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Abstract  
When a train runs on soft ground it can approach or even exceed the speed of surface waves in the 

ground. Under such conditions the amplitudes of the track response increase considerably. 

Moreover, a resonance-like phenomenon can occur in which a clear oscillation trail can be observed 

behind the moving axle loads. An investigation is presented of this resonance frequency and the 

critical speed effect for a track on a layered half-space subject to a moving load. Three different 

methods are used to investigate this resonance frequency: (i) the spectrum of the response to a 

moving load, (ii) analysis of the dispersion curves of the ground, and (iii) frequency analysis of the 

response to a stationary load. A parameter study is presented of a layered half-space ground with 

different P-wave speeds, S-wave speeds, and depth of the upper layer. The critical speeds are found 

in each case; in such a layered ground, the critical speed is greater than the Rayleigh wave speed of 

the soft upper layer due to the influence of the underlying half-space. The oscillating frequencies 

are shown to vary with the speed of the moving load, tending to reduce when the load speed 

increases. The P-wave speeds of both the upper layer and the underlying half-space are found to 

have negligible influence on the critical velocity and on the oscillating frequency; the S-wave speed 

of the half-space has only a small influence. Larger differences are found when the depth of the 

layer is varied. Finally, a formula for calculating this resonance frequency is proposed.  
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1. Introduction 

High-speed trains have become an important means of public transport due to their efficiency and 

relatively low impact on the environment. However, with increasing train speed, especially when 

the track alignment crosses soft ground, the track deflections increase dramatically as the train 

speed approaches the speed of surface waves in the soil [1,2]. Furthermore, when the speed of a 

load moving on a layered ground exceeds the Rayleigh wave speed of the upper layer, a resonance 

phenomenon is observed in which the track and ground surface behind the load oscillates with a 

certain frequency [1,3–5]. These phenomena were also found in the site measurements at Ledsgård 

in Sweden [6]. To avoid these effects, costly soil improvement or additional foundation structures 

may be required such as strengthening the embankment [7] or ground stabilisation using lime 

cement columns [8]. 

For an ideal homogeneous soil the critical speed is readily determined as the Rayleigh wave speed 

of the soil [9]. For a layered ground the phenomenon is more complex, but nevertheless a number of 

authors have investigated the critical speed effect and methods to evaluate it [9–14]. However, only 

limited attention has been given to the resonance-like phenomenon that occurs in some situations 

for a layered half-space.  

Even in cases where the moving load speed is lower than the critical speed, significant vibration 

may occur that is associated with this resonance-like frequency, especially if it coincides with a 

strong excitation frequency from the train, for example due to the axle-passing frequencies [15]. 

Ground-borne vibration has become an important issue due to environmental concerns and, to give 

a correct assessment of the vibration levels occurring while train is passing, a numerical model that 

can correctly characterise the dynamic behaviour is required. Soil damping is an important factor 

for modelling the ground-borne vibration and in time domain models Rayleigh damping is 

commonly used for soil properties [12,16,17]. To apply the Rayleigh damping model, as used by 

Shih et al. [16], an appropriate ‘dominant’ frequency is required to select the corresponding 

damping coefficients. This is important not only to ensure the wave energy is sufficiently attenuated 

at the boundary of the model but also to represent the soil damping behaviour more correctly. Better 

understanding of this resonance phenomenon can thus lead to a more representative soil damping 

model and, together with the appropriate excitation mechanisms, to a better assessment for the 

ground-borne vibration. 

Wave propagation in a homogeneous half-space is non-dispersive and consequently no resonance 

frequency is found for a moving point source [16]. In contrast, a resonance frequency can be found 

for layered half-space soil. This resonance frequency is usually identified with the ‘cut-on 

https://www.google.co.uk/search?safe=strict&q=phenomenon&spell=1&sa=X&ved=0ahUKEwiXjcaLorHWAhXCwBQKHYerDnoQvwUIJCgA
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frequency’ of the upper layer, above which the waves begin to propagate in the upper soil layer [18]. 

It is indicated in the literature that the resonance frequency is related to the depth of the layer and 

the P-wave speed in the first layer [17–19]. A modified formula, based on the shear wave speed of 

the first layer and its depth with a cut-off factor, was introduced by Mehzer et al. [12]. However, the 

effect of load motion, which may modify the frequency, is not discussed in these papers.  

In this paper an investigation is carried out into this resonance phenomenon and its dependence on 

the properties of a layered ground. This analysis is carried out by using a three-dimensional semi-

analytical method [1,5]. This model is based on the formulation of Haskell and Thomson [20,21] 

and uses a two-dimensional Fourier transform over the axial and transverse coordinates to represent 

the layered ground in terms of the corresponding wavenumbers. The track is represented by a 

layered beam structure coupled to the ground over a finite-width strip. A static or moving load can 

be considered which may be either constant or harmonically varying. 

Herein three different methods are used to study this resonance frequency for a track on a layered 

half-space. First, the semi-analytical method presented in [5] is used to calculate the rail receptance 

due to a stationary harmonic load applied on the rail. Second, a quasi-static load moving along the 

track is considered using the same model as in [1]. The frequency spectra of the response in the 

non-moving frame due to the moving load are obtained and used to identify the resonance 

frequency. Third, following the method in [10], dispersion curves from the layered half-space with 

and without the track are calculated and used to estimate the resonance frequency for different load 

speeds by finding the intersection points between the dispersion curves and the load speed line.  

Results are presented for a layered half-space in which various values are considered for the depth 

of the upper ground layer and the P- and S-wave speeds of the layer and the substratum; results are 

also compared with those for a homogeneous half-space. In all cases the upper layer is considered 

to be softer than the underlying half-space, as is commonly found in practice. The critical speed is 

determined first for each case from the semi-analytical model. Then the resonance frequency is 

assessed using the three different methods and the results are compared. Finally, the results from the 

above methods are compared with the results from the formulae indicated in [12,17,18] and a 

revised formula is proposed.  

2. Parameters used in the study 

A range of different cases are introduced here for a ground with a single soft layer above a stiffer 

half-space. The parameters defining these cases are listed in Table 1. These are the P-, and S-wave 

speeds for the upper layer and the underlying half-space, as well as the depth of the first layer. The 

S-wave speed of the upper layer is kept fixed at 60 m/s and the other wave speeds are varied 
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relative to this. The soil density is set to 2000 kg/m
3
 throughout. The damping is represented by a 

constant damping loss factor of 0.05 in each case.  

The chosen reference soil properties for the upper layer corresponds to very soft soil, which 

approximately represents a typical soft clay. Although in such a situation the soil may have a high 

water content, the main focus of the present work is to look generically at how the wave speeds of 

the soil influence the dynamic behaviour of the layered ground. The wave speeds have therefore 

been chosen somewhat arbitrarily for convenience in the parametric analysis. The actual values of, 

for example, the mass density are less important for the present study.  

In the initial case, the P-wave speed of the upper layer is set to 120 m/s and the P- and S-wave 

speeds of the substratum are assumed to be double the values in the upper layer. This case is used as 

the reference case for comparison with the others. In cases 2 and 3, the P-wave speeds of the two 

layers are varied whereas in cases 4 and 5, the S-wave speed of the underlying half-space is varied 

while keeping the P-wave speed equal to twice the value of the S-wave speed. In cases 6 and 7, the 

layer depth is varied while keeping the same wave speeds as case 1. The homogeneous half-space 

(case 8) is an extreme case with an infinitely deep upper layer.  

Table 1 Parameters used to define the ground 

No. 

layer depth, 

H (m) 

1st layer  

P-wave, cp1 

(m/s) 

1st layer 

S-wave, cs1 

(m/s) 

2nd layer  

P-wave, cp2 

(m/s) 

2nd layer  

S-wave, cs2 

(m/s) 

Critical 

speed, Vcr 

(m/s) 

1 2 120 60 240 120 79 

2 2 240 60 240 120 80 

3 2 240 60 480 120 80 

4 2 240 60 480 240 82 

5 2 120 60 170 85 70 

6 4 120 60 240 120 62 

7 8 120 60 240 120 57 

8  120 60 - - 55 

 

The track properties used in each case are listed in Table 2 and are largely based on the ballasted 

track used in [22]. The value for the rail pad stiffness is equivalent to a stiffness of 300 MN/m per 

pad, which corresponds to a medium stiffness rail pad. In the current model, the railway track is 

considered as a straight ballasted track at the surface of the layered elastic half-space, as shown in 

Fig. 1(a). Linear dynamic behaviour is assumed throughout. The track is considered invariant in the 

longitudinal (x) direction and is modelled as a beam supported by vertical springs representing the 

rail pads, a layer of mass representing the sleepers and a further layer of springs with consistent 
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mass representing the ballast, as shown in Fig. 1(b). Since each axle load is distributed equally 

between the two rails, a single beam is used to represent both rails. 

Table 2 Track properties (for two rails) 

Parameter Value Units 

Rail mass 120 kg/m 

Rail bending stiffness 1.2810
7
 Nm

2
 

Rail damping loss factor 0.01  

Railpad stiffness per unit track length 1.010
9
 N/m

2
 

Railpad damping loss factor 0.1  

Sleeper mass per unit track length 541.8 kg/m 

Ballast stiffness per unit track length 4.6410
9
 N/m

2
 

Ballast mass per unit track length 1740 kg/m 

Ballast damping loss factor 0.04  

Ballast width at the bottom 3.2 m 

 

The model is formulated in the wavenumber-frequency domain and uses the transfer function 

matrices for the ground formulated in [5] and [1] in a frame of reference moving with the loads. For 

the calculation of the response in the wavenumber domain, equally-spaced wavenumbers are used 

for the directions both parallel and normal to the track. In each direction the maximum wavenumber 

is set to 10π rad/m and the number of wavenumber points in each direction is set to be 2048. The 

inverse Fourier transform is carried out using the FFT algorithm in order to transform the response 

from the wavenumber to the space doamain. The maximum wavenumber and the wavenumber 

discretization define spatial resolution and the sizer of the spatial domain and are chosen to ensure 

an efficient and sufficiently accurate Fourier transform.  

 

Rail

Railpad

Sleeper

Ballast

Soil

x

z

 

                                 (a)                                                                           (b) 

Figure 1 (a) The geometry of the track ground system; (b) beam-spring-mass representation of the 

ballasted track form 
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3. Investigation of the critical speed  

To determine the critical speed, the maximum displacement on the track induced by a moving point 

load is calcuated by using the three-dimensional semi-analytical track/ground model of [1]. The 

results for the various parameter sets are shown in Fig. 2.  

As shown in Fig. 2(a), compared with case 1, the maximum displacement is reduced at all speeds by 

around 18% when the P-wave speed of the first layer is doubled (case 2). Almost the same results 

are found when additionally the P-wave speed of the second layer is doubled (case 3). When both 

the P-wave speed and S-wave speed of the underlying layer are increased as well as the P-wave 

speed of the upper layer (case 4) the deflection reduces by about 30% compared with case 1. 

However, the critical speed found in these four cases remains almost the same, as shown in Table 1. 

The critical speed only increases slightly when the S-wave speed of the underlying half-space is 

additionally increased (case 4). 

 

 (a) (b) 

 

(c) 
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Figure 2 Maximum displacement as a function of load speed for different cases; (a) variation of cp1 

and cp2; (b) variation of cs2; (c) variation of layer depth 

Fig. 2(b) shows the influence of changing the S-wave speed of the underlying half-space. The 

critical speed changes from 79 m/s to 70 m/s when the S-wave speed of the second layer is reduced 

from 120 m/s to 85 m/s (case 5). Reducing it further to 60 m/s (i.e. the same properties as the upper 

layer) produces a homogeneous half-space, for which the critical speed is found to be 55 m/s. Thus, 

significant differences in critical speed are found when the shear wave speed of the lower layer is 

changed. Moreover, the displacement at the critical speed is increased as the soil becomes softer.  

Fig. 2(c) shows the effect of varying the depth of the first layer. Here also the critical speed tends to 

decrease and the maximum deflection tends to increase as the layer depth is increased. 

4. Investigation of the resonance frequency for layered half-space  

Assessments of the resonance frequency based three different methods are presented and discussed 

here.   

4.1 Responses to a stationary harmonic load 

The response due to a stationary harmonic load acting on the rails is shown in Fig. 3 in the form of 

the point receptance. At low frequency this is stiffness-controlled before rising to a peak at the first 

resonance frequency. This occurs at around 10 Hz for cases 1 to 5, which have the same layer depth 

but different wave speeds for the ground. On the other hand, the resonance frequency decreases 

when the depth of the layer is increased, as seen for cases 6 and 7, and eventually no clear peak can 

be found for the homogeneous half-space (case 8). A second resonance frequency occurs at around 

40 Hz in all cases. However, the receptance becomes much lower than at the first resonance 

frequency. As a result, the investigation focusses on the first resonance frequency. The resonance 

frequencies found in these seven cases from the peaks in the receptance are listed in Table 3. They 

will be compared with results from the other methods in Section 4.4 below. 
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 (a) (b) 

Figure 3 Receptance of the rail from eight different cases listed in Table 1; (a) cases 1~4; (b) cases 

5~8 

Table 3 The resonance frequencies found in seven cases of layered ground (Table 1) for a stationary 

harmonic load 

 Resonance frequencies 

Case 1 10 Hz 

Case 2 11 Hz 

Case 3 11 Hz 

Case 4 13 Hz 

Case 5 9 Hz 

Case 6 6 Hz 

Case 7 3 Hz 

 

4.2 Responses from moving point load 

In this section, the semi-analytical model of [1] is used to predict the response to a moving constant 

load. The results are calculated in the moving frame but they are transformed to the non-moving 

frame. Results are presented as time histories and the corresponding frequency spectra of the 

response for a number of speeds in each case, both below and above the critical speed.  

Figure 4 presents the results for case 1, which has a critical speed of 79 m/s. A significant peak can 

be found between 10 and 15 Hz for load speeds between 70 m/s and 80 m/s with the peak frequency 

tending to decrease with increasing speed. This can also be seen as a clear oscillation in the 

displacement time histories in Fig. 4(b). The resonance phenomenon can thus be observed for load 

speeds 70 and 75 m/s, which are lower than the critical speed. However,  there is no clear peak in 

the spectrum or oscillation in the time domain for load speeds lower than 70 m/s. The time-domain 

results for 60 m/s (not shown) contain no oscillation after the load. 

 

 (a) (b) 
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Figure 4 Results from case 1 for different load speeds; (a) rail displacement spectrum; (b) rail 

displacement in the time domain  

The results from cases 2~4, which have similar critical speeds of 80-82 m/s, are shown in Figs 5 to 

7. These show similar trends with a clear peak between 10 and 15 Hz for speeds higher than 75 m/s, 

which tends to shift to a slightly lower frequency as the load speed increases further. The resonance 

peak at 75 m/s tends to become less clear with a stiffer substratum while the peak at 70 m/s 

disappears. Conversely, for a load speed of 100 m/s the oscillation tends to become longer and the 

peak in the spectrum clearer, as seen in Fig. 7.  

 

 (a) (b) 

Figure 5 Results from case 2, with increased cp1, for different load speeds; (a) rail displacement 

spectrum; (b) rail displacement in the time domain  

 

 (a) (b) 

Figure 6 Results from case 3, with increased cp1 and cp2, for different load speeds; (a) rail 

displacement spectrum; (b) rail displacement in the time domain  
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 (a) (b) 

Figure 7 Results from case 4, with increased cp1, cp2 and cs2, for different load speeds; (a) rail 

displacement spectrum; (b) rail displacement in the time domain  

Figure 8 shows the results for case 5, which has a lower S-wave speed for the underlying soil than 

case 1. In this case there is only a clear peak in the spectrum for a speed of 70 m/s, which 

corresponds to the critical speed. Similarly, in the time domain response there is only a clear 

oscillation at the critical load speed of 70 m/s.  

 

 (a) (b) 

Figure 8 Results from case 5, with reduced cp2 and cs2, for different load speeds; (a) rail 

displacement spectrum; (b) rail displacement in the time domain  

The results for cases 6 and 7, which have a deeper surface layer and critical speeds of 62 and 57 m/s, 

are shown in Figs 9 and 10. A clear resonance peak can be found for both cases when the load 

speed is higher than 60 m/s. It decreases in frequency when the depth of the first layer is increased, 

occurring between around 7 and 9 Hz for case 6 and between 3 and 6 Hz for case 7. The resonance-

like phenomenon can be found again for case 6 in Fig. 9(b) for 60 m/s, which is lower than the 

critical speed. However, unlike other cases (except case 8), where a clear oscillation tail can be 
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observed for speeds lower than the critical speed, in case 7 the resonance phenomenon only occurs 

when the load speed is equal to or higher than the critical speed, as shown in Fig. 10(b).  

The corresponding results from the homogeneous half-space are shown in Fig. 11. The resonance 

phenomenon cannot be identified in either the spectrum or the time domain results.  

 
 (a) (b) 

Figure 9 Results from case 6, with increased layer depth of 4 m, for different load speeds; (a) rail 

displacement spectrum; (b) rail displacement in the time domain  

 

 (a) (b) 

Figure 10 Results from case 7, with increased layer depth of 8 m, for different load speeds; (a) rail 

displacement spectrum; (b) rail displacement in the time domain  
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 (a) (b) 

Figure 11 Results from case 8 (homogeneous half-space) for different load speeds; (a) rail 

displacement spectrum; (b) rail displacement in the time domain  

4.3 Dispersion curves 

In this section, using the method introduced by Sheng et al. [10], the ground dispersion curves are 

used to identify the dominant frequency of the response. This method was also recently used by 

Costa et al. to assess the critical speed [9]. Fig. 12 shows the dispersion results for case 1. The left-

hand graph shows the dispersion diagram for the layered ground without track, which can be 

obtained from the analytical model. This shows the coupled compressional and vertically-polarised 

shear (P-SV) waves. The propagating wave modes in the ground without track are represented by 

the solid lines and two dashed lines represent the Rayleigh wave speed of the top layer (upper line) 

and the shear wave speed of the underlying half-space (lower line). The line corresponding to the 

critical speed (79 m/s) is also shown. To account for the influence of the track, the right-hand graph 

shows a colour contour plot of the vibration amplitude excited by a stationary oscillating vertical 

force on the track as a function of wavenumber in the ground at each frequency. The results shown 

in the figure are based on the response at the ground surface, directly beneath the track, the 

wavenumber being in the direction of the track. The first propagating mode from the free field 

without consideration of the track is superimposed for comparison.  
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 (a) (b) 

Figure 12 Dispersion diagrams obtained from analytical model for case 1; (a) without track; (b) 

with track  

As shown in Fig. 12(b), at higher frequency the wavenumber results obtained without the track are 

higher than the results including the track. This is due to the fact that the track is stiffer than the 

ground. However, below about 15 Hz the two results are very similar. A similar conclusion was 

reached by Costa et al. [9] who compared the dispersion curve from three different representative 

track models with the results without the track. According to Sheng et al. [1], the resonance 

frequency induced by a moving point load can be found from the intersection point between the 

load speed line and the propagating mode dispersion curves. As the dispersion results are similar 

with or without the track in this low frequency region, the intersection with the result without the 

track can be used as an approximation. The corresponding intersection point occurs in this case at 

around 12 Hz, see Fig. 11(a). As the load speed increases, the intersection point will shift to a 

slightly lower frequency.  

Very similar results are found for cases 2 and 3 in Fig. 13. This is because the wavenumbers of the 

propagating waves lie between the Rayleigh wavenumber of the upper layer material and the shear 

wavenumber of the lower layer material and they rise from the wavenumber of the lower layer to 

that of the upper layer at around the cut-on frequency of the upper layer [18]. As a result, only very 

small differences are found in the dispersion curves when the P-wave speeds of the first or second 

layer are varied.  

Larger differences are found when the S-wave speed is changed, as shown in Fig. 14 for cases 4 and 

5. Nevertheless, a similar insertion point is found for case 4, as shown in Fig. 14(a), due to the fact 

that the surface wave of the upper layer remains the same as in the previous cases. On the other 

hand, the intersection point drops to around 10 Hz when both the shear wave speed and 
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compressional wave speed of the substratum are reduced, as shown in Fig. 14(b). Furthermore, the 

wave propagation modes in case 5 tend to become less dispersive due to the fact that the two layers 

have more similar material properties. 

Figure 15 shows the corresponding results for cases 6 and 7 in which the depth of the first layer is 

increased. Here the wavenumber increases towards the Rayleigh wavenumber of the upper layer at 

a lower frequency, causing the intersection with the load speed line to occur at a lower frequency, 9 

Hz for case 6 and 7 Hz for case 7.  

 

 (a) (b) 

Figure 13 Dispersion diagrams for (a) case 2 (cp2 =240 m/s); (b) case 3 (cp2 =480 m/s) 

 

 (a) (b) 

Figure 14 Dispersion diagrams for (a) case 4 (Vcr =82 m/s); (b) case 5 (Vcr =70 m/s)  
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 (a) (b) 

Figure 15 Dispersion diagrams for (a) case 6 (first layer depth 4 m); (b) case 7 (8 m)  

 

4.4 Discussion 

In the previous sections, the resonance frequency has been estimated by three different methods. 

The results from these methods are compared in Fig. 16. The result obtained from the stationary 

harmonic load is independent of load speed, whereas the other two results vary with load speed. 

Nevertheless, the results obtained from the dispersion curves have generally good agreement with 

the results obtained from the spectrum of the response to a moving load and both results are similar 

to that obtained from the stationary harmonic load. For those results obtained for a load moving at 

speeds lower than the critical speed, it is difficult to identify the resonance peak. As a result, no 

resonance frequency is shown in Fig. 16 for these lower speeds.  

The resonance frequency calculated from the dispersion curve can be identified at lower speeds than 

that from the spectrum of the moving load response. In most cases the result from the dispersion 

curve can be identified for speeds higher than the Rayleigh wave speed of the first layer. However, 

the resonance frequency has limited relevance for these speeds as the resonance phenomenon 

cannot be observed in the time history (see Figs 4~10). Furthermore, quite poor agreement is found 

between these two methods for speeds lower than the critical speed for cases 2-5. For case 5, the 

method based on the dispersion curves does not give a result above 70 m/s. This is due to the fact 

that the two layers have quite similar properties and the soil tends to become nearly non-dispersive 

(see Fig. 14(b)).  
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Figure 16 Resonance frequency at different load speeds obtained by using three different methods; 

(a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5; (f) case 6; (g) case 7 
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According to [17,18], the resonance frequency can be calculated by 

1

4

p

res

c
f

H
  (1) 

where, cp1 is the P-wave speed of the first layer and H is the layer depth. The resonance frequency 

calculated from this formula is listed in Table 4. Differences of up to almost a factor of 3 can be 

found compared with the results from the present studies. Mezher et al. [12] give a modified 

formula 

1s
res

c
f

H
  (2) 

where, cs1 is the S-wave speed of the first layer. As shown in Table 4, estimates based on this 

formula are all too high, by a factor of around 2~3 times, compared with the resonance frequency 

calculated from the stationary harmonic load. A modified formula is suggested here to estimate the 

resonance frequency of a layered half-space:  

1

2

s
res

c
f

H
  (3) 

Comparisons of the resonance frequency calculated based on Eq. (1)~Eq. (3) with the results from 

the stationary harmonic load and the results at critical speed from the spectrum of the quasi-static 

responses are shown in Tables 5 and 6. The results from the quasi-static responses are used at the 

critical speed because a clear oscillation tail can be found in the time domain in each case. The 

results from the stationary harmonic load are used as it is the only method without speed 

dependence that can be easily calculated. Furthermore, it agrees well with the results from the 

quasi-static response at higher load speeds.  

Significant differences can be found based on Eq. (2) compared with the two different methods. 

Better results are found based on Eq. (1); however, significant differences are found for cases 2~4, 

which include higher P- and S-wave speeds for the substratum. Using Eq. (3) differences of less 

than 50% are found compared with the results from stationary harmonic load, apart from case 5 for 

which a difference of around 67% is found. However, this case does not have a very distinct 

resonance (see Fig. 8) as the properties for the two layers are very similar. This situation is therefore 

quite similar to a homogeneous half-space, which is non-dispersive and does not have this 

resonance phenomenon (see Fig. 11).  
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Table 4 Comparison of resonance frequency based on three different equations with the results from 

stationary harmonic load 

 

Results from 

stationary 

harmonic load 

Results at Vcr 

from the spectrum 

of quasi-static 

response 

Based on 

Eq. (1) 

Based on 

Eq. (2) 

Based on 

Eq. (3) 

Case 1 10 Hz 12 Hz 15 Hz 30 Hz 15 Hz 

Case 2 11 Hz 14 Hz 30 Hz 30 Hz 15 Hz 

Case 3 11 Hz 14 Hz 30 Hz 30 Hz 15 Hz 

Case 4 13 Hz 15 Hz 30 Hz 30 Hz 15 Hz 

Case 5 9 Hz 9 Hz 15 Hz 30 Hz 15 Hz 

Case 6 6 Hz 8.5 Hz 7.5 Hz 15 Hz 7.5 Hz 

Case 7 3 Hz - 3.75 Hz 7.5 Hz 3.75 Hz 

 

Table 5 Difference between the results based on Eqs (1) to (3) and the results for a stationary 

harmonic load 

 Based on Eq. (1) Based on Eq. (2) Based on Eq. (3) 

Case 1 50% 200% 50% 

Case 2 173% 173% 36% 

Case 3 173% 173% 36% 

Case 4 131% 131% 15% 

Case 5 67% 233% 67% 

Case 6 25% 150% 25% 

Case 7 25% 150% 25% 

 

Table 6 Difference between the results based on Eqs (1) to (3) and the results at Vcr from the 

spectrum of quasi-static response 

 Based on Eq. (1) Based on Eq. (2) Based on Eq. (3) 

Case 1 25% 150% 25% 

Case 2 114% 114% 7% 

Case 3 114% 114% 7% 

Case 4 100% 100% 0% 

Case 5 67% 233% 67% 

Case 6 -12% 76% -12% 

Case 7 25% 150% 25% 

 

Comparing the results from Eq. (3) with those from the quasi-static response at the critical speed, 

see Table 6, better agreement is found, with differences of less than 25% apart from case 5. Note 

that none of the formulae mentioned above consider any speed dependence. Therefore, they are 

inevitably approximations. Nevertheless, Eq. (3) tends to give better agreement compared with the 

results from the stationary harmonic load and the quasi-static load.  
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5. Conclusions 

A parametric study of the resonant characteristic of a load moving on a layered half-space has been 

carried out. Simulations have been performed using a range of ground properties to show the 

dependence of the critical speed and the resonance frequency of the track/ground system on the 

wave speeds of the upper layer and underlying half-space and the layer depth.  

The critical speed is shown to be independent of the P-wave speeds of either layer. On the other 

hand, it decreases when the S-wave speed of the second layer is reduced, showing the importance of 

ground layering. When the layer depth is increased, the critical speed also decreases. It reduces by 

around 25% when the layer depth is increased from 2 m to 4 m for the current parameters. 

However, much smaller differences are found when it is increased further.  

The resonance frequency of the layered ground is studied using three methods. From results due to 

a moving point load, it is found to be influenced by the speed of the moving load and tends to 

decrease when the load speed increases. Changes to the P-wave speed for the upper layer and the 

half-space and the S-wave speed for the half-space have a minimal effect on the resonance 

frequency. Larger differences are found when the depth of the first layer is changed. A much clearer 

oscillation behind the load can be found with a stiffer top layer and shallow layer depth, especially 

when the load speed is close to the critical speed. Furthermore, a longer oscillation in the time 

domain is found when the difference between the S-wave speeds of the two layers becomes 

significant.  

The dispersion curve is almost the same at low frequency whether the track is included on the 

ground or not. Therefore, for calculating the resonance frequency, the track can be neglected. It is 

expected that the oscillation behind the load occurs when the load speed is higher than the Rayleigh 

wave speed of the first layer, due to the fact that the waves start to propagate in this layer. However, 

for some cases, no oscillation is found behind the load in the time domain even though the load 

speed is higher than the surface wave speed.  

The resonance frequency obtained from the moving point load and the dispersion curve are similar. 

The resonance frequency estimated from the results for a stationary harmonic load applied on the 

track/ground model give a good approximation even though the results are influenced in practice by 

the speed of the moving load. 

Based on the present study, the resonance frequency of a layered ground is shown to be related to 

the S-wave speed and the depth of the first layer, not the P-wave speed. Consequently, an 
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approximate formula is proposed, which gives results within 25% of the results from the spectrum 

of quasi-static response at the critical speed. 

This resonance-like phenomenon should be taken into account in high-speed railway design. Based 

on the present study, in order to avoid this resonance-like phenomenon, it is suggested that the 

design train speed should be not only lower than the critical speed but also less than the shear wave 

speed of the first layer of the ground. Care should also be taken to avoid the coincidence of 

dominant train-load frequencies and the ground resonance frequency. 

Although the rail receptance from a stationary harmonic load does not account for the effect of load 

speed, it can still capture this resonance frequency relatively well. Furthermore, this result can be 

easily obtained using hammer tests in the field. As a result, based on the present study, the proposed 

formula has the potential to capture the main characteristics of the soil.  
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