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Empirical likelihood is a non-parametric, likelihood-based inference approach. In

the design-based empirical likelihood approach introduced by Berger and De La

Riva Torres (2016), the parameter of interest is expressed as a solution to an esti-

mating equation. The maximum empirical likelihood point estimator is obtained

by maximising the empirical likelihood function under a system of constraints. A

single vector of weights, which can be used to estimate various parameters, is cre-

ated. Design-based empirical likelihood confidence intervals are based on the χ2

approximation of the empirical likelihood ratio function. The confidence intervals

are range-preserving and asymmetric, with the shape driven by the distribution

of the data.

In this thesis we focus on the extension and application of design-based empirical

likelihood methods to various problems occurring in survey inference. First, a

design-based empirical likelihood methodology for parameter estimation in two

surveys context, in presence of alignment and benchmark constraints, is developed.

Second, a design-based empirical likelihood multiplicity adjusted estimator for

multiple frame surveys is proposed. Third, design-based empirical likelihood is

applied to a practical problem of census coverage estimation.

The main contribution of this thesis is defining the empirical likelihood method-

ology for the studied problems and showing that the aligned and multiplicity ad-

justed empirical likelihood estimators are
√
n-design-consistent. We also discuss

how the original proofs presented by Berger and De La Riva Torres (2016) can

be adjusted to show that the empirical likelihood ratio statistic is pivotal and

follows a χ2 distribution under alignment constraints and when the multiplicity

adjustments are used.

We evaluate the asymptotic performance of the empirical likelihood estimators

in a series of simulations on real and artificial data. We also discuss the compu-

tational aspects of the calculations necessary to obtain empirical likelihood point

estimates and confidence intervals and propose a practical way to obtain empirical

likelihood confidence intervals in situations when they might be difficult to obtain

using standard approaches.
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Notation

We use the following notation:

log(·) Natural logarithm of (·)
‖A‖ Frobenius (Euclidean) norm defined by ‖A‖ := trace(A>A)1/2

OP(·) A matrix or a vector such that ‖OP(a)‖ = OP(a)
OP(·) A matrix or a vector such that ‖OP(a)‖ = oP(a)
a = oP(b) a converges in probability to b
a = OP(b) a is stochastically bounded by b
a = O(b) a is bounded by b
a = b a is equal to b
a := b a is defined as b
a �p b a converges in probability to b

a
d−→ b a converges in distribution to b

x A column vector
x> A row vector
x A scalar
θU A finite population parameter
θ A candidate value for the population parameter

θ̂ An estimator of a finite population parameter θU
0q A vector of zeros of dimension q

We take the convention that each chapter defines its specific notation, e.g. defi-

nition of a vector C given in chapter 1 applies each time this variable is used in

chapter 1 and chapter 1 only.





Introduction

This document consists of five chapters and an Appendix. The first chapter gives

a brief introduction to empirical likelihood and shows how the design-based empir-

ical likelihood approach, used throughout this research, relates to other empirical

likelihood methods.

The following three chapters focus on extension and application of design-based

empirical likelihood to various problems occurring in survey inference. First, a

methodology for parameter estimation in two surveys context, in presence of align-

ment and benchmark constraints, is developed. Second, an empirical likelihood

multiplicity adjusted estimator for multiple frame surveys is proposed. Third, em-

pirical likelihood is applied to a practical problem of census coverage estimation.

The last chapter contains some details on the numerical operations necessary in

empirical likelihood estimation. Each chapter includes conclusions specific to the

studied problem. We finish with general conclusions from the work described in

the previous chapters and a discussion of possible future direction of research.

Proofs of the theoretical results are presented in the Appendix.

Empirical likelihood is a non-parametric, likelihood-based inference approach. The

method was proposed by Owen (1988), for independent and identically distributed

(iid) observations. This made it possible to use empirical likelihood in survey esti-

mation under simple random sampling, when the sample is selected with replace-

ment or when the sampling fraction is negligible (e.g. Chen and Qin, 1993). Qin

and Lawless (1994) showed how confidence intervals can be obtained based on the

χ2 approximation of the log-likelihood ratio function in the iid case and how auxil-
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iary information can be incorporated into empirical likelihood estimation. Subse-

quently an extension to stratified simple random sampling was proposed by Zhong

and Rao (1996, 2000). Chen and Sitter (1999) proposed a census pseudoempirical

likelihood approach, which was later developed into a pseudoempirical likelihood

approach by Wu and Rao (2006). In the pseudoempirical likelihood methodology,

unit sampling probabilities are incorporated into the empirical likelihood function.

This allows empirical likelihood to be used under unequal probability sampling,

but usually requires estimation of the design effect to obtain confidence intervals

(Wu and Rao, 2006). Chen and Kim (2014) proposed population empirical like-

lihood, where the likelihood function is defined at the population level and the

sampling probabilities are included in the estimating equation for the parameter

of interest.

Berger and De La Riva Torres (2016) developed design-based empirical likelihood,

where the likelihood function is defined at the sample level and sampling prob-

abilities are included in an additional design constraint. This approach allows

confidence intervals to be based directly on the χ2 approximation of the empirical

likelihood ratio function, without a design effect correction as in pseudo-empirical

likelihood methods. The confidence intervals can be calculated without variance

estimates. This is a very desirable feature, as variance estimators may be heavily

biased when the variables of interest are skewed. The confidence intervals are

asymmetric, with the shape driven by the distribution of the data. They are

also range-preserving (Owen, 2001). The method can be used in complex, i.e.,

stratified and clustered, sampling designs.

In the design-based empirical likelihood approach, the parameter of interest is

expressed as a solution to a population level estimating equation. The maximum

empirical likelihood point estimator of the parameter of interest is obtained by

maximising the empirical likelihood function under a system of constraints in-

cluding the estimating function for the parameter of interest, optional benchmark

constraints constructed around known population level parameters and design

2



constraints including information about the sampling design and unit selection

probabilities. A single vector of weights, which can be used to estimate various

parameters, is created. These weights are always positive.

Berger and De La Riva Torres’s (2016) design-based empirical likelihood approach

is used throughout the research presented in this document. In chapter 2 a design-

based empirical likelihood methodology for parameter estimation in two surveys

context, in presence of alignment and benchmark constraints, is developed. Align-

ment constraints, which require that each of the considered independent surveys

gives the same point estimates for the common variables, are sometimes used in of-

ficial statistics in order to ensure numerical consistency of estimates obtained from

various sources. Alignment may also increase precision of other estimates. The

standard methods either focus on means or totals and rely on composite regres-

sion estimators and variance estimates, or assume negligible sampling fractions.

The proposed empirical likelihood approach ensures alignment and is not limited

to means, as it can be used for a general class of complex parameters defined

by estimating equations. It also allows to use various functions of the common

variable in the alignment constraint. The proposed approach is well suited when

the variables of interest are skewed. It can accommodate large sampling fractions,

stratification and population level (auxiliary) information, and can be applied to

estimation in domains. The confidence intervals are asymmetric and driven by

the distribution of the data. They can be calculated without the need for variance

estimates, joint selection probabilities or re-sampling.

The main contribution of chapter 2 is in defining the empirical likelihood frame-

work for alignment of estimates, showing that the maximum empirical likelihood

estimator is
√
n-design-consistent and deriving the empirical likelihood ratio test

statistic, which can be used to test hypotheses and construct consistent confidence

regions or intervals. We evaluate the proposed approach in a series of simulations

on real and artificial datasets and conclude that the proposed aligned empirical

likelihood estimator has good asymptotic properties across the designs tested. In
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some cases, e.g. when there is a large difference in sample sizes and the distribution

of the data is skewed, empirical likelihood estimates of totals may perform better

than other available methods. The main purpose of the proposed approach, how-

ever, is not the efficiency gain, as this might vary depending on circumstances, but

providing a practical method for estimation of more complex parameters than to-

tals or means and for calculation of confidence intervals when variance estimation

is difficult.

In chapter 3 an empirical likelihood methodology for parameter estimation from

multiple frame surveys, based on the multiplicity approach, is proposed. Multiple

frame surveys are commonly used for a variety of reasons, such as correcting for

frame undercoverage, increasing precision of estimation of population parameters

for groups of interest, targeting rare populations or reducing survey costs. Several

approximately design unbiased estimators have been proposed for inference from

multiple frame surveys. Singh and Mecatti (2011) and Mecatti and Singh (2014)

generalized most of the existing estimators as a class of Generalized Multiplicity-

Adjusted Horvitz-Thompson Estimators. We adopt the idea of the Multiplicity-

Adjusted Estimation and develop an Empirical Likelihood based estimator. The

proposed estimator is flexible in that it allows researchers to use the multiplicity

adjustment of their choice, setting some standard regularity conditions on the mul-

tiplicity adjustment and the sampling design. It can handle auxiliary information

and can be applied to a variety of parameters of interest expressed as solutions of

estimating equations. As in the case of the aligned empirical likelihood estimator,

Wilks (1938) type confidence intervals can be calculated without the intermediate

step of variance estimation.

The main contribution of chapter 3 is an extension of the theoretical results of

chapter 2 to the multiple frame case. We define a design-based empirical likelihood

multiplicity adjusted estimator and show that under some regularity conditions

this estimator is
√
n-design-consistent. We also show that the multiplicity ad-

justed empirical likelihood ratio function is pivotal and can be used to construct

4



confidence intervals. Through a series of simulations, we demonstrate that the

proposed estimator performs well even in difficult conditions, e.g. with skewed

data and when the size of the overlap between sampling frames is unknown. In

these cases the empirical likelihood confidence intervals often have better coverage

than symmetric confidence intervals, and the empirical likelihood point estima-

tor may be more precise than regression estimators with the same multiplicity

adjustment.

Chapter 4 shows how design-based empirical likelihood can be applied to estima-

tion of census coverage from a census coverage survey. Currently census coverage

is estimated using normality-based techniques and symmetric confidence intervals

are reported. However, in areas with very high estimated coverage, the upper

bound of the symmetric confidence intervals for the census coverage sometimes

exceed 1. We show that the empirical likelihood confidence intervals do not have

this problem as they always remain within the range of the parameter of inter-

est and that they have comparable, acceptable coverage for moderate and large

samples. The main contribution of this chapter is in the definition of the rel-

evant estimating equations and constraints for the problem of census coverage

estimation. We also perform a series of simulations showing that the empirical

likelihood confidence intervals are within the desired range and that they have

good asymptotic properties provided that the sample size is sufficient.

Finally, in chapter 5, we discuss the practical aspects of empirical likelihood esti-

mation. In particular, we focus on the numerical methods involved and consider

various ways of obtaining empirical likelihood adjusted weights, point estimates

and confidence intervals. We propose some adjustments to the commonly used

algorithms. The problems discussed in chapter 5 apply to empirical likelihood

estimation in general, but they are particularly relevant when multiple samples

and numerous constraints are used, which is often the case in the applications

discussed in this piece of work.

Results presented in chapters 2 and 4 have been submitted for publication, in joint
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authorship respectively with Dr. Yves Berger and with Mr Paul Smith and Dr

Yves Berger. The scientific paper produced based on chapter 2 was considerably

changed and enriched by Dr Yves Berger. It also includes some results, such

as the derivation of a consistent estimator of the variance-covariance matrix of

the regression estimator, used in the proof of the asymptotic distribution of the

empirical log-likelihood ratio function, and extension of the results to sampling

with large sampling fractions, which are based on previous research done by Dr

Yves Berger. These results are cited from the paper. Also, the proofs of the

theoretical results, except from the proof of the asymptotic design-consistency of

the point estimator, are an adaptation of the results presented by Berger and

De La Riva Torres (2016) for a single sample case. This is acknowledged in the

Appendix. The scientific paper based on chapter 4 was prepared jointly with

Mr Paul Smith and Dr Yves Berger. Some of the details related to the design

of the census coverage survey, which were contributed to the paper by Mr Paul

Smith, are cited in this document. These are referenced in the text. The review

of empirical likelihood methods presented in chapter 1 is based on reviews of Rao

and Wu (2009a), Rao (2006), Berger and De La Riva Torres (2016) and Berger

(2018). The review of aligned estimators is based on the reviews presented by

Merkouris (2004, 2010a). The review of multiple frame estimators is based on the

reviews presented by Arcos et al. (2015), Ranalli et al. (2016), Singh and Mecatti

(2011), Singh and Mecatti (2014) and Lohr (2007). During the course of research I

received guidance from my supervisors, Dr Yves Berger and Prof. Li Chun Zhang,

as well as from Mr Paul Smith, who offered advice on chapter 4. I also consulted

Mr Owen Abbott and Mr Viktor Racinskij from the Office for National Statistics

about the specifics related to the design of the census coverage survey and the

current census coverage estimation practice.
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Chapter 1

Empirical likelihood methods for inference from

survey data

This chapter provides a brief overview of empirical likelihood methods for param-

eter estimation. We start with a summary of the origins of empirical likelihood

and proceed to discuss the two crucial areas of development which made empiri-

cal likelihood applicable to social and business surveys: incorporation of auxiliary

information and unequal probability sampling. We also describe the design-based

empirical likelihood approach, which we rely on in subsequent chapters.

1.1 Empirical likelihood for a mean of independent and

identically distributed observations

Empirical likelihood is a non-parametric, likelihood-based inference approach. The

method derives from the scale-load approach introduced by Hartley and Rao

(1968) for survey sampling. It was popularised and developed by Owen (1988),

as a unified empirical likelihood methodology for independent and identically dis-

tributed (iid) observations.

Consider that a sample S of independent and identically distributed values

7



y1, y2, ..., yn, is drawn through simple random sampling from a finite population

U of size N . Let pi = Pr(y = yi) be the probability mass associated with unit i.

The sample level empirical log-likelihood function takes the following form (Owen,

1988):

`(p) =
∑
i∈S

log(pi), (1.1)

where p = (p1, p2, ..., pn) and n is the size of the sample S. The maximum empirical

likelihood estimator p̂i of pi is defined as the value which maximises (1.1) under

pi > 0 and the normalising constraint

∑
i∈S

pi = 1· (1.2)

This gives p̂i = n−1. The maximum empirical likelihood estimator of a population

mean θU = N−1
∑N

i=1 yi is (Rao, 2006):

θ̂ =
∑
i∈S

p̂iyi· (1.3)

Empirical likelihood confidence intervals for the mean θU are obtained by max-

imising the empirical log-likelihood ratio function (Owen, 1988)

r̂(θ) = −2
∑
i∈S

log{np̂∗i (θ)}, (1.4)

where p̂∗i (θ) are the values which maximise (1.1) under pi > 0, the normalising

constraint (1.2) and the constraint

∑
i∈S

piyi = θ· (1.5)

Under simple random sampling, when the sample is selected with replacement or

when the sampling fraction is negligible, when θ = θU , statistic (1.4) follows a χ2
df=1

distribution asymptotically. This property can be used to construct empirical like-
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lihood confidence intervals for the mean θ0 by selecting values θ : r(θ) ≤ χ2
df=1;α,

where χ2
df=1;α is the upper α quantile of the χ2

df=1 distribution. The empirical

likelihood confidence intervals are asymmetric and range and transformation pre-

serving (Rao, 2006). As the sample size n approaches infinity, the coverage error

of the empirical likelihood confidence intervals approaches zero at the rate n−1.

This is the same rate that applies to most parametric confidence intervals (Owen,

2001).

1.2 Complex sampling designs

An extension of empirical likelihood to stratified simple random sampling was

proposed by Zhong and Rao (1996). The empirical log-likelihood function for a

sample consisting of H strata is defined as

`(p) =
H∑
h=1

∑
i∈Sh

log(ph;i), (1.6)

where ph;i is the sampling probability mass associated with unit i in strata h. The

maximum likelihood estimator of the population mean θU equals

θ̂ =
H∑
h=1

∑
i∈Sh

p̂h;iyh;i, (1.7)

where p̂h;i are the values which maximise (1.6) under the constraint ph;i > 0 and

the normalisation constraints defined for each stratum:

∑
i∈Sh

pi = 1, h = 1, 2, ..., H· (1.8)

For empirical likelihood to be applicable to inference from commonly used survey

sampling designs, it is crucial that it can handle unequal probability sampling.

Consider a sample S of size n selected with unequal probabilities πi from a finite
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population U . The pseudoempirical likelihood approach of Wu and Rao (2006)

defines the pseudoempirical log-likelihood function as

`(p) = n
∑
i∈S

d̃i log(pi), (1.9)

where d̃i are the normalised weights d̃i = di(
∑

i∈S di)
−1 and di = π−1i . The

pseudoempirical likelihood approach was inspired by an earlier formulation of the

census pseudoempirical likelihood by Chen and Sitter (1999), which was based on

a super-population model (Rao and Wu, 2009a).

The maximum likelihood estimates of pi are found by maximising (1.9) under

pi > 0 and the normalising constraint

∑
i∈S

pi = 1· (1.10)

This gives p̂i = d̃i. The maximum pseudoempirical likelihood estimate of the

population mean θU = N−1
∑N

i=1 yi equals (Rao, 2006):

θ̂ =
∑
i∈S

d̃iyi· (1.11)

When the sample S is stratified, the pseudoempirical log-likelihood function takes

the following form:

`(p) = n

H∑
h=1

Wh

∑
i∈S

d̃h;i log(pi), (1.12)

whereWh = NhN
−1, Nh is the population size of strata h and d̃h;i = dh;i(

∑
i∈Sh

dh;i)
−1,

i.e., the design weights d̃h;i are normalised at the stratum level.

The pseudoempirical log-likelihood ratio function is defined as

r̂(θ) = −2 [`{p̂∗(θ)} − `{p̂}] , (1.13)
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where `(·) is defined by (1.9) (or (1.12) if the sample S is stratified), p̂ are the

values which maximise (1.9) under pi > 0 and the normalising constraint (1.10)

and p̂∗(θ) are the values which maximise (1.9) under pi > 0, (1.10) and the

constraint

∑
i∈S

piyi = θ· (1.14)

Under simple random sampling, (1.13) follows a χ2
df=1 distribution asymptotically

when θ = θU . For other sampling designs, the pseudoempirical log-likelihood ratio

has to be adjusted by the design effect defined as

DEFF (θ̂) = V (θ̂){VSRS(θ̂)}−1, (1.15)

where V (θ̂) is the variance of the estimator θ̂ under the considered sampling design

and VSRS(θ̂) is the variance under simple random sampling. The function

r̂ADJ(θ) = r̂(θ)
{

DEFF (θ̂)
}−1

(1.16)

follows a χ2
df=1 distribution asymptotically when θ = θU . The pseudoempirical

likelihood confidence intervals are constructed based on (1.16) in an analogous

way to the empirical likelihood confidence intervals.

In practice the design effect (1.15) has to be estimated based on the sample data.

As long as it is estimated consistently, the asymptotic distribution of (1.16) holds

(Wu and Rao, 2006).

Chen and Kim (2014) proposed population empirical likelihood, which defines the

empirical log-likelihood function at the population level:

`(p) =
N∑
i=1

log(pi)· (1.17)

Under Poisson sampling, the weights pi are estimated as the values which maximise
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(1.17) subject to
∑N

i=1 pi = 1. This gives the estimated weights p̂i = N−1. The

parameter of interest is estimated by solving

N∑
i=1

piδiπ
−1
i gi(θ) = 0, (1.18)

where δi is the sample inclusion indicator and gi(θ) is an estimating function of

the parameter of interest.

The population empirical log-likelihood ratio function is defined as

r̂(θ) = −2 [`{p̂∗(θ)} − `{p̂}] , (1.19)

where `{p̂∗(θ)} is the population log-likelihood function (1.17), p̂∗i (θ) are estimated

as the values which maximise (1.17) subject to
∑N

i=1 pi = 1 and the parameter

constraint (1.18); and values p̂ in `{p̂} are estimated without the parameter con-

straint (1.18). Under Poisson sampling with a negligible sampling fraction, (1.19)

follows a χ2 distribution (Chen and Kim, 2014). This property can be used to

obtain confidence intervals for the parameter of interest.

Population empirical likelihood has also been extended to rejective Poisson sam-

pling with the Hájek’s (1964) constraint

N∑
i=1

δi =
N∑
i=1

πi, (1.20)

where πi are the sampling probabilities in the initial design and δi are the sampling

indicators. This requires adding the design constraint: (Chen and Kim, 2014)

N∑
i=1

pi(Iiπ
−1
i − 1) = 0· (1.21)

Extension to Fuller’s (2009) rejection condition has also been proposed (Chen and

Kim, 2014).
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1.3 Auxiliary information

Auxiliary information is often used in survey inference. Typically these are known

population parameters (e.g. means or totals) of variables which are also measured

in the sample. These known parameters are included in the so-called calibration or

benchmark constraints, which require that the adjusted sample weights reproduce

the known population values. This might improve the precision of the estimator

of the target variable, depending on the correlation between the target variable

and the auxiliary variable.

Suppose that the total of a variable x, XU =
∑N

i=1 xi is known. Consider Horvitz

and Thompson’s (1952) estimator of XU :

X̂ =
∑
i∈S

dixi, (1.22)

where di = π−1i are the design weights. In a general case, there is no guarantee

that the estimator (1.22) reproduces the known value XU . The weights wi are

said to possess the generalized calibration property (Deville and Särndal, 1992a)

if

X̂ = XU , (1.23)

where

X̂ =
∑
i∈S

wixi· (1.24)

The calibration weights wi are calculated in such a way that the distance between

the wi and the design weights di is minimised and (1.23) is satisfied. Various dis-

tance measures can be used. Using the Euclidean distance leads to the generalized

regression (GREG) estimator (Särndal, 2007).
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Benchmark constraints are commonly used in survey practice, especially in official

statistics. If the target variable y is highly correlated with the auxiliary variables

x, benchmark constraints on X might improve the precision of the estimator of

a population parameter of y. Sometimes the benchmark constraints are also used

for practical reasons, e.g. in order to obtain numerical consistency with values

published from a census.

Chen and Qin (1993) showed how auxiliary information on known population

means can be incorporated into empirical likelihood estimators. Suppose that a

population mean x̄ is known. Imposing the additional constraint

∑
i∈S

pi(xi − x̄) = 0 (1.25)

on the adjusted weights pi ensures that the calibration property (1.23), with wi =

pi, holds. For the estimates p̂i to exist, x̄ has to be an inner point of the convex

hull formed by the values {xi}, where i ∈ S (Rao, 2006).

The known population parameters may be included in the pseudoempirical like-

lihood estimators through an additional constraint. The constraint for a non-

stratified sample takes the form (Rao and Wu, 2009a):

∑
i∈S

pixi = x̄· (1.26)

For stratified samples, when the population level parameter is known, the con-

straint is defined as (Rao and Wu, 2009a)

H∑
h=1

∑
i∈Sh

ph;ixh;i = x̄· (1.27)

Note that when a calibration constraint is used, this has to be considered in

the calculation of the design effect used to construct pseudoempirical likelihood
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confidence intervals and hence equation (1.15) becomes (Rao and Wu, 2009a):

DEFFGR(θ̂) = V GR(θ̂){V GR
SRS(θ̂)}−1, (1.28)

where V GR(θ̂) and V GR
SRS(θ̂) are variances of residuals in a regression on the known

parameter. The adjusted pseudo empirical log-likelihood ratio function

r̂GRADJ(θ) = r̂(θ)
{

DEFFGR(θ̂)
}−1

(1.29)

follows a χ2
df=1 distribution asymptotically, when θ = θU (Rao and Wu, 2009a).

The population empirical likelihood defines the benchmark constraints at the pop-

ulation level. A constraint based on a known mean h̄N =
∑N

i=1 hi(xi) takes the

following form:

N∑
i=1

piδiπ
−1
i (hi(xi)− h̄N) = 0, (1.30)

where δi is the sample inclusion indicator.

1.4 Design-based empirical likelihood

Design-based empirical likelihood (Berger and De La Riva Torres, 2016) was devel-

oped as an alternative to the pseudoempirical likelihood and population empirical

likelihood methods. It overcomes the need for estimation of design effects by in-

corporating sampling probabilities into the constraints system rather than into the

likelihood function. This leads to a likelihood ratio function which asymptotically

follows a χ2 distribution when the parameter equals the true population parameter

of interest. This is particularly useful for estimation of complex and multivariate

parameters.

The (potentially multivariate) parameter of interest θU is defined as the solution
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to a population estimating equation of the following form:

∑
i∈U

gi(θ) = 0ν , (1.31)

where 0ν is a vector of zeros of dimension ν, ν is the dimension of the parameter

θ and gi(θ) is a p-vector function of the parameter of interest and the sample

variables.

Estimating equations are a flexible way of representing a wide class of parame-

ters, such as means, totals, quantiles, ratios or generalised regression coefficients.

Examples of estimating equations for various parameters can be found in Binder

and Patak (1994), Qin and Lawless (1994) and Godambe and Thompson (2009).

For example, the estimating function gi(θ) = yi − θ, can be used to estimate

the population mean N−1
∑
i∈U

yi, leading to a Hájek (1964) estimator (Berger and

Tillé, 2009).

The design-based empirical log-likelihood function is defined as

`(m) =
∑
i∈S

log(mi), (1.32)

where m = (m1,m2, ...,mn) and mi are the unit mass loads estimated under

mi > 0 and the design constraint

∑
i∈S

miπi = n, (1.33)

where πi is the sampling probability for unit i. Constraint (1.33) is different from

the normalisation constraint used in other empirical likelihood approaches, where

the scale loads are required to sum to 1.

Note that (1.32) can be re-parametrised as a function of the probability masses

pi. If we express mi as mi = npiπ
−1
i we have that (Berger and De La Riva Torres,
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2016, Addendum)

`(m) = `(p) +
∑
i∈S

log(nπ−1i ), (1.34)

where `(p) =
∑

i∈S log(pi) and the values pi are estimated by maximising `(p)

under pi > 0 and
∑

i∈S pi = 1. Maximising (1.32) and (1.34) is equivalent, as the

offset
∑

i∈S log(nπ−1i ) does not depend on θ or on pi.

The design-based empirical log-likelihood ratio function (Berger and De La Riva

Torres, 2016) for the parameter θ is defined as

r̂(θ) = 2 [`(m̂)− `{m̂∗(θ)}] , (1.35)

where `(.) is defined by (1.32), m̂ are the values m̂i which maximise (1.32) under

mi > 0 and the design constraint (1.33) and the m̂∗(θ) are the values m̂∗i (θ) which

maximise (1.32) under mi > 0, (1.33) and the additional constraint

∑
i∈S

migi(θ) = 0· (1.36)

The maximum design-based empirical likelihood estimator of θ is defined as the

value θ̂ which minimises (1.35). In high entropy sampling designs (Hájek, 1981)

and under some regularity conditions, the design-based empirical log-likelihood

ratio function (1.35) follows a χ2 distribution asymptotically, with the number

of degrees of freedom depending on the dimension of θ (Berger and De La Riva

Torres, 2016). This allows us to obtain confidence regions by selecting values

{
θ : r̂(θ) 6 χ2

df=p(α)
}
, (1.37)

where χ2
df=p(α) is the upper α quantile of the χ2

df=p distribution. The univariate

confidence intervals can be obtained directly if the univariate parameter of interest

is completely defined by a single (univariate) estimating equation. If the parameter
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of interest depends on other parameters, profiling may be used (Oguz-Alper and

Berger, 2016).

Benchmark constraints constructed around the known population parameters are

handled in a similar way as in the pseudoempirical likelihood approach, how-

ever the parameters are defined through estimating equations, which gives more

flexibility in the choice of the constraint. Suppose that a q-vector of population

parameters ϕU is known, where ϕU is defined as the unique solution of

∑
i∈U

fi(xi,ϕ) = 0q, (1.38)

and where the vector fi(xi,ϕ) is a q-vector function of xi and ϕU (e.g. Owen, 1991;

Chaudhuri et al., 2008; Lesage, 2011). The benchmark constraint on ϕU takes the

following form

∑
i∈S

mifi(xi,ϕ) = 0q· (1.39)

For the generalised calibration property to hold on the design-based empirical

likelihood adjusted weights m̂i, constraint (1.39) is imposed on the values m̂i and

m̂∗i (θ), alongside the design constraint (1.33) and the constraint (1.36) (Berger

and De La Riva Torres, 2016).

Design-based empirical likelihood handles stratification by defining the design con-

straint (1.33) separately for each strata:

∑
i∈Sh

mh;iπh;i = nh, h = 1, 2, ..., H· (1.40)

For cluster sampling designs, Oguz-Alper and Berger (2016) propose to use the

ultimate cluster approach (Hansen et al., 1953), which defines the empirical likeli-

hood function at the ultimate cluster level. In chapter 4 we show how the ultimate

cluster approach is used in clustered and stratified samples from census coverage
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survey.

The design-based empirical likelihood method has also been extended to handle

non-replacement sampling with large sampling fractions. This requires using the

penalised empirical log-likelihood function (Berger and De La Riva Torres, 2016)

˜̀(m) :=
∑
i∈S

{log(mi) + 1− πimi} (1.41)

and adding finite population correction factors (Hájek, 1964) into constraints

(1.33), (1.36) and (1.39). With these adjustments, the asymptotic distribution

of the design-based empirical log-likelihood ratio function holds for large sampling

fractions. We omit the details of the specification of the constraints system here

for brevity. However, in chapter 2, we show how this approach can be used to han-

dle large sampling fractions in the special case of aligning estimates from multiple

samples.

The design-based empirical likelihood approach has several practical advantages.

In particular, it allows to construct confidence intervals without the need for vari-

ance estimation. This is a very desirable feature, as variance estimators may be

biased when the variables of interest are skewed. The confidence intervals are

range-preserving and defined by the shape of the sample data. The design-based

empirical likelihood approach can be used in complex, i.e., stratified and clustered,

sampling designs, as long as these are high entropy designs (Hájek, 1981). These

features of the method are utilised across the following chapters, where empirical

likelihood methodology for several survey inference problems is defined.

Design-based empirical likelihood can be seen as an alternative to pseudoempirical

likelihood or population empirical likelihood approaches, in that it also handles

unequal probabilities and complex sampling designs. The use of estimating equa-

tions, incorporation of the sampling probabilities in the constraint system rather

than in the log-likelihood function and the construction of confidence intervals

based on a χ2 approximation of the log-likelihood ratio function makes design-
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based empirical likelihood more similar to population empirical likelihood than

to pseudoempirical likelihood. The difference between the two approaches is in

the definition of the log-likelihood function (which is defined at the sample level

in design-based empirical likelihood) and in the design constraint used. Both

approaches can handle complex parameters, defined as solutions of estimating

equations. Design-based empirical likelihood, however, can be applied to sam-

ples selected with non-negligible sampling fraction and is closer to Owen’s (1988)

original formulation of the sample level empirical likelihood.

In the following chapters we extend the design-based empirical likelihood method-

ology to handle some specific problems in survey inference. For brevity, we use the

term empirical likelihood to denote the design-based empirical likelihood. When-

ever we refer to other empirical likelihood approaches, these are clearly referenced

as either pseudoempirical likelihood or population empirical likelihood.
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Chapter 2

Empirical likelihood approach for aligning

estimates from multiple surveys

2.1 Introduction

Suppose that two independent samples, S1 and S2, are selected from the same

finite population U of size N . Let y1 and y2 be vectors of variables observed

respectively in S1 and S2. Let w denote a vector of common variables observed

in both samples, which constitutes the key feature of the considered approach. A

population parameter of a variable w, e.g. the mean of w, can be estimated either

from S1 or S2. It can, however, be inconvenient to obtain different estimates for

the same parameter, especially if other estimates are based on them. For example,

suppose that w is a vector of age-sex categories measured in both samples. The

two samples may not give the same estimates for the proportion within each

category. A similar situation occurs if totals of turnover for various industries

are estimated from sample S1, while sample S2 is used to estimate the overall

population turnover. These domain-specific estimates from S1 do not necessarily

add up to the overall total estimated from S2.

It is, of course, possible to obtain a composite estimate for the common parameter

by taking a weighted average of the estimates obtained from two samples. The
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weight applied to each survey’s estimate might be selected based on an efficiency

argument, e.g. inversely proportional to the estimated variance or proportional

to the sample size. However, in practice it is desirable to have a single vector of

weights for each survey which can be applied to all survey variables. Furthermore,

it is a common practice that auxiliary variables are measured in surveys and survey

weights are calibrated on known population parameters (see Deville and Särndal

(1992a)).

The problem can therefore be summarised as follows: how to adjust the design

weights of both surveys so that both calibration constraints (i.e., benchmarking on

known population parameters) and alignment constraints (i.e., numerical consis-

tency of common parameters) are respected, and inference about the common and

non-common variables is possible. Apart from providing numerical consistency of

estimates, alignment constraints might as well improve precision of the estimates

of the non-common parameters, if the common and non-common variables are

highly correlated. Specifically, when one of the samples is smaller, imposing align-

ment constraints on the variables shared with a larger sample is likely to improve

precision of the smaller sample estimates. This property is exploited in the split

questionnaire design or non nested two-phase sampling, where a subset of vari-

ables is measured for a large sample, and the whole set of variables is collected

from another, smaller sample (see e.g. Hidiroglou (2001)).

The procedure of adjusting survey weights so that estimates of two surveys agree

with each other is often referred to as ’alignment’. The traditional methods used

to include auxiliary information on known population quantities in the single sam-

ple case cannot be directly applied to aligning estimates from two or more sur-

veys. Certain adjustments, which account for the added complexity, need to be

made. This special situation has been studied extensively and several design-based

methods have been proposed. Zieschang’s (1990) and Renssen and Nieuwenbroek’s

(1997), as well as Merkouris’s (2004) methods are based on the generalized calibra-

tion estimator. Zieschang (1990) and Renssen and Nieuwenbroek (1997) estimate
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the unknown population mean of w by a linear combination of two estimates cal-

culated from S1 and S2. This linear combination is then used as a benchmark

parameter in a regression estimator. Merkouris (2004) proposed ‘composite regres-

sion estimator ’ of a total of y, which is based on a simultaneous regression using

data of S1 and S2 pooled together, avoiding the estimation of the means of w as

an intermediate step. In Zieschang’s (1990), Renssen and Nieuwenbroek’s (1997)

and Merkouris (2004) approaches, symmetric confidence intervals are constructed

based on suitably adjusted variance estimates.

Wu (2004a) proposed an estimator for means of y1 and y2 based on aligned pseu-

doempirical likelihood weights. Symmetric confidence intervals are created using

the variance estimate for the asymptotically equivalent regression estimator. Chen

and Kim (2014) developed an aligned population empirical likelihood approach,

based on an empirical likelihood function defined at population level, and pro-

posed an empirical log-likelihood ratio statistic, which is pivotal under Poisson

sampling with negligible sampling fraction. Methods outside of the design-based

paradigm have also been proposed, see e.g. Kim and Rao (2012) for a model-

assited approach, Kim et al. (2015) for a model based small area application and

Dong et al. (2014) for a bayesian bootstrap approach.

We propose a new aligned design-based empirical likelihood approach. The pro-

posed approach is different from Zieschang’s (1990), Renssen and Nieuwenbroek’s

(1997), Merkouris’s (2004) and Wu’s (2004a) methods as it considers a general

class of parameters which are defined by estimating equations, rather than means

or totals, and allows for construction of Wilks (1938) type confidence intervals.

It also differs from Chen and Kim’s (2014) approach in that it is defined at the

sample level, does not require the population size to be known and can easily be

applied to designs with large sampling fractions and stratification.

The proposed approach treats the empirical likelihood function as a standard

likelihood. Point estimates are obtained by maximising this function. Confidence

intervals are obtained from an empirical log-likelihood ratio function rather than
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through variance estimation. The proposed method does not require knowledge of

the population size and does not rely on the estimation of the population mean of

w. It is valid under without-replacement stratified sampling with small or large

sampling fractions.

The presented method has some practical advantages. Confidence intervals are

range-preserving and their construction does not require variance estimates, unlike

the pseudoempirical likelihood and the composite regression confidence intervals.

Simulation studies presented in chapter 2.12 show that the empirical likelihood

confidence intervals have good coverage across a range of scenarios. The proposed

approach can accommodate different functions of the common parameter (as op-

posed to just a mean or a total), making it possible to choose the function that is

highly correlated with the parameter of interest. The empirical likelihood weights

are always positive.

The proposed method is derived from Berger and De La Riva Torres’s (2016) em-

pirical likelihood methodology for construction of confidence intervals in a single

sample case, in presence of benchmark constraints and under complex sampling

designs (see chapter 1 for a brief summary of this approach). However, the core

problem tackled here is different. Berger and De La Riva Torres (2016) deal with

a traditional setup when a single sample is considered and benchmark constraints

involve only known population parameters. We focus on alignment of two sam-

ples and allow for constraints including unknown (yet not necessarily nuisance)

parameters.

The following chapters introduce the proposed empirical likelihood approach for

aligning information from multiple surveys. Chapter 2.2 explains the sampling de-

sign and variables measured. Chapter 2.3 describes some alternative approaches

to parameter estimation under alignment constraints. Chapters 2.4 - 2.11 intro-

duce the proposed aligned empirical likelihood estimator and discuss its properties.

Numerical results from Monte Carlo simulations performed on artificial and real

datasets are presented in chapter 2.12.
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2.2 Sampling design and data collected

Suppose that two independent surveys are carried out in a finite population U

of size N . The samples S1 and S2 are selected independently, where St denotes

the sample selected after nt independent random draws from population U . For

simplicity, we start with the assumption that units are selected with unequal

probabilities, with replacement, or without replacement with negligible sampling

fractions, i.e., n1N
−1 → 0 and n2N

−1 → 0. In chapter 2.11 we discuss how the

proposed method can be applied in the commonly used without replacement sam-

pling designs with large sampling fractions. We consider non stratified sampling

designs first. In chapter 2.10 we show how the proposed method can accommodate

stratified sampling designs.

Let yt;i be the value of the variable y measured in the t-th survey for the i-th unit,

i = 1, ..., nt and πt;i be the first order selection probability for the i-th unit in the

t-th survey. The samples may or may not overlap, because same population units

may or may not be selected in both samples.

Let S of size n =
∑T

t=1 nt be the collection of labels of all units selected in all the

T samples, i.e., a ’pooled’ multiset of labels of S1 and S2. If a unit is selected k

times, its label appears k times in S.

Suppose that the values of a set of variables, denoted by vt, are collected from the

sample St and that v1 and v2 contain at least one common variable. The set vt is

composed of four types of variables: zt, yt, xt and w; that is, v1 ≡ {z1,y1,x1,w}

and v2 ≡ {z2,y2,x2,w}. The variables zt denote the design variables, which

include unit sampling probabilities. The variables xt denote auxiliary variables.

The variables w denote the common variables which are included in both v1 and

v2 (see Figure 2.2). Other variables in the sample are denoted by yt. Some of

them might be the variables of interest. The existence of at least one common

variable is the key aspect of the considered problem.
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Figure 2.2 shows a visualisation of the variables and population units. The hori-

zontal axis represents the variables and the vertical axis represents the population

units {1, . . . , N}. The shaded areas represent the two samples. In Figure 2.2,

there is no overlap between the two samples. In practice, some overlap is possible,

as the samples are selected independently. The overlap does not play any role in

inference and does not need to be known.

S2

S1

z1 y1 x1 w x2 y2 z2

U

{v1,v2}

Figure 2.1: Sample data and parameters of the samples S1 and S2. The horizontal
axis corresponds to the variables: zt, yt, xt and w. The vertical axis represents

the labels of the units in population U . The area represents the data sampled

in S1. The area represents the data sampled in S2.

We adopt a design-based approach, were the vti are fixed quantities and sampling

is the only source of randomness (Neyman, 1934). The distribution of the sample

St is specified by the probability distribution of St, which is denoted by Pt(St).

Note that the observations are not independent and identically distributed. We

follow Hartley and Rao’s (1968) framework under which the population labels are

non-informative.

Let θtU be a fixed, unknown population parameter of interest, a function of vt.

Let parameter θU be a concatenation of parameters of interest related to each of
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the samples, that is, θU =
(
θ>1U ,θ

>
2U

)>
. It follows that θU is a function of the values

of the variables {v1,v2}. The parameter of interest θU is defined as the solution

of the following system of population estimating equations.

G(θ) := (G1(θ1)
>,G2(θ2)

>)> = 0ν , (2.1)

where ν = ν1 + ν2,

Gt(θt) :=
∑
i∈U

gti(vti,θt) = 0νt , t = 1, 2, (2.2)

and 0ν denotes an ν-vector of zeros. The vector gti(vti,θt) is a νt-vector function

of a subset of variables vti. We assume that the gti(vti,θt) are such that the

solution of (2.2) is unique and that θ ∈ Θ, where Θ denotes the parameter space

of θU . Various definitions of the function gti(vti,θt) are possible. For example,

when gti(vti,θt) = yt;i − θt, the unique solution of (2.1) is a vector of Hájek -

type estimates of the population means of y1 and y2. When gti(vti,θt) = yt;i −

Nn−1t πt;iθt, we get the Horvitz-Thompson estimates of the population means.

When gti(vti,θt) = yt;i − n−1t πt;iθt, we obtain the estimates of the population

totals. Note that the parameters and estimating equations based on each sample

can be different, e.g. because different variables are measured in each sample, or

because different functions are of interest. To simplify the notation, we replace

gti(vti,θt) by gti(θt), in the following text.

Let δti be the sample inclusion indicator

δti :=

 1 if i ∈ St
0 otherwise·

(2.3)

Let

gi(θ) :=
(
δ1i g1i(θ1)

> , δ2i g2i(θ2)
> )> (2.4)
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and

πi := δ1iπ1i + δ2iπ2i· (2.5)

Note that (2.5) means that πi := π1i if i ∈ S1 and πi := π2i if i ∈ S2.

Very often some population level parameters, such as totals, means, ratios or

counts are known for the whole population or for a specific domain, e.g. from cen-

sus or administrative records. Suppose that a qt-vector of population parameters

ϕtU is known. The known parameter ϕtU is defined as the unique solution of

∑
i∈U

fti(xti,ϕtU ) = 0qt , (2.6)

where the vector fti(xti,ϕtU ) is a qt-vector function of xti and xti are selected

components of vti. To simplify the notation, we replace fti(xti,ϕtU ) by fti(ϕtU ), in

the following text. Let

ϕU
:=
(
ϕ>1U ,ϕ

>
2U

)>
(2.7)

denote the overall q-vector of known parameters, with q = q1 + q2.

Consider the following sample level estimating equation:

F̂π(ϕ) =
∑
i∈S

difi(ϕ) = 0q (2.8)

where di = π−1i are the design weights, πi are defined by (2.5) and fi(ϕ) is defined

in an analogous way to gi(θ). The estimate ϕ̂ of ϕU is obtained as the value

which solves (2.8). In a general case, there is no guarantee that ϕ̂ is equal to ϕU .

Adjusted weights pi are said to possess the generalized calibration property (e.g.

Owen, 1991; Chaudhuri et al., 2008) if the solution to the equation

F̂(ϕ) =
∑
i∈S

pifi(ϕ) = 0q (2.9)
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is equal to ϕU . The constraint

ϕ̂ = ϕU (2.10)

is called a benchmark or calibration constraint (Deville and Särndal, 1992a). Note

that (2.10) simplifies to (1.23) if ϕU is a population total of variable x. Benchmark

constraints are often used in survey practice, especially in official statistics. If the

variable of interest and the auxiliary variables are highly correlated, benchmark

constraints on ϕ might improve the precision of the estimator θ̂ of θU , defined as

the solution to the sample estimating equation

Ĝ(θ) =
∑
i∈S

pigi(θ) = 0ν · (2.11)

Sometimes the benchmark constraints are also used for practical reasons (e.g.

in order to obtain numerical consistency with values published from a census or

administrative sources). Note that the fi(ϕ) cannot be a function of θ, i.e., all its

components need to be known.

Let ξU be the unknown population mean N−1
∑

i∈U ξ(wi) of a known function ξ of

the common variablew. For example, we may have ξ(wi) = wi, or ξ(wi) = w2
i , or

ξ(wi) = δ(wi ≤ α), where δ(·) is an indicator function equal to 1 if the argument is

true and to 0 otherwise and α is a known constant, e.g. a quantile of distribution.

Suppose for now that we have ξ(wi) = wi, that is, ξU is the population mean of

the variable w. A more general case will be discussed in chapters 2.4 and 2.5.

We can estimate ξU from an estimating equation based on either of the two sam-

ples. Let ξ̂t be the solution of the estimating equation based on sample t:

Ĥtπ(ξ) =
∑
i∈St

dt;iht;i(wt;i, ξ) = 0rt , (2.12)

where dt;i = π−1t;i are the design weights, rt is the dimension of vector ht;i(wt;i, ξ)

and hi(wi, ξ) := wi −Nn−1t πti ξ, for t = 1 and 2. A similar estimating equation
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was proposed by Berger and De La Riva Torres (2016). Solving (2.12) with respect

to ξ gives a Horvitz-Thompson - type estimate of the population mean (Berger

and De La Riva Torres, 2016)

ξ̂t = ntN
−1
∑
i∈St

dt;iwi

(∑
i∈St

dt;iπti

)−1
· (2.13)

The estimate ξ̂t can be obtained either from S1 or S2. The estimates ξ̂1 and ξ̂2

obtained from each of the samples are not guaranteed to be equal.

We define the alignment property as the requirement that

ξ̂1 = ξ̂2· (2.14)

In the next chapters we propose an empirical likelihood method for obtaining the

adjusted design weights pti such that the resulting estimators have the calibra-

tion property, as defined by equation (2.10), and the alignment property (2.14).

While the estimators which possess the calibration property are commonly used

and a design-based empirical likelihood estimator with this property has already

been proposed (see chapter 1 and Berger and De La Riva Torres (2016)), the

estimators with the alignment property are not so common. Below we discuss

some existing estimators which have the alignment property, including the gen-

eralized regression type estimators (Zieschang, 1990; Renssen and Nieuwenbroek,

1997; Merkouris, 2004), as well as the pseudoempirical likelihood (Wu, 2004a) and

population empirical likelihood (Chen and Kim, 2014) estimators.

2.3 Some existing approaches

There are two main types of design-based estimators that ensure alignment of

estimates from two or more surveys: the generalized regression family estimators,
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including the methods of Zieschang (1990); Renssen and Nieuwenbroek (1997) and

Merkouris (2004) and the empirical likelihood type methods, namely the pseudo

empirical likelihood estimator (Wu, 2004a) and the population empirical likelihood

estimator (Chen and Kim, 2014). Historically the first method was proposed by

Zieschang (1990) for alignment of totals of the common variables. The method

consists of two steps. First, a composite estimate of the total of the common

variable is calculated as a linear combination of regression estimates obtained

from each of the samples. That is, for a scalar common variable w, the composite

estimator of the population total W =
∑

i∈U wi takes the following form:

ŴCR = φŴR
1 + (1− φ)ŴR

2 , (2.15)

where ŴR
t is a regression estimator of W calculated from the t-th sample and φ

is a scaling factor between 0 and 1. In the second step an additional calibration

type constraint is included in the extended regression system for estimation of any

non-common parameters. In other words, each of the samples is calibrated on the

same composite estimate of the total of the common variable (Merkouris, 2004).

Renssen and Nieuwenbroek (1997) proposed an optimal weighting coefficient φ for

the linear combination (2.15), based on the approximate variances of estimators

obtained from both surveys:

φ =
V̂ (ŴR

2 )

V̂ (ŴR
1 ) + V̂ (ŴR

2 )
· (2.16)

These results were further extended by Merkouris (2004), who proposed a method

which does not require the intermediate step of estimating the total of the com-

mon variable and does not require estimating the variances as in (2.16). Merkouris

(2004) also provided a generalisation of the available approaches to estimation of

population totals of the non-common variables. The composite regression esti-

mators for the totals of variables y1 and y2 take the following form Merkouris
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(2004):

Ŷ CR
1 = Ŷ R

1 + B̂y1(I −Φ)(ŴR
2 − ŴR

1 ) (2.17)

Ŷ CR
2 = Ŷ R

2 + B̂y2Φ(ŴR
2 − ŴR

1 ), (2.18)

where

Ŷ R
t = Ŷ HT

t + y>t Λtxt(x
>
t Λtxt)

−1(X t − X̂ t), (2.19)

ŴR
t = ŴHT

t +w>t Λtxt(x
>
t Λtxt)

−1(X t − X̂ t) (2.20)

B̂ys = y>t Lstwt(w
>
t Lstwt)

−1 (2.21)

Lt = Λt(I − xt(x>t Λtxt)
−1x>t Λt) (2.22)

and Λt is a diagonal weighting matrix with the ii-th entry equal to π−1t;i . The Ŷ R
t is

a generalized regression estimator of the total Yt and ∗t denotes values of variable

∗ observed in sample St. The coefficient Φ is an adjustment factor which can take

different forms.

When Φ = γI, with γ being a scaling coefficient ranging from 0 to 1, we obtain

Renssen and Nieuwenbroek’s (1997) estimator (Merkouris, 2004). In particular,

the coefficient

Φ = V̂ (ŴR
2 ){V̂ (ŴR

1 ) + V̂ (ŴR
2 )}−1, (2.23)

minimises the estimated variance of the composite estimate of the total of the

common variable (Renssen and Nieuwenbroek, 1997; Merkouris, 2004).

Using

Φ = w>2 Λ2w2(w
>
1 Λ1w1 +w>2 Λ2w2)

−1 (2.24)

yields Zieschang’s (1990) estimator (Merkouris, 2004).
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The choice of

Φ = w>2 L2w2(w
>
1 L1w1 +w>2 L2w2)

−1 (2.25)

gives Merkouris’s (2004) composite regression estimator, where Lt is defined by

(2.22).

The estimator can be further modified to include a correction factor which accounts

for the differences in the sample sizes and design effects between the surveys:

(Merkouris, 2004)

φ =
n1{DEFF (S1)}−1

n1{DEFF (S1)}−1 + n2{DEFF (S2)}−1
, (2.26)

where DEFF (St) is the design effect associated with the t-th sample. The factor

φ is incorporated into (2.25) in the following way:

Φ = φw>2 L2w2{(1− φ)w>1 L1w1 + φw>2 L2w2}−1· (2.27)

This is equivalent to dividing the ij-th element in the matrix Λt by a factor

qt;i = nt{DEFF (St)}−1 (Merkouris, 2010a).

Merkouris’s (2004) estimator accounts for both the difference in variances of ŴR
1

and ŴR
2 , and the different levels of regression fit in the ŴR

1 and ŴR
2 in (2.20)

(Merkouris, 2004).

The approximate design variance of the estimator Ŷ CR
1 is given by: (Merkouris,

2004)

V̂ ar(Ŷ CR
1 ) = V̂ ar(Ŷ R

1 ) +By1(I −Φ){V̂ ar(ŴR
1 ) + V̂ ar(ŴR

2 )}(I −Φ)>B>y1

−2By1(I −Φ){Ĉov(Ŷ R
1 , Ŵ

R
1 )} ·

(2.28)
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The relative efficiency of the estimators listed above has been discussed in detail

by Merkouris (2004, 2010a,b, 2015). The main difference between Zieschang’s

(1990) estimator and Renssen and Nieuwenbroek’s (1997) and Merkouris’s (2004)

estimators is that the latter two are corrected for the difference in efficiency of the

two surveys. Renssen and Nieuwenbroek’s (1997) estimator includes the correction

factor in the coefficient Φ, which is proportional to the estimated relative variances

of the regression estimators for the total of the common variable calculated from

each of the samples. The practical implication of this is the necessity to estimate

these variances before the final weights are obtained. Merkouris’s (2004) point

estimator does not rely on variance estimation. Instead, sample sizes (and design

effects if different designs are used in the surveys), are included directly in the

extended regression coefficient B. In some cases, Merkouris’s (2004) estimator is

design optimal (Merkouris, 2004).

Merkouris (2015) discusses composite regression estimators that are minimum-

variance linear unbiased combinations of estimators obtained from each sample.

These estimators are called best linear unbiased estimators (BLUE) (see Chipper-

field and Steel, 2009). If the samples S1 and S2 are independent, the optimal

weighting matrix Λ0
t has the ij-th element equal to (πij−πiπj)(πiπjπij)−1, where

πij are second order sampling probabilities for units i and j (Merkouris, 2015).

For dependent samples, estimation of variances and covariances of the estimators

is necessary to obtain a BLUE.

Wu (2004a) proposed a pseudoempirical likelihood approach to aligning estimates

of means from two surveys. The maximum pseudoempirical likelihood estimator

of the mean ȳt = N−1
∑

i∈St
yt;i is equal to:

ˆ̄yt =
∑
i∈St

pt;iyt;i, (2.29)

where the weights pt;i are estimated by the values which maximise the pseudoem-
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pirical likelihood function:

`(p) =
∑
i∈S1

π−11;i log(p1;i) +
∑
i∈S2

π−12;i log(p2;i) (2.30)

under the following constraints:

∑
i∈S1

p1;i = 1,
∑
i∈S2

p2;i = 1, (2.31)∑
i∈S1

p1;ix1;i = x̄1,
∑
i∈S2

p2;ix2;i = x̄2,
∑
i∈S1

p1;iw1;i =
∑
i∈S2

p2;iw2;i, (2.32)

where x̄t is the known population mean of variable xt. Wu (2004a) proposes

two methods to compute the pseudoempirical likelihood weights p̂t;i. The first

approach consists of using an iterative algorithm, where in each iteration first the

maximum likelihood estimate of the mean of the common variable is calculated

and then the estimated mean is used to construct a benchmark constraint. The

second approach circumvents the necessity of estimating the unknown mean of the

common variable and imposes constraint (2.32) directly.

The maximum pseudoempirical likelihood estimator is asymptotically equivalent

to a regression estimator similar to the estimator proposed by Zieschang (1990),

but creates weights which are positive by definition (Wu, 2004a). A version of

the pseudoempirical likelihood estimator similar to Renssen and Nieuwenbroek’s

(1997) estimator with the optimal weighting coefficient, where the unknown mean

of the common variable is estimated by a linear combination of the estimators

obtained from separate samples and then used to construct a constraint on the

estimator for the parameter of interest was also proposed (Wu, 2004a).

Chen and Kim (2014) proposed a population empirical likelihood method to com-

bine information from non-nested two-phase sampling. The method involves find-

ing the weights which maximise the population empirical likelihood function:

`(p) =
N∑
i=1

log(pi), (2.33)
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where N is the population size, subject to the following population level con-

straints:

N∑
i=1

pi = 1 (2.34)

N∑
i=1

pix1;i(δ1;iπ
−1
1;i − 1) = 0,

N∑
i=1

pix2;i(δ2;iπ
−1
2;i − 1) = 0 (2.35)

N∑
i=1

pifi(xi, ϕU)(δ1;iπ
−1
1;i − δ2;iπ−12;i ) = 0 (2.36)

N∑
i=1

piδ2;iπ
−1
2;i gi(yi, θU) = 0, (2.37)

where δti is a sample membership indicator and equals 1 if unit i was selected in

St and 0 otherwise. The fi(xi, ϕU) and gi(yi, θU) are estimating functions for the

known population parameter ϕU and the parameter of interest θU respectively.

Under Poisson sampling and rejective Poisson sampling, when the sampling frac-

tion is negligible (i.e., n1N
−1 → 0 and n2N

−1 → 0), the maximum population

empirical likelihood estimator of the parameter θU is asymptotically equivalent to

the optimal Generalized Method of Moments estimator (Hansen, 1982). Under the

above conditions and some regularity conditions (see Chen and Kim, 2014), the

population empirical likelihood ratio function is pivotal and follows a χ2 distribu-

tion asymptotically, which can be used to construct Wilks (1938) type confidence

intervals.

Methods outside of the design-based paradigm have also been proposed. While it is

beyond the scope of this work to characterise them all, examples include a model-

assited approach of Kim and Rao (2012), a model based small area application by

Kim et al. (2015) and a bayesian bootstrap approach by Dong et al. (2014).

The empirical likelihood approach proposed in the following paragraphs fills in

some gaps in the currently available methods. It gives point estimators and confi-

dence intervals for a wide class of parameters expressed as solutions to estimating
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equations. It also allows to use various functions of the common variable in the

alignment constraints. The regression-type estimators and the pseudoempirical

likelihood estimator are restricted to estimation of means and totals. The empir-

ical likelihood approach allows to construct asymmetric, range-preserving Wilks

(1938) type confidence intervals based directly on the χ2 approximation of the

empirical likelihood ratio function, without any corrections. This is not the case

for the regression type estimators and the pseudoempirical likelihood estimator,

as they require variance estimates.

Estimation of parameters through the use of estimating equations as well as con-

struction of asymmetric confidence intervals based on the asymptotic χ2 distri-

bution of a likelihood ratio function is possible with the population empirical

likelihood approach. The proposed empirical likelihood approach, however, only

considers sample data, does not require knowledge of the population size and can

be used for estimation from stratified samples selected with large sampling frac-

tions. It is also closer to the original formulation of empirical likelihood in that it

is defined at the sample level.

2.4 Empirical likelihood approach proposed

In this chapter we develop an empirical likelihood method to obtain estimates for

the parameter of interest θU , such that the benchmark constraints based on the

known parameters ϕ1U and ϕ2U , as well as the alignment constraint on the mean

of a function of the common variable w, are respected.

Consider the following two samples joint empirical log-likelihood function:

`(m) :=
∑
i∈S1

log(m1i) +
∑
i∈S2

log(m2i), (2.38)

where log(·) denotes the natural logarithm. The mti are unknown positive scale
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loads (e.g. Hartley and Rao, 1969) associated with unit i ∈ St. A similar joint

empirical log-likelihood function was proposed by Owen (2001). Note that function

(2.38) is convex.

The joint empirical log-likelihood function (2.38) can be written as

`(m) =
∑
i∈S

log(mi), (2.39)

where mi := m1i if i ∈ S1 and mi := m2i if i ∈ S2, that is,

mi := δ1i m1i + δ2i m2i, (2.40)

S is the pooled sample as defined in chapter 2.2 and δti is the sampling indicator

as defined in 2.3.

Let θU =
(
θ>1U ,θ

>
2U

)>
be the fixed unknown parameter of interest, defined as the

solution to equation 2.1. Let ϕU be the known population parameter defined as

the solution to equation 2.6. Let θ be a vector in the parameter space Θ of

the parameter of interest θU . Let the m̂?
i(θ,ϕU ) be the values which maximise

the expression (2.39), for a given vector θ, subject to mi > 0 and the following

constraints:

1. Unknown parameter constraints

∑
i∈S1

m1i g1i(θ1) = 0ν1 and
∑
i∈S2

m2i g2i(θ2) = 0ν2 , (2.41)

2. Design constraints

∑
i∈S1

m1i π1i = n1 and
∑
i∈S2

m2i π2i = n2, (2.42)

3. Known parameter constraints, requiring that the known population param-

eters are reproduced, i.e., that the generalized calibration property (2.10)
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holds

∑
i∈S1

m1i f1i(ϕ1U ) = 0q1 and
∑
i∈S2

m2i f2i(ϕ2U ) = 0q2 , (2.43)

4. Alignment constraints, requiring that both samples give the same point es-

timates for the mean of a known function ξ of the common variable w

∑
i∈S1

m1i ξ(wi) =
∑
i∈S2

m2i ξ(wi)· (2.44)

Constraint (2.44) ensures alignment of the estimates for the function of the com-

mon variable w. In chapter 2.5.1, we discuss some possible choices for the align-

ment constraint. Constraint (2.43) is the optional benchmark constraint, which

ensures that the generalised calibration property (see chapter 2.2) holds. The de-

sign constraint (2.42) plays a key role in derivation of the asymptotic properties of

the maximum empirical likelihood point estimator proposed in section 2.5. Con-

straint (2.41) will be used to obtain point estimates and confidence intervals for

the unknown parameter θU . This is explained in detail in chapters 2.5 and 2.9.

For now we should just note that the constraint (2.41) can only be imposed for a

specified value of θ, i.e., specific values of parameters θ1 and θ2. When m̂?
i(θ,ϕU )

are used as arguments of function (2.39), values of (2.39) depend on the value of

the parameter θ used in constraint (2.41). Using different candidate values of θ

and evaluating the resulting function (2.39) allows to find the point estimate θ̂

and the bounds of confidence intervals or regions. Note that because of constraints

(2.41), (2.43) and (2.44), values m̂?
i(θ,ϕU ) depend on ϕU and θ, as well as on the

values ξ(wi).

The system of constraints (2.41)-(2.44) can be written as

∑
i∈S

mi c
?
i(θ) = C?, (2.45)

39



where mi is defined by expression (2.40) and

c?i(θ) :=
(
c>i , gi(θ)>

)>
, (2.46)

C? :=
(
C>,0>ν

)>
, (2.47)

ci :=
(
p>i , fi(ϕU )> , ξ◦>i

)>
, (2.48)

C :=
(
n1, n2, 0>q , 0>r

)>
, (2.49)

with

gi(θ) :=
(
δ1i g1i(θ1)

> , δ2i g2i(θ2)
> )> , (2.50)

pi :=
(
δ1iπ1i , δ2iπ2i

)>
, (2.51)

fi(ϕU ) :=
(
δ1if1i(ϕ1U )> , δ2if2i(ϕ2U )>

)>
, (2.52)

ξ◦i := (−1)δ2i ξ(wi), (2.53)

ν being the dimension of vector gi(θ), q being the dimension of the vector fi(ϕU )

and r denoting the dimension of vector ξ(wi).

We assume that θ and ϕU in constraints (2.41) and (2.43) are such that C? is an

inner point of the convex hull formed by the sample observations {c?i(θ) : i ∈ S}.

This implies that the solution {m̂?
i(θ,ϕU ) : i ∈ S} exists.

Berger and De La Riva Torres (2016) showed that, by using the method of La-

grange’s multipliers, m̂?
i(θ,ϕU ) can be derived as

m̂?
i(θ,ϕU ) =

{
πi + η?>c?i(θ)

}−1
, (2.54)

where η? is a vector of Lagrange’s multipliers such that constraint (2.45) is met.

This result holds in the two samples context with πi := π1i if i ∈ S1 and πi := π2i

if i ∈ S2, or equivalently

πi = δ1iπ1i + δ2iπ2i· (2.55)
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2.5 Maximum empirical likelihood point estimator

Let `(θ|ϕU ) denote the maximum value of the function (2.39) for a given vector

θ, under mi > 0 and the constraint (2.45); that is,

`(θ|ϕU ) :=
∑
i∈S

log{m̂?
i(θ,ϕU )}· (2.56)

The maximum empirical likelihood point estimator of θU is defined as the vector

θ̂ which maximises the function (2.56); that is,

θ̂ := arg max
θ∈Θ

`(θ|ϕU )· (2.57)

We will call θ̂ aligned empirical likelihood estimator.

Berger and Kabzinska (2017) showed that θ̂ is given by the solution of a sample

estimating equation

Ĝ(θ) :=
∑
i∈S

m̂i(ϕU ) gi(θ) = 0ν , (2.58)

where m̂i(ϕU ) are the values mi that maximise function (2.39) under mi > 0 and

∑
i∈S

mi ci = C, (2.59)

where ci, C and gi(θ) are defined by (2.48), (2.49) and (2.50) respectively. The

proof is based on the observation that

`(θ|ϕU ) 6
∑
i∈S

log{m̂i(ϕU )} (2.60)

for any value of θ such that C? is an inner point of the convex hull formed by

{c?i(θ) : i ∈ S}. Then, considering that when θ̊ = (̊θ
>
1 , θ̊

>
2 )> is the unique solution

to (2.58), m̂?
i(̊θ,ϕU ) = m̂i(ϕU ), where m̂?

i(̊θ,ϕU ) is defined by (2.54), we have that
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`(̊θ|ϕU ) =
∑

i∈S log{m̂i(ϕU )}. This implies that θ̊ = θ̂, where θ̂ is the maximum

empirical likelihood point estimator, defined by (2.57) (Berger and Kabzinska,

2017).

We can express m̂i(ϕU ) in an analogous way to m̂?
i(θ,ϕU ):

m̂i(ϕU ) =
(
πi + η>ci

)−1 · (2.61)

The values m̂i(ϕU ) are the adjusted design weights produced by the proposed

empirical likelihood procedure. They can be used in an analogous way as Deville

and Särndal’s (1992b) calibration weights in order to obtain point estimates for the

parameters of interest. For example,
∑

i∈S m̂i(ϕU )yi will give an estimate of the

population total of variable y. The empirical likelihood adjusted weights m̂i(ϕU )

possess the calibration property, i.e., solving equations (2.43) with m1i = m̂1i(ϕU )

and m2i = m̂2i(ϕU ) with respect to ϕ1 and ϕ2 gives the known values ϕ1 and ϕ2

used in constraint (2.43).

Practical aspects of calculating the adjusted weights m̂i(ϕU ) and the point estimate

θ̂ are discussed in chapter 5.

2.5.1 Estimation of the mean of the function of the

common variable

In the previous paragraphs we treated the unknown common variable w as aux-

iliary information. Suppose that we want to estimate the population mean ξU =

N−1
∑

i∈U ξ(wi) of the known function ξ of the common variable w. The most

likely application is when we simply wish to estimate the population mean of the

common variable w, in which case the function ξ(wi) is equal to wi. This is the

most practically applicable formulation. However, other functions ξ(wi) can be

used. For example, when the parameter of interest θt is the variance of yt;i, we
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might use the function ξ(wi) = w2
i in an alignment constraint in order to increase

correlation between ξ(wi) and gti(θt). The mean of this function also can be

estimated.

In a general case, the population mean ξU can be defined as the solution of the

population level estimating equation:

∑
i∈U

hi(wi, ξ) = 0, (2.62)

where hi(wi, ξ) := ξ(wi) − Nn−1t πti ξ, for t = 1 and 2. We will use hi(ξ) to

denote hi(wi, ξ) for simplicity henceforth.

The maximum empirical likelihood point estimator ξ̂ of ξU is obtained as the value

which maximises

`(ξ|ϕU ) :=
∑
i∈S

log{m̂?
i(ξ|ϕU )}, (2.63)

where m̂?
i(ξ|ϕU ) are the values which maximise (2.63) for a given value ξ, under

mi > 0 and

∑
i∈S

mi c
∗∗
i = C∗∗, (2.64)

with

c∗∗i =
(
ci
>,hi(ξ)>

)>
, (2.65)

C∗∗ =
(
C>,0>2r

)>
, (2.66)

where

hi(ξ) :=
(
δ1i h1i(ξ)> , δ2i h2i(ξ)>

)> · (2.67)

Note that this is equivalent to including ξ within θ.
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Based on an argument similar to the one presented in chapter 2.5, finding the

value ξ̂ which maximises (2.63) is equivalent to solving the following estimating

equation for ξ:

∑
i∈S

m̂i(ϕU ) hi(ξ) = 02r· (2.68)

Equation (2.68) can also be written as

∑
i∈S1

m̂1i(ϕU ) h1i(ξ) = 0r and
∑
i∈S2

m̂2i(ϕU ) h2i(ξ) = 0r· (2.69)

The solutions of the equations (2.69) are ξ̂1 and ξ̂2, where ξ̂t = N−1
∑

i∈St
m̂ti(ϕU ) ξ(wi),

t = 1, 2. Constraint (2.44), which is imposed on the adjusted weights m̂1i(ϕU ) and

m̂2i(ϕU ), implies that both equations in (2.69) give the same estimate, that is,

ξ̂1 = ξ̂2.

Note that various functions of the variable wi can be used to define the alignment

constraint (2.44). In particular, these functions can be chosen to maximise the

correlation between the ξ(wi) and gi(θ) (see chapter 2.6.2 for a discussion).

2.6 Asymptotic properties of the maximum empirical like-

lihood point estimator

In this chapter the asymptotic properties of the aligned empirical likelihood esti-

mator (2.58) are established. We start by specifying the assumed regularity con-

ditions. We then derive the generalized regression type estimator asymptotically

equivalent to the aligned empirical likelihood estimator and discuss its properties.

We also show that the aligned empirical likelihood estimator is asymptotically
√
n

design-consistent.
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2.6.1 Regularity conditions

Conditions on the sampling design

Suppose that the the sampling design is such that the following regularity condi-

tions hold for t = 1, 2:

max
i∈St

{
N

nt
πti

}
= OP(1) and max

i∈St

{nt
N
π−1ti

}
= OP(1) (2.70)

N−1‖Ĉπ −C‖ = OP(n−1/2), (2.71)

max{‖ci‖ : i ∈ S} = oP(n1/2), (2.72)

‖Ŝ‖ = OP(1), (2.73)

‖Ŝ−1‖ = OP(1), (2.74)

nτ−1

N τ

∑
i∈S

‖ci‖τ

πτi
= OP(1) (τ = 2, 3, 4), (2.75)

with n = n1 + n2 and

Ŝ := − n

N2

∑
i∈S

cic
>
i

π2
i

, (2.76)

Ĉπ :=
∑
i∈S

ci
πi
, (2.77)

where ci, C and πi are respectively defined by (2.48), (2.49) and (2.55). The

ordersOP(·) and OP(·) denote matrices which are such that ‖OP(a)‖ = OP(a) and

‖OP(a)‖ = oP(a), where ‖A‖ is the Euclidean norm, i.e., ‖A‖ := trace(A>A)1/2.

A thorough discussion of conditions (2.70)-(2.75) can be found in Berger and De

La Riva Torres (2016). Condition (2.70) is the key condition which ensures that

the πti are of the same order as nt/N (Krewski and Rao, 1981). Condition (2.71)

is a standard law of large numbers condition (e.g. Isaki and Fuller, 1982; Krewski
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and Rao, 1981). Condition (2.72) holds for common unequal probability sampling

designs (Chen and Sitter, 1999, Appendix 2). Conditions (2.73) and (2.74) hold

when −Ŝ is positive definite and when there exists a positive definite matrix −S

such that Ŝ−S = OP(1) and ‖S‖ = O(1) (Berger, 2015, Lemma B.4). Condition

(2.75) is a Lyapunov-type condition for the existence of moments (e.g. Krewski

and Rao, 1981, p. 1014, Deville and Särndal, 1992a, p. 381). For conditions

(2.71)-(2.75) to hold, we assume that ξ(wi) = OP(1) for all i ∈ S, which is

achieved when the components of ξ(wi) are bounded (Berger and De La Riva

Torres, 2016). For condition (2.72) to hold, the components of ci have to be

bounded in probability. This can be justified by substituting constraint (2.42) by

the following (Berger and De La Riva Torres, 2016):

∑
i∈S1

m1i Nn
−1
1 π1i = Nn−11 n1 and

∑
i∈S2

m2i Nn
−1
2 π2i = Nn−12 n2· (2.78)

Note that this can be done without a loss of generality and does not have any

implications for practical applications, as the quantity Nn−1t appears at both sides

of the equation. In particular, the population size N does not have to be known.

Conditions on the parameter of interest

Suppose also that θU is such that the following conditions hold:

Ĝπ(θU ) = OP(Nn−1/2), (2.79)

nτ−1

N τ

∑
i∈S

‖gi(θU )‖τ

πτi
= OP(1) (τ = 2, 3, 4), (2.80)

∇̂(θ) :=
1

N

∂Ĝ(θ)

∂θ
is continuous in θ ∈ ΘU , (2.81)

1

N
‖∂∇̂(θ)k

∂θ
‖ = OP(1) uniformly for all θ ∈ ΘU , (2.82)

‖∇̂(θU )‖ �p 1, (2.83)

|θ̂ − θU | = oP(1), (2.84)
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where ∇̂(θ)k is the k− th row of matrix ∇̂(θ), k− 1, 2, ..., K; K is the number of

rows in matrix ∇̂(θ),

Ĝπ(θU ) :=
∑
i∈S

1

πi
gi(θU ) (2.85)

and ΘU is a compact neighbourhood containing θU . Similar conditions can be

found in (Berger and De La Riva Torres, 2016).

Condition (2.79) is a law of large numbers condition, because Ĝπ(θU ) is the unbi-

ased Horvitz and Thompson (1952) estimator of G(θU ) = 0ν . Conditions under

which condition (2.79) holds can be found in Isaki and Fuller (1982). Condition

(2.80) is a Lyapunov-type condition for the existence of moments of gi(θU ). Con-

ditions (2.81), (2.82) and (2.83) ensure that Taylor series expansion of Ĝ(θ) exists

(Berger and De La Riva Torres, 2016). Condition (2.83) means that the deriva-

tive ∇̂(θU ) is finite and that Ĝ(θ) is not flat in the neighbourhood of θU (Berger

and De La Riva Torres, 2016). Condition (2.84) ensures consistency of θ̂ for θU .

This condition can be justified through a reasoning similar to that presented by

Qin and Lawless (1994, Lemma 1). An analogous assumption is made e.g. by

Godambe and Thompson (2009). Note that constraints (2.79), (2.80) and (2.83)

need to hold for θU only, that is, when θ is equal to the true population value θU .

2.6.2 Asymptotic equivalence of the maximum empirical

likelihood point estimator to a generalized

regression type estimator

Let

Ĝπ(θ) =
∑
i∈S

gi(θ)

πi
(2.86)
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be Horvitz and Thompson’s (1952) estimator of θU .

The following theorem establishes asymptotic equivalence between the proposed

empirical likelihood estimator θ̂, defined as the solution of (2.58), and a generalized

regression type estimator.

Theorem 1. Under conditions (2.70)-(2.75), for all θ which are such that:

1

nN2

∑
i∈S

||gi(θ)||2

π2
i

= OP(n−2), (2.87)

we have that

Ĝ(θ) = Ĝr(θ) + OP(Nn−1/2), (2.88)

where Ĝ(θ) is defined by (2.58) and

Ĝr(θ) = Ĝπ(θ) + B̂(θ,ϕU )>(C − Ĉπ), (2.89)

B̂(θ,ϕU ) :=
(∑
i∈S

1

π2
i

cic
>
i

)−1∑
i∈S

1

π2
i

cigi(θ)>, (2.90)

with Ĉπ defined by (2.77) and Ĝπ(θ) defined by (2.86).

The proof can be found in the Appendix. The first step in the proof is showing

that the Lagrange multipliers η> in (2.61) are bounded by OP(n1/2N−1). Then

the estimating equation (2.58) is expressed in terms of a regression type estimator

plus an error term, for which an asymptotic order is established. Theorem 1 holds

for all θ which satisfy (2.87), that is, not only when θ equals θU .

The estimator (2.89) can also be written as:

Ĝr(θ) = {Ĝr1(θ1)
>, Ĝr2(θ2)

>}>, (2.91)

where

Ĝr1(θ1) := Ĝ1π(θ1)− B̂1f1(θ,ϕU )> f̂1π(ϕ1)− B̂1f2(θ,ϕU )> f̂2π(ϕ2)
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+B̂1ξ(θ,ϕU )>
(
ξ̂2π − ξ̂1π

)
, (2.92)

Ĝr2(θ2) := Ĝ2π(θ2)− B̂2f1(θ,ϕU )> f̂1π(ϕ1)− B̂2f2(θ,ϕU )> f̂2π(ϕ2)

+B̂2ξ(θ,ϕU )>
(
ξ̂1π − ξ̂2π

)
(2.93)

and

Ĝtπ(θt) =
∑
i∈St

π−1ti gti(θtU ), (2.94)

f̂tπ =
∑
i∈St

π−1ti fti(ϕtU ), (2.95)

ξ̂ tπ =
∑
i∈St

π−1ti ξ(wi)· (2.96)

The terms B̂1f1(θ,ϕU )> f̂1π(ϕ1), B̂1f2(θ,ϕU )> f̂2π(ϕ2), B̂2f1(θ,ϕU )> f̂1π(ϕ1) and

B̂2f2(θ,ϕU )> f̂2π(ϕ2) are regression terms based on the known population param-

eters ϕ1 and ϕ2. The terms B̂1ξ(θ,ϕU )>
(
ξ̂2π − ξ̂1π

)
and B̂2ξ(θ,ϕU )>

(
ξ̂1π − ξ̂2π

)
are the extended regression terms, where the estimates ξ̂1π and ξ̂2π are used in

place of the known population parameters.

Berger and Kabzinska (2017) proved that if S1 and S2 are independent, a design-

consistent estimator of the variance-covariance matrix of (2.89), under the strati-

fied maximum entropy sampling design (Hájek, 1981, Ch. 14), is given by:

V̂P
{
Ĝr(θ)

}
=
∑
i∈S

1

π2
i

g̃i(θ)g̃i(θ)>, (2.97)

where

g̃i(θ) = gi(θ)− B̂(θ,ϕU )>ci· (2.98)

Following an argument presented by Berger (2011) and Berger and Kabzinska

(2017), this result holds for high entropy sampling designs, such as Rao’s (1965)
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& Sampford’s (1967) design or the randomised systematic design.

Berger et al. (2003) showed that in high entropy sampling designs, if the design

constraints such as (2.42) are included as the first components of ci and C, the

regression estimators (2.92) and (2.93) are asymptotically equal to the Montanari’s

(1987) optimal regression estimators.

Based on the regression estimator theory, we can expect a reduction in the vari-

ance of (2.89) when fi(ϕ) are highly correlated with gi(θ). The effect of terms

B̂1ξ(θ,ϕU )>
(
ξ̂2π − ξ̂1π

)
and B̂2ξ(θ,ϕU )>

(
ξ̂1π − ξ̂2π

)
on the variance (2.97) is

twofold. First, there is an increase in variance due to the fact that the parameters

ξ̂1π and ξ̂2π are estimated. However, there is also a decrease in variance if there

is a high correlation between ξ(wi) and gi(θ). When the decrease in variance

is larger than the increase, the overall effect of alignment on precision of (2.89)

is positive. The advantage of the proposed approach is that the function ξ(wi)

can be chosen to improve this correlation. For example, suppose that a variable

wi is correlated with a variable yi. When gi(θ) is the estimating function for an

α-quantile of the distribution of yi, it is recommended to use ξ(wi) = δ(wi 6 α),

where δ(·) is an indicator function equal to 1 if its argument is true and to 0

otherwise. If gi(θ) is the estimating function for the variance, ξ(wi) = (wi, w
2
i )
>

should be used.

2.6.3 Asymptotic design-consistency of the maximum

empirical likelihood point estimator

Consider a sequence of nested populations U (ν) of size N (ν), where ν = 1, 2, . . . ,∞

(Isaki and Fuller, 1982). Consider a sequence of samples S
(ν)
t of size n

(ν)
t < N (ν)

selected from U (ν) according to a sampling design P(ν)
t (St). We assume that

n
(ν)
1 → ∞ and n

(ν)
2 → ∞, as ν → ∞. We also assume that n

(ν)
1 /N → 0 and

n
(ν)
2 /N → 0, i.e., we assume that the sampling fraction is negligible. Extension to
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non-negligible sampling fractions is discussed in chapter 2.11. Let oP(·) and OP(·)

be the orders of convergence in probability with respect to the sampling design

P(ν)
t (St) (e.g. Isaki and Fuller, 1982), as ν → ∞. To simplify the notation, we

drop the index ν in the following text.

The following theorem shows that the maximum empirical likelihood point esti-

mator θ̂ is asymptotically
√
n design-consistent.

Theorem 2. Let n := n1 + n2. Under the regularity conditions (2.70) (2.70)-

(2.75), (2.79), (2.80) (with τ = 2), (2.81)-(2.84), we have that ‖θ̂ − θU‖ =

OP(n−1/2).

The
√
n design-consistency is achieved because of the design constraint (2.42). The

proof can be found in the appendix. The proof shows that ‖B̂(θU ,ϕU )‖ 6 OP(1)

and N−1Ĝ(θU ) = OP(n−1/2), where Ĝ(θ) and B̂(θU ,ϕU ) are respectively defined

by (2.58) and (2.90). The asymptotic
√
n design-consistency for θ̂ is then based

on taking a Taylor expansion of Ĝ(θ̂) in the neighbourhood of θU . Theorem 2

holds whether or not the common parameter ξU is included within θU and whether

or not S1 and S2 are independent. Theorem 2 is an improved result compared to

condition (2.84) in that a rate of convergence is established.

2.7 Effect of a difference in sample sizes on the maximum

empirical likelihood point estimator

In practical applications samples S1 and S2 might have different sizes and utilise

different designs. Following (2.92) and (2.93), the alignment constraint can be

intuitively interpreted as calibration on a zero function defined by the difference

between the estimates of the common parameter obtained from the two samples.

Efficient ways of introducing an alignment constraint when samples considerably

differ in size have been investigated by both Renssen and Nieuwenbroek (1997) and

Merkouris (2004, 2010a, 2015). Renssen and Nieuwenbroek (1997) accounted for
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differences in sample sizes by introducing a weighting coefficient which depends on

relative variances. In their method, the total of the common variable is estimated

by a weighted average of two separate sample estimates. This total is then used in

the regression estimators of the totals of the variables of interest. In the composite

regression estimator, the entries in the weighting matrix included in the regression

coefficient can be adjusted by relative sample sizes and design effects (Merkouris,

2004, 2010a, 2015). The aligned empirical likelihood estimator does not include

any adjustment factors. However, because of the design constraint (2.42), an

implicit adjustment for the relative sample size is made. This can be seen in

the coefficient B̂(θ,ϕU ) of the asymptotically equivalent generalized regression

estimator (2.89). We discuss this below.

Consider a simple situation when there is no stratification, no benchmark con-

straints and there is a single common variable w and two equal scalar parameters

of interest θ1 = θ2. Suppose that n1 � n2 and that g1i(θ1) and g2i(θ2) are the

same estimating functions. In such a case, we would like the adjustment applied

to Ĝ1π(θ1) to be smaller than the adjustment applied to Ĝ2π(θ2). Below we show

that this is indeed the case.

We can express the coefficient B̂(θ,ϕU ) in equation (2.88) as

B̂(θ,ϕU ) = {Σ◦cc}
−1 Σ◦cg· (2.99)

It can be shown that

Σ◦cg =


G1 0

0 G2
H1 H2

 , (2.100)

with

G1 =
∑
i∈S1

π−1i g1i(θ1), (2.101)
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G2 =
∑
i∈S2

π−1i g2i(θ2), (2.102)

H1 =
∑
i∈S1

π−2i g1i(θ1)ξ
◦
i , (2.103)

H2 =
∑
i∈S2

π−2i g2i(θ2)ξ
◦
i (2.104)

and

Σ◦cc =


n1 0 SH1

0 n2 SH2

SH1 SH2 SH12

 , (2.105)

with SH1 =
∑
i∈S1

π−1i ξ◦i , SH2 =
∑
i∈S2

π−1i ξ◦i , SH12 =
∑
i∈S

π−2i ξ◦i
2 and ξ◦i defined by

2.53.

Hence, (2.99) becomes

B̂(θ,ϕU ) = {det(Σ◦cc)}−1B̂, (2.106)

with

B̂ =


B̂1,1 B̂1,2
B̂2,1 B̂2,2
B̂3,1 B̂3,2

 , (2.107)

B̂1,1 = (n2SH12 − SH1SH2)G1 − n2SH1H1, (2.108)

B̂2,1 = SH1SH2G1 − n1SH2H1, (2.109)

B̂3,1 = n1n2H1 − n2SH1G1, (2.110)

B̂1,2 = SH1SH2G2 − n2SH1H2, (2.111)
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B̂2,2 = (n1SH12 − SH1SH2)G2 − n1SH2H2, (2.112)

B̂3,2 = n1n2H2 − n1SH2G2· (2.113)

In the special case considered, the vector (C − Ĉπ) in (2.89) has only three el-

ements. The first two elements are equal to zero and the third element equals

(ξ̂ 1π − ξ̂ 2π). Therefore, (2.92) and (2.93) simplify to

Ĝr1(θ1) = Ĝ1π(θ1)− B̂1ξ
(
ξ̂ 2π − ξ̂ 1π

)
, (2.114)

Ĝr2(θ2) = Ĝ2π(θ2)− B̂2ξ
(
ξ̂ 1π − ξ̂ 2π

)
, (2.115)

with

B̂1ξ = {det(Σ◦cc)}−1B̂3,1 (2.116)

= n2{det(Σ◦cc)}−1

×

{
n1

∑
i∈S1

π−2i ξ(wi)g1i(θ1)−
∑
i∈S1

π−1i ξ(wi)
∑
i∈S1

π−1i g1i(θ1)

}
,

B̂2ξ = {det(Σ◦cc)}−1B̂3,2 (2.117)

= n1{det(Σ◦cc)}−1

×

{
n2

∑
i∈S2

π−2i ξ(wi)g2i(θ2)−
∑
i∈S2

π−1i ξ(wi)
∑
i∈S2

π−1i g2i(θ2)

}
·

Consider a situation when units within S1 and S2 are selected with equal proba-

bilities πti = nt/N . Substituting πti by nt/N in (2.116) and (2.117) gives

B̂1ξ = n2N
2{det(Σ◦cc)}−1Cov1 {ξ(wi), g1i(θ1)} , (2.118)

B̂2ξ = n1N
2{det(Σ◦cc)}−1Cov2 {ξ(wi), g2i(θ2)} , (2.119)

where

Covt {ξ(wi), gti(θt)}

{
n−1t

∑
i∈St

ξ(wi)gti(θt)− n−1t
∑
i∈St

ξ(wi) n
−1
t

∑
i∈St

gti(θt)

}
·
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(2.120)

The expected values of the coefficients B̂1ξ and B̂2ξ are given by

E(B̂1ξ) = n2N
2E
[
{det(Σ◦cc)}−1

]
E [Cov1 {ξ(wi), g1i(θ1)}] (2.121)

E(B̂2ξ) = n1N
2E
[
{det(Σ◦cc)}−1

]
E [Cov2 {ξ(wi), g2i(θ2)}] · (2.122)

The factor N2E [{det(Σ◦cc)}−1] appears in both coefficients. The expected values

of the covariances, E [Cov1 {ξ(wi), g1i(θ1)}] and E [Cov2 {ξ(wi), g2i(θ2)}] can be

assumed to be of the same order, as g1i(θ1) and g2i(θ2) are values of the same

function of the same variable. Therefore, when n1 � n2, we have that E(B̂2ξ)�

E(B̂1ξ). When the coefficient B̂1ξ is very small, it has a negligible effect on the

variance of Ĝr1(θ1) (see (2.97)). The variance of Ĝr2(θ2), however, would be highly

influenced by the large term B̂2ξ. A simulation study demonstrating performance

of the aligned empirical likelihood estimator when two samples of very different

sizes are aligned is presented in chapter 2.12.2.

Note that when the common parameter ξ is the only parameter of interest, the

aligned empirical likelihood estimator is not the most efficient way of combining

information from two samples. Chapter 3 introduces a general form of an empirical

likelihood estimator that can be more precise in this situation. The relationship

between that estimator and the aligned empirical likelihood estimator is discussed

in chapter 3.6.

2.8 The empirical likelihood ratio statistic

In this chapter we show that the empirical likelihood ratio statistic defined for

the two samples joint empirical log-likelihood function follows a χ2 distribution

asymptotically.
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Consider the following empirical likelihood ratio statistic:

r̂(θ|ϕU ) = 2 {`(m̂)− `(θ|ϕU )} , (2.123)

where `(m̂) is defined by (2.39) with m̂i(ϕU ) given by (2.61) and `(θ|ϕU ) is defined

by (2.56).

The following theorem establishes the asymptotic distribution of (2.123).

Theorem 3. Under conditions (2.70)-(2.75), (2.79) and (2.80), and assuming

that the central limit theorem holds for the vector (2.89), that is, (e.g. Scott and

Wu, 1981)

V̂P
{
Ĝr(θU )

}−1/2
Ĝr(θU )

d−→N (0ν , Ip), (2.124)

where N (0ν , Ip) denotes the standardized multivariate normal distribution and Ip

denotes the p× p identity matrix, we have that:

r̂(θU |ϕU ) = Ĝr(θU )> V̂P
{
Ĝr(θU )

}−1
Ĝr(θU ) +OP(n−1/2), (2.125)

where V̂P
{
Ĝr(θU )

}
is given by (2.97) with θ = θU .

The assumption (2.124) is plausible as the random vector (2.89) is a smooth func-

tion of Horvitz and Thompson (1952) estimators.

Under high entropy designs and if S1 and S2 are independent, V̂P
{
Ĝr(θU )

}
is a

design-consistent estimator of the variance-covariance matrix of Ĝr(θU ) (see chap-

ter 2.6.2 and (Berger and Kabzinska, 2017)). Therefore, the assumption (2.124)

and Theorem 3 imply that

r̂(θU |ϕU )
d−→ χ2

df=p, (2.126)

where χ2
df=p denotes a χ2-distribution with p degrees of freedom and p is the num-

ber of equations in (2.58). Thus, r̂(θU |ϕU ) is a pivotal statistic, i.e., its asymptotic
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distribution does not depend on θU .

2.9 Tests and empirical likelihood confidence regions

Property (2.126) allows us to use the empirical likelihood ratio statistic (2.123) to

construct confidence regions or confidence intervals for the parameter θU and to

test hypotheses about θU .

Suppose that we wish to test H0 : θU = θ0
U against HA : θU 6= θ0

U . Under H0, we

have r̂(θ0
U |ϕU )

d→ χ2
df=p. The p-value is given by

∫∞
r̂(θ0

U |ϕU )
f(x)dx, where f(x) is

the density of the χ2-distribution with p degrees of freedom.

An α-level confidence region for θU is defined as the set of θ0
U such thatH0 : θU = θ0

U

is not rejected at the 1− α level (p-value > 1− α); that is,

α-level confidence region of θU :=
{
θ : r̂(θ|ϕU ) 6 χ2

df=p(α)
}
, (2.127)

where χ2
df=p(α) denotes the upper α-quantile of the χ2

df=p-distribution. Based on

(2.126), this confidence region is asymptotically consistent. This means that the

nominal coverage α is asymptotically achieved.

It is also possible to construct a confidence interval for a single scalar parameter θU

when it is entirely defined by a single estimating equation which does not involve

any unknown parameters. For example, if we wish to construct a confidence

interval for the mean θU = N−1
∑

i∈U yti, the single estimating function can be

defined as gti(θt) = yti− θ. The same principle can be used for totals, quantiles or

ratios of any parameters defined by an estimating equation. With a single scalar

estimating function (p = 1), the confidence region (2.127) reduces to a confidence

interval. Practical aspects of finding the empirical likelihood confidence regions

and confidence intervals are discussed in chapter 5.
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2.10 Stratification

In the previous chapters we considered single stratum samples for brevity. In

this chapter we show how stratification can be included. This requires adjusting

the design constraint (2.42) using a method proposed by Berger and De La Riva

Torres (2016), with a small change to account for the two samples setup. The

adjustment for stratification is not necessary to calculate point estimates, but is

important for construction of confidence intervals and regions.

Suppose that the population U is split into Ht groups {Ut1, . . . , Uth, . . . , UtHt},

which are disjoint and such that ∪Ht
h=1Uth = U (t = 1, 2). A sample Sth of fixed

size nth is selected with unequal probabilities from Uth. We have S1 = ∪H1
h=1S1h,

S2 = ∪H1
h=1S2h and nt =

∑Ht

h=1 nth. Note that each of the samples can be stratified

in a different way. We assume that the number of strata Ht is bounded.

Information about the stratification is included in the design (or stratification)

variables: z1 and z2. The values of zt for unit i are given by the Ht-vector

zti := (zt1i, . . . , zthi, . . . , ztHti)
>, (2.128)

with zthi = πti when i ∈ Uth and zthi = 0 otherwise.

When samples are selected using a stratified design, the constraint (2.42) takes

the following form:

∑
i∈S1

m1i z1i = n
(H)
1 and

∑
i∈S2

m2i z2i = n
(H)
2 , (2.129)

where n
(H)
t = (nt1, nt2, ..., ntH)> is the vector of strata sample sizes. Theorems (1),

(2) and (3) hold under stratified sampling designs (Berger and Kabzinska, 2017).
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2.11 Without replacement sampling and large sampling

fractions

In this chapter we show how the proposed approach can be adjusted to accommo-

date large sampling fractions.

When samples are selected without replacement, but the sampling fraction is

negligible, the proposed approach can be used without changes. For large sampling

fraction designs, the method proposed by Berger and De La Riva Torres (2016) and

extended to the alignment case by Berger and Kabzinska (2017) can be used. This

approach is based on using the so-called penalised empirical likelihood function

and including finite population correction factors in the constraints system.

Theorems (1) and (2) hold under large sampling fractions, i.e., when the as-

sumptions n
(ν)
1 /N → 0 and n

(ν)
2 /N → 0 are substituted by an assumption that

n
(ν)
t /N 6 γt, where γt is a constant such that γt < 1 (Berger and Kabzinska,

2017). For theorem (3) to hold, the empirical likelihood function (2.38) has to be

replaced by the penalised empirical likelihood function

˜̀(m) :=
∑
i∈S

{log(mi) + 1− πimi} · (2.130)

The empirical likelihood ratio function (2.123) is replaced by

r̃(θ|ϕU ) = 2
{˜̀(m̃)− ˜̀(θ|ϕU )

}
, (2.131)

with ˜̀(m̃) =
∑

i∈S log m̃i(ϕU ) and ˜̀(θ|ϕU ) =
∑

i∈S log m̃?
i(θ,ϕU ). The adjusted

weights m̃i(ϕU ) are defined as values which maximise (2.130) under mi > 0 and

the constraint

∑
i∈S

mi c̃i = C̃, (2.132)
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while m̃?
i(θ,ϕU ) maximise (2.130), for a given vector θ, under mi > 0 and the

constraint

∑
i∈S

mi c̃
?
i(θ) = C̃?· (2.133)

The constraint matrices take the following form:

c̃?i(θ) := { c̃>i , g̃i(θ)> }>,

C̃? := {C̃> , g̃(θ)>}>,

c̃i := qi{z>i , fi(ϕU )> , ξ◦>i }>,

C̃ := {z̃> , f̃(ϕU )> , ξ̃
◦>
}>,

qi := δ1i q1i + δ2i q2i,

qti := (1− πti)1/2,

zi :=
(
δ1iz

>
1i , δ2iz

>
2i

)>
,

g̃i(θ) := qi gi(θ),

z̃ :=
∑
i∈S

qi z̆i,

g̃(θ) :=
∑
i∈S

(qi − 1) ği(θ),

f̃(ϕU ) :=
∑
i∈S

(qi − 1) f̆ i(ϕU ),

ξ̃
◦

:=
∑
i∈S

(qi − 1) ξ̆
◦
i ,

where ği(θ) := gi(θ)π−1i , z̆i := ziπ
−1
i , f̆ i(ϕU ) := fi(ϕU )π−1i ,ξ̆

◦
i := ξ◦iπ

−1
i and ξ◦i

are defined by (2.53). The zti are the design variables (2.128). If there is a single

stratum, zi = pi, where pi is defined by expression (2.51).

The qti are finite population correction factors proposed by Hájek (1964). They

reduce the effect of units with large sampling probabilities (Berger, 2005; Berger

and De La Riva Torres, 2016). For large sampling fractions and moderate sample
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sizes, Berger and Kabzinska (2017) recommend to substitute qti by (1 − λti)
1/2,

where the λti are defined by the recursive formula (3.25) in Hájek (1981). The

correction factors qi are close to 1 when the sampling fraction is negligible.

2.12 Simulation studies

This chapter summarises the results of simulation studies carried out to assess the

asymptotic properties of the aligned empirical likelihood estimator. We consider

four different populations and samples of varying sizes. In chapters 2.12.1 and

2.12.2, we evaluate the precision of the aligned empirical likelihood point estima-

tor. In chapter 2.12.3, we consider confidence intervals. The pseudoempirical like-

lihood estimator (Wu, 2004a) and the composite regression estimator (Merkouris,

2004) are calculated for reference. In Tables 2.1-2.7, ‘AEL’ refers to the aligned

empirical likelihood approach proposed. ‘PEL’ refers to the pseudoempirical like-

lihood approach (Wu, 2004a). ‘Com.’ refers to the composite regression estimator

(Merkouris, 2004). ‘Reg.’ refers to the single sample calibration estimator (Deville

and Särndal, 1992a). The simulations were performed in the statistical environ-

ment R (R Core Team, 2015). For calculation of the pseudoempirical likelihood

estimator, a revised version of Wu’s (2005) code was used.

2.12.1 Point estimation

First, we consider an artificial population. N values yti are generated from the fol-

lowing models: y1i := 3+a1i+x1i+wi−0.3e1i and y2i := 12−a2i−x2i−0.5wi+0.3e2i,

where ati, xti and wi are generated independently from an exponential distribution

with rate 1 and eti ∼ χ2
df=1−1. The generated values are treated as fixed. We con-

sider N = 100, 000, N = 10, 000 and N = 2, 500. This gives the following correla-

tions: cor(y1, x1) ≈ 0.6, cor(y1, w1) ≈ 0.6, cor(y2, x2) ≈ −0.7, cor(y2, w2) ≈ −0.3,
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cor(x1, w1) ≈ 0, cor(x2, w2) ≈ 0. The selection probabilities πti are proportional

to ati + 2, with extremely large and extremely small probabilities increased or

reduced so that 0.8 < πti N/nt < 1.2. The auxiliary variable is xti. The com-

mon variable is w. A similar artificial population was proposed by Wu and Rao

(2006). The totals of y1 and y2 are the parameters of interest in samples S1 and

S2 respectively. Additionally, in each of the samples, the auxiliary variable xt is

measured. The common variable w is measured in both samples.

Second, we consider a similar artificial population with different correlation set-

tings. The y1 and y2 are generated from the following models: y1i := 3 + a1i +

3x1i + 4wi − 0.3e1i and y2i := 12 − a2i − 3x2i − 2wi + 0.3e2i. This gives the

following correlations: cor(y1, x1) ≈ 0.6, cor(y1, w1) ≈ 0.8, cor(y2, x2) ≈ −0.8,

cor(y2, w2) ≈ −0.5, cor(x1, w1) ≈ 0, cor(x2, w2) ≈ 0. The other parameters are

defined as in the first population.

The third population is the 2006 British Expenditure and Food Survey (Office

for National Statistics and Department for Environment, Food and Rural Af-

fairs, 2009) household dataset. The population size is N = 6, 645. The number

of people living in the household is used as auxiliary information with a known

population total. Gross weekly income is the common variable. The total expen-

diture on clothing is estimated from S1. The total expenditure on food is esti-

mated from S2.The correlations are equal to: cor(y1, x1) ≈ 0.3, cor(y1, w1) ≈ 0.3,

cor(y2, x2) ≈ 0.4, cor(y2, w2) ≈ 0.4, cor(x1, w1) ≈ 0, cor(x2, w2) ≈ 0.4. The

selection probabilities are proportional to the total household expenditure, with

extremely large and extremely small probabilities increased or reduced so that

0.8 < πti N/nt < 1.2. Please note that the values that are reported in the Tables

2.1 and 2.8 do not reflect the official estimates from the British Expenditure and

Food Survey.

The fourth population is the synthetic dataset amelia (Alfons et al., 2011). This

dataset represents an artificial population of N = 3, 781, 289 households, with

variables simulated from the ‘European Union statistics on income and living
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conditions survey’ (Eurostat, 2012). The selection probabilities are proportional

to the tax on income and social insurance contributions. The number of households

in each region is used as an auxiliary variable in S2. Total gross household income

for each of four domains defined by the variable ‘districts’ is estimated from S2.

The sizes of the domains are 26%, 28%, 22% and 24% of the population size.

In S1, no information on domains is recorded and the population total of gross

household income is the parameter of interest. There are also no auxiliary variables

in S1. The correlation between the variables are: cor(y1, w1) ≈ 0.5 (approximately

equal for all domains), cor(y2, x2) ≈ 0.7 (approximately equal for all domains),

cor(y2, w2)
(D1) ≈ 0.1, cor(y2, w2)

(D2) ≈ 0.2, cor(y2, w2)
(D3) ≈ 0.2, cor(y2, w2)

(D4) ≈

0.3, cor(x1, w1) ≈ 0. Notation cor(y2, w2)
(Dk) corresponds to the correlation in the

k-th domain.

The simulations based on the first, second and third population consist of 10, 000

iterations. For each iteration, two samples of the same size, n = n1 = n2, are

drawn using a randomised systematic sampling design (e.g. Tillé, 2006, §7.2).

The empirical likelihood estimators of the totals of y1 and y2 are calculated by

solving equation (2.58) with respect to θ, with θ = (θ1, θ2)
>,

gi(θ) =
(
δ1i g1i(θ1)

> , δ2i g2i(θ2)
> )> , (2.134)

δ1i and δ2i are defined by (2.3) and

gti(θ) = yt;i − (πt;in
−1
t θt)· (2.135)

Because of constraint (2.42), the solution simplifies to

θ̂t =
∑
i∈St

m̂i(ϕU )yt;i· (2.136)

The pseudoempirical likelihood estimator has been defined for means. Therefore,

the population mean is estimated and multiplied by the known population size.

The composite regression estimator can be applied to totals directly.

63



Table 2.1: Relative absolute root mean square errors (%) for estimators of totals of the
non-common variables in three populations of interest, with both samples of equal sizes.
Randomised systematic sampling design. ‘AEL’: proposed aligned empirical likelihood
estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.’: compos-
ite regression estimator (Merkouris, 2004). ‘Reg.’: single sample calibration estimator
(Deville and Särndal, 1992a).

Sample 1 Sample 2

Populations n AEL PEL Com. Reg. AEL PEL Com. Reg.

Artificial 1 (N = 100 000) 1000 0.5 0.9 2.3 1.5 1.3 1.4 2.8 1.9
200 1.1 2.1 5.0 3.3 2.8 3.1 6.4 4.6

Artificial 1 (N = 10 000) 500 0.7 1.3 3.1 2.1 1.7 1.9 4.0 2.8

Artificial 1 (N = 2500) 250 1.0 1.8 4.5 2.7 2.4 2.6 5.5 3.9
160 1.2 2.3 5.4 3.7 3.1 3.3 6.7 4.8
80 1.9 3.5 8.0 5.6 4.6 5.0 10.0 7.5

Artificial 2 (N = 100 000) 1000 0.9 0.9 2.0 1.7 2.0 2.3 3.7 2.8
200 2.0 2.1 4.3 3.7 4.7 5.2 8.8 6.8

Artificial 2 (N = 10 000) 500 1.3 1.4 2.7 2.4 2.7 3.1 5.5 4.1

Artificial 2 (N = 2500) 250 1.6 1.7 3.6 3.0 3.7 4.1 6.9 5.5
160 2.2 2.3 4.7 4.2 4.4 5.4 8.9 6.9
80 3.2 3.4 6.8 5.8 7.0 8.3 13.1 10.8

Expenditure & Food 500 6.4 6.5 6.5 5.9 3.0 3.1 3.4 2.6
1000 4.3 4.4 4.4 4.0 2.0 2.1 2.3 1.7
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Table 2.1 shows the observed relative root mean square errors (rrmse) of three

estimators of totals of the non-common variables: the maximum empirical likeli-

hood estimator (2.57), the pseudoempirical likelihood estimator and the composite

regression estimator. The rrmse of the estimators understandably vary between

the populations and parameters of interest. In the first population, the estimators

of θ2 (i.e., estimators of the total of y2 from sample S2), are less precise than the

estimators of θ1. This is likely to be because the correlation between y2i and the

common variable wi is weaker than the relevant correlations between y1i and wi.

Variable y2i also follows a more skewed distribution than y1i.

Unsurprisingly, we see that the rrmse increases when the sample size decreases.

Note that this loss of precision is influenced by the absolute sample size rather

than by the sampling fraction. For example, in the second line of the table, we

have n = 200 and N = 100, 000, which corresponds to a sampling fraction of

0.2%. The rrmse is lower than that in the sixth line, where the sampling fraction

is higher (3.2%), but the sample is very small (80 units). With the very small

sample sizes, all estimators seem to have a high rrmse. The aligned empirical

likelihood estimator performs relatively well. In this case the empirical likelihood -

based estimators are slightly more precise than the composite regression estimator.

With the second population data, even though the absolute value of the strength

of the correlations between the variables and the common and non-common auxil-

iary variables is higher, all the estimators have higher rrmse than when the first

population is used with the corresponding sample sizes. This is in line with the in-

crease in the rrmse of the single sample calibration estimators for totals of y1 and

y2 and can be explained by an increased skewness of y1 and y2. The proposed es-

timator shows relatively low rrmse compared to the calibration, pseudoempirical

likelihood and composite regression estimators.

We observe large rrmse with the third population. This is the case for all the

estimators considered. This is likely to be caused by the very high skewness of the

variables of interest. Note that in the case of the third population data, where the
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variables follow skewed distributions and the correlations between the variables

of interest and the common variable are weak, the aligned estimators of the non-

common variables are less precise than the single sample calibration estimators.

Table 2.2 presents the relative absolute root mean square errors of the estimators

of totals of the common variable. Single sample calibration estimator calculated

from S1 is included for reference. The results from population Artificial 2 are not

included as they are the same as those from population Artificial 1. This is because

the common variable w follows the same distribution in both populations and has

equal, negligible, correlation with the auxiliary variables. The three estimators

have comparable precision. Note that in all cases the aligned estimators are more

precise than the single sample calibration estimators.

Table 2.2: Relative absolute root mean square errors (%) for estimators of totals of
the common variable in two populations of interest, with both samples of equal sizes.
Randomised systematic sampling design. ‘AEL’: proposed aligned empirical likelihood
estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.’: compos-
ite regression estimator (Merkouris, 2004). ‘Reg.’: single sample calibration estimator
(Deville and Särndal, 1992a).

Populations n AEL PEL Com. Reg.

Artificial 1 (N = 100 000) 1000 2.3 2.3 2.5 3.7
Artificial 1 (N = 10 000) 500 3.4 3.3 3.6 5.2
Artificial 1 (N = 2500) 250 4.3 4.1 4.8 6.6

160 5.9 5.5 6.3 9.0
80 8.5 8.1 9.3 13.3

Expenditure & Food 500 1.9 2.5 2.3 3.2
1000 1.2 1.7 1.6 2.2

Table 2.3 shows rrmse of the aligned empirical likelihood , pseudoempirical like-

lihood and composite regression estimators applied to the fourth population data.

Four separate simulations are caried out in each of the domains. Each simulation

consists of 3, 000 iterations and the totals of y1 and y2 are the target parameters.

The rrmse are of course larger for the estimates of the domain totals than for

the overall population totals. The three estimators considered have comparable

precision.
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Table 2.3: Relative absolute root mean square errors (%) for estimators of totals of
the non-common variables in the artificial population AMELIA, with both samples of
equal sizes. Randomised systematic sampling design. ‘AEL’: proposed aligned empirical
likelihood estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.’:
composite regression estimator (Merkouris, 2004).

Sample 1 Sample 2

n AEL PEL Com. AEL PEL Com.

Domain 1 (26%) 3000 3.2 3.3 3.3 6.5 6.5 6.8
Domain 2 (28%) 3000 2.8 2.8 2.8 5.3 5.3 5.5
Domain 3 (22%) 3000 3.3 3.3 3.3 6.1 6.1 6.3
Domain 4 (24%) 3000 3.1 3.1 3.1 5.7 5.8 5.8

2.12.2 Samples of different sizes

In Tables 2.1 - 2.3, we considered n1 = n2. For the next series of simulations, we

investigate the effect of small n1 compared to n2. The estimates of S1 and S2

are dependent because of the alignment constraint (2.44), which can intuitively be

explained as calibrating estimates of one sample towards the estimates of the other

sample. In chapter 2.7 we show that the coefficient B̂(θ,ϕU ) of the generalized

regression estimator asymptotically equivalent to the aligned empirical likelihood

estimator is weighted by the sample sizes, which causes the adjustment applied to

the weights of the larger sample to be smaller than the adjustment applied to the

weights of the smaller sample. Here we show results of a simulation which aims to

asses if and, if so, how much, the estimates of the non-common parameters from

the large sample S2 are deteriorated by alignment with the small sample S1.

We use an artificial population of size N = 100, 000 generated according to the

following model:

yt = 3 + a+ 2xt + 2w + 0.3e, (2.137)

with a and e defined as in chapter 2.12.1 and πti ∼ a + 2. This gives the fol-

lowing correlation settings: cor(y1, x1) ≈ 0.7, cor(y1, w1) ≈ 0.7, cor(y2, x2) ≈ 0.7,
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cor(y2, w2) ≈ 0.7, cor(x1, w1) ≈ 0, cor(x2, w2) ≈ 0.

Note that y1 and y2 are generated from the same model, so that the effect of

differences in sample sizes is not confused with the effect of different distributions

of the two parameters of interest. The parameter of interest in each of the samples

is the total of yt. The common variable is w and x1 and x2 are used as auxiliary

variables in the first and the second sample respectively, with the population totals

known. The variables x1, x2 and the common variable w follow either exponential

distribution with the rate parameter equal to one, normal distribution with mean

equal to zero and standard deviation equal to one, or normal distribution with

mean equal to five and standard deviation equal to one. The distributions are

given in the results tables. The simulation consists of 10, 000 iterations. In each

iteration, the size of S2 is 1, 000. We let the size of S1 vary between 100 and 1, 000

units. Samples are selected using random systematic sampling.

In Table 2.4, we have the rrmse of the proposed estimator of the totals of y1

and y2 obtained from S1 and S2, with the distributions of y1 and y2 defined by

(2.137). We also have the rrmse of the pseudoempirical likelihood approach (Wu,

2004a), the composite regression estimator (Merkouris, 2004) and the single sample

calibration estimator (Deville and Särndal, 1992a). We include two versions of the

composite regression estimator, with the adjustment factor equal respectively to

qti = nt(1− ntN−1)−1 and qti = πt;i(1− πt;i)−1 (Merkouris, 2010a, section 3.1).

We notice that the proposed estimator is always at least as precise as the single

sample calibration estimator. The difference in precision of these two estimators

is low or none in the large sample S2, especially when n1 is small. However, the

proposed estimator is always more precise than the calibration estimator in S1.

We observe a slight deterioration of the proposed estimator based on S2 as n1

decreases, yet the relative root mean square error never exceeds the relative root

mean square error of the single sample calibration estimator. As expected, the

relative root mean square error of the proposed estimator based on the smaller
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Table 2.4: Relative absolute root mean square errors (%) for estimators of totals of
the non-common variables with alignment of samples of different sizes. Randomised
systematic sampling design. N = 100 000, n2 = 1000, n1 varies as described in the
table. Artificial data generated according to the model yt = 3 +a+ 2xt+ 2w+ 0.3e with
a and e defined as in chapter 2.12.1, πti ∼ a + 2. ‘AEL’: proposed aligned empirical
likelihood estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.a’:
composite regression estimator (Merkouris, 2004) with no adjustment for different sam-
ple sizes. ‘Com.b’: ’adjusted’ composite regression estimator (Merkouris, 2004, 2010a)
with qti = nt(1− ntN−1)−1. ‘Com.c’: ’adjusted’ composite regression estimator (Merk-
ouris, 2004, 2010a) with qti = πt;i(1−πt;i)−1. ‘Reg.’: single sample calibration estimator
(Deville and Särndal, 1992a).

Sample 1 Sample 2

n1 xt wt

C
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.a
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.b

C
om

.c

R
eg

.

P
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L

A
E

L

C
om

.a

C
om

.b

C
om

.c

R
eg

.

P
E

L

A
E

L

100 N(0, 1) N(5, 1) 2.7 1.3 1.4 3.1 0.9 0.9 3.5 1.9 0.9 0.9 1.1 0.8
exp(1) N(5, 1) 3.3 2.7 7.8 4.3 1.7 1.6 10.5 5.8 1.2 1.2 3.7 1.2
N(0, 1) exp(1) 3.3 2.7 7.8 4.3 1.7 1.6 10.5 5.8 1.2 1.2 3.7 1.2
exp(1) exp(1) 4.1 3.8 8.8 4.9 1.6 1.2 10.7 5.8 1.5 1.5 2.4 0.8

300 N(0, 1) N(5, 1) 1.2 0.8 1.1 1.7 0.6 0.8 1.7 1.1 0.8 0.9 0.7 0.7
exp(1) N(5, 1) 1.2 2.0 4.5 2.2 1.3 1.1 4.9 3.1 1.1 1.2 2.0 1.1
N(0, 1) exp(1) 1.2 2.0 4.5 2.2 1.3 1.1 4.9 3.1 1.1 1.2 2.0 1.1
exp(1) exp(1) 1.9 2.6 5.2 2.7 1.1 0.9 5.4 3.4 1.4 1.5 1.4 0.8

600 N(0, 1) N(5, 1) 0.7 0.7 0.8 1.1 0.5 0.7 0.9 0.8 0.7 0.9 0.5 0.7
exp(1) N(5, 1) 1.4 1.9 2.9 1.5 1.2 1.0 2.8 2.2 1.1 1.2 1.4 0.9
N(0, 1) exp(1) 1.4 1.9 2.9 1.5 1.2 1.0 2.8 2.2 1.1 1.2 1.4 0.9
exp(1) exp(1) 1.8 2.3 3.4 2.0 0.9 0.7 3.3 2.6 1.5 1.5 1.0 0.7

1000 N(0, 1) N(5, 1) 0.6 0.6 0.6 0.9 0.4 0.6 0.6 0.6 0.6 0.9 0.4 0.6
exp(1) N(5, 1) 1.8 1.8 1.7 1.3 1.2 0.9 1.9 1.9 1.8 1.2 1.2 0.9
N(0, 1) exp(1) 1.8 1.8 1.7 1.3 1.2 0.9 1.9 1.9 1.8 1.2 1.2 0.9
exp(1) exp(1) 2.1 2.1 2.0 1.6 0.8 0.6 2.1 2.1 2.0 1.5 0.9 0.6
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sample S1 increases as n1 decreases. This deterioration is more pronounced when

the common variable is skewed than when it is normally distributed. In all the

cases, we observe a large gain in precision of the estimator based on S1, com-

pared to the single sample calibration estimator. We should also note that the

proposed estimator deals well with skewed auxiliary variables and a skewed com-

mon variable, compared to the calibration estimator and the composite regression

estimator.

The pseudoempirical likelihood estimator of the first sample shows comparable

precision to the proposed estimator. When n1 is small, however, the pseudoempiri-

cal likelihood estimator of the second (large) sample is slightly less precise than the

proposed estimator. The pseudoempirical likelihood estimator has slightly higher

rrmse than the empirical likelihood estimator when the auxiliary variables are

skewed, and slightly lower rrmse than the empirical likelihood estimator when

the auxiliary variables are normally distributed.

The composite regression estimator of S1 with no adjustment for different sample

sizes is always more precise than the corresponding calibration estimators when

n1 < n2. We observe a deterioration of the non-adjusted composite regression es-

timator of the second (large) sample, when n1 decreases. This is more pronounced

when x and w are skewed. When there is a large difference between n1 and n2,

the composite regression estimator adjusted for different sample sizes has much

lower rrmse than the corresponding composite regression estimator with no ad-

justment. The adjusted composite regression estimators of S1 are in most cases

more precise than the single sample regression estimator. The adjusted composite

regression estimator of S2, however, may be less precise than the single sample

regression estimator when S1 is small and x and w are skewed. Two sample size

adjustment factors were tested in the composite regression estimator:an adjust-

ment based directly on the sample size (‘Com.b’ with qti = nt(1− ntN−1)−1) and

one based on the sampling probabilities (‘Com.c’: with qti = πt;i(1−πt;i)−1). When

the sample sizes are equal, there is no difference between these two estimators.
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When there is a large difference between n1 and n2, estimator ‘Com.b’ seems to

produce more precise estimates in S1 than ‘Com.c’, especially when x, w and y

are skewed. ‘Com.c’, however, is more precise in S2. We should note that simple

adjustment factors were used in the adjusted composite regression estimators. A

semi-optimal adjustment factor based on the estimated variance and considering

the sampling designs could be derived (see Merkouris, 2010a), which could lead to

a more precise estimator.

Table 2.5 shows rrmse of the estimators of the common variable. For comparison,

the calibration estimator based on S2 is also calculated. We can see that the larger

S1 gets, the more precise the aligned estimators are compared to the calibration

estimator. The composite regression estimator with no adjustment for different

sample sizes has lower rrmse than the single sample calibration estimator only

when S1 is of size 600 or larger and can be considerably less precise when S1 is

small. The composite regression estimator ‘Com.c’, including the correction factor

qti = πt;i(1 − πt;i)−1, is at least as precise as the calibration estimator, even with

small n1, and can be slightly more precise than the calibration estimator already

when n1 = 300. When the common variable is estimated, ‘Com.c’ is more precise

than ‘Com.b’ in all cases.

The aligned empirical likelihood estimator is more precise than the calibration

estimator in all cases, although the difference is marginal with very small S1 and

increases as S1 grows. The pseudoempirical likelihood estimator is slightly less

precise than the empirical likelihood estimator when S1 is very small and slightly

more precise than the empirical likelihood estimator when S1 grows, particularly

with normally distributed x and w.

71



Table 2.5: Relative absolute root mean square errors (%) for estimators of totals of the
common variable with alignment of samples of different sizes. Randomised systematic
sampling design. N = 100 000, n2 = 1000, n1 varies as described in the table. Artificial
data generated according to the model yt = 3 +a+ 2xt+ 2w+ 0.3e with a and e defined
as in chapter 2.12.1, πti ∼ a+2. ‘AEL’: proposed aligned empirical likelihood estimator.
‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.a’: composite regression
estimator (Merkouris, 2004) with no adjustment for different sample sizes. ‘Com.b’:
’adjusted’ composite regression estimator (Merkouris, 2004, 2010a) with qti = nt(1 −
ntN

−1)−1. ‘Com.c’: ’adjusted’ composite regression estimator (Merkouris, 2004, 2010a)
with qti = πt;i(1 − πt;i)

−1. ‘Reg.’: single sample calibration estimator (Deville and
Särndal, 1992a).

n1 xt wt Com.a Com.b Com.c Reg. PEL AEL

100 N(0, 1) N(5, 1) 3.5 2.0 1.1 1.1 1.1 1.0
exp(1) N(5, 1) 10.4 6.1 3.4 3.5 5.8 3.4
N(0, 1) exp(1) 10.4 6.1 3.4 3.5 5.8 3.4
exp(1) exp(1) 10.4 5.9 3.7 3.7 5.3 3.2

300 N(0, 1) N(5, 1) 1.7 1.2 1.1 1.1 0.7 1.0
exp(1) N(5, 1) 4.8 3.6 3.2 3.5 3.4 3.0
N(0, 1) exp(1) 4.8 3.6 3.2 3.5 3.4 3.0
exp(1) exp(1) 5.2 3.8 3.4 3.7 3.5 3.0

600 N(0, 1) N(5, 1) 1.0 0.9 0.9 1.1 0.5 0.9
exp(1) N(5, 1) 2.9 2.7 2.8 3.5 2.6 2.7
N(0, 1) exp(1) 2.9 2.7 2.8 3.5 2.6 2.7
exp(1) exp(1) 3.2 3.0 2.9 3.7 2.5 2.6

1000 N(0, 1) N(5, 1) 0.8 0.8 0.8 1.1 0.5 0.8
exp(1) N(5, 1) 2.5 2.5 2.5 3.5 2.4 2.5
N(0, 1) exp(1) 2.5 2.5 2.5 3.5 2.4 2.5
exp(1) exp(1) 2.5 2.5 2.5 3.7 2.2 2.3
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2.12.3 Confidence intervals: British Labour Force Survey

In this chapter we check the coverage of the proposed empirical likelihood con-

fidence intervals. We apply the proposed methodology to two relatively difficult

datasets: one with skewed variables and one with skewed variables and outliers.

We also produce estimates for domains of varying sizes.

The population considered is a subset of N = 89, 181 individuals with a non-

zero gross weakly income selected from the 2013 ‘British Quarterly Labour Force

Survey’ (October-December) (Office for National Statistics. Social Survey Divi-

sion, 2015). The parameter of interest, estimated from S1, is the total number of

hours worked per week broken down by domains defined by the following industry

sectors:

(i) Public administration, education and health (v) Transport and communication

(ii) Distribution, hotels and restaurants (vi) Construction

(iii) Banking and finance (vii) Other services

(iv) Manufacturing (viii) Agriculture, forestry, fishing,
energy and water

The domains differ in size, as can be seen in Table 2.7.

The domain membership information is only collected in S1. This sample is used

to estimate the total number of hours worked per domain. We introduce an

alignment constraint on gross weekly pay, which is measured in both S1 and S2.

The sizes of the domains defined by the sectors (i)-(viii) are used as auxiliary

variables in S1. No auxiliary variables are measured in S2. The correlations

are respectively equal to: cor(y1, x1) ≈ 0.8, cor(y1, w1) ≈ 0.3, cor(y2, w2) ≈ 0.7,

cor(x1, w1) ≈ 0.1. In Table 2.7, we report the overall coverages and the tail error

rates for the confidence intervals for the total number of hours worked based on

S1.

Two samples, each of size 3,000, are selected 10,000 times using the randomised
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systematic sampling design. The selection probabilities are proportional to the

net weekly income.

Confidence intervals for the proposed estimator are defined by (2.127). Confidence

intervals for the composite regression estimator are based on variances of separate

regression estimators, as in Merkouris (2004). These variances are estimated by

Hartley and Rao’s (1962) estimator. The variance of the pseudoempirical likeli-

hood estimator is based on the equivalence between the pseudoempirical likelihood

estimator and a generalised regression estimator, as was proposed by Wu (2004a).

Table 2.6 shows the coverages and tail error rates of the proposed estimator. For

comparison, we also show the coverages and tail error rates of the composite

regression estimator and the pseudoempirical likelihood estimator. Because we

are no longer focusing on the precision gains, the results for the single sample

calibration estimator were omitted. In Table 2.7, we test the effect of outlying

values on the coverage of confidence intervals. We introduce into the distribution

of the variable of interest 5% of artificial outliers generated independently from an

uniform distribution U(ymax, 3 × ymax), where ymax is the maximum value of the

total number of hours worked per week observed in the sub-sample.

The coverages of the empirical likelihood confidence intervals are similar to the

coverages of the pseudoempirical likelihood and the composite regression confi-

dence intervals. In Table 2.6, where no outliers were introduced into the variable

of interest, the confidence interval coverages are close to the nominal level for all

but the two smallest domains. When outliers are present, the under-coverage of

confidence intervals in the smallest domains increases. This is true for all the

methods. The empirical likelihood confidence intervals seem to have marginally

better coverage than other estimators with a moderate domain size (domain vii),

whether or not the outliers are present.

The tail error rates of all the considered confidence intervals are unbalanced and

significantly different from 2.5% in several cases. The left tail error rates are
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Table 2.6: Coverages and tail error rates of confidence intervals for total number of
hours worked per week per domains. British Quarterly Labour Force Survey. No
outliers introduced. Nd = population domain size, n̄d = average domain sample
size. Confidence intervals based on the first sample. ‘AEL’: proposed aligned
empirical likelihood estimator. ‘PEL’: pseudoempirical likelihood approach (Wu,
2004a). ‘Com.’: composite regression estimator (Merkouris, 2004). The values
reported in this Table do not reflect the official estimates from the British Labour
Force Survey. †: coverages (or tail error rates) significantly different from 95% (or
2.5%), with p-value 6 0.05.

Domains Coverages Left tail err. rates Right tail err. rates

(Sectors) AEL PEL Com. AEL PEL Com. AEL PEL Com. Nd/N n̄d

(i) 95.0 96.0† 94.8 2.8 1.9† 2.1† 2.2 2.1† 3.1† 0.36 1090
(ii) 95.1 95.1 95.4 2.2 1.3† 1.2† 2.7 3.6† 3.4 † 0.18 552
(iii) 95.1 93.7† 94.2† 2.1† 1.9† 1.7† 2.7 4.4† 4.1† 0.14 434
(iv) 95.3 93.9† 94.0† 2.3 2.0† 2.3 2.4 4.1† 3.7† 0.11 327
(v) 95.2 95.4 95.4 2.1† 1.3† 1.4† 2.6 3.3† 3.2† 0.08 249
(vi) 94.7 93.9† 94.1† 2.0† 1.3† 1.2† 3.2† 4.8† 4.7† 0.05 139
(vii) 93.8† 91.7† 92.6† 2.2 1.0† 0.8† 4.0† 7.3† 6.6† 0.04 131
(viii) 94.0† 93.3† 93.4† 3.0† 2.1† 2.1† 3.1† 4.6† 4.5† 0.03 79

Table 2.7: Coverages and tail error rates of confidence intervals for total number
of hours worked per week per domains. British Quarterly Labour Force Survey. 5
% outliers introduced into the variable of interest. Nd = population domain size,
n̄d = average domain sample size. Confidence intervals based on the first sample.
‘AEL’: proposed aligned empirical likelihood estimator. ‘PEL’: pseudoempirical
likelihood approach (Wu, 2004a). ‘Com.’: composite regression estimator (Merk-
ouris, 2004). The values reported in this Table do not reflect the official estimates
from the British Labour Force Survey. †: coverages (or tail error rates) signifi-
cantly different from 95% (or 2.5%), with p-value 6 0.05.

Domains Coverages Left tail err. rates Right tail err. rates

(Sectors) AEL PEL Com. AEL PEL Com. AEL PEL Com. Nd/N n̄d

(i) 94.4† 94.2† 94.3† 2.6 1.3† 1.3† 3.0† 4.5† 4.4† 0.36 1090
(ii) 95.0 94.8 94.6 2.4 1.2† 1.3† 2.7 4.0† 4.1† 0.18 552
(iii) 95.3 95.0 94.9 2.0† 0.9† 0.9† 2.7 4.1† 4.2† 0.14 434
(iv) 94.8 94.7 94.3† 2.4 0.9† 1.0† 2.7 4.4† 4.6† 0.11 327
(v) 95.8† 94.6† 94.4† 2.2† 1.2† 0.9† 2.0† 4.2† 4.7† 0.08 249
(vi) 93.7† 93.1† 92.9† 2.7 0.5† 0.5† 3.6† 6.5† 6.6† 0.05 139
(vii) 94.9 92.6† 92.4† 2.2† 0.7† 0.7† 3.0† 6.7† 6.9† 0.04 131
(viii) 90.0† 89.4† 89.0† 3.0† 0.9† 0.9† 7.0† 9.8† 10.1† 0.03 79
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lower than 2.5% and the right tail error rates are higher than 2.5%. This effect is

explained by the positive skewness of the data. The tails are even more unbalanced

when outliers are present. However, the tail error rates of the empirical likelihood

confidence interval are more balanced than those of the symmetric confidence

intervals and usually closer to 2.5%. We observe these slightly better tail error

rates, because the confidence interval (2.127) is determined by the distribution of

the data. This is a common feature of empirical likelihood (e.g. Owen, 2001).

2.12.4 Confidence intervals: quantiles

In this chapter we apply the proposed method to estimation of quantiles of dis-

tribution. We use the estimating function for α-quantile proposed by Berger and

De La Riva Torres (2016):

gi(θ) = ζ(y(i), θ)− α, (2.138)

where

ζ(y(i), θ) = δ(yi ≤ θ) +
θ − y(i−1)
y(i) − y(i−1)

δ(y(i−1) ≤ θ){1− δ(y(i) ≤ θ)}, (2.139)

y(i) is the value of the i-th unit when all the units in the sample are arranged in

increasing order and δ(·) is an indicator function equal to 1 if the argument is true

and to 0 otherwise. The composite regression estimator and the pseudoempirical

likelihood estimator are not considered in this section, because they were devel-

oped for means or totals. For this series of simulations, we consider populations

Artificial 1, Expenditure & Food and AMELIA described in chapter 2.12.1. In each

iteration two samples of the same size, n1 = n2, are drawn using a randomised

systematic sampling design with the selection probabilities as described in chapter

2.12.1. Each simulation is based on 10, 000 iterations.
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Coverages and tail error rates of the empirical likelihood confidence interval (2.127)

are presented in Table 2.8. The overall coverages and tail error rates are of an

acceptable order. We observe low coverages, going down to 92.5%, for the smallest

sample size (n = 80). Some of the simulations use non-negligible sampling frac-

tions. This is the case for the artificial population with N = 2, 500 and n = 240

and the ‘Expenditure and Food Survey data’ with n = 1, 000. Acceptable cov-

erages are observed in these cases. However, the tail error rates are unbalanced.

Further analyses, not presented here, showed that this effect is associated with the

skewness of the selection probabilities. With normally distributed selection prob-

abilities, both tails are approximately equal to 2.5%. The effect of the skewness

of the selection probabilities was only observed for large sampling fractions.

Table 2.8: Coverages (Cov.) and tail error rates (Left & Right) of confidence
intervals for 80% and 90% quantiles. Population data described in chapter 2.12.1.
Confidence intervals for total expenditure on clothing within four domains, esti-
mates based on the first sample. †: coverages (or tail error rates) significantly
different from 95% (or 2.5%).

80% Quantiles 90% Quantiles

Population n Cov. Left Right Cov. Left Right

Artificial 1 (N = 100 000) 1000 94.7 2.7 2.6 95.1 2.4 2.6
200 94.4† 2.2† 3.4† 94.5† 2.0† 3.5†

Artificial 1 (N = 10 000) 500 95.3 2.9† 1.9† 94.7 2.9† 2.4

Artificial 1 (N = 2 500) 240 94.5† 3.1† 2.4 94.7 2.8 2.5
160 94.7 2.8 2.6 94.0† 2.5 3.5†

80 93.9† 1.9† 4.3† 92.5† 1.9† 5.6†

Expenditure & Food 500 95.1 2.5 2.4 94.9 2.3 2.8
(Tot. exp. clothing) 1000 94.7 3.7† 1.7† 94.9 3.6† 1.6†

AMELIA
Domain 1 (26%) 3000 94.8 2.5 2.7 95.2 2.5 2.4
Domain 2 (28%) 3000 95.0 2.2 2.8† 94.6 2.7 2.8†

Domain 3 (22%) 3000 94.4† 2.4 3.1† 94.1 2.9† 3.0†

Domain 4 (24%) 3000 95.4 1.9† 2.7 94.5 2.1† 3.4†
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2.13 Conclusions

We propose a novel empirical likelihood method for aligning estimates from multi-

ple surveys in the presence of population level auxiliary information. It can handle

stratification and is applicable to large sampling fractions.

The proposed approach can be used to estimate a class of parameters expressed

as solutions of estimating equations, to construct confidence intervals, and to test

the statistical significance of parameters of interest. The proposed approach does

not rely on linearisation, re-sampling or joint selection probabilities.

In our simulation studies, the proposed approach gives point estimates of an ac-

ceptable precision and confidence intervals with good coverage, as long as the

sample is sufficiently large. When the variables of interest are skewed, contain

outliers and when samples differ hugely in size, the empirical likelihood estimator

may be more precise than the regression-based methods.

Aligning estimates of a small sample to estimates of a much larger sample was

found to considerably increase the precision of the point estimator based on the

smaller sample. This is in line with the results reported for the composite re-

gression estimator (Merkouris, 2010a). The aligned empirical likelihood estimator

performs well in these settings. The precision of the point estimator from the

large sample is only very slightly deteriorated. Note that this is achieved without

estimation of any adjustment factors. If a precise variance estimate can be easily

obtained, then the adjusted composite regression estimator may be more efficient.

However, when a complex sampling design is used and the variable of interest is

skewed, this variance might be difficult to estimate and therefore the empirical

likelihood estimator might be preferred, as it has acceptable performance.

The aligned empirical likelihood estimator works well in samples of large or mod-

erate size. In very small samples, the empirical likelihood confidence intervals
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tend to show some under-coverage. However, the symmetric confidence intervals

are also not free from this problem. We can see that when the variables of interest

and the auxiliary variables are skewed, the empirical likelihood tail error rates

tend to be more balanced than the error rates of symmetric confidence intervals.

The simulation studies show that in some selected cases the aligned empirical like-

lihood estimator is more precise than the regression based estimators. The main

purpose of applying empirical likelihood to aligning estimates, however, is not an

increase in precision. In fact, if the second order selection probabilities, or pre-

cise variance estimates are available, an adjusted composite regression estimator is

likely to be more precise. The aligned empirical likelihood estimator, however, is

computationally simpler as no variance estimates are required. More importantly,

it also accommodates more complex parameters than means and totals. This ap-

plies both to the parameters of interest and to the known population parameters.

Moreover, the aligned empirical likelihood allows to choose a function of the com-

mon variable used in the alignment constraint which maximises the correlation

with the variables of interest. This may bring gains in precision.

The main limitation of the aligned empirical likelihood estimator is in the assump-

tion of independence between the samples. Note that the
√
n design-consistency of

the point estimator holds whether or not the samples are independent. However,

the pivotal property of the log-likelihood ratio function relies on the independence

of the samples. This makes the proposed approach suitable only for independent

surveys, but unsuitable e.g. for longitudinal studies or nested two-phase sampling.

In the case of dependent samples, the composite regression estimator can be used

(see Merkouris, 2015).

Finally, while it is not the focus of this piece of work, it is worth noting that aligning

estimates requires careful selection of variables and some survey design effort so

that the variables used for alignment indeed measure the same characteristic. This

includes e.g. harmonizing the question wording across surveys (see e.g. (Karlberg

et al., 2015)). It is also necessary that the surveys are carried out close enough
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in time so that we can reasonably assume that they are both carried out in the

same population and that any in- and out-migration, as well as changes in the

population characteristics, are negligible.
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Chapter 3

Empirical likelihood multiplicity adjusted

estimator for multiple frame surveys

3.1 Introduction

Using more than one sampling frame may improve coverage of the target popu-

lation, increase precision of estimation of target parameters or reduce sampling

cost, especially when a single frame containing all population units is not available

or expensive to sample from. For instance, mobile phone frames are increasingly

used together with landlines in CATI research (e.g. Barr et al., 2012) in order

to increase coverage in surveys of the general population. Multiple frames are

also used to oversample rare populations (Kalton, 2009). Inference from multiple

frame surveys has attracted a lot of researchers’ attention and several multiple

frame estimators are available.

Recent papers by Singh and Mecatti (2011) and Mecatti and Singh (2014) showed

how most of the existing multiple frame estimators can be expressed in the form

of the Generalized Multiplicity Adjusted Horwitz-Thompson estimator. The idea

of multiplicity estimation consists of pooling all the units selected from all the

frames into one sample and finding a vector of adjustment factors which is applied

to the design weights so that the increased selection probability of units which
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appear in more than one frame is accounted for. This approach can be applied

to inference from multiple frame (i.e., not only dual frame) surveys. It can also

be applied to other sampling designs. For example, the Generalized Weight Share

estimator used to make inference from indirect sampling surveys (Lavallée, 2009)

can be expressed as a GMHT estimator (Singh and Mecatti, 2011).

We propose an Empirical Likelihood inference method which adopts the flexible

multiplicity approach, allowing for selection of various multiplicity adjustments,

and can easily handle additional calibration type constraints. The proposed mul-

tiplicity adjusted empirical likelihood estimator is derived from the design based

empirical likelihood approach proposed for single frame surveys by Berger and De

La Riva Torres (2016). It shares the benefits of Berger and De La Riva Torres’s

(2016) method, such as suitability for estimation of parameters with a skewed

distribution or range preserving confidence intervals obtained directly from a log-

likelihood ratio function.

Below we start with a brief summary of the problem and describe some existing

estimators for dual frame surveys. We discuss how this approach is generalised

to multiple frames through the multiplicity approach of Singh and Mecatti (2011)

and include examples of some of the available multiplicity adjusted estimators.

We then show how Berger and De La Riva Torres’s (2016) design based empirical

likelihood can be extended to accommodate multiple frame surveys and discuss

the properties of the resulting multiplicity adjusted empirical likelihood estimator.

The logic of deriving the multiplicity adjusted estimator is similar to that shown in

chapter 2 for the aligned empirical likelihood estimator, although there are some

differences in the constraints used and the asymptotic framework assumed. We

briefly show the key steps in extending the theoretical results of chapter 2 to the

multiple frame case and reference chapter 2 whenever its results can be applied

directly.

We also show how the constraints commonly used in estimation from multiple
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frames, such as alignment constraints on the overlapping domain, or benchmark

constraints on the size of the overlap between sampling frames, can be expressed

in the empirical likelihood methodology. This is followed by some Monte Carlo

simulations showing how the proposed estimator performs in various settings.

3.2 Some existing dual frame estimators

Dual and multiple frame surveys have been studied extensively and several esti-

mators have been proposed. The standard notation used in the literature splits

the population into domains defined by the sampling frames. Suppose that there

are two sampling frames QA and QB, none of which has a perfect coverage. How-

ever, together both frames cover completely a population U . The following three

domains can be identified in the population U : DA− , DAB, DB− , of sizes NA− ,

NAB and NB− respectively, where DA− := QA − QB, DB− := QB − QA and

DAB := QA ∩QB.

Suppose that two samples, SA and SB, are selected independently from frames QA

and QB respectively. Suppose that we want to estimate a fixed finite population

parameter θ, e.g. a total Y =
∑

i∈U yi. Neither SA nor SB alone give a good

estimate for θ, due to the under-coverage of the frames QA and QB. An unbiased

estimator of θ can be obtained if both samples are used together. However, any

estimator has to account for the fact that the frames QA and QB overlap, that is,

that some population units may be selected from more than one frame. Note that

this problem occurs whether or not the samples SA and SB overlap, because the

increased selection probabilities of the units in the overlap would cause bias if a

non-adjusted estimator was used.

Figure 3.1 shows a ’spreadsheet’ representation of the sampling frames. The

columns represent the population domains. A separate sample is selected from

each frame. The samples in the picture overlap. This overlap may or may not
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occur in practice. The overlap between samples does not play any inferential role.

sB

sA

DA− DAB DB−

Figure 3.1: Illustration of the sampling frames within population U and the samples
selected. The horizontal axis corresponds to the population domains. The vertical

axis represents the samples. The area represents sampling frame QA. The area

represents sampling frame QB. The area represents the overlap between
sampling frames QA and QB.

The various estimators available for dual frame surveys are often divided into two

groups: double (or separate) frame estimators and single (or combined) frame

estimators. There are some differences in how these two terms are used in the

literature. Lohr (2000) classifies all the estimators which are calculated by pooling

together the units sampled from both frames and modifying weights for units

belonging to the overlapping domain DAB, as single frame estimators. Singh

and Mecatti (2011) use the terms ’separate’ and ’combined’ to reflect the level

of information required for the sampled units. The separate frame estimators

require that for every sampled unit the following is known: selection probability

in the frame from which the unit was selected, the number of frames from which

the unit could have been selected and, in some cases, identification of the frames

from which the unit could have been selected. The combined frame estimators

in this classification require also knowledge of the unit selection probabilities in

all the relevant frames. In the review below we follow the approach that reflects

the way in which estimators are calculated rather than the information required.
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Therefore, we classify all the estimators that can be computed as a combination

of separate domain estimators as separate frame estimators. Note that some of

the estimators also require knowledge of the domain sizes NA− , NAB and NB− .

3.2.1 Separate frame estimators

The first group contains estimators which can be calculated as combinations of

estimators obtained separately from each of the frames for the domains DA− , DAB,

DB− . Let ŶA− denote the Horvitz and Thompson (1952) estimator of the total of

the variable y for the domainDA− , ŶB− denote the Horwitz-Thompson estimator of

the total of the variable y for the domain DB− , Ŷ
(A)
AB denote the Horvitz-Thompson

estimator of the total of the variable y for the domain DAB based on the sample

selected from frame QA and Ŷ
(B)
AB denote the Horvitz-Thompson estimator of the

total of the variable y for the domain DAB based on the sample selected from

frame QB. The basic idea of separate frame estimators was formulated by Hartley

(1962). Hartley’s (1962) estimator of the population total of y takes the following

form:

Ŷ HR = ŶA− + ŶB− + φŶ
(A)
AB + (1− φ)Ŷ

(B)
AB , (3.1)

where the optimal coefficient φ is given by

φ =
V (Ŷ

(B)
AB ) + Cov(ŶB− , Ŷ

(B)
AB ) + Cov(ŶA− , Ŷ

(A)
AB )

V (Ŷ
(A)
AB ) + V (Ŷ

(B)
AB )

· (3.2)

In practice the coefficient φ is estimated from the sample data.

A simple version of Hartley’s (1962) estimator when estimation of these variances

and covariances is not possible, called Simple Multiplicity (Mecatti, 2005), sets

φ = 0.5 for a dual frame case.

Fuller and Burmeister (1972) proposed to adjust the estimator by a regression on
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the difference between the estimates of the size of the overlapping domain DAB
obtained from the two frames:

Ŷ FB = ŶA− + ŶB− + β
(FB)
1 Ŷ

(A)
AB + (1− β(FB)

1 )Ŷ
(B)
AB + β

(FB)
2 (N̂

(A)
AB − N̂

(B)
AB ), (3.3)

where N̂
(A)
AB =

∑
i∈SA∩DAB

π−1i is the estimate of NAB calculated from the sample

selected from frame QA and N̂
(B)
AB =

∑
i∈SA∩DAB

π−1i is the estimate of NAB calcu-

lated from the sample selected from frame QB. The optimal coefficients are given

by

(β
(FB)
1 , β

(FB)
2 )> = −Σ−1

 Cov(ŶA− + ŶB− + Ŷ
(B)
AB , Ŷ

(A)
AB − Ŷ

(B)
AB )

Cov(ŶA− + ŶB− + Ŷ
(B)
AB , N̂

(A)
AB − N̂

(B)
AB )

 , (3.4)

where

Σ =

 V (Ŷ
(A)
AB − Ŷ

(B)
AB ) Cov(Ŷ

(A)
AB − Ŷ

(B)
AB , N̂

(A)
AB − N̂

(B)
AB )

Cov(Ŷ
(A)
AB − Ŷ

(B)
AB , N̂

(A)
AB − N̂

(B)
AB ) V (N̂

(A)
AB − N̂

(B)
AB )

 ·
In practice, the coefficients (β

(FB)
1 , β

(FB)
2 )> are estimated from the sample data.

Estimator (3.3) was proposed for single stage simple random sampling without

replacement (Arcos et al., 2015). Skinner and Rao (1996) proposed a Pseudo

Maximum Likelihood estimator which can be used in complex sampling designs:

Ŷ SR =
NA − N̂SR

AB(φ(SR))

N̂A

ŶA− +
NB − N̂SR

AB(φ(SR))

N̂B

ŶB− +

+
N̂SR
AB(φ(SR))

φN̂
(A)
AB + (1− φ)N̂

(B)
AB

{φ(SR)Ŷ
(A)
AB + (1− φ(SR))Ŷ

(B)
AB }, (3.5)

where N̂SR
AB(φ(SR)) is the smallest of the roots of the following equation:

0 = {φ
(SR)

NB

+
(1− φ(SR))

NA

}2 − {1 +
φN

(A)
AB

NB

+
(1− φ(SR))N

(B)
AB

NA

}x+

+ φ(SR)N
(A)
AB + (1− φ(SR))N

(B)
AB (3.6)
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and φ(SR) ∈ (0, 1).

The optimal coefficient φ(SR) is given by

φ(SR) =
N̂ANBV (N̂

(B)
AB )

N̂ANBV (N̂
(B)
AB ) + N̂BNAV (N̂

(A)
AB )
· (3.7)

3.2.2 Combined frame estimators

Kalton and Anderson (1986) and Bankier (1986) proposed estimators which oper-

ate on ’pooled’ samples and adjust weights for the units belonging to the overlap-

ping domain DAB. These estimators require that for every sampled unit, selection

probabilities in all the sampling frames from which the unit could have been se-

lected are known. Kalton and Anderson’s (1986) estimator for the population

total of y takes the following form:

Ŷ KA = ŶA− + ŶB− +
∑
i∈S(A)

AB

(
π
(A)
i + π

(B)
i

)−1
yi

+
∑
i∈S(B)

AB

(
π
(A)
i + π

(B)
i

)−1
yi, (3.8)

where S
(A)
AB are the units sampled from frame QA which belong to domain DAB,

S
(B)
AB are the units sampled from frame QB which belong to domain DAB and π

(∗)
i

is the probability that unit i is selected from frame Q∗.

Bankier’s (1986) estimator is based on the observation that when the two samples

are selected independently, the probability that unit i is selected in sample SA

drawn from QA or in sample SB drawn from QB, is equal to the sum of the

probabilities that unit i is selected from each of the frames minus the product of

these probabilities (i.e., the probability of being selected from both frames). Thus,
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the estimator takes the following form:

Ŷ BA = ŶA− + ŶB− +
∑

i∈S(A)
AB∪S

(B)
AB

{
π
(A)
i + π

(B)
i − π(A)

i π
(B)
i

}−1
yi· (3.9)

The summation in the last term is done over all unique units selected from the do-

main DAB, i.e., second occurrences of the same unit are removed from estimation.

Note that this requires that not only the selection probabilities from both frames

are known for each unit in the sample, but also that records are linked between

samples SA and SB.

Skinner (1991) proposed the Raking Ratio estimator

Ŷ RR =
NA − N̂Rake

AB

N̂A

ŶA− +
NB − N̂Rake

AB

N̂B

ŶB− +
N̂Rake
AB

N̂S
AB

Ŷ S
AB, (3.10)

where

Ŷ S
AB =

∑
i∈S(A)

AB

(
π
(A)
i + π

(B)
i

)−1
yi

+
∑
i∈S(B)

AB

(
π
(A)
i + π

(B)
i

)−1
yi, (3.11)

N̂S
AB =

∑
i∈S(A)

AB

(
π
(A)
i + π

(B)
i

)−1
+
∑
i∈S(B)

AB

(
π
(A)
i + π

(B)
i

)−1
(3.12)

and N̂Rake
AB is the smaller of the roots of the following equation:

N̂S
ABx

2 − {N̂S
AB(NA +NB) + N̂AN̂B}x+ N̂S

ABNANB = 0· (3.13)

Estimation from single frame samples is often based on calibration (Deville and

Särndal, 1992a), where the design weights are adjusted to create calibration weights

which reproduce known population level totals or means of auxiliary variables (see
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chapter 2.2 for a definition of the generalized calibration property). Calibration

may increase precision of the point estimates of the target variables and ensures

numerical consistency between the sample estimates and the known population

values. Ranalli et al. (2016) extended the calibration approach to the dual frame

case. Suppose that a vector of population totals X =
∑

i∈U xi of p auxiliary

variables xi = (x1i,x2i, ...,xpi), is known. The dual frame calibration estimator is

defined as:

Ŷ (CalS) =
∑

i∈SA∪SB

wcali yi, (3.14)

where wcali are chosen to minimise a defined distance function G(wcali , w∗i ) under

the constraint
∑

i∈SA∪SB
wcali xi = X. The ’design’ weights w∗i differ between

domains and so we have w∗i = (π
(A)
i )−1 for i ∈ SA ∩ DA− , w∗i = (π

(B)
i )−1 for

i ∈ SB ∩ DB− and w∗i = (π
(A)
i + π

(B)
i )−1 for i ∈ S(A)

AB ∪ S
(B)
AB . When the sampling

probabilities are only known for the frame from which a unit was sampled, the w∗i

are defined by φ(π
(A)
i )−1 for i ∈ S(A)

AB and by (1 − φ)(π
(B)
i )−1 for i ∈ S(B)

AB , with

φ ∈ (0, 1).

Rao and Wu (2009b) proposed a pseudoempirical likelihood estimator for a mean

in the dual frame case. The estimator for the population mean N−1
∑

i∈U yi takes

the following form:

ˆ̄y(PEL) =
NA

N
ˆ̄yA− +

NB

N
ˆ̄yB− +

φNAB

N
ˆ̄y
(A)
AB +

(1− φ)NAB

N
ˆ̄y
(B)
AB , (3.15)

where φ is fixed and φ ∈ (1, 0), ˆ̄yA− =
∑

i∈SA∩DA−
p̂
(A)
i yi, ˆ̄yB− =

∑
i∈SB∩DB−

p̂
(B)
i yi,

ˆ̄y
(A)
AB =

∑
i∈S(A)

AB
p̂
(AB;A)
i yi, ˆ̄y

(B)
AB =

∑
i∈S(B)

AB
p̂
(AB;B)
i yi and p̂

(A)
i , p̂

(B)
i , p̂

(AB;A)
i , p̂

(AB;B)
i

are values which maximise the pseudoempirical likelihood function:

`(p
(A)
i , p

(B)
i , p

(AB;A)
i , p

(AB;B)
i )PEL =

NA

N

∑
i∈SA

(π
(A)
i )−1∑

i∈SA∩DA−
(π

(A)
i )−1

log(p
(A)
i )

+
NB

N

∑
i∈SB

(π
(B)
i )−1∑

i∈SB∩DB−
(π

(B)
i )−1

log(p
(B)
i )
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+
φNAB

N

∑
i∈S(A)

AB

(π
(A)
i )−1∑

i∈S(A)
AB

(π
(A)
i )−1

log(p
(AB;A)
i )

+
(1− φ)NAB

N

∑
i∈S(B)

AB

(π
(B)
i )−1∑

i∈S(B)
AB

(π
(B)
i )−1

log(p
(AB;B)
i )

(3.16)

under the constraints:
∑

i∈SA∩DA−
p
(A)
i = 1,

∑
i∈SB∩DB−

p
(B)
i = 1,

∑
i∈S(A)

AB
p
(AB;A)
i =

1,
∑

i∈S(B)
AB
p
(AB;B)
i = 1 and an alignment constraint on the estimate for the mean of

a variable measured in the overlapping domain
∑

i∈S(A)
AB
p
(AB;A)
i yi =

∑
i∈S(B)

AB
p
(AB;B)
i yi.

Additional benchmark constraints can also be defined.

3.3 Multiplicity estimation

The notation used in chapter (3.2) becomes complicated when more than two

frames are used. Singh and Mecatti (2011) proposed the general form of the multi-

plicity adjusted estimator, which naturally accommodates inference from multiple

frames. We briefly characterise this approach below.

Consider T sampling frames Qt, t ≥ 2, which together cover the entire popula-

tion U . T samples (S1,S2, ...ST ) of sizes (n1, n2, ...nT ) respectively, are selected

independently, where St denotes the sample selected from frame Qt. Let πti be

the probability of selecting unit i from frame t. Note that the sampling frames

usually overlap. The extent of the overlap may be unknown.

Let S of size n =
∑T

t=1 nt be the collection of labels of all the units selected in all

the T samples. If a unit is selected k times, its label appears k times in S. That

is, the notation
∑

i∈S(·) is equivalent to
∑T

t=1

∑
i∈St

(·).

Suppose that the values of the set of variables v := {y,x} are collected for every

unit in each of the samples S1,S2, ...,ST . The variable y is the variable of in-
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terest.The vector x contains auxiliary variables for which a vector of population

parameters ϕU is known. The parameter ϕU is defined as the vector of the unique

solutions of the population estimating equation:

∑
i∈U

f i(xi,ϕU ) = 0q, (3.17)

where q is the dimension of vector f i(xi,ϕU ).

Let κt;i be the frame inclusion indicator, which is equal to 1 if the frame Qt contains

the i-th unit and to 0 otherwise. We assume that for every i ∈ S, i.e., for every

sampled unit i, the value of the multiplicity-adjusted selection probability ρi,

ρi = πt;iα
−1
t;i (3.18)

is known, where αt;i are the multiplicity adjustment factors such that, for all i ∈ S,

(Singh and Mecatti, 2011),
T∑
t=1

κt;iαt;i = 1· (3.19)

Condition (3.19) was first proposed by Birnbaum and Sirken (1965) for estimators

based on samples obtained through network sampling.

The Generalized multiplicity-adjusted Horwitz-Thompson estimator (GMHT) (Singh

and Mecatti, 2011; Rao and Wu, 2009b) of the population total Y =
∑

i∈U yi, takes

the following form:

Ŷ GMHT =
T∑
t=1

∑
i∈St

yiαt;i(πt;i)
−1· (3.20)

In the simplest case, αt;i = Mi
−1, where Mi =

∑T
t=1 κt;i is the multiplicity indicator

equal to the number of sampling frames which contain unit i. This creates the

Simple Multiplicity (Mecatti, 2005) estimator. Various choices of αt;i are possible,

depending on the information available on frame membership and sample inclusion
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probabilities for the sampled units. In particular, all the separate frame and

combined frame estimators discussed in Chapter 3.2, with the exception of Rao

and Wu’s (2009b) estimator, which was not discussed by the authors, can be

obtained through re-formulation of αt;i (Singh and Mecatti, 2011).

Singh and Mecatti (2011) proposed also the so-called Composite Multiplicity Ad-

justed estimator, which is a composite of the Simple Multiplicity (Mecatti, 2005)

and Kalton and Anderson’s (1986) estimators. The following adjustment is used:

α
(CM)
t;i = γiM

−1
i + (1− γi) πt;i

(
T∑
t=1

πt;iκt;i

)−1
, (3.21)

where γi is chosen to minimize the variance of (3.20).

An estimator allowing for different adjustment factors αt;i depending on the level of

information available for each unit i, called Hybrid Multiplicity, was also proposed.

For example, suppose that Kalton and Anderson’s (1986) adjustment is used for

units for which sampling probabilities from each of the frames are known and

the Simple Multiplicity adjustment is used for the units for which only the frame

count and the sampling probabilities for the frame from which the unit was actually

selected are known. The adjustment factor takes the following form:

α
(HM)
t;i = α

(SM)
t;i (1− δFULLt;i ) + δFULLt;i α

(KA)
t;i , (3.22)

where δFULLt;i equals 1 if sampling probabilities from each of the frames are known

and 0 otherwise (Singh and Mecatti, 2014).

The idea of the multiplicity adjustment has also been applied to create calibration

estimators for multiple frame samples. In particular, the Generalized Multiplicity-

adjusted Regression Estimator (GMREG) for the total of y takes the following

form (Ranalli et al., 2016; Singh and Mecatti, 2014):

Ŷ GMREG = Ŷ GMHT − β̂>
(
X̂

GMHT −X
)

(3.23)
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β̂ =
(
x>Λx

)−1
x>Λy, (3.24)

where Λ is a p-by-p weighting matrix equal to diag(d), where d is the vector of

inverted multiplicity adjusted selection probabilities, d = (ρ−11 , ρ−12 , ..., ρ−1n ) and

X is the known population total of the auxiliary variable x.

Singh and Mecatti (2014) propose a modified version of the calibration estimator,

based on the Generalized Raking Estimator With Optimal Unbiased Modification

(GROUM) (Singh and Wu, 2003; Singh et al., 2013). The GROUM estimator

uses relative design adjustment factors to account for different sampling designs

in strata. This results in increased precision in stratified designs compared to a

simple calibration (Deville and Särndal, 1992a) estimator, due to inclusion of the

stratum-specific relative design adjustment factors (see Singh et al. (2013) and

Singh and Mecatti (2014) for details). Singh and Mecatti (2014) use the same

method to account for different sampling designs applied in multiple frames.

The GROUM estimator for the population total of y takes the following form:

Ŷ GROUM = Ŷ GMHT − β̂>GROUM
(
X̂

GMHT

+ −X+

)
(3.25)

β̂ =
(
x>γδx

)−1
x>γδλy, (3.26)

where δ is a diagonal matrix of inverted sampling probabilities, γ is a matrix of

inverse relative design adjustment factors, common for units selected in the same

sample, and λ is a diagonal matrix of multiplicity adjustments. The vector of

calibration totals X̂
GMHT

+ and X+ include, apart from the auxiliary variables x,

population counts and totals of y for the overlapping domain.

The Pseudo Empirical Likelihood estimator of Rao and Wu (2009b) has also been

expressed in a multiplicity-inspired form. The pseudo empirical likelihood function

for T sampling frames takes the following form:

`(p)PEL =
n

N̂

T∑
t=1

∑
i∈St

π−1t;i αt;i log(pi), (3.27)
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where αt;i = αSMt;i , n =
∑T

t=1 nt and N̂ =
∑T

t=1

∑
i∈St

π−1t;i pi. The pseudo empirical

likelihood adjusted weights p̂i are obtained as the values which maximise (3.27)

under
∑T

t=1

∑
i∈St

pi = 1. Additional constraints on known population totals of

auxiliary variables may be added. Confidence intervals are obtained through a χ2

approximation of the pseudo empirical likelihood ratio function corrected by the

design effect (Rao and Wu, 2009b).

3.4 Empirical likelihood approach

The following paragraphs introduce a novel Empirical Likelihood approach to

multiple frame estimation. This approach is based on the multiplicity adjustment

method and is applicable to multiple frames. The frames may use different sam-

pling designs. As in chapter 2, we follow the design based approach where the

only source of randomness is in sampling and the parameters are fixed quantities

(Neyman, 1934). We first introduce the method for a simple case when no strat-

ification is used. In Chapter 3.5 we show how stratification and domain-specific

auxiliary information, as well as constraints on the overlapping domain, can be

handled.

Although the proposed estimator may seem similar to the Multiplicity Pseudo

Empirical Likelihood estimator of Rao and Wu (2009b), it is in fact quite differ-

ent. In the Multiplicity Pseudo Empirical Likelihood estimator, the adjustment

factors are included in the likelihood function, while the proposed estimator han-

dles them differently. The proposed approach to obtaining confidence intervals is

also different and no estimation of design effects is involved. On the practical side,

the proposed estimator can include various adjustment factors and can be used

to estimate a wide range of parameters, while the Multiplicity Pseudo Empirical

Likelihood estimator has been specifically defined for means and is based on the

simple multiplicity adjustment factors αSMt;i .
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Suppose that we wish to estimate a fixed, unknown population parameter θU , a

function of a subset of v = {x,y}. The parameter θU is defined by the unique

solution of the population estimating equation

∑
i∈U

gi(vi,θU) = 0ν , (3.28)

where p is the dimension of vector gi(vi,θU). This general formulation allows

for estimation of a wide range of parameters, e.g. means, quantiles, rates, ratios,

regression parameters. In particular, if gi(vi,θU) = vi − θU , the parameter θU

is a vector of population means. We will use gi(θU ) to denote gi(vi,θU) in the

following text for brevity.

Consider the following joint empirical log-likelihood function of unknown scale

loads mi:

`(m) =
T∑
t=1

∑
i∈St

log(mi)· (3.29)

Note that the function (3.29) is defined at the sample level, for scale loads associ-

ated with units selected in each of the T samples. If a unit is selected p times, its

scale load mi is considered p times.

Consider the following system of constraints:

1. Unknown parameters’ constraint :

T∑
t=1

∑
i∈St

migi(θ) = 0ν , (3.30)

where θ is a vector in the parameter space of the population parameter of

interest θU and p is the dimension of vector gi(θ);

2. Sample size constraint :

∑
i∈St

miρi = nt, t = 1, 2, ..., T, (3.31)
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where ρi is the multiplicity adjusted selection probability defined by (3.18);

3. Known parameters’ constraint : (Owen, 1991; Chaudhuri et al., 2008; Lesage,

2011);

T∑
t=1

∑
i∈St

mif i(xi,ϕU ) = 0q, (3.32)

where q is the dimension of vector f i(xi,ϕU ), ϕU is a vector of known pop-

ulation (census) parameters ϕ1, ϕ2, ..., ϕr and f i(xi,ϕU ) is a function such

that

∑
i∈U

f i(xi,ϕU ) = 0q. (3.33)

Constraint (3.30) involves the unknown population parameter of interest and is

key in obtaining point estimates and confidence intervals. Constraint (3.31) is a

multiple frames generalisation of a constraint defined for a single sample empirical

likelihood estimator by Berger and De La Riva Torres (2016). This constraint en-

sures that the multiplicity adjusted empirical likelihood point estimator is design-

consistent. Constraint (3.32) is optional. It is a generalisation of the customary

calibration or benchmark type constraint (see e.g. Deville and Särndal (1992a))

defined on the known population parameters. This type of constraints is com-

monly used in survey inference, where the known population parameter vector ϕU

consists of counts, means or totals known usually from censuses or administrative

records. For example, ϕU may be a vector of known sizes of k age-sex groups. We

can then define the function f i(xi,ϕU ) = xi −ϕU where the k-th element of vec-

tor xi, xi;k, is a group membership indicator and equals 1 if the unit i belongs to

the age-sex group k. The parameter ϕU is considered to be known, i.e., measured

without error at the population level. Note that in order to apply constraint (3.32)

we only need to know the unit level values xi for the sampled units. Benchmark

constraints are discussed in more detail in chapters 1 and 2. We will use fi(ϕU ) in

the following text to denote f i(xi,ϕU ) = xi −ϕU for brevity.
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The system of constraints (3.30)-(3.32) can be written as

∑
i∈St

mic
?
i(θ) = C?, (3.34)

where

c?i(θ) = { c>i , gi(θ)>}>, (3.35)

C? =
(
C>,0>ν

)>
, (3.36)

ci = {d>i , fi(ϕU )>}>, (3.37)

C =
(
D>,0>q

)>
, (3.38)

di and D are vectors of dimension T , with the t-th elements defined respectively

by di;t = δt;i ρi and Dt = nt, with

δti =

 1 if i ∈ St,

0 otherwise.

We assume that θ and ϕU are such that C? is an inner point of the convex hull

formed by the sample observations {c?i(θ) : i ∈ S}.

3.4.1 Maximum empirical likelihood point estimator

Let {m̂?
i(θ,ϕU ) : i ∈ S} be the vector of values which maximise the function (3.29),

for a given vector θ, under mi > 0 and (3.34). That is, let the maximum value

of the joint empirical log-likelihood function (3.29) for a given vector θ, under
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mi > 0 and (3.34), be

`(θ|ϕU ) =
T∑
t=1

∑
i∈St

log{m̂?
i(θ,ϕU )}· (3.39)

Following an argument presented by Berger and De La Riva Torres (2016), it can

be shown that the vector {m̂?
i(θ,ϕU ) : i ∈ S} is given by

m̂?
i(θ,ϕU ) =

{
ρi + η?>c?i(θ)

}−1
, (3.40)

where η? is a vector of Lagrange’s multipliers, such that constraint (3.34) holds.

The maximum empirical likelihood point estimator of θU is the vector θ̂ in the

parameter space of θU which maximises `(θ|ϕU ) as defined by (3.39). We will call

θ̂ multiplicity adjusted empirical likelihood estimator. Using an argument similar

to that presented by Berger and De La Riva Torres (2016), recalled in chapter (2),

it can be shown that if θU is uniquely defined by the estimating equation (3.28),

the estimator θ̂ is the unique solution of the sample estimating equation:

Ĝ(θ) =
T∑
t=1

∑
i∈St

m̂igi(θ) = 0ν , (3.41)

where the vector {m̂i(ϕU ) : i ∈ S} maximises function (3.29) under the constraint

T∑
t=1

∑
i∈St

m̂ici = C, m̂i > 0 (3.42)

and ci and C are respectively defined by expressions (3.37) and (3.38).

In order to obtain the point estimate of θU we need to find the values {m̂i(ϕU ) :

i ∈ S}, which do not depend on θ̂, and solve the sample level estimating equation

(3.41) for θ. By analogy with (3.40), the m̂i(ϕU ) are equal to

m̂i(ϕU ) =
{
ρi + η>ci

}−1
, (3.43)
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where η is a vector of Lagrange’s multipliers such that (3.42) holds.

The numerical aspects of estimating the m̂i(ϕU ) are discussed in chapter 5.

3.4.2 Relationship to a generalized regression type

estimator

Below we establish the relationship between the multiplicty adjusted empirical

likelihood estimator θ̂, defined as the solution of (3.41), and a generalized regres-

sion type estimator.

Let S be a collection of labels of units selected in all t samples St, t = 1, 2, ..., T

and n be the size of the pooled sample, n =
∑T

t=1 nt. Consider the following

regularity conditions:

max
i∈S

{
N

n
ρi

}
= OP(1) and max

i∈S

{ n
N
ρ−1i

}
= OP(1), (3.44)

N−1‖Ĉπ −C‖ = OP(n−1/2), (3.45)

max{‖ci‖ : i ∈ S} = oP(n1/2), (3.46)

‖Ŝ‖ = OP(1), (3.47)

‖Ŝ‖−1 = OP(1), (3.48)

nτ−1

N τ

∑
i∈S

‖ci‖τ

ρτi
= OP(1) (τ = 2, 3, 4), (3.49)

where

Ŝ = − n

N2

T∑
t=1

∑
i∈St

cici
>

ρ2i
· (3.50)

Conditions (3.44) - (3.49) resemble the conditions presented in chapter 2.6.1. The

only difference is that conditions (3.44) - (3.49) include the multiplicity adjusted
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selection probabilities ρi rather than the design probabilities πi. When αt;i are

fixed quantities, e.g. when the simple multiplicity (Mecatti, 2005) adjustment is

used, conditions (3.44) - (3.49) and (2.70) - (2.75) are equivalent. When αt;i are

random quantities, the additional assumption

max{ατt;i : i ∈ S} = OP(1), (τ = −1, 1, 2, 3, 4), (3.51)

together with conditions (2.70) - (2.75) would usually imply conditions (3.44)-

(3.49).

Theorem 4. Under the assumptions (3.44)-(3.49), for all θ which are such that:

1

nN2

∑
i∈S

||gi(θ)||2

ρ2i
= OP(n−2), (3.52)

the maximum empirical likelihood point estimator θ̂ is asymptotically equivalent

to a Generalized Regression Estimator Ĝr(θ):

Ĝ(θ) = Ĝr(θ) + oP(Nn−
1
2 ), (3.53)

where

Ĝr(θ) = Ĝπ(θ) + B̂(θ,ϕU )>
(
C − Ĉπ

)
, (3.54)

Ĝπ(θ) =
T∑
t=1

∑
i∈St

gi(θ)

ρi
, (3.55)

B̂(θ,ϕU ) =

(
T∑
t=1

∑
i∈St

cic
>
i

ρ2i

)−1( T∑
t=1

∑
i∈St

cigi(θ)>

ρ2i

)
, (3.56)

Ĉπ =
T∑
t=1

∑
i∈St

ci
ρi
· (3.57)

Note that (3.54) has the same structure as the estimator (2.89) in chapter 2. The

difference is in the use of the multiplicity adjusted selection probabilities ρi rather

than the design probabilities πi.
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The proof of theorem 4 is presented in the Appendix.

3.4.3 Asymptotic design-consistency of the empirical

likelihood multiplicity adjusted estimator

In this chapter we define the asymptotic framework and show that θ̂ is asymptot-

ically
√
n design-consistent.

In order to accommodate the multiple frames settings we need to adjust the asymp-

totic framework discussed in chapter 2.6.3. We consider a sequence of nested pop-

ulations U (ν) of size N (ν), where ν = 1, 2, . . . ,∞ (Isaki and Fuller, 1982). Each

population U (ν) consists of T sampling frames U
(ν)
t of sizes N

(ν)
t respectively, where

T is a constant. A sequence of samples S
(ν)
t of size n

(ν)
t 6 N

(ν)
t is selected from U

(ν)
t

according to a sampling design P(ν)
t (St), respectively. We assume that n

(ν)
t →∞

as N (ν) → ∞. Note that this implies that also N
(ν)
t → ∞. A similar asymptotic

framework is adopted for the multiple frames scenario e.g. by Singh and Mecatti

(2011).

Suppose that θU is such that the following conditions hold:

Ĝπ(θU ) = OP(Nn−1/2), (3.58)

nτ−1

N τ

∑
i∈S

‖gi(θU )‖τ

ρτi
= OP(1) (τ = 2, 3, 4), (3.59)

∇̂(θ) :=
1

N

∂Ĝ(θ)

∂θ
is continuous in θ ∈ ΘU , (3.60)

1

N
‖∂∇̂(θ)k

∂θ
‖ = OP(1) uniformly for all θ ∈ ΘU , (3.61)

‖∇̂(θU )‖ �p 1, (3.62)

|θ̂ − θU | = oP(1), , (3.63)

where ∇̂(θ)k is the k − th row of matrix ∇̂(θ), k = 1, 2, ..., K; K is the number
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of rows in matrix ∇̂(θ),

Ĝπ(θU ) :=
∑
i∈S

1

ρi
gi(θU ), (3.64)

n =
∑T

t=1 nt and ΘU is a compact neighbourhood containing θU .

Note that these assumptions are analogous to regularity conditions(2.79) - (2.84).

A discussion of these conditions can be found in chapter 2.6.1.

Theorem 5 establishes the rate of convergence for the multiplicity adjusted empir-

ical likelihood estimator θ̂.

Theorem 5. Let n =
∑T

t=1 nt. Under the regularity conditions (3.44)-(3.49),

(3.58), (3.59) (with τ = 2), (3.60)-(3.63), we have θ̂ − θU = OP(n−1/2).

The proof is presented in the Appendix.

3.4.4 Empirical Likelihood confidence intervals

In this chapter we define the empirical log-likelihood ratio function for the multi-

plicity adjusted empirical likelihood estimator. We also show that the asymptotic

distribution of this function can be established in an analogous way to how it

was done for the log-likelihood ratio function of the aligned empirical likelihood

estimator discussed in chapter 2.

Let `(m̂) be defined by (3.29) with m̂ being the values which maximise (3.29)

under the constraint (3.42). Let `(θ|ϕU ) be defined by (3.39) and let θ be a vector

in the parameter space of θU .

Consider the following empirical likelihood ratio function:

r̂(θ|ϕU ) = 2{`(m̂)− `(θ|ϕU )}· (3.65)
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Suppose that the following regularity conditions hold:

Ĝr(θ)>
[
V̂P
{
Ĝr(θU )

}]− 1
2 d−→N (0ν , Ip), (3.66)

max(||gi(θU )|| : i ∈ S) = oP(n
1
2 ), (3.67)

nτ−1

N τ

∑
i∈S

‖gi(θU )‖τ

ρτi
= OP(1) (τ = 2, 3, 4)· (3.68)

Theorem 6. Under the assumptions (3.44)-(3.49) and (3.66)-(3.68),

r̂(θU |ϕU ) = Ĝr(θU )>
[
V̂P
{
Ĝr(θU )

}]−1
Ĝr(θU ) +OP(n−1/2) (3.69)

where

V̂P
{
Ĝr(θU )

}
=

T∑
t=1

∑
i∈St

{gi(θU )− B̂(θU ,ϕU )>ci}2

ρ2i
· (3.70)

The proof is presented in the Appendix. Following analogous reasoning to that

presented in chapter 2.8, theorem 6 implies that (3.65) is a pivotal statistic and

follows a χ2
df=d distribution asymptotically, with d being the dimension of θU .

This property can be used to construct Wilks (1938) type confidence intervals and

to test hypothesis about the parameter θU in an analogous way as presented in

chapter 2.9.

3.5 Extensions

In this chapter we extend the proposed multiplicity adjusted empirical likelihood

estimator to accommodate some more complex estimation scenarios. First, in

chapter 3.5.1, we show how the estimator may be applied to inference from strat-

ified samples. This is similar to how stratification is handled in chapter 2 and

also follows the lines of the approach proposed by Berger and De La Riva Torres

(2016).
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In chapter 3.5.2 we show how benchmark constraints defined at a domain level can

be included in the constraints system. Domain-level constraints are often used in

multiple frame context. In particular, benchmarking on the known frame sizes,

or known size of the overlap between frames, is used to increase precision of the

estimates of the target parameters. A thorough discussion of the efficiency gains

related to use of benchmark constraints on sizes of various domains was presented

by Ranalli et al. (2016).

Finally, in chapter 3.5.3 we show how alignment constraints on the overlapping

domain can be defined. Including an alignment constraint on the estimates ob-

tained for the overlapping domain might improve the precision of the target pa-

rameter estimates. For example, it is often the case that the size of the overlap

between sampling frames is unknown. This is because it is typically easier to

obtain frame membership information for the sampled units only than to cross-

reference complete frames, e.g. through record linkage. An alignment constraint

on the estimates of the size of the overlap between frames is often imposed and

has been found to increase precision of the target parameter estimates (Ranalli

et al., 2016). We show how such a constraint may be included in the multiplicity

adjusted empirical likelihood estimator and discuss its effect on efficiency of the

target estimator.

3.5.1 Stratification

The multiplicity adjusted empirical likelihood estimator can be extended to strat-

ified sampling designs using a method similar to the one proposed by Berger and

De La Riva Torres (2016). In order to account for stratification, the sample size

constraint (3.31) is defined at strata level. Therefore for T samples and H strata

we have T ×H constraints.

Suppose that each frame Qt is divided into Ht strata Ut;1, Ut;2, ..., Ut;Ht . Note that
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each of the sampling frames can be stratified differently. Let St;h be the sample of

size nt;h selected from strata Ut;h in frame Qt. Constraint (3.31) takes the following

form:

∑
i∈St;h

miρi = nt;h for t = 1, 2, ..., T ; h = 1, 2, ..., Ht. (3.71)

This is equivalent to defining di andD in (3.37) and (3.38) as vectors of dimension∑T
t=1Ht, with the h-th elements defined respectively by dih = δ

(H)
t;h;i ρi and Dh =

nt;h, where δ
(H)
t;h;i is equal to 1 if i ∈ Ut;h and to 0 otherwise.

The point estimator θ̂ is not influenced by stratification. However, strata infor-

mation is necessary to obtain correct confidence intervals.

3.5.2 Domain-based constraints

In some situations it may be useful to define a constraint which applies to a

domain rather than to the whole population. For example, means or totals of

some auxiliary variables may be known only for one sampling frame or a specific

socio-demographic group, rather than for the population. Below we show how

domain-level constraints can be incorporated into (3.34).

Let ϕU be a vector of size r of known parameters ϕU1, ϕU2, ..., ϕUr of population

domains D1,D2, ...,Dr ⊂ U respectively. Let fi(xi, ϕUj) be a function such that

∑
i∈Dj

fi(xi, ϕUj) = 0. (3.72)

The domain-level known parameter constraint on the weights mi takes the follow-

ing form:

T∑
t=1

∑
i∈St

midiag(δ
(D)
i )fi(ϕU ) = 0r, (3.73)
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where δ
(D)
i is an r-vector with j-th element equal to 1 if i ∈ Dj and to 0 otherwise.

This constraint can be handled by adding an n by r sub-matrix cD = diag(δ
(D)
i )fi(ϕU )>

into the matrix c (defined in (3.37)) and r zeros to vector C (defined in (3.38)).

When Dj = U , the parameter ϕUj is a population parameter. Note that the

constraint may also include domain counts. In particular, constraints involving

frame sizes as well as the size of the overlapping domain may be easily defined.

These constraints are commonly used in the regression type multiple frame esti-

mators and they have been found to considerably improve precision of the point

estimators (e.g. Ranalli et al. (2016)).

3.5.3 Alignment constraints on the overlapping domain

A special case of a domain-level constraint is an alignment-type constraint on the

overlapping domain. Some estimators (e.g. Fuller and Burmeister (1972), Skinner

and Rao (1996), Skinner (1991), Rao and Wu (2009b), Ranalli et al. (2016)) use a

constraint on the equality of estimators of a population parameter defined for the

domain DAB, obtained from each of the samples, in order to increase precision of

estimators for population parameters. Aligning estimates for the common domain

may also be convenient for the sake of numerical consistency.

Suppose that two sampling frames QA and QB overlap. Let DAB of size NDAB
be

the set of units which appear in both frames. Let S
(A)
AB be the intersection of DAB

and the sample selected from frame QA and let S
(B)
AB be the intersection of DAB and

the sample selected from frame QB. Suppose that we want to define an alignment

constraint on the estimates of a population mean ξDAB
= N−1DAB

∑
i∈DAB

ξ(wi),

where ξ(wi) is a known function of wi, as in the examples given in chapter 2, and

wi are selected components of vi measured for each sampled unit that belongs

to domain DAB. The alignment constraint for the two frames takes the following
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form:

∑
i∈S(A)

AB

miξ(wi) =
∑
i∈S(B)

AB

miξ(wi)· (3.74)

This can be translated to

T∑
t=1

∑
i∈S

miδ
(DAB)
i δ

(QA)
i ξ(wi) = 0r, t = (1, 2), (3.75)

where r is the dimension of vector ξ(wi), δ
(DAB)
t equals 1 if unit i belongs to

domain DAB and 0 otherwise, and δ
(QA)
i equals 1 if unit i appears in frame QA

and −1 otherwise.

The effect of the alignment constraint on the precision of the estimator (3.41)

depends on the strength of the correlation between ξ(wi) and gi(θ) and the vari-

ance of the estimates ξ̂DAB1p and ξ̂DAB2p obtained from each of the samples for the

overlapping domain, where

ξ̂DABtp
=
∑
i∈St

ρ−1i δ
(DAB)
t ξ(wi)· (3.76)

This can be seen if we consider that when an alignment constraint is used, the

estimator (3.54) takes the following form:

Ĝr(θ) = {Ĝr1(θ1)
>, Ĝr2(θ2)

>}>, (3.77)

where

Ĝr1(θ1) := Ĝ1p(θ)− B̂1f1(θ,ϕU )> f̂1p(ϕ1)− B̂1f2(θ,ϕU )> f̂2p(ϕ2)

+B̂1ξ(θ,ϕU )>
(
ξ̂DAB2p − ξ̂DAB1p

)
, (3.78)

Ĝr2(θ2) := Ĝ2p(θ)− B̂2f1(θ,ϕU )> f̂1p(ϕ1)− B̂2f2(θ,ϕU )> f̂2p(ϕ2)

+B̂2ξ(θ,ϕU )>
(
ξ̂DAB1p − ξ̂DAB2p

)
(3.79)
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and Ĝtp(θ) =
∑

i∈St
ρ−1i gti(θtU ), f̂tp(ϕt) =

∑
i∈St

ρ−1i fti(ϕtU ). The estimator (3.78)

is an extended regression system with an alignment term, analogous in form to

estimator (2.92). As it was discussed in chapter 3, the added variance associated

with the fact that ξDAB
is estimated decreases the precision of the estimator (3.78),

but the variance of (3.78) is also reduced based on the correlation between ξ(wi)

and gi(θ). Similarly to the examples given in chapter 2, the function ξ(wi) can

be chosen to maximise this correlation. In practical applications the size of the

overlap is likely to be crucial for the decision whether to include the alignment

constraint. When the overlap is small, the estimates of ξDAB
are likely to be

unstable. Note that if the parameter ξDAB
is known, it is always better to use a

domain-level calibration constraint for each frame than to impose an alignment

constraint.

3.6 Relationship to the aligned empirical likelihood esti-

mator

In this chapter we show how the multiplicity adjusted empirical likelihood esti-

mator relates to the aligned empirical likelihood estimator presented in chapter

2. Suppose that we have a two frames design, where samples are selected inde-

pendently from each frame. If the two frames overlap completely and at least one

variable with unknown population level values is measured in both samples, that

is, Q1 = Q2 = U , then the sampling design is as in chapter 2.

The key difference between the two estimators is of course in their primary aim.

The aligned empirical likelihood estimator is used when we want to obtain a single

vector of weights which can be used to estimate common and non common popu-

lation parameters and which produces equal estimates for the common parameters

when it is applied to each survey separately. The multiplicity adjusted empirical

likelihood estimator is used when the variables of interest are measured in both
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samples and we assume that unit level data from both samples will always be avail-

able to calculate estimates. Note that in practice the two estimators are likely to

be used in different context. Alignment of estimates is more often required when

several surveys were carried out independently in the same population, while the

multiplicty adjusted empirical likelihood estimator is more likely to be applied in

a classical multiple frame settings, when a single survey uses multiple sampling

frames because a single frame with a good coverage is unavailable.

It is, however, theoretically interesting to consider how the two estimators compare

in the case when there is a complete overlap between the frames and all survey

variables are measured in both samples. The difference is in the formulation of the

sample size (design) constraint. The aligned empirical likelihood estimator uses a

design constraint

∑
i∈St

m1i π1i = nt, t = 1, 2· (3.80)

The multiplicity adjusted empirical likelihood estimator is based on a sample size

constraint

∑
i∈St

miα
−1
i πi = nt, t = 1, 2· (3.81)

Suppose that we want to estimate a mean ξU = N−1
∑

i∈U ξ(wi) of a known

function ξ of the common variable wi. The aligned empirical likelihood estimator

of ξ is the solution to

∑
i∈S1

m̂1i(ϕU )(ALGN) h1i(ξ) = 0 and
∑
i∈S2

m̂2i(ϕU )(ALGN) h2i(ξ) = 0, (3.82)

where hti(ξ) = ξ(wi) − Nn−1t πti ξ. The solutions of the equations (3.82) are ξ̂1
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and ξ̂2, where

ξ̂t = N−1
∑
i∈St

m̂ti(ϕU )(ALGN) ξ(wi)· (3.83)

Because of the alignment constraint (2.44), these solutions are equal, i.e., ξ̂1 = ξ̂2.

That is, once the adjusted weights m̂ti(ϕU ) have been calculated, it is sufficient to

use one sample data to obtain the estimate ξ̂. The adjusted empirical likelihood

weights in (3.82) are equal to

m̂i(ϕU )(ALGN) =
(
πi + η>(ALGN)ci

)−1 · (3.84)

The multiplicity adjusted empirical likelihood estimator of ξ is the solution to the

estimating equation which involves values of both samples:

T∑
t=1

∑
i∈St

m̂i(ϕU )(MLT )hti(ξ) = 0, (3.85)

where the adjusted weights are given by

m̂i(ϕU )(MLT ) =
{
ρi + η>(MLT )ci

}−1
=
{
α−1i πi + η>(MLT )ci

}−1 · (3.86)

If the Simple Multiplicity (Mecatti, 2005) adjustment is used and we have two

surveys with complete overlap, α−1i = T = 2. However, when full information

on selection probabilities from both frames is available, an adjustment αi leading

to a more efficient estimator may be chosen, e.g. Kalton and Anderson’s (1986)

adjustment. Therefore, if there is a complete overlap of sampling frames, only

the common variables are of interest and full frame information is available, the

multiplicty adjusted empirical likelihood estimator is likely to be more efficient

than the aligned empirical likelihood estimator. On the other hand, the aligned

empirical likelihood estimator does not require access to each sample’s microdata

after the adjusted weights are calculated.
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3.7 Simulation study

We evaluate performance of the proposed empirical likelihood multiplicity ad-

justed (ELM) point estimator and coverage of the empirical likelihood confidence

intervals in a series of simulations. For comparison, the generalized multiplicity-

adjusted regression estimator (GMREG) (Ranalli et al., 2016) is also calculated.

Each of the estimators requires calculating the multiplicity-adjusted selection

probability of the i-th unit, pt;i = πt;iα
−1
t;i . The following adjustments are used:

• Simple multiplicity adjustment (Mecatti, 2005)

αt;i = M−1
i , Mi =

T∑
t=1

κt;i, (3.87)

• Kalton and Anderson’s (1986) adjustment

αt;i = πt;i

(
T∑
t=1

πt;iκt;i

)−1
· (3.88)

The simulations were performed using the R software (R Core Team, 2015). For

the empirical likelihood estimator, new procedures were developed. The GMREG

estimator was calculated using the Frames2 package (Arcos et al., 2015).

We use the following study populations:

Population 1 is a synthetic dataset of size 23, 500 units, generated according to

the following model: (Ranalli et al., 2016) y ∼ N(5000, 500), x1i = (yi − ε1i)/0.5,

x2i = (yi − ε2i)/1.2, ε1i ∼ N(500, 300), ε2i ∼ N(700, 500).

Population 2 consists of 50,000 units and is generated according to the following

model (Wu and Rao (2006)):

yi = 3 + ai + 8xi + 6zi + 0.5ei, (3.89)
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where a, x and z follow independent exponential distributions with the rate pa-

rameter equal to 1 and ei ∼ χ2
1 − 1. This produces a dataset of highly skewed

variables.

Population 3 is a synthetic dataset EUSILCP (Alfons et al., 2010) available within

the R (R Core Team, 2015) package simFrame (Alfons, 2013). It contains 58,654

units. EUSILCP was modelled based on the Austrian EU-SILC (European Union

Statistics on Income and Living Conditions) survey from year 2006 and preserves

distributions of the key variables. We use the following variables: equalised house-

hold income, household size and age.

Below we show the results of several simulation studies. We start with estimating

totals. We first consider a normally distributed variable of interest, generated

independently from the frame allocation mechanism. We then use some more

skewed variables and check the effect of the correlation between the variable of

interest and the frame allocation mechanism as well as the effect of the correlation

between the variable of interest and the sampling probabilities. We also check

how well the proposed multiplicity adjusted empirical likelihood estimator deals

with quantiles of distribution.

3.7.1 Estimation of totals

Normal data

The first simulation tests the performance of the proposed estimator in the rela-

tively favourable conditions of Population 1. The simulations follow the conditions

tested by Ranalli et al. (2016). Units are allocated to two frames according to the

values of variable gi generated from a binomial distribution. Two levels of overlap

are tested. First, gi ∼ B(2, 0.3) and unit i is allocated to frame 1 if gi = 0 or

gi = 1 and to frame 2 if gi = 1 or gi = 2. This gives a small overlap of about 9%
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of the population size. Second, gi ∼ B(2, 0.5) and unit i is allocated to frame 1

if gi = 0 or gi = 1 and to frame 2 if gi = 1 or gi = 2. This gives large overlap

of approximately 50%. Sample 1 is selected from frame 1 using stratified sim-

ple random sampling with replacement, sample 2 is selected from frame 2 using

Midzuno sampling with πi ∼ yi − N(300, 200). The sample sizes are n1 = 201

and n2 = 270. We assume that the frame totals of variable x are known. We

also include constraints on the frame sizes. We test the estimators when the size

of the overlap between frames is known and when it is not known. Table (3.1)

presents 100 × percent relative mean squared error (100×RMSE%) of the tested

estimators with the Kalton-Anderson and the Simple Multiplicity adjustments.

Table 3.1: 100 × percent relative mean squared error (100 × RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 1. S1: stratified simple random sampling, S2: Midzuno sam-
pling. Based on 1,000 iterations.

α Small overlap Large overlap

GMREG ELM GMREG ELM
NAB unknown

Multiplicity 0.45 0.48 2.57 0.58
Kalton-Anderson 0.50 0.35 2.30 0.67

NAB known
Multiplicity 0.10 0.48 0.12 0.58
Kalton-Anderson 0.10 0.34 0.12 0.67

The normality of the variable of interest creates relatively favourable conditions for

the regression estimators. When the size of the overlapping domain is known, the

GMREG estimator is more precise than the proposed ELM estimator. However,

the ELM estimator is more precise when the size of the overlapping domain is

unknown, especially when this overlap is large.
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Variables with skewed distributions and correlation

between the variable of interest and frame allocation

Second simulation attempts to test relative performance of the estimators in a more

complex situation. We use Population 2, where the variable of interest follows

a skewed distribution. We introduce some dependence between the variable of

interest and the frame allocation, as well as the sampling probabilities. Units are

allocated to frames according to the values of the variable gi ∼ B(2, ysti ), where

ysti = {yi −min(y)}{max(y) −min(y)}−1. Three frame allocation methods are

tested:

• unit i appears in frame 1 when gi = 0 or gi = 2 and in frame 2 when gi = 1

or gi = 2. This gives an overlap between frames of approximately 5%.

• unit i appears in frame 1 when gi = 0 or gi = 1 and in frame 2 when gi = 1

or gi = 2. This gives an overlap between frames of approximately 27%.

• unit i appears in frame 1 when gi = 0 or gi = 2 and in frame 2 when gi = 0

or gi = 1. This gives an overlap between frames of approximately 70%.

1,500 units are selected from each frame by random systematic sampling with

sampling probabilities πi proportional to a size variable τi, generated according to

the following model τi =∼ 2yi + li + ki + 30, with li ∼ χ2
df=1 and ki ∼ N(10, 10).

This introduces a correlation between the variable of interest yi and the sampling

probabilities πi of about 0.88.

Table (3.2) presents 100× RMSE% of the proposed estimator and the GMREG

estimator with the three overlap sizes, when the size of the overlapping domain is

known and when it is unknown.

With this skewed dataset, the proposed estimator is slightly more precise than

the GMREG estimator in all cases, even when full information on the size of the
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Table 3.2: 100 × percent relative mean squared error (100 × RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 2. Random systematic sampling design. Based on 1,000 itera-
tions.

α V. small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
NAB unknown

Multiplicity 0.39 0.17 0.57 0.22 0.68 0.24
Kalton-Anderson 0.38 0.17 0.55 0.24 0.67 0.24

NAB known
Multiplicity 0.34 0.17 0.43 0.22 0.41 0.24
Kalton-Anderson 0.33 0.17 0.42 0.24 0.41 0.24

frames overlap is available. We notice that the precision of the ELM estimator

does not deteriorate when the size of the overlap is unknown and that it is mildly

affected by the size of the overlap. We observe slight deterioration of the GMREG

estimator when the size of the overlap is large and unknown. We should note,

however, that both estimators have low relative root square errors.

We also test whether the coverage of the multiplicity adjusted empirical likelihood

confidence intervals is affected by the dependence between the frame allocation

and the values of the variable of interest, the size of the overlap or the fact that

the level of overlap is unknown. We calculate the confidence intervals for the ELM

estimator, calculated as discussed in chapter 3.4.4. For the GMREG estimator,

symmetric confidence intervals are calculated based on the Deville and Särndal’s

(1992a) variance estimator available within the Frames2 package (Arcos et al.,

2015).

Table (3.3) presents converges of confidence intervals of the two tested estimators.

Both confidence intervals show some over-coverage, especially when the overlap

is small. The coverage of the empirical likelihood confidence interval is similar

to that of the normality based confidence interval, but typically slightly closer to

the nominal level and in most cases is not significantly different from 95%. The

coverage of confidence intervals is not affected by including the constraints on the
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Table 3.3: Coverage of confidence intervals (%) of the the proposed Empirical Like-
lihood Multiplicity adjusted (ELM) estimator and the Generalized Multiplicity-
adjusted Regression estimator (GMREG) (Ranalli et al., 2016) in Population 2.
Based on 1,000 iterations. †: values significantly different from the nominal level.

α V small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
NAB unknown

Multiplicity 97.1† 96.2 98.0† 95.7 95.0 95.3
Kalton-Anderson 97.5† 96.3 98.1† 95.9 95.0 95.3

NAB known
Multiplicity 97.4† 96.2 97.3 † 95.9 96.2 95.3
Kalton-Anderson 97.7† 96.3 97.3† 95.7 95.9 95.3

size of the overlapping domain.

Correlation between the variable of interest and the

sampling probabilities

The third simulation focuses on the effect of the correlation between the variable

of interest and the selection probabilities. We use data from Population 3, re-

stricted to only include people over 16 years old. Units are allocated to frames as

in the three scenarios listed above. We estimate the total of the equalised house-

hold income and use the total of the household size from frame 1 and the total

of age from frame 2 as auxiliary information. We also incorporate information

on the frame sizes and the size of the overlap between frames. Samples of size

1,000 are selected in each frame using random systematic sampling with sampling

probabilities proportional to a size variable τi. We first check performance of the

estimators when τi is generated from an independent normal distribution, i.e.,

τi ∼ N(100, 20). We then introduce a correlation between the sampling probabil-

ities πi and the variable of interest by using τi ∼ 0.7 ∗ yi + γ + δ, where γ ∼ χ2
df=1

and δ ∼ N(100000, 10000). This gives cor(πi, yi) ≈ 0.6.

The 100RMSE% of the proposed estimator and the GMREG estimator are pre-
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sented in tables (3.4) and (3.5). Table (3.4) shows results obtained when the πi

are generated independently from the variable of interest. Table (3.5) show results

obtained with cor(πi, yi) ≈ 0.6.

Table 3.4: 100 × percent relative mean squared error (100 × RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 3. Sampling probabilities generated from an independent nor-
mal distribution. Random systematic sampling design. Based on 1,000 iterations.

α V. small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
NAB unknown

Multiplicity 1.80 2.14 2.04 2.24 2.45 2.05
Kalton-Anderson 1.75 2.06 1.91 2.06 2.45 2.05

NAB known
Multiplicity 1.78 2.14 1.99 2.24 1.76 2.05
Kalton-Anderson 1.74 2.06 1.87 2.06 1.75 2.04

Table 3.5: 100 × percent relative mean squared error (100 × RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 3, cor(yi, πi) ≈ 0.6. Random systematic sampling design.
Based on 1,000 iterations.

α V. small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
NAB unknown

Multiplicity 1.37 1.09 1.68 1.30 1.89 1.34
Kalton-Anderson 1.34 1.09 1.55 1.27 1.88 1.33

NAB known
Multiplicity 1.36 1.09 1.62 1.30 1.56 1.34
Kalton-Anderson 1.34 1.09 1.51 1.27 1.54 1.27

When the sampling probabilities follow an independent normal distribution, the

proposed estimator has slightly higher relative mean square error than the GM-

REG estimator in all cases when the full frame information is available and with

small and medium overlap sizes when the size of the overlap is unknown. When

the overlap is large and its population size is unknown, the ELM estimator is

slightly more precise. When the πi and the target variable are correlated, the

ELM estimator performs better in all cases.
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Table (3.6) presents converges of confidence intervals of the two tested estima-

tors. The same method of calculating the lower and upper bounds of confidence

intervals for the ELM and the GMREG estimators as described in the previous

chapter was used. The coverage of the proposed empirical likelihood confidence

interval is acceptable across all tested scenarios. When the overlap is large, the em-

pirical likelihood confidence intervals show very slight over-coverage, significantly

different from the nominal value in a couple of cases. The GMREG confidence in-

tervals also have good coverage, with only one case of under-coverage significantly

different from 95%.

Table 3.6: Coverage of confidence intervals (%) of the the proposed Empirical Like-
lihood Multiplicity adjusted (ELM) estimator and the Generalized Multiplicity-
adjusted Regression estimator (GMREG) Ranalli et al. (2016). Population 3.
Based on 1,000 iterations. †: values significantly different from the nominal cov-
erage level.

α V small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
cor(yi, πi) ≈ 0.6

NAB unknown
Multiplicity 94.7 95.3 94.1 94.6 94.5 96.3
Kalton-Anderson 94.7 94.6 95.3 95.0 94.0 96.2

NAB known
Multiplicity 95.6 95.2 94.1 94.8 95.6 96.6†

Kalton-Anderson 94.9 94.6 94.7 95.1 95.4 96.3

cor(yi, πi) ≈ 0
NAB unknown

Multiplicity 93.6† 95.0 94.1 94.6 94.5 96.3
Kalton-Anderson 94.0 95.4 95.3 95.0 94.0 96.2

NAB known
Multiplicity 93.8 95.0 94.1 94.8 95.6 96.6†

Kalton-Anderson 94.1 95.2 94.7 95.1 95.4 96.3

3.7.2 Estimation of quantiles of distribution

One of the benefits of the proposed approach is its flexibility to handle a wide class

of population parameters of interest other than means or totals. Table (3.7) shows
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relative absolute root mean square errors (%) (rrmse), 100 × percent relative mean

squared error (rmse), left tail error rates, right tail error rates and coverages of

confidence intervals for the proposed estimator of the 10th, 20th, 80th and 90th

quantile of distribution of equalised household income in population 2. We test

performance of the estimator with two different sample sizes: n1 = 1000, n2 =

1500 and n1 = 2000, n2 = 2500, with an overlap of approximately 50% of the

population size. The random systematic sampling design is used in each frame

and the sampling probabilities are proportional to the household size. We assume

that the population totals of age and household size are known.

The error rates of the proposed estimator are all of acceptable size, although, un-

derstandably, the 100 × percent relative mean squared error rates are noticeably

larger than those for the estimators of totals presented in the previous tables. The

coverages of the confidence intervals are close to the nominal levels in almost all the

cases. The tail error rates are unbalanced, especially when high quantiles are esti-

mated. This is likely to be caused by the skewness of the data. Overall, however,

we can say that the multiplicity adjusted empirical likelihood confidence intervals

perform well, especially considering the skewness of the variables of interest.
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Table 3.7: Relative absolute root mean square errors (%) (rrmse), 100 × percent
relative mean squared errors (rmse), left tail error rates (l. t.e.r.), right tail error
rates (r. t.e.r.) and coverages of confidence intervals (cov.) of the proposed Em-
pirical Likelihood Multiplicity-Adjusted estimator. EUSILCP data. Estimation
of quantiles of distribution and the mean of equalised household income. Strat-
ified random systematic sampling design, stratification by household size with
proportional allocation. KA: Kalton-Anderson’s adjustment, ML: Multiplicity
adjustment. †: values significantly different from the nominal coverage level.

θ α n1 = 1000, n2 = 1500 n1 = 2000, n2 = 2500

rrmse rmse l. t.e.r r. t.e.r. cov. rrmse rmse l. t.e.r r. t.e.r. cov.

q10

KA 3.4 11.6 2.6 2.0 95.4 2.3 5.3 3.5† 1.1† 95.4
ML 3.4 11.6 2.3 2.1 95.6 2.3 5.3 2.7 1.2† 96.1

q20

KA 2.8 7.8 1.4† 3.4 95.2 1.9 3.6 2.5 1.9 95.6
ML 2.8 7.8 0.8 4.2† 95.0 1.9 3.6 2.2 2.0 95.8

q80

KA 2.0 4.0 1.0† 4.9† 94.1 1.4 2.0 1.1† 4.4† 94.5
ML 2.0 4.0 1.5† 3.8† 94.7 1.3 1.7 1.2† 3.2 95.6

q90

KA 2.8 7.8 1.0† 4.7† 94.3 3.1 9.6 1.2† 3.5† 95.3
ML 2.9 8.4 1.1† 3.7† 95.2 3.1 9.6 1.9 2.8 95.3
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3.8 Conclusions

We propose an Empirical Likelihood approach to finite population parameter esti-

mation in the multiple frames context. The estimator is based on the multiplicity

adjustment principle (Singh and Mecatti, 2011; Mecatti and Singh, 2014; Rao

and Wu, 2009b), and can accommodate various multiplicity adjustment factors.

Additional benchmark constraints constructed around known population level pa-

rameters may be incorporated easily. In particular, constraints on the frame size

and size of the overlapping domain can be included. Previous research (Ranalli

et al., 2016) have shown that this type of constraints often lead to considerable

gains in precision. Alignment type constraints, requiring that both frames pro-

duce the same point estimates for parameters of the overlapping domain, can also

be defined. The alignment constraint can be formulated for a mean of a function

of the common variable. A function which maximises the correlation with the

variable of interest should be selected.

A wide class of parameters, expressed as solutions to population estimating equa-

tions, can be estimated through the proposed estimator. A single weight, which

can be used for estimation of various parameters, is obtained for every unit. The

weights are positive by definition.

Empirical likelihood multiplicity adjusted confidence intervals for finite population

parameters are constructed based on the χ2 approximation of the distribution of

the empirical likelihood ratio statistic under the null hypothesis. As in the case of

the aligned empirical likelihood estimator discussed in the previous chapter, the

confidence intervals do not require variance estimation, are range-preserving and

asymmetric.

We consider the flexibility in terms of the type of multiplicity adjustment used,

type of parameters of interest and type of constraints imposed the main benefit

of the proposed method. In the simulations performed, the proposed estimator
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has acceptable precision. In some cases, it tends to have a lower relative root

mean square error than the generalized multiplicity adjusted regression estimator

with the same multiplicity adjustment. This happens when the variable of interest

follows a skewed distribution. In particular, we notice that the proposed estimator

performs particularly well when the size of the frames overlap is unknown. It is

also relatively insensitive to the actual size of the overlap, while the GMREG

estimator often has a higher relative root mean square error when the overlap

between sampling frames is large and when the size of the overlap is unknown.

Coverage of the proposed empirical likelihood confidence intervals is close to the

nominal level in most cases, with just a few cases of slight over-coverage or under-

coverage. This holds also for estimation of quantiles of distribution.

The multiplicity adjusted estimator has a similar structure to the aligned empirical

likelihood estimator discussed in chapter 2. It differs, however, in the formulation

of the design constraint, in that it allows to include custom adjustment factors.

We do not discuss the choice of the multiplicity adjustment factor. Several adjust-

ments have been proposed. In practical applications, the choice of the adjustment

factor is likely to be driven by the availability of information.
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Chapter 4

Using empirical likelihood to obtain

range-respecting confidence intervals for census

coverage

4.1 Introduction

Censuses aim to obtain an almost perfect coverage of the population. However,

although efforts are made to maximise the response rates, a small proportion of

the population is usually missed. A second register or survey can be used to

assess the overage of a census. Several countries use a survey carried out after the

census. The dual system estimator (DSE) is then used in order to estimate the

census coverage. Examples of such countries include the United Kingdom (Brown

et al., 1999; Abbott, 2009), New Zealand (Statistics New Zealand, 2014) or Brazil

(da Silva et al., 2015).

In the UK, the census coverage survey (CCS) is carried out shortly after the

census. The census coverage survey has a large sample size and is used to estimate

the population size by correcting the census totals in geo-demographic groups

based on the estimated under-coverage, as well as to estimate the coverage of the

census. The estimation procedure is undertaken separately in 106 Estimation
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Areas (defined based on a geographic split of the country) and estimates are

produced for 45 age-sex groups within each Estimation Area. The census coverage

rate is defined as the proportion of the number of people enumerated in census

to the population size estimated through the dual system estimator. In 2011, the

overall coverage across England and Wales was 94% (Office for National Statistics,

2017).

Estimating the uncertainty around the census coverage estimate is not a straight-

forward task. The methodology used by the Office for National Statistics after the

2001 census relied on constructing symmetric confidence intervals, based on the

jackknife variance estimator. The 2011 census used bootstrap bias corrected and

accelerated (BCa) confidence (Efron, 1987; Baillie et al., 2011) intervals (Kabzin-

ska et al., 2017). However, construction of the confidence intervals is difficult

because of the distribution of the census coverage rate. The coverage follows the

binomial distribution and varies hugely between regions and age-sex groups. There

are groups where the estimated coverage rate is very close to 1. In such context

confidence intervals are known to be difficult to construct (Liu and Kott, 2009).

Moreover, when the estimated coverage rate is close to 1, the symmetric confidence

intervals have upper bounds above 1, which might be confusing for end users.

In this chapter we consider an empirical likelihood approach for the estimation of

census coverages. Empirical likelihood gives confidence interval bounds between

0 and 1. It can also easily be extended to include any benchmark (calibration)

constraints. Specifically, we consider design-based empirical likelihood (Berger and

De La Riva Torres, 2016) confidence intervals which are constructed by directly

inverting the log-likelihood ratio function. This means that confidence intervals

can be obtained without variance estimates.

This chapter begins with a summary of the design of the census coverage survey

and its estimation procedure. Then chapter 4.3 explains how empirical likelihood

can be applied to estimate census coverage and specifies the relevant estimating

functions and constraints. Chapter 4.4 gives numerical results based on applying
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empirical likelihood to data from the census coverage survey carried after the 2011

England and Wales population census. In chapter 4.5, we present the results of

a simulation study which compares empirical likelihood confidence intervals with

those derived from an approximation to the existing approach.

4.2 Sampling design of the census coverage survey and the

current estimation procedure

In this chapter we summarise the design of census coverage survey and describe

the current estimation procedure. We discuss the properties of the dual system

estimator and show how the estimates of the population size are used to produce

census coverage estimates.

4.2.1 Sample selection

Census coverage survey uses a stratified cluster sampling design. A separate sam-

ple is taken in each Estimation Area, which consists of roughly 1 million people.

The primary sampling units are small geographical entities, called Output Areas,

stratified by Local Authority and a proxy measure of how likely the local popula-

tion is to respond in a census, called Hard to Count index. For each of the sampled

Output Areas, a sample of postcodes is taken (Brown et al., 2011). Figure (4.1)

shows this geographical division on a diagram.

In each of the sampled postcodes, full enumeration of households is attempted.

The total number of households and people is measured and some additional

household and person level information is gathered for each household.
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Estimation Areas (EA)

Local Authorities (LA)

Hard To Count Index

groups (HCI)

Output Areas (OA)

Postcodes secondary sampling units

stratifying variables

primary sampling units

population of interest

Figure 4.1: Geographical entities in England and Wales used in the design of the
Census Coverage Survey

4.2.2 Dual system population size estimation

The total number of households and persons measured in the sampled postcodes

is used to estimate the population size. The following dual system estimation

formula is applied:

D̂SEN =
(NC+S+ +NC+S−)(NC+S+ +NC−S+)

NC+S+

, (4.1)

where NC+S+ is the number of households (or people) who were enumerated both

in census and in CCS, NC+S− is the number of households (or people) who were

enumerated in census but not in CCS and NC−S+ is the number of households (or

people) who were not enumerated in census but were enumerated in CCS.

The estimator (4.1) relies on several assumptions: (Abbott, 2009, 2011)

1. Independence between the census and the CCS, meaning that the proportion
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of households (persons) enumerated in census is the same among CCS re-

spondents and among CCS non-respondents and that the proportion of CCS

respondents is the same among households (persons) enumerated in census

and households (persons) not enumerated in census;

2. A closed population, meaning that no in- or out - migration happens between

the census and the Census Coverage Survey;

3. Homogeneity of selection probabilities within Output Areas, meaning that

households (persons) within the same stratum have equal chances of being

enumerated in the census or in CCS;

4. Perfect matching, meaning that the values NC+S+ , NC+S− and NC−S+ are

correct, i.e., calculated without error.

If the assumptions above are not met, which is likely in real life conditions, the

DSE is known to be negatively biased (Brown et al., 2006). Specifically, violation

of the assumption of independence between the response probabilities in the Cen-

sus Coverage Survey and in the census can lead to a high bias in the estimator

(Brown et al., 2011). Further to this, while the DSE is used to assess census

under-coverage, adjustment for over-coverage, resulting e.g. from double counting

of people or households, is also necessary. The ONS applies a series of adjustments

based on the estimated census over-count and on known statistics, such as sex ra-

tios in age groups, derived from administrative records. Specifically, the following

adjustments are applied: (Office for National Statistics, 2012)

1. sample balance adjustment

This adjustment is applied if the sample is considered unbalanced. This

is assessed based on a comparison between census dummy questionnaires,

i.e., questionnaires filled in by census enumerators if no response from a

household is obtained and the response rates estimated through the DSE. A

sample is considered unbalanced if the two rates are significantly different.
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2. DSE bias adjustment by age-sex group and HTC

Adjustment for person and household level bias is applied based on social

surveys and the Alternative Household Estimate, which is a national register

of households created by compiling several administrative resources, such as

the NHS Patient Register, the Department for Work and Pensions Customer

Information System, English School Census, Welsh School Census and the

Higher Education Statistics Agency data.

3. census over-count adjustment

The over-count adjustment corrects for the fact that some people or house-

holds may be enumerated more than once. This might be because of dupli-

cate returns for the same person, people being counted in the wrong location,

or erroneous returns.

4. national level adjustment for residual bias

The total population estimates by sex and age groups at the national level

are compared to the sex ratios available from administrative sources. A

national level adjustment is then applied to account for any residual bias if

the population totals are implausible.

4.2.3 Population size and census coverage estimation

The second stage of estimation consists of producing Estimation Area estimates

based on the values of D̂SEN and the census counts observed for the sampled

postcodes. First, the census coverage, defined as the ratio of the census count

to the population size (D̂SEN), is estimated. This is done by fitting a straight

regression line (with no intercept) to the age-sex specific values of D̂SEN and

census counts for the sampled postcodes. Second, the population size in age-sex
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groups is estimated through a ratio estimator (Abbott, 2009).

After the population estimates are obtained for each Estimation Area, a synthetic

small area estimator (e.g. Rao, 2015) is used to obtain population estimates for

each Local Authority (Brown et al., 2011). Finally, the national database is ad-

justed through imputation for the estimated under-count (Abbott, 2009).

After the 2001 census, symmetric confidence intervals for census coverage were ob-

tained through the Jacknife variance estimator (Kabzinska et al., 2017). Following

the 2011 census, symmetric bootstrap bias corrected and accelerated confidence

intervals (Efron, 1987) were used (Kabzinska et al., 2017). Confidence interval

half-widths were then published, even though some of them resulted in the upper

bound larger than 1.

Note that in any estimates produced from the census coverage survey there are

two sources of variance. First, there is the sampling variance associated with the

fact that Estimation Area level estimates are obtained from a sample of postcodes.

Second, there is the variance of the dual system estimator. This variance is as-

sociated with the fact that the probabilities of responding in the census and in

the census coverage survey are random quantities. The current methodology for

estimation of census coverage treats the dual system estimates of the population

size as fixed quantities, i.e., the confidence intervals are constructed based on the

estimate of the sampling variance in the census coverage survey. We follow this

approach in this work, although we acknowledge that further development which

would account for this uncertainty would be desirable.

4.3 Applying empirical likelihood to census coverage

In this chapter we consider an empirical likelihood approach to census coverage

estimation. We focus specifically on the second step in the current approach, when
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the postcode level census coverages are used to produce census coverage estimates

at the Estimation Area level. In line with the current approach, we treat the DSE

population sizes in sampling units (postcodes) as fixed, non-random quantities.

We also assume that any adjustments have already been applied to the DSE. We

do not extend the method to allow for small area estimates at the Local Authority

level. This would require some further theoretical development in the empirical

likelihood methodology. We therefore do not claim that the entire methodology

for population size estimation can be substituted with the presented empirical

likelihood method. Instead, we suggest that the empirical likelihood method could

be used to produce the confidence intervals for census coverage estimates at the

Estimation Area level, which are currently reported as half-widths and occasionally

exceed 1.

In line with the design described in chapter 4.2.1, we consider T populations of

interest, called Estimation Areas and denoted Ut, where t = 1, . . . , T . Each Esti-

mation Area Ut is divided into H disjoint strata h = 1, 2, ..., H. An independent

sample St;h, of size nt;h, of output areas is taken from each of the H strata. Let St

be the collection of labels of the selected output areas; that is St = ∪Hh=1St;h. Let

πt;h;i denote the selection probability for output area i in stratum h. Within each

of the selected output areas, nt;h;i postcodes are selected with unequal probabili-

ties πt;h;i;k, where k is the postcode index. Let St;h;i be the collection of labels of

the postcodes selected in output area i in stratum h. To simplify the notation, we

drop the stratum index h in the following text wherever the stratum membership

can be ignored.

Suppose that for every sampled postcode k, we know the DSE estimate of the

population size, denoted by yt;i;k, and the number of individuals enumerated in

census, denoted by xt;i;k. Suppose also that for every output area i, the number

of individuals enumerated in the census, denoted by xt;i, is known.

Let θUt denote the parameter of interest, that is, the census coverage at the Es-

timation Area level. We define θUt as the ratio of the census count to the dual
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system estimate of the population size. The parameter θUt can be expressed as

the unique solution of the population estimating equation:

∑
i∈Ut

g(yt;i, xt;i, θUt) = 0, (4.2)

where

g(yt;i, xt;i, θUt) = xt;i − θUtyt;i (4.3)

and yt;i denotes the population size in output area i ∈ Ut. The value yt;i is not

assumed to be known.

The design-based empirical likelihood function is defined as: (Berger and De La

Riva Torres, 2016)

`(mt;i) =
∑
i∈St

log(mt;i), (4.4)

where the mt;i are unknown scale loads associated with each output area.

We propose to use the following constraints on the mt;i:

1. sample size constraint :

∑
i∈Sth

mt;h;i πt;h;i = nt;h, h = 1, 2, ..., H, (4.5)

2. unknown parameter constraint :

∑
i∈St

mt;i ĝ(yt;i, xt;i, θt) = 0· (4.6)

Note that constraint (4.5) is defined at the stratum level, while constraint (4.6)

is defined at the sample level. Constraint (4.5) is a typical constraint used in the

design-based empirical likelihood methodology under unequal probability sam-
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pling designs (see chapter 2 and (Berger and De La Riva Torres, 2016)). Con-

straint (4.6) includes the unknown population parameter θt. The ĝ(yt;i, xt;i, θt) is

an estimate of g(yt;i, xt;i, θt) for each output area; that is,

ĝt;i(yt;i, xt;i, θt) = n−1t;i
∑
k∈St;i

π−1t;i;k g(yt;i;k, xt;i;k, θt;i), (4.7)

where

g(yt;i;k, xt;i;k, θt;i) = xt;i;k − θt;i yt;i;k· (4.8)

Constraint (4.6) is based on the ultimate cluster approach (Hansen et al., 1953).

Using this approach for empirical likelihood inference in complex sampling designs

has been proposed by Oguz-Alper and Berger (2016).

As it was discussed in the previous chapters, empirical likelihood can handle ad-

ditional calibration (Deville and Särndal, 1992a) constraints based on a known

population level characteristic, e.g. a total or a mean of a variable which is also

measured for the sampled units. A natural variable which can be used to construct

a calibration type constraint is the census count for each output area. Note that

in order to define this constraint we only need to know the total or mean census

count in Estimation Area Ut and the census counts within the sampled output

areas.

We denote the known mean number of persons enumerated in the census in Es-

timation Area Ut by ΨUt . Parameter ΨUt can be expressed as the solution of the

following estimating equation:

∑
i∈Ut

f(xt;i,ΨUt) = 0, (4.9)

where f(xt;i,ΨUt) = xt;i −ΨUt .
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Translating (4.9) into a sample-level constraint gives

∑
i∈St

mt;i f(xt;i,ΨUt) = 0· (4.10)

Constraint (4.10) is optional, but it is likely to improve precision of the estimator

of the target variable. Note that we use the raw (unadjusted) census count in the

constraint. Therefore, while the census count itself may be impacted by under-

enumeration, the calibration constraint is not, in that the parameter ΨUt is indeed

the population total of values xt;i.

Let m̂∗t;i(θt) be the vector of values which maximise expression (4.4), for a given

vector θt, under mt;i > 0 and constraints (4.5), (4.6) and (4.10). The maximum

empirical likelihood point estimator of θNt is defined as the value θ̂t which max-

imises the following function:

`(θt) =
∑
i∈St

log{m∗t;i(θt|ΨUt)}· (4.11)

Following an argument presented by Berger and De La Riva Torres (2016), we

notice that the estimator θ̂t is also given by the unique solution of the sample

estimating equation:

Ĝ(θ) =
∑
i∈St

m̂t;i(ΨUt)ĝ(yt;i, xt;i, θt) = 0, (4.12)

where the vector {m̂t;i(ΨUt) : i ∈ S} maximises function (4.4) under constraints

(4.5) and (4.10) (see chapter 2.5 for further explanation).

Following (4.7) and (4.8), the solution θ̂t can be derived as:

θ̂t =

 ∑
i∈St

m̂t;in
−1
t

∑
k∈St;i

π−1t;i;kxt;i;k


 ∑

i∈St

m̂t;in
−1
t

∑
k∈St;i

π−1t;i;kyt;i;k


−1

·(4.13)

The design-based empirical likelihood ratio statistic is defined as (Berger and De
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La Riva Torres, 2016):

r̂(θt) = 2 {`(m̂)− `(θ|ΨUt)} , (4.14)

where `(m̂) =
∑

i∈St
log{m̂t;i(ΨUt)} and `(θ)

∑
i∈St

log{m̂∗t;i(θt|ΨUt)}. Note that

when a benchmark constraint is used,function (4.14) depends also on the known

parameter ΨUt . The statistic (4.14) is pivotal and follows a χ2 distribution with

one degree of freedom asymptotically when θt = θUt (Berger and De La Riva Tor-

res, 2016). We use the empirical likelihood ratio statistic to construct confidence

intervals for the parameter θt by taking the values θt such that r(θt) < χ2
df=1;α,

where χ2
df=1;α is the upper α-quantile of the χ2 distribution with 1 degree of free-

dom.

4.4 Numerical illustration

In this chapter we discuss results of applying the proposed approach to the 106

Estimation Areas enumerated in the 2011 England and Wales census. For compar-

ison, we also constructed symmetric confidence intervals for the census coverage

based on three variance estimation approaches: linearisation, jackknife and Canty

and Davison’s (1999) bootstrap with 100 replicates.

We estimate the census coverage in 35 age-sex groups within each of the Estimation

Areas. The sample sizes within each Estimation Area by age-sex group are quite

small, ranging from 17 to 118 with an average of 44.5 output areas. The estimated

census coverage ranges from 72% to 100%, with several estimates very close to

100%. No auxiliary information is used.

The main purpose of this numerical study was to confirm that the empirical like-

lihood approach yields confidence intervals within the desired range and to see

how the empirical likelihood confidence intervals compare to the symmetric confi-
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dence intervals. The study confirmed that indeed, empirical likelihood confidence

intervals never exceed 1. This can be seen in Figure 4.2, which shows 95% em-

pirical likelihood confidence intervals obtained for different Estimation Areas and

age-sex groups. For confidentiality reasons, the age-sex groups are not named on

the graph and are labelled by meaningless consecutive integers.

Figure 4.2: Empirical likelihood 95% confidence intervals for the census coverage
in different Estimation Areas and age-sex groups.

Many of the empirical likelihood confidence intervals are asymmetric. Figure 4.3

shows some examples of empirical likelihood confidence intervals and symmetric

confidence intervals calculated for the same groups based on the jackknife variance

estimator. We can see some cases when the upper bound of the symmetric confi-

dence interval exceeds 1, while the empirical likelihood confidence interval remains

within the (0, 1) limits. The lower bounds of the empirical likelihood confidence

intervals are sometimes lower than the lower bounds of the symmetric confidence

intervals. In these cases the empirical likelihood confidence interval is also clearly

asymmetric. Overall, the average width of empirical likelihood confidence intervals

is similar to the average width of the symmetric confidence intervals.
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Figure 4.3: Empirical likelihood (EL) and Symmetric (jackknife) (SYM) 95%
confidence intervals for the census coverage in selected age-sex groups.

Figure 4.4 shows some examples of the empirical likelihood ratio function (4.14)

plotted as a function of θ, based on data from the 2011 England and Wales census.

The horizontal lines correspond to the threshold χ2
α = 3.84. The vertical lines show

the point estimate obtained at the minimum of the log-likelihood ratio function.

The shape of function (4.14) depends on the distribution of the sample data, the

sampling weights, the constraints imposed by the parameter space and, if used,

any additional constraints. The functions presented on the graphs in the top row of

figure 4.4 give highly asymmetric confidence intervals, with the ’upper’ parts much

shorter than the ’lower’ parts. The function presented in the bottom left corner

yields an approximately symmetric confidence interval. The function presented in

the bottom right corner gives a slightly asymmetric confidence interval, with the

’upper’ part longer than the ’lower’ part.
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Figure 4.4: Examples of the log-likelihood ratio plotted as a function of the point
estimate for census coverage in some selected age-sex groups.

4.5 Simulation study

Applying empirical likelihood to real data allows us to see how the empirical

likelihood confidence intervals are shaped in a realistic situation. However, in

order to assess the coverage of the confidence intervals, we need to apply the

proposed method to a population with a known value of the parameter of interest.

Therefore in this chapter we evaluate the performance of the proposed method in

a series of simulation studies on synthetic populations. The simulation is designed
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to resemble the design described in chapter 4.2.1. We use the sample data from

the 2011 census coverage survey together with the population sizes as enumerated

in the 2011 England and Wales census. This dataset is used to create a number

of synthetic populations which are then used to evaluate the performance of the

proposed empirical likelihood estimator. Note that the synthetic populations are

not aimed to represent the true composition of the Estimation Areas and should

not be interpreted as such. We select four Estimation Areas of varying census

coverage to create synthetic populations: Kensington and Chelsea; Southwark;

Cornwall and Isles of Scilly; and Merseyside. The 2011 census coverages of these

Estimation Areas are respectively 85.4%, 87.2%, 93.6% and 93.2%. Within each

Estimation Area, there are 35 age-sex groups which also vary hugely in terms of

census coverage.

Modelling a synthetic population based on the sample data has to follow two

steps: creating a number of synthetic postcodes and creating synthetic output

areas. First, within each output area, ten synthetic postcodes are generated. We

generate three variables: the number of people enumerated in the census only, the

number of people enumerated in the census coverage survey only and the number of

people enumerated in both census and census coverage survey are generated from

normal distributions with means and standard deviations equal to those observed

in the actual sample of postcodes. The generated values are then rounded to

integers, as they represent numbers of people. Due to the random procedure of

generating values, it is possible that a postcode with no people enumerated in

either census or census coverage survey is generated. To avoid this, any 0 values

are replaced by 1. After the first step, our synthetic population has only as many

output areas as were available in the sample, but each of the output areas consists

of exactly ten synthetic postcodes. In the second step, synthetic output areas are

created. Each of the output areas obtained in step 1 is replicated 100 times. Then

values of each of the variables are modified by adding a random noise generated

from a normal distribution with mean and standard deviation set to 3% of the

mean and standard deviation observed in the output area. Note that the random
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error is always positive. This creates populations with slightly higher counts than

in the original sample data, but allows us to avoid problems with very low counts

at stratum level. We do not change the stratifying variables, that is, the synthetic

output areas have the same hard to count index and the same local authority as

the output area that was used to generate them.

Following the sampling design of the census coverage survey, the synthetic Esti-

mation Areas are stratified by the hard to count index and local authority. Then

two stage cluster sampling without replacement is used, with output areas as the

primary sampling units and postcodes as the secondary sampling units. In each of

the strata, a sample of 5% of the output areas is selected by simple random sam-

pling without replacement. Within each of the sampled output areas, 5 postcodes

are selected by simple random sampling without replacement. Selecting 50% of

postcodes corresponds with the design of the census coverage survey.

We select 1,000 samples in each of the synthetic populations. Census coverage, as

well as the lower and upper bounds of the confidence intervals for the census cov-

erage, are estimated from each of the samples. We use four methods of obtaining

confidence intervals. First, we apply the proposed empirical likelihood methodol-

ogy and obtain empirical likelihood confidence intervals, with a benchmark con-

straint on the mean census count. Second, we calculate symmetric confidence

intervals around an estimator of the ratio of census count and population size us-

ing three methods of variance estimation: linearisation, Jackknife and Canty and

Davison’s (1999) bootstrap with 100 replicates. For computation of the symmetric

confidence intervals of the ratio estimator, we use the svyratio function from the

survey package (Lumley et al., 2004; Lumley, 2016). The bootstrap method used

draws a sample of PSUs (Output Areas) from each stratum (see (Lumley and

Lumley, 2018) and (Preston, 2009) for details). Alternatively, Preston’s (2009)

multi-stage rescaled bootstrap method could be used.

Figures 4.5, 4.6, 4.7 and 4.8 show the observed coverage level of confidence intervals

of the four different methods for census coverage in different age-sex groups within
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the tested Estimation Areas. The plots give an overview of how close the empirical

coverage of confidence intervals obtained in various groups is to the nominal level

of 95%.

All of the methods give confidence intervals with acceptable coverage levels, con-

sidering the relatively small sample sizes, complex sampling design and relatively

high variability of the parameter of interest. All confidence intervals suffer from

under or over-coverage in several age-sex groups. The empirical likelihood confi-

dence intervals behave similarly to the symmetric confidence intervals and in some

cases have coverage closer to the nominal level. For example, in Figure 4.5, the

minimum level observed for the empirical likelihood confidence interval is 92.5%.

For the other approaches, the level observed can be as low as 90%. The empir-

ical likelihood confidence intervals are also, on average, marginally shorter than

the symmetric confidence intervals, with average length of 5.33% for empirical

likelihood intervals and between 5.66% and 5.76% for symmetric intervals, even

if they are truncated at 1. Figures 4.9 - 4.12 show the average length of confi-

dence intervals obtained in each age-sex group of the four synthetic populations

considered.

Figure 4.5: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthIL06KENS
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Figure 4.6: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthIL09SOUT

Figure 4.7: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthSW03CORN
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Figure 4.8: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthNW06MERS

Figure 4.9: Average length of confidence intervals in various age-sex groups, in
population synthIL06KENS
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Figure 4.10: Average length of confidence intervals in various age-sex groups, in
population synthIL09SOUT

Figure 4.11: Average length of confidence intervals in various age-sex groups, in
population synthSW03CORN
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Figure 4.12: Average length of confidence intervals in various age-sex groups, in
population synthNW06MERS
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4.6 Conclusions

The main practical advantage of the empirical likelihood confidence intervals in

relation to census coverage estimation, or binomial parameter estimation more

generally, is that they do not exceed 1. It is worth noting that the numerical

algorithm used to obtain empirical likelihood weights does not involve any explicit

constraints on the upper bound of the confidence intervals. Instead, the empirical

likelihood ratio function naturally yields confidence intervals and point estimates

lower than 1. It is of course possible to trim the symmetric confidence intervals

at 1, which does not influence their asymptotic coverage, as the true parameter

value can never exceed 1. However, the lower bounds of the symmetric confidence

intervals might then still remain too high, as they do not account for different levels

of variability of the data on the two sides of the point estimate. The empirical

likelihood confidence intervals are based on the likelihood ratio function which is

defined by the shape of the sample data. They will, therefore, correctly account

for larger variability below the point estimate than above it, if this is the case.

Empirical likelihood allows to easily incorporate calibration type constraints, which

might be constructed using an arbitrarily chosen function of the known parame-

ters. In particular, the function can be selected so as to maximise the correlation

between the calibration variable and the parameter of interest.

The numerical simulations presented in the previous chapter show that empirical

likelihood confidence intervals indeed remain within the range of the parameter of

interest. The coverage of empirical likelihood confidence intervals is comparable

to the coverage of the tested symmetric confidence intervals. The empirical likeli-

hood confidence intervals also have comparable width to the symmetric confidence

intervals. However, we can see a few examples when the confidence intervals are

clearly asymmetric and the lower bound of the empirical likelihood confidence

interval is lower than that of the symmetric confidence interval. This suggests

that empirical likelihood confidence intervals might be well suited for generation
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of confidence intervals when variables are highly skewed.

The approach presented in this paper was designed specifically as an alternative

for the confidence interval estimation at the census coverage estimation stage in

the current coverage estimation procedure. That is, it is applied to the population

sizes estimated through DSE in order to obtain population level estimates of census

coverage. In line with the current approach, it treats the dual system estimates

as fixed. Estimating the uncertainty around the DSE estimates and incorporating

it into the calculation of the empirical likelihood confidence intervals would be an

interesting direction of future research.

We should note that there are multiple alternative ways of estimating the popula-

tion size than the Dual System Estimator. For example, Chipperfield et al. (2017)

describe a method applied by the Australian Bureau of Statistics, where the pop-

ulation size is estimated through a generalized regression type model, called the

PREG (population regression), accounting for over and under coverage in cen-

sus and considering non-response. Zhang (2015) gives a comprehensive overview

of modelling approaches for undercoverage and overcoverage in registers. More-

over, triple system estimators, where administrative registers are used alongside

a census and a post-enumeration survey, have been proposed. This allows the de-

pendence between response probabilities in the census and census coverage survey

to be modelled (see (Baffour et al., 2013) and (Griffin, 2014)). Extending empirical

likelihood to work with such methods would require considerable developments,

especially if any modelling was involved.

Finally, empirical likelihood is of course not the only method which gives asym-

metric and range-preserving confidence intervals. Investigating the properties of

other such methods, for example bootstrap-based approaches, in the context of

estimation of census coverage, would be an interesting future research direction.
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Chapter 5

Numerical aspects of empirical likelihood

Empirical Likelihood estimation procedure involves numerical operations at sev-

eral stages. Specifically, numerical optimisation (finding minimum or maximum

of a function) and root finding methods are applied in order to:

1. obtain the vectors of adjusted weights m̂i(ϕU ) and m̂?
i(θ,ϕU ), such that the

constraints based on sample data and population parameters are met,

2. obtain the point estimate θ̂,

3. obtain the lower and upper bounds of confidence intervals, which requires

evaluating the log-likelihood ratio function for multiple values of the param-

eter of interest θ.

In this chapter we discuss the computational aspects of these numerical opera-

tions. We consider the three computational tasks listed above in a general way,

so that the discussion presented here is relevant to all three empirical likelihood

applications discussed in the previous chapters and to design-based empirical like-

lihood estimation in general. We keep in mind the specific conditions imposed by

the problems discussed in chapters 2, 3 and 4, such as a typically large dimension

of the constraint matrix or confidence interval bounds laying close to the boundary

of the parameter space.
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5.1 Obtaining the vectors of adjusted weights m̂i(ϕU) and

m̂?
i(θ,ϕU)

Finding the adjusted weights m̂i(ϕU ) is, in principle, a task of optimisation under

constraints. The task consists of finding a vector of values m̂i(ϕU ) which max-

imise the value of a function `(m) and are such that a constraint of the form

m>c> = C> holds, where c is a matrix and C is a column vector. These

adjusted weights m̂i(ϕU ) might be of interest themselves, but are also neces-

sary to obtain point estimates and to evaluate the log-likelihood ratio function

r̂(θ|ϕU ), which is required for calculation of confidence intervals. The vector of

adjusted weights m̂?
i(θ,ϕU ), which maximises `(m) under the extended system of

constraints m>c?(θ)> = C∗>, where c is a sub-matrix of c?(θ) and C is a sub-

vector of C∗, is found in an analogous way. We explain the numerical aspects of

this estimation process using m̂i(ϕU ) as an example.

Following Berger and De La Riva Torres (2016), Wu (2004a) and other authors, we

use the Lagrange’s multipliers method to solve the optimisation problem, which is

therefore translated into solving a system of non-linear equations of the following

general form:

∑
i∈S

(λ>ci)
−1ci −C = 0, (5.1)

where λ is a vector of Lagrange’s multipliers. The equation (5.1) is solved with

respect to λ. The number of unknowns (the Lagrange’s multipliers) is the same

as the dimension of vector C and in practical applications can vary between 1

and a few hundreds. The equation (5.1) is easily derived if we write the Lagrange

function for maximization of `(m) in the following form:

Q(λ) =
∑
i∈S

log(mi)− λ>(
∑
i∈S

mici −C)· (5.2)
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We find the adjusted weights by solving the following equation:

dQ

dmi

=
1

mi

− λ>ci = 0, (5.3)

which gives

m̂i(ϕU ) = (λ>ci)
−1· (5.4)

Equation (5.1) is obtained after substituting (5.4) in the following equation:

dQ

dλ
=
∑
i∈S

m̂i(ϕU )ci −C = 0· (5.5)

Equation (5.1) is often solved through application of a modified version of the

Newton - Raphson algorithm. The k + 1-th iteration of the Newton-Raphson

algorithm for solving the system of non-linear equations (5.1) consists of taking

λk+1 = λk − {Q′(λk)}−1Q(λk), (5.6)

where Q′(λk) is the Jacobian of Q(λ) calculated at λ = λk.

The Jacobian Q′(λk) is a p by p matrix, where p is the dimension of λ, with the

(j;h)-th element equal to

J(j;h) =
δqj(λ)

δλh
(5.7)

=
∑
i∈S

ci;j
δ

δλh
(λ1ci;1 + λ2ci;2 + ...+ λpci;p)

−1 (5.8)

= −
∑
i∈S

ci;jci;h
(λ1ci;1 + λ2ci;2 + ...+ λpci;p)2

, (5.9)

where qj(λ) is the j-th element of vector (5.2), λj is the j-th element of the vector

of Lagrange’s multipliers λ and ci;j is the element in the i-th row and j-th column

of the matrix c.

In practice, it is not necessary to invert the Jacobian Q′(λk). Instead, a linear
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equation

Q(λk) +Q′(λk)(λk+1 − λk) = 0 (5.10)

is solved with respect to δ = λk+1 − λk and then λk+1 = δ − λk is calculated.

The algorithm (5.6) converges locally with the quadratic rate. One of the possible

modifications of the Newton-Raphson algorithm which ensures global convergence

consists of decreasing the step size by multiplying it by a factor q, where 0 < q < 1

(Polyak, 1987).

The approach consisting of modifying the step size in the Newton - Raphson algo-

rithm was applied in statistics to ensure that the solution to equation (5.1) yields

non-negative weights. This method is often referred to as the Polyak correction.

In particular, Chen et al. (2002) proposed an algorithm which adjusts the step in

the Newton - Raphson method by a parameter qk = k−
1
2 , where k is the number of

the current iteration. If the solution found in the k-th step yields negative weights,

the parameter q is adjusted to qk+1 := qk/2 and the condition is checked again.

These steps are repeated until the non-negativity condition is met. Chen et al.

(2002) further extended this method to accommodate weights range restrictions

in presence of benchmark constraints, under pseudo empirical likelihood. This

is obtained by iterative relaxation of benchmark constraints until the obtained

weights are within a desired range.

The algorithm of Chen et al. (2002) was used e.g. by Wu (2004a) to find pseudo

empirical likelihood weights in two samples context and by Berger and De La

Riva Torres (2016) to obtain design-based empirical likelihood weights from single

sample complex designs. Wu (2004b) extended the algorithm of Chen et al. (2002)

to pseudo empirical likelihood under stratified sampling.

The algorithms of Polyak (1987) and Chen et al. (2002) are guaranteed to converge

to a unique solution, if such a solution exists. The Newton-Raphson algorithm, as

well as its both adjustments described above, require calculation of the Jacobian

(5.7) at each iteration. For large parameter sizes and large number of constraints
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this becomes computationally expensive. In common survey sampling settings,

the dimension of the parameter of interest is likely to be large, as is the number

of benchmark constraints. If stratification is used, the size of the matrix of con-

straints is further increased by a design constraint created for every stratum. The

computational complexity might be reduced by use of a quasi-Newton method

instead of the Newton-Raphson algorithm. The quasi-Newton methods were in-

vented to avoid calculation of the Jacobian at every step. A range of methods

have been proposed. No method is considered to be the best for all purposes.

Algorithms which perform well in some settings are known to perform poorly in

others. In fact, as stated in the famous no free lunch theorem for optimization

(Wolpert and Macready, 1997), a general-purpose universal optimisation strategy

is impossible (Ho and Pepyne, 2001). For instance, there often is a trade-off be-

tween the speed of convergence and the sensitivity to poor choices of the starting

point.

5.2 Obtaining the point estimate θ̂

Obtaining the point estimate for the parameter of interest θ requires finding the

value θ̂ which minimises the log-likelihood ratio function defined as r̂(θ|ϕU ) =

2 {`(m̂)− `(θ|ϕU )}, where `(m̂) =
∑
i∈S

log(m̂i(ϕU )) and `(θ|ϕU ) =
∑
i∈S

log(m̂?
i(θ,ϕU )),

for a given vector m̂i(ϕU ). The estimates m̂i(ϕU ) do not depend on θ and only

need to be calculated once for given sample data and a system of constraints. The

vector of values m̂?
i(θ,ϕU ) depends on θ in that it is a result of maximising `(θ|ϕU )

under a system of constraints which include θ.

The parameter estimate θ̂ can be found in two ways. First, a numerical opti-

misation algorithm may be applied directly to the empirical log-likelihood ratio

function r̂(θ|ϕU ). A simpler solution, however, is found by translating this opti-

misation into a root finding problem. Functions `(m̂) and `(θ|ϕU ) differ in the
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additional constraint imposed on the admissible values of the vector of adjusted

weights m̂?
i(θ,ϕU ). This constraint takes the general form

∑
i∈S

m̂?
i(θ,ϕU ) gi(θ) = 0ν · (5.11)

Berger and Kabzinska (2017) showed that the value θ̂ that is the unique solution

of the equation

Ĝ(θ) =
∑
i∈S

m̂i(ϕU ) gi(θ) = 0ν , (5.12)

is also the value that maximises `(θ|ϕU ) and minimises r̂(θ|ϕU ) (see chapter 2.5

for details). This means that, in practice, it is not necessary to estimate the values

m̂?
i(θ,ϕU ) in order to obtain the point estimate θ̂, as this can be obtained from

equation (5.12) which only contains m̂i(ϕU ).

In simple cases, e.g. when θ is a total, a mean or a ratio, for a given vector of

adjusted weights m̂i(ϕU ), equation (5.12) can be solved analytically. Otherwise,

e.g. when θ is a vector of quantiles, a root finding algorithm has to be applied to

solve (5.12). The complexity of this task depends on the type of the parameter θ

used.

Note that if the function r̂(θ|ϕU ) is minimised directly, the vector of adjusted

weights m̂?
i(θ,ϕU ) has to be estimated for each candidate value of θ̂. This is much

more computationally demanding than solving the estimating equation (5.12).

5.3 Obtaining the lower and upper bounds of confidence

intervals

Let us consider constructing a confidence interval for a scalar parameter of interest

first. The upper and lower bounds of an empirical likelihood confidence interval
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are the values of the parameter of interest θ such that r̂(θ|ϕU ) = χ2, where χ2

is the limiting value from the χ2 distribution. Finding these two points requires

evaluating r̂(θ|ϕU ) for different candidate values θ̂ in the neighbourhood of the

lower and upper bounds, so that the equation

r̂(θ|ϕU )− χ2 = 0 (5.13)

is solved with respect to θ. The function r̂(θ|ϕU ) is convex. However, this is not a

straightforward root finding problem. In fact, it requires solving two nested root

finding problems. Evaluation of r̂(θ|ϕU ) for a specific value of θ requires finding

the adjusted weights m̂?
i(θ,ϕU ) and comparing them with the previously estimated

values m̂i(ϕU ) (see chapter 5.1). Note that while m̂i(ϕU ) do not depend on the

parameter of interest and hence only need to be estimated once (i.e., for a given

sample and system of benchmark and consistency constraints, there is one vector

m̂), the vector m̂?
i(θ,ϕU ) vary in function of θ. Therefore, for every candidate

value θ, the equation ∑
i∈S

m̂?
i(θ,ϕU )c?i(θ)−C∗ = 0 (5.14)

has to be solved. Finding the vector of weights m̂?
i(θ,ϕU ) for different candidate

values of θ is the most computationally expensive part of empirical likelihood

estimation. In particular, when the candidate value of the parameter θ differs

substantially from the true parameter value θU , solving (5.14) may require many

iterations. Note that for the solution m̂?
i(θ,ϕU ) to exist, we assume that θ and

ϕU are such that C? is an inner point of the convex hull formed by the sample

observations {c?i(θ) : i ∈ S} (see e.g. chapter 2.4). Therefore, if a candidate value

θ that is outside of the convex hull formed by the sample observations is taken,

the solution will not be found at all. This can occur in practice e.g. in the census

coverage estimation problem discussed in chapter 4, when the upper bound of the

confidence interval is close to 1.

Suitable selection of the candidate values of θ is crucial for the performance of

the algorithm. The search space has to be sufficiently larger than the actual

153



confidence interval so that the bounds can be found, but ideally not too much

larger as the farther we get from the confidence interval, the more difficult the

evaluation of r̂(θ|ϕU ) is. Experience from obtaining the confidence intervals for

different problems discussed in the earlier chapters suggests that restricting the

search space on the inner side of the confidence interval (i.e., not searching in the

closest neighbourhood of the point estimate), does not contribute much to the

improvement in performance, because evaluating r̂(θ|ϕU ) in this area is typically

fast.

The problem of finding the confidence interval bounds is easier than a general case

of finding roots of a function in that we know that we are searching for two points

which lay on both sides of the point estimate. Therefore it is natural to take the

point estimate as the starting point and search in both directions from it. At

each side of the point estimate, r̂(θ|ϕU ) is a strictly increasing function. It can,

therefore, be evaluated for a selection of parameter values and then interpolated in

between, e.g. by splines. Because we only need precise values in the neighbourhood

of the confidence interval bounds, it is reasonable to adjust the distance between

the points at which the log-likelihood ratio function is evaluated relative to how

far we are from the bound. In most cases, bisection can be used to find the

confidence interval bounds. However, bisection requires evaluating points that are

outside of the confidence intervals. In some particularly difficult cases, such as the

census coverage example, this might be computationally difficult, that is, finding

the values m̂?
i(θ,ϕU ) for values of θ substantially different from θ̂ might require a

very large number of iterations.

In such cases, we propose to use algorithm (1) described below. The algorithm is

loosely inspired by bisection. We take the point estimate as the starting point and

evaluate r̂(θ|ϕU ) at each step, until the value of r̂(θ|ϕU ) is larger than the limiting

value from the χ2 distribution. Then the step is decreased and the search continues

in the opposite direction, again until the value of r̂(θ|ϕU ) is at the opposite side

of the limiting value from the χ2 distribution. This procedure continues until
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the parameter value which gives a value of r̂(θ|ϕU ) close enough to the limiting

value from the χ2 distribution is found. The main difference between the proposed

method and bisection is that we avoid evaluating the log-likelihood ratio function

r̂(θ|ϕU ) for values far outside of the confidence interval, where this might be slow

or impossible. This is at the expense of evaluating the function at more points

within the confidence interval.

The initial step value might be adjusted for the particular problem. If the initial

step is too large, it might be difficult to obtain the vector of values m̂?
i(θ,ϕU )

for such an extreme parameter value. In such a case decreasing the step size

should help. Too small step size will result in slow convergence. For well behaved

functions r̂(θ|ϕU ), a larger step might be selected and spline interpolation might

be used to interpolate function values between these points. This is often faster

than evaluating r̂(θ|ϕU ), especially if the dimension of the constraints matrix is

large.

Algorithm 1 Finding confidence interval bounds

1. Start with θ̆k = θ̂ and δ = θ̂10−4, τ = 1, ε = 2.2210−16

2. While |r̂(θ̆k|ϕU )− χ2| > 0 + ε:
(a) If r̂(θ̆k|ϕU ) > χ2, then τ = (−1)τ ,
(b) If r̂(θ̆k−1|ϕU ) > χ2 > r̂(θ̆k|ϕU ) or r̂(θ̆k−1|ϕU ) < χ2 < r̂(θ̆k|ϕU ), then

δ = δ/2,
(c) For upper bound: θ̆k+1 = θ̆k + τδ, for lower bound: θ̆k+1 = θ̆k − τδ,
(d) k = k + 1

If the parameter of interest θU is multidimensional, but the components are in-

dependent, i.e., each scalar parameter of interest is entirely defined by a single

estimating equation, which does not contain any unknown parameters, a confi-

dence interval for each scalar parameter can be obtained separately, by selecting

the relevant estimating equation. This will yield a number of confidence intervals

of which each has the nominal coverage and which do not depend on each other.

For some applications a joint confidence region for a multidimensional parameter

might be of interest. A joint confidence region has joint coverage equal to the

nominal level. This confidence region can be found by applying the same principle
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as for the search of confidence interval bounds. However, in this case we would

be searching for a contour in a space rather than for two points on one axis. This

makes the task much more demanding computationally.

5.4 Simulation study: execution times

In this section we show results of a small simulation study evaluating the execu-

tion times for calculation of empirical likelihood point estimates and confidence

intervals in samples of different sizes. We use the same population as in chapter

2.12.3. We take domain (ii) Distribution, hotels and restaurants as the example

test case. The parameters of interest, auxiliary variables and other conditions are

the same as in chapter 2.12.3, that is, we select two independent samples and

calculate an estimate of a total in he presence of a benchmark constraint and an

alignment constraint.

Table 5.1 shows the distribution of the user components of the execution times

for calculation of point estimates and confidence intervals for different sizes of

the samples, obtained in 100 iterations. The system components of the execution

times were negligible compared to the user times. A garbage collector operation

was performed before calculation of each estimator. For comparison, we show the

user execution times for calculation of the single sample calibration estimator,

the composite regression estimator and the pseudoempirical likelihood estimator

and for calculation of confidence intervals based on the variance estimator for the

composite regression estimator. The pseudoempirical likelihood relies on a similar

variance estimation method, therefore we expected results to be the same. The

single sample calibration estimator operates on one sample and only considers the

benchmark constraint, while all the other estimates use pooled data from both

samples and consider both the benchmark and the alignment constraint.

The execution times of each of the method depend on several factors which are
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difficult to control in a simulation study and vary between machines. Therefore

results of this simulation should be treated as indicative only. The composite

regression estimator and the calibration estimator require performing operations

(adding, subtracting, multiplying) on large matrices. The speed of these opera-

tions is likely to depend on the available RAM and on the implementation of the

matrix operations used in the software. The calculation of the point estimates

has been implemented using the base R functions. This results in typically large

operation times. The calculation of variance of the composite regression estima-

tor was implemented using the Matrix package (Bates, 2018), which provides much

more time efficient matrix storage and manipulation. This resulted in considerably

shorter execution times.

The empirical likelihood and pseudoempirical likelihood methods require running a

numerical optimisation in order to calculate the adjusted weights. Time necessary

for the optimisation will very depending on the algorithm used, the starting point,

the required precision, the particular sample data and the shape of the convex hull

defined by the constraints. Therefore these times are likely to be much more varied

than the calculation times of the regression-type estimators. Indeed, we can see

that the coefficients of variation for these methods are large.

The execution times understandably increase with the growing size of the sample.

We also notice that the average execution time of the calculation of empirical like-

lihood confidence intervals is much higher than the average execution time for the

calculation of the empirical likelihood point estimate. This is understandable, be-

cause obtaining confidence intervals requires calculating the adjusted weights for

various candidate values of the parameter of interest, as it was explained in earlier

chapters. The execution times for the calculation of the variance of the composite

regression estimator are lower than the times for calculation of the point estimates

because of the differences in implementation. The calculation of the composite re-

gression point estimates relies on the base R functions (as do the matrix operations

in the calculation of the empirical likelihood and pseudoempirical likelihood point
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estimates), which results in high execution times. It is interesting to see that in

small samples, the execution times for the empirical likelihood methods are con-

siderably higher than those for the composite regression method. However, for

very large samples the opposite is true. We should note that a machine with only

4 GB of RAM was used to perform the simulations. Running this comparison

on a machine with more available RAM would likely yield similar results, but

the relationship between the execution times of the two estimators would change

with a larger sample size. We should also notice that the execution times of the

calculation of the empirical likelihood confidence intervals follow a highly skewed

distribution, with a large difference between the mean and the median. This is

caused by a small number of cases with particularly high execution times. All in

all, we should note that while comparison of the these execution times is inter-

esting, the execution times are not prohibitive and should not cause problems in

practical applications.
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Table 5.1: Distribution of the user execution times in seconds for calculation of point es-
timates and confidence intervals using various methods. Two samples with one alignment
constraint and one benchmark constraint. ‘AEL’: proposed aligned empirical likelihood
estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.’: compos-
ite regression estimator (Merkouris, 2004). ‘Reg.’: single sample calibration estimator
(Deville and Särndal, 1992a). ‘p.e.’: point estimator. ‘c.i.’: confidence interval. 100
samples. Simulation setup as in chapter 2.12.3. ‘C.V.’: coefficient of variation.

n1 = n2 Estimation Min. 1st Qu. Median Mean 3rd Qu. Max. C.V. (%)

1000 Reg. (p.e.) 0.00 0.01 0.02 0.01 0.02 0.03 54
PEL (p.e.) 0.11 0.13 0.14 0.14 0.14 0.33 20
Comp. (p.e.) 0.47 0.54 0.58 0.57 0.61 0.69 8
Comp. (c.i.) 0.02 0.03 0.04 0.04 0.05 0.08 24
AEL (p.e.) 0.00 0.01 0.02 0.01 0.02 0.03 62
AEL (c.i.) 0.76 1.07 1.24 1.38 1.41 7.64 58

2000 Reg. (p.e.) 0.03 0.05 0.06 0.05 0.06 0.10 25
PEL (p.e.) 0.23 0.25 0.26 0.28 0.28 0.98 29
Comp. (p.e.) 2.47 2.62 2.69 2.69 2.75 3.07 4
Comp. (c.i.) 0.11 0.14 0.14 0.15 0.16 0.20 12
AEL (p.e.) 0.01 0.02 0.03 0.03 0.03 0.06 43
AEL (c.i.) 1.35 1.93 2.30 3.07 2.91 38.77 130

3000 Reg. (p.e.) 0.07 0.11 0.12 0.12 0.13 0.19 17
PEL (p.e.) 0.35 0.37 0.39 0.40 0.39 0.73 13
Comp. (p.e.) 5.86 6.11 6.25 6.43 6.53 8.11 8
Comp. (c.i.) 0.25 0.30 0.32 0.32 0.33 0.51 13
AEL (p.e.) 0.01 0.03 0.03 0.04 0.05 0.16 47
AEL (c.i.) 1.56 2.48 3.15 4.65 4.16 34.06 110

4000 Reg. (p.e.) 0.15 0.20 0.21 0.21 0.22 0.28 11
PEL (p.e.) 0.41 0.50 0.50 0.54 0.52 1.62 30
Comp. (p.e.) 10.36 10.84 10.94 11.02 11.08 13.47 4
Comp. (c.i.) 0.48 0.53 0.54 0.55 0.56 0.67 6
AEL (p.e.) 0.03 0.04 0.05 0.06 0.06 0.25 66
AEL (c.i.) 2.01 3.05 4.10 5.87 6.43 29.53 87
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5.5 Conclusions

While empirical likelihood is less computationally intensive then the methods that

involve resampling, its computational aspects are not trivial. The computational

difficulty is driven by the dimension of the parameter of interest, the parameter

space and the number and type of additional constraints.

The estimation of the adjusted weights m̂i(ϕU ) is a relatively straightforward task

of optimisation under constraints. If a solution with an acceptable precision cannot

be found, this is an indication that the constraints might contradict each other,

or that they are linearly dependent.

Point estimates can be obtained by solving an estimating equation. This method

is preferred to direct minimisation of the log-likelihood ratio function, as it is much

less computationally demanding.

Estimation of the confidence interval bounds is the most computationally ex-

pensive part of empirical likelihood estimation, as it involves evaluating the log-

likelihood ratio function for multiple candidate values of the parameter of interest.

The complexity of this task increases as the dimension of the parameter of interest

increases. Therefore, obtaining joint confidence regions for parameters of a high

dimension might be computationally challenging. However, a separate confidence

interval for each scalar parameter of interest can be obtained as long as this pa-

rameter is uniquely defined by a single estimating equation. It is unlikely that

joint confidence regions for parameters of a large dimension will be required in

practice.

Finding confidence intervals is considerably simpler than a general problem of

finding a contour of a function, as we know that the log-likelihood ratio is a

convex function taking the minimum value at the point estimate. We propose

an algorithm which utilises this property and avoids evaluating the log-likelihood
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ratio function for extreme values of the parameter.

Various algorithms are available to find the Lagrange’s multipliers. The quasi-

Newton algorithm with a correction applied to ensure that the adjusted weights

are positive, has been used by several authors. Alternatively, several other quasi-

Newton methods are available and implemented in most statistical packages.

It is also worth noting that the field of mathematical optimisation is intensively

developing and various complex methods and heuristics for optimisation and root

finding have been presented. We did not find the need to resort to any of these

far more complex methods as the relatively simple and easily interpretable quasi-

Newton approach was sufficient. Evaluating the relative convergence speed and

precision of the achieved solution across a range of algorithms could be an inter-

esting direction of future research.
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Discussion

In this piece of work we extended the design-based empirical likelihood method-

ology to accommodate alignment constraints and inference from multiple frame

surveys. This included defining the empirical likelihood methodology, specifying

the relevant constraints and estimating equations for the considered problems, as

well as showing that in these circumstances the empirical likelihood ratio function

is still pivotal and that the empirical likelihood point estimator is
√
n design-

consistent. We also discuss how the proposed empirical likelihood estimators re-

late to other estimators available for each of the studied problems. We consider

these theoretical results to be the main contribution of the presented work.

Following that, we applied empirical likelihood to estimation of census coverage.

This leveraged the fact that empirical likelihood confidence intervals are asymmet-

ric and range-preserving. We conclude that empirical likelihood indeed correctly

accounted for the unequal variability of data on both sides of the point estimate

and produced confidence intervals within the desired range and with good cover-

age. However, we notice that further developments would be needed if empirical

likelihood was to be used as an alternative for the current methodology. In par-

ticular, finding a way of incorporating the uncertainty around the Dual System

estimator and the adjustments applied on top of it into the empirical likelihood

framework would be desirable. We also notice that empirical likelihood, as many

other design-based methods, requires large samples to obtain confidence intervals

with good coverage, which would make it unsuitable for the last part of census

coverage estimation which involves small area estimation methods. However, em-
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pirical likelihood could be used to produce confidence intervals for census coverage

at the Estimation Area level, as well as a source of comparative information in the

quality assurance process. Empirical likelihood could also be applied to estimation

of other ratios, e.g. domain proportions, or other range-restricted parameters.

In the simulation studies performed, we confirmed that empirical likelihood deals

well with skewed data and found that in such circumstances the empirical likeli-

hood point estimator might be more precise than the regression-based estimators.

In relation to aligning estimates from samples of different sizes, we found that

empirical likelihood, even without introducing any adjustment factors, performs

relatively well. The precision of estimates obtained from the larger sample is only

mildly deteriorated, while the precision of estimates obtained from the small sam-

ple is hugely increased. This is due to the implicit sample size adjustment imposed

by the design constraints.

We notice that empirical likelihood confidence intervals tend to show some under-

coverage in small samples. We also notice that if the coverage of empirical likeli-

hood confidence intervals differs from the nominal value, this is much more often

due to under-coverage than over-coverage.

The possibility to calculate confidence interval bounds without the intermediate

step of variance estimation is likely to be of practical benefit. Empirical likeli-

hood is also likely to be less computationally demanding than bootstrap-based

approaches, as it does not require resampling. However, the numerical operations

necessary to obtain empirical likelihood point estimates and confidence intervals

might not be trivial. For some problems obtaining precise solutions might be com-

putationally difficult. In practical applications, it is therefore important to make

sure that the numerical error in any empirical likelihood estimation is negligible.

The research described in the previous chapters allows us to conclude that it is

possible to extend empirical likelihood beyond the basic single sample setup. This

encourages further developments and new applications. The main challenge in

164



extending empirical likelihood to accommodate alignment of estimates and mul-

tiple frame surveys was showing that the empirical log-likelihood ratio function

is still pivotal and follows a χ2 distribution. This is indeed the case, which was

shown both analytically and in simulation studies. We notice, however, that the

result is based on the assumption of independence between samples. Extending

the proposed approach to the case of dependent samples would be a desirable

direction of future research. Note that the empirical likelihood point estimator is

asymptotically
√
n design-consistent whether or not the samples are independent.

One possible way of dealing with dependent samples would be using the empirical

likelihood point estimator and constructing symmetric confidence intervals based

on the estimated variance of the asymptotically equivalent GREG estimator. A

similar approach was proposed by Wu (2004a) for pseudoempirical likelihood.

However, this would only have practical merits in situations when empirical like-

lihood is likely to be more precise than the composite regression estimator and

when these variance estimates are easy to obtain.

Since the first results on design-based empirical likelihood were published (Berger

and De La Riva Torres, 2011), the method has been extended to handle nuisance

parameters, non-response (Berger, 2017) and cluster sampling designs (Oguz-Alper

and Berger, 2016). Design-based empirical likelihood inference has been applied

to several sampling designs, such as the Hartley-Rao-Cochran design (Berger,

2016) and the adaptive cluster sampling (Salehi et al., 2010). It has also been

used in research on the EU-SILC data (Berger and Torres, 2014). Possible di-

rections of future research could include extending the method to handle cluster

sampling beyond the ultimate cluster approach. The low coverage of empirical

likelihood confidence intervals in small samples indicates that an empirical likeli-

hood methodology for small domain estimation might not be achievable.

Another challenge in applying empirical likelihood is the lack of a closed form

for variance of the empirical likelihood point estimator. This variance can be ap-

proximated by the variance of the asymptotically equivalent regression estimator.
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However, the lack of a closed form for the variance makes it difficult to define an

optimal way of combining estimates or samples. This is possible for regression

based estimators and optimal composite regression estimator for alignment and

optimal adjustment for the generalized multiplicity adjusted Horwitz-Thompson

estimator were proposed. While it is possible to incorporate adjustment factors

based on an efficiency calculation into the empirical likelihood constraints, as

it has been shown in chapter 3, defining the adjustments that would minimise

the variance of the resulting empirical likelihood point estimator is not straight-

forward. The adjustment factors would need to be based on the variance of the

asymptotically equivalent regression estimator rather than the empirical likelihood

estimator. Future research aiming to derive variance of the empirical likelihood

estimator in various settings would be useful. However, we should note that while

the sub-optimal regression estimators are available for both estimates alignment

and multiple frame surveys, they rely on variance estimates and require selecting

variables with respect to which optimality will be achieved.
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Appendix A

Proofs of the results

Below proofs of the results presented in earlier chapters are given. Chapter 2

extends the results of Berger and De La Riva Torres (2016) to a two sample

case with alignment constraints. The proofs, except the proof of theorem 2, are

therefore an adaptation of the proofs presented in the original paper. Chapter 3

applies a similar reasoning to multiple frame surveys, yet the results of chapter 2

need some adjustments to account for the differences in the sampling design. These

are summarised in the second part of the appendix. Chapter 4 is an application

of the design based empirical likelihood of Berger and De La Riva Torres (2016)

and all the relevant proofs can be found in the original paper.

A.1 Proofs of the results of Chapter 2

Below we show how the proofs of lemma (1), lemma (2) and theorem (16)

presented by Berger and De La Riva Torres (2016) can be adapted to derive the

GREG estimator asymptotically equivalent to the aligned empirical likelihood

estimator .

Lemma 1 (Adaptation of lemma 1 in (Berger and De La Riva Torres, 2016)).

Let N be the population size. Let n = n1 + n2, where nt is the size of sample St,

167



t = 1, 2. Let ci and C be defined by (2.48) and (2.49) respectively. Let η be the

vector of Lagrange multipliers in (2.61). Let us assume that the regularity

conditions (2.70–2.75) hold. Then,

N

n
||η|| = OP(n−

1
2 )· (A.1)

Proof. Let m̂i(ϕU ) be defined by (2.61). Berger and De La Riva Torres (2016)

show that for any L such that

||η||L = η, (A.2a)

||L|| = OP(1), (A.2b)

||L−1|| = OP(1), (A.2c)

we have that

||η||{−nN−2L>Σ̂L− nN−1MN−1|L>(Ĉπ −C)|} ≤ nN−1N−1|L>(Ĉπ −C)|,

(A.3)

where M = max|(π−1i ||ci||)| and

Σ̂ =
∑
i∈S

cici
>

π2
i

· (A.4)

The term −nN−2L>Σ̂L− is OP(1) due to (2.73) and (A.2b). Furthermore,

nN−1M = oP(n
1
2 ) because of (A.2c) and N−1|L>(Ĉπ −C)| = OP(n−

1
2 ) due to

(2.71) and (A.2b), giving

nN−1MN−1|L>(Ĉπ −C)| = oP(n
1
2 )OP(n−

1
2 ) = oP(n

1
2n−

1
2 ) = oP(1)· (A.5)

Therefore, using (A.3), we have that

Nn−1||η||{OP(1)− oP(1)} ≤ OP(n−
1
2 ), (A.6)
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which gives

Nn−1||η|| = OP(n−
1
2 ). (A.7)

Lemma 2 (Adaptation of lemma 2 in (Berger and De La Riva Torres, 2016)).

Let η be the vector of Lagrange multipliers in (2.61). Let Σ̂ and Ŝ be defined by

(A.4) and (2.76) respectively. Under the regularity conditions (2.70–2.75), we

have that:

η =
n

N2
Ŝ
−1

(C − Ĉπ) +
n

N
OP(n−1)· (A.8)

Proof. Berger and De La Riva Torres (2016) show that, based on (2.76), we have

that

η =
n

N2
Ŝ
−1

(C − Ĉπ) +
n

N
ê, (A.9)

where

ê = − 1

N
Ŝ
−1∑

i∈S

ciθi
πi

(A.10)

and θi = vi(1− m̂i(ϕU )πi) with vi = π−1i η
>ci.

This gives (Berger and De La Riva Torres, 2016)

‖ê‖ ≤ 1

N
||Ŝ−1||

∑
i∈S

{
||ci||
πi

1

π2
i

||η>||2||ci||2
}

+
∑
i∈S

{
||ci||
πi
|γi|
}

≤||Ŝ−1|| (N
n
||η>||)2n3 1

nN3

∑
i∈S

{
||ci||3

π3
i

}
+

1

N
||Ŝ−1||

∑
i∈S

{
||ci||
πi
|γi|
}

(A.11)

where |γi| is such that Pr {|γi| ≤ k|vi|3, i ∈ S} → 1 with k > 0. According to

(2.74), ||Ŝ−1|| is OP(1). Using lemma (1), we have that

(
N

n
||η>||)2 = OP(n−

1
2 )2 = OP(n−1)· (A.12)
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Based on (2.75),
1

nN3

∑
i∈S

{
||ci||3

π3
i

}
= OP(n−3)· (A.13)

Therefore the first term of the right hand side of (A.11) is

n3OP(1)OP(n−3)OP(n−1) = n3OP(n−4) = OP(n−1). Omitting ||Ŝ−1||, which is

OP(1), we can write the second term of (A.11) as:

1

N

∑
i∈S

{
||ci||
πi
|γi|
}
≤ 1

N

∑
i∈S

{
||ci||
πi

k|vi|3
}

≤ k
N3

n3
||η>||3 1

nN4

∑
i∈S

{
||ci||4

π4
i

}
n4. (A.14)

Using Lemma (1), N3

n3 ||η>||3 is OP(n−
3
2 ). The term 1

nN4

∑
i∈S

{
||ci||4
π4
i

}
is OP(n−4)

given (2.75). Therefore the second term of (A.11) is OP(n−
3
2 ). This makes

||ê|| = OP(n−1). The lemma follows.

Proof of Theorem 1

(Adaptation of proof of equation (16), page 2 of supplementary materials in

(Berger and De La Riva Torres, 2016))

Let us define:

ê1 =
n

N

(∑
i∈S

cigi(θ)>

(1 + vi)π2
i

ê

)
, (A.15)

where ê is defined by (A.10),

ê2 =
n

N2

(∑
i∈S

cigi(θ)>

π2
i

)
Ŝ
−1
C̃π

vi
1 + vi

, (A.16)

Ĝ(θ)π =
∑
i∈S

gi(θ)

πi
(A.17)
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and vi = π−1i η
>ci. Considering Lemmas (1) and (2) and using analogous

reasoning to that presented by Berger and De La Riva Torres (2016), we can

express (2.58) as:

Ĝ(θ) = Ĝ(θ)π + B̂(θ,ϕU )
>

(C − Ĉπ)− ê2 − ê1, (A.18)

where

B̂(θ,ϕU ) =

( ∑
i∈S1,S2

cici
>

π2
i

)−1(∑
i∈S

cigi(θ)>

π2
i

)
= Σ̂

−1
(∑
i∈S

cigi(θ)>

π2
i

)
(A.19)

and ê1, ê2, Ĝ(θ)π and Σ̂ are defined as in (A.15), (A.16), (A.17) and (A.4)

respectively.

Using Cauchy-Schwartz inequality as proposed by Berger and De La Riva Torres

(2016), (2.75), (2.87) and the result ||ê|| = OP(n−1) from the proof of Lemma

(2), we can derive the asymptotic properties of ê1 as follows:

‖ê1‖ ≤
n

N
‖ê‖ζ

(∑
i∈S

||ci|| |||gi(θ)>||
π2
i

)

≤ Nn2‖ê‖ζ

(
1

nN2

∑
i∈S

||ci>||2

π2
i

) 1
2
(

1

nN2

∑
i∈S

||gi(θ)||2

π2
i

) 1
2

, (A.20)

where ζ = (min|1 + vi| : i ∈ S)−1 = OP(1) because |vi| = oP(1). Therefore,

‖ê1‖ ≤ Nn2OP(n−1)OP(1)OP(n−2) = OP(Nn−1)· (A.21)

This gives ‖ê1‖ = oP(Nn−1). Furthermore,

‖ê2‖ ≤
n

N2
ζτ ||Ŝ−1||||C̃π||

(∑
i∈S

||ci|| ||gi(θ)>||
π2
i

)
, (A.22)

where τ = (max|vi| : i ∈ S) = oP(1). Following the same argument as in (A.20),
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we have that(∑
i∈S

||ci|| ||gi(θ)>||
π2
i

)
= nN2OP(n−2) = OP(N2n−1)· (A.23)

According to (2.74), ||Ŝ−1|| = OP(1). Furthermore, N−1||C̃π|| = OP(n−
1
2 )

because of (2.71). This gives

‖ê2‖ ≤ nN−1OP(1)OP(n−
1
2 )OP(N2n−1) = OP(Nn−

1
2 )· (A.24)

and hence ‖ê2‖ = oP(Nn−
1
2 ). This gives

Ĝ(θ) = Ĝ(θ)π + B̂(θ,ϕU )
>

(C − Ĉπ) +OP(Nn−
1
2 ) +OP(Nn−1) (A.25)

= Ĝ(θ)π + B̂(θ,ϕU )
>

(C − Ĉπ) + oP(Nn−
1
2 ) (A.26)

The theorem follows.

Proof of theorem 2

Let

B̂(θU ,ϕU )> :=
(∑
i∈S

1

π2
i

cic
>
i

)−1∑
i∈S

1

π2
i

cigi(θU )>· (A.27)

Let us assume that the constraints (2.70)-(2.75), (2.79), (2.80) (with τ = 2),

(2.81)-(2.84) hold. Following theorem 1, we notice that:

N−1||Ĝ(θU )|| ≤ N−1
(
||Ĝ(θU )π||+ ||B̂(θU ,ϕU )

>
|| ||(C − Ĉπ)||+ oP(Nn−

1
2 )
)
.

(A.28)

According to (2.79) N−1||Ĝ(θU )π|| = OP(n−
1
2 ). In (A.20) it has been shown that

(∑
i∈S

||gi(θU )||||ci>||
π2
i

)
= nN2OP(n−2) = OP(N2n−1)· (A.29)
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Using this property and (2.70), we conclude that

||B̂(θU ,ϕU )|| = OP(1)· (A.30)

Therefore, using (2.72),

N−1||Ĝ(θU )|| = OP(n−
1
2 ). (A.31)

Using Taylor expansion, we can write:

N−1Ĝ(θ̂) = N−1Ĝ(θU ) +
∂Ĝ(θU )

∂θU
(θ̂ − θU ) +O(||θ̂ − θU ||2)· (A.32)

Suppose that θ̂ satisfies N−1Ĝ(θ̂) = 0. Then, using (A.31), (2.83) and (2.84), we

have that

OP(||θ̂ − θU ||) = OP(n−
1
2 ). (A.33)

Proof of Theorem 3

(Adaptation of proof of Theorem 1, page 4 of supplementary materials in (Berger

and De La Riva Torres, 2016))

Let c?i(θ), C?, ci and C be defined by (2.46), (2.47), (2.48) and (2.49)

respectively. Consider

∑
i∈S

1

π2
i

c?i(θ)c?i(θ)T =

[
Σ̂ Σ̂cg(θ)

Σ̂cg(θ)> σ̂gg(θ)

]
, (A.34)

where Σ̂ is defined by (A.4), i.e., Σ̂ =
∑
i∈S

cic
>
i

π2
i

,

Σ̂cg(θ) =
∑
i∈S

1

π2
i

cigi(θ)> (A.35)
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and

σ̂gg(θ) =
∑
i∈S

1

π2
i

gi(θ)gi(θ)>· (A.36)

Let

g̃i(θ) = gi(θ)− B̂(θ,ϕU )>ci, (A.37)

with B̂(θ,ϕU ) defined by (2.90).

Consider

c̃∗i (θ) =

(
ci

g̃i(θ)

)
(A.38)

and

C̃∗ =

(
C

−B̂(θ,ϕU )
>
C

)
. (A.39)

We have that

∑
i∈S

1

π2
i

c̃∗i (θ)c̃∗Ti (θ) =

[
Σ̂ Σ̃cg(θ)

Σ̃cg(θ)> V̂P
{
Ĝr(θU )

} ] , (A.40)

where

V̂P
{
Ĝr(θU )

}
=
∑
i∈S

1

π2
i

g̃i(θ)g̃i(θ)> (A.41)

and

Σ̃cg(θ) =
∑
i∈S

cig̃i(θ)>

π2
i

=
∑
i∈S

ci(gi(θ)− B̂(θ,ϕU )
>
ci)
>

π2
i

=
∑
i∈S

cigi(θ)>

π2
i

−
∑
i∈S

cic
>
i

π2
i

B̂(θ,ϕU )

=
∑
i∈S

cigi(θ)>

π2
i

−

(∑
i∈S

cici
>

π2
i

)(∑
i∈S

cici
>

π2
i

)−1∑
i∈S

cigi(θ)>

π2
i

= 0· (A.42)

Let us define

C̃∗π =
∑
i∈S

1

πi
c̃∗i =

[
Ĉπ

Ĝπ(θ)− B̂(θ,ϕU )>Ĉπ

]
· (A.43)
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We have that

C̃∗π − C̃
∗ =

[
Ĉπ −C
Ĝr(θ)

]
(A.44)

where

Ĝr(θ) = Ĝπ(θ) + B̂(θ,ϕU )>(C − Ĉπ). (A.45)

Finally,

(C̃∗π − C̃
∗)
>
Σ̂
−1

(C̃∗π − C̃
∗) (A.46)

=
[
(Ĉπ −C)>, Ĝr(θ)

>] [ Σ̂
−1

0

0 V̂P
{
Ĝr(θU )

}−1
][

Ĉπ −C
Ĝr(θ)

]

=(Ĉπ −C)>Σ̂
−1

(Ĉπ −C) + Ĝr(θ)
>
V̂P
{
Ĝr(θU )

}−1
Ĝr(θ)

Let `(m̂) =
∑

i∈S log(m̂i(ϕU )), `(π) =
∑

i∈S log(πi) and

`(θU |ϕU ) =
∑

i∈S log(m̂?
i(θU ,ϕU )). Berger and De La Riva Torres (2016) showed

that

−2 {`(m̂) + `(π)} = (Ĉπ −C)>Σ̂
−1

(Ĉπ −C) +OP(n−1/2) (A.47)

and

−2 {`(θU |ϕU ) + `(π)} = (C̃∗π − C̃
∗)
>
Σ̂
−1

(C̃∗π − C̃
∗) +OP(n−1/2)· (A.48)

Therefore,

r̂(θU |ϕU ) = 2 {`(m)− `(θU |ϕU )}

= 2`(m) + 2`(π)− 2`(θU |ϕU )− 2`(π)

= (Ĉπ −C)>Σ̂
−1

(Ĉπ −C) + Ĝr(θU )
>
V̂P
{
Ĝr(θU )

}−1
Ĝr(θU )−

− (Ĉπ −C)>Σ̂
−1

(Ĉπ −C) +OP(n−1/2)

= Ĝr(θU )
>
V̂P
{
Ĝr(θU )

}−1
Ĝr(θU ) +OP(n−1/2)· (A.49)
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The theorem follows.

A.2 Proofs of the results of Chapter 3

Proof of theorem 4

Let N be the population size and T be the number of sampling frames used. Let

n =
∑T

t=1 nt, where nt is the size of sample St selected from frame Qt. Let ci

and C be defined by (3.37) and (3.38) respectively.

Let η be the vector of Lagrange’s multipliers in (3.43). Let ρi be the

multiplicity-adjusted selection probability for unit i ∈ S defined by (3.18).

It can be show that with πi substituted by ρi, Ĉπ defined by (3.57), m̂i(ϕU )

defined by (3.43),

Σ̂ :=
∑
i∈S

cici
>

ρ2i
, (A.50)

Ŝ defined by (3.50) and assuming conditions (3.44–3.49), lemma (1) and lemma

(2) still hold.

Using lemma (1) and lemma (2) with the adjustments listed above, it can be

shown that

Ĝ(θ) = Ĝ(θ)π + B̂(θ,ϕU )
>

(C − Ĉπ)− ê2 − ê1, (A.51)

where

B̂(θ,ϕU ) =

( ∑
i∈S1,S2

cici
>

ρ2i

)−1(∑
i∈S

cigi(θ)>

ρ2i

)
= Σ̂

−1
(∑
i∈S

cigi(θ)>

ρ2i

)
(A.52)

and ê1, ê2, Ĝ(θ)π are defined as in (A.15), (A.16) and (A.17) with πi substituted
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by ρi, respectively.

Using analogous reasoning to Appendix A.1, conditions (3.49), (3.52), (3.45) and

(3.48), it can be shown that

‖ê1‖ = oP(Nn−1)· (A.53)

and

‖ê2‖ = oP(Nn−
1
2 )· (A.54)

The theorem follows.

Proof of theorem 5

Let Ĝ(θU ) be defined by (3.41) with θ = θU . Assuming conditions (3.44)-(3.49),

(3.58), (3.59) (with τ = 2), (3.60)-(3.63), (3.58) and theorem 4, using analogous

argument as in Appendix A.1, it can be shown that

N−1||Ĝ(θU )|| = OP(n−
1
2 ). (A.55)

Hence, assuming (3.62) and (3.63) and using Taylor expansion and the reasoning

presented in Appendix A.1, we have that

OP(||θ̂ − θU ||) = OP(n−
1
2 ). (A.56)

The theorem follows.
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Proof of Theorem 6

Let c?i(θ), C?, ci and C be defined by (3.35), (3.36), (3.37) and (3.38)

respectively. Let

g̃i(θ) = gi(θ)− B̂(θ,ϕU )>ci, (A.57)

with B̂(θ,ϕU )> defined by (3.56),

c̃∗i (θ) =

(
ci

g̃i(θ)

)
(A.58)

and

C̃∗ =

(
C

−B̂(θ,ϕU )
>
C

)
. (A.59)

Following an argument presented in Appendix A.1,it can be shown that

∑
i∈S

1

ρ2i
c̃∗i (θ)c̃∗Ti (θ) =

[
Σ̂ Σ̃cg(θ)

Σ̃cg(θ)> V̂P
{
Ĝr(θU )

} ] , (A.60)

where Σ̂ is defined by (A.50),

V̂P
{
Ĝr(θU )

}
=
∑
i∈S

1

ρ2i
g̃i(θ)g̃i(θ)> (A.61)

and

Σ̃cg(θ) = 0· (A.62)

This leads to

(C̃∗π − C̃∗)
>

Σ̂
−1

(C̃∗π − C̃
∗) = (A.63)

= (Ĉπ −C)>Σ̂
−1

(Ĉπ −C) + Ĝr(θ)
>
V̂P
{
Ĝr(θU )

}−1
Ĝr(θ)
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where

C̃∗π =
∑
i∈S

1

ρi
c̃∗i (θ)· (A.64)

Using (A.63) and analogous arguments as presented in Appendix A.1, with

`(m̂) =
∑

i∈S log(m̂i(ϕU )), `(π) =
∑

i∈S log(ρi) and

`(θU |ϕU ) =
∑

i∈S log(m̂?
i(θU ,ϕU )), it can be shown that

r̂(θU |ϕU ) = Ĝr(θU )
>
V̂P
{
Ĝr(θU )

}−1
Ĝr(θU ) +OP(n−1/2)· (A.65)

The theorem follows.
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