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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

MATHEMATICAL SCIENCES

Doctor of Philosophy

A Case Study on Modelling and Analysing Machine Breakdowns

by Shu Pan

Most manufacturing models to date have assumed independence of all random variables

in the system. In practice, autocorrelation effects are present in production lines time

series. In this thesis, we extend this literature by studying autocorrelation in machine

times to failure in detail. Our work focuses on the practical aspects of detecting and

modelling autocorrelated uptimes, as well as including them in simulations.

We apply a practical procedure to detect autocorrelation in uptimes. The procedure

has very mild assumptions and compensates for the number of machines it is applied to,

ensuring that the probability of a Type I error is kept low.

We then provide two ways to model autocorrelated times to failures. The first is to

use ARMA models including GARCH terms. We also provide a method based on the

Markov-Modulated Poisson Process, a special case of the Markov Arrival Process.

For both methods discussed above, we provide diagnostic plots and a quantitative way

to select the most appropriate model for a given series of uptimes. This allows us to

automatically select an appropriate model.

Finally, to enable Ford to use our methods in simulation, we provide a way to generate

simulated uptimes from each of our models.

http://www.soton.ac.uk
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Chapter 1

Introduction

1.1 Motivation

Ford Motor Company builds and operates production lines that manufacture its cars.

To build cost-effective production lines, the company needs to test various designs of a

proposed production line in simulation. For these simulations to be accurate, a number

of aspects of the production line must be reflected in the simulation, for instance:

1. The time a machine can operate before breaking down

2. The time it takes to repair a machine

3. The time it takes a machine to produce a part

Ford have studied each of the aspects above. While their model is mostly satisfactory,

one of their primary current concerns is the first point, i.e. accurately modelling the

time between breakdowns for each machine in the production line.

Currently, Ford model the times between breakdowns as independent and identically

distributed (iid) random variables, by sampling from the empirical distribution. Their

main concern is that the independence assumption may not be valid. In this thesis, we

discuss how Ford may model the uptimes of their machines without assuming they are

iid.

1.2 Related work

In this section, we review related work in modelling manufacturing systems, the impact

of autocorrelation on manufacturing systems and ways that autocorrelation may be

modelled.

21



22 Chapter 1 Introduction

1.2.1 Modelling Manufacturing Systems

A great number of literature has been generated in the area of modeling manufacturing

systems since the early 1950’s. A representative work in this area is Buzacott and

Hanifin[25], in which the authors introduce the definition of operation dependent failures

and time dependent failures. It also distinguishes the concepts between single station

failures and total line failures. Moreover, Buzacott and Hanifin[25] provide a simple way

to calculate the production rate under both time dependent and operation dependent

failures. The production line has no buffer in their study.

Due to the great deal of literature in this area, there are a number of review papers.

For instance, Perros[103] focuses on queuing networks with blocking and reviews a large

number of relevant papers on this area. Smunt and Perkins[124] are particularly inter-

ested in asynchronous flow lines with reliable machines. They provide a review for many

simulation papers in this area. A systematic description of the models, performance

measures and methods in this field can be found in Guen[53]. Other surveys that em-

phasise the recent approaches and results include Perros[105], Perros[102], Onvural[96],

and Dallery and Gershwin[36].

The models and results in the research of manufacturing systems have different features.

Some of the important features that distinguish between models are discussed below:

Synchronous and asynchronous systems The major class of models are divided

into asynchronous and synchronous models. In an asynchronous model, machines do not

have to start or stop processing at the same instant. The presence of buffers between

machines allows the machines to start and stop independently. Most real systems are

asynchronous systems, and asynchronous models form an important class in the liter-

ature. It is usually assumed that the operation times in an asynchronous model are

exponentially distributed.

In a synchronous system, machines have deterministic and equal processing times. More-

over, the machines start and stop at the same instant when they are not under repair. For

further details about the asynchronous and synchronous models, see Buzacott[24][26].

Reliable and unreliable machines The machines in the production line can be

either reliable or unreliable. However, in some cases, an unreliable machine can be

modelled as a reliable machine. Therefore, methods designed to model reliable machines

may also be used to model unreliable machines. Gaver[45] introduces the definition of

completion time for an unreliable machine, which is the time difference between the

instants of beginning and completion of the processing of a part. As such, the time

includes the actual processing time of a part and the repair times corresponding to the

failures that have occurred during the processing of the part.
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The idea of transforming an unreliable machine into a reliable machine is to replace

the completion time of an unreliable machine by the processing time of a reliable ma-

chine. The processing time of the reliable machine should be random and identical to

the completion time of the unreliable machine. Further discussion about the reliable

and unreliable machines can be found in Gaver[45], Bobbio and Trivedi[18], Sastry and

Awate[117], Liu and Buzacott[80], and Altiok[3].

Features of flow lines The major features of a flow line include blocking, starving,

processing, failures, and repairs. Some of the important features are discussed below.

• When the production line have limited buffers, blocking may occur. The defini-

tions for different types of blocking were first introduced by Altiok and Stidham[8].

As discussed in their work[8], two types of blocking mechanisms are of inter-

est in the manufacturing system: blocking-afer-service(BAS) and blocking-before-

service(BBS). In the BAS blocking[97][54], a finished part stays on the working

station until the downstream buffer has space. In a system with BBS blocking, a

machine cannot start processing a part if there is no space available in the down-

stream buffer. Most production lines operate under the BAS mechanism, and

hence that is what most authors assume.

• Processing time is the time required for a machine to complete a part on a working

station. It is also referred to as operation time or cycle time in the literature.

Usually, processing times at one machine and cross working stations are assumed

to be independent. The commonly used distributions in modelling processing

times are exponential distributions, geometric distributions, Coxian distributions

and phase-type distributions[68][92].

• In a system with unreliable machines, the machines are prone to failures. When

a failure happens, the machine is unable for processing parts until it is repaired.

Most authors assume the repair process of each machine is independent of each

other. Therefore, like the processing times, the time to repair is commonly assumed

to be exponential, geometric, Coxian and phase-type distributions.

• We say a machine is operational if it is up; a machine is working if it is operational

and not idle (neither blocked nor starved). Buzacott and Hanifin[25] introduce the

idea of two major types of failures: operation dependent failures(ODF) and time

dependent failures(TDF). ODF can only occur when the machine is working, and

it is mainly caused by mechanical faults. TDF can occur at any time, and it is

mainly due to failures of electronic systems.

Exact and inexact methods Exact methods and approximate methods are used

to model the production line to obtain the performance measures. The exact methods
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are more appropriate to model small production systems, such as a two-station man-

ufacturing line. Most of the results obtained using the exact analysis are based on

Markovian analysis. To describe the production line by a Markov process, the distri-

butions are required to be exponential or geometric distributions. The exact solutions

for small production lines are available for a wide range of models satisfying these as-

sumptions. The related study can be found in Muth[89][90], Stewart[125], Philippe et

al.[106], Rao[109][110][111], Muth and Alkaff[91] and Stewart[126].

For large flow lines with more machines, it is very difficult to obtain the exact solution,

even when more powerful computers are available. As Dallery et al.[36] discussed, the

attempt to extend the analytic solution of a two-machine flow line model to three ma-

chines always ends up with models that are not tractable, or are subject to numerical

problems, or too limited to be of interest. Therefore, approximate methods are an alter-

native to model flow lines with large number of machines. Most approximate methods

are based on decomposition, which is to decompose the original system with K working

station into a set of K − 1 smaller subsystems which are easier to analyze. Each sub-

system is associated with a buffer of the original line. The early work of decomposition

methods include Sevast’yanov[120], and Hillier and Boling[59], which devise the princi-

ples of decomposition methods. Related work using decomposition methods to model

flow lines can be found in Altiok and Ranjan[7], Dallery and Frein[35], Altiok[2], Perros

and Altiok[104], Pollock et al.[107], Takahashi et al.[128].

Other authors have derived approximate formulas for estimating the production rate of

a production line. Knott[70][71] develops a formula to calculate the production rate

of a two-machine flow line with identical Erlang distributions. Haydon[56] extends

Knott’s formula to measure manufacturing lines with any number of machines. Muth

and Alkaff[91] develop a formula to measure the efficiency of a flow line with any num-

ber of machines and no intermediate buffer. Blumenfield[17] extends Muth and Alkaff’s

formula to include intermediate storage between working stations. The other related

work on measuring the production rate of a multi-stage flow line include: Van Dijk and

Lamond[130], Baskett et al.[11], and Shanthikumar and Jafari[122].

Mathematical models that can obtain the exact solutions to answer the questions of

interests are suitable for relatively small and simple systems. In real life, however,

most manufacturing systems are too complex to allow realistic models to be evaluated

mathematically[75]. Therefore, simulation modelling is widely used in modelling large

systems. In fact, One of the largest application areas for simulation modeling is that of

manufacturing systems[77]. Law[77] addresses some of the specific issues that simula-

tion can deal with in manufacturing systems, such as production scheduling, inventory

policies, and reliability analysis. Detailed discussions of how simulation is used to design

and analyze manufacturing or warehousing systems can be found in Carson et al.[29]

and Law and Kelton[74]. In particular, Law and Kelton[74] study the statistical issues in

input simulation, and provide numerical examples to address the importance of correct
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input modelling for manufacturing systems. Law and Kelton[74] also discuss various

sources of randomness in manufacturing systems. For example, inter-arrival times of

jobs to a machine, processing times of jobs at a machine, machine working times before

breakdown, machine repair times, and the outcomes of inspecting jobs. In later studies,

Law and McComas[76] provide a practical discussion of the steps in simulation studies.

The discussions above have shown how broad the literature on modelling manufacturing

systems is. For the purposes of our project, we only focus on the work that has similar

features to Ford’s production line. The features of interests for modelling and analysing

a production line are listed below. They are also depicted in Figure 1.1, where only two

workstations are presented.

• The flow line consists of parallel-machine workstations.

• The machines are unreliable and each workstation consists of a number of identical

machines.

• There is finite intermediate buffer between workstations.

• The type of blocking mechanism is blocking-after-service(BAS). That is, when a

machine at the first workstation completes a part, it checks the availability of space

in the buffer. If the buffer is not full, it places the finished part onto the buffer

and loads a new part immediately from upstream; if the buffer is full, the finished

part stays in the working area of the machine of the first workstation and causes

blockage of that machine. Similarly, if a machine at the last workstation completes

a part, it sends the finished part immediately out of the system and loads a part

from the buffer, provided the buffer is not empty. Otherwise, the machine in the

last workstation is starved.

• All machines can only fail when processing a part. That is, the machines have

operation dependent failures.

• There is unlimited supply of parts upstream of the first workstation; there is

unlimited space downstream of the last workstation. In other words, the first

workstation is never starved, and the last workstation is never blocked.

The following literature contains some or all of the features of interests. Buzacott[27]

studies a two-workstation production line with identical machines and a finite interme-

diate buffer. In his model, the processing times and repair times are assumed to be

exponentially distributed. The probability of failure during each operation is assumed

to be constant. Buzacott[27] obtains an exact solution for the production capacity using

a continuous time Markov chain model.

Gershwin and Berman[48] study a two-machine tandem flow line with finite buffer size.

They make the assumptions that the processing times, times to failure, and times to
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Figure 1.1: A two-workstation parallel-machine system with finite buffer

repair are all exponentially distributed. By calculating the steady state probabilities of

the machines being in the operational and under repair states, they obtain the efficiencies

of the flow line, such as the production rate and the average in-process inventory.

Berman[15] builds his model based on the work of Gershwin and Berman[48]. In his

model, the processing time is allowed to have Erlang distributions, whereas the failure

and repair times are assumed to be exponentially distributed. Both Berman[15] and

Gershwin and Berman[48] assume blocking-before-service(BBS), which is not the case

in our project. Altiok and Ranjan[7] analysis a two-node transfer line case where they

assume the process completion times are a mixture of generalized Erlang distributions.

Other studies related to modelling two-machine transfer lines with limited buffer in

between can be found in Sastry[116], Artamonov[9], and Yeralan and Muth[134].

For longer production lines, Buzacott[24] extends his two-machine system to a three-

machine production line with geometric times to failure and equal deterministic times

to repair. Gershwin and Schick[49] model a buffered flow line with three unreliable ma-

chines under the assumptions that the machines have geometrically distributed times

between failures and times to repair. They also notice the difficulty in obtaining ex-

act solutions when extend a two-machine system to a three-machine system. Another

author who attempts to expand the two-machine system to a three-machine system is

Wiley[131]. Dallery and Gershwin[36] conclude that any asynchronous production line

can be modelled as a discrete space continuous time Markov process, if all the distri-

butions are given under phase-type forms. Similar assumptions in the manufacturing

systems can be found in the work of Gershwin[46], Gershwin and Schor[50], Jafari and

Shanthikumar[65], Dallery et al.[34], and Dogan-Sahiner and Altiok[40].

To summarize, most of the results in modelling manufacturing systems are based on

the assumptions that all the random variables, such as the processing times, times to

failure, and times to repair are independent and exponentially distributed. Therefore,

the exact solutions can be obtained by modelling the systems as a Markov chain with

continuous time and discrete states. For large production systems, exact solutions are

not achievable. In order to tackle this problem, large systems are commonly decomposed
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into a set of small and easy to analyze systems. Therefore, the results of large systems

actually rely on the exact solutions of the individual smaller systems.

In practice, the assumptions of independent and identically distributed variables may not

hold. In these cases, the tools discussed above are not applicable and different tools are

needed. The next subsection argues that real systems are impacted by autocorrelation.

1.2.2 The Impact of Autocorrelation on Manufacturing Systems

A vast majority of manufacturing-related models make independence assumptions on

associated stochastic processes. These assumptions often lead to models that are easy

to simulate and analytically tractable. For example, job inter-arrival times, service

demands, failure times can each be modelled as a renewal process(see Kelly[67]).

The existence of “bursty” behavior, which is mainly underpinned by autocorrelations

in random streams[5], has raised the question of whether the uncritical use of inde-

pendence assumptions in modelling is appropriate. The term burstiness has been used

to describe clustering phenomena in a traffic process[44]. For example, the occurrence

of machine failures in short inter-arrival times followed by a relatively long one at a

particular workstation is a phenomenon of burstiness. Moreover, burstiness of flows

in broadband networks is common in the teletraffic community[14][69][78][98][66]. The

study of burstiness in the discipline of telecommunication can be also be found in Leland

et al.[79], Crovella and Bestavros[33], Salvador et al.[115], and Paxson and Floyd[99].

Various studies have found that models that do not incorporate dependencies among ran-

dom variables can result in inaccurate performance predictions. Livny et al.[81] present a

simulation study to show the influence of autucorrelation on a single-queue single-server

system. Their simulation results show that autocorrelation in the inter-arrival and ser-

vice times may severely affect the performance in an FIFO(First-In, First-Out) queue.

They conclude that models use independence assumptions can lead to poor estimates of

performance measures. In particular, they found that positive autocorrelations always

lead to higher mean waiting times. The effect of negative correlations, however, is not

clear in their study due to the complicity of the autocorrelation function.

Altiok and Melamed[5] demonstrate the profound impact that autocorrelations can have

on the performance measures of a manufacturing system. Specifically, their study com-

pares a number of performance measures with renewal components to their autocor-

realted counterparts. The authors argue that machine failure is an important factor

that directly affect the efficiency of producing processes. Although time to failure is

traditionally assumed to be exponentially or geometrically distributed (see Altiok[4],

Buzacott and Shanthikumar[28], and Gershwin[47]) in performance evaluation models,

it is possible that machine failures exhibit autocorrelations.
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Altiok and Melamed[5] also illustrate the impact of autocorrelation on the performance

measures, such as throughput, system time, and the number of jobs in the system,

using simulation case studies. Their results show that ignoring the burstiness can result

in unacceptable prediction errors and overly optimistic performance measures. The

authors then conclude that it is important to identify random components that posses

correlations, and weigh the tradeoff between simplified assumptions and the accuracy of

predictions carefully.

Hendricks and McClain[58] use simulation to examine the output processes of a serial

production line. They find that negative autocorrelation is present in the output pro-

cesses. They have also found that negative autocorrelation structure tends to reduce

the variability of the output process. Therefore, small buffer sizes are sufficient for the

production line with even highly variable machines.

Takahashi and Nakamura[127] study the effect of autocorrelated demands on the per-

formance of a Kanban system. They conclude that the autocorrelated demands is an

important factor affecting the performance of the system. Other works showing the

existence of autocorrelation in the data from industrial plants can be found in Luxhoj

and Shyur[86], Melamed and Hill[87], Mertens et al.[88], Schömig and Mittler[118], and

Young and Winistorfer[135].

Nielsen[93] casts doubts on Livny et al.[81] and Altiok and Melamed[5]’s study. His

results show that the impact of autocorrelation may not be as profound as the other

authors have claimed. The reason is that other effects, such as the circumstances in

manufacturing plants may reduce its importance.

Pereira et al.[100] present simulation experiments to show how autocorrelation can affect

the performance of manufacturing systems. They conclude that process performance is

improved by negative autocorrelation effects, and reduced by positive autocorrelation

effects.

Since autocorrelation effects are present in manufacturing systems, we will discuss how

to model the processes with autocorrelation in the next subsection.

1.2.3 Modelling autocorrelated processes

A number of methods to model autocorrelated processes have been used in the literature.

Uhlig et al.[129] provide a recent review of a number of models and tools. We will now

briefly discuss the various areas mentioned in [129], and some of their applications.

First, a number of authors have used processes based on time series analysis, such as

autoregressive models. Pereira et al.[101] use an autoregressive model for the cycle

time of machines in a production line. Autoregressive to anything (ARTA) models

are discussed by Nielsen[94], and used in [31]. Underlying both autoregressive and
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ARTA models is an autoregressive process, as defined by (1.1). Here, Yt is the series

being modelled, c and the αi are constants, and εt is a normally distributed error term.

In an autogressive model, Yt is observed directly. In the ARTA case, Xt, defined by

(1.2) is observed. The function F is the cumulative distribution function of the desired

distribution, Φ is the cumulative density of the normal distribution. The idea of (1.2)

is to transform Xi to Gaussian, as normality is a very important assumption in many

statistical techniques. The advantage of ARTA is that it allows to represent stationary

time series with arbitrary marginal distributions. Other techniques to transform data

into normality include Box-Cox Transformation[20].

Yt = c+

p∑
i=1

αiYt−i + εt (1.1)

Xt = F−1(Φ(Yt)) (1.2)

Other authors have considered a variety of arrival processes based on Markov processes.

Many of these are based on Markov Arrival Processes(MAP), introduced by Lucantoni

et al.[85]. In the context of queuing theory, the MAP is considered, among others, by

Lucantoni et al.[85] and Okazaki [95]. A special case of the MAP, the Markov-Modulated

Poisson process, is considered by Heindl [57].

The Markov Arrival Process[85] is defined by an m + 1-state continuous time Markov

chain, where state m + 1 is absorbing and the other states are transient. An arrival

happens whenever the process moves to state m + 1, after which the process restarts

from a randomly chosen state. Formally, let λi be the rate at which the process leaves

state i. When the process leaves state i, it moves to the absorbing state and restarts

from state j with probability pij . With probability qij , the process moves to state j,

without passing through the absorbing state. Further details on this process and its

properties are given in [85].

Another type of arrival process, the Transform Expand Sample process, is introduced

by Livny et al.[81]. This process is considered by, among others, Altiok et al.[6] and

Nielsen[94].

1.3 Contribution

As discussed in the previous section, most manufacturing models to date have assumed

independence of all random variables in the system. In this thesis, we extend this

literature by studying autocorrelation in machine times to failure(uptimes) in detail.

Our work focuses on the practical aspects of detecting and modelling autocorrelated

uptimes, as well as including them in simulations.
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Our first contribution is a practical procedure to detect autocorrelation in uptimes. The

procedure has very mild assumptions and compensates for the number of machines it is

applied to. It also ensures that the probability of a Type I error, which is the incorrect

rejection of a true null hypothesis(i.e., a “false alarm”), is kept low.

Second, we provide two ways to model autocorrelated uptimes. The first, an extension

of the autoregressive and ARTA methods discussed previously, is to use ARMA models

including GARCH terms. We also provide a method based on the Markov-Modulated

Poisson Process, a special case of the Markov Arrival Process.

For both methods, we provide diagnostic plots and a quantitative way to select the most

appropriate model for a given series of uptimes. This allows us to automatically select

an appropriate model.

Finally, to enable Ford to use our methods in simulation, we provide a way to generate

simulated uptimes from each of our models.

1.4 Structure of the thesis

In the next chapter, we consider the data Ford have available about one of their pro-

duction lines and how breakdown and repair times for the machines may be calculated

from this data. We also consider how to handle outliers in the data.

Thereafter, we consider how to detect whether the breakdown times for the machines

are correlated with each other over time. We apply a suitable statistical test to each

machine and combine the results appropriately to adjust for performing many tests.

In the two chapters after that, we apply two different approaches to modelling the

breakdown times of a single machine. First, we consider using ARMA models from time

series analysis. We also extend these models with GARCH terms, allowing the variance

of the uptimes to change over time.

Second, we view the breakdown times of a machine as a series of arrivals, by considering

each breakdown as an arrival. This leads us to apply the Markov-Modulated Poisson

Process (MMPP) to the breakdown times.

For both ARMA models and the MMPP, we provide diagnostic plots that give a heuristic

measure of the absolute quality of fit. We also compare the models objectively using the

Akaike Information Criterion (AIC).

The thesis concludes with a brief summary of the conclusions and contributions of each

chapter.



Chapter 2

Calculating up- and downtimes

2.1 Introduction

In this chapter, we present a procedure to calculate the up- and downtimes of Ford’s

machines based on the data collected by Ford. The data consists of a number of records,

each of which indicates the start and end time of a machine failure, as well as the reason

for the failure.

We begin the chapter by discussing the concepts of up- and downtimes, as well as the

possible kinds of machine failure, in more detail. Then, we consider how Ford’s data

was collected and discuss a number of anomalies in the data.

We then consider how the data can be corrected to account for non-productive periods,

during which the production line is not operational. This is particularly complex as the

production line may occasionally be partially or fully operational during a nonproductive

period.

Once we have obtained the up- and downtimes, we note that there are two important

kinds of outlier in the data. First, some uptimes are very short, on the order of a few

seconds. Secondly, some uptimes are abnormally long. We discuss how these outliers

may be removed and consider the impact of doing this on further analysis.

The chapter concludes with a short summary of the data preparation procedure and its

underlying assumptions.

2.2 Background

Before measuring the up times and down times of a machine, it is necessary to know the

two major types of failures that have been considered in the literature. The first type of

31
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failure is operation dependent failures, and the second type of failure is time dependent

failures.

Operation dependent failures are failures that are related to the processing of parts.

Therefore, they can only occur when the machine is operational and not idle (neither

starved nor blocked), and cannot happen when the station is forced down. According

to Dallery and Gershwin[36], operation dependent failures are mainly due to mechanical

causes, such as tool wear.

On the other hand, time dependent failures are not related to the processing of parts.

They can occur at any time even when the station is forced down. Time dependent

failures are mainly due to failures of electronic systems, and can occur after a certain

amount of time due to some phenomenon other than wear [25].

Hanifin[55] observed 785 stoppages of one production line over a seven days period. Of

the total time the line was down, 84% was due to operation dependent failures, and

the rest 16% down time was caused by time dependent failures. It is also concluded

by Buzacott and Hanifin[25] that in most production lines, most failures are operation

dependent. As a result, most authors assume operation dependent failures [36].

Usually, the following information is collected in a data file: the machine that failed; the

clock time at which the machine failed; the clock time at which the repair ended; the

reason for the machine failure. As Buzacott and Hanifin[25] discussed, the assumption

of operation dependent or time dependent failures of a station affects the way in which

data on the operation of a transfer line is analysed.

The down time (or repair time) of a machine is the difference between the clock time at

which the repair ended and the clock time at which the machine failed. The measurement

of the down times is the same under the assumption of operation dependent failures and

time dependent failures.

On the other hand, however, measuring the up times of a machine depends on whether

the machine failures are assumed to be time dependent or operation dependent. For

time dependent failures, an up time corresponds to the time between the end of the last

repair and the instant of the next failure start. For operation dependent failures, an up

time is the total working time between the end of the last repair and the instant of the

next failure start. The working time corresponds to the time where the machine was

processing parts, and does not include the time when the machine was forced down.

The engineers in Ford confirmed that the data set we are using captures only the failures

on a machine, and a machine can only fail when it is operational and not idle. Therefore,

we assume operation dependent failures when we analyse the data.
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2.3 Data Collection at Ford

Ford’s simulation team base their breakdown models on historical data. The data should

record each failure and its corresponding reason for all the machines in the system.

The recording of the start of a failure is important and it is necessary to know the

relationship between a machine failure and a stoppage. Both of them can stop a machine

from producing components. A machine failure or breakdown usually implies that the

machine has stopped functioning the way in which it was intended or designed, whereas a

machine can be stopped when it is being blocked, starved, or having a failure. According

to Ford’s engineers, a record in the data should be triggered by a failure, and not by a

machine being blocked or starved.

The data is collected by manual observation and an automatic monitoring system [72].

Due to the cost and difficulty of manual data collection, electronic data collection is the

main method used by Ford to collect machine breakdown data. The advantage of an

automatic data collection process over manual data collection is that it records every

failure. The disadvantages of the automatic data collection have been discussed in the

work of Ladbrook[72], who is an engineer in Ford, and Lu[83], whose PhD thesis focused

on modelling the down time of Ford’s production line. The details of the disadvantages

are discussed below:

• The monitoring system that records the failures may itself be unavailable:

– The monitoring system at the plant may be shut down over the weekend. In

addition to these planned outages, the system may also fail at any time. When

the monitoring system is unavailable, no failures will be recorded, no matter

how many machines fail. If a machine breaks down before the monitoring

system goes down and is repaired while the monitoring system is down, this

may cause the end of the repair process to go unrecorded.

• During a single machine breakdown, the system may record multiple breakdowns.

This occurs for several reasons:

– During a machine breakdown, the maintenance operator may perform “try

outs” to test if the machine is repaired correctly. As the system cannot detect

the “try outs” that happened within one failure, what was one breakdown

could be recorded as two or more.

– A similar situation to the one above is that if the machine is powered off

during the repair process, the system may record two failures when there has

only been one.

• The monitoring system does not account for non-productive periods:
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– If a machine is broken down during the weekend, it is unknown whether

the operators have chosen to work overtime to repair the machine. If the

operators have chosen to work overtime, the completion of the repairs may

have been recorded. However, the repair period may still be overstated, as

the operators may not have worked all hours of the day. If the operators chose

not to work overtime, the machine may be recorded as having been repaired

early the following week. The repair time will therefore be overstated by

including the weekend.

– There are shift breaks in each productive day, during which the operators

are supposed to be non-productive, and not by the side of the line. However,

since the automatic system cannot detect these shift breaks, a recorded repair

duration may cover several non-productive time durations. This can make

the repair time much longer than the real time an operator spent in fixing

the machine.

In addition to the disadvantages listed above, we have also found that the monitoring

system may separately record further details of an individual failure. This leads to a

series of records covering nested time periods.

This case study is based exclusively on the electronically gathered data, as it is the

most extensive data set available at Ford. Due to the anomalies listed above, the data

gathered by the monitoring system is not suitable for analysis without careful cleaning.

The detailed data preparation process will be discussed in the remainder of this chapter.

2.4 Data Description

The data to be analyzed is from the line “Tiger Cylinder Block” in Dagenham engine

plant of Ford. The range of the data is from March 2014 to March 2015. The original

data collected by the automatic monitoring system contains a lot of information that

is not relevant for the purpose of our study. Therefore, the engineers in Ford provided

some semi-processed data files that contain the information crucial to our analysis. A

screen shot of the semi-processed data is shown in Figure 2.1, in which the machine

that failed, the failure description, the failure start and end times are recorded. Apart

from that, the engineers in Ford added further information of the duration of a machine

breakdown, and whether some data records should be deleted.

As seen from Figure 2.1, some data records have their “StartTime” and “EndTime”

marked blue. The reason is that the event times of the machine failure or repair are

within the non-productive periods of the plant. As an opposite to the fully operational

times, the non-productive times are any time period during which the production line is
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Figure 2.1: A screenshot of the semi-analyzed data

shut down. Detailed discussions of the non-productive times of the production line are

in section 2.6.

In the semi-processed data, if both of the failure start time and failure end time are

within a non-productive period, the duration is marked with a negative number, and it

is suggesed to delete the whole failure record from the data. This scenario is illustrated

in Figure 2.2.

FS FE

Non-productive

Delete Record

Figure 2.2: A failure starts and ends within a non-productive period

If the start time of a failure is within a non-productive period, and the failure ends

during a fully operational time, then the duration of the failure does not include the

time that is overlapped with the non-productive period. As shown in Figure 2.3, the

repair duration is considered to start at the end of the non-productive time.

FS FE

Non-productive

Repair Duration

Figure 2.3: A failure starts within a non-productive period and ends outside a non-

productive period
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Similarly, if the end time of a failure is within a non-productive period, and the failure

starts during a fully operational time, then the repair time is suggested to end at the

time when the non-productive period starts. This is illustrated in Figure 2.4.

FS FE

Non-productive

Repair Duration

Figure 2.4: A failure starts during fully operational period and ends within a non-

productive period

If both of the failure start and failure end are within fully operational times, but the

repair duration covers a non-productive period, then that non-productive period will be

subtracted from the repair duration. Figurer 2.5 illustrates this situation, in which the

repair time of the failure is the sum of Repair Duration 1 and Repair Duration 2. This

situation, however, has no special mark in the semi-processed data file. Therefore, it is

not easy to distinguish this situation from most scenarios by eye, when a failure start

and end during operational times, with no non-productive period in between.

FS FE

Non-productive

Repair Duration 1 Repair Duration 2

Figure 2.5: A failure duration covers a non-productive period

The purpose of our study is to model the times between breakdowns, i.e. the up times.

The “Duration” column in the semi-processed data file indicates the repair times, i.e.

the down times. In general, an up time corresponds to the time between the end of the

last repair and the instant of the next failure start. As such, instead of the duration

of down times, the exact times of when a machine failure starts and ends are more

helpful for our study. However, like the down times, the non-productive periods need

to be considered when calculating the up times. Therefore, the machine failure records

that involve the non-productive periods should be adjusted carefully. This increases the

complexity of handling the data and will be discussed further in Section 2.6.

2.5 Anomalies in the data

As discussed in section 2.3, there are a number of anomalies in the data that need to be

carefully handled. In this section, we will discuss each type of anomaly in turn.
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Handling outages or nonproductive periods of the monitoring system When

the monitoring system is unavailable, failures may go unrecorded or the completion of

repairs started previously may not be logged. In the former case, all record of the failure

is lost, and we cannot recover the failure from the data. In the latter case, the data

contains a record with a missing end time. As no further information was available to

reconstruct the end time of these repairs, they were excluded from further analysis.

Handling nested records In some cases, the monitoring system logs failures in more

detail than is required for this case study. This is illustrated in Figure 2.6, where the

start time of the later repair, 22:34:22, is before the end time of the first repair, 23:59:50.

For the purposes of this case study, all subsequent records providing further detail about

the nature of the failure were discarded. In the semi-processed data file, the redundant

machine failure records are marked as “Duplicated”.

Figure 2.6: A screen shot of an example of nested records

Handling non-production machines Most of the machines have names starting

with OP in the data files. However, some machines have very different names, such as

DAG0160, P0598L, and TBSYS80. After consulting with the engineers in Ford, these are

part of the supporting system, and are not production machines. For instance, machine

DAG0160 refers to equipment described as “Tiger machining chilled water”. Therefore,

as suggested by the engineers, the failure records of such machines should be discarded

from the analysis.

Handling failure descriptions The data files contain a column called “Description”,

which is supposed to describe the reasons of each machine failure. This may be helpful

for further analyzing and understanding the autocorrelated times to failure. However,

some of the entries in the column are empty and a lot of them have the description of

“Manual Event - Shutdown”, as illustrated in Figure 2.7. According to the engineers

in Ford, “Manual Event - Shutdown” basically means the machine is broken down, but

they do not have the mechanical reason for why. The reason is that an operator has

manually taken the machine offline, which could be for any number of reasons, but the

engineers consider it is usually to repair it. As the exact reason of each manual shutdown

is not clear, we cannot use the information of failure description for our analysis at the

moment.
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Figure 2.7: A screen shot of an example of machine failure descriptions

2.6 Non-productive Time of the production line

Ford’s engineers define the non-productive time as any time period during which the

production line is shut down. During the non-productive times, the operators are not

supposed to be by the side of the line. Therefore, no operation or repair can be done

in these periods. As an opposite to the fully operational times, the non-productive

times in Ford usually include weekends, shift breaks, bank holidays, summer breaks,

and Christmas breaks.

Occasionally, the plant ran additional (overtime) shifts during non-productive times.

This can be seen from the machine failure records captured by the electronic monitoring

system, as some of the machines failed or were repaired during the non-productive

times. The problem with this is that the operators do not necessarily publish when

this occurred. More importantly, it is not known if they ran the whole line or just one

section, or if they were fully manned.

As Ford aim to build a simulation model which only models the fully operational times,

any breakdown record that involves the non-productive periods should be adjusted care-

fully. The detailed information of each type of non-productive time in Ford is listed

below.

• Weekends: there are three shifts in a normal working day, which are from 6 : 00

to 14 : 00, from 14 : 00 to 22 : 00, and from 22 : 00 to 6 : 00 the next working day.

The last production shift of the week ends at 6 : 00 on Saturday. Therefore, the

weekend time starts at 6 : 00 on Saturday and ends at 6 : 00 on Monday.

• Bank holidays: Similar to the weekends, the line is supposed to be shut down at

6 : 00 on the start day of the bank holiday. The operators will resume their work

at the first production shift after the bank holiday.
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• Shift breaks: there are six shift breaks in 24 hours, which include the following

periods: 02 : 30 to 03 : 00, 08 : 30 to 08 : 40, 11 : 30 to 12 : 00, 16 : 30 to 17 : 00,

18 : 30 to 18 : 40, 24 : 00 to 24 : 10. The total shift breaks duration per 24-hour is

2 hours.

• Summer breaks: According to the range of our data, the summer breaks started

at 6 am on 28th July, 2014 and ended at 6 am 15th August, 2014.

• Christmas breaks: According to the range of our data, the Christmas breaks

started at 6 am on 24th December, 2014 and ended at 6 am 2nd January, 2015.

We will now consider how to calculate the up times and down times of Ford’s machines,

assuming operation-dependent failure. Let FSi and FEi be the start and end time of the

ith machine failure. Therefore, (FSi, FEi) corresponds to the ith down time duration

and (FEi, FSi+1) corresponds to the ith up time duration. Since in the data file, a

machine can fail and be repaired during a non-productive time period, let us define Tj

to be the jth period in a non-productive time that has overlapped with either a down

time duration or an up time duration.

Let N be the number of events happened during a non-productive time period. The

events can be a failure start or a failure end. We will now consider how the up times

and down times should be calculated in each case.

Case 1. N = 0

FSi FEi

Non-productive

T

During the non-productive time, there is no operator repairing the machine. Therefore,

the ith down time Di is calculated by FEi − FSi − T ;

FEi FSi+1

Non-productive

T

Similarly, during the non-productive time, the machine is not fully working. Therefore,

the ith up time Ui is calculated by FSi+1 − FEi − T .

Case 2. N = 1
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FSi FEi FSi+1

Non-productive

T1 T2

A failure was fixed during the non-productive time. This indicates that there are oper-

ators repairing the machine during T1. Since we assume the operators were working full

time during T1, Di = FEi−FSi. Further, we assume that after the machine was fixed at

time FEi, it was shut down immediately and switched on again after the non-productive

time finished. Therefore, the ith up time Ui is FSi+1 − FEi − T2.

FEi−1 FSi FEi

Non-productive

T1 T2

A failure started during the non-productive time. As we assume operation dependent

failures, a machine can only fail when it is processing. Therefore, the machine should

be operating during time period T1. As such, the up time Ui−1 should be calculated

by FSi − FEi−1. As we assume the operators chose to repair the machine after the

non-productive time, so Di = FEi − FSi − T2.

Case 3. N >= 2

FSi FEi FSi+1 FSi+k

Non-productive

T1 T2

. . .

Similar to Case 2, Di = FEi − FSi, Ui = FSi+1 − FEi, Di+1 = FEi+1 − FSi+1,

Ui+1 = FSi+2 − FEi+1, etc. There is no subtraction of the non-productive times until

the last event that happened during the non-productive time, which is FEi+k−1. After

FEi+k−1, we assume the machine was shut down immediately and switched on after the

non-productive time finished, so Ui+k−1 = FSi+k − FEi+k−1 − Ti+k+1.

FEi−1 FSi FEi FEi+k

Non-productive

T1 T2

. . .

Similarly, Ui−1 = FSi − FEi−1, Di = FEi − FSi, Ui+1 = FSi+2 − FEi+1, Di+1 =

FEi+1 − FSi+1, etc. There is no subtraction of the non-productive times until the last
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event that happened during the non-productive time, which is, FSi+k. As we assume

the operators started repairing the machine after the non-productive time, Di+k =

FEi+k − FSi+k − Ti+k+1.

2.7 Data Processing

In this section, we will discuss the details of how to process the data for further anal-

ysis. The processing was implemented using Python and will be illustrated using code

snippets. The first step of processing the data is to parse the date and time given as

DD/MM/YY HH:MM:SS to a time duration in seconds since 01/01/2014 00:00:00. This

is to make the calculation of up and down times easier, and they will be measured in

seconds. The Python code that illustrates how to do this is shown below.

def parse_datetime(strv , format = ’%d/%m/%y %H:%M:%S’):

try:

start = dt.datetime (2014 , 1, 1)

now = dt.datetime.strptime(strv , format)

return (now - start).total_seconds ()

except BaseException:

print ’Error on converting datetime:’, strv

return -1

The next step is to calculate the up and down times from the machine failure records.

As discussed in Section 2.6, a machine can fail and be repaired during a non-productive

time period. Therefore, it is important to detect whether a failure start or failure end

happens during a non-productive period. The Python code that illustrates this step can

be seen below.

def loc_bisect(time , npros):

i = bisect.bisect_right(npros , (time , 1e9))

if i == 0:

return (i-1, i)

else:

st, ed = npros[i-1]

if ed < time:

return (i-1, i)

else:

return (i-1, i-1)

After we know whether an event happens during a non-productive period or not, we can

calculate the up and down time durations based on the logic discussed in Section 2.6.

The code below illustrates how this can be achieved in Python.

def duration(start , end , npros):

sloc = loc_bisect(start , npros)

eloc = loc_bisect(end , npros)

nps = []

if sloc != eloc and sloc [0] == sloc [1]:

start = npros[sloc [1]][1]
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nps = npros[sloc [1]+1: eloc [1]]

elif sloc != eloc:

nps = npros[sloc [1]: eloc [1]]

subtraction = sum([e-s for (s,e) in nps])

return end - start - subtraction

After calculating the up and down time durations, we output the processed information

in a csv file with the format illustrated in Figure 2.8. The “Type” and “Number”

columns represent the working station and machine number, respectively. For example,

machine OP10.3 will be considered as “Type” OP10 and “Number” 3. The up and down

time durations are measured with the time unit of seconds. In the “Up” column, values

0 and 1 are the indicator of down and up time durations, respectively. The down and

up times are in order, with a down time followed by an up time.

Figure 2.8: Format of the processed data output in a csv file

2.8 Outliers in the uptimes

To conclude this chapter, we will consider the impact of the data anomalies and data

preparation procedure on the quality of the calculated uptimes. In particular, we will

be concerned with outliers in the uptimes.

First, consider the “try outs” mentioned in Section 2.3, where engineers start a machine

to test whether it has been fixed. If the machine has not been fixed, a try out leads to

a very short uptime, on the order of a few seconds. This suggests that only uptimes

that are sufficiently long are valid. Based on their experience, Ford’s engineers suggest

removing uptimes shorter than 5 minutes.

Second, issues with the monitoring system may lead to overstating the length of an

uptime. Consider a scenario illustrated in Figure 2.9. A machine starts running at time

T1, then breaks down at time T2, is repaired at time T3, and breaks down again at time

T4. If, due to a failure of the monitoring system, the end of the repair at time T3 is not

recorded, we have to remove this breakdown from the data. In this case, we record an

uptime of T4 − T1, rather than the correct uptimes T2 − T1 and T4 − T3.
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T1

Start

T2

Failure1

T3

Repair1

T4

Failure2(Not Recorded)

Figure 2.9: A scenario of miss recording of a repair time

Unfortunately, it is impossible to tell from the data what the correct uptimes should be.

As such, we can only attempt to detect anomalously long uptimes and exclude them as

outliers. In this thesis, we have chosen to consider every uptime longer than 1 week an

outlier. The reason is that an up time longer than 1 week is exceedingly rare in our

data. Moreover, any up time duration longer than 1 week is very far away from the

other data points.

According to the data, there are 42 stations in the production line. Each station contains

either one machine or parallel machines. For instance, machines OP70.1 and OP70.7

indicate they are from the same station OP70; while machine types OP30A and OP125

indicate that there is only one machine at the stations, respectively.

There are 84 individual machines in total, and the number of failure records in the data

files is 293989. For each machine, the observations of machine failures in one year range

from 991 to 17581. For most of the machines, the minimum uptimes are 1 or 2 seconds,

while the maximum uptimes are quite different between machines. For instance, machine

OP20.5 has the largest maximum uptime, which is about 355 hours. Despite from the

same station, the maximum uptime for machine OP20.3 is about 51 hours. The smallest

maximum uptime is obtained from machine OP130G, which is about 33 hours.

Table 2.1 and Table 2.2 illustrate the top 5 and lowest 5 percentage of data removed

from the machines’ failure records, respectively. As discussed before, any uptime that

is less than 5 minutes or greater than 1 week will be deleted from the records. Of all

the 84 machines in the production line, OP30A has the maximum percentage of deleted

data, which is about 66.53%. Machine OP20.9 has the minimum percentage of deleted

data among the machines, which is around 29.21%.

The majority of the data excluded are the uptimes that are less than 5 minutes. These

small uptimes account for a large number of data records, and may have an impact on

further data analysis. This will be discussed in detail later chapters. The uptimes that

are larger than 1 week are relatively rare for each machine, and the impact of excluding

these data may be small.
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Table 2.1: Number of outliers of each type by machine, for top 5 deleted machines

Machine < 5 minutes > 1 week Total Percentage of Removal

OP30A 2826 1 4249 66.53%

OP10G 3263 1 5255 63.30%

OP140 2547 1 40475 62.94%

OP170LEAK 10997 1 17581 62.55%

OP160 5805 1 9309 62.36%

Table 2.2: Number of outliers of each type by machine, for lowest 5 deleted machines

Machine < 5 minutes > 1 week Total Percentage of Removal

OP80.3 1078 1 3303 32.64%

OP80.9 1071 1 3495 30.64%

OP20.11 1740 0 5725 30.39%

OP80.7 1128 1 3733 30.22%

OP20.9 636 1 2181 29.21%

2.9 Conclusion

In this chapter, we have discussed the concepts of uptimes and downtimes, considered

how Ford’s data is collected and provided a way to calculate up- and downtimes from

Ford’s data. The method we have proposed handles various anomalies in the data and

deals with nonproductive periods. However, due to limitations in the data collection

process, the resulting uptimes may contain outliers. In the remainder of this thesis, we

will consider how the uptimes may be modelled.
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Autocorrelation analysis

3.1 Introduction

In this chapter, we discuss how to detect whether the uptimes of Ford’s machines are

correlated with each other. We begin by reviewing how correlation within a time series

is defined and how it may be estimated. We then use these concepts to review the

Ljung-Box test, which allows us to test whether a given process is autocorrelated.

While we may apply the Ljung-Box test to determine whether the uptimes of a single

machine are autocorrelated, repeating this procedure for all of Ford’s machines results

in us performing many hypothesis tests. This may lead us to make an unacceptable

number of Type I errors, i.e. to detect autocorrelation in machines where there is none.

This problem is known in the literature as multiple hypothesis testing. We review a

number of approaches to this problem.

Finally, we apply the Ljung-Box test to Ford’s data, using a Holm-Bonferroni correction

to correct for multiple hypothesis testing. This procedure results in a list of machines

that show autocorrelation.

3.2 Testing for autocorrelation

We will now consider how we may perform a statistical test to detect autocorrelation

in the uptimes of a machine. First, we will review how the autocorrelation of a time

series is defined and how it may be estimated. The discussion here is based on Box and

Jenkins[22].

Let X1, X2, . . . be the random variables representing a given time series, and let k be

a positive integer. Then, the autocorrelation coefficient at lag k is given by (3.1). The

quantity ρk represents the correlation within the time series at intervals of length k.

45
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ρk =
Cov(Xi, Xi+k)

V ar(Xi)
(3.1)

The right-hand side of (3.1) contains an index i. For a general time series, this quantity

could depend on i, which implies that ρk is not well-defined. To ensure that ρk is well-

defined, we assume the time series is second-order stationary. This means that the mean,

variance and covariances of the time series do not depend on the index i, and so ρk is

well-defined.

Now suppose that we are given a finite sample x1, x2, . . . xn from the time series. To

estimate the autocorrelation, we can use the following estimator (3.2). Here, ai =

xi − 1
n

∑n
j=1 xj .

ρ̂k =

∑n
l=k+1 alal−k∑n

i=1 ai
2

(3.2)

Using the autocorrelation coefficient and its estimator defined above, the hypothesis

“The uptimes of the machine are independent of each other” may be stated as “for all

k > 0, ρk = 0”. Letting this hypothesis be our null hypothesis H0, we can now consider

the following test statistic [82]. Here, ρ̂k is the estimator of ρk given by (3.2).

Q = n(n+ 2)
m∑
k=1

ρ̂2k
n− k

(3.3)

In (3.3), n is length of the time series x1, . . . , xn and m is a specified maximum lag to

consider. The statistic Q has an approximate χ2
m distribution under H0, provided that

the variance of Xi is finite.

3.3 Correcting for multiple hypothesis tests

To analyze the autocorrelation in the time-to-breakdown, we need to perform hypothesis

tests for individual machines. The null hypothesis under the test is that there is no

autocorrelation in the time-to-breakdown for each machine.

As we perform more than one statistical test, the chance that we reject the null hypoth-

esis when it is true is larger. This is because when many hypotheses are tested, and each

test has a specific Type I error (i.e., a “false alarm”) probability, the probability that

at least some Type I errors are committed increases, often sharply, with the number

of hypotheses. This may have serious consequences if the set of conclusions must be

evaluated as a whole [121].
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Abdi[1] gives an example of how to compute the probability of rejecting the null hy-

pothesis at least once in a series of tests when the null hypothesis is true. Suppose for

each test the probability of making a Type I error is equal to α = 0.05. Given that

“making a Type I error” and “not making a type I error” are complementary events,

the probability of not making a Type I error on one test is equal to

1− α = 1− 0.05 = 0.95

If the tests are independent, for a series of C tests, the probability of not making a Type

I error for the whole set of tests is

(1− α)C

Therefore, the probability of making at least one Type I error on the series of tests is

equal to

1− (1− α)C

For our example, with an α level of 0.05 and a set of 10 independent tests, the probability

of incorrectly rejecting the null hypothesis is

1− (1− 0.05)10 = 0.401

Before we consider how to solve this problem, we will briefly give a more formal definition.

We are given a number of hypothesis tests to perform, and obtain the p value pi of test

i, considered as a single test. We then need to decide which of the hypotheses to reject,

given their p-values. The procedure we use to make this decision should guarantee that

our probability of making at least one Type I error is at most α.

It is important to note that we do not know which hypotheses are true. Indeed, if

we did know this, there would be no reason for us to perform the tests. As such, our

multiple testing procedure should work no matter which hypotheses are true. In Holm’s

[62] terminology, this is referred to as applying “for free combinations”. Hochberg and

Tamhane[61] call this “strong control” of the family-wise error rate. All the methods

we will consider have this property, although alternatives exist that only apply when all

null hypotheses are known to be true[61].

The most well known correction that provides strong control is the Bonferroni correction,

which performs each test at a significance level of α/C, where α is the desired overall

alpha level and C is the number of hypotheses. The Bonferroni method does not assume

independence of the tests, as it follows from Boole’s inequality, as shown below.
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α =P (Type I error occurs)

=P

(
C⋃
i=1

Type I error in Hypothesis i

)

≤
C∑
i=1

P (Type I error in Hypothesis i)

=Cαi

(3.4)

The Bonferroni method is a single-stage procedure to control the probability of at least

one error in the family. It is an appealing method because it is applicable in essentially

any multiple comparison situation. However, as the number of hypotheses increases, the

average power for testing the individual hypotheses becomes smaller. Some modifications

of the Bonferroni procedure have improved the situation, and they are discussed below.

A powerful sequentially rejective multiple test procedure has been proposed by Holm[62].

Holm’s test is also based on the Boole’s inequality, and it is actually a sequentially

rejective Bonferroni test. After performing some statistical test, the p-value for each

individual test Yi, say pi, is obtained. The classical Bonferroni test can be performed by

comparing all the obtained p′is to α
C , where P (pi ≤ α|H0) = α,∀i and C is the number

of hypotheses. In Holm’s procedure, the tests need to be ordered by their critical levels,

denoting by p(1) ≤ p(2) ≤ . . . ≤ p(C). The test with the smallest p-value will be tested

with a Bonferroni correction for all tests(say C tests). If the test is not significant, then

we do not reject any hypotheses. Otherwise, the test with the smallest p-value is rejected,

and the test with the second smallest p-value is then corrected with a Bonferroni method

for a family of C − 1 tests. The procedure stops when the first non-significant test is

obtained or when all the tests have been performed. Figure 3.1 illustrates the procedure

of the Holm’s test[62].

The Holm’s procedure increases the power of the statistical tests while keeping the

family-wise Type I error under control. Based on the same test statistics, the probability

of rejecting any set of false hypotheses using Holm’s test is larger than or equal to the

classical Bonferroni test. As Holm[62] discussed, the great advantage with this test(as

well as the classical Bonferroni test) is its flexibility. There are no restrictions on the

type of tests, the only requirement is that it should be possible to calculate the obtained

level for each separate test.

There are other powerful and complex procedures to keep the family-wise Type I er-

ror under control. However, they are all based on the assumption that the individual

tests are independent. Simes[123] proposed a global test for all hypothesis in a set of n

hypothesis {H1, H2, . . . ,Hn}. The set of hypothesis are all true with probability 1 − α
if pi >

iα
n for i = 1, . . . , n, where p′is are the ordered p-values. Simes[123] provided
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Start

Is p(1) ≤ α
C

Reject Y (1)

Not Reject Y (1), Y (2), . . . , Y (C);
Stop

Is
p(2) ≤ α

C−1

Reject Y (2)

Not Reject Y (2), Y (3), . . . , Y (C);
Stop

Is
p(3) ≤ α

C−2

Reject Y (3)

Not Reject Y (3), Y (4), . . . , Y (C);
Stop

Is p(C) ≤ α
1

Reject Y (C);
Stop

Not Reject Y (C);
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No

yes

No

yes

No

yes

No

Figure 3.1: Flow Chart for Holm’s Procedure
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simulation results which indicate that the probability of a Type I error under the proce-

dure does not exceed the significance level α. However, Simes’ test does not address the

problem of how the individual hypothesis Hi, for i = 1, . . . , n are to be made for this

procedure. Hochberg[60] and Hommel[63] provide more powerful methods to control

the family-wise Type I error by combining Simes’ results (provided that the Simes’ tests

have level α). Rom[112] gives an improvement procedure for Hochberg’s method with a

slightly higher p-value. Therefore, it is more powerful than Hochberg’s method.

In the discussion above, we have assumed that the procedure we apply provides us with

a decision to reject or not reject each hypothesis. However, these methods did not give

us more detailed information about the significance of individual hypotheses. In the case

of a single hypothesis, a p-value provides us with this information. For a given multiple

comparison procedure, there is an analogue of the p-value, known as the adjusted p-value

[132].

To define the adjusted p-value, it is instructive to first recall the definition of a p-value.

The p-value is the smallest significance level α for which we reject the null hypothesis.

Similarly, the adjusted p-value of a hypothesis within a multiple hypothesis test is the

smallest family-wise error rate α for which we reject the hypothesis, given the individual

p-values of all hypotheses. These adjusted p-values may be compared to the desired

family-wise error rate to decide whether to reject an individual hypothesis.

To illustrate the definition of an adjusted p-value, consider an experiment with 3 tests,

with individual p-values 0.015, 0.037 and 0.023. If we are performing a Bonferroni

correction with a family-wise error rate of α, a hypothesis will be rejected if pi <
α
3 .

Therefore, the adjusted p-value of hypothesis i is given by pi,adj = 3α, resulting in

adjusted p-values of 0.045, 0.111 and 0.069 in our example. We may then decide whether

to reject hypotheses at family-wise error rate α = 0.05 by comparing the adjusted p-

values to α. In the example, we reject only the first hypothesis, giving us the same

result as if we had done a Bonferroni correction directly. Details of computing adjusted

p-values for other corrections are given in [132].

3.4 Applying Ljung-Box test with Holm-Bonferroni cor-

rection to Ford’s data

In this section, we discuss how to detect whether the times to breakdown of Ford’s

individual machines are correlated with each other. We also demonstrate the effects

of correcting for multiple comparison tests using real data. In particular, the question

of whether the test results of some hypothesis are different after the correction will

be answered. Testing for autocorrelation in the data may have an effect on potential

decision making, such as which model is to choose for each individual machine.
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In the particular case of Ford’s machines, it may be reasonable to assume independence

of the hypothesis tests. However, there are several factors which may affect multiple ma-

chines, such as outages of the monitoring system. In addition to that, parallel machines

on the same work station may also affect each other. Based on the experience of Ford’s

engineers, during seasons when the demand for engines is low, some of the machines

may be switched off, leaving a few machines on the same work station working full time.

Therefore, some machines may experience high frequency of breakdowns, while others

have nearly zero failure during certain period of the year. However, the data of when

and which machines are shut down due to the reason above is not available. As such, we

will not assume independence and apply a Holm-Bonferroni correction. The correction

will be applied using adjusted p-values, indicating how significant the autocorrelation is

for each machine.

We apply the Ljung-Box test to Ford’s data, using a Holm-Bonferroni correction to

correct for multiple hypothesis testing. To illustrate the effects of correcting for multiple

hypothesis test, we compare the p-value of individual hypothesis test with its adjusted

p-value. Figure 3.2 shows the summary of the p- and adjusted p-values in R. The

adjusted p-values have a larger mean than the p-values. In addition to that, most of the

machines have very small p- and adjusted p-values, since the 3rd quartile of both the p-

and adjusted p-values are close to zero.

Figure 3.2: R results of the summary of p and adjusted p-values

To have a clearer view of the difference between the p- and adjusted p-values, we plot the

ratio of adjusted p-values against unadjusted p-values. This is illustrated in Figure 3.3,

in which the horizontal line represents value 1, and therefore, all of the adjusted p-values

are larger than the unadjusted p-values. The ratios vary, and some of the p-values can

be over 30 times larger after being corrected for multiple hypothesis testing. However,

since most of the unadjusted p-values are very close to zero, the adjusted p-values may

still be small, and hence the null hypothesis may still be rejected after correcting for

multiple hypothesis testing.

Table 3.1 shows the information of machines that no longer show evidence of having

autocorrelated up times, after correcting the p-values. For instance, before correcting

for multiple hypothesis tests, the p-value of the hypothesis test for Machine OP10.5 is

0.0047. Since it is below the threshold of 0.05, the null hypothesis that Machine OP10.5

has no autocorrelated up times is rejected. In other words, the up times of Machine
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Figure 3.3: Ratio of adjusted p-values against unadjusted p-values

OP10.5 is considered to be statistically autocorrelated. However, after correcting for

multiple hypothesis testing, the adjusted p-value for the hypothesis test is 0.0606, which

is above the threshold for rejection. Therefore, there is no evidence to reject the null

hypothesis, and we conclude that Machine OP10.5 does not have autocorrelated up

times. Similar situations happen on Machine OP10.1 and Machine 100.6. As such,

correcting for multiple hypothesis tests can have an effect on whether to reject the

null hypothesis or not. In the particular case of Ford, before correcting for multiple

hypothesis tests, the the number of machines that have autocorrelated up times is 78.

After the correction, the number of machines drops to 75.

Table 3.1: Information of machines that no longer show evidence of having autocor-

related uptimes after correcting the p-values

Machine < 5 minutes > 1 week Total p-value adjusted p-value

OP10.5 1198 1 3039 0.0047 0.0606

OP10.1 1383 1 3609 0.0063 0.0698

OP100.6 310 2 1001 0.0048 0.0606

As discussed in Section 2.8, any up time that is shorter than 5 minutes be removed from

the data. It is worth checking if excluding these data records will affect the autocorre-

lation analysis. Table 3.2 illustrates machines that have autocorrelated up times in the
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original data, but show no evidence of having autocorrelated up times after excluding

some of the data records. In Table 3.2 , “prawadj” represents the adjusted p-values of

the null hypothesis based on the original data, whereas “padj” is the adjusted p-values

of the null hypothesis based on the truncated data. For instance, Machine OP100.4 has

a prawadj that is less than 0.05, and therefore it is considered to have autocorrelated

up times based on the original data. After removing some of the data records, the

padj is greater than 0.05. Hence, no evidence suggests Machine OP100.4 has up times

that are autocorrelated. Similar situations happen on Machine OP10.5, OP10.1, OP30,

OP100.6, OP60, and OP120.1, in which the original data shows evidence of autocorre-

lated up times, but the truncated data does not.

Table 3.2: Information of machines that no longer show evidence of having autocor-

related uptimes after excluding some data records

Machine < 5 minutes > 1 week Total padj prawadj

OP100.4 303 1 991 0.9197 8.238859e-06

OP10.5 1198 1 3039 0.0606 0.000000e+00

OP10.1 1383 1 3609 0.0698 1.347589e-12

OP30 902 1 1965 0.9197 4.308998e-12

OP100.6 310 2 1001 0.06060 8.103295e-06

OP60 754 1 1497 0.9197 0.000000e+00

OP120.1 7341 1 11439 0.9197 5.931093e-04

Table 3.3 illustrates machines that do not have autocorrelated up times in the original

data, but show evidence of having autocorrelated up times after excluding some of the

data records. For instance, Machine OP10A has a prawadj that is 1, and therefore, it

is considered to not have autocorrelated up times based on the original data. After

removing 5897 data records, which account for over 50% of the total records for that

machine, the padj of the null hypothesis is below the threshold of 0.05. Therefore,

Machine OP10A is considered to have autocorrelated up times. A similar situation

happens on Machine OP10A-30G, in which there is no evidence of autocorrelated up

times in the original data, but there is after truncating some of the data records.

Table 3.3: Information of machines that show evidence of having autocorrelated up-

times only after excluding some data records

Machine < 5 minutes > 1 week Total padj prawadj

OP10A 5897 1 11291 3.785972e-12 1

OP10A-30AG 4363 1 7947 3.340906e-06 1
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3.5 Conclusion

In this chapter, we discussed how autocorrelation in time series may be defined and how

it may be detected using a Ljung-Box test. We then discussed the problem of multiple

hypothesis testing and various solutions to it, and illustrated the effects of correcting for

multiple hypothesis testing using real data.

Applying the Ljung-Box test, corrected for multiple comparisons, to Ford’s data showed

that most machines have statistically significant autocorrelation. In some cases, the

p-value of the Ljung-Box test seems to be severely affected by the presence of significant

numbers of outliers in the uptimes. As such, the thresholds for excluding data from

the original data records need to be carefully chosen, as they may affect future decision

making on which model to choose for each individual machine.



Chapter 4

Time series analysis of the up

times

4.1 Introduction

In the previous chapter, we analysed the times between breakdowns of Ford’s machines

and found that, for most machines, they were positively correlated. The implications

of this result are discussed in this chapter. In particular, as the times between break-

downs(up times) are autocorrelated, they cannot be treated as an independent and

identically distributed sample from a fixed density. This implies that they cannot be

directly modelled with parametric or nonparametric density estimation approaches and

other techniques are needed.

In this chapter, we consider treating the times between breakdowns as a time series and

apply Autoregressive Moving Average (ARMA) models to predict the next uptime from

some of the past uptimes and previous error terms. We begin the chapter by reviewing

ARMA models, including their definition and some fitting methods.

We then consider how ARMA models may be applied to the machine uptimes. We

present details of the methodology applied and some diagnostics of the models chosen

to assess their fit.

The chapter concludes with a brief summary of ARMA models and their applicability

to modelling the uptimes of Ford’s machines.

55
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4.2 Gaussian Autoregressive Moving Average (ARMA) mod-

els

In this section, we briefly review Gaussian Autoregressive Moving Average models. As

these models consist of both Autoregressive and Moving Average components, we begin

by reviewing the simpler Autoregressive and Moving Average models. Thereafter, we

combine them into ARMA models. The discussion here is based on the textbook by Box

and Jenkins[21].

4.2.1 White noise

The simplest process we will review is Gaussian white noise. In a white noise process,

every observation is independent of the previous one, so the process has no “memory”.

Furthermore, each observation has the same distribution. In the special case of Gaussian

white noise, each observation is normally distributed with zero mean and a fixed variance.

Figure 4.1 shows an example white noise series. As can be seen in the figure, the series

shows no obvious pattern. This is confirmed by its autocorrelation plot, shown in Figure

4.2.

Figure 4.1: An example time series generated from a Gaussian white noise process

with zero mean and unit variance
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Figure 4.2: Autocorrelation plot generated from the example white noise sequence

4.2.2 Moving Average(MA) models

Moving average models use the past forecast errors in a regression-like model. Therefore,

the observed series is a moving average of an underlying series of independent and

identically distributed (iid) normal variables. Let εi be a Gaussian white noise process,

with zero mean and variance σ2. Then, the series Y1, Y2, . . . is a moving average (MA)

process if for some k, Yi is given by (4.1).

Yi =

k∑
l=1

βlεi−k + εi (4.1)

The βl are constants that control how strongly the process is affected by prior data. if

all the βl are zero, the process is a white noise process. The larger the βl, the more

impact prior values have on the process.
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Figure 4.3: An example time series generated from an MA(3) process

Figure 4.4: Autocorrelation plot generated from the example MA(3) sequence
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Figure 4.3 shows an example MA(3) process, where β1 = 0.5, β2 = −0.2 and β3 = 0.5.

The autocorrelation plot of this series is shown in Figure 4.4. As can be seen in the figure,

the autocorrelation is negligible outside of the first three lags. This is the characteristic

property of an MA(q) process: Only the first q autocorrelations are nonzero.

4.2.3 Autoregressive(AR) models

We will now briefly review Gaussian Autoregressive (AR) models. In these models, the

value of a time series is allowed to depend on its past values. As the name indicates,

Gaussian AR models use a normally-distributed error term. The term autoregressive

indicates that it is a regression of the variable against itself.

Let Y1, Y2, . . . be a stationary time series, with a possibly non-zero mean. Then, the

AR(k) model for the sequence of Yi is as given by (4.2). Here, the µ is constant; the

βl control the strength of “memory”and changing them results in different time series

patterns; the εi are independently and identically distributed normal variables N(0, σ2),

which make up the variability that is part of the system when it moves from one period

to the next. The variance of the error term will only change the scale of the series, but

not the patterns; The integer k represents the order of the AR model.

Yi = µ+
k∑
l=1

βlYi−l + εi (4.2)

Figure 4.5 shows an example for k = 1, with β1 = 0.5. The corresponding autocorrelation

plot is shown in Figure 4.6. The autocorrelation plot shows a gradually decaying pattern.

Any AR(p) process will have nonzero autocorrelation for all lags, decaying with time.

4.2.4 Autoregressive Moving Average (ARMA) models

We will now combine autoregressive and moving average models into Autoregressive

Moving Average (ARMA) models. As before, let Yi be a stationary time series, and let

p and q be positive integers. Then, Yi is an ARMA(p, q) process if, for εi iid normal

with zero mean and constant variance, (4.3).

Yi = µ+

p∑
l=1

βlYi−l +

q∑
k=1

γkεi−k + εi (4.3)

Figure 4.7 shows an example time series, generated by combining the example MA(3)

process and AR(1) processes above. The corresponding autocorrelation plot is in Figure

4.8. Depending on the values of the coefficients, an ARMA(p,q) correlation plot may
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Figure 4.5: An example time series generated from an AR(1) process

Figure 4.6: Autocorrelation plot generated from the example AR(1) sequence
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Figure 4.7: An example time series generated from an ARMA(1,3) process

look similar to either an AR(p) or MA(q) correlation plot. In this particular case, the

correlation plot closely resembles that obtained earlier for AR(1).

4.2.5 Fitting ARMA models

We will now discuss how an ARMA model may be fitted to an observed time series

y1, y2, . . . yn. To do so, there are two problems that need to be solved. First, the

parameters of an ARMA(p, q) model for given p and q need to be estimated. Second,

an appropriate p and q need to be chosen. The approaches to these problems discussed

here are those of the R forecast package[64].

We will consider the second problem, of choosing p and q, first, as its solution has

implications for the problem of estimating the parameters. The problem of choosing a

suitable p and q may be defined as choosing the “best” ARMA(p, q) model out of a set of

possible such models. In the literature, a number of methods to solve this model selection

problem have been proposed. For a review of model selection, see Zucchini[137].

The particular approach to model selection used by the forecast package is based on

Akaike’s Information Criterion(AIC). This criterion, for any statistical model with k

parameters, is given by (4.4). Here, L is the maximum of the likelihood of the model.

For an ARMA(p, q) model with a constant term, this equation reduces to (4.5).
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Figure 4.8: Autocorrelation plot generated from the example ARMA(1,3) sequence

AIC = −2logL+ 2k (4.4)

AIC = −2logL+ 2(p+ q + 1) (4.5)

Given a set of models and their maximum-likelihood estimates, model selection based

on AIC selects the model with the smallest AIC. For a large set of models, such as the

set of all ARMA(p, q) models with p ≤ 20 and q ≤ 20, this may not be computationally

feasible.

As an alternative to minimising AIC globally over the model set, the forecast package

implements a stepwise model selection algorithm. This algorithm starts with the best

model out of a small set of candidates and then iterates, attempting to make small

changes to the values of p and q at each step until no further change improves the
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model. Pseudocode for the algorithm is given in Algorithm 1.

Set the current model to the best model chosen from ARMA(2, 2), ARMA(0, 0),

ARMA(1, 0), ARMA(0, 1);

repeat

Set (p,q) to the order of the current model;

Select the best candidate model from ARMA(p− 1, q), ARMA(p+ 1, q),

ARMA(p, q − 1), ARMA(p, q + 1), ARMA(p− 1, q − 1), ARMA(p+ 1, q + 1);

until The best candidate model is no better than the current model ;

Algorithm 1: The stepwise model selection process used in the forecast package[64]

for ARMA models

In Algorithm 1, a model may occasionally be difficult to fit due to numerical difficulties

or due to the parameters chosen. In these cases, the forecast package excludes the

candidate model. Details of this can be found in [64].

Since the forecast package uses AIC to select p and q, it must use maximum-likelihood

estimation to estimate the parameters of each model. However, since in ARMA(p, q)

models each observation depends on the p previous observations and q previous errors,

the likelihood depends on the unknown values of the series before the first observation.

A solution, implemented in R, is to assume an uninformative prior on these unknown

values and apply Kalman filters to compute the likelihood. The details of this process

may be found in the textbook by Durbin and Koopman[42]. The piece of R code that

demonstrates how to fit ARMA models for the uptimes of Ford’s machines is seen below.

In particular, lines 8 and 9 are the implementation of Algorithm 1.

1 diagplots <- function(f, r, idxs , fname){

2 par(mfrow=c(2,2))

3 #Plot 1: designed to assess whether residuals are constant -variance over time.

4 plot(idxs ,r,xlab=’Index ’,ylab=’Residual ’)

5 #Plot 2: Standard residuals vs fitted plot to assess uniform variance.

6 plot(f,r,xlab=’Fitted value’,ylab=’Residual ’)

7 #Plot 3: QQ -plot of residuals , to assess normality

8 qqnorm(r)

9 qqline(r)

10 #Plot 4: Acf plot of residuals , to assess independence

11 acf(r,main=’Correllogram of residuals ’)

12 savePlot(fname ,’png’)

13 par(mfrow=c(1,1))

14 }

15

16 diagar <- function(m,x,fname){

17 order <- m$arma [1]+m$arma [2]

18 idxs <- (order +1):length(x)

19 f <- fitted(m)[idxs]

20 r <- resid(m)[idxs]

21 diagplots(f, r, idxs ,fname)

22 }

23

24 plotassessfit <- function(act , sim , fname.acf , fname.qq , lag.max =35){

25 par(mfrow=c(1,1))

26 obs.acf <- acf(act , lag.max = lag.max , plot=FALSE)
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27 sim.acf <- acf(sim , lag.max = lag.max , plot=FALSE)

28 plot (0:35, obs.acf$acf , ’l’, xlab=’Lag’, ylab=’Autocorrelation ’)

29 lines (0:35, sim.acf$acf , col=’blue’)

30 savePlot(fname.acf , ’png’)

31 qqplot(act , sim ,xlab=’Data’, ylab=’Simulated ’)

32 abline (0,1)

33 savePlot(fname.qq, ’png’)

34 }

35

36 for(l in levels(rejected$Type)){

37 max.n <- max(rejected$Number[rejected$Type==l])

38 if(max.n >= 0){

39 for( n in 0:( max(rejected$Number[rejected$Type==l]))){

40 upt <- toreal(get.machine(durs , l, n))

41 orig <- get.machine(durs , l, n)

42 if(length(upt) > 1){

43 model <- auto.arima(upt , d=0, D=0, max.p = max.p, max.q = max.q,

max.P = 0, max.Q = 0, approximation=FALSE , stepwise=TRUE , max.order=max.p+max

.q)

44 rejected$arma.p[rejected$Type == l & rejected$Number == n] =

model$arma [1]

45 rejected$arma.q[rejected$Type == l & rejected$Number == n] =

model$arma [2]

46 aic <- transform_aic(AIC(model), orig)

47 rejected$arma.aic[rejected$Type == l & rejected$Number == n] =

aic

48 diagar(model , upt , paste(’arma -diag -’, l, ’-’, n, ’.png’,sep=’’))

49 simmed <- simulate.Arima(model , length(upt)*10, future=FALSE)

50 plotassessfit(orig , fromreal(simmed), paste(’arma -acf -’, l, ’-’,

n, ’.png’,sep=’’),

51 paste(’arma -qq -’, l, ’-’, n, ’.png’, sep=’’))

52 plotassessfit(upt , simmed , paste(’arma -trans -acf -’, l, ’-’, n, ’.

png’,sep=’’),

53 paste(’arma -trans -qq -’, l, ’-’, n, ’.png’, sep=’’))

54 }

55 }

56 }

57 }

4.3 Applying ARMA models to the uptimes of Ford’s ma-

chines

In this section, we consider how the ARMA models reviewed previously may be applied

to the uptimes of Ford’s machines. We begin by discussing the fitting methodology and

then assess the ARMA fits obtained.

ARMA models, as reviewed previously, assume that each observation has a normal dis-

tribution. This implies that the observation may be on the entire real line. Normally, a

machine uptime is strictly positive, and a logarithmic transform would suffice to trans-

form the uptime to an observation on the entire real line. However, since we have

removed both small and large values, the uptimes in our data are between 5 minutes
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Figure 4.9: An example diagnostic plot for an ARMA fit

and 1 week. Letting a be 5 minutes and b one week, an observation on (a, b) may be

transformed to the real line using (4.6). Here, u is the uptime to be transformed and y

is the transformed real-valued observation.

y = log

(
u− a
b− u

)
(4.6)

After transforming the individual uptimes, we fit ARMA models using the procedure

described in Subsection 4.2.5. To assess whether these models fit the data, we have used

a set of diagnostic plots. Before we discuss the quality of the fits we obtained, we will

first discuss these plots. An example of the diagnostic plots is given in Figure 4.9.

In Figure 4.9, the top-left plot shows the residuals versus the index of the residual. If the

model fits adequately, this should show a band of points distributed randomly around

zero. Since the residuals should have constant variance, the width of this band should

not vary. In the particular example shown here, this appears to be the case.

The top-right corner of Figure 4.9 shows the residuals versus the estimated transformed

uptime. If the model’s fit is adequate, the fitted value and residual should be unrelated to

each other and this plot should show a random distribution of points. In this particular

example, there is no obvious pattern in the distribution of the points, although a small

cluster of points in the bottom-left appears to lie on a line.
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The QQ-plot in the bottom-left corner of Figure 4.9 allows us to assess whether the

residuals are normally distributed. If the model’s fit is adequate, this should be the case

and the QQ-plot will approximate a straight line. In this particular example, the plot

is satisfactory.

Finally, the bottom-right corner of Figure 4.9 shows the estimated autocorrelation func-

tion of the residuals. If there is any unmodelled correlation in the uptimes, this plot

should show significant peaks. In this example, none of the peaks are large enough to

cause us any concern.

We will now briefly discuss the results of fitting ARMA models to the uptimes of Ford’s

machines, highlighting particular machines or patterns of interest.

The ARMA model fits well for most of the machines, and the diagnostic plots of the

fitting results have the similar patten as in Figure 4.9. There are some machines that

show different patterns.

As a first example, consider the diagnostic plots shown in Figure 4.10. For this machine,

the QQ plot, residual plot and residual versus fitted value plot all appear to indicate

that the fit is relatively poor. In particular, the residual versus fitted value plot shows

two distinct clusters of data points.

To investigate this further, we have plotted the uptimes themselves in 4.11. As can

be seen in the figure, there’s a long run of short uptimes around index 1200. This is

most likely due to a run of “try outs” that were unusually long. To determine whether

the run of try outs is the cause of the lack of fit seen in Figure 4.10, we have fitted an

ARMA model to the series up to index 1150. The diagnostic plots for this fit are shown

in Figure 4.12. This figure strongly resembles Figure 4.10 and appears to indicate that

the residuals of this model are not symmetric. In all, a different model will be needed

to fit this series well. Similar behaviour can be seen in one other machine, OP55.
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Figure 4.10: Diagnostic plots for machine OP130-1

Figure 4.11: Uptimes for machine OP130-1



68 Chapter 4 Time series analysis of the up times

Figure 4.12: Diagnostic plots for machine OP130-1, using a prefix of the full series

A second pattern in the poorer ARMA fits is illustrated in Figure 4.13. Most of the plots

in this figure look quite reasonable. The exception is the residual versus index plot, which

seems to indicate smoothly-changing variance. This suggests that an ARMA model is

inappropriate for this machine as the variance of the error terms needs to change over

time. An ARMA-GARCH model might be an appropriate choice for machines of this

type. The diagnostic plots for the ARMA fits for all machines are given in Appendices

A.

4.4 Simulating uptimes from ARMA models

In this section, we discuss how uptimes may be generated from a fitted ARMA(p, q)

model. The discussion here is based on the implementation of the arima.sim function[108]

in R. We will break the process of simulating from an ARMA(p, q) model into several

stages:

1. Generating a white noise process

2. Generating an MA(q) series from a white noise process

3. Generating an ARMA(p, q) series from an MA(q) series
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Figure 4.13: Diagnostic plots for machine OP110-0

4. Transforming the generated times

Generating a white noise process To generate a white noise process with zero

mean and variance σ2, we generate a series of iid N(0, σ2) random variables. This

may be done using any common method of generating Gaussian random variables, for

instance a Box-Muller transform. For the details of Box-Muller transform, see Box and

Muller[23].

Generating an MA(q) series from white noise To generate an MA(q) series from

white noise, we need to compute linear combinations of the white noise values. To be

more precise, if εi is a sequence of white noise variables, the MA(q) process mi is given

by mi = εi +
∑q

j=1 βjεi−j , where βj are the MA coefficients.

Generating an ARMA(p, q) series from an MA(q) series To generate anARMA(p, q)

series from an MA(q) one, we need to perform autoregressive filtering of order p on the

MA(q) series. To do so, we compute the output xi as xi = µ+mi+
∑p

j=1 βjxi−j , where

the βj are the coefficients of the AR portion of the model.

The series xi depends on its own past values, and so depends on initialisation values.

For the purposes of simulating a stationary ARMA model, these values are essentially
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arbitrary and may be taken as zero. However, the initial part of the series should be

discarded as it may depend on the choice of initialisation values.

Transforming the generated times The times generated above can be any real

number. In Ford’s application, an uptime can only be between 5 minutes and 1 week.

Accordingly, we apply the inverse of the data transformation we have used before. This

generates uptimes ui = eyib+a
eyi+1 .

4.5 Allowing the variance to vary

4.5.1 Introduction

In the ARMA models we have discussed so far in this chapter, we assumed that the error

process εt was white noise, that is, the εt are independent and identically distributed

random variables. When we applied these models to Ford’s data, we noticed that the

residuals did not necessarily have constant variance. This indicates that the underlying

error process may not have a constant variance. In this section, we consider how the

ARMA model may be extended to allow GARCH errors, which enable the variance of

the observations to change over time.

4.5.2 Defining GARCH models

First, we will briefly review how GARCH models may be defined. The discussion here

is based on [13]. To define a GARCH model, we first consider a zero-mean process yt,

defined by (4.7). Here, εt is given by (4.8).

yt =
√
htεt (4.7)

εt ∼ N(0, 1) (4.8)

The key to defining GARCH models is the process ht in (4.7). Unlike in Gaussian white

noise, where ht is constant, in a GARCH(p, q) model, ht is given by (4.9).

ht = α0 + α1ε
2
t−1 + · · ·+ αqε

2
t−q + β1ht−1 + · · ·+ βpht−p (4.9)

Equation (4.9) is similar to the definition of an ARMA(p, q) process, except that the

errors have been replaced by their squared values. As such, in a GARCH process, the
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sign of the error does not matter, only its size. Furthermore, using the squared values

ensures that ht does not become negative, so that yt is well-defined.

Figure 4.14: An example GARCH(1,1) time series

An example GARCH(1,1) time series is shown in Figure 4.14. For this example, α0 = 0.1,

α1 = 0.8 and β1 = 0.1. The series varies around zero. Although the series’ occasionally

has large values, it’s not entirely clear from this figure that the variance is changing over

time.

Figure 4.15 shows the standard deviation of each observation in the GARCH series,

conditional on the past values. This figure shows that the standard deviation varies and

occasionally becomes much larger for a brief period.

As the variance of each observation in a GARCH series depends on the previous variances

and previous squared errors, the squares of the series are correlated. This is shown in

the autocorrelation plot in Figure 4.16, which indicates that the squares of the series

are significantly autocorrelated. However, as shown in Figure 4.17, the GARCH series

itself does not have significant autocorrelation.

To incorporate a time-varying variance in an ARMA(p, q) process, we take (4.3) defining

the ARMA(p, q) process and replace the errors εt by a GARCH process. This gives (4.10)

defining an ARMA−GARCH(p, q, r, s) process.
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Figure 4.15: Conditional standard deviation for the example GARCH(1,1) series

xt =

q∑
k=1

αkεt−k +

p∑
k=1

βkxt−k + µ+ εt (4.10)

εt ∼ N(0, ht) (4.11)

ht = γ0 + γ1ε
2
t−1 + · · ·+ γsε

2
t−s + δ1ht−1 + · · ·+ δrht−r (4.12)

4.5.3 Fitting ARMA-GARCH models

We will now briefly discuss how a GARCH model may be fitted to an observed series.

The discussion here is based on [13] and the approach taken by the fGarch R package

[133].

To fit an ARMA − GARCH(p, q, r, s) model, we will use maximum likelihood. For

the time being, we will assume that the model order, that is, the parameters p, q, r

and s, is known. Conditional on the past values of the series, the log-likelihood for a

single observation xt is given by (4.13). Here, θ denotes the vector of all parameters of

the ARMA − GARCH model. The variable µt is the conditional mean of xt, σt the

conditional standard deviation. The term C is a constant independent of xt and Θ.



Chapter 4 Time series analysis of the up times 73

Figure 4.16: Autocorrelation of squared GARCH(1,1) series

lt(xt; θ) = − log σt −
(xt − µt)2

2σ2t
+ C (4.13)

Given suitable starting values, the likelihood of the time series x may be obtained using

(4.14).

l(x; θ) =

n∑
t=1

lt(xt; θ) (4.14)

To maximise (4.14), any nonlinear optimisation method may be used. The remaining

problem is how we may find suitable values of p, q, r and s. In this work, we have

done so by first picking the parameters p and q, using the ARMA fitting approach of

Algorithm 1. To select r and s, we then select from the following set of possible choices:

1. p = 1, q = 0

2. p = q = 1

3. p = 2, q = 1

4. p = 1, q = 2
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Figure 4.17: Autocorrelation of GARCH(1,1) series

As described in [13], the second choice above, GARCH(1, 1) captures most time series

in applied work, and the final two choices are very rarely needed. As such, we expect

that the restriction to these particular parameter values is unlikely to reduce the quality

of fit significantly.

4.5.4 Applying ARMA-GARCH models to machine uptimes

We will now discuss the results of applying ARMA-GARCH models to the uptimes of

Ford’s machines. As before, we will mainly use diagnostic plots. In addition to these

plots, we will also use the Akaike Information Criterion (AIC), and compare its value

to that of the previous ARMA fits for the same machines. The analysis was performed

in R, using the code included below.

find.garch.fit <- function(arma , upt){

possible.garch <- list(c(1,0), c(1,1), c(2,1), c(1,2))

best.AIC <- Inf

best.model <- NULL

for(pq in possible.garch){

f <- as.formula(paste("~arma(",arma$arma[1], ",", arma$arma[2],")+garch("

,pq[1],",", pq[2], ")", sep="" ))

this.garch <- garchFit(f, data = upt , trace=FALSE , cond.dist="norm")

if(this.garch@fit$ics[[’AIC’]] < best.AIC){

best.AIC <- this.garch@fit$ics[[’AIC’]]

best.model <- this.garch
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}

}

best.model

}

diaggarch <- function(m, fname){

r <- m@residuals/m@sigma.t # Standardise residuals for garch.

f <- m@fitted

diagplots(f, r, 1: length(f), fname)

}

garchSpecFromGarch <- function(garch){

rawparms <- coef(garch)

order <- garch@fit$series$order

if(order [[’u’]] > 0){

ar <- sapply (1: order[[’u’]], function (i) {rawparms [[ paste("ar", i, sep="

")]]})

} else {

ar <- c()

}

if(order [[’v’]] > 0){

ma <- sapply (1: order[[’v’]], function (i) {rawparms [[ paste("ma", i, sep="

")]]})

} else {

ma <- c()

}

if(order [[’p’]] > 0){

alpha <- sapply (1: order [[’p’]], function (i) {rawparms [[ paste("alpha", i,

sep="")]]})

} else {

alpha <- c()

}

if(order [[’q’]] > 0){

beta <- sapply (1: order[[’q’]], function (i) {rawparms [[ paste("beta", i,

sep="")]]})

} else {

beta <- c()

}

garchSpec(model = list(omega = rawparms [[’omega ’]],

ar = ar,

ma = ma,

mu = rawparms [[’mu’]],

alpha = alpha ,

beta = beta ,

delta = 2

), cond.dist = "norm")

}

simgarch <- function(garch , n){

spec <- garchSpecFromGarch(garch)

as.numeric(garchSim(spec , n))

}

for(l in levels(rejected$Type)){

max.n <- max(rejected$Number[rejected$Type==l])

if(max.n >= 0){

for( n in 0:( max(rejected$Number[rejected$Type==l]))){

model.garch <- find.garch.fit(model , upt)
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diaggarch(model.garch , paste(’garch -diag -’, l, ’-’, n, ’.png’,

sep=’’))

plot(model.garch@sigma.t, type=’l’, ylab=’Conditional standard

deviation ’)

savePlot(paste(’garch -sigma -’, l, ’-’,n, ’.png’), ’png’)

rejected$garch.p[rejected$Type == l & rejected$Number == n] =

model.garch@fit$series$order[[’p’]]

rejected$garch.q[rejected$Type == l & rejected$Number == n] =

model.garch@fit$series$order[[’q’]]

rejected$garch.aic[rejected$Type == l & rejected$Number == n] =

transform_aic(model.garch@fit$ics[[’AIC’]]*length(upt), orig)

simmed <- simgarch(model.garch , length(upt)*10)

tryCatch(plotassessfit(orig , fromreal(simmed), paste(’garch -acf -’

, l, ’-’, n, ’.png’,sep=’’), paste(’garch -qq-’, l, ’-’, n, ’.png’, sep=’’)),

error =function(e) print(e))

}

}

}

An example of the diagnostic plots for an ARMA−GARCH model is shown in Figure

4.18. This figure is based on the same machine as Figure 4.9. The main difference

between these plots is that Figure 4.18 is based on the standardised residuals. These

are given by rt
σ̂t

, i.e. they are the ordinary residuals divided by their estimated standard

deviation. If the fit is acceptable, the diagnostic plots should behave the same as those

for an ARMA model[136]. In this particular case, since the ARMA fit was acceptable,

the ARMA−GARCH fit is not substantially better.

In our previous discussion of ARMA fits, we discussed how the variance appeared to

change over time for machine OP-110-0, as well as some machines that showed a similar

pattern. In theory, ARMA-GARCH models should be able to provide more satisfactory

fits for these machines.

Figure 4.19 contains the diagnostic plots for the ARMA-GARCH fit of OP110-0. As

before, most of the plots are satisfactory. The plot of the residuals versus time is

substantially better than for an ARMA fit, although it still appears to show some residual

change in variance over time. This suggests that perhaps including higher-order GARCH

terms may be valuable for this series. For a number of other machines, the picture is

the same as for OP110-0, i.e. the ARMA-GARCH model provides some improvement

but does not necessarily generate a perfect fit.

In other cases, the ARMA-GARCH model allows the model to compensate somewhat for

data anomalies. An example of this is machine OP80-4, whose diagnostic plot is shown

in Figure 4.20. The corresponding plot for an ARMA model is shown in Figure 4.21

Comparing the two figures, the anomalous residuals near the end of the series are less

apparent in the GARCH version and the residual versus fitted value plot looks somewhat

better. However, the GARCH terms were unable to fully capture the anomaly in the

data.
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Figure 4.18: An example diagnostic plot for an ARMA-GARCH fit

Figure 4.19: ARMA-GARCH diagnostic plots for machine OP110-0
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Figure 4.20: ARMA-GARCH diagnostic plots for machine OP80-4

Figure 4.22: Conditional standard deviation for machine OP80-4
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Figure 4.21: ARMA diagnostic plots for machine OP80-4

Another way to assess whether GARCH terms are having a significant impact on the

model is to plot the conditional standard deviation of each observation. In an ARMA

model without GARCH terms, this would be a constant. Significant changes in this

value therefore indicate that the GARCH terms are substantially affecting the model.

Figures 4.22 and 4.23 show the conditional standard deviation for machines OP80-4 and

OP110-0, respectively. The plot for OP80-4 shows that the standard deviation varies

over the entire series, not only in the anomaly near the end. This suggests that the

GARCH model is having an impact beyond just compensating for the anomalous data

at the end of the series. For OP110-0, the standard deviation varies more smoothly,

with some periods having substantially lower standard deviation.

To provide a more objective comparison between ARMA and ARMA-GARCH fits for

the uptime data, we can consider the AIC value of each model. For 57 of the 77 machines

we fitted the models to, the AIC of the ARMA-GARCH model was lower, indicating the

GARCH terms improved the fit. In many cases, the improvement in AIC was small, but

some machines showed more significant improvements. Diagnostic plots for all machines

are provided for reference in Appendix B.

In all, both the AIC comparison and the diagnostic plots show that adding GARCH

terms to the ARMA models can improve the fit to Ford’s uptime data. Though the
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Figure 4.23: Conditional standard deviation for machine OP110-0

improvement in fit is small, some of the diagnostic plots we obtained suggest that higher-

order GARCH terms might improve this situation.

The fitting results for ARMA-GARCH model and the AIC for both ARMA and ARMA-

Garch models are illustrated in Table 4.1.

Table 4.1: Selected model order (p, q, r and s) and AIC for

ARMA and ARMA-GARCH fits

Type Machine P Q R S ARMA AIC GARCH AIC

OP10 3 1 1 1 0 38204 38208

OP 170 SCR 0 3 2 1 1 111887 111879

OP20 4 2 2 1 1 44903 44895

OP 70 6 2 2 1 1 67278 67277

OP20 10 3 1 1 2 58001 57992

OP10 6 4 1 1 1 47863 47856

DAG0160 0 1 1 1 2 7858 7856

OP 40 0 1 1 1 0 22225 22230

OP120 2 2 2 1 1 95997 95988

OP10 2 1 2 1 1 26967 26957

OP20 1 6 4 1 2 36846 36846

Continued on next page
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Table 4.1 – Continued from previous page

Type Machine P Q R S ARMA AIC GARCH AIC

OP 140 0 2 4 1 1 31583 31568

OP170 LEAK 0 2 2 1 0 118374 118373

OP20 5 3 1 1 1 48802 48765

OP 125 0 1 2 1 0 91994 91975

OP20 8 3 2 1 1 49855 49843

OP10G 0 1 1 2 1 38220 38205

OP20 6 3 3 1 1 63717 63654

OP130 2 1 2 1 2 35789 35757

OP 150 0 3 3 1 1 33447 33445

OP20 9 3 1 1 0 32042 32042

OP 160 0 1 3 1 1 65133 65073

OP 45A 0 1 1 1 1 26753 26749

OP 10A 0 1 1 1 1 93780 93761

OP20 11 2 2 1 1 74371 74343

OP10A-30AG 0 1 1 1 0 64588 64590

OP130G 0 1 1 1 0 63336 63335

OP130 1 3 1 1 1 32649 32634

OP10 4 3 2 1 0 32315 32320

OP20 2 2 2 1 1 54014 53991

OP 100 2 3 1 1 0 18750 18738

OP20G 0 2 1 1 1 65548 65550

OP20 12 3 2 1 1 40432 40408

OP20 7 4 4 2 1 45235 45239

OP100G 0 3 1 2 1 71513 71497

OP20 3 3 3 1 0 41068 41069

OP 110 0 3 1 1 1 39559 39549

OP 135 0 6 0 1 1 86981 86970

OP 30A 0 1 1 1 1 27315 27310

OP70 8 1 3 1 1 63160 63155

OP80 9 3 3 1 0 47981 47984

OP70 5 2 2 1 0 59973 59973

OP70 10 3 2 1 2 68788 68779

OP90 2 3 2 1 1 71787 71786

OP80 5 3 1 1 0 53409 53416

OP80G 0 1 1 1 0 49306 49306

OP30-40G 0 1 4 1 0 32408 32414

OP45-50C 0 3 1 2 1 72207 72202

OP90 9 1 2 1 2 91766 91761

OP80 1 2 2 1 0 46251 46249

Continued on next page
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Table 4.1 – Continued from previous page

Type Machine P Q R S ARMA AIC GARCH AIC

OP90 4 2 2 1 2 92467 92448

OP55 0 4 0 1 1 29828 29820

OP70 4 3 1 1 2 88706 88699

OP90 5 2 2 1 1 75329 75323

OP90 1 2 2 1 1 75707 75699

OP70 3 3 3 1 1 55014 55010

OP90 8 2 2 1 2 86907 86884

OP80 6 2 2 1 0 47405 47407

OP70 7 2 2 1 1 104101 104071

OP70 12 3 1 1 2 91447 91433

OP90 6 3 1 1 1 98229 98199

OP80 2 3 3 2 1 42948 42952

OP90G 0 2 2 1 2 97238 97194

OP70 2 2 2 1 1 84757 84728

OP80 7 2 2 1 0 50823 50825

OP90 10 3 1 1 1 82300 82300

OP70 9 2 2 1 1 84415 84368

OP80 3 3 1 2 1 43519 43511

OP80 8 3 1 2 1 47125 47125

OP70G 0 1 3 1 1 71183 71185

OP90 7 3 1 1 1 83292 83287

OP90 12 3 1 1 1 82112 82109

OP80 10 3 2 2 1 44993 45002

OP80 4 9 0 1 2 140610 140517

OP90 3 3 2 1 1 80999 81005

OP50 BLTRD 0 3 1 1 1 85899 85879

OP70 1 2 2 1 1 77430 77416

4.5.5 Generating uptimes from an ARMA-GARCH model

As with ARMA models previously, we will now consider how we may generate uptimes

from an ARMA-GARCH model. This allows Ford to use these models in simulation.

The method presented here is that used in R’s fGarch package[133].

Before we can start simulating from the model, we need to compute suitable initialisation

values. The fGarch package uses the following approach to generate initial innovations

ε, standard deviations h and observations x, using the notation from (4.10).

1. Generate z according to a standard normal distribution.
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2. Set h = γ0
1−

∑s
i=1 γi−

∑r
i=1 δi

3. Set ε =
√
hz

4. Set y = µ
1−

∑p
i=1 βi

Given the initialisation values above, the conditional standard deviation at time t, ht,

the innovation εt and the observation yt are generated as follows:

ht = γ0 +
s∑
i=1

γiε
2
t−i +

r∑
i=1

δiht−i (4.15)

εt =
√
htzt (4.16)

yt = µ+

p∑
i=1

βiyt−i +

q∑
i=1

αiεt−i (4.17)

The equations above may be iterated as often as desired to generate the simulated

observations of the ARMA-GARCH process. As with an ARMA process, the initial

part of the sequence should be discarded. To obtain uptimes from the ARMA-GARCH

observations, we again invert the data transformation.

4.6 Conclusion

In this chapter, we have discussed how ARMA models may be fitted to the uptimes of

Ford’s machines. For the vast majority of the machines, the ARMA models produce

quite reasonable fits.

In one exceptional case, the residuals appear to be non-symmetrically distributed. This

behaviour rules out ARMA models and any other models with symmetric error distri-

butions.

For other machines, such as OP110-0, the residuals do appear to be symmetric, but their

variance may change over time. In an attempt to improve these fits, we discussed fitting

ARMA-GARCH models to Ford’s data. In general, this led to a small improvement

in the quality of fit. However, some of the diagnostic plots we obtained suggest that

higher-order GARCH terms might lead to even better fits.





Chapter 5

Modelling uptimes using a

Markov-Modulated Poisson

Process

5.1 Introduction

In this chapter, we consider a different view of machine uptimes based on a Markov-

Modulated Poisson Process (MMPP). In an MMPP, machine breakdowns occur with a

finite number of different rates. This allows us to directly model machines that have high

or low breakdown rates that vary over time. The change in breakdown rates over time

also leads to positive autocorrelation between uptimes, as we have observed in Ford’s

data.

In the next section, we begin by reviewing the definition of the MMPP and some of its

uses in the literature. We also consider how an MMPP may be fitted to an observed

series of uptimes.

Thereafter, we apply the MMPP to Ford’s data and discuss the results.

The chapter concludes with a brief summary of the MMPP, fitting MMPPs and our

results in applying MMPPs to Ford’s data.

5.2 The Markov-Modulated Poisson Process

5.2.1 Definition of the Markov-Modulated Poisson Process

The Markov-modulated Poisson process(MMPP) is an extension of the Poisson process,

where the arrival rate varies between a finite number of possible values. As the MMPP

85
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is related to several other types of arrival processes and Markov Models, we will begin

by briefly recalling these. Thereafter, we will define the MMPP itself and discuss its

applications.

Counting Process A stochastic process {N(t), t ≤ 0} is a counting process if N(t)

represents the total number of events that have occurred up to time t. A counting

process N(t) must satisfy the following conditions[12]:

• N(t) ≥ 0;

• N(t) is integer valued;

• If s < t, then N(s) ≤ N(t);

• For s < t, N(t) − N(s) equals the number of events that have occurred in the

interval (s, t].

Counting processes have been used to model arrivals, which are the occurrences of some

types of events. For example, N(t) is the number of customers who arrive at a shop by

time t. Figure 5.1 shows a possible sample path of a counting process, where T1, T2, T3

that represent the arrival times are the only sources of randomness.

1

2

3

4

T1 T2 T3

t

N(t)

Figure 5.1: A sample path of a counting process

One of the most widely-used counting process is the Poisson process, which is usually

used in cases where the occurrences of events appear to happen at a certain rate, but

still at random. For instance, we know that the number of car accidents that happen in

an area has a rate of 3 per month. Other than this information, the exact time of an

accident is completely unknown. A Poisson process is defined as follows.
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Poisson Process The counting process {N(t), t ≥ 0} is a Poisson process with rate

λ, λ > 0 provided that the following axioms hold [12][30]:

• N(0) = 0

• for any t, s ≥ 0, Nt+s −Nt is independent of {Nu;u ≤ t};

• The number of events in any interval of length t is Poison distributed with mean

λt. That is, for any t, s ≥ 0,

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
, n = 0, 1, . . . (5.1)

The Poisson processes are suitable to model many counting phenomena, but they are

insufficient in some cases because the assumption of a deterministic arrival rate is

unrealistic[19]. For instance, in financial data, people tend to observe bursts of trading

activities followed by periods of quite activities[37]. Therefore, there is a non-constant

behavior for the number of activities, and the Poisson model may not be suitable to

model such a phenomena.

Cox[32] introduced the idea of doubly stochastic Poisson process, and it is studied in

detail by Bartlett [10]. A doubly stochastic Poisson process is a generalization of a

Poisson process where the arrival rate itself is a stochastic process. The aim of such

a generalization is to allow an external process, which is called information process to

influence the intensity of the occurrences of arrivals. A doubly stochastic process is also

known as a Cox process, and is defined as follows.

Doubly Stochastic Poisson Process {N(t), t ≥ 0} is a doubly stochastic Poisson

process with intensity process {λ(t, x(t)), t ≥ 0} if for almost every given path of the

process {x(t), t ≥ 0} , N{.} is a Poisson proses with intensity function {λ(t, x(t)), t ≥ 0}.
In other words, {N(t), t ≥ 0} is conditionally a Poisson process with intensity function

{λ(t, x(t)), t ≥ 0} given {x(t), t ≥ 0}[52].

As in Grandell[52], the process {x(t), t ≥ 0} in many applications conveys useful infor-

mation. Therefore, {x(t), t ≥ 0} is called the information process. In simple cases, the

information process is a finite collection of random variables independent of time. The

applications of the doubly stochastic Poisson process are diverse when the parameters

of interests are modeled as random variables instead of unknown but not random.

The Markov-Modulated Poisson Process (MMPP) is a special case of the doubly-stochastic

Poisson process. In an MMPP, the information process x(t) is a Markov process. Before

we define the MMPP itself, we will briefly review Markov processes. The definition of a

Markov process is taken from [30].
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Markov Processes Let S be a finite set of possible states. A Markov Process is a

stochastic process Xt, such that, for all t, s ≥ 0 and j ∈ S:

P (Xt+s = j|Xu;u ≤ t) = P (Xt+s = j|Xt) (5.2)

Intuitively, the value Xt captures all the information about the process up to and in-

cluding time t. In general, the right-hand side of (5.2) may depend on t. We will assume

that this is not the case, and (5.2) may be rewritten as (5.3). Markov processes with

this property are said to be time-homogeneous.

P (Xt+s = j|Xt = i) = Ps(i, j) (5.3)

The function Ps(i, j) defines a specific Markov process. A Markov Process may also

be defined using a matrix of transition rates, called the generator of the process. The

generator Q has the following properties:

1. Qii = −λi, where λi is the rate at which the process leaves state i

2. Qij = λiP (i, j), where P (i, j) is the probability that the process jumps in one step

from state i to state j

Markov-Modulated Poisson Process A Markov-Modulated Poisson Process(MMPP)

is a doubly-stochastic Poisson process, whose information process is an m-state irre-

ducible Markov process X(t) [16]. Since X(t) can take a finite number of values, the

MMPP can be viewed as switching between a finite number of Poisson processes, based

on the Markov process [43]. Whenever X(t) = i, that is, the Markov process is in state

i, arrivals occur with the associated rate λi. In this chapter, we will assume that the

MMPP is defined by the generator matrix Q of its Markov process and the arrival rates

λ.

The MMPP can also be seen as a Hidden Markov Model[51] where the the state is

not directly visible, but the output, which are the event times that depend on the

states, are visible. Expressing an MMPP as a Hidden Markov Model allows methods for

the Hidden Markov Models to be used for calculating likelihood and estimating model

parameters[16].

The application of the MMPP is mainly in queuing theory. For instance, Du[41] models

the arrival process of a single-server queue as a three-level MMPP. Other authors, such

as Latouche and Ramaswami[73], Lucantoni et al.[85], and Lucantoni[84] provide algo-

rithms to solve the MMPP/G/1 queue to derive the queue statistics of interest. There are

other interesting applications of the MMPP. Scott[119] uses a two-state MMPP to model



Chapter 5 Modelling uptimes using a Markov-Modulated Poisson Process 89

fraud committed by a criminal on the telephone network. Davison and Ramesh[38] ap-

ply an MMPP to model the times of exposures to air pollution at a number of receptors

in Western Europe.

5.2.2 Fitting an MMPP

We will now consider how an MMPP may be fitted to observed data. The method

discussed here is based on the maximum-likelihood estimator (MLE). As shown by Rydén

[113], the MLE is a consistent estimator for the MMPP.

The main difficulty in implementing the MLE for an MMPP is that the likelihood

involves the state of the hidden markov chain, which must be integrated out. This leads

to a difficult to maximise likelihood function. To avoid this problem, Rydén[113][114]

proposed using EM algorithms to obtain the MLE.

Before we discuss the details of Rydén’s EM algorithm from [114], we will very briefly re-

view the general scheme of an EM algorithm. Consider a statistical model parameterised

by the parameters φ and the likelihood function L(φ; y). Suppose further that there ex-

ist hidden variables X, whose values are x, that we cannot observe. Let Lc(φ; y, x) be

the complete likelihood, that is, the likelihood function including the hidden values x.

To find the maximum of L, an EM algorithm proceeds as follows. First, we pick starting

values φ0. Then, we iterate, replacing φ0 by φ̂, given by (5.4). As mentioned by Rydén

[114], L(φ̂; y) ≥ L(φ0; y).

φ̂ = argmaxφQ(φ;φ0) (5.4)

Q(φ;φ0) = Eφ0 (logLc(φ; y,X)|y) (5.5)

In the literature, evaluating (5.5) is known as the E-step of the algorithm and maximising

(5.4) is known as the M-step. According to Rydén[114], the M-step often has a closed-

form solution, while maximising the likelihood L directly is difficult.

To state Rydén’s EM algorithm for an MMPP, we require some more notation. First, let

Q be the generator of the MMPP’s hidden chain, and assume the MMPP has r states.

Furthermore, let λi be the arrival rate in state i, and let Λ = diag{λ1, λ2, . . . , λr}. The

parameter space for the MMPP is given by Φ = {(Q,Λ) : Q is irreducible and λi >

0 for at least one i}.

Next, let f be the transition density matrix of the MMPP, viewed as a Markov-Renewal

process, given by (5.6). Then, the hidden Markov chain has transition matrix P , given

by (5.7). We denote the probability density π satisfying (5.8), by π(Q,Λ). Furthermore,

let F̄ (t) be an r×r matrix, whose ijth element is the probability that an MMPP starting
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in state i is in state j at time t and no arrivals occur in [0, t]. This matrix is given by

(5.9).

f(y) = exp{(Q− Λ)y}Λ (5.6)

P = (Λ−Q)−1Λ (5.7)

πP = π (5.8)

F̄ (t) = exp{(Q− Λ)t} (5.9)

Finally, for a particular sequence of uptimes y1, y2, . . . yn, let t0 = 0 and tk = y1+. . .+yk.

With the notation discussed above, one step of the EM algorithm is performed using

the pseudocode in Algorithm 2. In this algorithm, f and F̄ must be evaluated using the

parameters (Q0,Λ0). Further details of implementing this algorithm may be found in

[114].

Set L(0) = π0;
for k ← 1 to n do

Set L(k) = L(k − 1)f(yk);
end
Set R(n+ 1) = 1;
for k ← n to 1 do

Set R(k) = f(yk)R(k + 1);
end
for i← 1 to r do

Set Bi = 0;
for j ← 1 to r do

Set Aij = 0;
end

end
for k ← 1 to n do

Set Aij ← Aij + L(k − 1)
tk∫

tk−1

F̄ (t− tk−1)1i1Tj f(tk − t)dtR(k + 1);

Set Bi ← Bi + L(k)R(k + 1);

end
for i← 1 to r do

The new estimate λ̂i = Bi
Aii

for j ← 1 to r, such that i 6= j do

Update the estimates q̂ij = q0ij
Aij

Aii

end

end
Algorithm 2: Rydén’s[114] EM algorithm for the MLE of an MMPP
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5.3 Fitting MMPPs to Ford’s data

We will now consider how an MMPP may be fitted to the uptimes of Ford’s machines.

For each machine, we obtain the sequence of its uptimes and view a machine breakdown

as an arrival. In this way, a machine may be viewed as an arrival process.

To fit an MMPP to the interarrival sequence, we have used the R package HiddenMarkov,

which implements Rydén’s[114] EM algorithm. The EM algorithm was initialised using

the method of Deng and Mark[39]. To select the order of the MMPP, model selection as

performed using AIC, choosing an order between 2 and 10. The R code implementing

these methods is seen below.

library(’HiddenMarkov ’)

window.smooth <- function(x, r){

res <- c()

for(i in 1: length(x)){

if(i < r+1){

nxt <- sum(x[1:i])/i

} else if(i < length(x) - r){

nxt <- sum(x[(i-r):(i+r)])/(2*r+1)

} else {

nxt <- sum(x[(i-r):( length(x))])/(length(x) - i + r + 1)

}

res <- c(res , nxt)

}

res

}

box.range <- function(x, N){

m <- min(x)

M <- max(x)

m + (0:N)*(M - m)/N

}

cluster.range.iter <- function(y, b){

totals <- vector(mode="numeric", length(b) -1)

counts <- vector(mode="numeric", length(b) -1)

for(k in 2:( length(b))){

in_bounds <- y >= b[k-1] & y < b[k]

counts[k-1] <- sum(in_bounds)

totals[k-1] <- sum(y[in_bounds ])

}

next_b <- b

numer <- totals [1:( length(totals) -1)] + totals [2: length(totals)]

denom <- counts [1:( length(counts) -1)] + counts [2: length(counts)]

next_b[2:( length(b) -1)] <- numer/denom

next_b

}

cluster.range <- function(y, N, tol=1e-3) {

b <- box.range(y, N)

while(T){

next.b <- cluster.range.iter(y,b)

if(sum(abs(next.b - b) < tol))

break;
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}

next.b

}

stationary <- function(Q, lambda){

Lambda <- diag(lambda)

P <- solve(Lambda - Q, Lambda)

A <- rbind(diag(length(lambda)) - t(P), 1)

x <- c(vector(mode="numeric", length(lambda)), 1)

qr.solve(A, x)

}

params.from.range <- function(y, b){

N <- length(b) - 1

assignments <- vector(mode="numeric", length(y))

lambda <- vector(mode="numeric", N)

Q <- matrix(0, N,N)

for(i in 1:N){

in.i <- y >= b[i] & y < b[i+1]

assignments[in.i] <- i

lambda[i] <- sum(in.i) / sum(y[in.i])

}

truncy <- y[1:( length(y) -1)]

truncated <- assignments [1:( length(y) -1)]

shifted <- assignments [2: length(y)]

for(i in 1:N){

for(j in 1:N){

if(i != j){

in.scope <- truncated == i & shifted == j

Q[i,j] <- sum(in.scope)/sum(truncy[in.scope ])

}

}

Q[i,i] <- -sum(Q[i,])

}

delta <- tryCatch(stationary(Q, lambda), error = function (e){rep.int (1.0/

length(lambda),length(lambda))})

list(lambda = lambda , Q = Q, delta = delta)

}

mmppfit <- function(upt , k){

supt <- window.smooth(upt , 2)

b <- cluster.range(supt , k)

parms <- params.from.range(supt , b)

m0 <- mmpp(cumsum(upt), parms$Q, parms$delta , parms$lambda , F)

bwc <- bwcontrol(prt=F)

BaumWelch(m0, bwc)

}

for(l in levels(rejected$Type)){

max.n <- max(rejected$Number[rejected$Type==l])

if(max.n >= 0){

for( n in 0:( max(rejected$Number[rejected$Type==l]))){

upt <- get.machine(durs , l, n)

if(length(upt) > 1){

min.AIC <- Inf

best.model <- 0

for( order in 2:max.mmpp){

model <- tryCatch(mmppfit(upt , order), error= function(e)

list(LL=-Inf))

aic <- 2*order ^2 - 2*model$LL
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if(aic < min.AIC){

min.AIC <- aic

rejected$MMPPorder[rejected$Type == l & rejected$Number

== n] <- order

rejected$MMPPaic[rejected$Type == l & rejected$Number ==

n] <- aic

best.model <- model

}

}

best.model$delta <- best.model$delta / sum(best.model$delta)

simmed <- simulate(best.model , nsim =10*length(upt))

sim.upt <- simmed$tau[2: length(simmed$tau)] - simmed$tau [1:(

length(simmed$tau) -1)]

plotassessfit(upt , sim.upt , paste(’mmpp -acf -’, l, ’-’, n, ’.png’,

sep=’’),

paste(’mmpp -qq -’, l, ’-’, n, ’.png’, sep=’’))

realified <- cliptoreal(sim.upt)

plotassessfit(toreal(upt),

realified ,

paste(’mmpp -acf -trans -’, l, ’-’, n, ’.png’, sebcop=

’’),

paste(’mmpp -qq -trans -’, l, ’-’, n, ’.png’, sep=’’))

}

}

}

}

Listing 5.1: Fitting MMPPs in R

To illustrate the EM algorithm’s behaviour, we will now briefly look at its convergence

in one particular case, machine OP130.1. In this example, we will use an MMPP with 2

states. Figure 5.2 shows the log-likelihood of the MMPP versus the number of iterations

performed. Figure 5.3 shows the arrival rates of the Poisson process in the two states.

Both figures indicate that the method makes rapid progress initially, but takes many

iterations for the convergence criterion to be met. This suggests that computational

effort may be saved by relaxing the convergence criterion, as many of the iterations

performed have little effect.

For Ford’s machines, the procedure discussed above chose MMPP orders of 2 or 3 only,

never using a larger MMPP. This could indicate that the larger MMPPs do not provide

a significant enough improvement in the fit to justify their extra parameters. However,

it is equally possible that the EM algorithm failed to find the maximum of the likelihood

for larger models.

To assess the quality of the MMPP’s fit to the uptime data, we will consider a series of

diagnostic plots. Unlike with ARMA models, there is no suitable notion of a “residual”

for an MMPP. As such, the diagnostic plots available are somewhat limited. The plots

we will use are based on simulating a long sequence of uptimes from the fitted MMPP.

For all the plots we will consider, we’ve taken a “long” sequence to mean ten times as

long as the observed uptime series.
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Figure 5.2: Log-likelihood of the MMPP versus the number of EM iterations per-
formed, for machine OP130-1, using a 2-state MMPP

Figure 5.3: Estimated arrival rates of the MMPP versus the number of EM iterations
performed, for machine OP130.1, using a 2-state MMPP
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The first plot we use is an autocorrelation plot, as shown in Figure 5.4. In this figure,

the black line is the sample autocorrelation of the original sequence. The blue line is

estimated from the simulated uptimes. If the MMPP fits the data well, we’d expect the

blue line to be similar to the black line, but somewhat smoother. In this particular case,

the fit looks quite reasonable.

Figure 5.4: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP70-4

The second plot we use is a QQ-plot of the uptimes from the original data against the

simulated uptimes. This plot allows us to check whether the model reproduces a similar

distribution of uptimes. An example of this plot is shown in Figure 5.5. In this figure,

we’d expect to see the dots, representing the data, to match the black line if the fit is

perfect. In this particular case, the data matches the line reasonably well.

We will now consider a number of machines and assess the fit of the MMPP for them, us-

ing the diagnostic plots explained above. In the analysis, we will consider only machines

where the ARMA fits were unsatisfactory.

The first machine we consider is OP90G-0. The diagnostic plots in Figures 5.6 and 5.7

look satisfactory. That said, there are some outliers in the QQ plot that suggests the

model may not be able to capture the extremes of the data’s tail behaviour.

Next, we consider machine OP80G-0, whose diagnostic plots are given in Figures 5.8 and

5.9. The ACF plot looks reasonable enough, but the QQ plot shows significant deviation
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Figure 5.5: QQ-plot of simulated versus observed uptimes for machine OP70-4

Figure 5.6: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP90G-0
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Figure 5.7: QQ-plot of simulated versus observed uptimes for machine OP90G-0

Figure 5.8: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP80G-0
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Figure 5.9: QQ-plot of simulated versus observed uptimes for machine OP80G-0,
based on the MMPP

Figure 5.10: QQ-plot of simulated versus observed uptimes for machine OP80G-0,
based on an ARMA-GARCH model
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Figure 5.11: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP80-4

in the tail. Comparing this figure to the same plot for a series simulated for an ARMA

model, Figure 5.10, shows that the MMPP captures the observed distribution far better

than the ARMA model.

For the next machine, OP80-4, Figures 5.11 and 5.12 show that again, the MMPP

captures the ACF reasonably well, but the distribution’s tail behaviour is not captured

as well. As can be seen in Figures 5.13 and 5.14, the same is true for machine OP55-0.

Next, we consider machine OP20-5. For this machine, the ACF plot, Figure 5.15 shows

the MMPP understates the autocorrelation. However, this does not appear to affect

the fit to the distribution, as shown in Figure 5.15. The corresponding plots for an

ARMA model, Figures 5.17 and 5.18, show that the ARMA model also understates the

autocorrelation. Moreover, the ARMA model’s fit to the distribution is substantially

worse than the MMPP’s.

Finally, we consider machine OP130-1, whose diagnostic plots are shown in Figures 5.19

and 5.20. These plots look rather similar to those for OP20-5 and show similar behaviour

for the MMPP.

The diagnostic plots shown above indicate that the MMPP generally captures the au-

tocorrelation of the uptimes reasonably well and tends to capture the distribution of

uptimes better than an ARMA model. However, the comparison so far has been rather
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Figure 5.12: QQ-plot of simulated versus observed uptimes for machine OP80-4

Figure 5.13: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP55-0



Chapter 5 Modelling uptimes using a Markov-Modulated Poisson Process 101

Figure 5.14: QQ-plot of simulated versus observed uptimes for machine OP55-0

Figure 5.15: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP20-5, for an MMPP
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Figure 5.16: QQ-plot of simulated versus observed uptimes for machine OP20-5, for
an MMPP

Figure 5.17: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP20-5, for an ARMA-GARCH model
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Figure 5.18: QQ-plot of simulated versus observed uptimes for machine OP20-5, for
an ARMA-GARCH model

Figure 5.19: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP130.1
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Figure 5.20: QQ-plot of simulated versus observed uptimes for machine OP130.1

subjective. To provide a more objective comparison, we need to compare the AIC val-

ues of the MMPP to the ARMA and ARMA-GARCH models obtained in the previous

chapter. However, as the ARMA models were based on a data transformation, the AIC

values need to be adjusted. For this particular data transformation, a change of vari-

ables gives the adjustment (5.10), where AICARMA is the AIC of the ARMA model

on transformed data. Here, yi is the ith uptime and a and b are the lower and upper

thresholds used in removing outliers, respectively.

AIC = AICARMA − 2
n∑
i=1

log

(
b− a

(yi − a)(b− yi)

)
(5.10)

For the uptimes of Ford’s machines, (5.10) is almost always smaller than the AIC of

the MMPP. The exceptions are machines OP130-1 and OP55. This indicates that while

the diagnostic plots indicate the MMPP may capture some of the uptimes’ behaviour

better than an ARMA or ARMA-GARCH model, this does not necessarily result in a

lower AIC value. For reference, fitting results are in Table 5.1, and diagnostic plots for

all machines are provided in Appendices C.
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Table 5.1: Selected model order and AIC for MMPP fits

Type Machine Order AIC

OP10 3 3 38275

OP 170 SCR 0 3 113679

OP20 4 2 45937

OP 70 6 3 68355

OP20 10 2 59154

OP10 6 2 48421

DAG0160 0 2 8024

OP 40 0 3 22301

OP120 2 2 98644

OP10 2 2 27430

OP20 1 2 37281

OP 140 0 2 31702

OP170 LEAK 0 2 120616

OP20 5 3 50059

OP 125 0 2 93025

OP20 8 2 50783

OP10G 0 2 38689

OP20 6 3 65002

OP130 2 2 35979

OP 150 0 3 33797

OP20 9 2 32349

OP 160 0 3 66065

OP 45A 0 2 27278

OP 10A 0 2 94745

OP20 11 3 75918

OP10A-30AG 0 3 65678

OP130G 0 3 63593

OP130 1 2 32442

OP10 4 2 32485

OP20 2 2 55219

OP 100 2 2 18919

OP20G 0 3 66501

OP20 12 2 41295

OP20 7 2 45909

OP100G 0 3 72695

OP20 3 2 41701

OP 110 0 3 40551

OP 135 0 2 88465

Continued on next page
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Table 5.1 – Continued from previous page

Type Machine Order AIC

OP 30A 0 2 27818

OP70 8 2 64643

OP80 9 2 48683

OP70 5 2 61201

OP70 10 2 70302

OP90 2 3 73022

OP80 5 2 54569

OP80G 0 2 49548

OP30-40G 0 3 32630

OP45-50C 0 3 73223

OP90 9 3 93575

OP80 1 2 46979

OP90 4 2 94975

OP55 0 3 29801

OP70 4 3 90772

OP90 5 2 77245

OP90 1 3 77002

OP70 3 2 56018

OP90 8 2 88534

OP80 6 3 48028

OP70 7 2 106973

OP70 12 3 93498

OP90 6 3 100939

OP80 2 3 43418

OP90G 0 3 97637

OP70 2 3 86662

OP80 7 3 51647

OP90 10 2 84259

OP70 9 2 86724

OP80 3 3 44410

OP80 8 2 47955

OP70G 0 2 72267

OP90 7 2 85535

OP90 12 2 83975

OP80 10 3 45546

OP80 4 3 143337

OP90 3 2 82937

OP50 BLTRD 0 2 87217

Continued on next page
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Table 5.1 – Continued from previous page

Type Machine Order AIC

OP70 1 3 79517

5.4 Simulating MMPPs

In the previous section, we used simulated data from MMPPs to validate their fit to

Ford’s uptime data. Furthermore, Ford need to be able to generate simulated uptimes

to include MMPPs in their simulated production lines. We will now discuss how these

uptimes may be generated. The discussion here is based on the approach used by R’s

HiddenMarkov package. We split the generation process into the following parts:

1. Generating an initial state

2. Generating sojourn times in every state

3. Generating arrivals during the sojourn time

Initialising the simulation To initialise the simulation, we randomly generate a

starting state according to the stationary distribution of the MMPP’s hidden chain.

This gives us an initial state Y0 = k at time zero.

Generating sojourn times Whenever the MMPP moves to a particular state, we

need to generate the duration the MMPP will spend in this state. To do so, we use the

fact that −Qii is the total rate at which the hidden chain leaves state i. Therefore, if the

MMPP is in state Yi at time Xi, the time spent in state Yi is distributed Exp(−QYiYi).
Drawing from this distribution gives us the time the process will leave state Yi, as

Xi+1 = Xi+Exp(−QYiYi). The state Yi+1 may be drawn from the set of possible states,

with P (Yi+1 = j) =
QYij

−QYiYi
.

Generating arrivals during the sojourn time Having simulated the time the

MMPP will spend in state Yi, we need to generate the arrivals that will occur dur-

ing this time. To do so, we initialise Ti0 = Xi, and draw inter-arrival times Aij from

Exp(λi). Recursively, we set Tij = Ti(j−1) + Aij and draw inter-arrival times until

Tij > Xi+1. As long as Tij ≤ Xi+1, an arrival is generated at time Tij .
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5.5 Conclusion

In this chapter, we have discussed the application of Markov-Modulated Poisson Pro-

cesses (MMPPs) to the uptimes of Ford’s machines. We have also presented some model

diagnostics, which indicated that the MMPP generally captured the uptimes’ autocorre-

lation well and was substantially better than an ARMA model at capturing the uptimes’

distribution. However, comparing AIC values to those obtained for ARMA-GARCH

models in the previous chapter showed that, despite these advantages of the MMPP,

ARMA-GARCH models are still preferred in most cases. The exceptions, machines

OP130.1 and OP55, were particularly hard to fit with ARMA-GARCH models.

In all, our results indicate that the MMPP may be a good alternative to ARMA-GARCH

models if the distribution of the uptimes needs to be captured exactly. In addition, an

MMPP may provide a better fit, as measured by AIC, when an ARMA-GARCH model

fits poorly.



Chapter 6

Application to Simulation at Ford

6.1 Introduction

Previously, we discussed how the uptimes may be predicted for a single machine, using

either an ARMA-GARCH or an MMPP model. In this chapter, we discuss how this

technique may be used in the context of a large-scale simulation model of a real-world

production line, as used at Ford.

A production line at Ford consists of multiple workstations. Each workstation has

either a single machine or a number of parallel machines. Workstations are connected

by conveyors in a complex network.

In the next section, we begin by discussing the role of uptimes in Ford’s current simula-

tion model. We then propose a method to extend this, using the simulation approaches

we have developed in Chapters 4 and 5. We conclude this chapter with a brief look at

how these changes may affect simulation modelling at Ford.

6.2 Uptimes in Ford’s model

To simulate a production line at Ford, the next time each machine will break down

needs to be generated. Currently, Ford do this by picking one of the machine’s observed

uptimes at random.

As discussed in previous chapters, we have written code to simulate an ARMA-GARCH

or MMPP model instead. Since each machine is modelled independently, this code can

be applied to each machine individually.

In all, the changes Ford would need to make to implement our models are as follows:
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1. First, Ford will need to fit models to their machines’ uptimes, selecting a suitable

ARMA-GARCH or MMPP model for each machine

2. Second, the parameters of these models will need to be included in the simulation

3. Third, in simulation, the state of the MMPP or the lagged values used in ARMA-

GARCH need to be tracked for each machine

4. Fourth, when generating an uptime for a machine, Ford should sample from the

MMPP or ARMA-GARCH, as discussed in past chapters.

6.3 The impact of our models on Ford’s simulation

At the time of writing, Ford have not yet made the changes suggested in the previous

section. As such, the impact of our models on Ford’s simulations is as yet unknown.

That said, we can briefly consider what this impact might be.

Both ARMA-GARCH and MMPP models allow us to model autocorrelated uptimes. In

Ford’s case, we have observed positive correlation between uptimes, indicating that short

uptimes tend to be followed by further short uptimes. In other words, machines tend

to break down repeatedly after short periods of work, effectively increasing the repair

time needed before the machine can work again. In turn, this could cause machines

that depend on the workstation’s output to become starved more often, in turn starving

other machines further down the line. Conversely, since long uptimes tend to be followed

by long uptimes, Ford are likely to see long periods without breakdowns, where the

production line is running efficiently.

6.4 Conclusion

In this chapter, we have briefly considered the changes Ford would need to make to

incorporate our models into their simulations. We have indicated that the changes

required are relatively modest and can be applied to machines individually, without

affecting the rest of the simulation model. Though we expect our models to change the

behaviour of the simulation, this cannot yet be confirmed as the required changes have

not yet been made.



Chapter 7

Conclusion

To conclude, we will now briefly review the main problem of the thesis and the contri-

butions of each chapter. In this thesis, we have discussed how Ford can model the times

between breakdowns of machines in a production line, without assuming that the times

are independent.

7.1 Obtaining uptimes from historical data

We began by considering the data Ford have available about their production line and

how it was obtained. We noted that various issues may cause problems with the data

collection process, leading to inaccurate data.

One of the main issues here was the presence of nonproductive periods, during which

the production line was not operational. As we assumed that machines should not break

down or be repaired during these times, the uptimes and downtimes need to be adjusted

to take them into account.

After adjusting the uptimes, we noted that a large number of them are unrealistically

small or large. This led us to exclude these outliers.

7.2 Detecting autocorrelation in uptimes

Second, we discussed how we may detect autocorrelation in the uptimes of Ford’s ma-

chines. In the course of this, we needed to solve two problems:

1. How can we test for autocorrelation in the uptimes of a single machine?
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2. Given the results of the tests for each machine, how can we decide which machines

show autocorrelation, such that we do not make an overly large number of Type I

errors?

To solve the first problem, we applied a Ljung-Box test [82]. This test allowed us to test

whether the autocorrelation for a given time series was non-zero at a number of lags

simultaneously.

Given the p-values of the Ljung-Box tests for all machines, we then needed to decide for

which machines we should reject the null hypothesis. This multiple comparison problem

can be solved in a number of ways, which we briefly reviewed. For the particular case

of Ford’s machines, we decided it may not be reasonable to assume the tests of different

machines are independent. As such, we applied a Holm-Bonferroni [62] correction to

compute adjusted p-values[132]. Comparing the adjusted p-values to the threshold of

0.05, we concluded that the uptimes are autocorrelated for most of Ford’s machines.

7.3 ARMA and ARMA-GARCH models of uptimes

We then turned to applying time series analysis to the uptimes. First, we applied ARMA

models to the uptimes. While, for many machines, these models provided an acceptable

fit, the residuals of some machines appeared to vary over time.

To model uptimes with variance changing over time, we added GARCH terms to the

ARMA models. The ARMA-GARCH models thus obtained provided a better fit for

the uptimes of most machines. However, some of the machines still appeared to have

residuals whose variance changed over time. For these machines, using higher-order

GARCH terms might lead to an improved fit.

For both ARMA and ARMA-GARCH models, we also provided a procedure to generate

uptimes using simulation.

7.4 Markov-Modulated Poisson Processes for uptimes

As an alternative to using ARMA and ARMA-GARCH models, we treated a sequence

of times between breakdowns as arrival times in an arrival process. This allowed us to

model the uptimes using a Markov-Modulated Poisson Process.

Using the EM algorithm of Rydén[114], we obtained fits of the MMPP to the uptimes

of each of Ford’s machines. Our fitting procedure chose MMPPs of order 2 and 3,

suggesting that higher-order MMPPs do not provide a sufficiently large improvement in

fit.
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Our diagnostic plots for MMPPs showed that they were generally better than ARMA

models at modelling the distribution of the uptimes. Despite this heuristic result, an

objective comparison using AIC showed that the ARMA and ARMA-GARCH models

are preferred in most cases.

As well as fitting MMPPs and providing diagnostics, we also provided a procedure to

simulate uptimes from the MMPP.

7.5 Conclusion and future work

In this thesis, we have considered a number of models Ford can use to model the corre-

lated times between breakdowns of their machines. These models enable Ford to improve

their simulations.

As discussed in a previous section, most manufacturing models to date have assumed

independence of all random variables in the system. In this thesis, we extend this

literature by studying autocorrelation in machine uptimes in detail. Our work focuses

on the practical aspects of detecting and modelling autocorrelated uptimes, as well as

including them in simulations.

Our first contribution is a practical procedure to detect autocorrelation in uptimes. The

procedure has very mild assumptions and compensates for the number of machines it is

applied to, ensuring that the probability of a Type I error is kept low.

Second, we provide two ways to model autocorrelated uptimes. The first, an extension

of the autoregressive and ARTA methods discussed previously, is to use ARMA models

including GARCH terms. We also provide a method based on the Markov-Modulated

Poisson Process, a special case of the Markov Arrival Process.

For both methods, we provide diagnostic plots and a quantitative way to select the most

appropriate model for a given series of uptimes. This allows us to automatically select

an appropriate model.

Finally, to enable Ford to use our methods in simulation, we provide a way to generate

simulated uptimes from each of our models.





Appendix A

Diagnostic plots for ARMA fits

Figure A.1: ARMA diagnostic plot for machine DAG0160-0
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Figure A.2: ARMA diagnostic plot for machine OP 100-2

Figure A.3: ARMA diagnostic plot for machine OP 10A-0
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Figure A.4: ARMA diagnostic plot for machine OP 110-0

Figure A.5: ARMA diagnostic plot for machine OP 125-0
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Figure A.6: ARMA diagnostic plot for machine OP 135-0

Figure A.7: ARMA diagnostic plot for machine OP 140-0
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Figure A.8: ARMA diagnostic plot for machine OP 150-0

Figure A.9: ARMA diagnostic plot for machine OP 160-0
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Figure A.10: ARMA diagnostic plot for machine OP 170 SCR-0

Figure A.11: ARMA diagnostic plot for machine OP 30A-0
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Figure A.12: ARMA diagnostic plot for machine OP 40-0

Figure A.13: ARMA diagnostic plot for machine OP 45A-0
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Figure A.14: ARMA diagnostic plot for machine OP 70-6

Figure A.15: ARMA diagnostic plot for machine OP10-1
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Figure A.16: ARMA diagnostic plot for machine OP10-2

Figure A.17: ARMA diagnostic plot for machine OP10-3
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Figure A.18: ARMA diagnostic plot for machine OP10-4

Figure A.19: ARMA diagnostic plot for machine OP10-5
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Figure A.20: ARMA diagnostic plot for machine OP10-6

Figure A.21: ARMA diagnostic plot for machine OP100G-0
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Figure A.22: ARMA diagnostic plot for machine OP10A-30AG-0

Figure A.23: ARMA diagnostic plot for machine OP10G-0
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Figure A.24: ARMA diagnostic plot for machine OP120-1

Figure A.25: ARMA diagnostic plot for machine OP120-2
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Figure A.26: ARMA diagnostic plot for machine OP130-1

Figure A.27: ARMA diagnostic plot for machine OP130-2
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Figure A.28: ARMA diagnostic plot for machine OP130G-0

Figure A.29: ARMA diagnostic plot for machine OP170 LEAK-0
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Figure A.30: ARMA diagnostic plot for machine OP20-1

Figure A.31: ARMA diagnostic plot for machine OP20-10
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Figure A.32: ARMA diagnostic plot for machine OP20-11

Figure A.33: ARMA diagnostic plot for machine OP20-12
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Figure A.34: ARMA diagnostic plot for machine OP20-2

Figure A.35: ARMA diagnostic plot for machine OP20-3
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Figure A.36: ARMA diagnostic plot for machine OP20-4

Figure A.37: ARMA diagnostic plot for machine OP20-5
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Figure A.38: ARMA diagnostic plot for machine OP20-6

Figure A.39: ARMA diagnostic plot for machine OP20-7
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Figure A.40: ARMA diagnostic plot for machine OP20-8

Figure A.41: ARMA diagnostic plot for machine OP20-9
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Figure A.42: ARMA diagnostic plot for machine OP20G-0

Figure A.43: ARMA diagnostic plot for machine OP30-40G-0
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Figure A.44: ARMA diagnostic plot for machine OP45-50C-0

Figure A.45: ARMA diagnostic plot for machine OP50 BLTRD-0
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Figure A.46: ARMA diagnostic plot for machine OP55-0

Figure A.47: ARMA diagnostic plot for machine OP70-1
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Figure A.48: ARMA diagnostic plot for machine OP70-10

Figure A.49: ARMA diagnostic plot for machine OP70-12
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Figure A.50: ARMA diagnostic plot for machine OP70-2

Figure A.51: ARMA diagnostic plot for machine OP70-3
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Figure A.52: ARMA diagnostic plot for machine OP70-4

Figure A.53: ARMA diagnostic plot for machine OP70-5
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Figure A.54: ARMA diagnostic plot for machine OP70-7

Figure A.55: ARMA diagnostic plot for machine OP70-8
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Figure A.56: ARMA diagnostic plot for machine OP70-9

Figure A.57: ARMA diagnostic plot for machine OP70G-0
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Figure A.58: ARMA diagnostic plot for machine OP80-1

Figure A.59: ARMA diagnostic plot for machine OP80-10
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Figure A.60: ARMA diagnostic plot for machine OP80-2

Figure A.61: ARMA diagnostic plot for machine OP80-3
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Figure A.62: ARMA diagnostic plot for machine OP80-4

Figure A.63: ARMA diagnostic plot for machine OP80-5



Appendix A Diagnostic plots for ARMA fits 147

Figure A.64: ARMA diagnostic plot for machine OP80-6

Figure A.65: ARMA diagnostic plot for machine OP80-7
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Figure A.66: ARMA diagnostic plot for machine OP80-8

Figure A.67: ARMA diagnostic plot for machine OP80-9
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Figure A.68: ARMA diagnostic plot for machine OP80G-0

Figure A.69: ARMA diagnostic plot for machine OP90-1



150 Appendix A Diagnostic plots for ARMA fits

Figure A.70: ARMA diagnostic plot for machine OP90-10

Figure A.71: ARMA diagnostic plot for machine OP90-12
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Figure A.72: ARMA diagnostic plot for machine OP90-2

Figure A.73: ARMA diagnostic plot for machine OP90-3
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Figure A.74: ARMA diagnostic plot for machine OP90-4

Figure A.75: ARMA diagnostic plot for machine OP90-5
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Figure A.76: ARMA diagnostic plot for machine OP90-6

Figure A.77: ARMA diagnostic plot for machine OP90-7
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Figure A.78: ARMA diagnostic plot for machine OP90-8

Figure A.79: ARMA diagnostic plot for machine OP90-9
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Figure A.80: ARMA diagnostic plot for machine OP90G-0
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Diagnostic plots for

ARMA-GARCH fits

Figure B.1: ARMA-GARCH diagnostic plot for machine DAG0160-0
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Figure B.2: ARMA-GARCH diagnostic plot for machine OP 100-2

Figure B.3: ARMA-GARCH diagnostic plot for machine OP 10A-0
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Figure B.4: ARMA-GARCH diagnostic plot for machine OP 110-0

Figure B.5: ARMA-GARCH diagnostic plot for machine OP 125-0
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Figure B.6: ARMA-GARCH diagnostic plot for machine OP 135-0

Figure B.7: ARMA-GARCH diagnostic plot for machine OP 140-0



Appendix B Diagnostic plots for ARMA-GARCH fits 161

Figure B.8: ARMA-GARCH diagnostic plot for machine OP 150-0

Figure B.9: ARMA-GARCH diagnostic plot for machine OP 160-0
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Figure B.10: ARMA-GARCH diagnostic plot for machine OP 170 SCR-0

Figure B.11: ARMA-GARCH diagnostic plot for machine OP 30A-0
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Figure B.12: ARMA-GARCH diagnostic plot for machine OP 40-0

Figure B.13: ARMA-GARCH diagnostic plot for machine OP 45A-0
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Figure B.14: ARMA-GARCH diagnostic plot for machine OP 70-6

Figure B.15: ARMA-GARCH diagnostic plot for machine OP10-1
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Figure B.16: ARMA-GARCH diagnostic plot for machine OP10-2

Figure B.17: ARMA-GARCH diagnostic plot for machine OP10-3
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Figure B.18: ARMA-GARCH diagnostic plot for machine OP10-4

Figure B.19: ARMA-GARCH diagnostic plot for machine OP10-5
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Figure B.20: ARMA-GARCH diagnostic plot for machine OP10-6

Figure B.21: ARMA-GARCH diagnostic plot for machine OP100G-0
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Figure B.22: ARMA-GARCH diagnostic plot for machine OP10A-30AG-0

Figure B.23: ARMA-GARCH diagnostic plot for machine OP10G-0
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Figure B.24: ARMA-GARCH diagnostic plot for machine OP120-1

Figure B.25: ARMA-GARCH diagnostic plot for machine OP120-2
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Figure B.26: ARMA-GARCH diagnostic plot for machine OP130-1

Figure B.27: ARMA-GARCH diagnostic plot for machine OP130-2
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Figure B.28: ARMA-GARCH diagnostic plot for machine OP130G-0

Figure B.29: ARMA-GARCH diagnostic plot for machine OP170 LEAK-0
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Figure B.30: ARMA-GARCH diagnostic plot for machine OP20-1

Figure B.31: ARMA-GARCH diagnostic plot for machine OP20-10
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Figure B.32: ARMA-GARCH diagnostic plot for machine OP20-11

Figure B.33: ARMA-GARCH diagnostic plot for machine OP20-12
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Figure B.34: ARMA-GARCH diagnostic plot for machine OP20-2

Figure B.35: ARMA-GARCH diagnostic plot for machine OP20-3
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Figure B.36: ARMA-GARCH diagnostic plot for machine OP20-4

Figure B.37: ARMA-GARCH diagnostic plot for machine OP20-5
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Figure B.38: ARMA-GARCH diagnostic plot for machine OP20-6

Figure B.39: ARMA-GARCH diagnostic plot for machine OP20-7
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Figure B.40: ARMA-GARCH diagnostic plot for machine OP20-8

Figure B.41: ARMA-GARCH diagnostic plot for machine OP20-9
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Figure B.42: ARMA-GARCH diagnostic plot for machine OP20G-0

Figure B.43: ARMA-GARCH diagnostic plot for machine OP30-40G-0
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Figure B.44: ARMA-GARCH diagnostic plot for machine OP45-50C-0

Figure B.45: ARMA-GARCH diagnostic plot for machine OP50 BLTRD-0
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Figure B.46: ARMA-GARCH diagnostic plot for machine OP55-0

Figure B.47: ARMA-GARCH diagnostic plot for machine OP70-1
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Figure B.48: ARMA-GARCH diagnostic plot for machine OP70-10

Figure B.49: ARMA-GARCH diagnostic plot for machine OP70-12



182 Appendix B Diagnostic plots for ARMA-GARCH fits

Figure B.50: ARMA-GARCH diagnostic plot for machine OP70-2

Figure B.51: ARMA-GARCH diagnostic plot for machine OP70-3
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Figure B.52: ARMA-GARCH diagnostic plot for machine OP70-4

Figure B.53: ARMA-GARCH diagnostic plot for machine OP70-5



184 Appendix B Diagnostic plots for ARMA-GARCH fits

Figure B.54: ARMA-GARCH diagnostic plot for machine OP70-7

Figure B.55: ARMA-GARCH diagnostic plot for machine OP70-8
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Figure B.56: ARMA-GARCH diagnostic plot for machine OP70-9

Figure B.57: ARMA-GARCH diagnostic plot for machine OP70G-0
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Figure B.58: ARMA-GARCH diagnostic plot for machine OP80-1

Figure B.59: ARMA-GARCH diagnostic plot for machine OP80-10
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Figure B.60: ARMA-GARCH diagnostic plot for machine OP80-2

Figure B.61: ARMA-GARCH diagnostic plot for machine OP80-3
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Figure B.62: ARMA-GARCH diagnostic plot for machine OP80-4

Figure B.63: ARMA-GARCH diagnostic plot for machine OP80-5
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Figure B.64: ARMA-GARCH diagnostic plot for machine OP80-6

Figure B.65: ARMA-GARCH diagnostic plot for machine OP80-7
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Figure B.66: ARMA-GARCH diagnostic plot for machine OP80-8

Figure B.67: ARMA-GARCH diagnostic plot for machine OP80-9
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Figure B.68: ARMA-GARCH diagnostic plot for machine OP80G-0

Figure B.69: ARMA-GARCH diagnostic plot for machine OP90-1
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Figure B.70: ARMA-GARCH diagnostic plot for machine OP90-10

Figure B.71: ARMA-GARCH diagnostic plot for machine OP90-12
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Figure B.72: ARMA-GARCH diagnostic plot for machine OP90-2

Figure B.73: ARMA-GARCH diagnostic plot for machine OP90-3
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Figure B.74: ARMA-GARCH diagnostic plot for machine OP90-4

Figure B.75: ARMA-GARCH diagnostic plot for machine OP90-5
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Figure B.76: ARMA-GARCH diagnostic plot for machine OP90-6

Figure B.77: ARMA-GARCH diagnostic plot for machine OP90-7
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Figure B.78: ARMA-GARCH diagnostic plot for machine OP90-8

Figure B.79: ARMA-GARCH diagnostic plot for machine OP90-9
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Figure B.80: ARMA-GARCH diagnostic plot for machine OP90G-0
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Diagnostic plots for MMPP fits

Figure C.1: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine DAG0160-0
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Figure C.2: QQ-plot of simulated and actual uptimes of MMPP fit for machine

DAG0160-0

Figure C.3: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 100-2
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Figure C.4: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

100-2

Figure C.5: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 10A-0
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Figure C.6: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

10A-0

Figure C.7: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 110-0
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Figure C.8: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

110-0

Figure C.9: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 125-0
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Figure C.10: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

125-0

Figure C.11: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 135-0
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Figure C.12: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

135-0

Figure C.13: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 140-0
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Figure C.14: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

140-0

Figure C.15: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 150-0
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Figure C.16: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

150-0

Figure C.17: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 160-0
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Figure C.18: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

160-0

Figure C.19: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 170 SCR-0
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Figure C.20: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

170 SCR-0

Figure C.21: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 30A-0
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Figure C.22: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

30A-0

Figure C.23: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 40-0
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Figure C.24: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

40-0

Figure C.25: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 45A-0
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Figure C.26: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

45A-0

Figure C.27: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 70-6
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Figure C.28: QQ-plot of simulated and actual uptimes of MMPP fit for machine OP

70-6

Figure C.29: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10-1
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Figure C.30: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10-1

Figure C.31: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10-2
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Figure C.32: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10-2

Figure C.33: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10-3



216 Appendix C Diagnostic plots for MMPP fits

Figure C.34: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10-3

Figure C.35: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10-4
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Figure C.36: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10-4

Figure C.37: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10-5
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Figure C.38: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10-5

Figure C.39: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10-6
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Figure C.40: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10-6

Figure C.41: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP100G-0
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Figure C.42: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP100G-0

Figure C.43: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP10G-0
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Figure C.44: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP10G-0

Figure C.45: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP120-1
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Figure C.46: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP120-1

Figure C.47: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP120-2
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Figure C.48: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP120-2

Figure C.49: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP130-1
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Figure C.50: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP130-1

Figure C.51: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP130-2
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Figure C.52: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP130-2

Figure C.53: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP130G-0
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Figure C.54: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP130G-0

Figure C.55: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP170 LEAK-0
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Figure C.56: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP170 LEAK-0

Figure C.57: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-1
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Figure C.58: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-1

Figure C.59: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-10
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Figure C.60: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-10

Figure C.61: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-11
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Figure C.62: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-11

Figure C.63: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-12
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Figure C.64: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-12

Figure C.65: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-2
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Figure C.66: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-2

Figure C.67: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-3
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Figure C.68: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-3

Figure C.69: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-4
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Figure C.70: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-4

Figure C.71: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-5
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Figure C.72: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-5

Figure C.73: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-6
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Figure C.74: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-6

Figure C.75: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-7
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Figure C.76: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-7

Figure C.77: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-8
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Figure C.78: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-8

Figure C.79: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20-9
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Figure C.80: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20-9

Figure C.81: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP20G-0
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Figure C.82: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP20G-0

Figure C.83: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP30-40G-0
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Figure C.84: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP30-40G-0

Figure C.85: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP45-50C-0
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Figure C.86: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP45-50C-0

Figure C.87: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP50 BLTRD-0



Appendix C Diagnostic plots for MMPP fits 243

Figure C.88: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP50 BLTRD-0

Figure C.89: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP55-0
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Figure C.90: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP55-0

Figure C.91: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-1



Appendix C Diagnostic plots for MMPP fits 245

Figure C.92: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-1

Figure C.93: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-10
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Figure C.94: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-10

Figure C.95: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-12
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Figure C.96: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-12

Figure C.97: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-2
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Figure C.98: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-2

Figure C.99: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-3
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Figure C.100: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-3

Figure C.101: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-4
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Figure C.102: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-4

Figure C.103: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-5
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Figure C.104: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-5

Figure C.105: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-7
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Figure C.106: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-7

Figure C.107: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-8
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Figure C.108: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-8

Figure C.109: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70-9
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Figure C.110: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70-9

Figure C.111: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP70G-0
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Figure C.112: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP70G-0

Figure C.113: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-1
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Figure C.114: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-1

Figure C.115: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-10
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Figure C.116: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-10

Figure C.117: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-2
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Figure C.118: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-2

Figure C.119: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-3
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Figure C.120: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-3

Figure C.121: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-4
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Figure C.122: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-4

Figure C.123: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-5
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Figure C.124: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-5

Figure C.125: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-6
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Figure C.126: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-6

Figure C.127: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-7
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Figure C.128: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-7

Figure C.129: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-8
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Figure C.130: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-8

Figure C.131: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80-9
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Figure C.132: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80-9

Figure C.133: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP80G-0
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Figure C.134: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP80G-0

Figure C.135: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-1
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Figure C.136: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-1

Figure C.137: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-10
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Figure C.138: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-10

Figure C.139: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-12
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Figure C.140: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-12

Figure C.141: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-2
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Figure C.142: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-2

Figure C.143: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-3
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Figure C.144: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-3

Figure C.145: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-4
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Figure C.146: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-4

Figure C.147: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-5
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Figure C.148: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-5

Figure C.149: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-6
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Figure C.150: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-6

Figure C.151: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-7
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Figure C.152: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-7

Figure C.153: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-8
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Figure C.154: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-8

Figure C.155: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90-9
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Figure C.156: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90-9

Figure C.157: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP90G-0
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Figure C.158: QQ-plot of simulated and actual uptimes of MMPP fit for machine

OP90G-0
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