and large-scale dynamics7, and thus is highly
location dependent. As a result, both the amplitude and phase of
the SLAC exhibit great geographic variability8, 9. Furthermore,
since the climate system may respond nonlinearly to the periodic
forcing by solar insolation, the oscillatory characteristics of the
SLAC can change considerably over time. Indeed, significant
temporal variations in the amplitude and phase of the SLAC have
been observed in many regions around the world10–18. These
changes in the SLAC can significantly exacerbate the effects of
seasonal variations on coastal areas. Knowing how to model and
predict these seasonal changes would provide crucial time to
better protect coastal areas and to utilize their resources more
effectively, in turn bringing great socioeconomic and environ-
mental benefits. However, this requires a deep understanding
of their underlying dynamics, which is still lacking in many
regions.

The United States Gulf and Southeast coasts are particularly
vulnerable to the effects of seasonal sea-level changes due to their
hurricane-prone and predominantly low-lying coastal areas, yet
studies focused on these regions are very limited12, 16. Significant
changes in the amplitude of the SLAC were observed in tide-
gauge records from both regions, but the processes controlling
these changes remain poorly understood. Multiple regression16

and correlation12 analyses were used to examine the relationship
between the amplitude changes and several proxy variables. Low
(~0.3) or non-significant correlations were found along the
Atlantic coast for all the proxies considered12. Along the Gulf
Coast, changes in the amplitude of the SLAC were found to
correlate with air surface temperature for some periods but only
very weakly with sea surface temperature and steric height16,
which is difficult to reconcile with sea-level theory and interpret
in terms of direct causal processes. Therefore, a causal explana-
tion of the changes in the SLAC amplitude is still lacking. Filling
this gap in our knowledge is an immediate priority since it
severely limits our ability to understand, model, and ultimately
predict these seasonal sea-level changes.

The difficulty of finding a physical explanation arises because
sea level depends on the density structure of the whole water
column7, which is set by both local and non-local dynamics. The
implication is that sea-level changes are not necessarily governed
by local forcing and thus the commonly used approach based on
correlation/regression against surface atmospheric variables can-
not establish causation and must be guided by theory and sup-
ported by basin-scale estimates of the ocean density field. This is
especially true for western boundaries since they are strongly
affected by remote forcing in the ocean interior19.

Another aspect that merits consideration is the choice of the
method to estimate changes in the amplitude of the SLAC. In the

present context, the SLAC refers to the response of the climate
system to the external periodic forcing by solar radiation. The
response of a non-linear system to a periodic force is not
necessarily periodic and often exhibits both amplitude and fre-
quency modulation20. While approaches that assume a stationary
annual cycle and analyze anomalies relative to such cycle are valid
and can be successful at explaining the variability, allowing for
deviations from periodicity provides an alternative view that can
greatly facilitate the analysis and understanding of annual chan-
ges21. The most commonly used method to estimate changes in
the SLAC is a harmonic least-squares fit to running windows of a
selected length10, 11, 15–18. This method, however, suffers from the
limitation of requiring a window of at least 5 years in order to
yield robust estimates8, which limits inference about variations at
decadal or shorter timescales (a 5-year running mean attenuates
the power of decadal signals by ~61%). In addition, this method
does not provide estimates within half the window size from the
edges of the time series, and uses information contained only
within the corresponding window.

Here, we present a novel method based on Bayesian state-space
modeling22 that overcomes the issues of the windowing method,
enabling estimation with unprecedented temporal resolution and
robustness. We use our Bayesian method and a combination of
sea-level observations, modeling, and theory to quantify changes
in the amplitude of the SLAC along the Gulf and Southeast coasts
of the United States, and provide a deep insight into the key
drivers. We show that there are significant decadal fluctuations in
the annual amplitude and identify an extreme event in 2008–2009
that is likely (probability ≥68%) unprecedented in the tide-gauge
record. Such fluctuations are coherent over large distances along
the coast from the Yucatan Peninsula to Cape Hatteras but they
are confined to the coastal zone. The primary driver involves
density anomalies propagating westward as baroclinic Rossby
waves which, on reaching the western boundary, generate fast
boundary waves that modulate the SLAC along the coast. These
density anomalies drive changes in the geostrophic component of
the meridional overturning circulation (MOC) at 26.5°N, both in
observations from the Rapid Climate Change Programme23

(RAPID) and in the ocean models, leading to a link between the
SLAC and the upper mid-ocean transport (UMO, the top 1000 m
meridional transport).

Results
Changes in the SLAC amplitude from tide-gauge records. Time
series of the SLAC amplitude for tide-gauge records along the
United States Gulf and Atlantic coasts are shown in Fig. 1a (the
location of the tide gauges is shown in Supplementary Fig. 1). All
time series display significant amplitude variations (up to 71% of
the time-mean value) at decadal timescales, reflecting strong
SLAC changes. These variations show a striking regional coher-
ence along two distinct sections of coastline divided at approxi-
mately Cape Hatteras. Amplitude changes across stations to the
south of Cape Hatteras (stations 1–14) are very coherent and
show both larger magnitude (up to 7.8 cm from the time mean)
and a larger time-mean value (up to 11.1 cm) than changes at
stations north of Cape Hatteras (stations 15–25) (time-mean
value of 6.5 cm and deviations of up to 4.6 cm). This suggests that
two different regimes of seasonal variability are operating north
and south of Cape Hatteras. This regional coherence and the
division line marked by Cape Hatteras is made clearer by plotting
the correlation matrix of the amplitude time series (Fig. 1b). The
cross-correlation for stations on the same side of Cape Hatteras,
either south or north, is very high (average of 0.80 and 0.89,
respectively) reflecting the coherence along the two coastline
sections, but it is much lower (average of 0.36) for stations on
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Fig. 1 The first letter of 'Hatteras' should be capitalized, in both Figure 1a and 1b since Hatteras is a proper noun. Amplitude from tide-gauge records.
a Temporal changes in the amplitude of the SLAC from tide-gauge records along the United States Gulf and Atlantic coasts as estimated using a Bayesian
state-space model. Solid lines denote the mean of the posterior distribution at each time step, whereas shaded areas represent the 68% (1-sigma) credible
interval. The colors of the solid lines denote the time-mean value of the annual amplitude. The name of each station along with their identification number
are also shown (see Supplementary Fig. 1 for tide-gauge locations). b Correlation matrix of the time series shown in a. Numbers along the axes represent
tide-gauge identification numbers, whereas black dots denote significant correlation at the 95% confidence level
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different sides of the Cape. The existence of two different regimes
north and south of Cape Hatteras has been observed previously
for inter-annual sea-level variability24, 25. Given the larger
amplitude variations and the high vulnerability of the Gulf and
Southeast coasts to sea-level changes, hereafter we focus on this
region.

A prominent feature of the time-varying amplitudes is their
particularly large values around 2009 uniformly across all stations
south of Cape Hatteras. This feature is further emphasized by
plotting the number of months for which the annual amplitude is
above the 95th percentile in 7-year running windows for the
longest tide-gauge records (Fig. 2). The maximum number of
exceedances is found in 2008–2009 at all stations and is likely
(probability ≥68%) unprecedented in the tide-gauge record as
indicated by the non-overlapping credible intervals. An amplifi-
cation of the SLAC after 1990 was reported recently for stations in
the Gulf of Mexico16, but it was not clear from that study whether
and to what extent changes after 1990 represented a sustained
change. Here we clarify this issue and show that such changes do
not represent a permanent amplification of the SLAC but consist
of a succession of decadal fluctuations with a particularly large
peak around 2009. We illustrate this by plotting the amplitude at
Key West as derived from our method together with the estimate
of ref. 16 based on the windowing method (Fig. 3). Overall, the
two time series are in good agreement, though the latter shows
reduced fluctuations and misses some features such as the peaks
in the 1960s and the early 1970s. Importantly, the last value in the
estimate of ref. 16 is for June 2009, which coincides exactly with
the time of the highest peak over the entire record. This
coincidence results in a curve that is characterized by a relatively
flat period until 1990 and a marked rise from that point onwards,
giving the impression of a sustained change. Our estimate,
however, shows that the annual amplitude fell back to average
values after 2009 as part of a large decadal oscillation (Fig. 3),
limiting support for the existence of a long-term trend but
revealing the presence of an enhanced fluctuation at the end of
the record.

Mechanisms of changes in the annual amplitude. The coherent
signal observed by tide gauges could represent either a coastal
signal or a basin-scale mode where both the coastal zone and the

deep ocean oscillate together. Determining which of the two cases
applies is crucial to understanding the true nature of this signal,
but such determination cannot be made solely on the basis of tide
gauges located on the coast. To shed light on this issue, we have
computed the point-wise correlation between the annual ampli-
tude from satellite altimetry data at each grid point and that
averaged along the United States Gulf and Southeast coasts
(Fig. 4a). The correlation map shows that changes in the ampli-
tude are coherent along the coast from the Yucatan Peninsula to
Cape Hatteras. However, the coherence is confined to the coastal
zone. The altimetry data covers only the period 1993–2016,
therefore the question arises as to whether the correlation pattern
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Fig. 2 Exceedances of the 95th percentile. Number of months within 7-year
running windows for which the amplitude of the SLAC is above the 95th
percentile (computed over the entire record) for tide-gauge records with at
least 50 years of data. To construct the histogram, a 7-year window is
shifted month by month starting with a window centered at month 43 of
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before 1990, whereas the black dots represent such maximum values
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Fig. 4 Correlation maps from satellite altimetry and ocean models. Point-
wise correlation between the amplitude of the SLAC at each grid point and
that averaged along the United States Gulf and Southeast coasts for a
altimetry (1993–2016), b OCCAM (1985–2003), c NEMO (1968–2012),
and d SODA (1900–2010). The average has been computed over grid
points within the 0–500m depth range following the coast from Pensacola
to Charleston. Black line denotes significance of the correlation at the 95%
confidence level, whereas yellow line represents the 500m isobaths
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depends on the period considered or its length. To address this
question we have computed analogous maps based on data from
the Ocean Circulation and Climate Advanced Modelling
(OCCAM) project model (Fig. 4b), the Nucleus for European
Modelling of the Ocean (NEMO) model (Fig. 4c), and the Simple
Ocean Data Assimilation (SODA) reanalysis (Fig. 4d) (see
Methods for details of the models). The three model-based pat-
terns are very similar to that from altimetry, showing strong
coherence along the coast south of Cape Hatteras and providing
confidence in the robustness of the correlation spatial structures.

Sea-level changes can be partitioned into the sum of three
components: steric, mass, and the inverse barometer (IB) effect
(Methods). Different processes contribute differently to these
components, and thus establishing the dominant component
generally reveals key information on the underlying mechanisms.
To this end, we have computed the correlation of the steric

annual amplitude at each grid point with the amplitude of the
SLAC averaged along the Gulf and Southeast coasts in the
OCCAM model (Fig. 5a). The highest correlations are found
predominantly along the continental slope, suggesting that coastal
changes in the annual amplitude are attributable to steric changes.
The coherence of the steric signal stretches from the Yucatan
Peninsula to Cape Hatteras following the slope. The low
correlations at the coast are explained by the fact that the steric
component is defined as a depth integral and, hence, is necessarily
small in shallow waters. Note, however, that steric signals over the
slope can be transmitted to the coast through an indirect effect on
bottom pressure.

We further confirm the dominant role of the steric component
by analyzing time series of the SLAC amplitude from OCCAM
along the Gulf and Southeast coasts. In particular, we show that
while the mean SLAC is primarily driven by the expansion and
contraction of the water column above the seasonal thermocline
(top ~70m) due to changes in surface heat fluxes, the modulation
of the SLAC is due to steric changes in deeper layers. The
contribution of surface heat fluxes to the SLAC, ηhfs , is estimated
using Eq. (4), and is compared to the steric contribution from
above the seasonal thermocline, ηuppers , as given by Eq. (2), as well
as to the total steric and the total sea level. The results of the
analysis for an arbitrary location in the Gulf of Mexico are shown
in Fig. 5. We find that ηhfs explains 95% of the variance in the
annual cycle of ηuppers , and in turn the latter explains 89% of the
variance in the SLAC (Fig. 5b). However, neither ηhfs nor ηuppers
explains very much of the changes in the amplitude of the SLAC
(Fig. 5c). In contrast, the total steric explains the majority (91%)
of the changes in the amplitude of the SLAC. Similar results are
found at other locations along the slope. Two implications can be
drawn. First, all the information on the modulation of the SLAC
resides in the ocean layers below the seasonal thermocline.
Second, the SLAC can be simply described as the sum of the
unmodulated cycle and a term representing steric changes below
the seasonal thermocline (hereafter referred to as the modulator):

SLAC ¼ SLACmean|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Steric above seasonal thermocline

þ SLACmodulator|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Steric below seasonal thermocline

:

These two implications affect how we understand the SLAC
modulation and provide the basis for the subsequent analysis. In
this regard, note the following. In the time domain, amplitude
modulation typically involves multiplication of a low-frequency
modulating signal and a high-frequency sine wave (the latter is
often termed the carrier in radio communications). However,
from properties of the Fourier transform, multiplication in the
time domain corresponds to convolution in the frequency
domain. Therefore, in the frequency domain, amplitude modula-
tion appears as sums and differences of the frequencies of the two
input signals. This implies that any modulated signal can always
be mathematically described as the sum of the carrier and a
superposition of sinusoids with frequencies slightly above and
below the carrier frequency (see Methods for proof). This
alternative interpretation is exactly analogous to the steric
representation of the SLAC modulation. It turns out that the
ocean, along its vertical dimension, behaves similarly to a Fourier
transform in that it separates the frequency components of the
SLAC into different ocean layers. This result will greatly facilitate
our analysis.

The fact that changes along the coast are correlated over large
distances but are decoupled from nearby deep-ocean changes is
highly suggestive of fast wave propagation along the coast and
indicates that local forcing is an unlikely driving factor. Indeed,
the local response to changes in atmospheric pressure, quantified
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Fig. 5 Correlation map and time series of the steric component from
OCCAM. a Point-wise correlation of the steric annual amplitude at each
grid point with the SLAC amplitude averaged along the United States Gulf
and Southeast coasts. The average has been computed over grid points
within the 0–500m depth range following the coast from Pensacola to
Charleston. The yellow line represents the 300m isobath. b The annual
cycle of total sea level (blue), total steric height (orange), and the steric
contributions from above the seasonal thermocline (black) and due to
surface heat fluxes (red) at the location denoted by the black dot shown
in a. c The annual amplitude (time mean removed) of the time series
shown in b
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through Eq. (1) (Methods), explains <5% of the variance in the
annual amplitude at all tide gauges. Similarly, we find no
statistically significant correlation with local wind changes at any
station. A number of mechanisms may be invoked to explain the
correlation patterns (Figs. 4 and 5). The first one involves the
generation of coastally trapped waves26, 27 by longshore wind or
buoyancy forcing (e.g., a river). These waves propagate along the
boundary with the coast on the right (in the Northern
Hemisphere) at speeds of a few m/s (first baroclinic mode), have
an offshore length scale of about 50 km, and can carry the effects
of the forcing over large distances along the coast. Importantly,
the thermocline displacements associated with these waves are
correlated with sea-level changes at the coast, and thus are
captured by tide gauges. Propagation of sea-level anomalies along
the coast has been observed in many regions28–30. The second
plausible mechanism involves the generation of boundary waves
by incident Rossby waves from the ocean interior31, which could,
similarly, affect coastal sea level over large sections of coastline.
Processes of Rossby wave generation include wind-stress-curl32

and buoyancy33 forcing. In the following, we explore which of
these two mechanisms is more likely to explain the observed
changes in the SLAC amplitude.

We have assessed the role of longshore wind by means of the
model described in Appendix A of ref. 34. In particular, we have
integrated the model equation from north to south starting at
Cape Hatteras using a range of values for the length decay scale
(100–1000 km), but have found no agreement with the changes in
the amplitude of the SLAC from tide-gauge records. In addition,
we have compared the SLAC from tide gauges with the annual
cycle of river discharge for the major rivers in the United States
flowing into the Atlantic, again without finding a good
agreement. This leaves us with the incidence of Rossby waves
on the western boundary as the most likely mechanism. In the
following, we concentrate on this possibility and explore it on the
basis of the OCCAM and NEMO models.

To investigate the role of Rossby waves in controlling the SLAC
modulation, we focus on the region east of the Bahamas. The
reason for this choice is that Rossby waves play a particularly
important role in driving sea-level variability in this region32. In

addition, changes in the SLAC amplitude in this region are
significantly correlated with changes along the coastline of the
mainland United States (Figs. 4 and 5), which suggests a common
driving mechanism. This location is also convenient because at
this latitude the Gulf Stream is restricted to the Florida Strait and
hence does not interfere with the Rossby waves reaching the
Bahamas east coast.

We have computed the correlation at different lags of the steric
contribution from below the seasonal thermocline at the
continental slope east of the Bahamas with that at each grid
point in both OCCAM and NEMO. For grid points in shallow
areas (<200 m), the correlation is computed with the SLAC
modulator instead of the steric. The pattern of evolution (Fig. 6)
shows a region of significant correlation several hundred
kilometers off the coast of the Bahamas at lags of ~3 months,
indicating a lagged relationship between this region and the
western boundary. As the lag decreases, the region of correlation
propagates westward until it reaches the coast at lag zero and then
the entire shelf and coastal zone become significantly correlated,
both in the Gulf of Mexico and along the Southeast coast. The
close resemblance between the maps from the two models
provides confidence in the robustness of this spatiotemporal
pattern. We conclude that the SLAC modulator along the Gulf
and Southeast coasts is related to density anomalies below the
seasonal thermocline propagating westward.

Further supporting evidence for the link to propagating
anomalies is provided by producing a time-longitude section of
the steric modulator east of the Bahamas at 26.5°N in OCCAM
(Fig. 7a). The SLAC modulator along the Gulf and Southeast
coasts is consistent with steric anomalies that originated in the
ocean interior at earlier times, as indicated by the alignment of
peaks and troughs in the time series of the SLAC modulator and
the steric modulator at the Bahamas coast. While often the steric
anomalies are formed far in the interior of the Atlantic,
sometimes they originate only a few hundred kilometers offshore
and reach the coast after a few months. Our calculations show
that the density anomalies propagate at an average speed of about
4.1 cm/s, which is consistent with the observed phase speed of
long Rossby waves at this latitude35.
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The results above suggest that a simple model based on Rossby
wave dynamics might be used to capture the modulation of the
SLAC along the Gulf and Southeast coasts. To test this, we use a
1.5-layer, reduced gravity model forced by wind (Methods). We
compute two solutions. In the first solution, we start the
integration at xe= 66.5°W (~1000 km from the Bahamas coast)
and set the value of η at xe equal to the OCCAM sea level, while in
the second one, we set xe= 46.5°W (~3000 km from the Bahamas
coast) and η at xe to zero. The first solution includes the effects of
the wind between the Bahamas and xe plus any contribution
originating to the east of xe (wind-driven or otherwise), while the
second solution includes only the effects of the wind. Starting the

integration further to the east in the second solution changes the
results only marginally. The reduced gravity model gives a good
match to both tide-gauge observations and OCCAM data
(Fig. 7b), providing strong evidence for a physical link between
the SLAC and Rossby waves. In particular, the correlation
between the modeled and observed SLAC amplitude is 0.67 and
0.65 for the first and second solutions, respectively. These values
are comparable to the correlation of the OCCAM estimates with
tide-gauge data (0.7). The strong resemblance between the two
solutions along with the good agreement with observations
indicate that wind forcing is a dominant cause of the Rossby
waves. We note, however, that the second solution slightly
underestimates the peak in 1995 relative to the first solution,
suggesting that other drivers and/or non-linear effects may also
play a role.

It is interesting to assess whether the incident density
anomalies are modified by the sloping topography when they
approach the western boundary. To this end, we have computed
the standard deviation of the SLAC modulator as a function of
distance from the Bahamas coast along with the correlation
between the modulator at the coast and that offshore (Supple-
mentary Fig. 2). While there is a gradual decrease in the
magnitude of the modulator with proximity to the boundary, the
phase coherence remains significant through the continental
slope as indicated by the correlation between the modulator at the
coast and that in the open ocean. The reduction in dynamic
height variability toward the western boundary has been reported
before and is explained by frictional energy dissipation and the
export of energy through boundary waves31, 36, 37. The latter is
precisely the mechanism that we invoke to explain the coherence
of the amplitude over large distances along the coast.

It is also interesting to note that the meridional coherence scale
of the westward-propagating density anomalies is relatively small
(Fig. 6). Nevertheless, both observations and models show that
changes in the amplitude of the SLAC are coherent along the
entire coastline up to Cape Hatteras. Because boundary waves
propagate along the coast with the coast to the right, the
coherence at latitudes north of the Bahamas may suggest an effect
of the Rossby waves on the Gulf Stream. This would be consistent
with results from previous studies that showed a significant
response of the Gulf Stream to incident density anomalies from
the ocean interior38, 39. In particular, it has been found that, on
the timescales relevant to the SLAC modulator (~annual), the
Florida Current responds almost instantaneously to incident
density anomalies just east of the Bahamas leading to a significant
anti-correlation with the UMO. This response of the Florida
Current could explain the coherence of the SLAC amplitude at
high latitudes. In support of this premise, we find that the SLAC
modulator from tide gauges along the Southeast coast (stations
10–14) is correlated (−0.36, significant at the 95% confidence
level) with band-pass filtered (1/20–1/5 months–1) variations of
the Florida Current transport.

In summary, we have shown that the mean SLAC is driven by
steric changes above the seasonal thermocline induced by
variations in surface heat fluxes, while the SLAC modulation is
related to density changes between 200 and 1000 m depth that
originate in the ocean interior and propagate westward as Rossby
waves. Upon impinging on the western boundary, we conjecture
that the Rossby waves generate boundary waves that propagate
rapidly along the continental slope giving rise to highly-coherent
sea-level changes along the coast. A schematic illustration
explaining the proposed mechanisms is shown in Fig. 8. It
should be noted that our results regarding the variability
associated with the modulator are general in that they do not
depend on whether the annual cycle is interpreted as a changing
or repeating cycle. By definition, the modulator is closely related
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to the variability that results from removing a stationary annual
cycle and then applying a band-pass filter around the relevant
frequencies. This implies that approaches that assume a
stationary annual cycle and focus on the frequencies of the
modulator will reach the same conclusions as presented here,
with the difference that such approaches will not interpret the
variability as being part of a modulated annual cycle but rather as
anomalies relative to a repeating cycle.

Finally, it must be noted that there is a theoretical upper limit
on the frequency of Rossby waves beyond which such waves
cannot exist. This limit follows from the dispersion relation and
for long Rossby waves varies with latitude according to19

ωmax ¼ c=2Rð Þcot φ, where c is the baroclinic gravity-wave phase
speed, R is the radius of the earth, and φ denotes latitude. The
dependence on latitude imposes a constraint on where Rossby
waves might act as the SLAC modulator because this possibility
requires waves with nearly annual periods. In particular, spectral
analysis of the modulator reveals an upper sideband of
~10.5 months at all tide-gauge stations (Supplementary Fig. 3).
It follows then that Rossby waves with periods of ~10.5 months
are required, but these are only possible at latitudes south
of ~40°N.

The relationship between the SLAC and the UMO transport.
Previous studies37, 40 have found that Rossby waves and oceanic
eddies impinging on the western boundary can have a significant
effect on the geostrophic component of the MOC, especially at
intra-annual timescales. Therefore, a question arises as to whether
the propagating density anomalies responsible for the changes in
the SLAC amplitude exhibit themselves also in this component of
the MOC. To explore this possibility, we analyze time series of
UMO transport from RAPID23 for the period April 2004 to
October 2015 and from OCCAM for the period 1985–2003. The
UMO transport is related to the horizontal difference in pressure
between the eastern and western boundaries. If a relationship
exists between the SLAC and the UMO, this is most likely due to

the western-boundary contribution to the UMO, where the
influence of incident Rossby waves occurs37, 40. Such contribu-
tion, however, does not have an annual cycle but instead exhibits
non-periodic variations. For non-periodic signals, the notion of
peak amplitude is not well defined, so to relate the UMO to the
SLAC amplitude we use the instantaneous variance of the UMO
transport as a measure of its amplitude or intensity. We expect
changes in the UMO variance (at the frequencies of the SLAC
modulator) to covary with changes in the SLAC amplitude. To
estimate the instantaneous variance of the UMO transport at the
relevant timescales, we use a stochastic variance model (see
Methods for details). We find a strong relationship between the
amplitude of the SLAC and the variance of the UMO transport,
wherein larger annual amplitudes are associated with increased

Mixed layer

Heat flux drivesthe mean SLAC

Rossby
wavesBoundary

waves 

Rossby waves generate
fast boundary waves upon

reaching the boundary,
which modulate the SLAC

Western boundary

Time
SLACmodulator

Time

SLAC
mean

Time

SLAC

Fig. 8 Schematic illustration of the mechanism of SLAC modulation. The mean SLAC is associated with steric changes in the seasonal thermocline induced
by variations in surface heat fluxes, whereas its modulation is related to density anomalies in deeper layers propagating westward as Rossby waves. These
Rossby waves give rise to fast boundary waves upon impinging on the western boundary, which in turn modulate the SLAC along the Gulf and Southeast
coasts and lead to the coherence over large distances along the coast

1985 1990 1995 2000 2005 2010 2015
Year

6

7

8

9

10

11

12

13

14

S
LA

C
 a

m
pl

itu
de

 (
cm

)

OCCAM
RAPID

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

� U
M

O
 (

S
v)

Fig. 9 SLAC from tide-gauge records and the UMO transport.
Instantaneous amplitude of the SLAC (left axis) averaged over tide-gauge
stations 1–10 together with the instantaneous standard deviation of the
UMO transport at 26.5°N (right axis) both from RAPID (red solid) and the
OCCAM model (red dashed). The gray-shaded area denotes the standard
deviation about the average annual amplitude of the 10 tide-gauge stations.
A long-term trend has been removed from all time series

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04898-y

8 NATURE COMMUNICATIONS |  (2018) 9:2571 | DOI: 10.1038/s41467-018-04898-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


fluctuation intensity in the UMO (Fig. 9). The correlation
between the two quantities is higher for RAPID observations
(0.91) than for OCCAM data (0.75), but in both cases it is sig-
nificant at the 95% confidence level. The implication is that the
density anomalies that modulate the SLAC also affect the UMO
transport by altering the zonal pressure gradient through density
variations at the western boundary.

Our analysis of tide-gauge records has revealed the presence of
large inter-annual to decadal variations in the amplitude of the
SLAC along the United States Gulf and Southeast coasts, which
have been particularly large since the 1990s. Because the SLAC in
this region peaks during the period of maximum hurricane
activity in the Atlantic (between August and October), larger
annual amplitudes imply increased risk of damage from hurricane
storm surges due to a higher base water level. In addition, larger
seasonal variations also significantly increase the likelihood of
nuisance flooding and exacerbate other direct effects of annual
sea-level changes (e.g., erosion, estuary productivity, and so on).
Furthermore, the variations in the amplitude of the SLAC are
coherent over large distances along the coast, which means that
the increased risk associated with them is not localized but affects
the entire coastline at any particular time. Importantly, we have
suggested that these variations are associated with incident
baroclinic Rossby waves from the open ocean. Since these waves
propagate slowly, their effects on the coastal SLAC are felt
months or even years after they are formed in the ocean interior.
This delayed coastal response raises the possibility of seasonal
forecasts of water levels in coastal areas, which would allow
coastal managers and communities to better assess and mitigate
associated risks. We have also provided observational and model-
based evidence of a link between the SLAC amplitude and the
UMO transport, wherein larger SLAC amplitude coincide with
amplified annual UMO variations. This result suggests that long
tide-gauge records could be used to infer properties of the UMO
variability for periods during which no direct estimates are
available (i.e., before 2004). Given the role of the MOC in
northward heat transport and the climate, the new link between
the SLAC and the UMO is of particular importance and will aid
current efforts to better understand the behavior of this key
component of the climate system.

Methods
Data sets and ocean models. Monthly mean values of sea level from tide-gauge
records are obtained from the Revised Local Reference data archive of the Per-
manent Service for Mean Sea Level41 (http://www.psmsl.org/). The location of the
tide gauges used in this study is shown in Supplementary Fig. 1. Sea-level pressure
and wind monthly data are obtained from the 20th Century Reanalysis v2c3042 for
the period before 2015 and from the National Centers for Environmental Pre-
diction reanalysis43 for the period 2015–2016 (both data sets are available at http://
www.esrl.noaa.gov/psd/data). Monthly flow rates of rivers in the United States
flowing into the North Atlantic are from the Research Data Archive at the National
Center for Atmospheric Research (https://rda.ucar.edu). Monthly values of net
surface heat flux covering the period 1983–2009 were provided by the WHOI
OAFlux project (http://oaflux.whoi.edu). The time series of the UMO transport is
obtained from the RAPID-WATCH MOC monitoring project44 (available at
http://www.rapid.ac.uk), which is provided at twice daily resolution and covers the
period from April 2004 to October 2015. Daily mean transport estimates of the
Florida Current from a submarine cable and calibration cruises covering the period
1982–2016 were obtained from the Atlantic Oceanographic and Meteorological
Laboratory web page (www.aoml.noaa.gov/phod/floridacurrent/). Both the UMO
and the Florida Current transport time series are averaged into monthly values.

The satellite altimetry data are obtained from the multi-mission gridded sea
surface heights product provided by the Copernicus Marine Environment
Monitoring Service (available at http://marine.copernicus.eu/). The data are made
available as weekly fields on a 1/4° × 1/4° near global grid covering the period from
January 1993 to May 2016. These weekly fields are averaged into monthly fields for
our analysis. The data are provided with all standard corrections applied, including
corrections for tropospheric (wet and dry) and ionospheric path delays, sea state
bias, tides (solid earth, ocean, loading, and pole), and atmospheric effects (sea-level
pressure and high-frequency winds).

In this study, we use data from the OCCAM model. The version that we use
here is a free-surface free-running (without data assimilation) global model with a
spatial resolution of 1/4° × 1/4° in the horizontal and 66 non-uniform z-levels in
the vertical, covering the period 1985–200345. We also use data from the NEMO
(1/4°) global ocean model in its ORCA02546 (available from http://www.ceda.ac.
uk/projects/jasmin), which covers the period 1958–2012 and from the SODA
reanalysis47, which covers the period 1871–2010. The NEMO model is not spun up
prior to 1958, and thus to make sure that we start from a stable ocean state we
consider only NEMO data from 1968.

As a validation, we have compared annual amplitudes derived from OCCAM
and NEMO with those from tide-gauge observations (Supplementary Fig. 4). Both
models show significant correlations at most tide-gauge stations, though OCCAM
performs better than NEMO as indicated by the higher correlations. It should also
be noted that the correlation maps from OCCAM and NEMO are very similar
between them and also to altimetry (Fig. 4). The good agreement between model
data and observations gives us confidence in the capability of the two models to
capture the dynamics governing the observed changes in the SLAC.

Sea-level equations. It is convenient for our purposes to describe sea-level
changes, η, as the sum of three components: (1) the IB effect, ηIB, representing the
effect of changes in sea-level pressure; (2) the steric component, ηs, representing the
effect of variations in the ocean density field; and (3) the mass component, ηm,
representing the effect of mass redistribution within the Earth system unrelated to
changes in sea-level pressure. Expressions for each of these components are
obtained from integration of the hydrostatic relation7:

ηIB ¼ 1
gρ0

Pa � Pa
� �

; ð1Þ

ηs ¼ � 1
ρ0

R 0
�H

ρdz; ð2Þ

ηm ¼ 1
gρ0

Pb � Pa
� �

; ð3Þ

where g is the gravitational acceleration, ρ0 is a reference density (1025 kg m−3),
Pa is the atmospheric sea-level pressure anomaly, ρ is the in situ density anomaly of
the water, Pb is the pressure anomaly at the ocean bottom z=−H, and the overbar
denotes spatial average over the global oceans. Note that, as written, Eq. (2) gives
the total steric contribution, but the same equation can also be used to calculate the
steric contribution, for example, from above the seasonal thermocline simply by
replacing H with the appropriate depth. The reference depth that we use to
compute the steric contribution from above the seasonal thermocline is 70 m,
which corresponds to the average depth of the mixed layer in OCCAM. Selecting
other values in the range 60–120 m did not affect our results in any significant
manner.

The steric contribution due to changes in surface heat fluxes, ηhfs , can be
estimated from the following first-order linear equation7:

∂ηhfs
∂t

¼ α

ρ0Cp

Qnet tð Þ � Qnet tð Þh ið Þ; ð4Þ

where α is the coefficient of thermal expansion, Cp is the specific heat of sea water,
Qnet is the net surface heat flux, and the angle brackets denote temporal averaging.
α is estimated from the OCCAM temperature and salinity fields averaged over the
mixed layer. The depth of the mixed layer is determined using a potential density
threshold of 0.12548 (sigma units) relative to the density at the first model level (2.7
m).

The 1.5-layer reduced gravity model. To quantify the contribution of Rossby
waves to the modulation of the SLAC, we use a 1.5-layer, reduced gravity model
forced by wind stress. Under the long-wave and quasi-geostrophic approximations,
the equation describing the evolution of sea level, η, can be written as49

∂η

∂t
� CR

∂η

∂x
þ Rη ¼ � g′

g
k � ∇ ´

τ

ρ0f

� �
; ð5Þ

where τ is the wind-stress vector, f is the Coriolis parameter (allowed to vary with
latitude), g′ is the reduced gravity, R is the decay rate, CR is the propagation speed
of long baroclinic Rossby waves, and k is the vertical unit vector. Here we choose
CR = 4 cm s−1, R= (1.5 years)−1, and g′= 3 cm s−2. Our results are fairly insen-
sitive to the choice of the model parameters within the typical ranges
(1 year)−1 ≤ R ≤ (2 years)−1 and 2 cm s−2 ≤ g′ ≤ 4 cm s−2.

We want to calculate η at 26.5°N on the east coast of the Bahamas. This is done
by integrating Eq. (5) from a point to the east of the Bahamas, xe, along the
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baroclinic Rossby wave characteristic

η xB; tð Þ ¼ η xe; t þ xB�xe
CR

� �
exp R xB � xeð Þ=CR½ �

þ g′
gCR

R xB
xe
k � ∇ ´ τ x′; y; t þ xB�x′

CR

� �
= ρ0f
� �h i

exp R xB � x′ð Þ=CR½ �dx′
ð6Þ

where xB is the point at which the solution is wanted (i.e., the Bahamas east coast).
Solutions are based on the same wind-stress data that was used to force

OCCAM, which allows us to evaluate the performance of the model by comparison
with OCCAM. To focus on the frequencies relevant to the SLAC modulator, a
Butterworth band-pass filter (lower and higher cutoff frequencies: 1/16 and 1/
8 months–1) is applied to the solution.

Calculation of the upper mid-ocean transport. Following ref. 50, the UMO
transport from OCCAM at 26.5°N has been obtained by first computing the
zonally integrated northward geostrophic transport per unit depth, T(z), as

T zð Þ ¼ PE zð Þ � PW zð Þ
ρ0f

; ð7Þ

where PE(z) and PW(z) denote pressure at the eastern and western boundaries of
the North Atlantic, respectively, and f is the Coriolis parameter. PE(z) is calculated
at the easternmost grid point for any given depth, whereas PW(z) is calculated at
the westernmost grid point where water depth is at least 4800 m (i.e., a vertical
profile ~25 km from the coast). The meridional transport due to the flow between
the western vertical profile and the Bahamas east coast (referred to as the western-
boundary wedge), TWBW(z), is estimated directly from the model velocities. The
UMO transport is then given by the depth integral of T(z)+ TWBW(z) between the
surface and 1100 m:

UMO ¼ R 0
�1100

T zð Þ þ TWBW zð Þ½ �dz: ð8Þ

State-space model for the annual cycle. To estimate the instantaneous amplitude
and phase of the SLAC, we use a state-space model. The state-space approach
provides a powerful framework for addressing problems such as the one at hand in
which we wish to estimate, based on indirect information from noisy observations,
a set of state variables (e.g., the amplitude of the annual cycle) that are not directly
measurable. Here we formulate the inference problem in terms of a non-linear
state-space model and adopt a Bayesian approach, thus modeling the unknown
static parameters of the model as random variables. For the representation of a
system in state-space form, two types of equations are required22. In standard state-
space notation, let y1:T = (y1,…,yT) be a sequence of observations (e.g., a tide-gauge
record), xt∈ℝn denote the latent state at time t, and θ denote the unknown static
parameters of the model. The state-space model then consists of the transition
probability density pθ(xt|xt−1) describing the evolution of the state variables with
time, and a measurement model linking the observations to the state as defined by
the probability density pθ(yt|xt). Our goal is to compute the joint state and para-
meter posterior distribution given all observations p(θ, x1:T|y1:T).

One key advantage of our method is that it computes estimates conditioned on
the full history of sea-level observations, which significantly improves the
resolvability of the state variables. In other words, the method uses all available past
and future observations to estimate the state of the system at each time step. In
addition, the method provides estimates for the entire period covered by the sea-
level observations, including the edges of the time series. These are important
distinctions to the method based on a harmonic fit to running windows. Another
key aspect of our method is that it allows for parameter uncertainty and involves
rigorous error propagation, thus providing realistic uncertainty estimates.
Furthermore, the method does not rely on large data samples to be accurate, and is
relatively insensitive to starting values in the parameters. One limitation of the
method is that it is computationally expensive.

Here the sea-level time series are modeled as the sum of four terms: (1) an
annual cycle with instantaneous amplitude aat and phase ϕat ; (2) a semi-annual cycle
with instantaneous amplitude asat and phase ϕsat ; (3) a low-frequency component bt,
which includes any existing non-linear trend; and (4) white Gaussian noise et. The
measurement model takes the following form:

yt ¼ aat cos ϕ
a
t þ asat cos ϕsat þ bt þ et ; et � N 0; σ20

� �
; ð9Þ

where N m; σ2ð Þ denotes the normal distribution of mean m and variance σ2,
and σ20 is a parameter to be estimated (and thus contained in θ).

Our state-space model has been designed to incorporate realistic dynamics for
all state variables while at the same time keeping it simple enough to make
Bayesian inference feasible. In this regard, two aspects of the state dynamics in
particular merit careful consideration when designing the state transition kernel.
First, the frequency of either the annual or semi-annual cycles may change over
time but it should not drift too far away from its mean value. In other words, the
frequency of the cycles should be stationary, but not an iid process since the

frequency should be allowed to deviate from its mean value for certain periods of
time. This is achieved by modeling ϕat as an integrated process of order one with
the phase increments ωa

t ¼ ϕat � ϕat�1 following a first-order autoregressive (AR1)
process (and similarly for the phase of the semi-annual
cycle ϕsat ).

The second aspect that requires consideration concerns the fact that the
amplitude is a non-negative-valued variable. To satisfy this requirement, we model
the logarithm of the amplitude of the annual and semi-annual cycles (λat and λsat ,
respectively), as a random walk, i.e. pθ λat jλat�1

� � ¼ N λat ; λ
a
t�1; σ

2
1

� �
, where σ21 is a

parameter to be estimated. The amplitude is then obtained by taking the
exponential of the log amplitude, i.e., aat ¼ expλat . This approach is standard in
Bayesian statistics and has the great advantage of allowing us to place a conjugate
prior on the unknown parameter σ21 resulting in a closed-form expression for the
posterior distribution, thus greatly facilitating the task of sampling from such
distribution.

The evolution of the state variables is modeled as follows.
Log amplitude of the annual and semi-annual cycles:

λat ¼ λat�1 þ qt ; qt � N 0; σ21
� �

; ð10Þ

λsat ¼ λsat�1 þ dt ; dt � N 0; σ22
� �

: ð11Þ

AR1 process for the phase increments of the annual and semi-annual cycles:

ωa
t ¼ ωa

m þ ρ1 ωa
t�1 � ωa

m

� �þ gt ; gt � N 0; σ23
� �

; ð12Þ

ωsa
t ¼ ωsa

m þ ρ2 ωsa
t�1 � ωsa

m

� �þ st ; st � N 0; σ24
� �

: ð13Þ

Phase of the annual and semi-annual cycles:

ϕat ¼ ϕat�1 þ ωa
t ; ð14Þ

ϕsat ¼ ϕsat�1 þ ωsa
t : ð15Þ

Low-frequency component:

bt ¼ bt�1 þ vt ; vt � N 0; σ25
� �

; ð16Þ

where ωa
m and ωsa

m represent the mean frequency of the annual and semi-annual
cycles, respectively, and hence their value is set equal to 2π/12 and 2π/6 (for
monthly data). xt ¼ λat ; λ

sa
t ;ω

a
t ;ω

sa
t ; ϕ

a
t ;ϕ

sa
t ; bt

� �
is the latent state at time t, whereas

θ ¼ ρ1; ρ2; σ
2
0; σ

2
1; σ

2
2; σ

2
3; σ

2
4; σ

2
5

� �
are the unknown parameters of the model.

Equations (9–16) form our state-space model.
Bayesian inference in state-space models relies on evaluation of the joint

posterior density p(θ, x1:T|y1:T), which for our non-linear model does not admit a
closed-form expression. To perform inference in our model, we use a recently
introduced class of algorithms named particle Markov chain Monte Carlo
(MCMC) samplers51, which enables us to sample efficiently from p(θ, x1:T|y1:T) in
an MCMC. In particular, we use a state-of-the-art particle MCMC sampler referred
to as particle Gibbs with ancestor sampling52 (PGAS), which has been shown to
provide rapid mixing of the Markov kernel even when using few particles in the
underlying particle filter.

One special feature of our state-space model is that the state transition kernel is
degenerate in the sense that the process noise associated with either ϕat or ϕ

sa
t is

exactly zero, which renders PGAS inapplicable in its standard form. To address this
issue and enable inference in our degenerate model, we use a modification of
PGAS-denoted particle rejuvenation53. With this modification, the algorithm to
sample from p(θ, x1:T|y1:T) consists of sampling iteratively from p(θ|x1:T,y1:T) and
pθ(x1:T|y1:T) as follows:

Step 1: set θ(0) and x1:T(0) arbitrarily
Step 2: for iteration i ≥ 1 do

a. Draw θ(i) ~ p(θ|x1:T(i−1),y1:T), and
b. Sample x1:T(i) from the PGAS Markov kernel (with particle rejuvena-

tion) targeting pθ(i)(x1:T|y1:T) conditional on x1:T(i− 1)

Step 2a requires that we ascribe prior distributions to all the static parameters.
For the variance parameters σ2i

� �
i¼0:5, we use a non-informative inverse gamma

prior, IG 0:01; 0:01ð Þ, while the AR1 coefficients (ρ1, ρ2) are assigned a uniform
prior U 0; 1ð Þ. The inverse gamma distribution as a prior for variance parameters is
a standard choice in Gaussian models because it gives a closed-form expression for
the posterior by virtue of its conjugate form. Setting its two hyperparameters
(shape and scale) to a small number (e.g., 0.01) defines a non-informative (or
weakly informative) prior that has little effect on the posterior, and thus on our
inference. Therefore, it is crucial to note that all the static parameters along with
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the latent state are inferred from the observations by PGAS without any manual
tweaking.

For the particle filter, we use a bootstrap implementation with the number of
particles set equal to the length of the time series (i.e., T) (note that the algorithm
does not rely on asymptotics in the number of particles to be correct, however a
higher number of particles improves the mixing speed of the algorithm). The
number of iterations is set to 20,000 with a burn-in period of 2000. All credible
intervals shown in this paper represent the highest posterior density interval (i.e.,
the interval with the smallest width among all the credible intervals for a specified
significance level) and are computed using the Chen-Shao algorithm54. As an
illustration, estimates of the state variables for the Key West tide gauge derived
using our method along with the trace plots for the eight static parameters of the
model are shown in Supplementary Fig. 5.

To demonstrate the high skill of our method, we have performed a numerical
experiment on synthetic data. In particular, we have generated a synthetic time
series containing a predetermined time-varying annual cycle, a low-frequency
component, and realistic noise. The prescribed annual amplitude has variations
similar to those observed in tide-gauge records. We have then applied our method
to infer the annual amplitude from the synthetic time series and have compared
our estimates with those obtained using a harmonic fit to 5-year running windows.
Estimates are computed for 100 different realizations of the noise. The results are
shown in Supplementary Fig. 6. The range of individual estimates based on the
state-space model fully encompasses the true amplitude at all time steps.
Furthermore, nearly all estimates fall within the 95% credible interval computed by
PGAS, indicating that our method provides realistic uncertainty estimates. In
addition, the mean of the 100 individual estimates matches the true amplitude
almost exactly, meaning that our method gives unbiased estimates of the
amplitude. In contrast, the range of individual estimates computed using the
method of running windows do not entirely contain the true amplitude and the
mean consistently underestimates the true amplitude, indicating that this method is
a biased estimator of the amplitude. Note also that the method does not provide
estimates within half the window size from the edges of the time series.

We have also performed a simple residual check to assess if the assumption of
white-noise innovations holds. In particular, we have computed the residuals in
Eqs. (9–16) based on the 18,000 samples from the posterior distribution. This
results in 18,000 time series of residuals for each equation and tide-gauge station.
Then, we have computed the mean AR1 coefficient over the 18,000 samples. Values
of the mean AR1 coefficient fall within the range (−0.03, 0.15) for all equations and
tide-gauge stations, which gives us confidence in the correctness of the model.

Finally, It is worth mentioning that we have tested a slightly modified version of
the model that included an AR1 term in addition to the four terms of Eq. (9), but
found that such model yielded almost identical results to the model without the
AR1 process. Furthermore, in most cases the MCMC chain exhibits better mixing
in the simpler model. This indicates that the benefit of adding an AR1 process does
not outweigh the costs of increased complexity, and thus we opted for the simpler
model.

State-space model for the UMO variance. To estimate the instantaneous var-
iance of the UMO transport time series, we use a stochastic variance model, which
is given by the following state-space model:

mt ¼ mt�1 þ jt ; jt � N 0; σ2m
� �

; ð17Þ

nt ¼ nt�1 þ pt ; pt � N 0; σ2n
� �

; ð18Þ

ut ¼ ρ1ut�1 þ ρ2ut�2 þ ht ; ht � N 0; κð Þ; ð19Þ

yt ¼ exp nt=2ð Þut þmt þ kt ; kt � N 0; σ2y

� �
; ð20Þ

where now y1:T = (y1,…,yT) denote the UMO transport time series, mt represent
low-frequency variations in the UMO, ut is a second-order autoregressive (AR2)
process used to model the high-frequency (intra- to inter-annual) variations in the
UMO, and exp(nt) is the instantaneous variance of the AR2 process (the quantity
that we use as a measure of the intensity of the UMO variations). The unknown

parameters of this model are θ ¼ ρ1; ρ2; σ
2
m; σ

2
n; σ

2
y

� �
, and κ ¼ 1þρ2

1�ρ2
1� ρ2
� �2�ρ21

h i
to ensure that ut has variance equal to one. For this model, the latent state at time t
is xt= (mt, nt, ut). Inference in this stochastic model is performed by PGAS, in the
same way as for the seasonal state-space model described in the previous section. To
do this, we assign a non-informative inverse gamma prior, I 0:01; 0:01ð Þ, to the
variance parameters, and uniform prior to the coefficients of the AR2 process to
ensure that stationarity conditions (ρ1+ ρ2 < 1, ρ2− ρ1 < 1, and |ρ2| < 1)are satisfied.

Definition of the modulator. Amplitude modulation is mathematically expressed
as

ym tð Þ ¼ 1þ g tð Þ½ �A cos 2πftð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
y tð Þ

; ð21Þ

where g(t) is a modulation signal and y(t) is a periodic signal of frequency f and
constant amplitude A (often termed the carrier in radio communications and
related disciplines).

For the sake of simplicity, let us assume that g(t) is a sinusoid of frequency fm
(typically fm≪ f) and constant amplitude B < 1. Equation (21) can then be
rewritten as

ym tð Þ ¼ 1þ B cos ð2πfmt þ φÞ½ �Acos 2πftð Þ; ð22Þ

which, by using the identity cos a cos b ¼ 1=2 cos aþ bð Þ þ cos a� bð Þ½ �, can be
rearranged as

ym tð Þ ¼ y tð Þ þ AB
2

cos 2πðf þ fmÞt þ φð Þ þ cos 2πðf � fmÞt � φð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
modulator

: ð23Þ

Hence, the amplitude-modulated signal, ym(t), can be viewed as the sum of the
unmodulated signal (or carrier), y(t), and two sinusoids with frequencies (referred
to as the upper and lower sidebands) equal to the sum and difference frequencies of
the carrier and modulation signals. The sum of the two sidebands is what we refer
to as the modulator. Note that in the context of this paper, y(t) represents the mean
SLAC because it is what we obtain if we fit an annual harmonic to the modulated
SLAC.

In practice, g(t) will take a more complicated form than a sinusoid. However, by
Fourier analysis, any general function can be written in terms of sinusoids, which
implies that ym(t) can always be put in the form of Eq. (23), with two sidebands for
each frequency component of g(t).

The modulator is not a direct output of our state-space model, however it can
be easily computed as:

m tð Þ ¼ Res aa tð Þ cos ϕa tð Þ½ �; ð24Þ

where aa(t) and ϕa(t) are the estimates of the annual amplitude and phase provided
by the state-space model, and Res is an operator denoting residual after subtraction
of the mean annual cycle. To emphasize the timescales of interest, we apply a
Butterworth band-pass filter (lower and higher cutoff frequencies: 1/16 and
1/8 months–1) to the output of Eq. (24). Note that, from Eq. (23), such band-pass
filter in the modulator domain is equivalent to a 4-year low-pass filter in the
amplitude domain.

As an illustration, we show the power spectral density of the SLAC modulator
for the Key West and St. Petersburg tide gauges (Supplementary Fig. 3). Both tide
gauges display two dominant sidebands at ~10.5 and ~13.8 months, which from
Eq. (23) implies that the amplitude of the SLAC has most of its energy at periods of
~7 years. The two additional sidebands at nearly 12 months represent lower-
frequency (>30 years) variability of the annual amplitude. Similar spectral peaks are
observed at all tide gauges.

Statistical significance of correlations. The significance of cross-correlations is
quantified by using the non-parametric random-phase test described by ref. 55,
which accounts for serial correlation in the time series. Here we use 10,000
random-phase simulations.

Code availability. C++ code for the state-space models is available from the
corresponding author upon request.

Data availability. All data sets analyzed during this study are publicly available
from the links provided in the Methods section. The data from the OCCAM model
are available to anyone from the corresponding author upon request.

Received: 19 September 2017 Accepted: 22 May 2018

References
1. Morris, J. T., Kjerfve, B. & Dean, J. M. Dependence of estuarine productivity

on anomalies in mean sea level. Limnol. Oceanogr. 35, 926–930 (1990).
2. Morris, J. T. in Estuarine Science: A Synthetic Approach to Research and

Practice (ed Hobbie, J.) 107–127 (Island Press, Washington, D.C., 2000).
3. Theuerkauf, E. J., Rodriguez, A. B., Fegley, S. R. & Luettich, R. A. Jr. Sea level

anomalies exacerbate beach erosion. Geophys. Res. Lett. 41, 5139–5147 (2014).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04898-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2571 | DOI: 10.1038/s41467-018-04898-y | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


4. Gonneea, M. E., Mulligan, A. E. & Charette, M. A. Climate-driven sea level
anomalies modulate coastal groundwater dynamics and discharge. Geophys.
Res. Lett. 40, 2701–2706 (2013).

5. Moftakhari, H. R. et al. Increased nuisance flooding along the coasts of the
United States due to sea level rise: past and future. Geophys. Res. Lett. 42,
9846–9852 (2015).

6. Pugh, D. T. Tides, Surges and Mean Sea-Level: A Handbook for Engineers and
Scientists (John Wiley, New York, 1987).

7. Gill, A. E. & Niiler, P. P. The theory of the seasonal variability in the ocean.
Deep Sea Res. 20, 141–177 (1973).

8. Tsimplis, M. N. & Woodworth, P. L. The global distribution of the seasonal
sea level cycle calculated from coastal tide gauge data. J. Geophys. Res. 99,
16031–16039 (1994).

9. Vinogradov, S. V., Ponte, R. M., Heimbach, P. & Wunsch, C. The mean
seasonal cycle in sea level estimated from a data-constrained general
circulation model. J. Geophys. Res. 113, C03032 (2008).

10. Plag, H. P. & Tsimplis, M. N. Temporal variability of the seasonal sea-level
cycle in the North Sea and Baltic Sea in relation to climate variability. Glob.
Planet. Change 20, 173–203 (1999).

11. Marcos, M. & Tsimplis, M. N. Variations of the seasonal sea level cycle in
southern Europe. J. Geophys. Res. 112, C12011 (2007).

12. Barbosa, S. M., Silva, M. F. & Fernandes, M. J. Changing seasonality in North
Atlantic coastal sea level from the analysis of long tide gauge records. Tellus
60A, 165–177 (2008).

13. Hünicke, B. & Zorita, E. Trends in the amplitude of Baltic Sea level annual
cycle. Tellus 60A, 154–164 (2008).

14. Dangendorf, S. et al. Mean sea level variability and influence of the North
Atlantic Oscillation on long-term trends in the German Bight. Water 4,
170–195 (2012).

15. Torres, R. R. & Tsimplis, M. N. Seasonal sea level cycle in the Caribbean Sea. J.
Geophys. Res. 117, C07011 (2012).

16. Wahl, T., Calafat, F. M. & Luther, M. E. Rapid changes in the seasonal sea level
cycle along the US Gulf coast from the late 20th century. Geophys. Res. Lett.
41, 491–498 (2014).

17. Feng, X. et al. Spatial and temporal variations of the seasonal sea level cycle in
the northwest Pacific. J. Geophys. Res. Oceans 120, 7091–7112 (2015).

18. Amiruddin, A. M., Haigh, I. D., Tsimplis, M. N., Calafat, F. M. & Dangendorf,
S. The seasonal cycle and variability of sea level in the South China Sea. J.
Geophys. Res. Oceans 120, 5490–5513 (2015).

19. Gill, A. E. Atmosphere-Ocean Dynamics (Academic, San Diego, 1982).
20. Pikovsky, A., Rosenblum, M., Osipov, G. & Kurths, J. Phase synchronization

of chaotic oscillators by external driving. Phys. D 104, 219–238 (1997).
21. Wu, Z. et al. The modulated annual cycle: an alternative reference frame for

climate anomalies. Clim. Dyn. 31, 823–841 (2008).
22. Särkkä, S. Bayesian Filtering and Smoothing 3rd edn (Cambridge University

Press, Cambridge, 2013).
23. McCarthy, G. D. et al. Measuring the Atlantic meridional overturning

circulation at 26°N. Prog. Oceanogr. 130, 91–111 (2015).
24. Thompson, K. R. North Atlantic sea-level and circulation. Geophys. J. R.

Astron. Soc. 87, 15–32 (1986).
25. Woodworth, P. L., Maqueda, M. Á. M., Roussenov, V. M., Williams, R. G. &

Hughes, C. W. Mean sea-level variability along the northeast American
Atlantic coast and the roles of the wind and the overturning circulation. J.
Geophys. Res. Oceans 119, 8916–8935 (2014).

26. Gill, A. E. & Clarke, A. J. Wind-induced upwelling, coastal currents, and sea-
level changes. Deep Sea Res. 21, 325–345 (1974).

27. Huthnance, J. M. On coastal trapped waves: analysis and numerical
calculation by inverse iteration. J. Phys. Oceanogr. 8, 74–92 (1978).

28. Enfield, D. B. & Allen, J. S. On the structure and dynamics of monthly mean
sea level anomalies along the Pacific coast of North and South America. J.
Phys. Oceanogr. 10, 557–578 (1980).

29. Hughes, C. W. & Meredith, P. M. Coherent sea-level fluctuations along the
global continental slope. Philos. Trans. R. Soc. A 364, 885–901 (2006).

30. Calafat, F. M., Chambers, D. P. & Tsimplis, M. N. Mechanisms of decadal sea
level variability in the eastern North Atlantic and the Mediterranean Sea. J.
Geophys. Res. 117, C09022 (2012).

31. Marshall, D. P. & Johnson, H. L. Propagation of meridional circulation
anomalies along western and eastern boundaries. J. Phys. Oceanogr. 43,
2699–2717 (2013).

32. Cabanes, C., Huck, T. & deVerdière, A. C. Contributions of wind forcing and
surface heating to interannual sea level variations in the Atlantic Ocean. J.
Phys. Oceanogr. 36, 1739–1750 (2006).

33. Piecuch, C. G. & Ponte, R. M. Buoyancy-driven interannual sea level
changes in the southeast tropical Pacific. Geophys. Res. Lett. 39, L05607
(2012).

34. Hong, B. G., Sturges, W. & Clarke, A. J. Sea level on the U.S. east coast:
decadal variability caused by open ocean wind-curl forcing. J. Phys. Oceanogr.
30, 2088–2098 (2000).

35. Chelton, D. B. & Schlax, M. G. Global observations of oceanic Rossby waves.
Science 272, 234–238 (1996).

36. Kanzow, T. et al. Basinwide integrated volume transports in an eddy-filled
ocean. J. Phys. Oceanogr. 39, 3091–3110 (2009).

37. Clément, L., Frajka-Williams, E., Szuts, Z. B. & Cunningham, S. A. Vertical
structure of eddies and Rossby waves, and their effect on the Atlantic
meridional overturning circulation at 26.5°N. J. Geophys. Res. Oceans 119,
6479–6498 (2014).

38. Frajka-Williams, E., Johns, W. E., Meinen, C. S., Beal, L. M. & Cunningham, S.
A. Eddy impacts on the Florida current. Geophys. Res. Lett. 40, 349–353
(2013).

39. Frajka-Williams, E. et al. Compensation between meridional flow components
of the Atlantic MOC at 26°N. Ocean Sci. 12, 481–493 (2016).

40. Hirschi, J. J.-M., Killworth, P. D. & Blundell, J. R. Subannual, seasonal, and
interannual variability of the North Atlantic meridional overturning
circulation. J. Phys. Oceanogr. 37, 246–1265 (2007).

41. Holgate, S. J. et al. New data systems and products at the permanent service
for mean sea level. J. Coast. Res. 29, 493–504 (2013).

42. Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol.
Soc. 137, 1–28 (2011).

43. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am.
Meteorol. Soc. 77, 437–471 (1996).

44. Smeed, D. et al. Atlantic Meridional Overturning Circulation Observed by the
RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and
Heatflux Array-Western Boundary Time Series) Array at 26N from 2004 to
2015 (British Oceanographic Data Centre—Natural Environment Research
Council, Southampton, 2016).

45. Coward, A. & de Cuevas, B. The OCCAM 66 Level Model: Physics, Initial
Conditions and External Forcing Internal Rep. 99, 58 (National Oceanography
Centre, Southampton, 2005).

46. Marzocchi, A. et al. The North Atlantic subpolar circulation in an eddy-
resolving global ocean model. J. Mar. Syst. 142, 126–143 (2015).

47. Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using
simple ocean data assimilation (SODA). Mon. Weather Rev. 136, 2999–3017
(2008).

48. Levitus, S. Climatological Atlas of the World Ocean (Geophysical Fluid
Dynamics Laboratory, Princeton, 1982).

49. Capotondi, A., Alexander, M. A. & Deser, C. Why are there Rossby wave
maxima in the Pacific at 10°S and 13°N? J. Phys. Oceanogr. 33, 1549–1563
(2003).

50. Kanzow, T. et al. A prototype system for observing the Atlantic
meridional overturning circulation: scientific basis, measurement and
risk mitigation strategies, and first results. J. Oper. Oceanogr. 1, 19–28
(2008).

51. Andrieu, C., Doucet, A. & Holenstein, R. Particle Markov chain Monte Carlo
methods. J. R. Stat. Soc. 72, 269–342 (2010).

52. Lindsten, F., Jordan, M. I. & Schön, T. B. Particle Gibbs with ancestor
sampling. J. Mach. Learn. Res. 15, 2145–2184 (2014).

53. Lindsten, F., Bunch, P., Singh, S. S. & Schön, T. B. Particle ancestor sampling
for near-degenerate or intractable state transition models. Preprint at https://
arxiv.org/abs/1505.06356 (2015).

54. Chen, M. H. & Shao, Q. M. Monte Carlo estimation of Bayesian credible and
HPD intervals. J. Comput. Graph. Stat. 8, 69–92 (1999).

55. Ebisuzaki, W. A method to estimate the statistical significance of a correlation
when data are serially correlated. J. Clim. 10, 2147–2153 (1997).

Acknowledgements
We acknowledge the PSMSL for the tide-gauge data, the OCCAM, NEMO, and SODA
projects for the ocean model data, the RAPID-WATCH MOC for the UMO data, the
WHOI OAFlux project for the heat flux data, CMEMS for the altimetry data, and NOAA
AOML for the Florida current transport time series. E.F.-W. was supported by a
Leverhulme Trust Research Fellowship. Plotting was done in Python using the Matplotlib
and Basemap libraries. This work has been partially supported by the Natural Envir-
onment Research Council (NERC) National Capability funding. F.L. was supported by
the Swedish Research Council (ref no: 2016-04278) and the Swedish Foundation for
Strategic Research (ref no: ICA16-0015). We thank Chris W. Hughes for helpful
discussions.

Author contributions
This study was conceived by F.M.C. with contributions from the other co-authors. F.M.
C. designed and implemented the state-space models, coded the reduced gravity model,
performed the data analysis, and produced the figures. T.W. provided the time series of
the annual amplitude based on the windowing method. F.L. aided with the imple-
mentation of PGAS and the development of the state-space models. J.W. provided the
Matlab code to read the OCCAM data. E.F.-W. assisted with the calculation of the UMO.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04898-y

12 NATURE COMMUNICATIONS |  (2018) 9:2571 | DOI: 10.1038/s41467-018-04898-y | www.nature.com/naturecommunications

https://arxiv.org/abs/1505.06356
https://arxiv.org/abs/1505.06356
www.nature.com/naturecommunications


F.M.C. wrote the paper with input from the other co-authors. All authors discussed the
results and implications and commented on the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04898-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04898-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2571 | DOI: 10.1038/s41467-018-04898-y | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-018-04898-y
https://doi.org/10.1038/s41467-018-04898-y
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves
	Results
	Changes in the SLAC amplitude from tide-gauge records
	Mechanisms of changes in the annual amplitude
	The relationship between the SLAC and the UMO transport

	Methods
	Data sets and ocean models
	Sea-level equations
	The 1.5-layer reduced gravity model
	Calculation of the upper mid-ocean transport
	State-space model for the annual cycle
	State-space model for the UMO variance
	Definition of the modulator
	Statistical significance of correlations
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS


