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Empirical likelihood is a non-parametric, likelihood-based inference approach. In
the design-based empirical likelihood approach introduced by Berger and De La
Riva Torres (2016), the parameter of interest is expressed as a solution to an esti-
mating equation. The maximum empirical likelihood point estimator is obtained
by maximising the empirical likelihood function under a system of constraints. A
single vector of weights, which can be used to estimate various parameters, is cre-
ated. Design-based empirical likelihood confidence intervals are based on the y?
approximation of the empirical likelihood ratio function. The confidence intervals
are range-preserving and asymmetric, with the shape driven by the distribution
of the data.

In this thesis we focus on the extension and application of design-based empirical
likelihood methods to various problems occurring in survey inference. First, a
design-based empirical likelihood methodology for parameter estimation in two
surveys context, in presence of alignment and benchmark constraints, is developed.
Second, a design-based empirical likelihood multiplicity adjusted estimator for
multiple frame surveys is proposed. Third, design-based empirical likelihood is
applied to a practical problem of census coverage estimation.

The main contribution of this thesis is defining the empirical likelihood method-
ology for the studied problems and showing that the aligned and multiplicity ad-
justed empirical likelihood estimators are y/n-design-consistent. We also discuss
how the original proofs presented by Berger and De La Riva Torres (2016) can
be adjusted to show that the empirical likelihood ratio statistic is pivotal and
follows a x? distribution under alignment constraints and when the multiplicity
adjustments are used.

We evaluate the asymptotic performance of the empirical likelihood estimators
in a series of simulations on real and artificial data. We also discuss the compu-
tational aspects of the calculations necessary to obtain empirical likelihood point
estimates and confidence intervals and propose a practical way to obtain empirical
likelihood confidence intervals in situations when they might be difficult to obtain
using standard approaches.
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Notation

We use the following notation:

log(+) Natural logarithm of (-)

I|A]l Frobenius (Euclidean) norm defined by || A|| := trace(A" A)'/?
Or(+) A matrix or a vector such that ||Op(a)|| = Op(a)

op(+) A matrix or a vector such that ||op(a)|| = op(a)

a=op(b) a converges in probability to b
a = Op(b) a is stochastically bounded by b
a=0(b) aisbounded by b

a=>o a is equal to b

a:=2b a is defined as b

a=,b a converges in probability to b

a -4 b a converges in distribution to b

T A column vector

x' A row vector

x A scalar

0, A finite population parameter

0 A candidate value for the population parameter
0 An estimator of a finite population parameter 8,
0, A vector of zeros of dimension ¢

We take the convention that each chapter defines its specific notation, e.g. defi-
nition of a vector C' given in chapter 1 applies each time this variable is used in

chapter 1 and chapter 1 only.






Introduction

This document consists of five chapters and an Appendix. The first chapter gives
a brief introduction to empirical likelihood and shows how the design-based empir-

ical likelihood approach, used throughout this research, relates to other empirical

likelihood methods.

The following three chapters focus on extension and application of design-based
empirical likelihood to various problems occurring in survey inference. First, a
methodology for parameter estimation in two surveys context, in presence of align-
ment and benchmark constraints, is developed. Second, an empirical likelihood
multiplicity adjusted estimator for multiple frame surveys is proposed. Third, em-
pirical likelihood is applied to a practical problem of census coverage estimation.
The last chapter contains some details on the numerical operations necessary in
empirical likelihood estimation. Each chapter includes conclusions specific to the
studied problem. We finish with general conclusions from the work described in
the previous chapters and a discussion of possible future direction of research.

Proofs of the theoretical results are presented in the Appendix.

Empirical likelihood is a non-parametric, likelihood-based inference approach. The
method was proposed by Owen (1988), for independent and identically distributed
(7id) observations. This made it possible to use empirical likelihood in survey esti-
mation under simple random sampling, when the sample is selected with replace-
ment or when the sampling fraction is negligible (e.g. Chen and Qin, 1993). Qin
and Lawless (1994) showed how confidence intervals can be obtained based on the

x? approximation of the log-likelihood ratio function in the #d case and how auxil-



iary information can be incorporated into empirical likelihood estimation. Subse-
quently an extension to stratified simple random sampling was proposed by Zhong
and Rao (1996, 2000). Chen and Sitter (1999) proposed a census pseudoempirical
likelihood approach, which was later developed into a pseudoempirical likelihood
approach by Wu and Rao (2006). In the pseudoempirical likelihood methodology,
unit sampling probabilities are incorporated into the empirical likelihood function.
This allows empirical likelihood to be used under unequal probability sampling,
but usually requires estimation of the design effect to obtain confidence intervals
(Wu and Rao, 2006). Chen and Kim (2014) proposed population empirical like-
lihood, where the likelihood function is defined at the population level and the
sampling probabilities are included in the estimating equation for the parameter

of interest.

Berger and De La Riva Torres (2016) developed design-based empirical likelihood,
where the likelihood function is defined at the sample level and sampling prob-
abilities are included in an additional design constraint. This approach allows
confidence intervals to be based directly on the y? approximation of the empirical
likelihood ratio function, without a design effect correction as in pseudo-empirical
likelihood methods. The confidence intervals can be calculated without variance
estimates. This is a very desirable feature, as variance estimators may be heavily
biased when the variables of interest are skewed. The confidence intervals are
asymmetric, with the shape driven by the distribution of the data. They are
also range-preserving (Owen, 2001). The method can be used in complex, i.e.,

stratified and clustered, sampling designs.

In the design-based empirical likelihood approach, the parameter of interest is
expressed as a solution to a population level estimating equation. The maximum
empirical likelihood point estimator of the parameter of interest is obtained by
maximising the empirical likelihood function under a system of constraints in-
cluding the estimating function for the parameter of interest, optional benchmark

constraints constructed around known population level parameters and design



constraints including information about the sampling design and unit selection
probabilities. A single vector of weights, which can be used to estimate various

parameters, is created. These weights are always positive.

Berger and De La Riva Torres’s (2016) design-based empirical likelihood approach
is used throughout the research presented in this document. In chapter 2 a design-
based empirical likelihood methodology for parameter estimation in two surveys
context, in presence of alignment and benchmark constraints, is developed. Align-
ment constraints, which require that each of the considered independent surveys
gives the same point estimates for the common variables, are sometimes used in of-
ficial statistics in order to ensure numerical consistency of estimates obtained from
various sources. Alignment may also increase precision of other estimates. The
standard methods either focus on means or totals and rely on composite regres-
sion estimators and variance estimates, or assume negligible sampling fractions.
The proposed empirical likelihood approach ensures alignment and is not limited
to means, as it can be used for a general class of complex parameters defined
by estimating equations. It also allows to use various functions of the common
variable in the alignment constraint. The proposed approach is well suited when
the variables of interest are skewed. It can accommodate large sampling fractions,
stratification and population level (auxiliary) information, and can be applied to
estimation in domains. The confidence intervals are asymmetric and driven by
the distribution of the data. They can be calculated without the need for variance

estimates, joint selection probabilities or re-sampling.

The main contribution of chapter 2 is in defining the empirical likelihood frame-
work for alignment of estimates, showing that the maximum empirical likelihood
estimator is y/n-design-consistent and deriving the empirical likelihood ratio test
statistic, which can be used to test hypotheses and construct consistent confidence
regions or intervals. We evaluate the proposed approach in a series of simulations
on real and artificial datasets and conclude that the proposed aligned empirical

likelihood estimator has good asymptotic properties across the designs tested. In



some cases, e.g. when there is a large difference in sample sizes and the distribution
of the data is skewed, empirical likelihood estimates of totals may perform better
than other available methods. The main purpose of the proposed approach, how-
ever, is not the efficiency gain, as this might vary depending on circumstances, but
providing a practical method for estimation of more complex parameters than to-
tals or means and for calculation of confidence intervals when variance estimation

is difficult.

In chapter 3 an empirical likelihood methodology for parameter estimation from
multiple frame surveys, based on the multiplicity approach, is proposed. Multiple
frame surveys are commonly used for a variety of reasons, such as correcting for
frame undercoverage, increasing precision of estimation of population parameters
for groups of interest, targeting rare populations or reducing survey costs. Several
approximately design unbiased estimators have been proposed for inference from
multiple frame surveys. Singh and Mecatti (2011) and Mecatti and Singh (2014)
generalized most of the existing estimators as a class of Generalized Multiplicity-
Adjusted Horvitz-Thompson Estimators. We adopt the idea of the Multiplicity-
Adjusted Estimation and develop an Empirical Likelihood based estimator. The
proposed estimator is flexible in that it allows researchers to use the multiplicity
adjustment of their choice, setting some standard regularity conditions on the mul-
tiplicity adjustment and the sampling design. It can handle auxiliary information
and can be applied to a variety of parameters of interest expressed as solutions of
estimating equations. As in the case of the aligned empirical likelihood estimator,
Wilks (1938) type confidence intervals can be calculated without the intermediate

step of variance estimation.

The main contribution of chapter 3 is an extension of the theoretical results of
chapter 2 to the multiple frame case. We define a design-based empirical likelihood
multiplicity adjusted estimator and show that under some regularity conditions
this estimator is y/n-design-consistent. We also show that the multiplicity ad-

justed empirical likelihood ratio function is pivotal and can be used to construct



confidence intervals. Through a series of simulations, we demonstrate that the
proposed estimator performs well even in difficult conditions, e.g. with skewed
data and when the size of the overlap between sampling frames is unknown. In
these cases the empirical likelihood confidence intervals often have better coverage
than symmetric confidence intervals, and the empirical likelihood point estima-
tor may be more precise than regression estimators with the same multiplicity

adjustment.

Chapter 4 shows how design-based empirical likelihood can be applied to estima-
tion of census coverage from a census coverage survey. Currently census coverage
is estimated using normality-based techniques and symmetric confidence intervals
are reported. However, in areas with very high estimated coverage, the upper
bound of the symmetric confidence intervals for the census coverage sometimes
exceed 1. We show that the empirical likelihood confidence intervals do not have
this problem as they always remain within the range of the parameter of inter-
est and that they have comparable, acceptable coverage for moderate and large
samples. The main contribution of this chapter is in the definition of the rel-
evant estimating equations and constraints for the problem of census coverage
estimation. We also perform a series of simulations showing that the empirical
likelihood confidence intervals are within the desired range and that they have

good asymptotic properties provided that the sample size is sufficient.

Finally, in chapter 5, we discuss the practical aspects of empirical likelihood esti-
mation. In particular, we focus on the numerical methods involved and consider
various ways of obtaining empirical likelihood adjusted weights, point estimates
and confidence intervals. We propose some adjustments to the commonly used
algorithms. The problems discussed in chapter 5 apply to empirical likelihood
estimation in general, but they are particularly relevant when multiple samples
and numerous constraints are used, which is often the case in the applications

discussed in this piece of work.

Results presented in chapters 2 and 4 have been submitted for publication, in joint



authorship respectively with Dr. Yves Berger and with Mr Paul Smith and Dr
Yves Berger. The scientific paper produced based on chapter 2 was considerably
changed and enriched by Dr Yves Berger. It also includes some results, such
as the derivation of a consistent estimator of the variance-covariance matrix of
the regression estimator, used in the proof of the asymptotic distribution of the
empirical log-likelihood ratio function, and extension of the results to sampling
with large sampling fractions, which are based on previous research done by Dr
Yves Berger. These results are cited from the paper. Also, the proofs of the
theoretical results, except from the proof of the asymptotic design-consistency of
the point estimator, are an adaptation of the results presented by Berger and
De La Riva Torres (2016) for a single sample case. This is acknowledged in the
Appendix. The scientific paper based on chapter 4 was prepared jointly with
Mr Paul Smith and Dr Yves Berger. Some of the details related to the design
of the census coverage survey, which were contributed to the paper by Mr Paul
Smith, are cited in this document. These are referenced in the text. The review
of empirical likelihood methods presented in chapter 1 is based on reviews of Rao
and Wu (2009a), Rao (2006), Berger and De La Riva Torres (2016) and Berger
(2018). The review of aligned estimators is based on the reviews presented by
Merkouris (2004, 2010a). The review of multiple frame estimators is based on the
reviews presented by Arcos et al. (2015), Ranalli et al. (2016), Singh and Mecatti
(2011), Singh and Mecatti (2014) and Lohr (2007). During the course of research I
received guidance from my supervisors, Dr Yves Berger and Prof. Li Chun Zhang,
as well as from Mr Paul Smith, who offered advice on chapter 4. I also consulted
Mr Owen Abbott and Mr Viktor Racinskij from the Office for National Statistics
about the specifics related to the design of the census coverage survey and the

current census coverage estimation practice.



Chapter 1

Empirical likelihood methods for inference from

survey data

This chapter provides a brief overview of empirical likelihood methods for param-
eter estimation. We start with a summary of the origins of empirical likelihood
and proceed to discuss the two crucial areas of development which made empiri-
cal likelihood applicable to social and business surveys: incorporation of auxiliary
information and unequal probability sampling. We also describe the design-based

empirical likelihood approach, which we rely on in subsequent chapters.

1.1 Empirical likelihood for a mean of independent and

identically distributed observations

Empirical likelihood is a non-parametric, likelihood-based inference approach. The
method derives from the scale-load approach introduced by Hartley and Rao
(1968) for survey sampling. It was popularised and developed by Owen (1988),
as a unified empirical likelihood methodology for independent and identically dis-

tributed (4id) observations.

Consider that a sample S of independent and identically distributed values



Y1, Y2, ---, Yn, 18 drawn through simple random sampling from a finite population
U of size N. Let p; = Pr(y = y;) be the probability mass associated with unit 7.
The sample level empirical log-likelihood function takes the following form (Owen,

1988):

((p) =) _log(ps), (1.1)

icS
where p = (p1, pa, ..., Pn) and n is the size of the sample S. The maximum empirical
likelihood estimator p; of p; is defined as the value which maximises (1.1) under

p; > 0 and the normalising constraint
> pi=1 (1.2)
icS

This gives p; = n~!. The maximum empirical likelihood estimator of a population

mean 0y = N~ 37N is (Rao, 2006):

é: Zﬁzyz (1-3)

€S

Empirical likelihood confidence intervals for the mean 6y are obtained by max-

imising the empirical log-likelihood ratio function (Owen, 1988)
#(0) = —2 ) log{np;(0)}, (1.4)
icS

where pf(0) are the values which maximise (1.1) under p; > 0, the normalising

constraint (1.2) and the constraint
Zpiyi =0 (1.5)
icS

Under simple random sampling, when the sample is selected with replacement or
when the sampling fraction is negligible, when 6 = 0y, statistic (1.4) follows a xZ_,

distribution asymptotically. This property can be used to construct empirical like-



lihood confidence intervals for the mean 6y by selecting values 6 : 7(6) < XZ3r—1.a;
where x7_,., is the upper o quantile of the x7_, distribution. The empirical
likelihood confidence intervals are asymmetric and range and transformation pre-
serving (Rao, 2006). As the sample size n approaches infinity, the coverage error
of the empirical likelihood confidence intervals approaches zero at the rate n=1.

This is the same rate that applies to most parametric confidence intervals (Owen,

2001).

1.2 Complex sampling designs

An extension of empirical likelihood to stratified simple random sampling was
proposed by Zhong and Rao (1996). The empirical log-likelihood function for a

sample consisting of H strata is defined as

H
(p)=2_ > log(pm), (1.6)
h=1 €S}
where py,.; is the sampling probability mass associated with unit ¢ in strata h. The

maximum likelihood estimator of the population mean 6y equals

H
0= Z Z PhiiYhsis (1.7)

h=11ieSy
where py,; are the values which maximise (1.6) under the constraint p,,; > 0 and

the normalisation constraints defined for each stratum:

> pi=1 h=12 . H (1.8)

€Sy

For empirical likelihood to be applicable to inference from commonly used survey
sampling designs, it is crucial that it can handle unequal probability sampling.

Consider a sample S of size n selected with unequal probabilities 7; from a finite



population U. The pseudoempirical likelihood approach of Wu and Rao (2006)

defines the pseudoempirical log-likelihood function as

l(p) = ”ZUZZ log(pi), (1.9)

€S

where d; are the normalised weights d; = di(Yegdi)™t and d; = w; L The
pseudoempirical likelihood approach was inspired by an earlier formulation of the
census pseudoempirical likelihood by Chen and Sitter (1999), which was based on
a super-population model (Rao and Wu, 2009a).

The maximum likelihood estimates of p; are found by maximising (1.9) under

p; > 0 and the normalising constraint

Y pi=1 (1.10)

€S

This gives p; = d;. The maximum pseudoempirical likelihood estimate of the

population mean 0y = N~} Zf;l y; equals (Rao, 2006):

0=">dy; (1.11)

i€S

When the sample S is stratified, the pseudoempirical log-likelihood function takes

the following form:

(p) =nY Wi dy;log(p:), (1.12)

€S

where W), = N, N~1, N}, is the population size of strata h and dj,,; = Anii(Yies, dn.i) 1,

i.e., the design weights Jh;i are normalised at the stratum level.

The pseudoempirical log-likelihood ratio function is defined as
P(0) = =2[({p"(0)} — {p}], (1.13)

10



where £(-) is defined by (1.9) (or (1.12) if the sample S is stratified), p are the
values which maximise (1.9) under p; > 0 and the normalising constraint (1.10)
and p*(0) are the values which maximise (1.9) under p; > 0, (1.10) and the

constraint

Zpiyi =0 (1~14)

1€S

Under simple random sampling, (1.13) follows a Xﬁle distribution asymptotically
when 6 = 6. For other sampling designs, the pseudoempirical log-likelihood ratio

has to be adjusted by the design effect defined as
DEFF(0) = V(0){Vsrs(6)} ", (1.15)

where V(é) is the variance of the estimator § under the considered sampling design

and VSRS(é) is the variance under simple random sampling. The function
oy -1
Paps(0) = 7(6) {DEFF(G)} (1.16)

follows a Xﬁle distribution asymptotically when 6 = 6. The pseudoempirical
likelihood confidence intervals are constructed based on (1.16) in an analogous

way to the empirical likelihood confidence intervals.

In practice the design effect (1.15) has to be estimated based on the sample data.
As long as it is estimated consistently, the asymptotic distribution of (1.16) holds
(Wu and Rao, 2006).

Chen and Kim (2014) proposed population empirical likelihood, which defines the

empirical log-likelihood function at the population level:

Up) = D_log(p:) (1.17)

Under Poisson sampling, the weights p; are estimated as the values which maximise

11



(1.17) subject to Zij\ilpi = 1. This gives the estimated weights p; = N~1. The

parameter of interest is estimated by solving

N
Zpi@ﬂi_lgi(@) =0, (1.18)
i—1

where ¢; is the sample inclusion indicator and g¢;(¢) is an estimating function of

the parameter of interest.

The population empirical log-likelihood ratio function is defined as

P(0) = =2[({p"(0)} — H{p}], (1.19)

where ¢{p*(0)} is the population log-likelihood function (1.17), p;(6) are estimated
as the values which maximise (1.17) subject to Zfil p; = 1 and the parameter
constraint (1.18); and values p in ¢{p} are estimated without the parameter con-
straint (1.18). Under Poisson sampling with a negligible sampling fraction, (1.19)
follows a x? distribution (Chen and Kim, 2014). This property can be used to

obtain confidence intervals for the parameter of interest.

Population empirical likelihood has also been extended to rejective Poisson sam-

pling with the Hajek’s (1964) constraint

N N
> s=> m (1.20)
=1 i=1

where 7; are the sampling probabilities in the initial design and d; are the sampling

indicators. This requires adding the design constraint: (Chen and Kim, 2014)

N
> piIim = 1) =0 (1.21)
=1

Extension to Fuller’s (2009) rejection condition has also been proposed (Chen and

Kim, 2014).
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1.3 Auxiliary information

Auxiliary information is often used in survey inference. Typically these are known
population parameters (e.g. means or totals) of variables which are also measured
in the sample. These known parameters are included in the so-called calibration or
benchmark constraints, which require that the adjusted sample weights reproduce
the known population values. This might improve the precision of the estimator
of the target variable, depending on the correlation between the target variable

and the auxiliary variable.

Suppose that the total of a variable , Xy = Zf\; x; is known. Consider Horvitz

and Thompson’s (1952) estimator of Xy:

X = Zdiwz‘, (1-22)

! are the design weights. In a general case, there is no guarantee

where d; = 7,
that the estimator (1.22) reproduces the known value Xy;. The weights w; are
said to possess the generalized calibration property (Deville and Sérndal, 1992a)

if
X = Xy, (1.23)
where

X =) wa; (1.24)

i€S
The calibration weights w; are calculated in such a way that the distance between
the w; and the design weights d; is minimised and (1.23) is satisfied. Various dis-
tance measures can be used. Using the Euclidean distance leads to the generalized

regression (GREG) estimator (Sérndal, 2007).
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Benchmark constraints are commonly used in survey practice, especially in official
statistics. If the target variable y is highly correlated with the auxiliary variables
x, benchmark constraints on X might improve the precision of the estimator of
a population parameter of y. Sometimes the benchmark constraints are also used
for practical reasons, e.g. in order to obtain numerical consistency with values

published from a census.

Chen and Qin (1993) showed how auxiliary information on known population
means can be incorporated into empirical likelihood estimators. Suppose that a

population mean Z is known. Imposing the additional constraint
> pilei—x2) =0 (1.25)
€S

on the adjusted weights p; ensures that the calibration property (1.23), with w; =
p;, holds. For the estimates p; to exist, £ has to be an inner point of the convex

hull formed by the values {x;}, where i € S (Rao, 2006).

The known population parameters may be included in the pseudoempirical like-
lihood estimators through an additional constraint. The constraint for a non-

stratified sample takes the form (Rao and Wu, 2009q):

> iy =z (1.26)

i€S

For stratified samples, when the population level parameter is known, the con-

straint is defined as (Rao and Wu, 2009q)

H
Z Z Ph;ilhyi = T (127)

h=1 €S}

Note that when a calibration constraint is used, this has to be considered in

the calculation of the design effect used to construct pseudoempirical likelihood
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confidence intervals and hence equation (1.15) becomes (Rao and Wu, 2009q):
DEFFOR(G) = VOR(G)(VER(0)}, (1.28)

where VEE(0) and VEE (0) are variances of residuals in a regression on the known

parameter. The adjusted pseudo empirical log-likelihood ratio function
N -1
755,(0) = #(0) { DEFFET(9) } (1.29)

follows a ngzl distribution asymptotically, when 6 = 6 (Rao and Wu, 2009a).

The population empirical likelihood defines the benchmark constraints at the pop-
ulation level. A constraint based on a known mean hy = S~ hi(z;) takes the

following form:

N
Zpﬁﬂ[l(hi(l’i) —hy) =0, (1.30)
i=1

where ¢; is the sample inclusion indicator.

1.4 Design-based empirical likelihood

Design-based empirical likelihood (Berger and De La Riva Torres, 2016) was devel-
oped as an alternative to the pseudoempirical likelihood and population empirical
likelihood methods. It overcomes the need for estimation of design effects by in-
corporating sampling probabilities into the constraints system rather than into the
likelihood function. This leads to a likelihood ratio function which asymptotically
follows a x? distribution when the parameter equals the true population parameter
of interest. This is particularly useful for estimation of complex and multivariate

parameters.

The (potentially multivariate) parameter of interest 8, is defined as the solution
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to a population estimating equation of the following form:

S gi(8) o, (1.31)
icU
where 0, is a vector of zeros of dimension v, v is the dimension of the parameter
0 and g,;(0) is a p-vector function of the parameter of interest and the sample

variables.

Estimating equations are a flexible way of representing a wide class of parame-
ters, such as means, totals, quantiles, ratios or generalised regression coefficients.
Examples of estimating equations for various parameters can be found in Binder
and Patak (1994), Qin and Lawless (1994) and Godambe and Thompson (2009).
For example, the estimating function g;(0) = y, — 6, can be used to estimate
the population mean N1 Z y;, leading to a Hajek (1964) estimator (Berger and

€U
Tillé, 2009).

The design-based empirical log-likelihood function is defined as

((m) = log(m,), (1.32)

i€S

where m = (my,ms,...,m,) and m; are the unit mass loads estimated under

m; > 0 and the design constraint
Z mm = n, (1.33)

where 7; is the sampling probability for unit . Constraint (1.33) is different from
the normalisation constraint used in other empirical likelihood approaches, where

the scale loads are required to sum to 1.

Note that (1.32) can be re-parametrised as a function of the probability masses

p;. If we express m; as m; = np;m; ! we have that (Berger and De La Riva Torres,
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2016, Addendum)

((m) = (p) + Y _ log(nm; "), (1.34)
ieS
where {(p) = >, glog(p;) and the values p; are estimated by maximising ¢(p)
under p; > 0 and ), gp; = 1. Maximising (1.32) and (1.34) is equivalent, as the
offset Y, g log(nm; ") does not depend on 6 or on p;.

The design-based empirical log-likelihood ratio function (Berger and De La Riva
Torres, 2016) for the parameter 0 is defined as

7(0) =2[{(m) — {m™(0)}], (1.35)

where £(.) is defined by (1.32), m are the values 7; which maximise (1.32) under
m; > 0 and the design constraint (1.33) and the m*(0) are the values m;(6) which

maximise (1.32) under m; > 0, (1.33) and the additional constraint

> migi(6) = 0. (1.36)

i€S

The maximum design-based empirical likelihood estimator of @ is defined as the
value 6 which minimises (1.35). In high entropy sampling designs (Hajek, 1981)
and under some regularity conditions, the design-based empirical log-likelihood
ratio function (1.35) follows a x? distribution asymptotically, with the number
of degrees of freedom depending on the dimension of 8 (Berger and De La Riva

Torres, 2016). This allows us to obtain confidence regions by selecting values

{0 :7(0) < xp_,(a)}, (1.37)

where Xflf:p(a) is the upper a quantile of the X?lf:p distribution. The univariate
confidence intervals can be obtained directly if the univariate parameter of interest

is completely defined by a single (univariate) estimating equation. If the parameter
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of interest depends on other parameters, profiling may be used (Oguz-Alper and

Berger, 2016).

Benchmark constraints constructed around the known population parameters are
handled in a similar way as in the pseudoempirical likelihood approach, how-
ever the parameters are defined through estimating equations, which gives more
flexibility in the choice of the constraint. Suppose that a ¢-vector of population

parameters ¢, is known, where ¢, is defined as the unique solution of

>t ) = 0, (1.3
iU
and where the vector f;(x;, ) is a g-vector function of ; and ¢, (e.g. Owen, 1991;
Chaudhuri et al., 2008; Lesage, 2011). The benchmark constraint on ¢, takes the

following form

S (@) =0, (1.39)
icS
For the generalised calibration property to hold on the design-based empirical
likelihood adjusted weights m;, constraint (1.39) is imposed on the values m; and

*

m; (@), alongside the design constraint (1.33) and the constraint (1.36) (Berger

)

and De La Riva Torres, 2016).

Design-based empirical likelihood handles stratification by defining the design con-
straint (1.33) separately for each strata:

> Mg =ny, h=1,2,... H- (1.40)

i€SH

For cluster sampling designs, Oguz-Alper and Berger (2016) propose to use the
ultimate cluster approach (Hansen et al., 1953), which defines the empirical likeli-
hood function at the ultimate cluster level. In chapter 4 we show how the ultimate

cluster approach is used in clustered and stratified samples from census coverage
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survey.

The design-based empirical likelihood method has also been extended to handle
non-replacement sampling with large sampling fractions. This requires using the

penalised empirical log-likelihood function (Berger and De La Riva Torres, 2016)

((m) = {log(m;) + 1 — mm;} (1.41)
icS

and adding finite population correction factors (Hajek, 1964) into constraints
(1.33), (1.36) and (1.39). With these adjustments, the asymptotic distribution
of the design-based empirical log-likelihood ratio function holds for large sampling
fractions. We omit the details of the specification of the constraints system here
for brevity. However, in chapter 2, we show how this approach can be used to han-
dle large sampling fractions in the special case of aligning estimates from multiple

samples.

The design-based empirical likelihood approach has several practical advantages.
In particular, it allows to construct confidence intervals without the need for vari-
ance estimation. This is a very desirable feature, as variance estimators may be
biased when the variables of interest are skewed. The confidence intervals are
range-preserving and defined by the shape of the sample data. The design-based
empirical likelihood approach can be used in complex, i.e., stratified and clustered,
sampling designs, as long as these are high entropy designs (Hajek, 1981). These
features of the method are utilised across the following chapters, where empirical

likelihood methodology for several survey inference problems is defined.

Design-based empirical likelihood can be seen as an alternative to pseudoempirical
likelihood or population empirical likelihood approaches, in that it also handles
unequal probabilities and complex sampling designs. The use of estimating equa-
tions, incorporation of the sampling probabilities in the constraint system rather
than in the log-likelihood function and the construction of confidence intervals

based on a x? approximation of the log-likelihood ratio function makes design-
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based empirical likelihood more similar to population empirical likelihood than
to pseudoempirical likelihood. The difference between the two approaches is in
the definition of the log-likelihood function (which is defined at the sample level
in design-based empirical likelihood) and in the design constraint used. Both
approaches can handle complex parameters, defined as solutions of estimating
equations. Design-based empirical likelihood, however, can be applied to sam-
ples selected with non-negligible sampling fraction and is closer to Owen’s (1988)

original formulation of the sample level empirical likelihood.

In the following chapters we extend the design-based empirical likelihood method-
ology to handle some specific problems in survey inference. For brevity, we use the
term empirical likelihood to denote the design-based empirical likelihood. When-
ever we refer to other empirical likelihood approaches, these are clearly referenced

as either pseudoempirical likelihood or population empirical likelihood.
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Chapter 2

Empirical likelihood approach for aligning

estimates from multiple surveys

2.1 Introduction

Suppose that two independent samples, S; and S,, are selected from the same
finite population U of size N. Let y, and y, be vectors of variables observed
respectively in S; and S5. Let w denote a vector of common variables observed
in both samples, which constitutes the key feature of the considered approach. A
population parameter of a variable w, e.g. the mean of w, can be estimated either
from S; or Ss. It can, however, be inconvenient to obtain different estimates for
the same parameter, especially if other estimates are based on them. For example,
suppose that w is a vector of age-sex categories measured in both samples. The
two samples may not give the same estimates for the proportion within each
category. A similar situation occurs if totals of turnover for various industries
are estimated from sample S, while sample S5 is used to estimate the overall
population turnover. These domain-specific estimates from S; do not necessarily

add up to the overall total estimated from S5.

It is, of course, possible to obtain a composite estimate for the common parameter

by taking a weighted average of the estimates obtained from two samples. The
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weight applied to each survey’s estimate might be selected based on an efficiency
argument, e.g. inversely proportional to the estimated variance or proportional
to the sample size. However, in practice it is desirable to have a single vector of
weights for each survey which can be applied to all survey variables. Furthermore,
it is a common practice that auxiliary variables are measured in surveys and survey
weights are calibrated on known population parameters (see Deville and Séarndal

(19924)).

The problem can therefore be summarised as follows: how to adjust the design
weights of both surveys so that both calibration constraints (i.e., benchmarking on
known population parameters) and alignment constraints (i.e., numerical consis-
tency of common parameters) are respected, and inference about the common and
non-common variables is possible. Apart from providing numerical consistency of
estimates, alignment constraints might as well improve precision of the estimates
of the non-common parameters, if the common and non-common variables are
highly correlated. Specifically, when one of the samples is smaller, imposing align-
ment constraints on the variables shared with a larger sample is likely to improve
precision of the smaller sample estimates. This property is exploited in the split
questionnaire design or non nested two-phase sampling, where a subset of vari-
ables is measured for a large sample, and the whole set of variables is collected

from another, smaller sample (see e.g. Hidiroglou (2001)).

The procedure of adjusting survey weights so that estimates of two surveys agree
with each other is often referred to as ’alignment’. The traditional methods used
to include auxiliary information on known population quantities in the single sam-
ple case cannot be directly applied to aligning estimates from two or more sur-
veys. Certain adjustments, which account for the added complexity, need to be
made. This special situation has been studied extensively and several design-based
methods have been proposed. Zieschang’s (1990) and Renssen and Nieuwenbroek’s
(1997), as well as Merkouris’s (2004) methods are based on the generalized calibra-

tion estimator. Zieschang (1990) and Renssen and Nieuwenbroek (1997) estimate
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the unknown population mean of w by a linear combination of two estimates cal-
culated from S; and S5. This linear combination is then used as a benchmark
parameter in a regression estimator. Merkouris (2004) proposed ‘composite regres-
siton estimator’ of a total of y, which is based on a simultaneous regression using
data of §; and S, pooled together, avoiding the estimation of the means of w as
an intermediate step. In Zieschang’s (1990), Renssen and Nieuwenbroek’s (1997)
and Merkouris (2004) approaches, symmetric confidence intervals are constructed

based on suitably adjusted variance estimates.

Wu (2004a) proposed an estimator for means of y; and y, based on aligned pseu-
doempirical likelihood weights. Symmetric confidence intervals are created using
the variance estimate for the asymptotically equivalent regression estimator. Chen
and Kim (2014) developed an aligned population empirical likelihood approach,
based on an empirical likelihood function defined at population level, and pro-
posed an empirical log-likelihood ratio statistic, which is pivotal under Poisson
sampling with negligible sampling fraction. Methods outside of the design-based
paradigm have also been proposed, see e.g. Kim and Rao (2012) for a model-
assited approach, Kim et al. (2015) for a model based small area application and

Dong et al. (2014) for a bayesian bootstrap approach.

We propose a new aligned design-based empirical likelihood approach. The pro-
posed approach is different from Zieschang’s (1990), Renssen and Nieuwenbroek’s
(1997), Merkouris’s (2004) and Wu’s (2004a) methods as it considers a general
class of parameters which are defined by estimating equations, rather than means
or totals, and allows for construction of Wilks (1938) type confidence intervals.
It also differs from Chen and Kim’s (2014) approach in that it is defined at the
sample level, does not require the population size to be known and can easily be

applied to designs with large sampling fractions and stratification.

The proposed approach treats the empirical likelihood function as a standard
likelihood. Point estimates are obtained by maximising this function. Confidence

intervals are obtained from an empirical log-likelihood ratio function rather than
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through variance estimation. The proposed method does not require knowledge of
the population size and does not rely on the estimation of the population mean of
w. It is valid under without-replacement stratified sampling with small or large

sampling fractions.

The presented method has some practical advantages. Confidence intervals are
range-preserving and their construction does not require variance estimates, unlike
the pseudoempirical likelihood and the composite regression confidence intervals.
Simulation studies presented in chapter 2.12 show that the empirical likelihood
confidence intervals have good coverage across a range of scenarios. The proposed
approach can accommodate different functions of the common parameter (as op-
posed to just a mean or a total), making it possible to choose the function that is
highly correlated with the parameter of interest. The empirical likelihood weights

are always positive.

The proposed method is derived from Berger and De La Riva Torres’s (2016) em-
pirical likelihood methodology for construction of confidence intervals in a single
sample case, in presence of benchmark constraints and under complex sampling
designs (see chapter 1 for a brief summary of this approach). However, the core
problem tackled here is different. Berger and De La Riva Torres (2016) deal with
a traditional setup when a single sample is considered and benchmark constraints
involve only known population parameters. We focus on alignment of two sam-
ples and allow for constraints including unknown (yet not necessarily nuisance)

parameters.

The following chapters introduce the proposed empirical likelihood approach for
aligning information from multiple surveys. Chapter 2.2 explains the sampling de-
sign and variables measured. Chapter 2.3 describes some alternative approaches
to parameter estimation under alignment constraints. Chapters 2.4 - 2.11 intro-
duce the proposed aligned empirical likelihood estimator and discuss its properties.
Numerical results from Monte Carlo simulations performed on artificial and real

datasets are presented in chapter 2.12.
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2.2 Sampling design and data collected

Suppose that two independent surveys are carried out in a finite population U
of size N. The samples S; and S5 are selected independently, where S; denotes
the sample selected after n; independent random draws from population U. For
simplicity, we start with the assumption that units are selected with unequal
probabilities, with replacement, or without replacement with negligible sampling
fractions, i.e., nyN~t — 0 and nyN~! — 0. In chapter 2.11 we discuss how the
proposed method can be applied in the commonly used without replacement sam-
pling designs with large sampling fractions. We consider non stratified sampling
designs first. In chapter 2.10 we show how the proposed method can accommodate

stratified sampling designs.

Let y,,; be the value of the variable y measured in the ¢-th survey for the i-th unit,
t=1,...,n; and m; be the first order selection probability for the i-th unit in the
t-th survey. The samples may or may not overlap, because same population units

may or may not be selected in both samples.

Let S of size n = ZtT:l n; be the collection of labels of all units selected in all the
T samples, i.e., a 'pooled’” multiset of labels of S; and S5. If a unit is selected k

times, its label appears k times in S.

Suppose that the values of a set of variables, denoted by vy, are collected from the
sample S; and that v; and v, contain at least one common variable. The set v, is
composed of four types of variables: z;, y,, €; and w; that is, v1 = {z1,y,, z1, w}
and vy = {22,Y,, T2, w}. The variables z; denote the design variables, which
include unit sampling probabilities. The variables x; denote auxiliary variables.
The variables w denote the common variables which are included in both v; and
vy (see Figure 2.2). Other variables in the sample are denoted by y,. Some of
them might be the variables of interest. The existence of at least one common

variable is the key aspect of the considered problem.
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Figure 2.2 shows a visualisation of the variables and population units. The hori-
zontal axis represents the variables and the vertical axis represents the population
units {1,..., N}. The shaded areas represent the two samples. In Figure 2.2,
there is no overlap between the two samples. In practice, some overlap is possible,
as the samples are selected independently. The overlap does not play any role in
inference and does not need to be known.

zZ1 Yy T w T2 Yy Z2

SIS SN S S !
SSSAS S S S A S S S S S A S S S S S !
SV /SN S S S S S SSSSASSSSSSS 1
SSSAS S A S S S S S S A S S S S S S !
SN S S S 1

Figure 2.1: Sample data and parameters of the samples S and Ss. The horizontal
axis corresponds to the variables: z:, y,, ©; and w. The vertical axis represents

the labels of the units in population U. The area represents the data sampled

in S1. The area [ represents the data sampled in S.

We adopt a design-based approach, were the vy; are fixed quantities and sampling
is the only source of randomness (Neyman, 1934). The distribution of the sample
S, is specified by the probability distribution of S;, which is denoted by P;(S,).
Note that the observations are not independent and identically distributed. We
follow Hartley and Rao’s (1968) framework under which the population labels are

non-informative.

Let 6;, be a fixed, unknown population parameter of interest, a function of wv;.

Let parameter 6, be a concatenation of parameters of interest related to each of
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the samples, that is, 8, = (6], GJU)T. It follows that 6, is a function of the values
of the variables {vy,v2}. The parameter of interest 6, is defined as the solution

of the following system of population estimating equations.

G(0) = (Gi(61)",Gx(62)")" =0, (2.1)
where v = 1y + vy,
Gi(6) =) g,(vi,0)=0,, t=12 (2.2)
ieU

and 0, denotes an v-vector of zeros. The vector g,;(vy;, 6;) is a v-vector function
of a subset of variables v;;. We assume that the g,,(vy,6;) are such that the
solution of (2.2) is unique and that @ € ©, where ® denotes the parameter space
of 8,. Various definitions of the function g,;(vy;, 6;) are possible. For example,
when g,;(vy, 6;) = y;; — 0;, the unique solution of (2.1) is a vector of Héjek -
type estimates of the population means of y, and y,. When g, (v, 0;) = y,.; —
Nny'm.:6;, we get the Horvitz-Thompson estimates of the population means.
When g;(vii, 0) = y,.; — 1y '7.:0;, we obtain the estimates of the population
totals. Note that the parameters and estimating equations based on each sample
can be different, e.g. because different variables are measured in each sample, or
because different functions are of interest. To simplify the notation, we replace

9. (4, 6;) by g4i(6;), in the following text.

Let d;; be the sample inclusion indicator

1 ifiesS
Oy = RSt (2.3)

0 otherwise-

Let

9:(0) = ( 01 91z’(91)T , Og; g2i(02)T )T (2.4)
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and
i 1= 01i1i + OgiTai- (2.5)

Note that (2.5) means that m; := my; if i € S; and m; := 7y if i € S,

Very often some population level parameters, such as totals, means, ratios or
counts are known for the whole population or for a specific domain, e.g. from cen-
sus or administrative records. Suppose that a g-vector of population parameters

¢, 1s known. The known parameter ¢, is defined as the unique solution of

Z fti<mti’ SOtU) = OQt’ (26)

1eU

where the vector fy;(xy,,,) is a g-vector function of x;; and @, are selected
components of vy;. To simplify the notation, we replace fy;(x;, ;) by fii(¥,,), in

the following text. Let

Py = (LPIU7 QOJU)T (27)

denote the overall g-vector of known parameters, with ¢ = q; + ¢o.

Consider the following sample level estimating equation:

F.(p) =) difi(p) =0, (2.8)

i€S
where d; = 7; ! are the design weights, ; are defined by (2.5) and fi(¢) is defined
in an analogous way to g;(€@). The estimate @ of ¢, is obtained as the value
which solves (2.8). In a general case, there is no guarantee that @ is equal to ¢,,.
Adjusted weights p; are said to possess the generalized calibration property (e.g.

Owen, 1991; Chaudhuri et al., 2008) if the solution to the equation

F(p) = > pifi(e) =0, (2.9)

€S
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is equal to ¢,. The constraint

&=, (2.10)

is called a benchmark or calibration constraint (Deville and Sarndal, 1992a). Note
that (2.10) simplifies to (1.23) if ¢, is a population total of variable . Benchmark
constraints are often used in survey practice, especially in official statistics. If the
variable of interest and the auxiliary variables are highly correlated, benchmark
constraints on ¢ might improve the precision of the estimator 0 of 0,, defined as

the solution to the sample estimating equation

G(0) =) pigi(6) =0, (2.11)

icS
Sometimes the benchmark constraints are also used for practical reasons (e.g.
in order to obtain numerical consistency with values published from a census or
administrative sources). Note that the f;(¢) cannot be a function of 0, i.e., all its

components need to be known.

Let £, be the unknown population mean N~'»". _,; &(w;) of a known function & of
the common variable w. For example, we may have &(w;) = w;, or &(w;) = w?, or
&(w;) = d(w; < a), where 4(+) is an indicator function equal to 1 if the argument is
true and to 0 otherwise and « is a known constant, e.g. a quantile of distribution.
Suppose for now that we have £(w;) = w;, that is, £, is the population mean of

the variable w. A more general case will be discussed in chapters 2.4 and 2.5.

We can estimate &, from an estimating equation based on either of the two sam-

ples. Let Et be the solution of the estimating equation based on sample ¢:

ﬁtﬂ'(&) = Z dt;iht;i(wt;ia 6) = OTt’ (2]‘2)

i€S

where d;.; = 7@1 are the design weights, r; is the dimension of vector hg;(we., §)

and h;(w;, €) == w; — Nn;lﬁti & fort =1 and 2. A similar estimating equation
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was proposed by Berger and De La Riva Torres (2016). Solving (2.12) with respect
to & gives a Horvitz-Thompson - type estimate of the population mean (Berger

and De La Riva Torres, 2016)

-1

Et = ntN_l Z dmwi (Z dt;ﬂrti> . (213)
i€Sy 1€ES:

The estimate /S\t can be obtained either from S; or S3. The estimates /5\1 and /5\2

obtained from each of the samples are not guaranteed to be equal.

We define the alignment property as the requirement that

51 - 52' (2-14)

In the next chapters we propose an empirical likelihood method for obtaining the
adjusted design weights p;; such that the resulting estimators have the calibra-
tion property, as defined by equation (2.10), and the alignment property (2.14).
While the estimators which possess the calibration property are commonly used
and a design-based empirical likelihood estimator with this property has already
been proposed (see chapter 1 and Berger and De La Riva Torres (2016)), the
estimators with the alignment property are not so common. Below we discuss
some existing estimators which have the alignment property, including the gen-
eralized regression type estimators (Zieschang, 1990; Renssen and Nieuwenbroek,
1997; Merkouris, 2004), as well as the pseudoempirical likelihood (Wu, 2004a) and
population empirical likelihood (Chen and Kim, 2014) estimators.

2.3 Some existing approaches

There are two main types of design-based estimators that ensure alignment of

estimates from two or more surveys: the generalized regression family estimators,
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including the methods of Zieschang (1990); Renssen and Nieuwenbroek (1997) and
Merkouris (2004) and the empirical likelihood type methods, namely the pseudo
empirical likelihood estimator (Wu, 2004a) and the population empirical likelihood
estimator (Chen and Kim, 2014). Historically the first method was proposed by
Zieschang (1990) for alignment of totals of the common variables. The method
consists of two steps. First, a composite estimate of the total of the common
variable is calculated as a linear combination of regression estimates obtained
from each of the samples. That is, for a scalar common variable w, the composite

estimator of the population total W = ., w; takes the following form:
Wer = oW+ (1 - o)Wy, (2.15)

where VTQR is a regression estimator of W calculated from the t-th sample and ¢
is a scaling factor between 0 and 1. In the second step an additional calibration
type constraint is included in the extended regression system for estimation of any
non-common parameters. In other words, each of the samples is calibrated on the

same composite estimate of the total of the common variable (Merkouris, 2004).

Renssen and Nieuwenbroek (1997) proposed an optimal weighting coefficient ¢ for
the linear combination (2.15), based on the approximate variances of estimators
obtained from both surveys:

V(s

ST v (216)

These results were further extended by Merkouris (2004), who proposed a method
which does not require the intermediate step of estimating the total of the com-
mon variable and does not require estimating the variances as in (2.16). Merkouris
(2004) also provided a generalisation of the available approaches to estimation of
population totals of the non-common variables. The composite regression esti-

mators for the totals of variables y; and gy take the following form Merkouris
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(2004):

Y=Y+ B, (I - @)Wy - W) (2.17)
VIR =Y+ B, @(Wi — W), (2.18)

where

}A/;‘/R =V +y! Ay (2] Ayy) (X — Xt%

Wf” = Wf{T +w, Ay (] Ay) ™ (X — Xt)

b
[
S

Bys - y;rLStwt(w;rLStwt)_l

DO
[N}
—_

Lt = At(I — wt(mtTAtwt)_lthAt)

and A; is a diagonal weighting matrix with the #¢-th entry equal to W;il. The YtR is
a generalized regression estimator of the total Y; and *; denotes values of variable
* observed in sample S;. The coefficient ® is an adjustment factor which can take

different forms.

When ® = I, with v being a scaling coefficient ranging from 0 to 1, we obtain
Renssen and Nieuwenbroek’s (1997) estimator (Merkouris, 2004). In particular,

the coefficient
& =V(WIH{VW) + V(W) (2.23)

minimises the estimated variance of the composite estimate of the total of the

common variable (Renssen and Nieuwenbroek, 1997; Merkouris, 2004).

Using
& = w, Awy(w] Ayw; + wy Ayw,) ™ (2.24)

yields Zieschang’s (1990) estimator (Merkouris, 2004).
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The choice of

P = w;ngg(wlTLl'wl + w;—Lng)_l (225)
gives Merkouris’s (2004) composite regression estimator, where L; is defined by
(2.22).

The estimator can be further modified to include a correction factor which accounts
for the differences in the sample sizes and design effects between the surveys:

(Merkouris, 2004)

nl{DEFF(Sl)}_l
i {DEFF(S,)} ' + ny{ DEFF(Sy)} 1

¢ = (2.26)

where DEFF(S;) is the design effect associated with the ¢-th sample. The factor

¢ is incorporated into (2.25) in the following way:
® = pw, Loyws{(1 — ¢)w| Lyw, + dpw,y Low,} " (2.27)

This is equivalent to dividing the ¢j-th element in the matrix A; by a factor

qi = n{DEFF(S;)}~! (Merkouris, 2010a).

Merkouris’s (2004) estimator accounts for both the difference in variances of WF
and W, and the different levels of regression fit in the W1 and W% in (2.20)
(Merkouris, 2004).

The approximate design variance of the estimator lA/lCR is given by: (Merkouris,

2004)

Var(YCR) = Var(YE) + By, (I — @){Var(WE) + Var(WHY(I — @) B,
—2B,, (I — ®){Cov(V},WE)} .

(2.28)
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The relative efficiency of the estimators listed above has been discussed in detail
by Merkouris (2004, 2010a,b, 2015). The main difference between Zieschang’s
(1990) estimator and Renssen and Nieuwenbroek’s (1997) and Merkouris’s (2004)
estimators is that the latter two are corrected for the difference in efficiency of the
two surveys. Renssen and Nieuwenbroek’s (1997) estimator includes the correction
factor in the coefficient ®, which is proportional to the estimated relative variances
of the regression estimators for the total of the common variable calculated from
each of the samples. The practical implication of this is the necessity to estimate
these variances before the final weights are obtained. Merkouris’s (2004) point
estimator does not rely on variance estimation. Instead, sample sizes (and design
effects if different designs are used in the surveys), are included directly in the
extended regression coefficient B. In some cases, Merkouris’s (2004) estimator is

design optimal (Merkouris, 2004).

Merkouris (2015) discusses composite regression estimators that are minimum-
variance linear unbiased combinations of estimators obtained from each sample.
These estimators are called best linear unbiased estimators (BLUE) (see Chipper-
field and Steel, 2009). If the samples S; and S, are independent, the optimal
weighting matrix AY has the ij-th element equal to (ij — m;7;)(mm;mi;) "%, where
;; are second order sampling probabilities for units ¢ and j (Merkouris, 2015).
For dependent samples, estimation of variances and covariances of the estimators

is necessary to obtain a BLUE.

Wu (2004a) proposed a pseudoempirical likelihood approach to aligning estimates
of means from two surveys. The maximum pseudoempirical likelihood estimator

of the mean 7, = N1 > ics, Yui 1s equal to:

gjt = Zpt;iyt;ia (229)

i€St

where the weights p;,; are estimated by the values which maximise the pseudoem-
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pirical likelihood function:

Up) =D mitlog(pra) + Y ma) log(pa) (2.30)

1€S1 i€So

under the following constraints:

Z P =1, Z p2i =1, (2.31)

i€S1 €S9
E DP1;i%1 = T, E P2:iT2; = T, E P1iW1;; = E D2;i W24, (2.32)
i€8S1 1€8S9 i€8S1 i€So

where Z; is the known population mean of variable z;. Wu (2004a) proposes
two methods to compute the pseudoempirical likelihood weights p;.;. The first
approach consists of using an iterative algorithm, where in each iteration first the
maximum likelihood estimate of the mean of the common variable is calculated
and then the estimated mean is used to construct a benchmark constraint. The
second approach circumvents the necessity of estimating the unknown mean of the

common variable and imposes constraint (2.32) directly.

The maximum pseudoempirical likelihood estimator is asymptotically equivalent
to a regression estimator similar to the estimator proposed by Zieschang (1990),
but creates weights which are positive by definition (Wu, 2004a). A version of
the pseudoempirical likelihood estimator similar to Renssen and Nieuwenbroek’s
(1997) estimator with the optimal weighting coefficient, where the unknown mean
of the common variable is estimated by a linear combination of the estimators
obtained from separate samples and then used to construct a constraint on the

estimator for the parameter of interest was also proposed (Wu, 2004a).

Chen and Kim (2014) proposed a population empirical likelihood method to com-
bine information from non-nested two-phase sampling. The method involves find-

ing the weights which maximise the population empirical likelihood function:
N
((p) =) _log(ps), (2.33)
i=1
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where N is the population size, subject to the following population level con-

straints:

N
Z pi=1 (2.34)
=1

N N
Zpixl;i((sl;iﬂ-;il — 1) = O, Zpixg;i(ég;m;ﬂl — 1) =0 (235)
i=1 =1
N
Zpifi(xz'a @U)(él;ﬂf;il - 52;@'”5;3) =0 (2.36)
=1
N
Zpi52;iﬂg_;39i(yi, ) =0, (2.37)
=1

where ¢;; is a sample membership indicator and equals 1 if unit 7 was selected in
S; and 0 otherwise. The f;(z;, pr) and g¢;(y;, 0y) are estimating functions for the

known population parameter ¢y and the parameter of interest 6y respectively.

Under Poisson sampling and rejective Poisson sampling, when the sampling frac-
tion is negligible (i.e., nyN~' — 0 and ny N~' — 0), the maximum population
empirical likelihood estimator of the parameter 0y is asymptotically equivalent to
the optimal Generalized Method of Moments estimator (Hansen, 1982). Under the
above conditions and some regularity conditions (see Chen and Kim, 2014), the
population empirical likelihood ratio function is pivotal and follows a x? distribu-
tion asymptotically, which can be used to construct Wilks (1938) type confidence

intervals.

Methods outside of the design-based paradigm have also been proposed. While it is
beyond the scope of this work to characterise them all, examples include a model-
assited approach of Kim and Rao (2012), a model based small area application by
Kim et al. (2015) and a bayesian bootstrap approach by Dong et al. (2014).

The empirical likelihood approach proposed in the following paragraphs fills in
some gaps in the currently available methods. It gives point estimators and confi-

dence intervals for a wide class of parameters expressed as solutions to estimating
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equations. It also allows to use various functions of the common variable in the
alignment constraints. The regression-type estimators and the pseudoempirical
likelihood estimator are restricted to estimation of means and totals. The empir-
ical likelihood approach allows to construct asymmetric, range-preserving Wilks
(1938) type confidence intervals based directly on the x? approximation of the
empirical likelihood ratio function, without any corrections. This is not the case
for the regression type estimators and the pseudoempirical likelihood estimator,

as they require variance estimates.

Estimation of parameters through the use of estimating equations as well as con-
struction of asymmetric confidence intervals based on the asymptotic x? distri-
bution of a likelihood ratio function is possible with the population empirical
likelihood approach. The proposed empirical likelihood approach, however, only
considers sample data, does not require knowledge of the population size and can
be used for estimation from stratified samples selected with large sampling frac-
tions. It is also closer to the original formulation of empirical likelihood in that it

is defined at the sample level.

2.4 Empirical likelihood approach proposed

In this chapter we develop an empirical likelihood method to obtain estimates for
the parameter of interest 6, such that the benchmark constraints based on the
known parameters ¢, and ¢,,,, as well as the alignment constraint on the mean

of a function of the common variable w, are respected.

Consider the following two samples joint empirical log-likelihood function:

l(m) = Z log(ma;) + Z log(ms;), (2.38)

€S iESz

where log(-) denotes the natural logarithm. The my; are unknown positive scale
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loads (e.g. Hartley and Rao, 1969) associated with unit ¢ € S;. A similar joint
empirical log-likelihood function was proposed by Owen (2001). Note that function

(2.38) is convex.

The joint empirical log-likelihood function (2.38) can be written as
((m) = log(m,), (2.39)
icS

where m; := myq; if i € 87 and m; := mo; if i € S5, that is,
my i= 013 Mg + 023 Ma;, (2.40)

S is the pooled sample as defined in chapter 2.2 and ¢;; is the sampling indicator
as defined in 2.3.

Let 6, = (OT

s OQTU)T be the fixed unknown parameter of interest, defined as the

solution to equation 2.1. Let ¢, be the known population parameter defined as
the solution to equation 2.6. Let @ be a vector in the parameter space © of
the parameter of interest 6,. Let the mX8,¢,) be the values which maximise
the expression (2.39), for a given vector @, subject to m; > 0 and the following

constraints:

1. Unknown parameter constraints

Z may; gli(el) =0, and Z ma; 921(92) =0,,, (2-41)

1€S1 iGSQ

2. Design constraints

Z my; T3 = N1 and Z Mo; To; = MNa, (242)

€81 €Sy

3. Known parameter constraints, requiring that the known population param-

eters are reproduced, i.e., that the generalized calibration property (2.10)
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holds

> mai fuilr,) =0q and > may fu(y,) = 0y, (2.43)

i€S1 i€So

4. Alignment constraints, requiring that both samples give the same point es-

timates for the mean of a known function £ of the common variable w

Z my; E(w;) = Z me; E(w;)- (2.44)

€81 1€S2

Constraint (2.44) ensures alignment of the estimates for the function of the com-
mon variable w. In chapter 2.5.1, we discuss some possible choices for the align-
ment constraint. Constraint (2.43) is the optional benchmark constraint, which
ensures that the generalised calibration property (see chapter 2.2) holds. The de-
sign constraint (2.42) plays a key role in derivation of the asymptotic properties of
the maximum empirical likelihood point estimator proposed in section 2.5. Con-
straint (2.41) will be used to obtain point estimates and confidence intervals for
the unknown parameter 6,. This is explained in detail in chapters 2.5 and 2.9.
For now we should just note that the constraint (2.41) can only be imposed for a
specified value of 6, i.e., specific values of parameters 8; and 6,. When m¥8, ¢,)
are used as arguments of function (2.39), values of (2.39) depend on the value of
the parameter 0 used in constraint (2.41). Using different candidate values of 6
and evaluating the resulting function (2.39) allows to find the point estimate 0
and the bounds of confidence intervals or regions. Note that because of constraints
(2.41), (2.43) and (2.44), values mX(0, ) depend on ¢, and 6, as well as on the

values &(w;).

The system of constraints (2.41)-(2.44) can be written as

> m; ¢)(8) =C*, (2.45)

€S
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where m; is defined by expression (2.40) and

o) = (¢ .a07)" . (2.46)
c* = (C"0]), (2.47)
° T
c = (p) , fle,)" . &), (2.48)
C = (m,ns, 0], 0])", (2.49)
with
gi(0) = 01i gui( 91 , 02 QQi(OZ)T )T, 2.50

T
5lzflz (PlU 522f21(¢2(]> ) )

( (
p, = (Oumu, 6217r2Z)T, (2.51
( (
(—1)™ &(w), (

v being the dimension of vector g;(@), ¢ being the dimension of the vector f;(¢,)

and r denoting the dimension of vector &(w;).

We assume that 8 and ¢, in constraints (2.41) and (2.43) are such that C* is an
inner point of the convex hull formed by the sample observations {c{(0) : i € S}.

This implies that the solution {m}8,¢,) : i € S} exists.

Berger and De La Riva Torres (2016) showed that, by using the method of La-

grange’s multipliers, mX6, ¢, ) can be derived as
= {m+n7c6)}) (2.54)

where n* is a vector of Lagrange’s multipliers such that constraint (2.45) is met.
This result holds in the two samples context with m; := 7y; if i € §7 and 7; := m;

if 1 € S5, or equivalently

i = 014715 + 02Ty (2.55)
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2.5 Maximum empirical likelihood point estimator

Let ¢(6|p,) denote the maximum value of the function (2.39) for a given vector

6, under m; > 0 and the constraint (2.45); that is,

((Blg,) =) log{m}(6, ¢,)} (2.56)

€S

The maximum empirical likelihood point estimator of 6, is defined as the vector

6 which maximises the function (2.56); that is,
0 = arg I&%E(O\QOU)- (2.57)

We will call 8 aligned empirical likelihood estimator.

Berger and Kabzinska (2017) showed that 0 is given by the solution of a sample

estimating equation

0) =Y () 4(6) = 0. (2.58)
i€S

where m;(¢,) are the values m; that maximise function (2.39) under m; > 0 and
ic8

where ¢;, C and g;(0) are defined by (2.48), (2.49) and (2.50) respectively. The

proof is based on the observation that

((Blep,) < log{mi(p,)} (2.60)

€S

for any value of @ such that C* is an inner point of the convex hull formed by
{cx(8) : i € S}. Then, considering that when = (GIT, 0;)T is the unique solution
o0 (2.58), ffo(O, w,) = mi(p,), where fﬁj(@, ¢, ) is defined by (2.54), we have that
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0(B|g,) = > icglog{m;(e,)}. This implies that 6 = 0, where 6 is the maximum
empirical likelihood point estimator, defined by (2.57) (Berger and Kabzinska,
2017).

We can express m;(¢,) in an analogous way to mj@, ¢, ):
. -1
mi(p,) = (m+n'c) - (2.61)

The values m;(¢,) are the adjusted design weights produced by the proposed
empirical likelihood procedure. They can be used in an analogous way as Deville
and Séarndal’s (19920) calibration weights in order to obtain point estimates for the
parameters of interest. For example, > . o m;(¢p,)y; will give an estimate of the
population total of variable y. The empirical likelihood adjusted weights m;(¢,)
possess the calibration property, i.e., solving equations (2.43) with mq; = my;(¢,)
and mo; = ma;(,) with respect to ¢, and ¢, gives the known values ¢, and ¢,

used in constraint (2.43).

Practical aspects of calculating the adjusted weights m;(¢,,) and the point estimate

0 are discussed in chapter 5.

2.5.1 Estimation of the mean of the function of the

common variable

In the previous paragraphs we treated the unknown common variable w as aux-
iliary information. Suppose that we want to estimate the population mean &, =
N3 &(w;) of the known function & of the common variable w. The most
likely application is when we simply wish to estimate the population mean of the
common variable w, in which case the function &(w;) is equal to w;. This is the
most practically applicable formulation. However, other functions £(w;) can be

used. For example, when the parameter of interest 6, is the variance of y.;, we
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might use the function €(w;) = w? in an alignment constraint in order to increase
correlation between &(w;) and g4(6;). The mean of this function also can be

estimated.

In a general case, the population mean &, can be defined as the solution of the

population level estimating equation:

> hi(w;, €) =0, (2.62)

€U

where h;(w;, &) := &(w;) — Nn;'m,; & for t = 1 and 2. We will use h;(§) to
denote h;(w;, &) for simplicity henceforth.

The maximum empirical likelihood point estimator E of £, is obtained as the value

which maximises

UElpy) =Y log{mi(&ley)}, (2.63)

€S

where m}(&|ep,) are the values which maximise (2.63) for a given value &, under

m; > 0 and

> m et =C*, (2.64)

€S
with

Kk T
= (e, hi(€)T) (2.65)
c=(CcT,0])", (2.66)

where

hi(€) = (0w hu(€)T, by has(&)T )" (2.67)

Note that this is equivalent to including & within 6.
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Based on an argument similar to the one presented in chapter 2.5, finding the
value E which maximises (2.63) is equivalent to solving the following estimating

equation for &:

Zﬁ%(%f) hi(€) = 0y (2.68)

€S

Equation (2.68) can also be written as

Z mii(¢,) hii(§) =0, and Z Mai(py) hai(§) = 0, (2.69)

€S €82
The solutions of the equations (2.69) are €, and €,, where £, = N1 Y ics, Mui(py) &(w;),
t = 1,2. Constraint (2.44), which is imposed on the adjusted weights m4,(¢, ) and

mai(p,), implies that both equations in (2.69) give the same estimate, that is,

§1 :gz-

Note that various functions of the variable w; can be used to define the alignment
constraint (2.44). In particular, these functions can be chosen to maximise the

correlation between the &(w;) and g;(0) (see chapter 2.6.2 for a discussion).

2.6 Asymptotic properties of the maximum empirical like-

lihood point estimator

In this chapter the asymptotic properties of the aligned empirical likelihood esti-
mator (2.58) are established. We start by specifying the assumed regularity con-
ditions. We then derive the generalized regression type estimator asymptotically
equivalent to the aligned empirical likelihood estimator and discuss its properties.
We also show that the aligned empirical likelihood estimator is asymptotically \/n

design-consistent.
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2.6.1 Regularity conditions

Conditions on the sampling design

Suppose that the the sampling design is such that the following regularity condi-
tions hold for t =1, 2:

N B e 1)
mx{n—w} = 0p(1) and max{Xm b =0p(1) (270
NYC,—C| = Op(n'?), (2.71)
max{||c;|| :i € 8} = op(n'/?), (2.72)
IS = Op(1), (2.73)
IS = Op(1), (2.74)
el
NT ‘ 7TT - OP<1) (T_27 37 4)) (275)
€S v
with n = n; + ne and
o n cic;
€S t
~ c;
C, = Z o (2.77)
€S

where ¢;, C and 7; are respectively defined by (2.48), (2.49) and (2.55). The
orders Op(-) and op(+) denote matrices which are such that ||Op(a)|| = Op(a) and
|lop(a)|| = op(a), where ||A]| is the Euclidean norm, i.c., ||A|| := trace(A" A)"/2.

A thorough discussion of conditions (2.70)-(2.75) can be found in Berger and De
La Riva Torres (2016). Condition (2.70) is the key condition which ensures that
the m; are of the same order as n;/N (Krewski and Rao, 1981). Condition (2.71)

is a standard law of large numbers condition (e.g. Isaki and Fuller, 1982; Krewski
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and Rao, 1981). Condition (2.72) holds for common unequal probability sampling
designs (Chen and Sitter, 1999, Appendix 2). Conditions (2.73) and (2.74) hold
when — S is positive definite and when there exists a positive definite matrix —S
such that § — S = op(1) and ||S|| = O(1) (Berger, 2015, Lemma B.4). Condition
(2.75) is a Lyapunov-type condition for the existence of moments (e.g. Krewski
and Rao, 1981, p. 1014, Deville and Sérndal, 1992a, p. 381). For conditions
(2.71)-(2.75) to hold, we assume that &(w;) = Op(1) for all i € S, which is
achieved when the components of &£(w;) are bounded (Berger and De La Riva
Torres, 2016). For condition (2.72) to hold, the components of ¢; have to be
bounded in probability. This can be justified by substituting constraint (2.42) by
the following (Berger and De La Riva Torres, 2016):

Z my; Nni'm; = Nnj'n; and Z My Nnytmy = Nng 'ng- (2.78)

i€S1 i€So

Note that this can be done without a loss of generality and does not have any
implications for practical applications, as the quantity Nn; ' appears at both sides

of the equation. In particular, the population size N does not have to be known.

Conditions on the parameter of interest

Suppose also that 8, is such that the following conditions hold:

G.(0,) = Op(Nn'/?), (2.79)
' g0
NT Z T - OP(]-) (7—_27 37 4)7 (280)
€8 ¢
_  10G(8) . .
v(o) = N a9 °© continuous in 6 € ©,,  (2.81)
1 OV(O)r, :
NH 90 | = Op(1) uniformly for all 8 € ©,, (2.82)
V(@) = 1, (2.83)
6-6,] = op(1), (2.84)
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where %(0);C is the k — th row of matrix %(0), k—1,2,..., K; K is the number of

rows in matrix V (),

~ 1
G.(0,) = Z;igi(ey) (2.85)
€S
and ®, is a compact neighbourhood containing 6,. Similar conditions can be

found in (Berger and De La Riva Torres, 2016).

Condition (2.79) is a law of large numbers condition, because G, (6,) is the unbi-
ased Horvitz and Thompson (1952) estimator of G(8,) = 0,. Conditions under
which condition (2.79) holds can be found in Isaki and Fuller (1982). Condition
(2.80) is a Lyapunov-type condition for the existence of moments of g;(8,). Con-
ditions (2.81), (2.82) and (2.83) ensure that Taylor series expansion of G(8) exists
(Berger and De La Riva Torres, 2016). Condition (2.83) means that the deriva-
tive V(6,,) is finite and that é(@) is not flat in the neighbourhood of 8, (Berger
and De La Riva Torres, 2016). Condition (2.84) ensures consistency of 6 for 6, .
This condition can be justified through a reasoning similar to that presented by
Qin and Lawless (1994, Lemma 1). An analogous assumption is made e.g. by
Godambe and Thompson (2009). Note that constraints (2.79), (2.80) and (2.83)

need to hold for 6, only, that is, when 6 is equal to the true population value .

2.6.2 Asymptotic equivalence of the maximum empirical
likelihood point estimator to a generalized

regression type estimator

Let

@ﬂ(O) _ Z Qz(?)

e
€S

(2.86)
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be Horvitz and Thompson’s (1952) estimator of 6,.

The following theorem establishes asymptotic equivalence between the proposed
empirical likelihood estimator 5, defined as the solution of (2.58), and a generalized
regression type estimator.

Theorem 1. Under conditions (2.70)-(2.75), for all @ which are such that:

1 gi 0)|? _
S 8O o 0m2) (287
€S g
we have that
G(0) = G,(0) + op(Nn~1/?), (2.88)

G,(0) = G.(0) + B(6,¢,)" (C - Cy), (2.89)
~ 1 -1 1
B(6,¢,) = ( ch?) > ;Cz‘gz’(e)Ty (2.90)
€S v €S

with Cy. defined by (2.77) and G(0) defined by (2.86).

The proof can be found in the Appendix. The first step in the proof is showing
that the Lagrange multipliers " in (2.61) are bounded by Op(n'/2N~1). Then
the estimating equation (2.58) is expressed in terms of a regression type estimator
plus an error term, for which an asymptotic order is established. Theorem 1 holds

for all @ which satisfy (2.87), that is, not only when @ equals 6.

The estimator (2.89) can also be written as:

G(0) = {G.1(6)),G2(62)"}, (2.91)
where
G1(61) = Giz(61) — Bini(0,0,)" fix(0) — Buna(0,0,) " For(p))
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+B1¢(0,9,)" (E2r — E1r), (2.92)

Gr2(6;) = Gon(6:) — Bor1(8,0,)" Tin(p) — Bora(0,0,) " Tor(ip5)
+B2(6,¢,) (€1r — &or) (2.93)
and
atw(et) = Z nggm-(ew), (2-94)
1€Sy
B = 7o), (2.95)
i€St
Etﬂ' = Z T, €(w;)- (2.96)
1€St

The terms Bur1(0,,)" fir(), Bir2(0,9,)" far(2), Bari(0,0,)" fir(epy) and
1A32f2(0, w,) " /f\gﬂ(goz) are regression terms based on the known population param-
eters ¢, and ¢,. The terms ﬁlg(O, goU)T(gg,r — EM) and Ezg(ﬂ, goU)T(/él,r — ggﬂ-)
are the extended regression terms, where the estimates El,r and EQW are used in

place of the known population parameters.

Berger and Kabzinska (2017) proved that if S; and S5 are independent, a design-
consistent estimator of the variance-covariance matrix of (2.89), under the strati-

fied maximum entropy sampling design (Hajek, 1981, Ch. 14), is given by:

VA G.(0)) =3 a(0)a(0)". (297)
€S
where
3:(0) = gi(6) — B(0,¢,) ¢, (2.98)

Following an argument presented by Berger (2011) and Berger and Kabzinska
(2017), this result holds for high entropy sampling designs, such as Rao’s (1965)
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& Sampford’s (1967) design or the randomised systematic design.

Berger et al. (2003) showed that in high entropy sampling designs, if the design
constraints such as (2.42) are included as the first components of ¢; and C, the
regression estimators (2.92) and (2.93) are asymptotically equal to the Montanari’s

(1987) optimal regression estimators.

Based on the regression estimator theory, we can expect a reduction in the vari-
ance of (2.89) when f;(¢) are highly correlated with g;(6). The effect of terms
Elg(e,ch)T(Egﬂ — EM) and §25(9,¢U)T(EM — Egﬂ) on the variance (2.97) is
twofold. First, there is an increase in variance due to the fact that the parameters
Elw and ggﬂ are estimated. However, there is also a decrease in variance if there
is a high correlation between &(w;) and g;(@). When the decrease in variance
is larger than the increase, the overall effect of alignment on precision of (2.89)
is positive. The advantage of the proposed approach is that the function &(w;)
can be chosen to improve this correlation. For example, suppose that a variable
w; is correlated with a variable y;. When g;(0) is the estimating function for an
a-quantile of the distribution of y;, it is recommended to use &(w;) = §(w; < @),
where §(-) is an indicator function equal to 1 if its argument is true and to 0
otherwise. If g;(0) is the estimating function for the variance, &(w;) = (w;, w?)"

should be used.

2.6.3 Asymptotic design-consistency of the maximum

empirical likelihood point estimator

Consider a sequence of nested populations U®) of size N, where v = 1,2, ..., 00
(Isaki and Fuller, 1982). Consider a sequence of samples S\ of size n{"”) < N®)
selected from U™ according to a sampling design Pt(y)(St). We assume that

) )

ny — oo and né” — 00, as ¥ — o0o. We also assume that ngy)/N — 0 and

ng/) /N — 0, i.e., we assume that the sampling fraction is negligible. Extension to
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non-negligible sampling fractions is discussed in chapter 2.11. Let op(-) and Op(+)
be the orders of convergence in probability with respect to the sampling design
Pt('/)(St) (e.g. Isaki and Fuller, 1982), as v — oo. To simplify the notation, we

drop the index v in the following text.

The following theorem shows that the maximum empirical likelihood point esti-
mator 8 is asymptotically \/n design-consistent.

Theorem 2. Let n := ny + ny. Under the regularity conditions (2.70) (2.70)-
(2.75), (2.79), (2.80) (with 7 = 2), (2.81)-(2.84), we have that |6 — 0,] =
Op(n=1/2).

The /n design-consistency is achieved because of the design constraint (2.42). The
proof can be found in the appendix. The proof shows that || B(8,, ¢, )| < Op(1)
and N~'G(8,) = Op(n~'/2), where G(6) and B(0,,,) are respectively defined
by (2.58) and (2.90). The asymptotic \/n design-consistency for 6 is then based
on taking a Taylor expansion of CA;'(E) in the neighbourhood of 8,. Theorem 2
holds whether or not the common parameter £, is included within 8, and whether
or not Sy and Sy are independent. Theorem 2 is an improved result compared to

condition (2.84) in that a rate of convergence is established.

2.7 Effect of a difference in sample sizes on the maximum

empirical likelihood point estimator

In practical applications samples S7 and S5 might have different sizes and utilise
different designs. Following (2.92) and (2.93), the alignment constraint can be
intuitively interpreted as calibration on a zero function defined by the difference
between the estimates of the common parameter obtained from the two samples.
Efficient ways of introducing an alignment constraint when samples considerably
differ in size have been investigated by both Renssen and Nieuwenbroek (1997) and
Merkouris (2004, 2010a, 2015). Renssen and Nieuwenbroek (1997) accounted for
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differences in sample sizes by introducing a weighting coefficient which depends on
relative variances. In their method, the total of the common variable is estimated
by a weighted average of two separate sample estimates. This total is then used in
the regression estimators of the totals of the variables of interest. In the composite
regression estimator, the entries in the weighting matrix included in the regression
coefficient can be adjusted by relative sample sizes and design effects (Merkouris,
2004, 2010a, 2015). The aligned empirical likelihood estimator does not include
any adjustment factors. However, because of the design constraint (2.42), an
implicit adjustment for the relative sample size is made. This can be seen in
the coefficient B (0,p,) of the asymptotically equivalent generalized regression

estimator (2.89). We discuss this below.

Consider a simple situation when there is no stratification, no benchmark con-
straints and there is a single common variable w and two equal scalar parameters
of interest ¢, = 6. Suppose that n; > ny and that ¢;(6;) and go;(62) are the
same estimating functions. In such a case, we would like the adjustment applied
to C/J\M(@l) to be smaller than the adjustment applied to @%(02). Below we show
that this is indeed the case.

We can express the coefficient B(8), ¢,) in equation (2.88) as

B(0,¢,) = {2} ' =, (2.99)
It can be shown that
G 0
=10 Gl (2.100)
Hi Ho
with
Gi =Y m 'gulbh), (2.101)
€851
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Go =Y 7 'gilba), (2.102)

1€So
H, = Z 7T;291¢<(91)52(')7 (2.103)
€S
Mo =Y 7 gi(02)€ (2.104)
1€So
and
ni 0 Sm
EZC - 0 No SH2 5 (2105)

SHl ’SH2 SH12

with Sy = Y w7 '&, S = Y1 'E, Spia = Y7 %67 and & defined by
€81 i€So €S

2.53.

Hence, (2.99) becomes

B(8,¢,) = {det(22)} ' B, (2.106)
with
gl,l gl 2
B= gQ,l gz,z ) (2.107)
B\B 1 B\S,Q

gl,l = (noSm2 — Su1Su2)G1 — n2SuiHi, (2.108)
Boy = SuiSmsGi — mSuaHti, (2.109)
Bsy = minoHi —naSmibu, (2.110)
Bz = SiiSu2Gs — naSiiHo, (2.111)
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By = (miSu12 — Sui1Sh2)G2 — mSaHa, (2.112)
Biz = ningHs — miSiaGe (2.113)

In the special case considered, the vector (C — C;) in (2.89) has only three el-
ements. The first two elements are equal to zero and the third element equals

(EM - @W). Therefore, (2.92) and (2.93) simplify to

Go(0y) = Gin(0h) — Bie(Ear — 1), (2.114)
Gralfs) = Gan(02) — Boe(E1r — ), (2.115)

with
Bie = {det(3,)} 'Bs, (2.116)

= nap{det(X7)}

X{MZW fwzguel ZW fwz ZW 91191}

€81 €S €S
By = {det(22,)} "By (2.117)
= nl{det(zgc)}_l

X{”QZW fwzgmez ZW fwz ZW 92192}

1€So 1€So i€So

Consider a situation when units within S; and S5 are selected with equal proba-

bilities m; = ny/N. Substituting m; by n;/N in (2.116) and (2.117) gives

Bie = naN*{det(X;.)} " Covy {€(w;), 91i(61)}, (2.118)
325 = n1N2{d€t(22c>}7100U2 {&(w;), g2i(02) }, (2.119)
where
COUt {g(wl) gt’L et {nt Zg w’L gtl et - nt Zé wz ;1 thl(et)} :
€St €St 1€St
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(2.120)

The expected values of the coefficients [5’15 and [3’25 are given by

E(Big) = neN*E [{det(35,)} '] E[Covi {€(w), gui(01)}]  (2.121)

A

E(By) = mN’E [{det(3,)} '] E[Cova {€(w;), g2i(02)}] - (2.122)

The factor N2FE [{det(X2,)} '] appears in both coefficients. The expected values
of the covariances, E [Covy {{(w;), g1:(01)}] and E [Cove {&(w;), g2i(02)}] can be
assumed to be of the same order, as ¢;(01) and go;(02) are values of the same
function of the same variable. Therefore, when n; > ns, we have that F (1’5’25) >
E (815)- When the coefficient Blg is very small, it has a negligible effect on the
variance of G, (6;) (see (2.97)). The variance of G,s(6s), however, would be highly
influenced by the large term ng. A simulation study demonstrating performance
of the aligned empirical likelihood estimator when two samples of very different

sizes are aligned is presented in chapter 2.12.2.

Note that when the common parameter £ is the only parameter of interest, the
aligned empirical likelihood estimator is not the most efficient way of combining
information from two samples. Chapter 3 introduces a general form of an empirical
likelihood estimator that can be more precise in this situation. The relationship
between that estimator and the aligned empirical likelihood estimator is discussed

in chapter 3.6.

2.8 The empirical likelihood ratio statistic

In this chapter we show that the empirical likelihood ratio statistic defined for
the two samples joint empirical log-likelihood function follows a y? distribution

asymptotically.
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Consider the following empirical likelihood ratio statistic:

F(Olp,) = 2 {((T) — (6], )} (2.123)

where ¢(m) is defined by (2.39) with m;(¢,,) given by (2.61) and £(8|¢,,) is defined
by (2.56).

The following theorem establishes the asymptotic distribution of (2.123).
Theorem 3. Under conditions (2.70)-(2.75), (2.79) and (2.80), and assuming
that the central limit theorem holds for the vector (2.89), that is, (e.g. Scott and
Wu, 1981)

Vp{G.(0,)) " G.(6,) -5 N(0,,1,), (2.124)

where N'(0,, I,) denotes the standardized multivariate normal distribution and I,

denotes the p X p identity matrix, we have that:
7(0s]p,) = Go(0,)" Vp{G.(6,)) " G.(8,) + Op(n~'7?), (2.125)

where Vp{ar(%)} is giwen by (2.97) with 6 = 0.

The assumption (2.124) is plausible as the random vector (2.89) is a smooth func-

tion of Horvitz and Thompson (1952) estimators.

Under high entropy designs and if §; and S, are independent, ‘/}7){ (A;T(GU)} is a
design-consistent estimator of the variance-covariance matrix of CAJT(BU) (see chap-
ter 2.6.2 and (Berger and Kabzinska, 2017)). Therefore, the assumption (2.124)

and Theorem 3 imply that
A d
M(8uley) == X (2.126)

where x7_, denotes a y*-distribution with p degrees of freedom and p is the num-

ber of equations in (2.58). Thus, 7(0,|¢, ) is a pivotal statistic, i.e., its asymptotic

26



distribution does not depend on 8, .

2.9 Tests and empirical likelihood confidence regions

Property (2.126) allows us to use the empirical likelihood ratio statistic (2.123) to
construct confidence regions or confidence intervals for the parameter 8, and to

test hypotheses about 6, .

Suppose that we wish to test Hy : 6, = 02 against Ha : 0, # 00. Under Hy, we

~ d . . 00 .
have 7(68)]¢,) = X7—,- The p-value is given by f?(O?]'LPU) f(x)dz, where f(z) is
the density of the y2-distribution with p degrees of freedom.

An a-level confidence region for 6, is defined as the set of Y such that Hy : 8, = 0

is not rejected at the 1 — « level (p-value > 1 — «); that is,
a-level confidence region of 6, := {6 : 7(8|¢p,) < X(sz:p(a)} : (2.127)

where Xfif:p(a) denotes the upper a-quantile of the Xzf:p-distribution. Based on
(2.126), this confidence region is asymptotically consistent. This means that the

nominal coverage « is asymptotically achieved.

It is also possible to construct a confidence interval for a single scalar parameter 6,
when it is entirely defined by a single estimating equation which does not involve
any unknown parameters. For example, if we wish to construct a confidence
interval for the mean 6, = N~'3". _, y, the single estimating function can be
defined as ¢;;(0;) = y;; — 0. The same principle can be used for totals, quantiles or
ratios of any parameters defined by an estimating equation. With a single scalar
estimating function (p = 1), the confidence region (2.127) reduces to a confidence
interval. Practical aspects of finding the empirical likelihood confidence regions

and confidence intervals are discussed in chapter 5.
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2.10 Stratification

In the previous chapters we considered single stratum samples for brevity. In
this chapter we show how stratification can be included. This requires adjusting
the design constraint (2.42) using a method proposed by Berger and De La Riva
Torres (2016), with a small change to account for the two samples setup. The
adjustment for stratification is not necessary to calculate point estimates, but is

important for construction of confidence intervals and regions.

Suppose that the population U is split into H; groups {Uy,..., U, ..., Un,},
which are disjoint and such that UhHilUth =U (t =1,2). A sample Sy, of fixed
size ny, is selected with unequal probabilities from Uy,. We have S| = UhH;IS 1hs
S, = UhHZIISQh and n; = Zf;l ng,. Note that each of the samples can be stratified

in a different way. We assume that the number of strata H; is bounded.

Information about the stratification is included in the design (or stratification)

variables: z; and z,. The values of z; for unit ¢ are given by the H;-vector
Z i — (Zt1i7 vy Bthiy e ey Zthi)T, (2128)

with z4,; = m; when ¢ € Uy, and zy,; = 0 otherwise.

When samples are selected using a stratified design, the constraint (2.42) takes

the following form:

H H
Z mq; 21, = ng ) and Z Mmo; Z9; — ng ), (2129)
€8S, i€S2
where n,EH) = (n41, 42, ..., mepg) | is the vector of strata sample sizes. Theorems (1),

(2) and (3) hold under stratified sampling designs (Berger and Kabzinska, 2017).
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2.11 Without replacement sampling and large sampling

fractions

In this chapter we show how the proposed approach can be adjusted to accommo-

date large sampling fractions.

When samples are selected without replacement, but the sampling fraction is
negligible, the proposed approach can be used without changes. For large sampling
fraction designs, the method proposed by Berger and De La Riva Torres (2016) and
extended to the alignment case by Berger and Kabzinska (2017) can be used. This
approach is based on using the so-called penalised empirical likelihood function

and including finite population correction factors in the constraints system.

Theorems (1) and (2) hold under large sampling fractions, i.e., when the as-
sumptions n§”> /N — 0 and n;'/) /N — 0 are substituted by an assumption that
n§”> /N < 7, where =, is a constant such that 7, < 1 (Berger and Kabzinska,
2017). For theorem (3) to hold, the empirical likelihood function (2.38) has to be

replaced by the penalised empirical likelihood function

((m) = {log(m;) + 1 —mm;} (2.130)
€S

The empirical likelihood ratio function (2.123) is replaced by

F(Olp,) =2 {l(m) — 6lp,) } . (2.131)

with ¢(m) = >, glogmi(p,) and £(8|p,) = > ..slogmi(8,p,). The adjusted
weights m;(¢p,) are defined as values which maximise (2.130) under m; > 0 and

the constraint

> mie =C, (2.132)

€S
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while m*(0, ¢,) maximise (2.130), for a given vector @, under m; > 0 and the

constraint
> m; €(6) =C* (2.133)
i€S

The constraint matrices take the following form:

Ez(e) = E;r 9 g@(g)T }T7
Cr = {C" g0},
¢ = Qi{zz—'r ) fi(QOU)T ) SET}Tv

C = F fe) &},

¢ = 01 qui+ 02 Qo
Qe = (1 - Wti)1/27
Z; = ( 511'Z1Ti ) 52#% )Tu

£ = Y (a-1E,
icS
where g,(8) = gi(O)m; ", 2 = zim ' Lilg,) = filp,)m & = &m ! and €
are defined by (2.53). The z;; are the design variables (2.128). If there is a single

stratum, z; = p,;, where p, is defined by expression (2.51).

The q;; are finite population correction factors proposed by Héjek (1964). They
reduce the effect of units with large sampling probabilities (Berger, 2005; Berger

and De La Riva Torres, 2016). For large sampling fractions and moderate sample
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sizes, Berger and Kabzinska (2017) recommend to substitute q; by (1 — A;)'/2,

where the Ay are defined by the recursive formula (3.25) in Hajek (1981). The

correction factors ¢; are close to 1 when the sampling fraction is negligible.

2.12 Simulation studies

This chapter summarises the results of simulation studies carried out to assess the
asymptotic properties of the aligned empirical likelihood estimator. We consider
four different populations and samples of varying sizes. In chapters 2.12.1 and
2.12.2, we evaluate the precision of the aligned empirical likelihood point estima-
tor. In chapter 2.12.3, we consider confidence intervals. The pseudoempirical like-
lihood estimator (Wu, 2004a) and the composite regression estimator (Merkouris,
2004) are calculated for reference. In Tables 2.1-2.7, ‘AEL’ refers to the aligned
empirical likelihood approach proposed. ‘PEL’ refers to the pseudoempirical like-
lihood approach (Wu, 2004a). ‘Com.” refers to the composite regression estimator
(Merkouris, 2004). ‘Reg.” refers to the single sample calibration estimator (Deville
and Sdrndal, 1992a). The simulations were performed in the statistical environ-
ment R (R Core Team, 2015). For calculation of the pseudoempirical likelihood

estimator, a revised version of Wu’s (2005) code was used.

2.12.1 Point estimation

First, we consider an artificial population. N values y,;; are generated from the fol-
lowing models: y,; 1= 3+aq;+x1;+w; —0.3ey; and yg; := 12—ag; —x9;—0.5w;+0.3es;,
where ay;, r4; and w; are generated independently from an exponential distribution
with rate 1 and e; ~ x7—, —1. The generated values are treated as fixed. We con-
sider N = 100,000, N = 10,000 and N = 2,500. This gives the following correla-

tions: cor(yy,x1) =~ 0.6, cor(y1,w,) = 0.6, cor(yz, xa) =~ —0.7, cor(ys, w2) ~ —0.3,

61



cor(xy,wy) = 0, cor(xe,ws) ~ 0. The selection probabilities 7;; are proportional
to ay; + 2, with extremely large and extremely small probabilities increased or
reduced so that 0.8 < m; N/n; < 1.2. The auxiliary variable is x. The com-
mon variable is w. A similar artificial population was proposed by Wu and Rao
(2006). The totals of y; and y, are the parameters of interest in samples S; and
S5 respectively. Additionally, in each of the samples, the auxiliary variable z; is

measured. The common variable w is measured in both samples.

Second, we consider a similar artificial population with different correlation set-
tings. The y; and gy, are generated from the following models: yy; (= 3 + ay; +
3x1; + 4w; — 0.3ey; and y9; = 12 — ag; — 3x9; — 2w; + 0.3e9;. This gives the
following correlations: cor(yy, 1) ~ 0.6, cor(yi,wi) =~ 0.8, cor(ys, x2) = —0.8,
cor(ya, w2) =~ —0.5, cor(xy,w;) = 0, cor(xe,wy) ~ 0. The other parameters are

defined as in the first population.

The third population is the 2006 British Expenditure and Food Survey (Office
for National Statistics and Department for Environment, Food and Rural Af-
fairs, 2009) household dataset. The population size is N = 6,645. The number
of people living in the household is used as auxiliary information with a known
population total. Gross weekly income is the common variable. The total expen-
diture on clothing is estimated from S;. The total expenditure on food is esti-
mated from S5.The correlations are equal to: cor(yi,z1) =~ 0.3, cor(y;,w;) ~ 0.3,
cor(ye, x2) ~ 0.4, cor(ys,w2) =~ 0.4, cor(x,w;) ~ 0, cor(xe,ws) ~ 0.4. The
selection probabilities are proportional to the total household expenditure, with
extremely large and extremely small probabilities increased or reduced so that
0.8 < m; N/n, < 1.2, Please note that the values that are reported in the Tables
2.1 and 2.8 do not reflect the official estimates from the British Expenditure and
Food Survey.

The fourth population is the synthetic dataset AMELIA (Alfons et al., 2011). This
dataset represents an artificial population of N = 3,781,289 households, with

variables simulated from the ‘Kuropean Union statistics on income and living
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conditions survey’ (Eurostat, 2012). The selection probabilities are proportional
to the tax on income and social insurance contributions. The number of households
in each region is used as an auxiliary variable in S5. Total gross household income
for each of four domains defined by the variable ‘districts’ is estimated from Ss.
The sizes of the domains are 26%, 28%, 22% and 24% of the population size.
In S, no information on domains is recorded and the population total of gross
household income is the parameter of interest. There are also no auxiliary variables
in S;. The correlation between the variables are: cor(y;, wl) = 0.5 (approximately
equal for all domains), cor(ys,z2) =~ 0.7 (approximately equal for all domains),

cor(ya, wy) PV~ 0.1, cor(ya, wy)P2) ~ 0.2, cor(ya, wy)P?) ~ 0.2, cor(ya, wy) P ~

Dy)

0.3, cor(zy,w1) ~ 0. Notation cor(ys, ws)P*) corresponds to the correlation in the

k-th domain.

The simulations based on the first, second and third population consist of 10,000
iterations. For each iteration, two samples of the same size, n = n; = no, are
drawn using a randomised systematic sampling design (e.g. Tillé, 2006, §7.2).
The empirical likelihood estimators of the totals of y; and ¥, are calculated by
solving equation (2.58) with respect to 8, with @ = (6y,6,) ",

T

gi(0) = ( 01 91i<91)T , 02 £12i(92)T ) , (2.134)
d1; and dy; are defined by (2.3) and
9:(0) = yri — (meny ' 0)- (2.135)

Because of constraint (2.42), the solution simplifies to

0, = Z M (P )Y (2.136)

€St

The pseudoempirical likelihood estimator has been defined for means. Therefore,
the population mean is estimated and multiplied by the known population size.

The composite regression estimator can be applied to totals directly.
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Table 2.1: Relative absolute root mean square errors (%) for estimators of totals of the
non-common variables in three populations of interest, with both samples of equal sizes.
Randomised systematic sampling design. ‘AEL’: proposed aligned empirical likelihood
estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.”: compos-
ite regression estimator (Merkouris, 2004). ‘Reg.”: single sample calibration estimator
(Deville and Sérndal, 1992a).

Sample 1 Sample 2
Populations n AEL PEL Com. Reg. AEL PEL Com. Reg.

Artificial 1 (N =100000) 1000 0.5 09 23 15 13 14 28 19
200 1.1 21 50 33 28 31 64 46

Artificial 1 (N =10000) 500 0.7 13 31 21 1.7 19 40 28

Artificial 1 (N = 2500) 250 1.0 1.8 45 27 24 26 55 3.9
160 1.2 23 54 37 31 33 6.7 48
80 1.9 35 80 56 46 50 100 7.5

Artificial 2 (N =100000) 1000 0.9 09 20 1.7 20 23 37 28
200 2.0 21 43 3.7 47 52 88 6.8

Artificial 2 (N =10000) 500 1.3 14 27 24 27 31 55 4.1

Artificial 2 (N = 2500) 250 16 1.7 36 3.0 37 41 6.9 55
160 22 23 47 42 44 54 89 6.9
80 32 34 68 58 7.0 83 13.1 108

Expenditure & Food 500 6.4 6.5 65 59 30 31 34 26
1000 4.3 44 44 40 20 21 23 1.7
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Table 2.1 shows the observed relative root mean square errors (RRMSE) of three
estimators of totals of the non-common variables: the maximum empirical likeli-
hood estimator (2.57), the pseudoempirical likelihood estimator and the composite
regression estimator. The RRMSE of the estimators understandably vary between
the populations and parameters of interest. In the first population, the estimators
of 05 (i.e., estimators of the total of y, from sample Ss), are less precise than the
estimators of #;. This is likely to be because the correlation between y,; and the
common variable w; is weaker than the relevant correlations between ¥y; and w;.

Variable y; also follows a more skewed distribution than ;.

Unsurprisingly, we see that the RRMSE increases when the sample size decreases.
Note that this loss of precision is influenced by the absolute sample size rather
than by the sampling fraction. For example, in the second line of the table, we
have n = 200 and N = 100,000, which corresponds to a sampling fraction of
0.2%. The RRMSE is lower than that in the sixth line, where the sampling fraction
is higher (3.2%), but the sample is very small (80 units). With the very small
sample sizes, all estimators seem to have a high RRMSE. The aligned empirical
likelihood estimator performs relatively well. In this case the empirical likelihood -

based estimators are slightly more precise than the composite regression estimator.

With the second population data, even though the absolute value of the strength
of the correlations between the variables and the common and non-common auxil-
iary variables is higher, all the estimators have higher RRMSE than when the first
population is used with the corresponding sample sizes. This is in line with the in-
crease in the RRMSE of the single sample calibration estimators for totals of y; and
12 and can be explained by an increased skewness of y; and 5. The proposed es-
timator shows relatively low RRMSE compared to the calibration, pseudoempirical

likelihood and composite regression estimators.

We observe large RRMSE with the third population. This is the case for all the
estimators considered. This is likely to be caused by the very high skewness of the

variables of interest. Note that in the case of the third population data, where the
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variables follow skewed distributions and the correlations between the variables
of interest and the common variable are weak, the aligned estimators of the non-

common variables are less precise than the single sample calibration estimators.

Table 2.2 presents the relative absolute root mean square errors of the estimators
of totals of the common variable. Single sample calibration estimator calculated
from S is included for reference. The results from population Artificial 2 are not
included as they are the same as those from population Artificial 1. This is because
the common variable w follows the same distribution in both populations and has
equal, negligible, correlation with the auxiliary variables. The three estimators
have comparable precision. Note that in all cases the aligned estimators are more

precise than the single sample calibration estimators.

Table 2.2: Relative absolute root mean square errors (%) for estimators of totals of
the common variable in two populations of interest, with both samples of equal sizes.
Randomised systematic sampling design. ‘AEL’: proposed aligned empirical likelihood
estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.”: compos-
ite regression estimator (Merkouris, 2004). ‘Reg.”: single sample calibration estimator
(Deville and Sérndal, 1992a).

Populations n AEL PEL Com. Reg.

Artificial 1 (N =100000) 1000 2.3 2.3 2.5 3.7
Artificial 1 (N =10000) 500 3.4 33 3.6 52
Artificial 1 (N = 2500) 250 4.3 4.1 48 6.6
160 59 55 6.3 9.0

80 85 81 9.3 133

FExpenditure & Food 500 1.9 25 23 3.2
1000 1.2 1.7 16 22

Table 2.3 shows RRMSE of the aligned empirical likelihood , pseudoempirical like-
lihood and composite regression estimators applied to the fourth population data.
Four separate simulations are caried out in each of the domains. Each simulation
consists of 3,000 iterations and the totals of y; and y, are the target parameters.
The RRMSE are of course larger for the estimates of the domain totals than for
the overall population totals. The three estimators considered have comparable

precision.
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Table 2.3: Relative absolute root mean square errors (%) for estimators of totals of
the non-common variables in the artificial population AMELIA, with both samples of
equal sizes. Randomised systematic sampling design. ‘AEL’: proposed aligned empirical
likelihood estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 20044). ‘Com.’:
composite regression estimator (Merkouris, 2004).

Sample 1 Sample 2
n AEL PEL Com. AEL PEL Com.

Domain 1 (26%) 3000 3.2 3.3 3.3 6.5 6.5 6.8
Domain 2 (28%) 3000 2.8 2.8 2.8 2.3 5.3 5.5
Domain 3 (22%) 3000 3.3 3.3 3.3 6.1 6.1 6.3
Domain 4 (24%) 3000 3.1 3.1 3.1 5.7 5.8 5.8

2.12.2 Samples of different sizes

In Tables 2.1 - 2.3, we considered n; = no. For the next series of simulations, we
investigate the effect of small n; compared to ny. The estimates of S; and S,
are dependent because of the alignment constraint (2.44), which can intuitively be
explained as calibrating estimates of one sample towards the estimates of the other
sample. In chapter 2.7 we show that the coefficient B (0, ,) of the generalized
regression estimator asymptotically equivalent to the aligned empirical likelihood
estimator is weighted by the sample sizes, which causes the adjustment applied to
the weights of the larger sample to be smaller than the adjustment applied to the
weights of the smaller sample. Here we show results of a simulation which aims to
asses if and, if so, how much, the estimates of the non-common parameters from

the large sample S, are deteriorated by alignment with the small sample S;.

We use an artificial population of size N = 100,000 generated according to the

following model:
Yy =3+ a+ 2z, + 2w+ 0.3e, (2.137)

with a and e defined as in chapter 2.12.1 and 7y, ~ a + 2. This gives the fol-

lowing correlation settings: cor(yy,x1) ~ 0.7, cor(y;, w1) = 0.7, cor(ys, x2) ~ 0.7,
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cor(yz, w2) = 0.7, cor(xy,wy) = 0, cor(xs, wy) ~ 0.

Note that y; and y, are generated from the same model, so that the effect of
differences in sample sizes is not confused with the effect of different distributions
of the two parameters of interest. The parameter of interest in each of the samples
is the total of ;. The common variable is w and x; and x5 are used as auxiliary
variables in the first and the second sample respectively, with the population totals
known. The variables x1, x5 and the common variable w follow either exponential
distribution with the rate parameter equal to one, normal distribution with mean
equal to zero and standard deviation equal to one, or normal distribution with
mean equal to five and standard deviation equal to one. The distributions are
given in the results tables. The simulation consists of 10,000 iterations. In each
iteration, the size of S5 is 1,000. We let the size of S, vary between 100 and 1, 000

units. Samples are selected using random systematic sampling.

In Table 2.4, we have the RRMSE of the proposed estimator of the totals of 1,
and ys obtained from S; and S5, with the distributions of y; and y, defined by
(2.137). We also have the RRMSE of the pseudoempirical likelihood approach (Wu,
2004a), the composite regression estimator (Merkouris, 2004) and the single sample
calibration estimator (Deville and Sérndal, 1992a). We include two versions of the
composite regression estimator, with the adjustment factor equal respectively to

@i = (1 =y NH ™V and g = mpi(1 — 7)1 (Merkouris, 2010a, section 3.1).

We notice that the proposed estimator is always at least as precise as the single
sample calibration estimator. The difference in precision of these two estimators
is low or none in the large sample Sy, especially when n; is small. However, the

proposed estimator is always more precise than the calibration estimator in S;.

We observe a slight deterioration of the proposed estimator based on Sy as ny
decreases, yet the relative root mean square error never exceeds the relative root
mean square error of the single sample calibration estimator. As expected, the

relative root mean square error of the proposed estimator based on the smaller
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Table 2.4: Relative absolute root mean square errors (%) for estimators of totals of
the non-common variables with alignment of samples of different sizes. Randomised
systematic sampling design. N = 100000, ny = 1000, n; varies as described in the
table. Artificial data generated according to the model y; = 34 a + 2x¢ 4+ 2w + 0.3e with
a and e defined as in chapter 2.12.1, 7 ~ a + 2. ‘AEL’: proposed aligned empirical
likelihood estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.*’:
composite regression estimator (Merkouris, 2004) with no adjustment for different sam-
ple sizes. ‘Com.””: ’adjusted’ composite regression estimator (Merkouris, 2004, 2010a)
with g = n¢(1 —ny N~1)~7L. “‘Com.®’: ’adjusted’ composite regression estimator (Merk-
ouris, 2004, 2010a) with g4; = mg,;(1 —ﬂt;i)*l. ‘Reg.’: single sample calibration estimator
(Deville and Sérndal, 1992a).

Sample 1 Sample 2
s 2, o, A A s 2, o, A A
100 N(0,1) N(5,1) 2.7 1.3 1.4 3.1 0.9 0.9 3.5 19 09 09 1.1 0.8
exp(l) N(5,1) 3.3 2.7 78 43 1.7 1.6 105 58 1.2 1.2 3.7 1.2
N(0,1) exp(l) 3.3 2.7 7.8 43 1.7 1.6 10.5 5.8 1.2 1.2 3.7 1.2
exp(l) exp(l) 4.1 3.8 88 49 1.6 1.2 10.7 5.8 1.5 1.5 2.4 0.8

300 N(0,1) N(5,1) 1.2 0.8 1.1 1.7 0.6 0.8 1.7 1.1 0.8 0.9 0.7 0.7
1)

exp(1) N(5,1) 1.2 2.0 45 22 1.3 1.1 4.9 3.1 1.1 1.2 2.0 1.1
N(0,1) exp(l) 1.2 2.0 45 2.2 1.3 1.1 49 3.1 1.1 1.2 2.0 1.1
exp(l) exp(l) 1.9 2.6 52 27 1.1 0.9 54 34 1.4 1.5 1.4 0.8
600 N(0,1) N(5,1) 0.7 0.7 0.8 1.1 0.5 0.7 0.9 0.8 0.7 0.9 0.5 0.7
exp(1) N(5,1) 1.4 1.9 29 1.5 1.2 1.0 2.8 22 1.1 1.2 1.4 0.9
N(0,1) exp(1) 1.4 1.9 29 1.5 1.2 1.0 28 2.2 1.1 1.2 1.4 0.9
exp(1) exp(l) 1.8 2.3 3.4 2.0 0.9 0.7 3.3 2.6 1.5 1.5 1.0 0.7
1000 N(0,1) N(5,1) 0.6 0.6 0.6 0.9 0.4 0.6 0.6 0.6 0.6 0.9 0.4 0.6
exp(1) N(5,1) 1.8 1.8 1.7 1.3 1.2 0.9 1.9 1.9 1.8 1.2 1.2 0.9
N(0,1) exp(1) 1.8 1.8 1.7 1.3 1.2 09 1.9 1.9 1.8 1.2 1.2 0.9
exp(1) exp(l) 2.1 2.1 2.0 1.6 0.8 0.6 2.1 2.1 2.0 1.5 0.9 0.6
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sample S increases as n; decreases. This deterioration is more pronounced when
the common variable is skewed than when it is normally distributed. In all the
cases, we observe a large gain in precision of the estimator based on S, com-
pared to the single sample calibration estimator. We should also note that the
proposed estimator deals well with skewed auxiliary variables and a skewed com-
mon variable, compared to the calibration estimator and the composite regression

estimator.

The pseudoempirical likelihood estimator of the first sample shows comparable
precision to the proposed estimator. When n; is small, however, the pseudoempiri-
cal likelihood estimator of the second (large) sample is slightly less precise than the
proposed estimator. The pseudoempirical likelihood estimator has slightly higher
RRMSE than the empirical likelihood estimator when the auxiliary variables are
skewed, and slightly lower RRMSE than the empirical likelihood estimator when

the auxiliary variables are normally distributed.

The composite regression estimator of S; with no adjustment for different sample
sizes is always more precise than the corresponding calibration estimators when
ny < ny. We observe a deterioration of the non-adjusted composite regression es-
timator of the second (large) sample, when n; decreases. This is more pronounced
when x and w are skewed. When there is a large difference between n; and na,
the composite regression estimator adjusted for different sample sizes has much
lower RRMSE than the corresponding composite regression estimator with no ad-
justment. The adjusted composite regression estimators of S; are in most cases
more precise than the single sample regression estimator. The adjusted composite
regression estimator of S5, however, may be less precise than the single sample
regression estimator when S is small and z and w are skewed. Two sample size
adjustment factors were tested in the composite regression estimator:an adjust-
ment based directly on the sample size (‘Com.”” with ¢; = n,(1 —n,N~")~') and
one based on the sampling probabilities (‘Com.”: with g; = m;(1—7.;) ™). When

the sample sizes are equal, there is no difference between these two estimators.
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When there is a large difference between n; and ns, estimator ‘Com.”” seems to
produce more precise estimates in S; than ‘Com.®’) especially when x, w and y
are skewed. ‘Com.“’, however, is more precise in S5. We should note that simple
adjustment factors were used in the adjusted composite regression estimators. A
semi-optimal adjustment factor based on the estimated variance and considering

the sampling designs could be derived (see Merkouris, 2010a), which could lead to

a more precise estimator.

Table 2.5 shows RRMSE of the estimators of the common variable. For comparison,
the calibration estimator based on S is also calculated. We can see that the larger
S gets, the more precise the aligned estimators are compared to the calibration
estimator. The composite regression estimator with no adjustment for different
sample sizes has lower RRMSE than the single sample calibration estimator only
when S is of size 600 or larger and can be considerably less precise when S is
small. The composite regression estimator ‘Com.“’; including the correction factor
qi = (1 — m;) 71, is at least as precise as the calibration estimator, even with
small nq, and can be slightly more precise than the calibration estimator already
when n; = 300. When the common variable is estimated, ‘Com.“’ is more precise

than ‘Com.”’ in all cases.

The aligned empirical likelihood estimator is more precise than the calibration
estimator in all cases, although the difference is marginal with very small S; and
increases as S grows. The pseudoempirical likelihood estimator is slightly less
precise than the empirical likelihood estimator when S is very small and slightly
more precise than the empirical likelihood estimator when S, grows, particularly

with normally distributed x and w.
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Table 2.5: Relative absolute root mean square errors (%) for estimators of totals of the
common variable with alignment of samples of different sizes. Randomised systematic
sampling design. N = 100000, ny = 1000, n; varies as described in the table. Artificial
data generated according to the model y; = 34+ a+ 2x; + 2w + 0.3e with a and e defined
as in chapter 2.12.1, m; ~ a+2. ‘AEL’: proposed aligned empirical likelihood estimator.
‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.*’: composite regression
estimator (Merkouris, 2004) with no adjustment for different sample sizes. ‘Com.:
'adjusted’ composite regression estimator (Merkouris, 2004, 2010a) with q; = ng(1 —
ne N1~ ‘Com.®’: ’adjusted’ composite regression estimator (Merkouris, 2004, 2010a)
with g = (1 — Wt;i)_l- ‘Reg.”: single sample calibration estimator (Deville and
Sérndal, 1992a).

ny Ty w; Com.* Com.” Com.¢ Reg. PEL AEL

100 N(0,1) N(5,1) 35 20 11 11 11 1.0
exp(l) N(5,1) 104 6.1 34 35 58 3.4

N(©0,1) exp(1) 104 6.1 34 3.5 58 34
exp(l) exp(l) 104 59 3.7 3.7 53 3.2

300 N(0,1) N(5,1) 17 12 11 11 07 10
exp(l) N(5,1) 48 3.6 32 35 34 3.0
N(0,1) ex

(1) 48 36 32 35 34 3.0
(1) 52 38 34 37 35 3.0

1.0 09 09 11 05 09
29 27 28 35 26 27

N(0,1) exp(l) 29 27 28 3.5 2.6 2.7
exp(1) exp(l) 3.2 30 29 37 25 26
1000 N(0,1) N(5,1) 0.8 08 08 1.1 05 0.8
exp(1) N(5,1) 25 25 25 35 24 25

NO,1) exp(l) 25 25 25 35 24 25
p(1) 25 25 25 37 22 23
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2.12.3 Confidence intervals: British Labour Force Survey

In this chapter we check the coverage of the proposed empirical likelihood con-
fidence intervals. We apply the proposed methodology to two relatively difficult
datasets: one with skewed variables and one with skewed variables and outliers.

We also produce estimates for domains of varying sizes.

The population considered is a subset of N = 89,181 individuals with a non-
zero gross weakly income selected from the 2013 ‘British Quarterly Labour Force
Survey’ (October-December) (Office for National Statistics. Social Survey Divi-
sion, 2015). The parameter of interest, estimated from Sy, is the total number of

hours worked per week broken down by domains defined by the following industry

sectors:

(i) Public administration, education and health (v) Transport and communication
(ii) Distribution, hotels and restaurants (vi) Construction

(iii) Banking and finance (vii) Other services

(iv) Manufacturing (viii) Agriculture, forestry, fishing,

energy and water
The domains differ in size, as can be seen in Table 2.7.

The domain membership information is only collected in S;. This sample is used
to estimate the total number of hours worked per domain. We introduce an
alignment constraint on gross weekly pay, which is measured in both S; and Ss.
The sizes of the domains defined by the sectors (i)-(viii) are used as auxiliary
variables in S;. No auxiliary variables are measured in S5. The correlations
are respectively equal to: cor(yi,z1) ~ 0.8, cor(y;,w;) = 0.3, cor(ys, w2) =~ 0.7,
cor(zy,wy) ~ 0.1. In Table 2.7, we report the overall coverages and the tail error

rates for the confidence intervals for the total number of hours worked based on

Si.

Two samples, each of size 3,000, are selected 10,000 times using the randomised
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systematic sampling design. The selection probabilities are proportional to the

net weekly income.

Confidence intervals for the proposed estimator are defined by (2.127). Confidence
intervals for the composite regression estimator are based on variances of separate
regression estimators, as in Merkouris (2004). These variances are estimated by
Hartley and Rao’s (1962) estimator. The variance of the pseudoempirical likeli-
hood estimator is based on the equivalence between the pseudoempirical likelihood

estimator and a generalised regression estimator, as was proposed by Wu (2004a).

Table 2.6 shows the coverages and tail error rates of the proposed estimator. For
comparison, we also show the coverages and tail error rates of the composite
regression estimator and the pseudoempirical likelihood estimator. Because we
are no longer focusing on the precision gains, the results for the single sample
calibration estimator were omitted. In Table 2.7, we test the effect of outlying
values on the coverage of confidence intervals. We introduce into the distribution
of the variable of interest 5% of artificial outliers generated independently from an
uniform distribution U(Ymax, 3 X Ymax), Where ypa, is the maximum value of the

total number of hours worked per week observed in the sub-sample.

The coverages of the empirical likelihood confidence intervals are similar to the
coverages of the pseudoempirical likelihood and the composite regression confi-
dence intervals. In Table 2.6, where no outliers were introduced into the variable
of interest, the confidence interval coverages are close to the nominal level for all
but the two smallest domains. When outliers are present, the under-coverage of
confidence intervals in the smallest domains increases. This is true for all the
methods. The empirical likelihood confidence intervals seem to have marginally
better coverage than other estimators with a moderate domain size (domain vii),

whether or not the outliers are present.

The tail error rates of all the considered confidence intervals are unbalanced and

significantly different from 2.5% in several cases. The left tail error rates are
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Table 2.6: Coverages and tail error rates of confidence intervals for total number of
hours worked per week per domains. British Quarterly Labour Force Survey. No
outliers introduced. N; = population domain size, ny = average domain sample
size. Confidence intervals based on the first sample. ‘AEL’: proposed aligned
empirical likelihood estimator. ‘PEL’: pseudoempirical likelihood approach (Wu,
2004a). ‘Com.”: composite regression estimator (Merkouris, 2004). The values
reported in this Table do not reflect the official estimates from the British Labour
Force Survey. {: coverages (or tail error rates) significantly different from 95% (or
2.5%), with p-value < 0.05.

Domains  Coverages Left tail err. rates Right tail err. rates
Sectors) AEL PEL Com. AEL PEL Com. AEL PEL Com. Nq4/N nq

(

(i) 95.0 96.0194.8 2.8 1.9" 2.1f 22 2.1F 3.1f 0.36 1090
(ii) 95.1 95.1 954 22 1.37 1.21 2.7 3.67 341 0.18 552
(iii) 95.1 93.7794.21 217 1.9" 1.7 2.7 4.4 411 0.14 434
(iv) 95.3 93.9794.0" 2.3 2.0" 2.3 2.4 41" 3.7 0.11 327
(
(
(vi
(

v) 95.2 95.4 954 2.1F 1.37 1.4t 2.6 3.37 3.2 0.08 249
vi) 94.7 93.9"94.1t 2.0f 1.37 1.2 3.2F 4.8t 4.7 0.05 139
vii) 93.8791.71 92.6" 2.2 1.0 0.8 4.0 7.3" 6.6 0.04 131
viii)  94.07193.3193.47 3.0 2.17 2.17 3.17 4.6" 451 0.03 79

Table 2.7: Coverages and tail error rates of confidence intervals for total number
of hours worked per week per domains. British Quarterly Labour Force Survey. 5
% outliers introduced into the variable of interest. Ny = population domain size,
nqg = average domain sample size. Confidence intervals based on the first sample.
‘AEL’: proposed aligned empirical likelihood estimator. ‘PEL’: pseudoempirical
likelihood approach (Wu, 2004a). ‘Com.”: composite regression estimator (Merk-
ouris, 2004). The values reported in this Table do not reflect the official estimates
from the British Labour Force Survey. f: coverages (or tail error rates) signifi-
cantly different from 95% (or 2.5%), with p-value < 0.05.

Domains  Coverages Left tail err. rates Right tail err. rates

Sectors) AEL PEL Com. AEL PEL Com. AEL PEL Com. Nqg/N nq

(

(i) 94.4794.27 94.31 2.6 1.37 1.31 3.0 4.57 4.4% 0.36 1090
(ii) 95.0 94.8 94.6 24 1.2f 1.3t 2.7 4.07 4.1t 0.18 552
(iii) 95.3 95.0 94.9 2.0 0.9" 0.9 2.7 411 4.21 0.14 434
(iv) 94.8 94.7 94.31 2.4 0.97 1.0 2.7 4.4 4.6t 0.11 327
(
(
(vi
(

V) 95.87 94.67 94.47 221 1.27 0.9 2.0 4.21 4.7 0.08 249
vi) 93.7193.11 92.9" 2.7 0.5" 0.5 3.6 6.5" 6.6 0.05 139
vii) 94.9 92.67 9247 2.2t 0.77 0.7 3.00 6.77 6.9 0.04 131
viii)  90.07 89.47 89.0" 3.0 0.9" 0.9 7.0 9.87 10.17 0.03 79
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lower than 2.5% and the right tail error rates are higher than 2.5%. This effect is
explained by the positive skewness of the data. The tails are even more unbalanced
when outliers are present. However, the tail error rates of the empirical likelihood
confidence interval are more balanced than those of the symmetric confidence
intervals and usually closer to 2.5%. We observe these slightly better tail error
rates, because the confidence interval (2.127) is determined by the distribution of

the data. This is a common feature of empirical likelihood (e.g. Owen, 2001).

2.12.4 Confidence intervals: quantiles

In this chapter we apply the proposed method to estimation of quantiles of dis-
tribution. We use the estimating function for a-quantile proposed by Berger and

De La Riva Torres (2016):

9i(0) = (@), 0) — a, (2.138)

where

0 — y,_
—— Dy < O){1— by <0)},  (2.139)

C(Yey, 0) = 6(y: < 0) +
Ye) — Yu-1)

Y@ is the value of the ¢-th unit when all the units in the sample are arranged in
increasing order and 4(+) is an indicator function equal to 1 if the argument is true
and to 0 otherwise. The composite regression estimator and the pseudoempirical
likelihood estimator are not considered in this section, because they were devel-
oped for means or totals. For this series of simulations, we consider populations
Artificial 1, Expenditure & Food and AMELIA described in chapter 2.12.1. In each
iteration two samples of the same size, n; = ns, are drawn using a randomised
systematic sampling design with the selection probabilities as described in chapter

2.12.1. Each simulation is based on 10,000 iterations.
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Coverages and tail error rates of the empirical likelihood confidence interval (2.127)
are presented in Table 2.8. The overall coverages and tail error rates are of an
acceptable order. We observe low coverages, going down to 92.5%, for the smallest
sample size (n = 80). Some of the simulations use non-negligible sampling frac-
tions. This is the case for the artificial population with N = 2,500 and n = 240
and the ‘Expenditure and Food Survey data’ with n = 1,000. Acceptable cov-
erages are observed in these cases. However, the tail error rates are unbalanced.
Further analyses, not presented here, showed that this effect is associated with the
skewness of the selection probabilities. With normally distributed selection prob-
abilities, both tails are approximately equal to 2.5%. The effect of the skewness

of the selection probabilities was only observed for large sampling fractions.

Table 2.8: Coverages (Cov.) and tail error rates (Left & Right) of confidence
intervals for 80% and 90% quantiles. Population data described in chapter 2.12.1.
Confidence intervals for total expenditure on clothing within four domains, esti-
mates based on the first sample. {: coverages (or tail error rates) significantly
different from 95% (or 2.5%).

80% Quantiles 90% Quantiles
Population n Cov. Left Right Cov. Left Right
Artificial 1 (N =100000) 1000 94.7 2.7 2.6 95.1 24 26

200 94.47 227 347 94.5" 2.0t  3.5f
Artificial 1 (N = 10000) 500 95.3 297 1.9 94.7 29" 24

Artificial 1 (N = 2500) 240 94.57 317 24 94.7 2.8 25
160 947 28 26 94.00 2.5 3.5
80 93.9" 197 437 92.57 1.9 5.6

Expenditure & Food 500  95.1 25 2.4 949 2.3 2.8
(Tot. exp. clothing) 1000 94.7 3.7 1.7 949 36" 161
AMFELIA

Domain 1 (26%) 3000 948 25 2.7 052 25 24
Domain 2 (28%) 3000 95.0 2.2 2.8t 04.6 2.7 2.8t
Domain 3 (22%) 3000 94.47 2.4 31T 94.1 29" 3.0
Domain 4 (24%) 3000 954 1.9" 27 94.5 2.17 341
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2.13 Conclusions

We propose a novel empirical likelihood method for aligning estimates from multi-
ple surveys in the presence of population level auxiliary information. It can handle

stratification and is applicable to large sampling fractions.

The proposed approach can be used to estimate a class of parameters expressed
as solutions of estimating equations, to construct confidence intervals, and to test
the statistical significance of parameters of interest. The proposed approach does

not rely on linearisation, re-sampling or joint selection probabilities.

In our simulation studies, the proposed approach gives point estimates of an ac-
ceptable precision and confidence intervals with good coverage, as long as the
sample is sufficiently large. When the variables of interest are skewed, contain
outliers and when samples differ hugely in size, the empirical likelihood estimator

may be more precise than the regression-based methods.

Aligning estimates of a small sample to estimates of a much larger sample was
found to considerably increase the precision of the point estimator based on the
smaller sample. This is in line with the results reported for the composite re-
gression estimator (Merkouris, 2010a). The aligned empirical likelihood estimator
performs well in these settings. The precision of the point estimator from the
large sample is only very slightly deteriorated. Note that this is achieved without
estimation of any adjustment factors. If a precise variance estimate can be easily
obtained, then the adjusted composite regression estimator may be more efficient.
However, when a complex sampling design is used and the variable of interest is
skewed, this variance might be difficult to estimate and therefore the empirical

likelihood estimator might be preferred, as it has acceptable performance.

The aligned empirical likelihood estimator works well in samples of large or mod-

erate size. In very small samples, the empirical likelihood confidence intervals
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tend to show some under-coverage. However, the symmetric confidence intervals
are also not free from this problem. We can see that when the variables of interest
and the auxiliary variables are skewed, the empirical likelihood tail error rates

tend to be more balanced than the error rates of symmetric confidence intervals.

The simulation studies show that in some selected cases the aligned empirical like-
lihood estimator is more precise than the regression based estimators. The main
purpose of applying empirical likelihood to aligning estimates, however, is not an
increase in precision. In fact, if the second order selection probabilities, or pre-
cise variance estimates are available, an adjusted composite regression estimator is
likely to be more precise. The aligned empirical likelihood estimator, however, is
computationally simpler as no variance estimates are required. More importantly,
it also accommodates more complex parameters than means and totals. This ap-
plies both to the parameters of interest and to the known population parameters.
Moreover, the aligned empirical likelihood allows to choose a function of the com-
mon variable used in the alignment constraint which maximises the correlation

with the variables of interest. This may bring gains in precision.

The main limitation of the aligned empirical likelihood estimator is in the assump-
tion of independence between the samples. Note that the \/n design-consistency of
the point estimator holds whether or not the samples are independent. However,
the pivotal property of the log-likelihood ratio function relies on the independence
of the samples. This makes the proposed approach suitable only for independent
surveys, but unsuitable e.g. for longitudinal studies or nested two-phase sampling.
In the case of dependent samples, the composite regression estimator can be used

(see Merkouris, 2015).

Finally, while it is not the focus of this piece of work, it is worth noting that aligning
estimates requires careful selection of variables and some survey design effort so
that the variables used for alignment indeed measure the same characteristic. This
includes e.g. harmonizing the question wording across surveys (see e.g. (Karlberg

et al., 2015)). It is also necessary that the surveys are carried out close enough
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in time so that we can reasonably assume that they are both carried out in the
same population and that any in- and out-migration, as well as changes in the

population characteristics, are negligible.
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Chapter 3

Empirical likelihood multiplicity adjusted

estimator for multiple frame surveys

3.1 Introduction

Using more than one sampling frame may improve coverage of the target popu-
lation, increase precision of estimation of target parameters or reduce sampling
cost, especially when a single frame containing all population units is not available
or expensive to sample from. For instance, mobile phone frames are increasingly
used together with landlines in CATI research (e.g. Barr et al., 2012) in order
to increase coverage in surveys of the general population. Multiple frames are
also used to oversample rare populations (Kalton, 2009). Inference from multiple
frame surveys has attracted a lot of researchers’ attention and several multiple

frame estimators are available.

Recent papers by Singh and Mecatti (2011) and Mecatti and Singh (2014) showed
how most of the existing multiple frame estimators can be expressed in the form
of the Generalized Multiplicity Adjusted Horwitz-Thompson estimator. The idea
of multiplicity estimation consists of pooling all the units selected from all the
frames into one sample and finding a vector of adjustment factors which is applied

to the design weights so that the increased selection probability of units which
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appear in more than one frame is accounted for. This approach can be applied
to inference from multiple frame (i.e., not only dual frame) surveys. It can also
be applied to other sampling designs. For example, the Generalized Weight Share
estimator used to make inference from indirect sampling surveys (Lavallée, 2009)

can be expressed as a GMHT estimator (Singh and Mecatti, 2011).

We propose an Empirical Likelihood inference method which adopts the flexible
multiplicity approach, allowing for selection of various multiplicity adjustments,
and can easily handle additional calibration type constraints. The proposed mul-
tiplicity adjusted empirical likelihood estimator is derived from the design based
empirical likelihood approach proposed for single frame surveys by Berger and De
La Riva Torres (2016). It shares the benefits of Berger and De La Riva Torres’s
(2016) method, such as suitability for estimation of parameters with a skewed
distribution or range preserving confidence intervals obtained directly from a log-

likelihood ratio function.

Below we start with a brief summary of the problem and describe some existing
estimators for dual frame surveys. We discuss how this approach is generalised
to multiple frames through the multiplicity approach of Singh and Mecatti (2011)

and include examples of some of the available multiplicity adjusted estimators.

We then show how Berger and De La Riva Torres’s (2016) design based empirical
likelihood can be extended to accommodate multiple frame surveys and discuss
the properties of the resulting multiplicity adjusted empirical likelihood estimator.
The logic of deriving the multiplicity adjusted estimator is similar to that shown in
chapter 2 for the aligned empirical likelihood estimator, although there are some
differences in the constraints used and the asymptotic framework assumed. We
briefly show the key steps in extending the theoretical results of chapter 2 to the
multiple frame case and reference chapter 2 whenever its results can be applied

directly.

We also show how the constraints commonly used in estimation from multiple
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frames, such as alignment constraints on the overlapping domain, or benchmark
constraints on the size of the overlap between sampling frames, can be expressed
in the empirical likelihood methodology. This is followed by some Monte Carlo

simulations showing how the proposed estimator performs in various settings.

3.2 Some existing dual frame estimators

Dual and multiple frame surveys have been studied extensively and several esti-
mators have been proposed. The standard notation used in the literature splits
the population into domains defined by the sampling frames. Suppose that there
are two sampling frames ()4 and ()5, none of which has a perfect coverage. How-
ever, together both frames cover completely a population U. The following three
domains can be identified in the population U: Dy-, Dag, Dp-, of sizes N4-,
Nyp and Np- respectively, where Dy- = Qa — Qp, Dp- = (Qp — Q4 and
Dap :=QaNQp.

Suppose that two samples, S 4 and Sg, are selected independently from frames ) 4
and @) p respectively. Suppose that we want to estimate a fixed finite population
parameter 6, e.g. a total Y = » . 4;. Neither §4 nor Sp alone give a good
estimate for @, due to the under-coverage of the frames ()4 and (5. An unbiased
estimator of 8 can be obtained if both samples are used together. However, any
estimator has to account for the fact that the frames ()4 and () overlap, that is,
that some population units may be selected from more than one frame. Note that
this problem occurs whether or not the samples S 4 and S overlap, because the
increased selection probabilities of the units in the overlap would cause bias if a

non-adjusted estimator was used.

Figure 3.1 shows a ’spreadsheet’ representation of the sampling frames. The
columns represent the population domains. A separate sample is selected from

each frame. The samples in the picture overlap. This overlap may or may not

83



occur in practice. The overlap between samples does not play any inferential role.
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Figure 3.1: [llustration of the sampling frames within population U and the samples
selected. The horizontal axis corresponds to the population domains. The vertical

azxis represents the samples. The area represents sampling frame QQ o. The area

@ represents sampling frame QQg. The area @ represents the overlap between
sampling frames Qa4 and Qp.

The various estimators available for dual frame surveys are often divided into two
groups: double (or separate) frame estimators and single (or combined) frame
estimators. There are some differences in how these two terms are used in the
literature. Lohr (2000) classifies all the estimators which are calculated by pooling
together the units sampled from both frames and modifying weights for units
belonging to the overlapping domain D,p, as single frame estimators. Singh
and Mecatti (2011) use the terms ’separate’ and ’combined’ to reflect the level
of information required for the sampled units. The separate frame estimators
require that for every sampled unit the following is known: selection probability
in the frame from which the unit was selected, the number of frames from which
the unit could have been selected and, in some cases, identification of the frames
from which the unit could have been selected. The combined frame estimators
in this classification require also knowledge of the unit selection probabilities in
all the relevant frames. In the review below we follow the approach that reflects

the way in which estimators are calculated rather than the information required.
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Therefore, we classify all the estimators that can be computed as a combination
of separate domain estimators as separate frame estimators. Note that some of

the estimators also require knowledge of the domain sizes Ny-, Nag and Np-.

3.2.1 Separate frame estimators

The first group contains estimators which can be calculated as combinations of
estimators obtained separately from each of the frames for the domains Dy-, D4p,
Dp-. Let Y- denote the Horvitz and Thompson (1952) estimator of the total of
the variable y for the domain D 4-, Y- denote the Horwitz-Thompson estimator of
the total of the variable y for the domain Dg-, f@g‘;) denote the Horvitz-Thompson
estimator of the total of the variable y for the domain D 5 based on the sample
selected from frame ()4 and Ygg) denote the Horvitz-Thompson estimator of the
total of the variable y for the domain D,p based on the sample selected from
frame (Qg. The basic idea of separate frame estimators was formulated by Hartley
(1962). Hartley’s (1962) estimator of the population total of y takes the following

form:
VIR — Y, 4V 4+ ¢V +(1— o)V D, (3.1)

where the optimal coefficient ¢ is given by

b= VIV + Cov(Vp-, VB + Cov(Vu-, VIE) . (3.2)
(A (B :
VIViE) + V(i)

In practice the coefficient ¢ is estimated from the sample data.

A simple version of Hartley’s (1962) estimator when estimation of these variances
and covariances is not possible, called Simple Multiplicity (Mecatti, 2005), sets

¢ = 0.5 for a dual frame case.

Fuller and Burmeister (1972) proposed to adjust the estimator by a regression on
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the difference between the estimates of the size of the overlapping domain Dypg

obtained from the two frames:

VIP = Vi + Yo + 8PV + (1 - g 4+ a P (G - ), (3.3)

! is the estimate of N4p calculated from the sample

J(A4) _ -
where Nyp = > e npap Ti
selected from frame (4 and Nﬁﬁ;’ = i SanDap i i the estimate of N4p calcu-

lated from the sample selected from frame (). The optimal coefficients are given

COU(YA +YB +YAB) Y(A f/:gg))

o o (34)
Cou(Ya- + V- + Vi, Ny — Nip)

where
H(A) (B (A (B) (A (B
> _ V(Yng) - Yf(xB)) COU(Y,L(xB) - Yf(\B)a N IExB) - Nzng))
(A)  ¥A(B) <A (B (A (B
Cov(Viy = Yig Niy — Ni) V(NE — Ni3)
In practice, the coefficients ( (FB), éFB))T are estimated from the sample data.

Estimator (3.3) was proposed for single stage simple random sampling without

replacement (Arcos et al., 2015). Skinner and Rao (1996) proposed a Pseudo

Maximum Likelihood estimator which can be used in complex sampling designs:
Na— NiE(@S™) o Np— NiE(6“)

VSR = = Y + . Vi +
N 4 N B

Nﬁg (¢(SR)> (SR)y(4) (SR)\y~(B)
+¢N(A) +(1— ¢)N(B) {Y, 5 + (1 =0V )Yap (3.5)
AB AB

where N SE(¢(9R)) is the smallest of the roots of the following equation:

A B
A ) IR ) V- B Gl Al O ) VRV
NB NA NB NA

+ 0PN + (1 - o) (3.6)

0=
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and ¢ € (0,1).
The optimal coefficient ¢(°F) is given by

$ (B
SSH) NaNgV (Ni3) .
NANV(NENY + NpNav (NG))

3.2.2 Combined frame estimators

Kalton and Anderson (1986) and Bankier (1986) proposed estimators which oper-
ate on 'pooled’ samples and adjust weights for the units belonging to the overlap-
ping domain D 4. These estimators require that for every sampled unit, selection
probabilities in all the sampling frames from which the unit could have been se-
lected are known. Kalton and Anderson’s (1986) estimator for the population

total of y takes the following form:

N ~ ~ —1
VEA =Yy ¥+ 3 (7 a?)
ies$)
1

+ Z (WZ(A)—{—@(B)) Yi, (3.8)

ies'?)

where S;AE); are the units sampled from frame )4 which belong to domain Dy,
S fg are the units sampled from frame ()p which belong to domain D45 and 7rz-(*)

is the probability that unit ¢ is selected from frame Q..

Bankier’s (1986) estimator is based on the observation that when the two samples
are selected independently, the probability that unit 7 is selected in sample S 4
drawn from Q4 or in sample Sg drawn from @), is equal to the sum of the
probabilities that unit ¢ is selected from each of the frames minus the product of

these probabilities (i.e., the probability of being selected from both frames). Thus,
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the estimator takes the following form:

(2 7 K3

. . . -1
YPA =Y, 4+ Y + Z {WZ(A) +75 7T-(A)7T(B)} Yir (3.9)

iesus'?)

The summation in the last term is done over all unique units selected from the do-
main Dyp, i.e., second occurrences of the same unit are removed from estimation.
Note that this requires that not only the selection probabilities from both frames
are known for each unit in the sample, but also that records are linked between

samples S 4 and Sp.
Skinner (1991) proposed the Raking Ratio estimator

Rake \7Rake \7Rake
N N A NB - N A NAB A, S

YRR _ AB Yai- + N—ABYB— + N—SYAB’ (3.10)

where

+ Z ( “ 4 ) " (3.11)

_ —1
L 3 (A 4 a) (3.12)

iesS) ies\B)
and NRak is the smaller of the roots of the following equation:

N3pa® — {N55(Ny + Np) + NaNp}z + N5NANg = 0- (3.13)

Estimation from single frame samples is often based on calibration (Deville and
Sarndal, 1992a), where the design weights are adjusted to create calibration weights

which reproduce known population level totals or means of auxiliary variables (see
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chapter 2.2 for a definition of the generalized calibration property). Calibration
may increase precision of the point estimates of the target variables and ensures
numerical consistency between the sample estimates and the known population
values. Ranalli et al. (2016) extended the calibration approach to the dual frame
case. Suppose that a vector of population totals X = .., x; of p auxiliary
variables &; = (%1;, o, ..., Tpi), is known. The dual frame calibration estimator is

defined as:

CalS Z wcalyz7 (314)

€S AUSE

l

cal *

are chosen to minimise a defined distance function G(w§*,w;) under

where w{® ;

l

the constraint »_ wi”x; = X. The 'design’ weights w; differ between

i€SAUSB
domains and so we have w; = (ng))—l for i € S’A N Dy, wf = (WZ(B))_l for
i € SpNDp- and w} = (m, (4 )+7T(B) L for i € S USAB When the sampling
probabilities are only known for the frame from which a unit was sampled, the w}
are defined by qﬁ(ﬂgA))’l for i € S;Aé and by (1 — ¢)(x®)~1 for i € SAB, with

¢ € (0,1).

Rao and Wu (2009b) proposed a pseudoempirical likelihood estimator for a mean
in the dual frame case. The estimator for the population mean N~} > icu Vi takes

the following form:

. Ny - Np . N 1 —¢)Nyp -
H(PEL) =—A§A7+—Bg37+¢ AB - (A)+( ¢)Nap ~(B)

N N N YA N A

(3.15)

. A ~(A S ~(B
where ¢ is fixed and ¢ € (1,0), §ia- = Yjes,mm, Dy Yir U5~ = Dicspop, De Ui

~(A AB;A ~(B B; ~ B AB;A) A(AB;B
7ip = Yies pf i, y§13)=265< PPy and piY, i, piAta) | piAse)

are values Wthh maximise the pseudoempirical likelihood function:

. . N (A)y-1
o (A) (B) (AB;A) (AB,B))PEL:_AZ (m™)

(4)
piipi e D G los(n™)

i€S4 ZieSAmDA_ (Wi )7

N (B) —1
+—2 3 () log(p{”)

(B)y—
N i€Sp ZiesBrmB, ()~
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L ONas ()
N

Jr(1 — ¢)Nag 3 (m(”

N (B)),l log(pz

iese) Liestty (M
(3.16)

under the constraints: ZieSAmDA, pl(A) =1, Zz‘esBmDB, pEB) =1, Zies% pEAB;A) —
AB;B

L esmpi

a variable measured in the overlapping domain ZZ s P

= 1 and an alignment constraint on the estimate for the mean of
AB;A AB;B
Ay, = 2iest®) p Py,

Additional benchmark constraints can also be defined.

3.3 Multiplicity estimation

The notation used in chapter (3.2) becomes complicated when more than two
frames are used. Singh and Mecatti (2011) proposed the general form of the multi-
plicity adjusted estimator, which naturally accommodates inference from multiple

frames. We briefly characterise this approach below.

Consider T sampling frames )y, t > 2, which together cover the entire popula-
tion U. T samples (S, Ss,...S7) of sizes (ny,ns,...ny) respectively, are selected
independently, where S; denotes the sample selected from frame ;. Let m; be
the probability of selecting unit ¢ from frame ¢t. Note that the sampling frames

usually overlap. The extent of the overlap may be unknown.

Let S of size n = ZtT:l n; be the collection of labels of all the units selected in all

the T samples. If a unit is selected k times, its label appears k times in S. That

is, the notation ), _¢(-) is equivalent to Zthl > ics, ()

Suppose that the values of the set of variables v := {y, x} are collected for every

unit in each of the samples S, S5, ..., Sr. The variable y is the variable of in-
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terest.The vector & contains auxiliary variables for which a vector of population
parameters ¢, is known. The parameter ¢, is defined as the vector of the unique

solutions of the population estimating equation:
Zfz(w’mcpu) = qu (317)
iU

where ¢ is the dimension of vector f,(x;, ¢, ).

Let k¢; be the frame inclusion indicator, which is equal to 1 if the frame (), contains
the i-th unit and to 0 otherwise. We assume that for every ¢ € S, i.e., for every

sampled unit 7, the value of the multiplicity-adjusted selection probability p;,
pi = Tyiog,; (3.18)

is known, where ay,; are the multiplicity adjustment factors such that, for all ¢ € S,

(Singh and Mecatti, 2011),
T
Z ROy = 1 (319)
t=1

Condition (3.19) was first proposed by Birnbaum and Sirken (1965) for estimators

based on samples obtained through network sampling.

The Generalized multiplicity-adjusted Horwitz-Thompson estimator (GMHT) (Singh
and Mecatti, 2011; Rao and Wu, 2009b) of the population total Y = Y., v;, takes

the following form:

T
YOMHIT =3 "N " giag () (3.20)

t=1 {€S;

In the simplest case, a.; = M; ', where M; = Zle K. 1s the multiplicity indicator
equal to the number of sampling frames which contain unit i. This creates the
Simple Multiplicity (Mecatti, 2005) estimator. Various choices of ay.; are possible,

depending on the information available on frame membership and sample inclusion
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probabilities for the sampled units. In particular, all the separate frame and
combined frame estimators discussed in Chapter 3.2, with the exception of Rao
and Wu’s (2009b) estimator, which was not discussed by the authors, can be

obtained through re-formulation of ay,; (Singh and Mecatti, 2011).

Singh and Mecatti (2011) proposed also the so-called Composite Multiplicity Ad-
justed estimator, which is a composite of the Simple Multiplicity (Mecatti, 2005)

and Kalton and Anderson’s (1986) estimators. The following adjustment is used:

T —1
Oéng) = ’yiMi_l —+ (]_ — ’yz) T (Z Wt;il{’t;i> s (321)

t=1

where ~; is chosen to minimize the variance of (3.20).

An estimator allowing for different adjustment factors a;; depending on the level of
information available for each unit ¢, called Hybrid Multiplicity, was also proposed.
For example, suppose that Kalton and Anderson’s (1986) adjustment is used for
units for which sampling probabilities from each of the frames are known and
the Simple Multiplicity adjustment is used for the units for which only the frame
count and the sampling probabilities for the frame from which the unit was actually

selected are known. The adjustment factor takes the following form:
afli ™ = oM (1 — §LVEE) 4 sEVEEQ D, (3.22)

where (5£ULL equals 1 if sampling probabilities from each of the frames are known

and 0 otherwise (Singh and Mecatti, 2014).

The idea of the multiplicity adjustment has also been applied to create calibration
estimators for multiple frame samples. In particular, the Generalized Multiplicity-
adjusted Regression Estimator (GMREG) for the total of y takes the following
form (Ranalli et al., 2016; Singh and Mecatti, 2014):

YOMREG _ yGMHT _ 3T (XGMHT _ X) (3.23)
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8= (:IzTAm)_l x' Ay, (3.24)

where A is a p-by-p weighting matrix equal to diag(d), where d is the vector of
inverted multiplicity adjusted selection probabilities, d = (,01_1, po s, p.l) and

X is the known population total of the auxiliary variable x.

Singh and Mecatti (2014) propose a modified version of the calibration estimator,
based on the Generalized Raking Estimator With Optimal Unbiased Modification
(GROUM) (Singh and Wu, 2003; Singh et al., 2013). The GROUM estimator
uses relative design adjustment factors to account for different sampling designs
in strata. This results in increased precision in stratified designs compared to a
simple calibration (Deville and Sérndal, 1992a) estimator, due to inclusion of the
stratum-specific relative design adjustment factors (see Singh et al. (2013) and
Singh and Mecatti (2014) for details). Singh and Mecatti (2014) use the same

method to account for different sampling designs applied in multiple frames.

The GROUM estimator for the population total of y takes the following form:

YOROUM _ yyGMHT _ T (XfMHT _ X+> (3.25)

B = (a:T'y&n)_l x vy, (3.26)

where § is a diagonal matrix of inverted sampling probabilities, « is a matrix of
inverse relative design adjustment factors, common for units selected in the same
sample, and A is a diagonal matrix of multiplicity adjustments. The vector of
calibration totals X fMHT and X, include, apart from the auxiliary variables x,

population counts and totals of y for the overlapping domain.

The Pseudo Empirical Likelihood estimator of Rao and Wu (2009b) has also been
expressed in a multiplicity-inspired form. The pseudo empirical likelihood function

for T sampling frames takes the following form:

T
n _
((p)"Pt = I E E T i 1og(py), (3.27)

t=1 ieS;
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where ay; = oM, n = ZtT:1 n; and N = Zthl > ics, W;ilpi. The pseudo empirical
likelihood adjusted weights p; are obtained as the values which maximise (3.27)
under ZtT:I D oic s, Pi = 1. Additional constraints on known population totals of
auxiliary variables may be added. Confidence intervals are obtained through a 2

approximation of the pseudo empirical likelihood ratio function corrected by the

design effect (Rao and Wu, 20090).

3.4 Empirical likelihood approach

The following paragraphs introduce a novel Empirical Likelihood approach to
multiple frame estimation. This approach is based on the multiplicity adjustment
method and is applicable to multiple frames. The frames may use different sam-
pling designs. As in chapter 2, we follow the design based approach where the
only source of randomness is in sampling and the parameters are fixed quantities
(Neyman, 1934). We first introduce the method for a simple case when no strat-
ification is used. In Chapter 3.5 we show how stratification and domain-specific

auxiliary information, as well as constraints on the overlapping domain, can be

handled.

Although the proposed estimator may seem similar to the Multiplicity Pseudo
Empirical Likelihood estimator of Rao and Wu (2009b), it is in fact quite differ-
ent. In the Multiplicity Pseudo Empirical Likelihood estimator, the adjustment
factors are included in the likelihood function, while the proposed estimator han-
dles them differently. The proposed approach to obtaining confidence intervals is
also different and no estimation of design effects is involved. On the practical side,
the proposed estimator can include various adjustment factors and can be used
to estimate a wide range of parameters, while the Multiplicity Pseudo Empirical
Likelihood estimator has been specifically defined for means and is based on the

simple multiplicity adjustment factors oM.

94



Suppose that we wish to estimate a fixed, unknown population parameter 8, a
function of a subset of v = {x,y}. The parameter 6y is defined by the unique

solution of the population estimating equation

Zgi(’% 0y) =0, (3.28)
ieU
where p is the dimension of vector g,;(v;,0y). This general formulation allows
for estimation of a wide range of parameters, e.g. means, quantiles, rates, ratios,
regression parameters. In particular, if g,(v;,0y) = v; — Oy, the parameter 8y,
is a vector of population means. We will use g;(6,) to denote g,;(v;,0y) in the

following text for brevity.

Consider the following joint empirical log-likelihood function of unknown scale

loads m;:

(m) =) > log(m)- (3.29)

t=1 1€8S;
Note that the function (3.29) is defined at the sample level, for scale loads associ-
ated with units selected in each of the T samples. If a unit is selected p times, its

scale load m; is considered p times.
Consider the following system of constraints:

1. Unknown parameters’ constraint:
T
> migi(6) =0, (3.30)

t=1 1€8S;

where 6 is a vector in the parameter space of the population parameter of

interest Oy and p is the dimension of vector g;(8);

2. Sample size constraint:

> mipi=mny, t=1,2,..T, (3.31)

1€St
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where p; is the multiplicity adjusted selection probability defined by (3.18);

3. Known parameters’ constraint: (Owen, 1991; Chaudhuri et al., 2008; Lesage,
2011);

T
> D mifixie,) =0, (3.32)
t=1 i€S

where ¢ is the dimension of vector f;(x;, ¢, ), @, is a vector of known pop-

ulation (census) parameters o1, @9, ..., ¢, and f,;(x;, ¢, ) is a function such

that

> fil@ie,) =0, (3.33)

e’

Constraint (3.30) involves the unknown population parameter of interest and is
key in obtaining point estimates and confidence intervals. Constraint (3.31) is a
multiple frames generalisation of a constraint defined for a single sample empirical
likelihood estimator by Berger and De La Riva Torres (2016). This constraint en-
sures that the multiplicity adjusted empirical likelihood point estimator is design-
consistent. Constraint (3.32) is optional. It is a generalisation of the customary
calibration or benchmark type constraint (see e.g. Deville and Sdrndal (1992a))
defined on the known population parameters. This type of constraints is com-
monly used in survey inference, where the known population parameter vector ¢,
consists of counts, means or totals known usually from censuses or administrative
records. For example, ¢, may be a vector of known sizes of k age-sex groups. We
can then define the function f,(x;,¢,) = ©; — ¢, where the k-th element of vec-
tor x;, Tk, is a group membership indicator and equals 1 if the unit ¢ belongs to
the age-sex group k. The parameter ¢, is considered to be known, i.e., measured
without error at the population level. Note that in order to apply constraint (3.32)
we only need to know the unit level values x; for the sampled units. Benchmark
constraints are discussed in more detail in chapters 1 and 2. We will use f;(¢,) in

the following text to denote f,(x;, ¢,) = x; — ¢, for brevity.
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The system of constraints (3.30)-(3.32) can be written as

> mic(0) = C”, (3.34)

1€S}
where
c(0) = {c 90"}, (3.35)
c = (CcT0)), (3.36)
¢, = {d].file,)"}", (3.37)
T
c = (D',0)) , (3.38)

d; and D are vectors of dimension 7', with the ¢-th elements defined respectively

by di;t = (5t;i Pi and Dt = Ny, with

1 ifie S,
O =

0 otherwise.

We assume that 6 and ¢, are such that C* is an inner point of the convex hull

formed by the sample observations {c(0) : i € S}.

3.4.1 Maximum empirical likelihood point estimator

Let {m3(0,¢,) : i € S} be the vector of values which maximise the function (3.29),
for a given vector @, under m; > 0 and (3.34). That is, let the maximum value

of the joint empirical log-likelihood function (3.29) for a given vector 6, under

97



m; > 0 and (3.34), be

(Blg,) = Z > log{mi(6, ¢,)} (3.39)

t=1 1€S;

Following an argument presented by Berger and De La Riva Torres (2016), it can
be shown that the vector {mj(0,y,) : i € S} is given by

S =1{p+nTc9) ", (3.40)

where n* is a vector of Lagrange’s multipliers, such that constraint (3.34) holds.

The maximum empirical likelihood point estimator of 6, is the vector 0 in the
parameter space of 8, which maximises ¢(6|g, ) as defined by (3.39). We will call
0 multiplicity adjusted empirical likelihood estimator. Using an argument similar
to that presented by Berger and De La Riva Torres (2016), recalled in chapter (2),
it can be shown that if 8, is uniquely defined by the estimating equation (3.28),

the estimator 8 is the unique solution of the sample estimating equation:

T
= Z Z m;igi(0) = 0,, (3.41)
t=1 i€8S;
where the vector {m;(y,) : i € S} maximises function (3.29) under the constraint
T

t=1 €S;

and ¢; and C' are respectively defined by expressions (3.37) and (3.38).

In order to obtain the point estimate of 8, we need to find the values {m;(¢,) :
i € S}, which do not depend on /0\, and solve the sample level estimating equation

(3.41) for 6. By analogy with (3.40), the m;(¢,) are equal to
-1
D ={p+n'c} ", (3.43)
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where n is a vector of Lagrange’s multipliers such that (3.42) holds.

The numerical aspects of estimating the m;(¢,) are discussed in chapter 5.

3.4.2 Relationship to a generalized regression type

estimator

Below we establish the relationship between the multiplicty adjusted empirical
likelihood estimator 5, defined as the solution of (3.41), and a generalized regres-

sion type estimator.

Let S be a collection of labels of units selected in all ¢ samples S;, t = 1,2,...,T
and n be the size of the pooled sample, n = Zthl n;. Consider the following

regularity conditions:

max{ﬂpi} = Op(l) and max{%pi_l}:Op(l), (3.44)

€S n €S
NYC.—C| = Op(n~'7?), (3.45)
max{||c;|| : i € 8} = op(n*/?), (3.46)
IS = Op(1), (3.47)
ISt = Op(1), (3.48)

"l el B
T Z T 079(1) (7-_27 37 4)7 (349)
€S Pi

where

. T .7
S = —% S (3.50)

Conditions (3.44) - (3.49) resemble the conditions presented in chapter 2.6.1. The
only difference is that conditions (3.44) - (3.49) include the multiplicity adjusted
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selection probabilities p; rather than the design probabilities m;. When a4, are
fixed quantities, e.g. when the simple multiplicity (Mecatti, 2005) adjustment is
used, conditions (3.44) - (3.49) and (2.70) - (2.75) are equivalent. When ay,; are

random quantities, the additional assumption
max{ag,; i € S} =0Op(1), (1=-1,1,2, 3, 4), (3.51)

together with conditions (2.70) - (2.75) would usually imply conditions (3.44)-
(3.49).
Theorem 4. Under the assumptions (3.44)-(3.49), for all @ which are such that:

RSN
D = Opln ™), (352

€S

the maximum empirical likelihood point estimator 0 is asymptotically equivalent

to a Generalized Regression Estimator G,(6):

G(0) = G.(0) + op(Nn"2), (3.53)
where
G, (0)=G.(0)+B(0,p,)" (c ~ ), (3.54)
G.(0)=Y 9.6) (3.55)
=1 ics; P
B(6,p,) = (Z clpc;' > (Z ng’;f) ) : (3.56)
t=1ieS; "° t=1 i€S; ¢
c.=Y Y% (3.57)

Note that (3.54) has the same structure as the estimator (2.89) in chapter 2. The
difference is in the use of the multiplicity adjusted selection probabilities p; rather

than the design probabilities ;.
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The proof of theorem 4 is presented in the Appendix.

3.4.3 Asymptotic design-consistency of the empirical

likelihood multiplicity adjusted estimator

In this chapter we define the asymptotic framework and show that 0 is asymptot-

ically y/n design-consistent.

In order to accommodate the multiple frames settings we need to adjust the asymp-
totic framework discussed in chapter 2.6.3. We consider a sequence of nested pop-
ulations U®) of size N®) where v = 1,2,...,00 (Isaki and Fuller, 1982). Each
population U®) consists of 7’ sampling frames Ut(”) of sizes Nt(”) respectively, where
T is a constant. A sequence of samples Sﬁ”) of size niy) < Nt('/) is selected from Ut(y)
according to a sampling design P,fy)(St), respectively. We assume that n§”> — 00
as N — oco. Note that this implies that also Nt(l’) — 00. A similar asymptotic
framework is adopted for the multiple frames scenario e.g. by Singh and Mecatti

(2011).

Suppose that 6, is such that the following conditions hold:

G.(0,) = Op(Nn /%), (3.58)
e 1gi(00)1
e Z p = Op(1) (r=2 3, 4), (3.59)
i€S
A _ 19G(8) . . .
v(o) = N o9 continuous in 6 € O,,  (3.60)
1,.9V(0) .
NH 50 [ Op(1) uniformly for all 8 € O, (3.61)
V(0 =p 1, (3.62)
00, = op(1),, (3.63)

where %(0);.C is the k — th row of matrix V(8), k = 1,2,..., K; K is the number
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of rows in matrix 6(0),

~ 1
G-(0,) = > —gi(0y), (3.64)
€S Pi
n = Zthl n; and O, is a compact neighbourhood containing 8,,.

Note that these assumptions are analogous to regularity conditions(2.79) - (2.84).

A discussion of these conditions can be found in chapter 2.6.1.

Theorem 5 establishes the rate of convergence for the multiplicity adjusted empir-
ical likelihood estimator 6.

Theorem 5. Let n = Y., n,. Under the regularity conditions (3.44)-(3.49),
(3.58), (3.59) (with T = 2), (3.60)-(3.63), we have 6 — 8, = Op(n~1/2).

The proof is presented in the Appendix.

3.4.4 Empirical Likelihood confidence intervals

In this chapter we define the empirical log-likelihood ratio function for the multi-
plicity adjusted empirical likelihood estimator. We also show that the asymptotic
distribution of this function can be established in an analogous way to how it
was done for the log-likelihood ratio function of the aligned empirical likelihood

estimator discussed in chapter 2.

Let ¢(r) be defined by (3.29) with 72 being the values which maximise (3.29)
under the constraint (3.42). Let £(0|¢, ) be defined by (3.39) and let € be a vector

in the parameter space of 0.

Consider the following empirical likelihood ratio function:

m(0lp,) = 2{t(m) — ((0]¢,)}- (3.65)
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Suppose that the following regularity conditions hold:

G.(0)" [Vo{G,(0.)}] N0, T), (3.66)
max(ng( o)l i € 8) =op(n?), (3.67)
Z “gz Op(1) (r=2, 3, 4) (3.68)

€S

1\)\»—‘

Theorem 6. Under the assumptions (3.44)-(3.49) and (3.66)-(3.68),

F0.00,) = G,(0,)" [Ve{G(8)}] " Gl0) +0pn ) (3.69)

where

Vr{G.(8,)} = Zz{g’ 6u, ) e}, (3.70)

t=1 1S} p7’

The proof is presented in the Appendix. Following analogous reasoning to that
presented in chapter 2.8, theorem 6 implies that (3.65) is a pivotal statistic and
follows a Xzf:d distribution asymptotically, with d being the dimension of 6,.
This property can be used to construct Wilks (1938) type confidence intervals and
to test hypothesis about the parameter 8, in an analogous way as presented in

chapter 2.9.

3.5 Extensions

In this chapter we extend the proposed multiplicity adjusted empirical likelihood
estimator to accommodate some more complex estimation scenarios. First, in
chapter 3.5.1, we show how the estimator may be applied to inference from strat-
ified samples. This is similar to how stratification is handled in chapter 2 and
also follows the lines of the approach proposed by Berger and De La Riva Torres
(2016).
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In chapter 3.5.2 we show how benchmark constraints defined at a domain level can
be included in the constraints system. Domain-level constraints are often used in
multiple frame context. In particular, benchmarking on the known frame sizes,
or known size of the overlap between frames, is used to increase precision of the
estimates of the target parameters. A thorough discussion of the efficiency gains

related to use of benchmark constraints on sizes of various domains was presented

by Ranalli et al. (2016).

Finally, in chapter 3.5.3 we show how alignment constraints on the overlapping
domain can be defined. Including an alignment constraint on the estimates ob-
tained for the overlapping domain might improve the precision of the target pa-
rameter estimates. For example, it is often the case that the size of the overlap
between sampling frames is unknown. This is because it is typically easier to
obtain frame membership information for the sampled units only than to cross-
reference complete frames, e.g. through record linkage. An alignment constraint
on the estimates of the size of the overlap between frames is often imposed and
has been found to increase precision of the target parameter estimates (Ranalli
et al., 2016). We show how such a constraint may be included in the multiplicity
adjusted empirical likelihood estimator and discuss its effect on efficiency of the

target estimator.

3.5.1 Stratification

The multiplicity adjusted empirical likelihood estimator can be extended to strat-
ified sampling designs using a method similar to the one proposed by Berger and
De La Riva Torres (2016). In order to account for stratification, the sample size
constraint (3.31) is defined at strata level. Therefore for 7" samples and H strata

we have T x H constraints.

Suppose that each frame @), is divided into H, strata Uy, Uo, ..., Up.g,. Note that
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each of the sampling frames can be stratified differently. Let S, be the sample of
size nyy, selected from strata Uy, in frame ;. Constraint (3.31) takes the following

form:

> mipi =g, for t=1,2,...T; h=12, .. H,. (3.71)
’L'GSt;h
This is equivalent to defining d; and D in (3.37) and (3.38) as vectors of dimension
Zthl H;, with the h-th elements defined respectively by d;;, = 555;,[;)2‘ p; and D), =

Ng.p, Where 515(1;[)1 is equal to 1 if ¢ € Uy, and to 0 otherwise.

The point estimator 0 is not influenced by stratification. However, strata infor-

mation is necessary to obtain correct confidence intervals.

3.5.2 Domain-based constraints

In some situations it may be useful to define a constraint which applies to a
domain rather than to the whole population. For example, means or totals of
some auxiliary variables may be known only for one sampling frame or a specific
socio-demographic group, rather than for the population. Below we show how

domain-level constraints can be incorporated into (3.34).

Let ¢, be a vector of size r of known parameters ¢u1, @u2, ..., ¢ur of population

domains Dy, Dy, ..., D, C U respectively. Let f;(z;, pu;) be a function such that
iED]‘
The domain-level known parameter constraint on the weights m; takes the follow-
ing form:
T

> > midiag(6{”)ti(,) =0, (3.73)

t=1 {€S;
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where 52@) is an r-vector with j-th element equal to 1 if 7 € D; and to 0 otherwise.

This constraint can be handled by adding an n by r sub-matrix ¢p = diag(égp))fi(ch)T
into the matrix ¢ (defined in (3.37)) and r zeros to vector C' (defined in (3.38)).

When D; = U, the parameter oy; is a population parameter. Note that the
constraint may also include domain counts. In particular, constraints involving
frame sizes as well as the size of the overlapping domain may be easily defined.
These constraints are commonly used in the regression type multiple frame esti-
mators and they have been found to considerably improve precision of the point

estimators (e.g. Ranalli et al. (2016)).

3.5.3 Alignment constraints on the overlapping domain

A special case of a domain-level constraint is an alignment-type constraint on the
overlapping domain. Some estimators (e.g. Fuller and Burmeister (1972), Skinner
and Rao (1996), Skinner (1991), Rao and Wu (20090), Ranalli et al. (2016)) use a
constraint on the equality of estimators of a population parameter defined for the
domain Dy, obtained from each of the samples, in order to increase precision of
estimators for population parameters. Aligning estimates for the common domain

may also be convenient for the sake of numerical consistency.

Suppose that two sampling frames ()4 and Q) overlap. Let Dyp of size Np,, be
the set of units which appear in both frames. Let S(ﬁ; be the intersection of Dap
and the sample selected from frame ) 4 and let S ffg be the intersection of Dyp and
the sample selected from frame ()g. Suppose that we want to define an alignment
constraint on the estimates of a population mean &, = Np! > ienay §(Wi),
where &£(w;) is a known function of w;, as in the examples given in chapter 2, and

w; are selected components of v; measured for each sampled unit that belongs

to domain D4p. The alignment constraint for the two frames takes the following
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form:

> mig(w) = > mg(w)- (3.74)

. A . B
ies) ies\P)

This can be translated to

T
DD misPAE 60 (w) = 0,, t=(1,2), (3.75)
t=1 ieS
where r is the dimension of vector &(w;), 5P45) equals 1 if unit i belongs to
domain Dyp and 0 otherwise, and 5§QA) equals 1 if unit ¢ appears in frame Q4

and —1 otherwise.

The effect of the alignment constraint on the precision of the estimator (3.41)
depends on the strength of the correlation between &(w;) and g;(0) and the vari-
ance of the estimates ED Lp1p and ED 2p Obtained from each of the samples for the

overlapping domain, where

éDABtP = Z pi_l(SgDAB)E(wi)' (3.76)

1€St

This can be seen if we consider that when an alignment constraint is used, the

estimator (3.54) takes the following form:

G.(0) = {G1(6)7,Grs(6:)T} T, (3.77)
where
G1(6) = Gi(8) — Bini(0,0,)" fi,(¢) — Bia(6,0,)" To(ps)
+Bl€(07 QOU>T (EDABZp - éDABlp)7 (378)
Gr2(0:) = Gop(0) — Bori(0,0,) Tip(p1) — Bara(0,0,) " Top(ip5)
+'§2£(07 (pU>T (E'DABlp - EDAB2P) (379)
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and Gy(0) = Yics, £7 ' 90i(010), Bip(0) = Yics, pi £1i(2y,)- The estimator (3.78)
is an extended regression system with an alignment term, analogous in form to
estimator (2.92). As it was discussed in chapter 3, the added variance associated
with the fact that £, . is estimated decreases the precision of the estimator (3.78),
but the variance of (3.78) is also reduced based on the correlation between &(w;)
and g;(@). Similarly to the examples given in chapter 2, the function &(w;) can
be chosen to maximise this correlation. In practical applications the size of the
overlap is likely to be crucial for the decision whether to include the alignment
constraint. When the overlap is small, the estimates of &5, are likely to be
unstable. Note that if the parameter 5, is known, it is always better to use a
domain-level calibration constraint for each frame than to impose an alignment

constraint.

3.6 Relationship to the aligned empirical likelihood esti-

mator

In this chapter we show how the multiplicity adjusted empirical likelihood esti-
mator relates to the aligned empirical likelihood estimator presented in chapter
2. Suppose that we have a two frames design, where samples are selected inde-
pendently from each frame. If the two frames overlap completely and at least one
variable with unknown population level values is measured in both samples, that

is, Q1 = Q2 = U, then the sampling design is as in chapter 2.

The key difference between the two estimators is of course in their primary aim.
The aligned empirical likelihood estimator is used when we want to obtain a single
vector of weights which can be used to estimate common and non common popu-
lation parameters and which produces equal estimates for the common parameters
when it is applied to each survey separately. The multiplicity adjusted empirical

likelihood estimator is used when the variables of interest are measured in both
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samples and we assume that unit level data from both samples will always be avail-
able to calculate estimates. Note that in practice the two estimators are likely to
be used in different context. Alignment of estimates is more often required when
several surveys were carried out independently in the same population, while the
multiplicty adjusted empirical likelihood estimator is more likely to be applied in
a classical multiple frame settings, when a single survey uses multiple sampling

frames because a single frame with a good coverage is unavailable.

It is, however, theoretically interesting to consider how the two estimators compare
in the case when there is a complete overlap between the frames and all survey
variables are measured in both samples. The difference is in the formulation of the
sample size (design) constraint. The aligned empirical likelihood estimator uses a

design constraint

Z My; T3 = TNy, t = ]_, 2 (380)

i€S

The multiplicity adjusted empirical likelihood estimator is based on a sample size

constraint
Z miag =y, t=1,2 (3.81)
1€St

Suppose that we want to estimate a mean &, = N~'>.  &(w;) of a known

function & of the common variable w;. The aligned empirical likelihood estimator

of £ is the solution to

Z mai(@y)aren) hii(§) =0 and Z Mai(py)aran) h2i(§) =0, (3.82)

€S 1€8S2

where hy;(€) = €(w;) — Nn; ‘7, € The solutions of the equations (3.82) are £
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and &,, where

& =N iule,)acen) Ew:): (3.83)

€St

Because of the alignment constraint (2.44), these solutions are equal, i.e., El = EQ.
That is, once the adjusted weights my;(¢, ) have been calculated, it is sufficient to
use one sample data to obtain the estimate E The adjusted empirical likelihood

weights in (3.82) are equal to

. -1
i@y ) acany = (T + n(TALGN)Ci) : (3.84)

The multiplicity adjusted empirical likelihood estimator of £ is the solution to the

estimating equation which involves values of both samples:

T

> > @) onha(€) =0, (3.85)

t=1 1€8S;

where the adjusted weights are given by

~ -1 _ -1
mi(py) (ML) = {Pi + U(TMLT)Ci} = {O‘i i + U(TMLT)Ci} : (3.86)

If the Simple Multiplicity (Mecatti, 2005) adjustment is used and we have two
surveys with complete overlap, o, ' = T = 2. However, when full information
on selection probabilities from both frames is available, an adjustment «; leading
to a more efficient estimator may be chosen, e.g. Kalton and Anderson’s (1986)
adjustment. Therefore, if there is a complete overlap of sampling frames, only
the common variables are of interest and full frame information is available, the
multiplicty adjusted empirical likelihood estimator is likely to be more efficient
than the aligned empirical likelihood estimator. On the other hand, the aligned
empirical likelihood estimator does not require access to each sample’s microdata

after the adjusted weights are calculated.
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3.7 Simulation study

We evaluate performance of the proposed empirical likelihood multiplicity ad-
justed (ELM) point estimator and coverage of the empirical likelihood confidence
intervals in a series of simulations. For comparison, the generalized multiplicity-

adjusted regression estimator (GMREG) (Ranalli et al., 2016) is also calculated.

Each of the estimators requires calculating the multiplicity-adjusted selection

probability of the i-th unit, p;;, = ﬂt;ia;il. The following adjustments are used:

e Simple multiplicity adjustment (Mecatti, 2005)

T
agi =M, M= ki, (3.87)
t=1

e Kalton and Anderson’s (1986) adjustment
T -1
Qi = T (Z 7Tt;i/‘6t;i> : (3.88)
t=1

The simulations were performed using the R software (R Core Team, 2015). For
the empirical likelihood estimator, new procedures were developed. The GMREG

estimator was calculated using the Frames2 package (Arcos et al., 2015).

We use the following study populations:

Population 1 is a synthetic dataset of size 23,500 units, generated according to
the following model: (Ranalli et al., 2016) y ~ N (5000, 500), x1; = (y; — €1;)/0.5,
To; = (y; — €2;)/1.2, €1, ~ N(500,300), €3; ~ N(700,500).

Population 2 consists of 50,000 units and is generated according to the following

model (Wu and Rao (2006)):

y; = 3+ a; + 8x; + 62; + 0.5e;, (3.89)
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where a, x and z follow independent exponential distributions with the rate pa-
rameter equal to 1 and e; ~ x? — 1. This produces a dataset of highly skewed

variables.

Population 3 is a synthetic dataset FUSILCP (Alfons et al., 2010) available within
the R (R Core Team, 2015) package simFrame (Alfons, 2013). It contains 58,654
units. FUSILCP was modelled based on the Austrian EU-SILC (European Union
Statistics on Income and Living Conditions) survey from year 2006 and preserves
distributions of the key variables. We use the following variables: equalised house-

hold income, household size and age.

Below we show the results of several simulation studies. We start with estimating
totals. We first consider a normally distributed variable of interest, generated
independently from the frame allocation mechanism. We then use some more
skewed variables and check the effect of the correlation between the variable of
interest and the frame allocation mechanism as well as the effect of the correlation
between the variable of interest and the sampling probabilities. We also check
how well the proposed multiplicity adjusted empirical likelihood estimator deals

with quantiles of distribution.

3.7.1 Estimation of totals

Normal data

The first simulation tests the performance of the proposed estimator in the rela-
tively favourable conditions of Population 1. The simulations follow the conditions
tested by Ranalli et al. (2016). Units are allocated to two frames according to the
values of variable g; generated from a binomial distribution. Two levels of overlap
are tested. First, g; ~ B(2,0.3) and unit ¢ is allocated to frame 1 if g; = 0 or
g; = 1 and to frame 2 if g; = 1 or g; = 2. This gives a small overlap of about 9%
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of the population size. Second, g; ~ B(2,0.5) and unit 7 is allocated to frame 1
if g =0 or g; =1 and to frame 2 if g; = 1 or g; = 2. This gives large overlap
of approximately 50%. Sample 1 is selected from frame 1 using stratified sim-
ple random sampling with replacement, sample 2 is selected from frame 2 using
Midzuno sampling with m; ~ y; — N(300,200). The sample sizes are n; = 201
and ny = 270. We assume that the frame totals of variable  are known. We
also include constraints on the frame sizes. We test the estimators when the size
of the overlap between frames is known and when it is not known. Table (3.1)
presents 100 x percent relative mean squared error (100 x RM SE%) of the tested
estimators with the Kalton-Anderson and the Simple Multiplicity adjustments.

Table 3.1: 100 x percent relative mean squared error (100 x RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 1. Si: stratified simple random sampling, Ss: Midzuno sam-
pling. Based on 1,000 iterations.

Q@ Small overlap Large overlap

GMREG ELM GMREG ELM
N4p unknown

Multiplicity 045 048 2.57 0.58

Kalton-Anderson 0.50 0.35 2.30  0.67
N4p known

Multiplicity 0.10 0.48 0.12  0.58

Kalton-Anderson 0.10 0.34 0.12 0.67

The normality of the variable of interest creates relatively favourable conditions for
the regression estimators. When the size of the overlapping domain is known, the
GMREG estimator is more precise than the proposed ELM estimator. However,
the ELM estimator is more precise when the size of the overlapping domain is

unknown, especially when this overlap is large.
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Variables with skewed distributions and correlation

between the variable of interest and frame allocation

Second simulation attempts to test relative performance of the estimators in a more
complex situation. We use Population 2, where the variable of interest follows
a skewed distribution. We introduce some dependence between the variable of
interest and the frame allocation, as well as the sampling probabilities. Units are
allocated to frames according to the values of the variable g; ~ B(2,ys"), where
yit = {y; — min(y)}{maz(y) — min(y)}~*. Three frame allocation methods are

tested:

e unit ¢ appears in frame 1 when g; = 0 or g; = 2 and in frame 2 when ¢g; = 1

or g; = 2. This gives an overlap between frames of approximately 5%.

e unit ¢ appears in frame 1 when g; = 0 or g; = 1 and in frame 2 when g; = 1

or g; = 2. This gives an overlap between frames of approximately 27%.

e unit ¢ appears in frame 1 when g; = 0 or g; = 2 and in frame 2 when g; = 0

or g; = 1. This gives an overlap between frames of approximately 70%.

1,500 units are selected from each frame by random systematic sampling with
sampling probabilities 7; proportional to a size variable 7;, generated according to
the following model 7; =~ 2y; + I; + k; + 30, with [; ~ Xzle and k; ~ N(10,10).
This introduces a correlation between the variable of interest y; and the sampling

probabilities m; of about 0.88.

Table (3.2) presents 100 x RMSE% of the proposed estimator and the GMREG
estimator with the three overlap sizes, when the size of the overlapping domain is

known and when it is unknown.

With this skewed dataset, the proposed estimator is slightly more precise than

the GMREG estimator in all cases, even when full information on the size of the
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Table 3.2: 100 x percent relative mean squared error (100 x RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 2. Random systematic sampling design. Based on 1,000 itera-
tions,

o} V. small overlap ~ Small overlap  Large overlap

GMREG ELM GMREG ELM GMREG ELM

N 4p unknown

Multiplicity 0.39 0.17 0.57 0.22 0.68 0.24

Kalton-Anderson 0.38 0.17 0.55 0.24 0.67 0.24
N g known

Multiplicity 0.34 0.17 0.43 0.22 0.41 0.24

Kalton-Anderson 0.33 0.17 042 0.24 041 0.24

frames overlap is available. We notice that the precision of the ELM estimator
does not deteriorate when the size of the overlap is unknown and that it is mildly
affected by the size of the overlap. We observe slight deterioration of the GMREG
estimator when the size of the overlap is large and unknown. We should note,

however, that both estimators have low relative root square errors.

We also test whether the coverage of the multiplicity adjusted empirical likelihood
confidence intervals is affected by the dependence between the frame allocation
and the values of the variable of interest, the size of the overlap or the fact that
the level of overlap is unknown. We calculate the confidence intervals for the ELM
estimator, calculated as discussed in chapter 3.4.4. For the GMREG estimator,
symmetric confidence intervals are calculated based on the Deville and Sarndal’s
(1992a) variance estimator available within the Frames2 package (Arcos et al.,

2015).
Table (3.3) presents converges of confidence intervals of the two tested estimators.

Both confidence intervals show some over-coverage, especially when the overlap
is small. The coverage of the empirical likelihood confidence interval is similar
to that of the normality based confidence interval, but typically slightly closer to
the nominal level and in most cases is not significantly different from 95%. The

coverage of confidence intervals is not affected by including the constraints on the
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Table 3.3: Coverage of confidence intervals (%) of the the proposed Empirical Like-
lihood Multiplicity adjusted (ELM) estimator and the Generalized Multiplicity-
adjusted Regression estimator (GMREG) (Ranalli et al., 2016) in Population 2.
Based on 1,000 iterations. t: values significantly different from the nominal level.

a V small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
N 4p unknown

Multiplicity 97.1f 96.2 98.0f 95.7 95.0 95.3

Kalton-Anderson 97.51 96.3 98.1f 95.9 95.0 95.3
Nap known

Multiplicity 97.4f 96.2 973 f 95.9 96.2 95.3

Kalton-Anderson 97.71 96.3 97.3f 95.7 95.9 95.3

size of the overlapping domain.

Correlation between the variable of interest and the

sampling probabilities

The third simulation focuses on the effect of the correlation between the variable
of interest and the selection probabilities. We use data from Population 3, re-
stricted to only include people over 16 years old. Units are allocated to frames as
in the three scenarios listed above. We estimate the total of the equalised house-
hold income and use the total of the household size from frame 1 and the total
of age from frame 2 as auxiliary information. We also incorporate information
on the frame sizes and the size of the overlap between frames. Samples of size
1,000 are selected in each frame using random systematic sampling with sampling
probabilities proportional to a size variable ;. We first check performance of the
estimators when 7; is generated from an independent normal distribution, i.e.,
7; ~ N(100,20). We then introduce a correlation between the sampling probabil-
ities m; and the variable of interest by using 7; ~ 0.7 % y; + v + 9, where v ~ xzle
and 6 ~ N (100000, 10000). This gives cor(m;,y;) ~ 0.6.

The 100RM SE% of the proposed estimator and the GMREG estimator are pre-
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sented in tables (3.4) and (3.5). Table (3.4) shows results obtained when the 7;
are generated independently from the variable of interest. Table (3.5) show results

obtained with cor(m;, y;) ~ 0.6.

Table 3.4: 100 x percent relative mean squared error (100 x RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 3. Sampling probabilities generated from an independent nor-
mal distribution. Random systematic sampling design. Based on 1,000 iterations.

o V. small overlap Small overlap Large overlap

GMREG ELM GMREG ELM GMREG ELM
N 4p unknown

Multiplicity 1.80 2.14 2.04 2.24 2.45 2.05

Kalton-Anderson 1.75 2.06 1.91 2.06 2.45 2.05
N4p known

Multiplicity 1.78 2.14 1.99 2.24 1.76 2.05

Kalton-Anderson 1.74 2.06 1.87 2.06 1.75 2.04

Table 3.5: 100 x percent relative mean squared error (100 x RMSE%) of the
proposed Empirical Likelihood Multiplicity adjusted (ELM) estimator and the
Generalized Multiplicity-adjusted Regression estimator (GMREG) (Ranalli et al.,
2016). Population 8, cor(y;, ;) ~ 0.6. Random systematic sampling design.
Based on 1,000 iterations.

« V. small overlap Small overlap Large overlap
GMREG ELM GMREG ELM GMREG ELM

N 4p unknown

Multiplicity 1.37 1.09 1.68 1.30 1.89 1.34

Kalton-Anderson 1.34 1.09 1.55 1.27 1.88 1.33
N g known

Multiplicity 1.36 1.09 1.62 1.30 1.56 1.34

Kalton-Anderson 1.34 1.09 1.51 1.27 1.54 1.27

When the sampling probabilities follow an independent normal distribution, the
proposed estimator has slightly higher relative mean square error than the GM-
REG estimator in all cases when the full frame information is available and with
small and medium overlap sizes when the size of the overlap is unknown. When
the overlap is large and its population size is unknown, the ELM estimator is
slightly more precise. When the m; and the target variable are correlated, the

ELM estimator performs better in all cases.

117



Table (3.6) presents converges of confidence intervals of the two tested estima-
tors. The same method of calculating the lower and upper bounds of confidence
intervals for the ELM and the GMREG estimators as described in the previous
chapter was used. The coverage of the proposed empirical likelihood confidence
interval is acceptable across all tested scenarios. When the overlap is large, the em-
pirical likelihood confidence intervals show very slight over-coverage, significantly
different from the nominal value in a couple of cases. The GMREG confidence in-
tervals also have good coverage, with only one case of under-coverage significantly

different from 95%.

Table 3.6: Coverage of confidence intervals (%) of the the proposed Empirical Like-
lihood Multiplicity adjusted (ELM) estimator and the Generalized Multiplicity-
adjusted Regression estimator (GMREG) Ranalli et al. (2016). Population 3.
Based on 1,000 iterations. {: values significantly different from the nominal cov-
erage level.

Q V small overlap Small overlap Large overlap
GMREG ELM GMREG ELM GMREG ELM

cor(y;, m;) ~ 0.6
N 4p unknown

Multiplicity 94.7 95.3 94.1 94.6 94.5 96.3

Kalton-Anderson 94.7 94.6 95.3 95.0 94.0 96.2
Nap known

Multiplicity 95.6 95.2 94.1 94.8 95.6 96.61

Kalton-Anderson 94.9 94.6 94.7 95.1 95.4 96.3

cor(y;, m) ~ 0
N 4p unknown

Multiplicity 93.61 95.0 94.1 94.6 94.5 96.3

Kalton-Anderson 94.0 95.4 95.3 95.0 94.0 96.2
Nap known

Multiplicity 93.8 95.0 94.1 94.8 95.6 96.6"

Kalton-Anderson 94.1 95.2 94.7 95.1 95.4 96.3

3.7.2 Estimation of quantiles of distribution

One of the benefits of the proposed approach is its flexibility to handle a wide class

of population parameters of interest other than means or totals. Table (3.7) shows
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relative absolute root mean square errors (%) (rrmse), 100 x percent relative mean
squared error (rmse), left tail error rates, right tail error rates and coverages of
confidence intervals for the proposed estimator of the 10th, 20th, 80th and 90th
quantile of distribution of equalised household income in population 2. We test
performance of the estimator with two different sample sizes: n; = 1000,ny =
1500 and n; = 2000,n, = 2500, with an overlap of approximately 50% of the
population size. The random systematic sampling design is used in each frame
and the sampling probabilities are proportional to the household size. We assume

that the population totals of age and household size are known.

The error rates of the proposed estimator are all of acceptable size, although, un-
derstandably, the 100 x percent relative mean squared error rates are noticeably
larger than those for the estimators of totals presented in the previous tables. The
coverages of the confidence intervals are close to the nominal levels in almost all the
cases. The tail error rates are unbalanced, especially when high quantiles are esti-
mated. This is likely to be caused by the skewness of the data. Overall, however,
we can say that the multiplicity adjusted empirical likelihood confidence intervals

perform well, especially considering the skewness of the variables of interest.
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Table 3.7: Relative absolute root mean square errors (%) (rrmse), 100 x percent
relative mean squared errors (rmse), left tail error rates (1. t.e.r.), right tail error
rates (r. t.e.r.) and coverages of confidence intervals (cov.) of the proposed Em-
pirical Likelihood Multiplicity-Adjusted estimator. EUSILCP data. Estimation
of quantiles of distribution and the mean of equalised household income. Strat-
ified random systematic sampling design, stratification by household size with
proportional allocation. KA: Kalton-Anderson’s adjustment, ML: Multiplicity
adjustment. f: values significantly different from the nominal coverage level.

0 « ny = 1000, ny = 1500 nyp = 2000, ny = 2500

rrmse rmse 1. t.er r. t.e.r. cov. rrmse rmse 1. t.er r. t.e.r. cov.
KA 34 116 26 20 954 23 53 35 1.17 954
qo ML 34 116 2.3 2.1 956 23 5.3 2.7 1.2F 96.1

KA 28 78 14" 34 952 19 36 2.5 1.9 95.6
G0 ML 2.8 78 0.8 4.2t 950 1.9 3.6 2.2 20 958

KA 20 40 107 49t 941 14 20 1.1t 44" 94.5
gso ML 20 4.0 15" 38" 947 13 17 1.2t 3.2 95.6

KA 28 78 100 47" 943 31 96 1.2f 3.57  95.3
go ML 29 84 11t 37" 952 31 96 1.9 2.8 95.3
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3.8 Conclusions

We propose an Empirical Likelihood approach to finite population parameter esti-
mation in the multiple frames context. The estimator is based on the multiplicity
adjustment principle (Singh and Mecatti, 2011; Mecatti and Singh, 2014; Rao
and Wu, 20090), and can accommodate various multiplicity adjustment factors.
Additional benchmark constraints constructed around known population level pa-
rameters may be incorporated easily. In particular, constraints on the frame size
and size of the overlapping domain can be included. Previous research (Ranalli
et al., 2016) have shown that this type of constraints often lead to considerable
gains in precision. Alignment type constraints, requiring that both frames pro-
duce the same point estimates for parameters of the overlapping domain, can also
be defined. The alignment constraint can be formulated for a mean of a function
of the common variable. A function which maximises the correlation with the

variable of interest should be selected.

A wide class of parameters, expressed as solutions to population estimating equa-
tions, can be estimated through the proposed estimator. A single weight, which
can be used for estimation of various parameters, is obtained for every unit. The

weights are positive by definition.

Empirical likelihood multiplicity adjusted confidence intervals for finite population
parameters are constructed based on the y? approximation of the distribution of
the empirical likelihood ratio statistic under the null hypothesis. As in the case of
the aligned empirical likelihood estimator discussed in the previous chapter, the
confidence intervals do not require variance estimation, are range-preserving and

asymmetric.

We consider the flexibility in terms of the type of multiplicity adjustment used,
type of parameters of interest and type of constraints imposed the main benefit

of the proposed method. In the simulations performed, the proposed estimator
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has acceptable precision. In some cases, it tends to have a lower relative root
mean square error than the generalized multiplicity adjusted regression estimator
with the same multiplicity adjustment. This happens when the variable of interest
follows a skewed distribution. In particular, we notice that the proposed estimator
performs particularly well when the size of the frames overlap is unknown. It is
also relatively insensitive to the actual size of the overlap, while the GMREG
estimator often has a higher relative root mean square error when the overlap
between sampling frames is large and when the size of the overlap is unknown.
Coverage of the proposed empirical likelihood confidence intervals is close to the
nominal level in most cases, with just a few cases of slight over-coverage or under-

coverage. This holds also for estimation of quantiles of distribution.

The multiplicity adjusted estimator has a similar structure to the aligned empirical
likelihood estimator discussed in chapter 2. It differs, however, in the formulation
of the design constraint, in that it allows to include custom adjustment factors.
We do not discuss the choice of the multiplicity adjustment factor. Several adjust-
ments have been proposed. In practical applications, the choice of the adjustment

factor is likely to be driven by the availability of information.
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Chapter 4

Using empirical likelihood to obtain
range-respecting confidence intervals for census

coverage

4.1 Introduction

Censuses aim to obtain an almost perfect coverage of the population. However,
although efforts are made to maximise the response rates, a small proportion of
the population is usually missed. A second register or survey can be used to
assess the overage of a census. Several countries use a survey carried out after the
census. The dual system estimator (DSE) is then used in order to estimate the
census coverage. Examples of such countries include the United Kingdom (Brown
et al., 1999; Abbott, 2009), New Zealand (Statistics New Zealand, 2014) or Brazil
(da Silva et al., 2015).

In the UK, the census coverage survey (CCS) is carried out shortly after the
census. The census coverage survey has a large sample size and is used to estimate
the population size by correcting the census totals in geo-demographic groups
based on the estimated under-coverage, as well as to estimate the coverage of the

census. The estimation procedure is undertaken separately in 106 Estimation
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Areas (defined based on a geographic split of the country) and estimates are
produced for 45 age-sex groups within each Estimation Area. The census coverage
rate is defined as the proportion of the number of people enumerated in census
to the population size estimated through the dual system estimator. In 2011, the
overall coverage across England and Wales was 94% (Office for National Statistics,

2017).

Estimating the uncertainty around the census coverage estimate is not a straight-
forward task. The methodology used by the Office for National Statistics after the
2001 census relied on constructing symmetric confidence intervals, based on the
jackknife variance estimator. The 2011 census used bootstrap bias corrected and
accelerated (BCa) confidence (Efron, 1987; Baillie et al., 2011) intervals (Kabzin-
ska et al., 2017). However, construction of the confidence intervals is difficult
because of the distribution of the census coverage rate. The coverage follows the
binomial distribution and varies hugely between regions and age-sex groups. There
are groups where the estimated coverage rate is very close to 1. In such context
confidence intervals are known to be difficult to construct (Liu and Kott, 2009).
Moreover, when the estimated coverage rate is close to 1, the symmetric confidence

intervals have upper bounds above 1, which might be confusing for end users.

In this chapter we consider an empirical likelihood approach for the estimation of
census coverages. Empirical likelihood gives confidence interval bounds between
0 and 1. It can also easily be extended to include any benchmark (calibration)
constraints. Specifically, we consider design-based empirical likelihood (Berger and
De La Riva Torres, 2016) confidence intervals which are constructed by directly
inverting the log-likelihood ratio function. This means that confidence intervals

can be obtained without variance estimates.

This chapter begins with a summary of the design of the census coverage survey
and its estimation procedure. Then chapter 4.3 explains how empirical likelihood
can be applied to estimate census coverage and specifies the relevant estimating

functions and constraints. Chapter 4.4 gives numerical results based on applying
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empirical likelihood to data from the census coverage survey carried after the 2011
England and Wales population census. In chapter 4.5, we present the results of
a simulation study which compares empirical likelihood confidence intervals with

those derived from an approximation to the existing approach.

4.2 Sampling design of the census coverage survey and the

current estimation procedure

In this chapter we summarise the design of census coverage survey and describe
the current estimation procedure. We discuss the properties of the dual system
estimator and show how the estimates of the population size are used to produce

census coverage estimates.

4.2.1 Sample selection

Census coverage survey uses a stratified cluster sampling design. A separate sam-
ple is taken in each Estimation Area, which consists of roughly 1 million people.
The primary sampling units are small geographical entities, called Output Areas,
stratified by Local Authority and a proxy measure of how likely the local popula-
tion is to respond in a census, called Hard to Count index. For each of the sampled
Output Areas, a sample of postcodes is taken (Brown et al., 2011). Figure (4.1)

shows this geographical division on a diagram.

In each of the sampled postcodes, full enumeration of households is attempted.
The total number of households and people is measured and some additional

household and person level information is gathered for each household.
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Figure 4.1: Geographical entities in England and Wales used in the design of the
Census Coverage Survey

4.2.2 Dual system population size estimation

The total number of households and persons measured in the sampled postcodes
is used to estimate the population size. The following dual system estimation

formula is applied:

(No+g+ + NC+S*)(NC+S+ + NC*S+)

DSEx =
N Ne+g+

, (4.1)

where Ng+g+ is the number of households (or people) who were enumerated both
in census and in CCS, Ng+g- is the number of households (or people) who were
enumerated in census but not in CCS and N¢g-g+ is the number of households (or

people) who were not enumerated in census but were enumerated in CCS.
The estimator (4.1) relies on several assumptions: (Abbott, 2009, 2011)

1. Independence between the census and the CCS, meaning that the proportion
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of households (persons) enumerated in census is the same among CCS re-
spondents and among CCS non-respondents and that the proportion of CCS
respondents is the same among households (persons) enumerated in census

and households (persons) not enumerated in census;

2. A closed population, meaning that no in- or out - migration happens between

the census and the Census Coverage Survey;

3. Homogeneity of selection probabilities within Output Areas, meaning that
households (persons) within the same stratum have equal chances of being

enumerated in the census or in CCS;

4. Perfect matching, meaning that the values Npo+g+, No+g- and Npo-g+ are

correct, i.e., calculated without error.

If the assumptions above are not met, which is likely in real life conditions, the
DSE is known to be negatively biased (Brown et al., 2006). Specifically, violation
of the assumption of independence between the response probabilities in the Cen-
sus Coverage Survey and in the census can lead to a high bias in the estimator
(Brown et al., 2011). Further to this, while the DSE is used to assess census
under-coverage, adjustment for over-coverage, resulting e.g. from double counting
of people or households, is also necessary. The ONS applies a series of adjustments
based on the estimated census over-count and on known statistics, such as sex ra-
tios in age groups, derived from administrative records. Specifically, the following

adjustments are applied: (Office for National Statistics, 2012)
1. sample balance adjustment

This adjustment is applied if the sample is considered unbalanced. This
is assessed based on a comparison between census dummy questionnaires,
i.e., questionnaires filled in by census enumerators if no response from a
household is obtained and the response rates estimated through the DSE. A

sample is considered unbalanced if the two rates are significantly different.
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2. DSE bias adjustment by age-sex group and HTC

Adjustment for person and household level bias is applied based on social
surveys and the Alternative Household Estimate, which is a national register
of households created by compiling several administrative resources, such as
the NHS Patient Register, the Department for Work and Pensions Customer
Information System, English School Census, Welsh School Census and the
Higher Education Statistics Agency data.

3. census over-count adjustment

The over-count adjustment corrects for the fact that some people or house-
holds may be enumerated more than once. This might be because of dupli-
cate returns for the same person, people being counted in the wrong location,

or erroneous returns.
4. national level adjustment for residual bias

The total population estimates by sex and age groups at the national level
are compared to the sex ratios available from administrative sources. A
national level adjustment is then applied to account for any residual bias if

the population totals are implausible.

4.2.3 Population size and census coverage estimation

The second stage of estimation consists of producing Estimation Area estimates
based on the values of DSE ~ and the census counts observed for the sampled
postcodes. First, the census coverage, defined as the ratio of the census count
to the population size (lﬁ ~), is estimated. This is done by fitting a straight
regression line (with no intercept) to the age-sex specific values of DSE N and

census counts for the sampled postcodes. Second, the population size in age-sex
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groups is estimated through a ratio estimator (Abbott, 2009).

After the population estimates are obtained for each Estimation Area, a synthetic
small area estimator (e.g. Rao, 2015) is used to obtain population estimates for
each Local Authority (Brown et al., 2011). Finally, the national database is ad-
justed through imputation for the estimated under-count (Abbott, 2009).

After the 2001 census, symmetric confidence intervals for census coverage were ob-
tained through the Jacknife variance estimator (Kabzinska et al., 2017). Following
the 2011 census, symmetric bootstrap bias corrected and accelerated confidence
intervals (Efron, 1987) were used (Kabzinska et al., 2017). Confidence interval
half-widths were then published, even though some of them resulted in the upper
bound larger than 1.

Note that in any estimates produced from the census coverage survey there are
two sources of variance. First, there is the sampling variance associated with the
fact that Estimation Area level estimates are obtained from a sample of postcodes.
Second, there is the variance of the dual system estimator. This variance is as-
sociated with the fact that the probabilities of responding in the census and in
the census coverage survey are random quantities. The current methodology for
estimation of census coverage treats the dual system estimates of the population
size as fixed quantities, i.e., the confidence intervals are constructed based on the
estimate of the sampling variance in the census coverage survey. We follow this
approach in this work, although we acknowledge that further development which

would account for this uncertainty would be desirable.

4.3 Applying empirical likelihood to census coverage

In this chapter we consider an empirical likelihood approach to census coverage

estimation. We focus specifically on the second step in the current approach, when
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the postcode level census coverages are used to produce census coverage estimates
at the Estimation Area level. In line with the current approach, we treat the DSE
population sizes in sampling units (postcodes) as fixed, non-random quantities.
We also assume that any adjustments have already been applied to the DSE. We
do not extend the method to allow for small area estimates at the Local Authority
level. This would require some further theoretical development in the empirical
likelihood methodology. We therefore do not claim that the entire methodology
for population size estimation can be substituted with the presented empirical
likelihood method. Instead, we suggest that the empirical likelihood method could
be used to produce the confidence intervals for census coverage estimates at the
Estimation Area level, which are currently reported as half-widths and occasionally

exceed 1.

In line with the design described in chapter 4.2.1, we consider T' populations of
interest, called Estimation Areas and denoted U;, where t = 1,...,T. Each Esti-
mation Area U, is divided into H disjoint strata h = 1,2, ..., H. An independent
sample Sy, of size ny.p,, of output areas is taken from each of the H strata. Let S
be the collection of labels of the selected output areas; that is Sy = U S,;,. Let
T.h denote the selection probability for output area ¢ in stratum h. Within each
of the selected output areas, n.,; postcodes are selected with unequal probabili-
ties ..k, Where k is the postcode index. Let Sy be the collection of labels of
the postcodes selected in output area ¢ in stratum h. To simplify the notation, we
drop the stratum index A in the following text wherever the stratum membership

can be ignored.

Suppose that for every sampled postcode k, we know the DSE estimate of the
population size, denoted by ¥, and the number of individuals enumerated in
census, denoted by x;..,. Suppose also that for every output area ¢, the number

of individuals enumerated in the census, denoted by z;;, is known.

Let 6y, denote the parameter of interest, that is, the census coverage at the Es-

timation Area level. We define 6y, as the ratio of the census count to the dual
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system estimate of the population size. The parameter 6y, can be expressed as

the unique solution of the population estimating equation:

Zg(yt;’hxt;he[]t) = 07 (42)

€U

where
It Tei, O0,) = i — O, Yt (4.3)

and y;.; denotes the population size in output area i € U;. The value y,,; is not

assumed to be known.

The design-based empirical likelihood function is defined as: (Berger and De La
Riva Torres, 2016)

C(my;) = Z log(m), (4.4)

i€S}

where the my,; are unknown scale loads associated with each output area.
We propose to use the following constraints on the my,;:

1. sample size constraint:

Z My:hsi Tk = TNsh, h = 17 2a ey Ha (45)

€S

2. unknown parameter constraint:

Z My /g\(yt;ia T, ‘9t) =0 (4-6)

€St

Note that constraint (4.5) is defined at the stratum level, while constraint (4.6)
is defined at the sample level. Constraint (4.5) is a typical constraint used in the

design-based empirical likelihood methodology under unequal probability sam-
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pling designs (see chapter 2 and (Berger and De La Riva Torres, 2016)). Con-
straint (4.6) includes the unknown population parameter 6;. The g(ys.;, ¢, 04) is

an estimate of g(y., T+, 0¢) for each output area; that is,

G (Yrsis Trsi, Or) = n;il Z ﬂ-;z%k 9(Ytsisk, Tesise, i) (4.7)
kESt;i
where
g(?ﬁ;um Lt:i:k s et;i) = Ttk — et;i Ytizk: (48)

Constraint (4.6) is based on the ultimate cluster approach (Hansen et al., 1953).
Using this approach for empirical likelihood inference in complex sampling designs

has been proposed by Oguz-Alper and Berger (2016).

As it was discussed in the previous chapters, empirical likelihood can handle ad-
ditional calibration (Deville and Sérndal, 1992a) constraints based on a known
population level characteristic, e.g. a total or a mean of a variable which is also
measured for the sampled units. A natural variable which can be used to construct
a calibration type constraint is the census count for each output area. Note that
in order to define this constraint we only need to know the total or mean census
count in Estimation Area U; and the census counts within the sampled output

areas.

We denote the known mean number of persons enumerated in the census in Es-
timation Area U; by Uy,. Parameter Wy, can be expressed as the solution of the

following estimating equation:

Z f(2ei, Yy,) =0, (4.9)

€Uy

where f(zy;, Vy,) = a2 — Uy,

e
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Translating (4.9) into a sample-level constraint gives

Z M (24, Vy,) = 0- (4.10)
i€St
Constraint (4.10) is optional, but it is likely to improve precision of the estimator
of the target variable. Note that we use the raw (unadjusted) census count in the
constraint. Therefore, while the census count itself may be impacted by under-
enumeration, the calibration constraint is not, in that the parameter Uy, is indeed

the population total of values z;.

Let mj,;(0:) be the vector of values which maximise expression (4.4), for a given
vector 6, under my,; > 0 and constraints (4.5), (4.6) and (4.10). The mazimum
empirical likelihood point estimator of Oy, is defined as the value 0: which max-

imises the following function:

0(0:) =y log{m;;(0:|W,)}- (4.11)

i€St

Following an argument presented by Berger and De La Riva Torres (2016), we
notice that the estimator @\t is also given by the unique solution of the sample

estimating equation:

G(0) =Y i (W, )G (Wi, w10, 61) = 0, (4.12)

1€St

where the vector {m;(Vy,) : ¢ € S} maximises function (4.4) under constraints

(4.5) and (4.10) (see chapter 2.5 for further explanation).

Following (4.7) and (4.8), the solution 8, can be derived as:

-1

I ~ -1 -1 | -1
0, = E | s E , TtsizkLtiisk § | Peny E Tk Ytiisk (4.13)

1€8S: keS’m 1€St kest;i

The design-based empirical likelihood ratio statistic is defined as (Berger and De
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La Riva Torres, 2016):
#01) = 2 {((7) — (0] V,)} (4.14)

where £(m) = 3. g log{m(Vy,)} and £(0) >, g, log{m},(6:[¥y,)}. Note that
when a benchmark constraint is used,function (4.14) depends also on the known
parameter Up,. The statistic (4.14) is pivotal and follows a x? distribution with
one degree of freedom asymptotically when 6; = 0, (Berger and De La Riva Tor-
res, 2016). We use the empirical likelihood ratio statistic to construct confidence
intervals for the parameter 6, by taking the values 6; such that r(6;) < X?lle;ou
where x7_,., is the upper a-quantile of the x* distribution with 1 degree of free-

dom.

4.4 Numerical illustration

In this chapter we discuss results of applying the proposed approach to the 106
Estimation Areas enumerated in the 2011 England and Wales census. For compar-
ison, we also constructed symmetric confidence intervals for the census coverage
based on three variance estimation approaches: linearisation, jackknife and Canty

and Davison’s (1999) bootstrap with 100 replicates.

We estimate the census coverage in 35 age-sex groups within each of the Estimation
Areas. The sample sizes within each Estimation Area by age-sex group are quite
small, ranging from 17 to 118 with an average of 44.5 output areas. The estimated
census coverage ranges from 72% to 100%, with several estimates very close to

100%. No auxiliary information is used.

The main purpose of this numerical study was to confirm that the empirical like-
lihood approach yields confidence intervals within the desired range and to see

how the empirical likelihood confidence intervals compare to the symmetric confi-
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dence intervals. The study confirmed that indeed, empirical likelihood confidence
intervals never exceed 1. This can be seen in Figure 4.2, which shows 95% em-
pirical likelihood confidence intervals obtained for different Estimation Areas and
age-sex groups. For confidentiality reasons, the age-sex groups are not named on

the graph and are labelled by meaningless consecutive integers.

Figure 4.2: Empirical likelihood 95% confidence intervals for the census coverage
in different Estimation Areas and age-sex groups.

95% Empirical Likelihood confidence intervals

fGrcensuscoverage

2000

Age-sex group

Many of the empirical likelihood confidence intervals are asymmetric. Figure 4.3
shows some examples of empirical likelihood confidence intervals and symmetric
confidence intervals calculated for the same groups based on the jackknife variance
estimator. We can see some cases when the upper bound of the symmetric confi-
dence interval exceeds 1, while the empirical likelihood confidence interval remains
within the (0,1) limits. The lower bounds of the empirical likelihood confidence
intervals are sometimes lower than the lower bounds of the symmetric confidence
intervals. In these cases the empirical likelihood confidence interval is also clearly
asymmetric. Overall, the average width of empirical likelihood confidence intervals

is similar to the average width of the symmetric confidence intervals.
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Figure 4.3: Empirical likelihood (EL) and Symmetric (jackknife) (SYM) 95%
confidence intervals for the census coverage in selected age-sex groups.
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Figure 4.4 shows some examples of the empirical likelihood ratio function (4.14)
plotted as a function of #, based on data from the 2011 England and Wales census.
The horizontal lines correspond to the threshold y? = 3.84. The vertical lines show
the point estimate obtained at the minimum of the log-likelihood ratio function.
The shape of function (4.14) depends on the distribution of the sample data, the
sampling weights, the constraints imposed by the parameter space and, if used,
any additional constraints. The functions presented on the graphs in the top row of
figure 4.4 give highly asymmetric confidence intervals, with the "upper’ parts much
shorter than the 'lower’ parts. The function presented in the bottom left corner
yields an approximately symmetric confidence interval. The function presented in
the bottom right corner gives a slightly asymmetric confidence interval, with the

‘upper’ part longer than the 'lower’ part.
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Figure 4.4: Examples of the log-likelihood ratio plotted as a function of the point
estimate for census coverage in some selected age-sex groups.
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4.5 Simulation study

Applying empirical likelihood to real data allows us to see how the empirical
likelihood confidence intervals are shaped in a realistic situation. However, in
order to assess the coverage of the confidence intervals, we need to apply the
proposed method to a population with a known value of the parameter of interest.
Therefore in this chapter we evaluate the performance of the proposed method in

a series of simulation studies on synthetic populations. The simulation is designed
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to resemble the design described in chapter 4.2.1. We use the sample data from
the 2011 census coverage survey together with the population sizes as enumerated
in the 2011 England and Wales census. This dataset is used to create a number
of synthetic populations which are then used to evaluate the performance of the
proposed empirical likelihood estimator. Note that the synthetic populations are
not aimed to represent the true composition of the Estimation Areas and should
not be interpreted as such. We select four Estimation Areas of varying census
coverage to create synthetic populations: Kensington and Chelsea; Southwark;
Cornwall and Isles of Scilly; and Merseyside. The 2011 census coverages of these
Estimation Areas are respectively 85.4%, 87.2%, 93.6% and 93.2%. Within each
Estimation Area, there are 35 age-sex groups which also vary hugely in terms of

census coverage.

Modelling a synthetic population based on the sample data has to follow two
steps: creating a number of synthetic postcodes and creating synthetic output
areas. First, within each output area, ten synthetic postcodes are generated. We
generate three variables: the number of people enumerated in the census only, the
number of people enumerated in the census coverage survey only and the number of
people enumerated in both census and census coverage survey are generated from
normal distributions with means and standard deviations equal to those observed
in the actual sample of postcodes. The generated values are then rounded to
integers, as they represent numbers of people. Due to the random procedure of
generating values, it is possible that a postcode with no people enumerated in
either census or census coverage survey is generated. To avoid this, any 0 values
are replaced by 1. After the first step, our synthetic population has only as many
output areas as were available in the sample, but each of the output areas consists
of exactly ten synthetic postcodes. In the second step, synthetic output areas are
created. Each of the output areas obtained in step 1 is replicated 100 times. Then
values of each of the variables are modified by adding a random noise generated
from a normal distribution with mean and standard deviation set to 3% of the

mean and standard deviation observed in the output area. Note that the random
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error is always positive. This creates populations with slightly higher counts than
in the original sample data, but allows us to avoid problems with very low counts
at stratum level. We do not change the stratifying variables, that is, the synthetic
output areas have the same hard to count index and the same local authority as

the output area that was used to generate them.

Following the sampling design of the census coverage survey, the synthetic Esti-
mation Areas are stratified by the hard to count index and local authority. Then
two stage cluster sampling without replacement is used, with output areas as the
primary sampling units and postcodes as the secondary sampling units. In each of
the strata, a sample of 5% of the output areas is selected by simple random sam-
pling without replacement. Within each of the sampled output areas, 5 postcodes
are selected by simple random sampling without replacement. Selecting 50% of

postcodes corresponds with the design of the census coverage survey.

We select 1,000 samples in each of the synthetic populations. Census coverage, as
well as the lower and upper bounds of the confidence intervals for the census cov-
erage, are estimated from each of the samples. We use four methods of obtaining
confidence intervals. First, we apply the proposed empirical likelihood methodol-
ogy and obtain empirical likelihood confidence intervals, with a benchmark con-
straint on the mean census count. Second, we calculate symmetric confidence
intervals around an estimator of the ratio of census count and population size us-
ing three methods of variance estimation: linearisation, Jackknife and Canty and
Davison’s (1999) bootstrap with 100 replicates. For computation of the symmetric
confidence intervals of the ratio estimator, we use the svyratio function from the
survey package (Lumley et al., 2004; Lumley, 2016). The bootstrap method used
draws a sample of PSUs (Output Areas) from each stratum (see (Lumley and
Lumley, 2018) and (Preston, 2009) for details). Alternatively, Preston’s (2009)

multi-stage rescaled bootstrap method could be used.

Figures 4.5, 4.6, 4.7 and 4.8 show the observed coverage level of confidence intervals

of the four different methods for census coverage in different age-sex groups within
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the tested Estimation Areas. The plots give an overview of how close the empirical

coverage of confidence intervals obtained in various groups is to the nominal level

of 95%.

All of the methods give confidence intervals with acceptable coverage levels, con-
sidering the relatively small sample sizes, complex sampling design and relatively
high variability of the parameter of interest. All confidence intervals suffer from
under or over-coverage in several age-sex groups. The empirical likelihood confi-
dence intervals behave similarly to the symmetric confidence intervals and in some
cases have coverage closer to the nominal level. For example, in Figure 4.5, the
minimum level observed for the empirical likelihood confidence interval is 92.5%.
For the other approaches, the level observed can be as low as 90%. The empir-
ical likelihood confidence intervals are also, on average, marginally shorter than
the symmetric confidence intervals, with average length of 5.33% for empirical
likelihood intervals and between 5.66% and 5.76% for symmetric intervals, even
if they are truncated at 1. Figures 4.9 - 4.12 show the average length of confi-
dence intervals obtained in each age-sex group of the four synthetic populations

considered.

Figure 4.5: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthILO6KENS
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Figure 4.6: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthIL09SOUT
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Figure 4.7: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthSW03CORN
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Figure 4.8: Coverage of empirical likelihood and symmetric confidence intervals
in various age-sex groups, in population synthNWO06MERS
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Figure 4.9: Average length of confidence intervals in various age-sex groups, in
population synthILO6KENS
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Figure 4.10: Average length of confidence intervals in various age-sex groups, in
population synthILO9SOUT
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Figure 4.11: Average length of confidence intervals in various age-sex groups, in
population synthSWO03CORN
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Figure 4.12: Average length of confidence intervals in various age-sex groups, in

population synthNWO6MERS
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4.6 Conclusions

The main practical advantage of the empirical likelihood confidence intervals in
relation to census coverage estimation, or binomial parameter estimation more
generally, is that they do not exceed 1. It is worth noting that the numerical
algorithm used to obtain empirical likelihood weights does not involve any explicit
constraints on the upper bound of the confidence intervals. Instead, the empirical
likelihood ratio function naturally yields confidence intervals and point estimates
lower than 1. It is of course possible to trim the symmetric confidence intervals
at 1, which does not influence their asymptotic coverage, as the true parameter
value can never exceed 1. However, the lower bounds of the symmetric confidence
intervals might then still remain too high, as they do not account for different levels
of variability of the data on the two sides of the point estimate. The empirical
likelihood confidence intervals are based on the likelihood ratio function which is
defined by the shape of the sample data. They will, therefore, correctly account

for larger variability below the point estimate than above it, if this is the case.

Empirical likelihood allows to easily incorporate calibration type constraints, which
might be constructed using an arbitrarily chosen function of the known parame-
ters. In particular, the function can be selected so as to maximise the correlation

between the calibration variable and the parameter of interest.

The numerical simulations presented in the previous chapter show that empirical
likelihood confidence intervals indeed remain within the range of the parameter of
interest. The coverage of empirical likelihood confidence intervals is comparable
to the coverage of the tested symmetric confidence intervals. The empirical likeli-
hood confidence intervals also have comparable width to the symmetric confidence
intervals. However, we can see a few examples when the confidence intervals are
clearly asymmetric and the lower bound of the empirical likelihood confidence
interval is lower than that of the symmetric confidence interval. This suggests

that empirical likelihood confidence intervals might be well suited for generation
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of confidence intervals when variables are highly skewed.

The approach presented in this paper was designed specifically as an alternative
for the confidence interval estimation at the census coverage estimation stage in
the current coverage estimation procedure. That is, it is applied to the population
sizes estimated through DSE in order to obtain population level estimates of census
coverage. In line with the current approach, it treats the dual system estimates
as fixed. Estimating the uncertainty around the DSE estimates and incorporating
it into the calculation of the empirical likelihood confidence intervals would be an

interesting direction of future research.

We should note that there are multiple alternative ways of estimating the popula-
tion size than the Dual System Estimator. For example, Chipperfield et al. (2017)
describe a method applied by the Australian Bureau of Statistics, where the pop-
ulation size is estimated through a generalized regression type model, called the
PREG (population regression), accounting for over and under coverage in cen-
sus and considering non-response. Zhang (2015) gives a comprehensive overview
of modelling approaches for undercoverage and overcoverage in registers. More-
over, triple system estimators, where administrative registers are used alongside
a census and a post-enumeration survey, have been proposed. This allows the de-
pendence between response probabilities in the census and census coverage survey
to be modelled (see (Baffour et al., 2013) and (Griffin, 2014)). Extending empirical
likelihood to work with such methods would require considerable developments,

especially if any modelling was involved.

Finally, empirical likelihood is of course not the only method which gives asym-
metric and range-preserving confidence intervals. Investigating the properties of
other such methods, for example bootstrap-based approaches, in the context of

estimation of census coverage, would be an interesting future research direction.
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Chapter 5

Numerical aspects of empirical likelihood

Empirical Likelihood estimation procedure involves numerical operations at sev-
eral stages. Specifically, numerical optimisation (finding minimum or maximum

of a function) and root finding methods are applied in order to:

1. obtain the vectors of adjusted weights m;(¢,) and M0, ¢, ), such that the

constraints based on sample data and population parameters are met,
2. obtain the point estimate 0,

3. obtain the lower and upper bounds of confidence intervals, which requires
evaluating the log-likelihood ratio function for multiple values of the param-

eter of interest 0.

In this chapter we discuss the computational aspects of these numerical opera-
tions. We consider the three computational tasks listed above in a general way,
so that the discussion presented here is relevant to all three empirical likelihood
applications discussed in the previous chapters and to design-based empirical like-
lihood estimation in general. We keep in mind the specific conditions imposed by
the problems discussed in chapters 2, 3 and 4, such as a typically large dimension
of the constraint matrix or confidence interval bounds laying close to the boundary

of the parameter space.
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5.1 Obtaining the vectors of adjusted weights m;(y,) and

mi0, ¢,)

Finding the adjusted weights m;(¢, ) is, in principle, a task of optimisation under
constraints. The task consists of finding a vector of values m;(¢,) which max-
imise the value of a function ¢(m) and are such that a constraint of the form
m'c’ = C" holds, where ¢ is a matrix and C is a column vector. These
adjusted weights m;(¢,) might be of interest themselves, but are also neces-
sary to obtain point estimates and to evaluate the log-likelihood ratio function
7(0)p,), which is required for calculation of confidence intervals. The vector of
adjusted weights mX(0, ¢, ), which maximises ¢(m) under the extended system of
constraints m'c@)" = C*', where c is a sub-matrix of ¢{(6) and C is a sub-

vector of C*, is found in an analogous way. We explain the numerical aspects of

this estimation process using m;(¢,) as an example.

Following Berger and De La Riva Torres (2016), Wu (2004 ) and other authors, we
use the Lagrange’s multipliers method to solve the optimisation problem, which is
therefore translated into solving a system of non-linear equations of the following

general form:

> (Ae) e —C =0, (5.1)
icS
where A is a vector of Lagrange’s multipliers. The equation (5.1) is solved with
respect to A. The number of unknowns (the Lagrange’s multipliers) is the same
as the dimension of vector C' and in practical applications can vary between 1
and a few hundreds. The equation (5.1) is easily derived if we write the Lagrange

function for maximization of ¢(m) in the following form:

Q) = log(m;) = AT () mie; — C)- (5.2)

icS i€S
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We find the adjusted weights by solving the following equation:

dQ) 1 T
— ~ _AT¢=0 .
dm; m; Ci ’ (5-3)

which gives

mi(e,) = (A er) ™ (5:4)
Equation (5.1) is obtained after substituting (5.4) in the following equation:

dQ .
ax ;mi(%)ci -C=0 (5.5)

Equation (5.1) is often solved through application of a modified version of the
Newton - Raphson algorithm. The k + 1-th iteration of the Newton-Raphson

algorithm for solving the system of non-linear equations (5.1) consists of taking

Aep = A — {Q' (W)} Q) (5.6)

where @Q'(Ax) is the Jacobian of Q(A) calculated at A = Ay.

The Jacobian Q'(A;) is a p by p matrix, where p is the dimension of X, with the
(7; h)-th element equal to

9g;(N)
Jom = =5 (5.7)
)
= Z ci;j—()\lci;l + )\QCZ';Q + ...+ /\pCi;p)_l (58)
pr A

Ci;5Cish
_ 4G , 5.9
= (Micin + Aacip + o 4 Apcipp)? (5:9)

where ¢;(\) is the j-th element of vector (5.2), A; is the j-th element of the vector
of Lagrange’s multipliers X and ¢; ; is the element in the i-th row and j-th column

of the matrix c.

In practice, it is not necessary to invert the Jacobian @Q'(Ax). Instead, a linear
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equation

Q) + Q' (M) (A1 — Ap) =0 (5.10)

is solved with respect to d = Ag11 — A and then Ay 1 = § — Ay is calculated.

The algorithm (5.6) converges locally with the quadratic rate. One of the possible
modifications of the Newton-Raphson algorithm which ensures global convergence
consists of decreasing the step size by multiplying it by a factor ¢, where 0 < ¢ < 1
(Polyak, 1987).

The approach consisting of modifying the step size in the Newton - Raphson algo-
rithm was applied in statistics to ensure that the solution to equation (5.1) yields
non-negative weights. This method is often referred to as the Polyak correction.
In particular, Chen et al. (2002) proposed an algorithm which adjusts the step in
the Newton - Raphson method by a parameter ¢, = k:_%, where k is the number of
the current iteration. If the solution found in the k-th step yields negative weights,
the parameter ¢ is adjusted to gx1 = gx/2 and the condition is checked again.
These steps are repeated until the non-negativity condition is met. Chen et al.
(2002) further extended this method to accommodate weights range restrictions
in presence of benchmark constraints, under pseudo empirical likelihood. This
is obtained by iterative relaxation of benchmark constraints until the obtained

weights are within a desired range.

The algorithm of Chen et al. (2002) was used e.g. by Wu (2004a) to find pseudo
empirical likelihood weights in two samples context and by Berger and De La
Riva Torres (2016) to obtain design-based empirical likelihood weights from single
sample complex designs. Wu (2004b) extended the algorithm of Chen et al. (2002)

to pseudo empirical likelihood under stratified sampling.

The algorithms of Polyak (1987) and Chen et al. (2002) are guaranteed to converge
to a unique solution, if such a solution exists. The Newton-Raphson algorithm, as
well as its both adjustments described above, require calculation of the Jacobian

(5.7) at each iteration. For large parameter sizes and large number of constraints
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this becomes computationally expensive. In common survey sampling settings,
the dimension of the parameter of interest is likely to be large, as is the number
of benchmark constraints. If stratification is used, the size of the matrix of con-
straints is further increased by a design constraint created for every stratum. The
computational complexity might be reduced by use of a quasi-Newton method
instead of the Newton-Raphson algorithm. The quasi-Newton methods were in-
vented to avoid calculation of the Jacobian at every step. A range of methods
have been proposed. No method is considered to be the best for all purposes.
Algorithms which perform well in some settings are known to perform poorly in
others. In fact, as stated in the famous no free lunch theorem for optimization
(Wolpert and Macready, 1997), a general-purpose universal optimisation strategy
is impossible (Ho and Pepyne, 2001). For instance, there often is a trade-off be-
tween the speed of convergence and the sensitivity to poor choices of the starting

point.

5.2 Obtaining the point estimate 0

Obtaining the point estimate for the parameter of interest @ requires finding the

value 6 which minimises the log—likelihood ratio function defined as ?(HILPU) =

2{t(m) — ((0|p,)}, where {(m Zlog (mi(p,)) and £(8|p,) = Zlog

€S 1€S
for a given vector m;(¢,). The estimates m;(¢,) do not depend on @ and only

need to be calculated once for given sample data and a system of constraints. The
vector of values mX(0, ¢, ) depends on € in that it is a result of maximising ¢(6|¢p,)

under a system of constraints which include 6.

The parameter estimate 0 can be found in two ways. First, a numerical opti-
misation algorithm may be applied directly to the empirical log-likelihood ratio
function 7(0|p,). A simpler solution, however, is found by translating this opti-

misation into a root finding problem. Functions ¢(m) and ¢(6|p,) differ in the
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additional constraint imposed on the admissible values of the vector of adjusted

weights m(0, ¢,). This constraint takes the general form

> w6, ¢,) gi(6) =0, (5.11)
icS
Berger and Kabzinska (2017) showed that the value 6 that is the unique solution

of the equation

G(0) =) milg,) 9:(6) =0, (5.12)

icS
is also the value that maximises ¢(0|¢,) and minimises 7(0|¢,) (see chapter 2.5
for details). This means that, in practice, it is not necessary to estimate the values
mi(0,,) in order to obtain the point estimate 6, as this can be obtained from

equation (5.12) which only contains m;(¢,).

In simple cases, e.g. when 6 is a total, a mean or a ratio, for a given vector of
adjusted weights m;(¢,), equation (5.12) can be solved analytically. Otherwise,
e.g. when 0 is a vector of quantiles, a root finding algorithm has to be applied to
solve (5.12). The complexity of this task depends on the type of the parameter 0

used.

Note that if the function 7(0|¢,) is minimised directly, the vector of adjusted
weights m¥(0, ¢,) has to be estimated for each candidate value of 6. This is much

more computationally demanding than solving the estimating equation (5.12).

5.3 Obtaining the lower and upper bounds of confidence

intervals

Let us consider constructing a confidence interval for a scalar parameter of interest

first. The upper and lower bounds of an empirical likelihood confidence interval
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are the values of the parameter of interest 6 such that 7(0|p,) = x?, where x?
is the limiting value from the y? distribution. Finding these two points requires
evaluating 7(6|p,) for different candidate values 6 in the neighbourhood of the

lower and upper bounds, so that the equation
m0lp,) —x*=0 (5.13)

is solved with respect to 8. The function 7(6|p,) is convex. However, this is not a
straightforward root finding problem. In fact, it requires solving two nested root
finding problems. Evaluation of 7(0|¢,) for a specific value of @ requires finding
the adjusted weights m}(@, ¢, ) and comparing them with the previously estimated
values m;(¢,) (see chapter 5.1). Note that while m;(¢,) do not depend on the
parameter of interest and hence only need to be estimated once (i.e., for a given
sample and system of benchmark and consistency constraints, there is one vector
m), the vector m}0,¢,) vary in function of 8. Therefore, for every candidate

value 0, the equation

Y mi(6,¢,)ci6) —C" =0 (5.14)

i€S
has to be solved. Finding the vector of weights m}@, ¢, ) for different candidate
values of @ is the most computationally expensive part of empirical likelihood
estimation. In particular, when the candidate value of the parameter 0 differs
substantially from the true parameter value 6, solving (5.14) may require many
iterations. Note that for the solution mX(0, ¢, ) to exist, we assume that 6 and
¢, are such that C* is an inner point of the convex hull formed by the sample
observations {c}(0) : i € S} (see e.g. chapter 2.4). Therefore, if a candidate value
0 that is outside of the convex hull formed by the sample observations is taken,
the solution will not be found at all. This can occur in practice e.g. in the census
coverage estimation problem discussed in chapter 4, when the upper bound of the

confidence interval is close to 1.

Suitable selection of the candidate values of 0 is crucial for the performance of

the algorithm. The search space has to be sufficiently larger than the actual
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confidence interval so that the bounds can be found, but ideally not too much
larger as the farther we get from the confidence interval, the more difficult the
evaluation of 7(6|g,) is. Experience from obtaining the confidence intervals for
different problems discussed in the earlier chapters suggests that restricting the
search space on the inner side of the confidence interval (i.e., not searching in the
closest neighbourhood of the point estimate), does not contribute much to the
improvement in performance, because evaluating 7(8|,) in this area is typically

fast.

The problem of finding the confidence interval bounds is easier than a general case
of finding roots of a function in that we know that we are searching for two points
which lay on both sides of the point estimate. Therefore it is natural to take the
point estimate as the starting point and search in both directions from it. At
each side of the point estimate, 7(8|p,) is a strictly increasing function. It can,
therefore, be evaluated for a selection of parameter values and then interpolated in
between, e.g. by splines. Because we only need precise values in the neighbourhood
of the confidence interval bounds, it is reasonable to adjust the distance between
the points at which the log-likelihood ratio function is evaluated relative to how
far we are from the bound. In most cases, bisection can be used to find the
confidence interval bounds. However, bisection requires evaluating points that are
outside of the confidence intervals. In some particularly difficult cases, such as the
census coverage example, this might be computationally difficult, that is, finding
the values m(0, ¢,) for values of @ substantially different from 6 might require a

very large number of iterations.

In such cases, we propose to use algorithm (1) described below. The algorithm is
loosely inspired by bisection. We take the point estimate as the starting point and
evaluate 7(0|¢p, ) at each step, until the value of 7(8]¢,,) is larger than the limiting
value from the y? distribution. Then the step is decreased and the search continues
in the opposite direction, again until the value of 7(6|p,) is at the opposite side

of the limiting value from the x? distribution. This procedure continues until

154



the parameter value which gives a value of (6|, ) close enough to the limiting
value from the x? distribution is found. The main difference between the proposed
method and bisection is that we avoid evaluating the log-likelihood ratio function
7(0)¢p,) for values far outside of the confidence interval, where this might be slow
or impossible. This is at the expense of evaluating the function at more points

within the confidence interval.

The initial step value might be adjusted for the particular problem. If the initial
step is too large, it might be difficult to obtain the vector of values m8,¢,)
for such an extreme parameter value. In such a case decreasing the step size
should help. Too small step size will result in slow convergence. For well behaved
functions 7(0|¢, ), a larger step might be selected and spline interpolation might
be used to interpolate function values between these points. This is often faster
than evaluating 7(0|¢, ), especially if the dimension of the constraints matrix is

large.

Algorithm 1 Finding confidence interval bounds
1. Start with 8), = 8 and § = 1074, 7 = 1, ¢ = 2.22107'°
2. While [7(0kl,) — x*| > 0+«
(a) If 7(Oklp,) > X°, then 7 = (=1)7, }
() T 7(Berlpy) > 3 > FBelpy) or 7Berly) < x> < F(Belepy), then

d=19/2,
(¢) For upper bound: 0y, = 6y + 76, for lower bound: 04,1 = 0} — 70,
(d) k=k+1

If the parameter of interest 6, is multidimensional, but the components are in-
dependent, i.e., each scalar parameter of interest is entirely defined by a single
estimating equation, which does not contain any unknown parameters, a confi-
dence interval for each scalar parameter can be obtained separately, by selecting
the relevant estimating equation. This will yield a number of confidence intervals
of which each has the nominal coverage and which do not depend on each other.
For some applications a joint confidence region for a multidimensional parameter
might be of interest. A joint confidence region has joint coverage equal to the

nominal level. This confidence region can be found by applying the same principle
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as for the search of confidence interval bounds. However, in this case we would
be searching for a contour in a space rather than for two points on one axis. This

makes the task much more demanding computationally.

5.4 Simulation study: execution times

In this section we show results of a small simulation study evaluating the execu-
tion times for calculation of empirical likelihood point estimates and confidence
intervals in samples of different sizes. We use the same population as in chapter
2.12.3. We take domain (ii) Distribution, hotels and restaurants as the example
test case. The parameters of interest, auxiliary variables and other conditions are
the same as in chapter 2.12.3, that is, we select two independent samples and
calculate an estimate of a total in he presence of a benchmark constraint and an

alignment constraint.

Table 5.1 shows the distribution of the user components of the execution times
for calculation of point estimates and confidence intervals for different sizes of
the samples, obtained in 100 iterations. The system components of the execution
times were negligible compared to the user times. A garbage collector operation
was performed before calculation of each estimator. For comparison, we show the
user execution times for calculation of the single sample calibration estimator,
the composite regression estimator and the pseudoempirical likelihood estimator
and for calculation of confidence intervals based on the variance estimator for the
composite regression estimator. The pseudoempirical likelihood relies on a similar
variance estimation method, therefore we expected results to be the same. The
single sample calibration estimator operates on one sample and only considers the
benchmark constraint, while all the other estimates use pooled data from both

samples and consider both the benchmark and the alignment constraint.

The execution times of each of the method depend on several factors which are
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difficult to control in a simulation study and vary between machines. Therefore
results of this simulation should be treated as indicative only. The composite
regression estimator and the calibration estimator require performing operations
(adding, subtracting, multiplying) on large matrices. The speed of these opera-
tions is likely to depend on the available RAM and on the implementation of the
matrix operations used in the software. The calculation of the point estimates
has been implemented using the base R functions. This results in typically large
operation times. The calculation of variance of the composite regression estima-
tor was implemented using the Matrix package (Bates, 2018), which provides much
more time efficient matrix storage and manipulation. This resulted in considerably

shorter execution times.

The empirical likelihood and pseudoempirical likelihood methods require running a
numerical optimisation in order to calculate the adjusted weights. Time necessary
for the optimisation will very depending on the algorithm used, the starting point,
the required precision, the particular sample data and the shape of the convex hull
defined by the constraints. Therefore these times are likely to be much more varied
than the calculation times of the regression-type estimators. Indeed, we can see

that the coefficients of variation for these methods are large.

The execution times understandably increase with the growing size of the sample.
We also notice that the average execution time of the calculation of empirical like-
lihood confidence intervals is much higher than the average execution time for the
calculation of the empirical likelihood point estimate. This is understandable, be-
cause obtaining confidence intervals requires calculating the adjusted weights for
various candidate values of the parameter of interest, as it was explained in earlier
chapters. The execution times for the calculation of the variance of the composite
regression estimator are lower than the times for calculation of the point estimates
because of the differences in implementation. The calculation of the composite re-
gression point estimates relies on the base R functions (as do the matrix operations

in the calculation of the empirical likelihood and pseudoempirical likelihood point
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estimates), which results in high execution times. It is interesting to see that in
small samples, the execution times for the empirical likelihood methods are con-
siderably higher than those for the composite regression method. However, for
very large samples the opposite is true. We should note that a machine with only
4 GB of RAM was used to perform the simulations. Running this comparison
on a machine with more available RAM would likely yield similar results, but
the relationship between the execution times of the two estimators would change
with a larger sample size. We should also notice that the execution times of the
calculation of the empirical likelihood confidence intervals follow a highly skewed
distribution, with a large difference between the mean and the median. This is
caused by a small number of cases with particularly high execution times. All in
all, we should note that while comparison of the these execution times is inter-
esting, the execution times are not prohibitive and should not cause problems in

practical applications.
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Table 5.1: Distribution of the user execution times in seconds for calculation of point es-
timates and confidence intervals using various methods. Two samples with one alignment
constraint and one benchmark constraint. ‘AEL’: proposed aligned empirical likelihood
estimator. ‘PEL’: pseudoempirical likelihood approach (Wu, 2004a). ‘Com.”: compos-
ite regression estimator (Merkouris, 2004). ‘Reg.”: single sample calibration estimator
(Deville and Sérndal, 1992a). ‘p.e.’: point estimator. ‘c.i.: confidence interval. 100
samples. Simulation setup as in chapter 2.12.3. ‘C.V.”: coeflicient of variation.

ny = ny Estimation  Min. 1st Qu. Median Mean 3rd Qu. Max. C.V. (%)

1000 Reg. (p-e.) 0.00 0.01 0.02 0.01 0.02 0.03 54
PEL (p.e.) 0.11 0.13 0.14 0.14 0.14 0.33 20
Comp. (p.e.) 047 0.54 0.58 0.57 0.61 0.69 8
Comp. (c.i.) 0.02  0.03 0.04 0.04 0.05 0.08 24
AEL (pe) 000 001 002 001 002 003 62
AEL (c.i.) 0.76 1.07 1.24 1.38 1.41 7.64 58
2000 Reg. (p.e.) 0.03  0.05 0.06 0.05 0.06 0.10 25
PEL (p.e.) 0.23 0.25 0.26 0.28 0.28 0.98 29
Comp. (p.e.) 247  2.62 269 269 275  3.07 4
Comp. (ci.) 0.11 0.14 0.14 0.15 0.16 0.20 12
AEL (p.e.) 0.01  0.02 0.03 0.03 0.03 0.06 43
AEL (ci) 135 193 230 3.07 291 3877 130
3000 Reg. (p.e.) 0.07  0.11 0.12 0.12 0.13 0.19 17
PEL (p.e.) 0.35  0.37 0.39 0.40 0.39 0.73 13
Comp. (p.e.) 586  6.11 6.25 6.43 6.53 8.11 8
Comp. (c.i.) 0.25  0.30 032 032 033 0.1 13
AEL (pe) 001 003 003 004 005 016 47
AEL (c.i.) 1.56 2.48 3.15 4.65 4.16  34.06 110
4000 Reg. (p.e.) 0.15 0.20 0.21 0.21 0.22 0.28 11
PEL (p.e.) 0.41  0.50 0.50 0.54 0.52 1.62 30
Comp. (p.e.) 10.36 10.84 1094 11.02 11.08 13.47 4
Comp. (c.i) 048 053 054 055 056 067 6
AEL (p.e.) 0.03 0.04 0.05 0.06 0.06 0.25 66
AEL (ci) 201 305 410 587 643 2953 87
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5.5 Conclusions

While empirical likelihood is less computationally intensive then the methods that
involve resampling, its computational aspects are not trivial. The computational
difficulty is driven by the dimension of the parameter of interest, the parameter

space and the number and type of additional constraints.

The estimation of the adjusted weights m; (¢, ) is a relatively straightforward task
of optimisation under constraints. If a solution with an acceptable precision cannot
be found, this is an indication that the constraints might contradict each other,

or that they are linearly dependent.

Point estimates can be obtained by solving an estimating equation. This method
is preferred to direct minimisation of the log-likelihood ratio function, as it is much

less computationally demanding.

Estimation of the confidence interval bounds is the most computationally ex-
pensive part of empirical likelihood estimation, as it involves evaluating the log-
likelihood ratio function for multiple candidate values of the parameter of interest.
The complexity of this task increases as the dimension of the parameter of interest
increases. Therefore, obtaining joint confidence regions for parameters of a high
dimension might be computationally challenging. However, a separate confidence
interval for each scalar parameter of interest can be obtained as long as this pa-
rameter is uniquely defined by a single estimating equation. It is unlikely that
joint confidence regions for parameters of a large dimension will be required in

practice.

Finding confidence intervals is considerably simpler than a general problem of
finding a contour of a function, as we know that the log-likelihood ratio is a
convex function taking the minimum value at the point estimate. We propose

an algorithm which utilises this property and avoids evaluating the log-likelihood
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ratio function for extreme values of the parameter.

Various algorithms are available to find the Lagrange’s multipliers. The quasi-
Newton algorithm with a correction applied to ensure that the adjusted weights
are positive, has been used by several authors. Alternatively, several other quasi-

Newton methods are available and implemented in most statistical packages.

It is also worth noting that the field of mathematical optimisation is intensively
developing and various complex methods and heuristics for optimisation and root
finding have been presented. We did not find the need to resort to any of these
far more complex methods as the relatively simple and easily interpretable quasi-
Newton approach was sufficient. Evaluating the relative convergence speed and
precision of the achieved solution across a range of algorithms could be an inter-

esting direction of future research.
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Discussion

In this piece of work we extended the design-based empirical likelihood method-
ology to accommodate alignment constraints and inference from multiple frame
surveys. This included defining the empirical likelihood methodology, specifying
the relevant constraints and estimating equations for the considered problems, as
well as showing that in these circumstances the empirical likelihood ratio function
is still pivotal and that the empirical likelihood point estimator is /n design-
consistent. We also discuss how the proposed empirical likelihood estimators re-
late to other estimators available for each of the studied problems. We consider

these theoretical results to be the main contribution of the presented work.

Following that, we applied empirical likelihood to estimation of census coverage.
This leveraged the fact that empirical likelihood confidence intervals are asymmet-
ric and range-preserving. We conclude that empirical likelihood indeed correctly
accounted for the unequal variability of data on both sides of the point estimate
and produced confidence intervals within the desired range and with good cover-
age. However, we notice that further developments would be needed if empirical
likelihood was to be used as an alternative for the current methodology. In par-
ticular, finding a way of incorporating the uncertainty around the Dual System
estimator and the adjustments applied on top of it into the empirical likelihood
framework would be desirable. We also notice that empirical likelihood, as many
other design-based methods, requires large samples to obtain confidence intervals
with good coverage, which would make it unsuitable for the last part of census

coverage estimation which involves small area estimation methods. However, em-
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pirical likelihood could be used to produce confidence intervals for census coverage
at the Estimation Area level, as well as a source of comparative information in the
quality assurance process. Empirical likelihood could also be applied to estimation

of other ratios, e.g. domain proportions, or other range-restricted parameters.

In the simulation studies performed, we confirmed that empirical likelihood deals
well with skewed data and found that in such circumstances the empirical likeli-
hood point estimator might be more precise than the regression-based estimators.
In relation to aligning estimates from samples of different sizes, we found that
empirical likelihood, even without introducing any adjustment factors, performs
relatively well. The precision of estimates obtained from the larger sample is only
mildly deteriorated, while the precision of estimates obtained from the small sam-
ple is hugely increased. This is due to the implicit sample size adjustment imposed

by the design constraints.

We notice that empirical likelihood confidence intervals tend to show some under-
coverage in small samples. We also notice that if the coverage of empirical likeli-
hood confidence intervals differs from the nominal value, this is much more often

due to under-coverage than over-coverage.

The possibility to calculate confidence interval bounds without the intermediate
step of variance estimation is likely to be of practical benefit. Empirical likeli-
hood is also likely to be less computationally demanding than bootstrap-based
approaches, as it does not require resampling. However, the numerical operations
necessary to obtain empirical likelihood point estimates and confidence intervals
might not be trivial. For some problems obtaining precise solutions might be com-
putationally difficult. In practical applications, it is therefore important to make

sure that the numerical error in any empirical likelihood estimation is negligible.

The research described in the previous chapters allows us to conclude that it is
possible to extend empirical likelihood beyond the basic single sample setup. This

encourages further developments and new applications. The main challenge in
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extending empirical likelihood to accommodate alignment of estimates and mul-
tiple frame surveys was showing that the empirical log-likelihood ratio function
is still pivotal and follows a y? distribution. This is indeed the case, which was
shown both analytically and in simulation studies. We notice, however, that the
result is based on the assumption of independence between samples. Extending
the proposed approach to the case of dependent samples would be a desirable
direction of future research. Note that the empirical likelihood point estimator is
asymptotically y/n design-consistent whether or not the samples are independent.
One possible way of dealing with dependent samples would be using the empirical
likelihood point estimator and constructing symmetric confidence intervals based
on the estimated variance of the asymptotically equivalent GREG estimator. A
similar approach was proposed by Wu (2004a) for pseudoempirical likelihood.
However, this would only have practical merits in situations when empirical like-
lihood is likely to be more precise than the composite regression estimator and

when these variance estimates are easy to obtain.

Since the first results on design-based empirical likelihood were published (Berger
and De La Riva Torres, 2011), the method has been extended to handle nuisance
parameters, non-response (Berger, 2017) and cluster sampling designs (Oguz-Alper
and Berger, 2016). Design-based empirical likelihood inference has been applied
to several sampling designs, such as the Hartley-Rao-Cochran design (Berger,
2016) and the adaptive cluster sampling (Salehi et al., 2010). It has also been
used in research on the EU-SILC data (Berger and Torres, 2014). Possible di-
rections of future research could include extending the method to handle cluster
sampling beyond the ultimate cluster approach. The low coverage of empirical
likelihood confidence intervals in small samples indicates that an empirical likeli-

hood methodology for small domain estimation might not be achievable.

Another challenge in applying empirical likelihood is the lack of a closed form
for variance of the empirical likelihood point estimator. This variance can be ap-

proximated by the variance of the asymptotically equivalent regression estimator.
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However, the lack of a closed form for the variance makes it difficult to define an
optimal way of combining estimates or samples. This is possible for regression
based estimators and optimal composite regression estimator for alignment and
optimal adjustment for the generalized multiplicity adjusted Horwitz-Thompson
estimator were proposed. While it is possible to incorporate adjustment factors
based on an efficiency calculation into the empirical likelihood constraints, as
it has been shown in chapter 3, defining the adjustments that would minimise
the variance of the resulting empirical likelihood point estimator is not straight-
forward. The adjustment factors would need to be based on the variance of the
asymptotically equivalent regression estimator rather than the empirical likelihood
estimator. Future research aiming to derive variance of the empirical likelihood
estimator in various settings would be useful. However, we should note that while
the sub-optimal regression estimators are available for both estimates alignment
and multiple frame surveys, they rely on variance estimates and require selecting

variables with respect to which optimality will be achieved.
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Appendix A

Proofs of the results

Below proofs of the results presented in earlier chapters are given. Chapter 2
extends the results of Berger and De La Riva Torres (2016) to a two sample
case with alignment constraints. The proofs, except the proof of theorem 2, are
therefore an adaptation of the proofs presented in the original paper. Chapter 3
applies a similar reasoning to multiple frame surveys, yet the results of chapter 2
need some adjustments to account for the differences in the sampling design. These
are summarised in the second part of the appendix. Chapter 4 is an application
of the design based empirical likelihood of Berger and De La Riva Torres (2016)

and all the relevant proofs can be found in the original paper.

A.1 Proofs of the results of Chapter 2

Below we show how the proofs of lemma (1), lemma (2) and theorem (16)
presented by Berger and De La Riva Torres (2016) can be adapted to derive the
GREG estimator asymptotically equivalent to the aligned empirical likelihood
estimator .

Lemma 1 (Adaptation of lemma 1 in (Berger and De La Riva Torres, 2016)).

Let N be the population size. Let n = ny + ny, where n; is the size of sample Sy,
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=1,2. Let ¢; and C be defined by (2.48) and (2.49) respectively. Let m be the
vector of Lagrange multipliers in (2.61). Let us assume that the regularity

conditions (2.70-2.75) hold. Then,

Jinl] = Opn~d) (A1)

Proof. Let m;(¢,) be defined by (2.61). Berger and De La Riva Torres (2016)
show that for any L such that

Inl|L = mn, (A.2a)
IL|| = Op(1), (A.2b)
IL~| = Op(1), (A.2¢)

we have that
Il {=aNLTEL — N MN LT (Cr = C)[} < nN N LT (G — O,

where M = mazx|(r;}||c;||)| and

The term —nN2LTSL— is Op(1) due to (2.73) and (A.2b). Furthermore,
nN"M = op(n?) because of (A.2¢) and N7|LT(Cr — C)| = Op(n~2) due to
(2.71) and (A.2b), giving

nNTIMNTLT(Cr = C)| = 0p(n?)0p(n2) = op(nin~2) = op(1)-  (A.5)
Therefore, using (A.3), we have that

N~ Yn|{Op(1) = ap(1)} < Op(n~2), (A.6)
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which gives

Nn~Y|n|| = Op(n"2). (A.7)

Lemma 2 (Adaptation of lemma 2 in (Berger and De La Riva Torres, 2016)).
Let mp be the vector of Lagrange multipliers in (2.61). Let 3 and S be defined by
(A.4) and (2.76) respectively. Under the regularity conditions (2.70-2.75), we

have that:
n
"=

S -G+ %o,;(n*l)- (A.8)

Proof. Berger and De La Riva Torres (2016) show that, based on (2.76), we have

that
n a-1 A n
= — — —é A.
where
1 ~—1 c;0
~ - _ (A A.1
é NS > (A.10)
€S
and 62 = Uz(l — T?LZ(CPU)TQ) with v = 7T;1’I']TCZ'.
This gives (Berger and De La Riva Torres, 2016)
. 1 a1 leil| 1 |||
lel <1871 {1 Sy} + 3 {12y
, m T , T
i€S g €S
&1 Ny Tipe.s 1 ||esl? 1 a1 ||cil|
< o - - &
<187 ol P S L b 18T 4
€S t €S
(A.11)

where |7;] is such that Pr {|v;| < k|v;|®,i € S} — 1 with k > 0. According to
(2.74), HS'_IH is Op(1). Using lemma (1), we have that

1

Co il = Op(n 3 = Op(n ™) (A12)
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Based on (2.75),

o | | =0 (A13

Therefore the first term of the right hand side of (A.11) is

n30p(1)0p(n=3)Op(n™) = n30p(n~*) = Op(n~1). Omitting ||,§'_1||, which is
Op(1), we can write the second term of (A.11) as

NZ{HQH’ } NZ{HCZIIM }

€S zGS

1 Z lles||* \
1113 ? 4
Skngl‘n || nN4 ies{ 4 n-. ( 14)

Using Lemma (1), 2 2ImT|]® is Op(n~%). The term 1> ics {Hfr—lrl} is Op(n™1)
given (2.75). Therefore the second term of (A.11) is Op(n~2). This makes
l|é|] = Op(n~1). The lemma follows.

Proof of Theorem 1

(Adaptation of proof of equation (16), page 2 of supplementary materials in
(Berger and De La Riva Torres, 2016))

Let us define:

&= <Z %é) , (A.15)

A n Cigi(e)T a1~ V;

GO). =Y 9.0) (A.17)
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and v; = 7; 'n"¢;. Considering Lemmas (1) and (2) and using analogous
reasoning to that presented by Berger and De La Riva Torres (2016), we can
express (2.58) as

G(6) =G(0), + B6,p,) (C—Cy)—és—é,, (A.18)
where
-1
= cici' c;g:(0)" o1 c;gi(0)"
B(G,%):( > ) (Z %) _5 (Z %) (A.19)
i€S1,82 ¢ icS i €S @

and &, &5, G(0), and 3 are defined as in (A.15), (A.16), (A.17) and (A.4)

respectively.

Using Cauchy-Schwartz inequality as proposed by Berger and De La Riva Torres
(2016), (2.75), (2.87) and the result ||é]| = Op(n~!) from the proof of Lemma

(2), we can derive the asymptotic properties of é; as follows:

e o ) 19 T
Jeall < el (Z"C””li( : ")

€S ¢

< NTLZHe”C ( e Z ||Cz ||2> <nN2 Z ||gz ||2> (AQO)

€S

where ¢ = (min|l + v : i € S)™! = Op(1) because |v;| = op(1). Therefore,
1]l < Nn*Op(n™")Op(1)Op(n~*) = Op(Nn™)- (A.21)

This gives ||é1]] = op(Nn™!). Furthermore,

) n A1 A cil|]lg:(0)"
Jeal < 28 ||||CA|<ZW), (A22)

i€S i

where 7 = (mazx|v;| : i € S) = op(1). Following the same argument as in (A.20),
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we have that

(Z LG H) AN Op(n) = Op(NPn ) (A.23)

€S

1

According to (2.74), HS’le — Op(1). Furthermore, N~'||Cy|| = Op(n"2)
because of (2.71). This gives

les]| < nNTI0p(1)0p(n™2)Op(N*n™") = Op(Nn~2): (A.24)
and hence ||&;| = op(Nn~2). This gives

0) + B(0,0,) (C —Cr)+ Op(Nn%) + Op(Nn™") (A.25)
— G(), +B(6,p,) (C—Cp)+op(Nn3) (A.26)

D)

G(0) =
The theorem follows.

Proof of theorem 2

Let
B(6U7(FU) . <E ?cici ) § ZQngz( U) . ( . l)

Let us assume that the constraints (2.70)-(2.75), (2.79), (2.80) (with 7 = 2),
(2.81)-(2.84) hold. Following theorem 1, we notice that:

~ ~ ~ T " 1
NGO, < N7 (IIG(0.)all +11B(64,0,) 1I(C = Ca)ll + 0p (N0 ).

(A.28)

According to (2.79) N=|G(8,)x|| = Op(n~2). In (A.20) it has been shown that

(Z e HWH) = AN Op(n %) = Op(N*n™): (A20)

€S
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Using this property and (2.70), we conclude that
1B(0y, ¢,)[| = Op(1): (A.30)

Therefore, using (2.72),
1A _1
NHIG(00)]] = Op(n2). (A.31)
Using Taylor expansion, we can write:

0G0, _
0.+ 0@ o)1 o0p -0 (am)

Suppose that 6 satisfies N~'G/(6) = 0. Then, using (A.31), (2.83) and (2.84), we
have that

1

Op(|16 — 8,) = Op(n2). (A.33)

Proof of Theorem 3

(Adaptation of proof of Theorem 1, page 4 of supplementary materials in (Berger

and De La Riva Torres, 2016))

Let (@), C*, ¢; and C be defined by (2.46), (2.47), (2.48) and (2.49)

respectively. Consider

1 3 $eq (0
Z—2c;(0)cz*(9)T = . _— o(0) ] ; (A.34)
ies i Yeg(0)' Ggg(0)
here 5 is defined by (A4), ie., § =5 G%
where 3 is defined by (A.4), i.e., —Z 2
i€S ¢
“ 1
Seq(0) =D _ —cigi(6) (A.35)

iesS t
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and

Ggg(0) = %gi(e)gi(é’)T- (A.36)
i€s
Let
G.(0) = g:(0) — B(0,¢,) ¢, (A.37)

with B(0,p,) defined by (2.90).

Consider

aoy = A.38
:(0) (E¢(9)> (A.38)

" auere)
C* = ~ T : (A.39)
—-B(0,¢,) C

and

We have that

1, o by P (6)
—c (@) (0)=| . N , A.40
Zs e Zeg(0)" VP{GAGU)}] A
where
VAG 0.} = 5 00a(0) (A41)
i€s
and
f]cg(g) _ Z c@;(f)T _ Z ci(g:(0) — Egga%) Ci)T

i€S

19:(0)" icl
:Z%_Z%B<07‘PU)

T

€S ¢ €8 v
-1
_ cigi(0)" cici' cic; cigi(0)" _
Sy (D) () oo g
€S ¢ €S t €S g €S ¢

Let us define
- 1 C.
Cr=) —&=| . . e (A.43)
Ti G(0) — B(0,¢,) Cs

174



We have that

Cx—C* = [C"_C] (A.44)
G.(0)
where
G.(0) = G.(0) + B(6,,)" (C — Cr) (A.45)
Finally,
(Cr-C") ' (C-C) (A.46)
_[. - o), ar<9>T] > 0 B ] [ AI -C ]
0 V’P{GT<GU)} Gr 0)
—(Cr—C) 5 (Cr — C) + G(0) V(G (0,)} ' G.(6)

Let ((72) = Yseg 1og(i(,), (r) = Xieg log(m) and
(Oy]p,) = > cqlog(Mmi(0y, ¢,)). Berger and De La Riva Torres (2016) showed
that

—2{t(m) + (1)} = (Cr — C)TE(Cr — C) + Op(n~11?) (A.A47)

and

~ Tl

—2{l(8slp,) + £(m)} = (Cr = C*) X (Cr—=C*)+Op(n™%)- (A4R)
Therefore,

F(Bulp,) = 2 {t(m) — ((B,]¢,)}
= 2((m) + 2{(m) — 20(0,|p,) — 2((T)
— (Cr = C) 87 (Cr = C) + G.(6,) Vp{G,(0,)} ' C.(6,)—
~(Cr = C) 8 (Cr — C) + Op(nV?)
= G.(8,) Vp{G.(8,)} "G, (6,) + Op(n ). (A.49)
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The theorem follows.

A.2 Proofs of the results of Chapter 3

Proof of theorem 4

Let N be the population size and T be the number of sampling frames used. Let
n = Zle ng, where n; is the size of sample S; selected from frame Q). Let ¢;

and C' be defined by (3.37) and (3.38) respectively.

Let n be the vector of Lagrange’s multipliers in (3.43). Let p; be the
multiplicity-adjusted selection probability for unit i € S defined by (3.18).

It can be show that with m; substituted by p;, Cx defined by (3.57), (¢, )
defined by (3.43),

oV
5=y 59 (A.50)

2
ies P

S defined by (3.50) and assuming conditions (3.44-3.49), lemma (1) and lemma
(2) still hold.

Using lemma (1) and lemma (2) with the adjustments listed above, it can be

shown that
G(6) = G(0), + B(0.¢,) (C—Cr) — & — &, (A.51)
where
-1
- cici' cigi(0 T &1 c;9:(0 T
B(6.¢,) = ( P ) (Z cglf) ) =3 (Z 90 ) (a5
i€81,S2 Pi icS Pi €8 Pi

and &, &, G(0), are defined as in (A.15), (A.16) and (A.17) with m; substituted
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by p;, respectively.

Using analogous reasoning to Appendix A.1, conditions (3.49), (3.52), (3.45) and
(3.48), it can be shown that

lex]] = op(Nn ™). (A.53)
and
lez]] = op(Nn72). (A.54)

The theorem follows.

Proof of theorem 5

Let G(6,) be defined by (3.41) with @ = 6,. Assuming conditions (3.44)-(3.49),
(3.58), (3.59) (with 7 = 2), (3.60)-(3.63), (3.58) and theorem 4, using analogous

argument as in Appendix A.1, it can be shown that

1

N7Y|G(8,)]] = Op(n2). (A.55)

Hence, assuming (3.62) and (3.63) and using Taylor expansion and the reasoning

presented in Appendix A.1, we have that

1

Op(]16 — 6,]) = Op(n"2). (A.56)

The theorem follows.
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Proof of Theorem 6

Let ¢(0), C*, ¢; and C be defined by (3.35), (3.36), (3.37) and (3.38)

respectively. Let
G.(6) = g:(6) - B(0,¢,) ¢, (A.57)
with E(Q, @,)" defined by (3.56),
(&
¢ (0) = ( _ ) (A.58)
g9:(0)
and
~ C
c*:< e ) (A5
—-B(0,¢,) C
Following an argument presented in Appendix A.1,it can be shown that
1, ) ()
P AC (D R ] : (A.60)
ies Pi Yeg(0) VP{GT(9U>}
where 3 is defined by (A.50),
~ o~ 1_ _
VP{Gr(eu)} = Z _ggi<9)gi(0)T (A.61)
ics i
and
¥.y(0) =0 (A.62)
This leads to
~ ~ T A-1 ~ ~
(C:-c sEr-¢ = (A.63)
— (Cr—C)'S(Cr — C) + G.(0) V{G(0,)) ' G.(0)
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where

~x 1 ~%
Cr=3 & 0) (A.64)
ics

Using (A.63) and analogous arguments as presented in Appendix A.1, with
t(m) =3, glog(ii(p,)), U(m) = 3 ,cqlog(pi) and

(O0y]p,) = > cqlog(Mi(0y,¢,)), it can be shown that

F(Oulp,) = G(8,) Vp{Gr(6.)} ' G(6,) + Op(n'12). (A.65)

The theorem follows.
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