The University of Southampton
University of Southampton Institutional Repository

Regularized zero-forcing precoding aided adaptive coding and modulation for large-scale antenna array based air-to-air communications

Regularized zero-forcing precoding aided adaptive coding and modulation for large-scale antenna array based air-to-air communications
Regularized zero-forcing precoding aided adaptive coding and modulation for large-scale antenna array based air-to-air communications
We propose a regularized zero-forcing transmit precoding (RZF-TPC) aided and distance-based adaptive coding and modulation (ACM) scheme to support aeronautical communication applications, by exploiting the high spectral efficiency of large-scale antenna arrays and link adaption. Our RZF-TPC aided and distance-based ACM scheme switches its mode according to the distance between the communicating aircraft. We derive the closed-form asymptotic signal-to-interference-plus-noise ratio (SINR) expression of the RZF-TPC for the aeronautical channel, which is Rician, relying on a non-centered channel matrix that is dominated by the deterministic line-of-sight component. The effects of both realistic channel estimation errors and of the co-channel interference are considered in the derivation of this approximate closed-form SINR formula. Furthermore, we derive the analytical expression of the optimal regularization parameter that minimizes the mean square detection error. The achievable throughput expression based on our asymptotic approximate SINR formula is then utilized as the design metric for the proposed RZF-TPC aided and distance-based ACM scheme. Monte-Carlo simulation results are presented for validating our theoretical analysis as well as for investigating the impact of the key system parameters. The simulation results closely match the theoretical results. In the specific example that two communicating aircraft fly at a typical cruising speed of 920 km/h, heading in opposite direction over the distance up to 740 km taking a period of about 24 minutes, the RZF-TPC aided and distance-based ACM is capable of transmitting a total of 77 Gigabyte of data with the aid of 64 transmit antennas and 4 receive antennas, which is significantly higher than that of our previous eigen-beamforming transmit precoding aided and distance-based ACM benchmark.
0733-8716
2087-2013
Zhang, Jiankang
6add829f-d955-40ca-8214-27a039defc8a
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Maunder, Robert
76099323-7d58-4732-a98f-22a662ccba6c
Zhang, Rong
3be8f78f-f079-4a3f-a151-76ecd5f378f4
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Zhang, Jiankang
6add829f-d955-40ca-8214-27a039defc8a
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Maunder, Robert
76099323-7d58-4732-a98f-22a662ccba6c
Zhang, Rong
3be8f78f-f079-4a3f-a151-76ecd5f378f4
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Zhang, Jiankang, Chen, Sheng, Maunder, Robert, Zhang, Rong and Hanzo, Lajos (2018) Regularized zero-forcing precoding aided adaptive coding and modulation for large-scale antenna array based air-to-air communications. IEEE Journal on Selected Areas in Communications, 36 (9), 2087-2013. (doi:10.1109/JSAC.2018.2864417).

Record type: Article

Abstract

We propose a regularized zero-forcing transmit precoding (RZF-TPC) aided and distance-based adaptive coding and modulation (ACM) scheme to support aeronautical communication applications, by exploiting the high spectral efficiency of large-scale antenna arrays and link adaption. Our RZF-TPC aided and distance-based ACM scheme switches its mode according to the distance between the communicating aircraft. We derive the closed-form asymptotic signal-to-interference-plus-noise ratio (SINR) expression of the RZF-TPC for the aeronautical channel, which is Rician, relying on a non-centered channel matrix that is dominated by the deterministic line-of-sight component. The effects of both realistic channel estimation errors and of the co-channel interference are considered in the derivation of this approximate closed-form SINR formula. Furthermore, we derive the analytical expression of the optimal regularization parameter that minimizes the mean square detection error. The achievable throughput expression based on our asymptotic approximate SINR formula is then utilized as the design metric for the proposed RZF-TPC aided and distance-based ACM scheme. Monte-Carlo simulation results are presented for validating our theoretical analysis as well as for investigating the impact of the key system parameters. The simulation results closely match the theoretical results. In the specific example that two communicating aircraft fly at a typical cruising speed of 920 km/h, heading in opposite direction over the distance up to 740 km taking a period of about 24 minutes, the RZF-TPC aided and distance-based ACM is capable of transmitting a total of 77 Gigabyte of data with the aid of 64 transmit antennas and 4 receive antennas, which is significantly higher than that of our previous eigen-beamforming transmit precoding aided and distance-based ACM benchmark.

Text
RZFPfAC-final-version - Accepted Manuscript
Download (631kB)
Text
JSAC2019-9
Download (2MB)

More information

Accepted/In Press date: 16 July 2018
e-pub ahead of print date: 10 August 2018
Published date: September 2018

Identifiers

Local EPrints ID: 422109
URI: http://eprints.soton.ac.uk/id/eprint/422109
ISSN: 0733-8716
PURE UUID: 0f69a53c-4df3-412d-a08f-b14a6bf9b8ee
ORCID for Jiankang Zhang: ORCID iD orcid.org/0000-0001-5316-1711
ORCID for Robert Maunder: ORCID iD orcid.org/0000-0002-7944-2615
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 17 Jul 2018 16:30
Last modified: 18 Mar 2024 03:14

Export record

Altmetrics

Contributors

Author: Jiankang Zhang ORCID iD
Author: Sheng Chen
Author: Robert Maunder ORCID iD
Author: Rong Zhang
Author: Lajos Hanzo ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×