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FACULTY OF SOCIAL AND HUMAN SCIENCES
MATHEMATICAL SCIENCES

Doctor of Philosophy

A Case Study on Modelling and Analysing Machine Breakdowns
by Shu Pan

Most manufacturing models to date have assumed independence of all random variables
in the system. In practice, autocorrelation effects are present in production lines time
series. In this thesis, we extend this literature by studying autocorrelation in machine
times to failure in detail. Our work focuses on the practical aspects of detecting and

modelling autocorrelated uptimes, as well as including them in simulations.

We apply a practical procedure to detect autocorrelation in uptimes. The procedure
has very mild assumptions and compensates for the number of machines it is applied to,

ensuring that the probability of a Type I error is kept low.

We then provide two ways to model autocorrelated times to failures. The first is to
use ARMA models including GARCH terms. We also provide a method based on the

Markov-Modulated Poisson Process, a special case of the Markov Arrival Process.

For both methods discussed above, we provide diagnostic plots and a quantitative way
to select the most appropriate model for a given series of uptimes. This allows us to

automatically select an appropriate model.

Finally, to enable Ford to use our methods in simulation, we provide a way to generate

simulated uptimes from each of our models.
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Chapter 1

Introduction

1.1 Motivation

Ford Motor Company builds and operates production lines that manufacture its cars.
To build cost-effective production lines, the company needs to test various designs of a
proposed production line in simulation. For these simulations to be accurate, a number

of aspects of the production line must be reflected in the simulation, for instance:

1. The time a machine can operate before breaking down
2. The time it takes to repair a machine

3. The time it takes a machine to produce a part

Ford have studied each of the aspects above. While their model is mostly satisfactory,
one of their primary current concerns is the first point, i.e. accurately modelling the

time between breakdowns for each machine in the production line.

Currently, Ford model the times between breakdowns as independent and identically
distributed (iid) random variables, by sampling from the empirical distribution. Their
main concern is that the independence assumption may not be valid. In this thesis, we
discuss how Ford may model the uptimes of their machines without assuming they are

iid.

1.2 Related work

In this section, we review related work in modelling manufacturing systems, the impact

of autocorrelation on manufacturing systems and ways that autocorrelation may be
modelled.

21
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1.2.1 Modelling Manufacturing Systems

A great number of literature has been generated in the area of modeling manufacturing
systems since the early 1950’s. A representative work in this area is Buzacott and
Hanifin[25], in which the authors introduce the definition of operation dependent failures
and time dependent failures. It also distinguishes the concepts between single station
failures and total line failures. Moreover, Buzacott and Hanifin[25] provide a simple way
to calculate the production rate under both time dependent and operation dependent

failures. The production line has no buffer in their study.

Due to the great deal of literature in this area, there are a number of review papers.
For instance, Perros[103] focuses on queuing networks with blocking and reviews a large
number of relevant papers on this area. Smunt and Perkins[124] are particularly inter-
ested in asynchronous flow lines with reliable machines. They provide a review for many
simulation papers in this area. A systematic description of the models, performance
measures and methods in this field can be found in Guen[53]. Other surveys that em-
phasise the recent approaches and results include Perros[105], Perros[102], Onvural[96],
and Dallery and Gershwin[36].

The models and results in the research of manufacturing systems have different features.

Some of the important features that distinguish between models are discussed below:

Synchronous and asynchronous systems The major class of models are divided
into asynchronous and synchronous models. In an asynchronous model, machines do not
have to start or stop processing at the same instant. The presence of buffers between
machines allows the machines to start and stop independently. Most real systems are
asynchronous systems, and asynchronous models form an important class in the liter-
ature. It is usually assumed that the operation times in an asynchronous model are

exponentially distributed.

In a synchronous system, machines have deterministic and equal processing times. More-
over, the machines start and stop at the same instant when they are not under repair. For

further details about the asynchronous and synchronous models, see Buzacott[24][26].

Reliable and unreliable machines The machines in the production line can be
either reliable or unreliable. However, in some cases, an unreliable machine can be
modelled as a reliable machine. Therefore, methods designed to model reliable machines
may also be used to model unreliable machines. Gaver[45] introduces the definition of
completion time for an unreliable machine, which is the time difference between the
instants of beginning and completion of the processing of a part. As such, the time
includes the actual processing time of a part and the repair times corresponding to the

failures that have occurred during the processing of the part.
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The idea of transforming an unreliable machine into a reliable machine is to replace
the completion time of an unreliable machine by the processing time of a reliable ma-
chine. The processing time of the reliable machine should be random and identical to
the completion time of the unreliable machine. Further discussion about the reliable
and unreliable machines can be found in Gaver[45], Bobbio and Trivedi[18], Sastry and
Awate[117], Liu and Buzacott[80], and Altiok[3].

Features of flow lines The major features of a flow line include blocking, starving,

processing, failures, and repairs. Some of the important features are discussed below.

e When the production line have limited buffers, blocking may occur. The defini-
tions for different types of blocking were first introduced by Altiok and Stidham|8].
As discussed in their work[8], two types of blocking mechanisms are of inter-
est in the manufacturing system: blocking-afer-service(BAS) and blocking-before-
service(BBS). In the BAS blocking[97][54], a finished part stays on the working
station until the downstream buffer has space. In a system with BBS blocking, a
machine cannot start processing a part if there is no space available in the down-
stream buffer. Most production lines operate under the BAS mechanism, and

hence that is what most authors assume.

e Processing time is the time required for a machine to complete a part on a working
station. It is also referred to as operation time or cycle time in the literature.
Usually, processing times at one machine and cross working stations are assumed
to be independent. The commonly used distributions in modelling processing
times are exponential distributions, geometric distributions, Coxian distributions
and phase-type distributions[68][92].

e In a system with unreliable machines, the machines are prone to failures. When
a failure happens, the machine is unable for processing parts until it is repaired.
Most authors assume the repair process of each machine is independent of each
other. Therefore, like the processing times, the time to repair is commonly assumed

to be exponential, geometric, Coxian and phase-type distributions.

e We say a machine is operational if it is up; a machine is working if it is operational
and not idle (neither blocked nor starved). Buzacott and Hanifin[25] introduce the
idea of two major types of failures: operation dependent failures(ODF) and time
dependent failures(TDF). ODF can only occur when the machine is working, and
it is mainly caused by mechanical faults. TDF can occur at any time, and it is

mainly due to failures of electronic systems.

Exact and inexact methods Exact methods and approximate methods are used

to model the production line to obtain the performance measures. The exact methods
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are more appropriate to model small production systems, such as a two-station man-
ufacturing line. Most of the results obtained using the exact analysis are based on
Markovian analysis. To describe the production line by a Markov process, the distri-
butions are required to be exponential or geometric distributions. The exact solutions
for small production lines are available for a wide range of models satisfying these as-
sumptions. The related study can be found in Muth[89][90], Stewart[125], Philippe et
al.[106], Rao[109][110][111], Muth and Alkaff[91] and Stewart[126].

For large flow lines with more machines, it is very difficult to obtain the exact solution,
even when more powerful computers are available. As Dallery et al.[36] discussed, the
attempt to extend the analytic solution of a two-machine flow line model to three ma-
chines always ends up with models that are not tractable, or are subject to numerical
problems, or too limited to be of interest. Therefore, approximate methods are an alter-
native to model flow lines with large number of machines. Most approximate methods
are based on decomposition, which is to decompose the original system with K working
station into a set of K — 1 smaller subsystems which are easier to analyze. Each sub-
system is associated with a buffer of the original line. The early work of decomposition
methods include Sevast’yanov[120], and Hillier and Boling[59], which devise the princi-
ples of decomposition methods. Related work using decomposition methods to model
flow lines can be found in Altiok and Ranjan[7], Dallery and Frein[35], Altiok[2], Perros
and Altiok[104], Pollock et al.[107], Takahashi et al.[128].

Other authors have derived approximate formulas for estimating the production rate of
a production line. Knott[70][71] develops a formula to calculate the production rate
of a two-machine flow line with identical Erlang distributions. Haydon[56] extends
Knott’s formula to measure manufacturing lines with any number of machines. Muth
and Alkaff[91] develop a formula to measure the efficiency of a flow line with any num-
ber of machines and no intermediate buffer. Blumenfield[17] extends Muth and Alkaff’s
formula to include intermediate storage between working stations. The other related
work on measuring the production rate of a multi-stage flow line include: Van Dijk and
Lamond[130], Baskett et al.[11], and Shanthikumar and Jafari[122].

Mathematical models that can obtain the exact solutions to answer the questions of
interests are suitable for relatively small and simple systems. In real life, however,
most manufacturing systems are too complex to allow realistic models to be evaluated
mathematically[75]. Therefore, simulation modelling is widely used in modelling large
systems. In fact, One of the largest application areas for simulation modeling is that of
manufacturing systems[77]. Law[77] addresses some of the specific issues that simula-
tion can deal with in manufacturing systems, such as production scheduling, inventory
policies, and reliability analysis. Detailed discussions of how simulation is used to design
and analyze manufacturing or warehousing systems can be found in Carson et al.[29]
and Law and Kelton[74]. In particular, Law and Kelton[74] study the statistical issues in

input simulation, and provide numerical examples to address the importance of correct
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input modelling for manufacturing systems. Law and Kelton[74] also discuss various
sources of randomness in manufacturing systems. For example, inter-arrival times of
jobs to a machine, processing times of jobs at a machine, machine working times before
breakdown, machine repair times, and the outcomes of inspecting jobs. In later studies,

Law and McComas[76] provide a practical discussion of the steps in simulation studies.

The discussions above have shown how broad the literature on modelling manufacturing
systems is. For the purposes of our project, we only focus on the work that has similar
features to Ford’s production line. The features of interests for modelling and analysing
a production line are listed below. They are also depicted in Figure 1.1, where only two

workstations are presented.

The flow line consists of parallel-machine workstations.

The machines are unreliable and each workstation consists of a number of identical

machines.

e There is finite intermediate buffer between workstations.

The type of blocking mechanism is blocking-after-service(BAS). That is, when a
machine at the first workstation completes a part, it checks the availability of space
in the buffer. If the buffer is not full, it places the finished part onto the buffer
and loads a new part immediately from upstream; if the buffer is full, the finished
part stays in the working area of the machine of the first workstation and causes
blockage of that machine. Similarly, if a machine at the last workstation completes
a part, it sends the finished part immediately out of the system and loads a part
from the buffer, provided the buffer is not empty. Otherwise, the machine in the

last workstation is starved.

e All machines can only fail when processing a part. That is, the machines have

operation dependent failures.

e There is unlimited supply of parts upstream of the first workstation; there is
unlimited space downstream of the last workstation. In other words, the first

workstation is never starved, and the last workstation is never blocked.

The following literature contains some or all of the features of interests. Buzacott[27]
studies a two-workstation production line with identical machines and a finite interme-
diate buffer. In his model, the processing times and repair times are assumed to be
exponentially distributed. The probability of failure during each operation is assumed
to be constant. Buzacott[27] obtains an exact solution for the production capacity using

a continuous time Markov chain model.

Gershwin and Berman[48] study a two-machine tandem flow line with finite buffer size.

They make the assumptions that the processing times, times to failure, and times to
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FIGURE 1.1: A two-workstation parallel-machine system with finite buffer

repair are all exponentially distributed. By calculating the steady state probabilities of
the machines being in the operational and under repair states, they obtain the efficiencies

of the flow line, such as the production rate and the average in-process inventory.

Berman[15] builds his model based on the work of Gershwin and Berman[48]. In his
model, the processing time is allowed to have Erlang distributions, whereas the failure
and repair times are assumed to be exponentially distributed. Both Berman[15] and
Gershwin and Berman[48] assume blocking-before-service(BBS), which is not the case
in our project. Altiok and Ranjan[7] analysis a two-node transfer line case where they
assume the process completion times are a mixture of generalized Erlang distributions.
Other studies related to modelling two-machine transfer lines with limited buffer in
between can be found in Sastry[116], Artamonov[9], and Yeralan and Muth[134].

For longer production lines, Buzacott[24] extends his two-machine system to a three-
machine production line with geometric times to failure and equal deterministic times
to repair. Gershwin and Schick[49] model a buffered flow line with three unreliable ma-
chines under the assumptions that the machines have geometrically distributed times
between failures and times to repair. They also notice the difficulty in obtaining ex-
act solutions when extend a two-machine system to a three-machine system. Another
author who attempts to expand the two-machine system to a three-machine system is
Wiley[131]. Dallery and Gershwin[36] conclude that any asynchronous production line
can be modelled as a discrete space continuous time Markov process, if all the distri-
butions are given under phase-type forms. Similar assumptions in the manufacturing
systems can be found in the work of Gershwin[46], Gershwin and Schor[50], Jafari and
Shanthikumar[65], Dallery et al.[34], and Dogan-Sahiner and Altiok[40].

To summarize, most of the results in modelling manufacturing systems are based on
the assumptions that all the random variables, such as the processing times, times to
failure, and times to repair are independent and exponentially distributed. Therefore,
the exact solutions can be obtained by modelling the systems as a Markov chain with
continuous time and discrete states. For large production systems, exact solutions are

not achievable. In order to tackle this problem, large systems are commonly decomposed
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into a set of small and easy to analyze systems. Therefore, the results of large systems

actually rely on the exact solutions of the individual smaller systems.

In practice, the assumptions of independent and identically distributed variables may not
hold. In these cases, the tools discussed above are not applicable and different tools are

needed. The next subsection argues that real systems are impacted by autocorrelation.

1.2.2 The Impact of Autocorrelation on Manufacturing Systems

A vast majority of manufacturing-related models make independence assumptions on
associated stochastic processes. These assumptions often lead to models that are easy
to simulate and analytically tractable. For example, job inter-arrival times, service

demands, failure times can each be modelled as a renewal process(see Kelly[67]).

The existence of “bursty” behavior, which is mainly underpinned by autocorrelations
in random streams[5], has raised the question of whether the uncritical use of inde-
pendence assumptions in modelling is appropriate. The term burstiness has been used
to describe clustering phenomena in a traffic process[44]. For example, the occurrence
of machine failures in short inter-arrival times followed by a relatively long one at a
particular workstation is a phenomenon of burstiness. Moreover, burstiness of flows
in broadband networks is common in the teletraffic community[14][69][78][98][66]. The
study of burstiness in the discipline of telecommunication can be also be found in Leland
et al.[79], Crovella and Bestavros[33], Salvador et al.[115], and Paxson and Floyd[99].

Various studies have found that models that do not incorporate dependencies among ran-
dom variables can result in inaccurate performance predictions. Livny et al.[81] present a
simulation study to show the influence of autucorrelation on a single-queue single-server
system. Their simulation results show that autocorrelation in the inter-arrival and ser-
vice times may severely affect the performance in an FIFO(First-In, First-Out) queue.
They conclude that models use independence assumptions can lead to poor estimates of
performance measures. In particular, they found that positive autocorrelations always
lead to higher mean waiting times. The effect of negative correlations, however, is not

clear in their study due to the complicity of the autocorrelation function.

Altiok and Melamed|[5] demonstrate the profound impact that autocorrelations can have
on the performance measures of a manufacturing system. Specifically, their study com-
pares a number of performance measures with renewal components to their autocor-
realted counterparts. The authors argue that machine failure is an important factor
that directly affect the efficiency of producing processes. Although time to failure is
traditionally assumed to be exponentially or geometrically distributed (see Altiok[4],
Buzacott and Shanthikumar[28|, and Gershwin[47]) in performance evaluation models,

it is possible that machine failures exhibit autocorrelations.
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Altiok and Melamed[5] also illustrate the impact of autocorrelation on the performance
measures, such as throughput, system time, and the number of jobs in the system,
using simulation case studies. Their results show that ignoring the burstiness can result
in unacceptable prediction errors and overly optimistic performance measures. The
authors then conclude that it is important to identify random components that posses
correlations, and weigh the tradeoff between simplified assumptions and the accuracy of

predictions carefully.

Hendricks and McClain[58] use simulation to examine the output processes of a serial
production line. They find that negative autocorrelation is present in the output pro-
cesses. They have also found that negative autocorrelation structure tends to reduce
the variability of the output process. Therefore, small buffer sizes are sufficient for the

production line with even highly variable machines.

Takahashi and Nakamura[127] study the effect of autocorrelated demands on the per-
formance of a Kanban system. They conclude that the autocorrelated demands is an
important factor affecting the performance of the system. Other works showing the
existence of autocorrelation in the data from industrial plants can be found in Luxhoj
and Shyur[86], Melamed and Hill[87], Mertens et al.[88], Schomig and Mittler[118], and
Young and Winistorfer[135].

Nielsen[93] casts doubts on Livny et al.[81] and Altiok and Melamed[5]’s study. His
results show that the impact of autocorrelation may not be as profound as the other
authors have claimed. The reason is that other effects, such as the circumstances in

manufacturing plants may reduce its importance.

Pereira et al.[100] present simulation experiments to show how autocorrelation can affect
the performance of manufacturing systems. They conclude that process performance is
improved by negative autocorrelation effects, and reduced by positive autocorrelation

effects.

Since autocorrelation effects are present in manufacturing systems, we will discuss how

to model the processes with autocorrelation in the next subsection.

1.2.3 Modelling autocorrelated processes

A number of methods to model autocorrelated processes have been used in the literature.
Uhlig et al.[129] provide a recent review of a number of models and tools. We will now

briefly discuss the various areas mentioned in [129], and some of their applications.

First, a number of authors have used processes based on time series analysis, such as
autoregressive models. Pereira et al.[101] use an autoregressive model for the cycle
time of machines in a production line. Autoregressive to anything (ARTA) models

are discussed by Nielsen[94], and used in [31]. Underlying both autoregressive and
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ARTA models is an autoregressive process, as defined by (1.1). Here, Y; is the series
being modelled, ¢ and the «; are constants, and ¢; is a normally distributed error term.
In an autogressive model, Y; is observed directly. In the ARTA case, X;, defined by
(1.2) is observed. The function F' is the cumulative distribution function of the desired
distribution, ® is the cumulative density of the normal distribution. The idea of (1.2)
is to transform X; to Gaussian, as normality is a very important assumption in many
statistical techniques. The advantage of ARTA is that it allows to represent stationary
time series with arbitrary marginal distributions. Other techniques to transform data

into normality include Box-Cox Transformation[20].

YZZC-I-ZOthﬂ'—I—Et (1.1)
i=1
Xi = F1(®(;)) (1.2)

Other authors have considered a variety of arrival processes based on Markov processes.
Many of these are based on Markov Arrival Processes(MAP), introduced by Lucantoni
et al.[85]. In the context of queuing theory, the MAP is considered, among others, by
Lucantoni et al.[85] and Okazaki [95]. A special case of the MAP, the Markov-Modulated

Poisson process, is considered by Heindl [57].

The Markov Arrival Process[85] is defined by an m + 1-state continuous time Markov
chain, where state m 4 1 is absorbing and the other states are transient. An arrival
happens whenever the process moves to state m + 1, after which the process restarts
from a randomly chosen state. Formally, let A; be the rate at which the process leaves
state 7. When the process leaves state ¢, it moves to the absorbing state and restarts
from state j with probability p;;. With probability ¢;;, the process moves to state j,
without passing through the absorbing state. Further details on this process and its

properties are given in [85].

Another type of arrival process, the Transform Expand Sample process, is introduced
by Livny et al.[81]. This process is considered by, among others, Altiok et al.[6] and
Nielsen[94].

1.3 Contribution

As discussed in the previous section, most manufacturing models to date have assumed
independence of all random variables in the system. In this thesis, we extend this
literature by studying autocorrelation in machine times to failure(uptimes) in detail.
Our work focuses on the practical aspects of detecting and modelling autocorrelated

uptimes, as well as including them in simulations.
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Our first contribution is a practical procedure to detect autocorrelation in uptimes. The
procedure has very mild assumptions and compensates for the number of machines it is
applied to. It also ensures that the probability of a Type I error, which is the incorrect

rejection of a true null hypothesis(i.e., a “false alarm”), is kept low.

Second, we provide two ways to model autocorrelated uptimes. The first, an extension
of the autoregressive and ARTA methods discussed previously, is to use ARMA models
including GARCH terms. We also provide a method based on the Markov-Modulated

Poisson Process, a special case of the Markov Arrival Process.

For both methods, we provide diagnostic plots and a quantitative way to select the most
appropriate model for a given series of uptimes. This allows us to automatically select

an appropriate model.

Finally, to enable Ford to use our methods in simulation, we provide a way to generate

simulated uptimes from each of our models.

1.4 Structure of the thesis

In the next chapter, we consider the data Ford have available about one of their pro-
duction lines and how breakdown and repair times for the machines may be calculated

from this data. We also consider how to handle outliers in the data.

Thereafter, we consider how to detect whether the breakdown times for the machines
are correlated with each other over time. We apply a suitable statistical test to each

machine and combine the results appropriately to adjust for performing many tests.

In the two chapters after that, we apply two different approaches to modelling the
breakdown times of a single machine. First, we consider using ARMA models from time
series analysis. We also extend these models with GARCH terms, allowing the variance

of the uptimes to change over time.

Second, we view the breakdown times of a machine as a series of arrivals, by considering
each breakdown as an arrival. This leads us to apply the Markov-Modulated Poisson
Process (MMPP) to the breakdown times.

For both ARMA models and the MMPP, we provide diagnostic plots that give a heuristic
measure of the absolute quality of fit. We also compare the models objectively using the
Akaike Information Criterion (AIC).

The thesis concludes with a brief summary of the conclusions and contributions of each

chapter.
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Calculating up- and downtimes

2.1 Introduction

In this chapter, we present a procedure to calculate the up- and downtimes of Ford’s
machines based on the data collected by Ford. The data consists of a number of records,
each of which indicates the start and end time of a machine failure, as well as the reason

for the failure.

We begin the chapter by discussing the concepts of up- and downtimes, as well as the
possible kinds of machine failure, in more detail. Then, we consider how Ford’s data

was collected and discuss a number of anomalies in the data.

We then consider how the data can be corrected to account for non-productive periods,
during which the production line is not operational. This is particularly complex as the
production line may occasionally be partially or fully operational during a nonproductive

period.

Once we have obtained the up- and downtimes, we note that there are two important
kinds of outlier in the data. First, some uptimes are very short, on the order of a few
seconds. Secondly, some uptimes are abnormally long. We discuss how these outliers

may be removed and consider the impact of doing this on further analysis.

The chapter concludes with a short summary of the data preparation procedure and its

underlying assumptions.

2.2 Background

Before measuring the up times and down times of a machine, it is necessary to know the

two major types of failures that have been considered in the literature. The first type of

31
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failure is operation dependent failures, and the second type of failure is time dependent

failures.

Operation dependent failures are failures that are related to the processing of parts.
Therefore, they can only occur when the machine is operational and not idle (neither
starved nor blocked), and cannot happen when the station is forced down. According
to Dallery and Gershwin[36], operation dependent failures are mainly due to mechanical

causes, such as tool wear.

On the other hand, time dependent failures are not related to the processing of parts.
They can occur at any time even when the station is forced down. Time dependent
failures are mainly due to failures of electronic systems, and can occur after a certain

amount of time due to some phenomenon other than wear [25].

Hanifin[55] observed 785 stoppages of one production line over a seven days period. Of
the total time the line was down, 84% was due to operation dependent failures, and
the rest 16% down time was caused by time dependent failures. It is also concluded
by Buzacott and Hanifin[25] that in most production lines, most failures are operation

dependent. As a result, most authors assume operation dependent failures [36].

Usually, the following information is collected in a data file: the machine that failed; the
clock time at which the machine failed; the clock time at which the repair ended; the
reason for the machine failure. As Buzacott and Hanifin[25] discussed, the assumption
of operation dependent or time dependent failures of a station affects the way in which

data on the operation of a transfer line is analysed.

The down time (or repair time) of a machine is the difference between the clock time at
which the repair ended and the clock time at which the machine failed. The measurement
of the down times is the same under the assumption of operation dependent failures and

time dependent failures.

On the other hand, however, measuring the up times of a machine depends on whether
the machine failures are assumed to be time dependent or operation dependent. For
time dependent failures, an up time corresponds to the time between the end of the last
repair and the instant of the next failure start. For operation dependent failures, an up
time is the total working time between the end of the last repair and the instant of the
next failure start. The working time corresponds to the time where the machine was

processing parts, and does not include the time when the machine was forced down.

The engineers in Ford confirmed that the data set we are using captures only the failures
on a machine, and a machine can only fail when it is operational and not idle. Therefore,

we assume operation dependent failures when we analyse the data.
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2.3 Data Collection at Ford

Ford’s simulation team base their breakdown models on historical data. The data should
record each failure and its corresponding reason for all the machines in the system.
The recording of the start of a failure is important and it is necessary to know the
relationship between a machine failure and a stoppage. Both of them can stop a machine
from producing components. A machine failure or breakdown usually implies that the
machine has stopped functioning the way in which it was intended or designed, whereas a
machine can be stopped when it is being blocked, starved, or having a failure. According
to Ford’s engineers, a record in the data should be triggered by a failure, and not by a

machine being blocked or starved.

The data is collected by manual observation and an automatic monitoring system [72].
Due to the cost and difficulty of manual data collection, electronic data collection is the
main method used by Ford to collect machine breakdown data. The advantage of an
automatic data collection process over manual data collection is that it records every
failure. The disadvantages of the automatic data collection have been discussed in the
work of Ladbrook[72], who is an engineer in Ford, and Lu[83], whose PhD thesis focused
on modelling the down time of Ford’s production line. The details of the disadvantages

are discussed below:

e The monitoring system that records the failures may itself be unavailable:

— The monitoring system at the plant may be shut down over the weekend. In
addition to these planned outages, the system may also fail at any time. When
the monitoring system is unavailable, no failures will be recorded, no matter
how many machines fail. If a machine breaks down before the monitoring
system goes down and is repaired while the monitoring system is down, this

may cause the end of the repair process to go unrecorded.

e During a single machine breakdown, the system may record multiple breakdowns.

This occurs for several reasons:

— During a machine breakdown, the maintenance operator may perform “try
outs” to test if the machine is repaired correctly. As the system cannot detect
the “try outs” that happened within one failure, what was one breakdown

could be recorded as two or more.

— A similar situation to the one above is that if the machine is powered off
during the repair process, the system may record two failures when there has

only been one.

e The monitoring system does not account for non-productive periods:
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— If a machine is broken down during the weekend, it is unknown whether
the operators have chosen to work overtime to repair the machine. If the
operators have chosen to work overtime, the completion of the repairs may
have been recorded. However, the repair period may still be overstated, as
the operators may not have worked all hours of the day. If the operators chose
not to work overtime, the machine may be recorded as having been repaired
early the following week. The repair time will therefore be overstated by

including the weekend.

— There are shift breaks in each productive day, during which the operators
are supposed to be non-productive, and not by the side of the line. However,
since the automatic system cannot detect these shift breaks, a recorded repair
duration may cover several non-productive time durations. This can make
the repair time much longer than the real time an operator spent in fixing

the machine.

In addition to the disadvantages listed above, we have also found that the monitoring
system may separately record further details of an individual failure. This leads to a

series of records covering nested time periods.

This case study is based exclusively on the electronically gathered data, as it is the
most extensive data set available at Ford. Due to the anomalies listed above, the data
gathered by the monitoring system is not suitable for analysis without careful cleaning.

The detailed data preparation process will be discussed in the remainder of this chapter.

2.4 Data Description

The data to be analyzed is from the line “Tiger Cylinder Block” in Dagenham engine
plant of Ford. The range of the data is from March 2014 to March 2015. The original
data collected by the automatic monitoring system contains a lot of information that
is not relevant for the purpose of our study. Therefore, the engineers in Ford provided
some semi-processed data files that contain the information crucial to our analysis. A
screen shot of the semi-processed data is shown in Figure 2.1, in which the machine
that failed, the failure description, the failure start and end times are recorded. Apart
from that, the engineers in Ford added further information of the duration of a machine

breakdown, and whether some data records should be deleted.

As seen from Figure 2.1, some data records have their “StartTime” and “EndTime”
marked blue. The reason is that the event times of the machine failure or repair are
within the non-productive periods of the plant. As an opposite to the fully operational

times, the non-productive times are any time period during which the production line is
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Path’;‘ Description ‘ TriggerValue ‘ StartTime ‘ EndTime Duration Deleted
OP 100.4 Manual Event - Shutdown 9 07/06/14 22:05:53 08/06/14 07:20:27 -48:00:00 Non-productive
OP 100.4 Clamping fixture seating check fault 515 08/06/14 10:19:49 08/06/14 10:43:27 -48:00:00Non-productive
OP 100.4 Manual Event - Shutdown 9 08/06/14 12:48:46 08/06/14 12:49:18 -48:00:00 Non-productive
OP 100.4 Manual Event - Tool Change 6 08/06/14 12:49:18 08/06/14 12:55:21 -48:00:00Non-productive
0P 100.4 Manual Event - Shutdown 9 08/06/14 13:34:47 09/06/14 02:17:37 -48:00:00Non-productive

OP 100.4 Manual Event - Shutdown 9 09/06/14 20:36:32 09/06/14 20:52:38 0:16:06

OP 100.4 Fault comparing pallet number 386 10/06/14 03:42:31 10/06/14 03:45:52 0:03:21

OP 100.4 Manual Event - Shutdown 9 10/06/14 08:03:20 10/06/14 08:03:39 0:00:19 Duplicated

OP 100.4 Manual Event - Shutdown 9 10/06/14 08:03:20 10/06/14 08:03:39 0:00:19

0P 100.4 Manual Event - Shutdown 9 10/06/14 08:07:34 10/06/14 08:07:51 0:00:17

OP 100.4 Fault comparing pallet number 386 11/06/14 04:13:34 11/06/14 06:06:15 1:52:41

OP 100.4 Fault comparing pallet number 386 11/06/14 17:48:35 11/06/14 18:18:57 0:30:22

OP 100.4 No life sign from Gantry 590 11/06/14 22:27:33 11/06/14 23:59:50 1:32:17

OP 100.4 Manual Event - Shutdown 9 11/06/1422:34:22 11/06/14 23:59:50 1:25:28 Duplicated

OP 100.4 No life sign from Gantry 590 12/06/14 00:01:43 12/06/14 00:13:01 0:03:01

OP 100.4 Fault comparing pallet number 386 12/06/14 02:20:34 12/06/14 03:03:39 0:13:05

OP 100.4 Fault comparing pallet number 386 12/06/14 09:40:32 12/06/14 09:44:33 0:04:01

0P 100.4 No life sign from Gantry 590 12/06/14 11:30:54 12/06/14 11:51:20 -0:30:00Non-productive
OP 100.4 Manual Event - Shutdown 9 12/06/14 11:37:59 12/06/14 11:38:02 -0:30:00 Non-productive
OP 100.4 Manual Event - Shutdown 9 12/06/14 11:50:13 12/06/14 11:50:14 -0:30:00Non-productive
OP 100.4 Manual Event - Shutdown 9 12/06/14 11:50:20 12/06/14 11:51:20 -0:30:00 Non-productive
OP 100.4 Hydraulic unit oil level below minimum 314 14/06/14 03:16:15 14/06/14 03:16:16 0:00:01

FIGURE 2.1: A screenshot of the semi-analyzed data

shut down. Detailed discussions of the non-productive times of the production line are

in section 2.6.

In the semi-processed data, if both of the failure start time and failure end time are
within a non-productive period, the duration is marked with a negative number, and it
is suggesed to delete the whole failure record from the data. This scenario is illustrated

in Figure 2.2.

Non-productive

L. .|

\/
FS FE

Delete Record

FIGURE 2.2: A failure starts and ends within a non-productive period

If the start time of a failure is within a non-productive period, and the failure ends
during a fully operational time, then the duration of the failure does not include the
time that is overlapped with the non-productive period. As shown in Figure 2.3, the

repair duration is considered to start at the end of the non-productive time.

Non-productive

.

D ——

TFE

FS

Repair Duration

FIGURE 2.3: A failure starts within a non-productive period and ends outside a non-

productive period
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Similarly, if the end time of a failure is within a non-productive period, and the failure
starts during a fully operational time, then the repair time is suggested to end at the

time when the non-productive period starts. This is illustrated in Figure 2.4.

Non-productive

. | .
F'S\T/ FE

Repair Duration

FI1GURE 2.4: A failure starts during fully operational period and ends within a non-

productive period

If both of the failure start and failure end are within fully operational times, but the
repair duration covers a non-productive period, then that non-productive period will be
subtracted from the repair duration. Figurer 2.5 illustrates this situation, in which the
repair time of the failure is the sum of Repair Duration 1 and Repair Duration 2. This
situation, however, has no special mark in the semi-processed data file. Therefore, it is
not easy to distinguish this situation from most scenarios by eye, when a failure start

and end during operational times, with no non-productive period in between.

Non-productive

. | .

\—/ ~ —v
FS T T FE
Repair Duration 1 Repair Duration 2

FI1GURE 2.5: A failure duration covers a non-productive period

The purpose of our study is to model the times between breakdowns, i.e. the up times.
The “Duration” column in the semi-processed data file indicates the repair times, i.e.
the down times. In general, an up time corresponds to the time between the end of the
last repair and the instant of the next failure start. As such, instead of the duration
of down times, the exact times of when a machine failure starts and ends are more
helpful for our study. However, like the down times, the non-productive periods need
to be considered when calculating the up times. Therefore, the machine failure records
that involve the non-productive periods should be adjusted carefully. This increases the

complexity of handling the data and will be discussed further in Section 2.6.

2.5 Anomalies in the data

As discussed in section 2.3, there are a number of anomalies in the data that need to be

carefully handled. In this section, we will discuss each type of anomaly in turn.
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Handling outages or nonproductive periods of the monitoring system When
the monitoring system is unavailable, failures may go unrecorded or the completion of
repairs started previously may not be logged. In the former case, all record of the failure
is lost, and we cannot recover the failure from the data. In the latter case, the data
contains a record with a missing end time. As no further information was available to

reconstruct the end time of these repairs, they were excluded from further analysis.

Handling nested records In some cases, the monitoring system logs failures in more
detail than is required for this case study. This is illustrated in Figure 2.6, where the
start time of the later repair, 22:34:22, is before the end time of the first repair, 23:59:50.
For the purposes of this case study, all subsequent records providing further detail about
the nature of the failure were discarded. In the semi-processed data file, the redundant

machine failure records are marked as “Duplicated”.

0P 100.4 No life sign from Gantry 590 11/06/14 22:27:33 11/06/14 23:59:50 1:32:17
0P 100.4 Manual Event - Shutdown 9 11/06/14 22:34:22 11/06/14 23:59:50 1:25:28 Duplicated

FIGURE 2.6: A screen shot of an example of nested records

Handling non-production machines Most of the machines have names starting
with OP in the data files. However, some machines have very different names, such as
DAGO0160, PO598L, and TBSYS80. After consulting with the engineers in Ford, these are
part of the supporting system, and are not production machines. For instance, machine
DAGO160 refers to equipment described as “Tiger machining chilled water”. Therefore,
as suggested by the engineers, the failure records of such machines should be discarded

from the analysis.

Handling failure descriptions The data files contain a column called “Description”,
which is supposed to describe the reasons of each machine failure. This may be helpful
for further analyzing and understanding the autocorrelated times to failure. However,
some of the entries in the column are empty and a lot of them have the description of
“Manual Event - Shutdown”, as illustrated in Figure 2.7. According to the engineers
in Ford, “Manual Event - Shutdown” basically means the machine is broken down, but
they do not have the mechanical reason for why. The reason is that an operator has
manually taken the machine offline, which could be for any number of reasons, but the
engineers consider it is usually to repair it. As the exact reason of each manual shutdown
is not clear, we cannot use the information of failure description for our analysis at the

moment.
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Path ’T_I Description TriggerValue ‘ StartTime ‘ EndTime ‘ Duration| Deleted
OP 100.2 Manual Event - Tool Change 6 07/06/14 22:06:11 13/06/14 19:30:28 100:10:28
OP 100.2 Clamping fixture seating check fault 515 13/06/14 19:31:09 13/06/14 19:31:10 0:00:01
OP 100.2 Part present fault 395 26/06/14 09:00:05 26/06/14 09:00:33 0:00:28
OP 100.2 Part present fault 395 26/06/14 09:03:30 26/06/14 09:12:34 0:09:04
OP 100.2 Manual Event - Shutdown 9 26/06/1409:19:10 26/06/14 09:19:49 0:00:39
OP 100.2 Manual Event - Shutdown 9 26/06/1409:33:40 26/06/14 09:33:57 0:00:17
OP 100.2 Manual Event - Shutdown 9 26/06/14 10:39:29 26/06/14 10:40:10 0:00:41
OP 100.2 Manual Event - Shutdown 9 26/06/14 10:59:11 26/06/14 10:59:42 0:00:31
OP 100.2 Manual Event - Shutdown 9 26/06/14 11:23:04 26/06/14 12:18:13 0:25:09
OP 100.2 Manual Event - Shutdown 9 26/06/14 12:22:47 26/06/14 12:23:19 0:00:32
OP 100.2 Fault comparing pallet number 386 27/06/14 02:56:35 27/06/14 02:59:29 -0:30:00Non-productive

OP 100.2 Clamping fixture seating check fault 515 27/06/1403:56:14 27/06/14 04:16:41 0:20:27
OP 100.2 Clamping fixture channel 1 switch OFF fault 521 27/06/14 04:16:48 27/06/14 04:18:14 0:01:26
OP 100.2 595 595 27/06/1404:23:16 27/06/14 04:32:27 0:09:11
OP 100.2 595 595 27/06/1404:37:28 27/06/14 04:45:23 0:07:55
OP 100.2 Clamping fixture channel 1 switch OFF fault 521 27/06/14 04:45:31 27/06/14 04:46:20 0:00:49
OP 100.2 595 595 27/06/1404:51:21 27/06/14 05:00:56 0:09:35
AP 10N cag Sa5 27/NA/14 NG-NR-GR 27/NA/MA OAIR-A 19723

FIGURE 2.7: A screen shot of an example of machine failure descriptions

2.6 Non-productive Time of the production line

Ford’s engineers define the non-productive time as any time period during which the
production line is shut down. During the non-productive times, the operators are not
supposed to be by the side of the line. Therefore, no operation or repair can be done
in these periods. As an opposite to the fully operational times, the non-productive
times in Ford usually include weekends, shift breaks, bank holidays, summer breaks,

and Christmas breaks.

Occasionally, the plant ran additional (overtime) shifts during non-productive times.
This can be seen from the machine failure records captured by the electronic monitoring
system, as some of the machines failed or were repaired during the non-productive
times. The problem with this is that the operators do not necessarily publish when
this occurred. More importantly, it is not known if they ran the whole line or just one

section, or if they were fully manned.

As Ford aim to build a simulation model which only models the fully operational times,
any breakdown record that involves the non-productive periods should be adjusted care-
fully. The detailed information of each type of non-productive time in Ford is listed

below.

e Weekends: there are three shifts in a normal working day, which are from 6 : 00
to 14 : 00, from 14 : 00 to 22 : 00, and from 22 : 00 to 6 : 00 the next working day.
The last production shift of the week ends at 6 : 00 on Saturday. Therefore, the
weekend time starts at 6 : 00 on Saturday and ends at 6 : 00 on Monday.

e Bank holidays: Similar to the weekends, the line is supposed to be shut down at
6 : 00 on the start day of the bank holiday. The operators will resume their work
at the first production shift after the bank holiday.
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e Shift breaks: there are six shift breaks in 24 hours, which include the following
periods: 02 : 30 to 03 : 00, 08 : 30 to 08 : 40, 11 : 30 to 12 : 00, 16 : 30 to 17 : 00,
18 : 30 to 18 : 40, 24 : 00 to 24 : 10. The total shift breaks duration per 24-hour is

2 hours.

e Summer breaks: According to the range of our data, the summer breaks started
at 6 am on 28" July, 2014 and ended at 6 am 15" August, 2014.

e Christmas breaks: According to the range of our data, the Christmas breaks
started at 6 am on 24*" December, 2014 and ended at 6 am 2"% January, 2015.

We will now consider how to calculate the up times and down times of Ford’s machines,
assuming operation-dependent failure. Let F'S; and F'E; be the start and end time of the
i" machine failure. Therefore, (F'S;, FE;) corresponds to the i down time duration
and (FE;, FS;+1) corresponds to the it up time duration. Since in the data file, a
machine can fail and be repaired during a non-productive time period, let us define T}
to be the j*" period in a non-productive time that has overlapped with either a down

time duration or an up time duration.

Let N be the number of events happened during a non-productive time period. The
events can be a failure start or a failure end. We will now consider how the up times

and down times should be calculated in each case.

Casel. N =0

Non-productive

FS; FE;
T

During the non-productive time, there is no operator repairing the machine. Therefore,
the ¥ down time D; is calculated by FE; — F'S; — T;

Non-productive

FE; FSiq
T

Similarly, during the non-productive time, the machine is not fully working. Therefore,
the i*" up time Uj is calculated by FS;., — FE; —T.

Case 2. N =1
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Non-productive

. | . | .
- W -
ES; T FE; T FSit1

A failure was fixed during the non-productive time. This indicates that there are oper-
ators repairing the machine during 77. Since we assume the operators were working full
time during 71, D; = FE;— F'S;. Further, we assume that after the machine was fixed at
time F'E;, it was shut down immediately and switched on again after the non-productive
time finished. Therefore, the i*" up time Uj; is FS;v1— FE; —Ts.

Non-productive

. | . | .
L W ®
FE; 4 T FS; T FE;
1 2

A failure started during the non-productive time. As we assume operation dependent
failures, a machine can only fail when it is processing. Therefore, the machine should
be operating during time period 7;. As such, the up time U;_; should be calculated
by F'S; — FE;_1. As we assume the operators chose to repair the machine after the

non-productive time, so D; = FE; — FS; — Tb.

Case 3. N >=2

Non-productive

R .

FS; FE; FSiq \_/F*9;+k

Ty T

Similar to Case 2, D; = FE; — FS;, Uy = FS;41 — FE;, Diy1 = FE; 11 — FSiq1,
Uiy1 = FS;30 — FE;y1, etc. There is no subtraction of the non-productive times until
the last event that happened during the non-productive time, which is F E; ;1. After
FFE; ;_1, we assume the machine was shut down immediately and switched on after the

non-productive time finished, so U1 1 = FSjyr — FFiik1 — Tivpa.

Non-productive

d \*/e\_/\_/ “ .. o
FE; FS; FE; % .
7 ) +
T T

Similarly, Ui—l = FSZ - FEi_l, Di = FEZ‘ - FSZ', Ui+1 = FSZ‘_;,_Q - FEi-i-ly Di-i—l =

FE;{1 — FSii1, etc. There is no subtraction of the non-productive times until the last
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event that happened during the non-productive time, which is, F'.S;1;. As we assume
the operators started repairing the machine after the non-productive time, D;,; =
FEi x — FSiyr — Tivkt1-

2.7 Data Processing

In this section, we will discuss the details of how to process the data for further anal-
ysis. The processing was implemented using Python and will be illustrated using code
snippets. The first step of processing the data is to parse the date and time given as
DD/MM/YY HH:MM:SS to a time duration in seconds since 01/01/2014 00:00:00. This
is to make the calculation of up and down times easier, and they will be measured in

seconds. The Python code that illustrates how to do this is shown below.

def parse_datetime(strv, format = ’%d/%m/%y %H:%M:%S’):
try:
start = dt.datetime (2014, 1, 1)
now = dt.datetime.strptime(strv, format)
return (now - start).total_seconds ()
except BaseException:
print ’Error on converting datetime:’, strv

return -1

The next step is to calculate the up and down times from the machine failure records.
As discussed in Section 2.6, a machine can fail and be repaired during a non-productive
time period. Therefore, it is important to detect whether a failure start or failure end
happens during a non-productive period. The Python code that illustrates this step can

be seen below.

def loc_bisect(time, npros):
i = bisect.bisect_right(npros, (time, 1e9))
if i == 0:
return (i-1, i)
else:
st, ed = npros[i-1]
if ed < time:
return (i-1, i)
else:

return (i-1, i-1)

After we know whether an event happens during a non-productive period or not, we can
calculate the up and down time durations based on the logic discussed in Section 2.6.

The code below illustrates how this can be achieved in Python.

def duration(start, end, npros):

sloc = loc_bisect(start, npros)

eloc = loc_bisect(end, npros)

nps = []

if sloc != eloc and sloc[0] == sloc[1]:

start = npros[sloc[1]][1]
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nps = npros[sloc[1]+1:eloc[1]]
elif sloc != eloc:

nps = npros[sloc[1]:eloc[1]]
subtraction = sum([e-s for (s,e) in nps])

return end - start - subtraction

After calculating the up and down time durations, we output the processed information
in a csv file with the format illustrated in Figure 2.8. The “Type” and “Number”
columns represent the working station and machine number, respectively. For example,
machine OP10.3 will be considered as “Type” OP10 and “Number” 3. The up and down
time durations are measured with the time unit of seconds. In the “Up” column, values
0 and 1 are the indicator of down and up time durations, respectively. The down and

up times are in order, with a down time followed by an up time.

Type Number Duration Up

OP10 3 64027 0
OP10 3 190 1
OP10 3 1472 0
OP10 3 50 1
OP10 3 4308 0
OP10 3 89 1

F1GURE 2.8: Format of the processed data output in a csv file

2.8 Outliers in the uptimes

To conclude this chapter, we will consider the impact of the data anomalies and data
preparation procedure on the quality of the calculated uptimes. In particular, we will

be concerned with outliers in the uptimes.

First, consider the “try outs” mentioned in Section 2.3, where engineers start a machine
to test whether it has been fixed. If the machine has not been fixed, a try out leads to
a very short uptime, on the order of a few seconds. This suggests that only uptimes
that are sufficiently long are valid. Based on their experience, Ford’s engineers suggest

removing uptimes shorter than 5 minutes.

Second, issues with the monitoring system may lead to overstating the length of an
uptime. Consider a scenario illustrated in Figure 2.9. A machine starts running at time
T7, then breaks down at time 75, is repaired at time T3, and breaks down again at time
Ty. If, due to a failure of the monitoring system, the end of the repair at time 73 is not
recorded, we have to remove this breakdown from the data. In this case, we record an

uptime of T, — T4, rather than the correct uptimes 1o — 17 and Ty — T3.
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Start Failure;  Repairi(Not Recorded) Failures

Th 15 T3 T,

FIGURE 2.9: A scenario of miss recording of a repair time

Unfortunately, it is impossible to tell from the data what the correct uptimes should be.
As such, we can only attempt to detect anomalously long uptimes and exclude them as
outliers. In this thesis, we have chosen to consider every uptime longer than 1 week an
outlier. The reason is that an up time longer than 1 week is exceedingly rare in our
data. Moreover, any up time duration longer than 1 week is very far away from the

other data points.

According to the data, there are 42 stations in the production line. Each station contains
either one machine or parallel machines. For instance, machines OP70.1 and OP70.7
indicate they are from the same station OP70; while machine types OP30A and OP125

indicate that there is only one machine at the stations, respectively.

There are 84 individual machines in total, and the number of failure records in the data
files is 293989. For each machine, the observations of machine failures in one year range
from 991 to 17581. For most of the machines, the minimum uptimes are 1 or 2 seconds,
while the maximum uptimes are quite different between machines. For instance, machine
OP20.5 has the largest maximum uptime, which is about 355 hours. Despite from the
same station, the maximum uptime for machine OP20.3 is about 51 hours. The smallest

maximum uptime is obtained from machine OP130G, which is about 33 hours.

Table 2.1 and Table 2.2 illustrate the top 5 and lowest 5 percentage of data removed
from the machines’ failure records, respectively. As discussed before, any uptime that
is less than 5 minutes or greater than 1 week will be deleted from the records. Of all
the 84 machines in the production line, OP30A has the maximum percentage of deleted
data, which is about 66.53%. Machine OP20.9 has the minimum percentage of deleted

data among the machines, which is around 29.21%.

The majority of the data excluded are the uptimes that are less than 5 minutes. These
small uptimes account for a large number of data records, and may have an impact on
further data analysis. This will be discussed in detail later chapters. The uptimes that
are larger than 1 week are relatively rare for each machine, and the impact of excluding

these data may be small.
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TABLE 2.1: Number of outliers of each type by machine, for top 5 deleted machines

Machine < 5 minutes | > 1 week | Total | Percentage of Removal

OP30A 2826 1 4249 66.53%

OP10G 3263 1 5255 63.30%

OP140 2547 1 40475 62.94%
OP170LEAK 10997 1 17581 62.55%

OP160 5805 1 9309 62.36%

TABLE 2.2: Number of outliers of each type by machine, for lowest 5 deleted machines

Machine | < 5 minutes | > 1 week | Total | Percentage of Removal
OP80.3 1078 1 3303 32.64%
0P80.9 1071 1 3495 30.64%
0P20.11 1740 0 5725 30.39%
OP80.7 1128 1 3733 30.22%
0P20.9 636 1 2181 29.21%

2.9 Conclusion

In this chapter, we have discussed the concepts of uptimes and downtimes, considered
how Ford’s data is collected and provided a way to calculate up- and downtimes from
Ford’s data. The method we have proposed handles various anomalies in the data and
deals with nonproductive periods. However, due to limitations in the data collection
process, the resulting uptimes may contain outliers. In the remainder of this thesis, we

will consider how the uptimes may be modelled.
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Autocorrelation analysis

3.1 Introduction

In this chapter, we discuss how to detect whether the uptimes of Ford’s machines are
correlated with each other. We begin by reviewing how correlation within a time series
is defined and how it may be estimated. We then use these concepts to review the

Ljung-Box test, which allows us to test whether a given process is autocorrelated.

While we may apply the Ljung-Box test to determine whether the uptimes of a single
machine are autocorrelated, repeating this procedure for all of Ford’s machines results
in us performing many hypothesis tests. This may lead us to make an unacceptable
number of Type I errors, i.e. to detect autocorrelation in machines where there is none.
This problem is known in the literature as multiple hypothesis testing. We review a

number of approaches to this problem.

Finally, we apply the Ljung-Box test to Ford’s data, using a Holm-Bonferroni correction
to correct for multiple hypothesis testing. This procedure results in a list of machines

that show autocorrelation.

3.2 Testing for autocorrelation

We will now consider how we may perform a statistical test to detect autocorrelation
in the uptimes of a machine. First, we will review how the autocorrelation of a time
series is defined and how it may be estimated. The discussion here is based on Box and
Jenkins[22].

Let X1, Xo,... be the random variables representing a given time series, and let k& be
a positive integer. Then, the autocorrelation coefficient at lag k is given by (3.1). The

quantity pi represents the correlation within the time series at intervals of length k.

45
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i = CO%@*’” (3.1)
The right-hand side of (3.1) contains an index i. For a general time series, this quantity
could depend on 7, which implies that pg is not well-defined. To ensure that pg is well-
defined, we assume the time series is second-order stationary. This means that the mean,
variance and covariances of the time series do not depend on the index i, and so py is
well-defined.

Now suppose that we are given a finite sample x1,xo, ...z, from the time series. To

estimate the autocorrelation, we can use the following estimator (3.2). Here, a; =

. _ 1N )
Ti—n 23:1 Ty

D Mk
pp = S 2 (3.2)

D iy @i
Using the autocorrelation coefficient and its estimator defined above, the hypothesis
“The uptimes of the machine are independent of each other” may be stated as “for all
k>0, pr = 07. Letting this hypothesis be our null hypothesis Hy, we can now consider
the following test statistic [82]. Here, py is the estimator of pi given by (3.2).

m 9
Pk
= 2 .
Q=n(n+2)y (3.3)
k=1
In (3.3), n is length of the time series x1,...,z, and m is a specified maximum lag to

consider. The statistic  has an approximate 2, distribution under Hy, provided that

the variance of X is finite.

3.3 Correcting for multiple hypothesis tests

To analyze the autocorrelation in the time-to-breakdown, we need to perform hypothesis
tests for individual machines. The null hypothesis under the test is that there is no

autocorrelation in the time-to-breakdown for each machine.

As we perform more than one statistical test, the chance that we reject the null hypoth-
esis when it is true is larger. This is because when many hypotheses are tested, and each
test has a specific Type I error (i.e., a “false alarm”) probability, the probability that
at least some Type I errors are committed increases, often sharply, with the number
of hypotheses. This may have serious consequences if the set of conclusions must be

evaluated as a whole [121].
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Abdi[l] gives an example of how to compute the probability of rejecting the null hy-
pothesis at least once in a series of tests when the null hypothesis is true. Suppose for
each test the probability of making a Type I error is equal to o = 0.05. Given that
“making a Type I error” and “not making a type I error” are complementary events,

the probability of not making a Type I error on one test is equal to
1—a=1-0.05=0.95

If the tests are independent, for a series of C' tests, the probability of not making a Type
I error for the whole set of tests is
(1-a)°

Therefore, the probability of making at least one Type I error on the series of tests is
equal to
1—(1-a)

For our example, with an « level of 0.05 and a set of 10 independent tests, the probability

of incorrectly rejecting the null hypothesis is

1—(1-0.05) =0.401

Before we consider how to solve this problem, we will briefly give a more formal definition.
We are given a number of hypothesis tests to perform, and obtain the p value p; of test
1, considered as a single test. We then need to decide which of the hypotheses to reject,
given their p-values. The procedure we use to make this decision should guarantee that

our probability of making at least one Type I error is at most a.

It is important to note that we do not know which hypotheses are true. Indeed, if
we did know this, there would be no reason for us to perform the tests. As such, our
multiple testing procedure should work no matter which hypotheses are true. In Holm’s
[62] terminology, this is referred to as applying “for free combinations”. Hochberg and
Tamhane[61] call this “strong control” of the family-wise error rate. All the methods
we will consider have this property, although alternatives exist that only apply when all

null hypotheses are known to be true[61].

The most well known correction that provides strong control is the Bonferroni correction,
which performs each test at a significance level of a/C, where « is the desired overall
alpha level and C' is the number of hypotheses. The Bonferroni method does not assume

independence of the tests, as it follows from Boole’s inequality, as shown below.
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a =P(Type I error occurs)

C
=P (U Type I error in Hypothesis i)
i=1
C
< Z P(Type I error in Hypothesis i)
i=1

ZCO@

The Bonferroni method is a single-stage procedure to control the probability of at least
one error in the family. It is an appealing method because it is applicable in essentially
any multiple comparison situation. However, as the number of hypotheses increases, the
average power for testing the individual hypotheses becomes smaller. Some modifications

of the Bonferroni procedure have improved the situation, and they are discussed below.

A powerful sequentially rejective multiple test procedure has been proposed by Holm[62].
Holm’s test is also based on the Boole’s inequality, and it is actually a sequentially
rejective Bonferroni test. After performing some statistical test, the p-value for each
individual test Y;, say p;, is obtained. The classical Bonferroni test can be performed by
comparing all the obtained p}s to &, where P(p; < a|Hp) = «,Vi and C is the number
of hypotheses. In Holm’s procedure, the tests need to be ordered by their critical levels,
denoting by p) < p@ < ... < p(©. The test with the smallest p-value will be tested
with a Bonferroni correction for all tests(say C tests). If the test is not significant, then
we do not reject any hypotheses. Otherwise, the test with the smallest p-value is rejected,
and the test with the second smallest p-value is then corrected with a Bonferroni method
for a family of C' — 1 tests. The procedure stops when the first non-significant test is
obtained or when all the tests have been performed. Figure 3.1 illustrates the procedure

of the Holm’s test[62].

The Holm’s procedure increases the power of the statistical tests while keeping the
family-wise Type I error under control. Based on the same test statistics, the probability
of rejecting any set of false hypotheses using Holm’s test is larger than or equal to the
classical Bonferroni test. As Holm[62] discussed, the great advantage with this test(as
well as the classical Bonferroni test) is its flexibility. There are no restrictions on the
type of tests, the only requirement is that it should be possible to calculate the obtained

level for each separate test.

There are other powerful and complex procedures to keep the family-wise Type I er-
ror under control. However, they are all based on the assumption that the individual
tests are independent. Simes[123] proposed a global test for all hypothesis in a set of n
hypothesis {H1, Ho, ..., H,}. The set of hypothesis are all true with probability 1 — «

if p; > % for i = 1,...,n, where p}s are the ordered p-values. Simes[123] provided
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Start
No Not Reject YV, Y@ y(©).
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Reject Y(©);
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FIGURE 3.1: Flow Chart for Holm’s Procedure
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simulation results which indicate that the probability of a Type I error under the proce-
dure does not exceed the significance level a. However, Simes’ test does not address the
problem of how the individual hypothesis H;, for ¢ = 1,...,n are to be made for this
procedure. Hochberg[60] and Hommel[63] provide more powerful methods to control
the family-wise Type I error by combining Simes’ results (provided that the Simes’ tests
have level o). Rom[112] gives an improvement procedure for Hochberg’s method with a

slightly higher p-value. Therefore, it is more powerful than Hochberg’s method.

In the discussion above, we have assumed that the procedure we apply provides us with
a decision to reject or not reject each hypothesis. However, these methods did not give
us more detailed information about the significance of individual hypotheses. In the case
of a single hypothesis, a p-value provides us with this information. For a given multiple
comparison procedure, there is an analogue of the p-value, known as the adjusted p-value
[132].

To define the adjusted p-value, it is instructive to first recall the definition of a p-value.
The p-value is the smallest significance level o for which we reject the null hypothesis.
Similarly, the adjusted p-value of a hypothesis within a multiple hypothesis test is the
smallest family-wise error rate a for which we reject the hypothesis, given the individual
p-values of all hypotheses. These adjusted p-values may be compared to the desired

family-wise error rate to decide whether to reject an individual hypothesis.

To illustrate the definition of an adjusted p-value, consider an experiment with 3 tests,

with individual p-values 0.015, 0.037 and 0.023. If we are performing a Bonferroni
3
Therefore, the adjusted p-value of hypothesis i is given by p; .4 = 3, resulting in

correction with a family-wise error rate of «, a hypothesis will be rejected if p; <

adjusted p-values of 0.045, 0.111 and 0.069 in our example. We may then decide whether
to reject hypotheses at family-wise error rate « = 0.05 by comparing the adjusted p-
values to «. In the example, we reject only the first hypothesis, giving us the same
result as if we had done a Bonferroni correction directly. Details of computing adjusted

p-values for other corrections are given in [132].

3.4 Applying Ljung-Box test with Holm-Bonferroni cor-

rection to Ford’s data

In this section, we discuss how to detect whether the times to breakdown of Ford’s
individual machines are correlated with each other. We also demonstrate the effects
of correcting for multiple comparison tests using real data. In particular, the question
of whether the test results of some hypothesis are different after the correction will
be answered. Testing for autocorrelation in the data may have an effect on potential

decision making, such as which model is to choose for each individual machine.
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In the particular case of Ford’s machines, it may be reasonable to assume independence
of the hypothesis tests. However, there are several factors which may affect multiple ma-
chines, such as outages of the monitoring system. In addition to that, parallel machines
on the same work station may also affect each other. Based on the experience of Ford’s
engineers, during seasons when the demand for engines is low, some of the machines
may be switched off, leaving a few machines on the same work station working full time.
Therefore, some machines may experience high frequency of breakdowns, while others
have nearly zero failure during certain period of the year. However, the data of when
and which machines are shut down due to the reason above is not available. As such, we
will not assume independence and apply a Holm-Bonferroni correction. The correction
will be applied using adjusted p-values, indicating how significant the autocorrelation is

for each machine.

We apply the Ljung-Box test to Ford’s data, using a Holm-Bonferroni correction to
correct for multiple hypothesis testing. To illustrate the effects of correcting for multiple
hypothesis test, we compare the p-value of individual hypothesis test with its adjusted
p-value. Figure 3.2 shows the summary of the p- and adjusted p-values in R. The
adjusted p-values have a larger mean than the p-values. In addition to that, most of the
machines have very small p- and adjusted p-values, since the 3"% quartile of both the p-
and adjusted p-values are close to zero.
= summary(pvals3P)

Min. lst Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.02185 0.00000 0.43690
» summary({pvals$Padi)
Min. 1st Qu. Median Mean Ird Qu. Max.
0.0000000 00000000 Q.0000000 §.0994300 0.0000001 0.9197000

FIGURE 3.2: R results of the summary of p and adjusted p-values

To have a clearer view of the difference between the p- and adjusted p-values, we plot the
ratio of adjusted p-values against unadjusted p-values. This is illustrated in Figure 3.3,
in which the horizontal line represents value 1, and therefore, all of the adjusted p-values
are larger than the unadjusted p-values. The ratios vary, and some of the p-values can
be over 30 times larger after being corrected for multiple hypothesis testing. However,
since most of the unadjusted p-values are very close to zero, the adjusted p-values may
still be small, and hence the null hypothesis may still be rejected after correcting for

multiple hypothesis testing.

Table 3.1 shows the information of machines that no longer show evidence of having
autocorrelated up times, after correcting the p-values. For instance, before correcting
for multiple hypothesis tests, the p-value of the hypothesis test for Machine OP10.5 is
0.0047. Since it is below the threshold of 0.05, the null hypothesis that Machine OP10.5

has no autocorrelated up times is rejected. In other words, the up times of Machine
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FiGUure 3.3: Ratio of adjusted p-values against unadjusted p-values

OP10.5 is considered to be statistically autocorrelated. However, after correcting for

multiple hypothesis testing, the adjusted p-value for the hypothesis test is 0.0606, which

is above the threshold for rejection. Therefore, there is no evidence to reject the null

hypothesis, and we conclude that Machine OP10.5 does not have autocorrelated up

times. Similar situations happen on Machine OP10.1 and Machine 100.6. As such,

correcting for multiple hypothesis tests can have an effect on whether to reject the

null hypothesis or not. In the particular case of Ford, before correcting for multiple

hypothesis tests, the the number of machines that have autocorrelated up times is 78.

After the correction, the number of machines drops to 75.

TABLE 3.1: Information of machines that no longer show evidence of having autocor-

related uptimes after correcting the p-values

Machine | < 5 minutes | > 1 week | Total | p-value | adjusted p-value
OP10.5 1198 1 3039 | 0.0047 0.0606
OP10.1 1383 1 3609 | 0.0063 0.0698
0OP100.6 310 2 1001 | 0.0048 0.0606

As discussed in Section 2.8, any up time that is shorter than 5 minutes be removed from

the data. It is worth checking if excluding these data records will affect the autocorre-

lation analysis. Table 3.2 illustrates machines that have autocorrelated up times in the
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original data, but show no evidence of having autocorrelated up times after excluding
some of the data records. In Table 3.2 , “p,quaq;” represents the adjusted p-values of
the null hypothesis based on the original data, whereas “p,q;”
of the null hypothesis based on the truncated data. For instance, Machine OP100.4 has

a Prawaqj that is less than 0.05, and therefore it is considered to have autocorrelated

is the adjusted p-values

up times based on the original data. After removing some of the data records, the
Padj is greater than 0.05. Hence, no evidence suggests Machine OP100.4 has up times
that are autocorrelated. Similar situations happen on Machine OP10.5, OP10.1, OP30,
OP100.6, OP60, and OP120.1, in which the original data shows evidence of autocorre-

lated up times, but the truncated data does not.

TABLE 3.2: Information of machines that no longer show evidence of having autocor-

related uptimes after excluding some data records

Machine | < 5 minutes | > 1 week | Total Dadj Prawad;
OP100.4 303 1 991 0.9197 | 8.238859¢-06
OP10.5 1198 1 3039 | 0.0606 | 0.000000e+-00
OP10.1 1383 1 3609 | 0.0698 | 1.347589e-12
OP30 902 1 1965 | 0.9197 | 4.308998e-12
OP100.6 310 2 1001 | 0.06060 | 8.103295e-06
OP60 754 1 1497 | 0.9197 | 0.000000e+00
OP120.1 7341 1 11439 | 0.9197 | 5.931093e-04

Table 3.3 illustrates machines that do not have autocorrelated up times in the original
data, but show evidence of having autocorrelated up times after excluding some of the
data records. For instance, Machine OP10A has a p,quaq; that is 1, and therefore, it
is considered to not have autocorrelated up times based on the original data. After
removing 5897 data records, which account for over 50% of the total records for that
machine, the p,q4; of the null hypothesis is below the threshold of 0.05. Therefore,
Machine OP10A is considered to have autocorrelated up times. A similar situation
happens on Machine OP10A-30G, in which there is no evidence of autocorrelated up

times in the original data, but there is after truncating some of the data records.

TABLE 3.3: Information of machines that show evidence of having autocorrelated up-

times only after excluding some data records

Machine < 5 minutes | > 1 week | Total Dadj Prawadj
OP10A 5897 1 11291 | 3.785972¢-12 1
OP10A-30AG 4363 1 7947 | 3.340906¢-06 1
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3.5 Conclusion

In this chapter, we discussed how autocorrelation in time series may be defined and how
it may be detected using a Ljung-Box test. We then discussed the problem of multiple
hypothesis testing and various solutions to it, and illustrated the effects of correcting for

multiple hypothesis testing using real data.

Applying the Ljung-Box test, corrected for multiple comparisons, to Ford’s data showed
that most machines have statistically significant autocorrelation. In some cases, the
p-value of the Ljung-Box test seems to be severely affected by the presence of significant
numbers of outliers in the uptimes. As such, the thresholds for excluding data from
the original data records need to be carefully chosen, as they may affect future decision

making on which model to choose for each individual machine.



Chapter 4

Time series analysis of the up

times

4.1 Introduction

In the previous chapter, we analysed the times between breakdowns of Ford’s machines
and found that, for most machines, they were positively correlated. The implications
of this result are discussed in this chapter. In particular, as the times between break-
downs(up times) are autocorrelated, they cannot be treated as an independent and
identically distributed sample from a fixed density. This implies that they cannot be
directly modelled with parametric or nonparametric density estimation approaches and

other techniques are needed.

In this chapter, we consider treating the times between breakdowns as a time series and
apply Autoregressive Moving Average (ARMA) models to predict the next uptime from
some of the past uptimes and previous error terms. We begin the chapter by reviewing
ARMA models, including their definition and some fitting methods.

We then consider how ARMA models may be applied to the machine uptimes. We
present details of the methodology applied and some diagnostics of the models chosen

to assess their fit.

The chapter concludes with a brief summary of ARMA models and their applicability

to modelling the uptimes of Ford’s machines.

55
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4.2 Gaussian Autoregressive Moving Average (ARMA) mod-

els

In this section, we briefly review Gaussian Autoregressive Moving Average models. As
these models consist of both Autoregressive and Moving Average components, we begin
by reviewing the simpler Autoregressive and Moving Average models. Thereafter, we
combine them into ARMA models. The discussion here is based on the textbook by Box
and Jenkins[21].

4.2.1 White noise

The simplest process we will review is Gaussian white noise. In a white noise process,
every observation is independent of the previous one, so the process has no “memory”.
Furthermore, each observation has the same distribution. In the special case of Gaussian

white noise, each observation is normally distributed with zero mean and a fixed variance.

Figure 4.1 shows an example white noise series. As can be seen in the figure, the series
shows no obvious pattern. This is confirmed by its autocorrelation plot, shown in Figure
4.2.

Observation

3
|

0 200 400 600 800 1000

Index

FIGURE 4.1: An example time series generated from a Gaussian white noise process

with zero mean and unit variance
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Autocorrelation plot of white noise series
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FI1GURE 4.2: Autocorrelation plot generated from the example white noise sequence

4.2.2 Moving Average(MA) models

Moving average models use the past forecast errors in a regression-like model. Therefore,
the observed series is a moving average of an underlying series of independent and
identically distributed (iid) normal variables. Let ¢; be a Gaussian white noise process,
with zero mean and variance o?. Then, the series Y7, Ys, ... is a moving average (MA)

process if for some k, Y; is given by (4.1).

k
Y, = Z Bi€i—i + € (4.1)

=1

The [; are constants that control how strongly the process is affected by prior data. if
all the B; are zero, the process is a white noise process. The larger the (§;, the more

impact prior values have on the process.
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Observation
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FIGURE 4.3: An example time series generated from an MA(3) process

Autocorrelation plot of MA(3) series
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FIGURE 4.4: Autocorrelation plot generated from the example MA(3) sequence
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Figure 4.3 shows an example M A(3) process, where 51 = 0.5, 2 = —0.2 and f3 = 0.5.
The autocorrelation plot of this series is shown in Figure 4.4. As can be seen in the figure,
the autocorrelation is negligible outside of the first three lags. This is the characteristic

property of an M A(q) process: Only the first ¢ autocorrelations are nonzero.

4.2.3 Autoregressive(AR) models

We will now briefly review Gaussian Autoregressive (AR) models. In these models, the
value of a time series is allowed to depend on its past values. As the name indicates,
Gaussian AR models use a normally-distributed error term. The term autoregressive

indicates that it is a regression of the variable against itself.

Let Y1,Ys,... be a stationary time series, with a possibly non-zero mean. Then, the
AR(k) model for the sequence of Y; is as given by (4.2). Here, the p is constant; the
05; control the strength of “memory”and changing them results in different time series
patterns; the ¢; are independently and identically distributed normal variables N (0, o?),
which make up the variability that is part of the system when it moves from one period
to the next. The variance of the error term will only change the scale of the series, but

not the patterns; The integer k represents the order of the AR model.

k
Yi=p+Y BYii+e (4.2)
=1

Figure 4.5 shows an example for kK = 1, with 8; = 0.5. The corresponding autocorrelation
plot is shown in Figure 4.6. The autocorrelation plot shows a gradually decaying pattern.

Any AR(p) process will have nonzero autocorrelation for all lags, decaying with time.

4.2.4 Autoregressive Moving Average (ARMA) models

We will now combine autoregressive and moving average models into Autoregressive
Moving Average (ARMA) models. As before, let Y; be a stationary time series, and let
p and g be positive integers. Then, Y; is an ARM A(p, q) process if, for ¢; iid normal

with zero mean and constant variance, (4.3).

p q
Yi=p+ Y BYic+ > ik +e (4.3)
=1 k=1

Figure 4.7 shows an example time series, generated by combining the example MA(3)
process and AR(1) processes above. The corresponding autocorrelation plot is in Figure

4.8. Depending on the values of the coefficients, an ARMA(p,q) correlation plot may
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FIGURE 4.5: An example time series generated from an AR(1) process

Autocorrelation plot of AR(1) series
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FIGURE 4.6: Autocorrelation plot generated from the example AR(1) sequence
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Observation
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FIGURE 4.7: An example time series generated from an ARMA(1,3) process

look similar to either an AR(p) or MA(q) correlation plot. In this particular case, the

correlation plot closely resembles that obtained earlier for AR(1).

4.2.5 Fitting ARMA models

We will now discuss how an ARMA model may be fitted to an observed time series
Y1,Y2,---Yn. Jo do so, there are two problems that need to be solved. First, the
parameters of an ARM A(p, q) model for given p and ¢ need to be estimated. Second,
an appropriate p and g need to be chosen. The approaches to these problems discussed

here are those of the R forecast package[64].

We will consider the second problem, of choosing p and ¢, first, as its solution has
implications for the problem of estimating the parameters. The problem of choosing a
suitable p and ¢ may be defined as choosing the “best” ARM A(p, q) model out of a set of
possible such models. In the literature, a number of methods to solve this model selection

problem have been proposed. For a review of model selection, see Zucchini[137].

The particular approach to model selection used by the forecast package is based on
Akaike’s Information Criterion(AIC). This criterion, for any statistical model with &
parameters, is given by (4.4). Here, L is the maximum of the likelihood of the model.

For an ARM A(p, q) model with a constant term, this equation reduces to (4.5).



62 Chapter 4 Time series analysis of the up times
Autocorrelation plot of ARMA(1,3) series
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FIGURE 4.8: Autocorrelation plot generated from the example ARMA (1,3) sequence

AIC = —2logL + 2k
AIC = —2logL+2(p+q+1)

Given a set of models and their maximum-likelihood estimates, model selection based

on AIC selects the model with the smallest AIC. For a large set of models, such as the
set of all ARM A(p, q) models with p < 20 and ¢ < 20, this may not be computationally

feasible.

As an alternative to minimising AIC globally over the model set, the forecast package

implements a stepwise model selection algorithm. This algorithm starts with the best

model out of a small set of candidates and then iterates, attempting to make small

changes to the values of p and ¢ at each step until no further change improves the
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model. Pseudocode for the algorithm is given in Algorithm 1.

Set the current model to the best model chosen from ARM A(2,2), ARM A(0,0),
ARMA(1,0), ARM A(0,1);

repeat

Set (p,q) to the order of the current model;

Select the best candidate model from ARMA(p —1,q), ARMA(p+ 1,q),

ARMA(p,q—1), ARMA(p,q+1), ARMA(p—1,q—1), ARMA(p+1,q+1);

until The best candidate model is no better than the current model;
Algorithm 1: The stepwise model selection process used in the forecast package[64]
for ARMA models

In Algorithm 1, a model may occasionally be difficult to fit due to numerical difficulties
or due to the parameters chosen. In these cases, the forecast package excludes the
candidate model. Details of this can be found in [64].

Since the forecast package uses AIC to select p and ¢, it must use maximum-likelihood
estimation to estimate the parameters of each model. However, since in ARM A(p, q)
models each observation depends on the p previous observations and ¢ previous errors,
the likelihood depends on the unknown values of the series before the first observation.
A solution, implemented in R, is to assume an uninformative prior on these unknown
values and apply Kalman filters to compute the likelihood. The details of this process
may be found in the textbook by Durbin and Koopman[42]. The piece of R code that
demonstrates how to fit ARMA models for the uptimes of Ford’s machines is seen below.

In particular, lines 8 and 9 are the implementation of Algorithm 1.

diagplots <- function(f, r, idxs, fname){
par (mfrow=c(2,2))
#Plot 1: designed to assess whether restiduals are constant-variance over time.
plot (idxs,r,xlab=’Index’,ylab=’Residual’)
#Plot 2: Standard restduals vs fitted plot to assess wuntiform variance.
plot(f,r,xlab="Fitted value’,ylab=’Residual’)
#Plot 3: Q@-plot of residuals, to assess mormality
qqnorm (r)
qqline (r)
#Plot 4: Acf plot of residuals, to assess independence
acf (r,main=’Correllogram of residuals’)
savePlot (fname, ’png’)
par (mfrow=c(1,1))
}
diagar <- function(m,x,fname){

order <- m$arma[i1]l+m$arma [2]

idxs <- (order+1):length(x)

f <- fitted(m) [idxs]

r <- resid(m) [idxs]

diagplots(f, r, idxs,fname)
}

plotassessfit <- function(act, sim, fname.acf, fname.qq, lag.max=35){
par (mfrow=c(1,1))
obs.acf <- acf(act, lag.max = lag.max, plot=FALSE)
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sim.acf <- acf(sim, lag.max = lag.max, plot=FALSE)
plot (0:35, obs.acf$acf, ’1’, xlab=’Lag’, ylab=’Autocorrelation’)
lines (0:35, sim.acf$acf, col=’blue’)
savePlot (fname.acf, ’png’)
qgqplot (act, sim,xlab=’Data’, ylab=’Simulated’)
abline (0,1)
savePlot (fname.qq, ’png’)
}

for(l in levels(rejected$Type)){

max.n <- max(rejected$Number [rejected$Type==1])
if (max.n >= 0){
for( n in 0:(max(rejected$Number [rejected$Type==11))){
upt <- toreal(get.machine(durs, 1, n))
orig <- get.machine(durs, 1, n)
if (length (upt) > 1){

model <- auto.arima(upt, d=0, D=0, max.p = max.p, max.q = max.q,
max.P = 0, max.Q = O, approximation=FALSE, stepwise=TRUE, max.order=max.p+max
.q)

rejected$arma.plrejected$Type == 1 & rejected$Number == n] =
model$arma [1]

rejected$arma.qlrejected$Type == 1 & rejected$Number == n] =

model$arma [2]

aic <- transform_aic(AIC(model), orig)

rejected$arma.aic[rejected$Type == 1 & rejected$Number == n] =
aic

diagar (model, upt, paste(’arma-diag-’, 1, ’-’, n, ’.png’,sep=’’))

simmed <- simulate.Arima(model, length(upt)*10, future=FALSE)

plotassessfit (orig, fromreal(simmed), paste(’arma-acf-’, 1, ’-’,
n, ’.png’,sep=’’),

paste(’arma-qq-’, 1, ’-’, n, ’.png’, sep=’’))
plotassessfit (upt, simmed, paste(’arma-trans-acf-’, 1, ’-’, n, °’.

png’,sep=""),
paste(’arma-trans-qq-’, 1, ’-’, n, ’.png’, sep=’’))

4.3 Applying ARMA models to the uptimes of Ford’s ma-

chines

In this section, we consider how the ARMA models reviewed previously may be applied

to the uptimes of Ford’s machines. We begin by discussing the fitting methodology and
then assess the ARMA fits obtained.

ARMA models, as reviewed previously, assume that each observation has a normal dis-

tribution. This implies that the observation may be on the entire real line. Normally, a

machine uptime is strictly positive, and a logarithmic transform would suffice to trans-

form the uptime to an observation on the entire real line. However, since we have

removed both small and large values, the uptimes in our data are between 5 minutes
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FIGURE 4.9: An example diagnostic plot for an ARMA fit
and 1 week. Letting a be 5 minutes and b one week, an observation on (a,b) may be

transformed to the real line using (4.6). Here, u is the uptime to be transformed and y

is the transformed real-valued observation.

y = log <Z:Z> (4.6)

After transforming the individual uptimes, we fit ARMA models using the procedure

described in Subsection 4.2.5. To assess whether these models fit the data, we have used
a set of diagnostic plots. Before we discuss the quality of the fits we obtained, we will

first discuss these plots. An example of the diagnostic plots is given in Figure 4.9.

In Figure 4.9, the top-left plot shows the residuals versus the index of the residual. If the
model fits adequately, this should show a band of points distributed randomly around
zero. Since the residuals should have constant variance, the width of this band should

not vary. In the particular example shown here, this appears to be the case.

The top-right corner of Figure 4.9 shows the residuals versus the estimated transformed
uptime. If the model’s fit is adequate, the fitted value and residual should be unrelated to
each other and this plot should show a random distribution of points. In this particular
example, there is no obvious pattern in the distribution of the points, although a small

cluster of points in the bottom-left appears to lie on a line.
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The QQ-plot in the bottom-left corner of Figure 4.9 allows us to assess whether the
residuals are normally distributed. If the model’s fit is adequate, this should be the case
and the QQ-plot will approximate a straight line. In this particular example, the plot

is satisfactory.

Finally, the bottom-right corner of Figure 4.9 shows the estimated autocorrelation func-
tion of the residuals. If there is any unmodelled correlation in the uptimes, this plot
should show significant peaks. In this example, none of the peaks are large enough to

cause us any concern.

We will now briefly discuss the results of fitting ARMA models to the uptimes of Ford’s

machines, highlighting particular machines or patterns of interest.

The ARMA model fits well for most of the machines, and the diagnostic plots of the
fitting results have the similar patten as in Figure 4.9. There are some machines that

show different patterns.

As a first example, consider the diagnostic plots shown in Figure 4.10. For this machine,
the QQ plot, residual plot and residual versus fitted value plot all appear to indicate
that the fit is relatively poor. In particular, the residual versus fitted value plot shows

two distinct clusters of data points.

To investigate this further, we have plotted the uptimes themselves in 4.11. As can
be seen in the figure, there’s a long run of short uptimes around index 1200. This is
most likely due to a run of “try outs” that were unusually long. To determine whether
the run of try outs is the cause of the lack of fit seen in Figure 4.10, we have fitted an
ARMA model to the series up to index 1150. The diagnostic plots for this fit are shown
in Figure 4.12. This figure strongly resembles Figure 4.10 and appears to indicate that
the residuals of this model are not symmetric. In all, a different model will be needed

to fit this series well. Similar behaviour can be seen in one other machine, OP55.
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FI1GURE 4.10: Diagnostic plots for machine OP130-1
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FIGURE 4.11: Uptimes for machine OP130-1
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FIGURE 4.12: Diagnostic plots for machine OP130-1, using a prefix of the full series

A second pattern in the poorer ARMA fits is illustrated in Figure 4.13. Most of the plots
in this figure look quite reasonable. The exception is the residual versus index plot, which
seems to indicate smoothly-changing variance. This suggests that an ARMA model is
inappropriate for this machine as the variance of the error terms needs to change over
time. An ARMA-GARCH model might be an appropriate choice for machines of this

type. The diagnostic plots for the ARMA fits for all machines are given in Appendices
A.

4.4 Simulating uptimes from ARMA models

In this section, we discuss how uptimes may be generated from a fitted ARM A(p, q)
model. The discussion here is based on the implementation of the arima.sim function[108]
in R. We will break the process of simulating from an ARM A(p, q¢) model into several
stages:

1. Generating a white noise process

2. Generating an M A(q) series from a white noise process

3. Generating an ARM A(p, q) series from an M A(q) series
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FI1GURE 4.13: Diagnostic plots for machine OP110-0

4. Transforming the generated times

Generating a white noise process To generate a white noise process with zero

mean and variance o2

, we generate a series of iid N(0,0?) random variables. This
may be done using any common method of generating Gaussian random variables, for
instance a Box-Muller transform. For the details of Box-Muller transform, see Box and

Muller[23].

Generating an M A(q) series from white noise To generate an M A(q) series from
white noise, we need to compute linear combinations of the white noise values. To be
more precise, if ¢; is a sequence of white noise variables, the M A(q) process m; is given
by m; = ¢; + Z?:l Bj€i—;, where B are the MA coefficients.

Generating an ARM A(p, q) series from an M A(q) series To generate an ARM A(p, q)
series from an M A(q) one, we need to perform autoregressive filtering of order p on the
M A(q) series. To do so, we compute the output z; as x; = p+m; + Z§:1 Bjxi—j, where
the 3; are the coefficients of the AR portion of the model.

The series x; depends on its own past values, and so depends on initialisation values.

For the purposes of simulating a stationary ARMA model, these values are essentially
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arbitrary and may be taken as zero. However, the initial part of the series should be

discarded as it may depend on the choice of initialisation values.

Transforming the generated times The times generated above can be any real
number. In Ford’s application, an uptime can only be between 5 minutes and 1 week.

Accordingly, we apply the inverse of the data transformation we have used before. This

eYib+a
eYi+1 *

generates uptimes u; =

4.5 Allowing the variance to vary

4.5.1 Introduction

In the ARMA models we have discussed so far in this chapter, we assumed that the error
process €; was white noise, that is, the ¢ are independent and identically distributed
random variables. When we applied these models to Ford’s data, we noticed that the
residuals did not necessarily have constant variance. This indicates that the underlying
error process may not have a constant variance. In this section, we consider how the
ARMA model may be extended to allow GARCH errors, which enable the variance of

the observations to change over time.

4.5.2 Defining GARCH models
First, we will briefly review how GARCH models may be defined. The discussion here

is based on [13]. To define a GARCH model, we first consider a zero-mean process v,
defined by (4.7). Here, ¢ is given by (4.8).

e = ey (4.7)
€4 ~ N(O, 1) (48)

The key to defining GARCH models is the process h; in (4.7). Unlike in Gaussian white
noise, where h; is constant, in a GARCH (p, q¢) model, h; is given by (4.9).

hy = ap + ozlef_l 4+ aqef_q + Brhi—1 + -+ Bphi—p (4.9)

Equation (4.9) is similar to the definition of an ARM A(p, q) process, except that the

errors have been replaced by their squared values. As such, in a GARCH process, the
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sign of the error does not matter, only its size. Furthermore, using the squared values

ensures that h; does not become negative, so that y; is well-defined.

Observation
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Index

FIGURE 4.14: An example GARCH(1,1) time series

An example GARCH(1,1) time series is shown in Figure 4.14. For this example, ap = 0.1,
a1 = 0.8 and 81 = 0.1. The series varies around zero. Although the series’ occasionally
has large values, it’s not entirely clear from this figure that the variance is changing over

time.

Figure 4.15 shows the standard deviation of each observation in the GARCH series,
conditional on the past values. This figure shows that the standard deviation varies and

occasionally becomes much larger for a brief period.

As the variance of each observation in a GARCH series depends on the previous variances
and previous squared errors, the squares of the series are correlated. This is shown in
the autocorrelation plot in Figure 4.16, which indicates that the squares of the series
are significantly autocorrelated. However, as shown in Figure 4.17, the GARCH series

itself does not have significant autocorrelation.

To incorporate a time-varying variance in an ARM A(p, q) process, we take (4.3) defining
the ARM A(p, q) process and replace the errors ¢; by a GARCH process. This gives (4.10)
defining an ARM A — GARCH (p,q,r,s) process.
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FIGURE 4.15: Conditional standard deviation for the example GARCH(1,1) series
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4.5.3 Fitting ARMA-GARCH models

We will now briefly discuss how a GARCH model may be fitted to an observed series.
The discussion here is based on [13] and the approach taken by the fGarch R package
[133].

To fit an ARMA — GARCH (p,q,r,s) model, we will use maximum likelihood. For
the time being, we will assume that the model order, that is, the parameters p, q, r
and s, is known. Conditional on the past values of the series, the log-likelihood for a
single observation z; is given by (4.13). Here, 6 denotes the vector of all parameters of
the ARMA — GARCH model. The variable yu; is the conditional mean of x;, o; the

conditional standard deviation. The term C' is a constant independent of x; and ©.
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FIGURE 4.16: Autocorrelation of squared GARCH(1,1) series
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4.1
27— +C (4.13)

li(x;0) = —log oy —

Given suitable starting values, the likelihood of the time series £ may be obtained using
(4.14).

@:0) =l 0) (114
t=1

To maximise (4.14), any nonlinear optimisation method may be used. The remaining
problem is how we may find suitable values of p, ¢, 7 and s. In this work, we have
done so by first picking the parameters p and ¢, using the ARMA fitting approach of

Algorithm 1. To select r and s, we then select from the following set of possible choices:

l.p=1,q=0
2.p=q=1
3. p=2,qg=1

4. p=1,q=2
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FIGURE 4.17: Autocorrelation of GARCH(1,1) series

As described in [13], the second choice above, GARCH (1,1) captures most time series
in applied work, and the final two choices are very rarely needed. As such, we expect
that the restriction to these particular parameter values is unlikely to reduce the quality

of fit significantly.

4.5.4 Applying ARMA-GARCH models to machine uptimes

We will now discuss the results of applying ARMA-GARCH models to the uptimes of
Ford’s machines. As before, we will mainly use diagnostic plots. In addition to these
plots, we will also use the Akaike Information Criterion (AIC), and compare its value
to that of the previous ARMA fits for the same machines. The analysis was performed

in R, using the code included below.

find.garch.fit <- function(arma, upt){
possible.garch <- list(c(1,0), c(1,1), c(2,1), c(1,2))
best .AIC <- Inf
best.model <- NULL
for(pq in possible.garch){
f <- as.formula(paste("~arma(",arma$armal1], ",", arma$armal[2],")+garch("
,pql1l,",", pql2], ")", sep="" ))
this.garch <- garchFit(f, data = upt, trace=FALSE, cond.dist="norm")
if (this.garch@fit$ics [[?AIC’]] < best.AIC){
best.AIC <- this.garch@fit$ics[[’AIC’]]
best.model <- this.garch
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}
best .model

diaggarch <- function(m, fname){
r <- m@residuals/m@sigma.t #Standardise residuals for garch.
f <- m@fitted
diagplots(f, r, 1:length(f), fname)

garchSpecFromGarch <- function(garch){
rawparms <- coef (garch)
order <- garch@fit$series$order
if (order [[’u’]]l > 0){

ar <- sapply(l:order[[’u’]], function (i) {rawparms[[paste("ar", i, sep="
")I111
} else
ar <- c(Q)
}
if (order [[’v’]] > 0){
ma <- sapply(l:order[[’v’]], function (i) {rawparms[[paste("ma", i, sep="
")I111H
} else {
ma <- c()
}

if (order [[’p’1] > 0){
alpha <- sapply(l:order[[’p’]], function (i) {rawparms[[paste("alpha", i,
sep="")11})
} else {
alpha <- c()
}
if (order[[’q’]] > 0){
beta <- sapply(l:order[[’q’]], function (i) {rawparms[[paste("beta", i,

sep="")11})
} else {
beta <- c()

}

garchSpec (model = list(omega = rawparms[[’omega’]],
ar = ar,
ma = ma,
mu = rawparms[[’mu’]],

alpha = alpha,
beta = beta,
delta = 2

), cond.dist = "norm"

simgarch <- function(garch, n){
spec <- garchSpecFromGarch(garch)

as.numeric (garchSim(spec, n))

for(l in levels(rejected$Type)){
max.n <- max(rejected$Number [rejected$Type==11]1)
if (max.n >= 0){
for( n in O:(max(rejected$Number [rejected$Type==11))){
model.garch <- find.garch.fit(model, upt)
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diaggarch(model.garch, paste(’garch-diag-’, 1, ’-’, n, ’.png’,
sep=’"))

plot (model.garch@sigma.t, type=’1’, ylab=’Conditional standard
deviation’)

savePlot (paste(’garch-sigma-’, 1, ’-’,n, ’.png’), ’png’)

rejected$garch.plrejected$Type == 1 & rejected$Number == n]
model.garch@fit$series$order [[’p’]]

rejected$garch.qlrejected$Type == 1 & rejected$Number == n]
model.garch@fit$series$order[[’q’]]

rejected$garch.aic[rejected$Type == 1 & rejected$Number == n] =
transform_aic(model.garch@fit$ics[[?AIC’]]*length(upt), orig)

simmed <- simgarch(model.garch, length(upt)*10)

tryCatch(plotassessfit (orig, fromreal (simmed), paste(’garch-acf-’
, 1, ’-’, n, ’.png’,sep=’’), paste(’garch-qq-’, 1, ’-’, n, ’.png’, sep=’’)),
error =function(e) print(e))

}

}

An example of the diagnostic plots for an ARM A — GARCH model is shown in Figure
4.18. This figure is based on the same machine as Figure 4.9. The main difference
between these plots is that Figure 4.18 is based on the standardised residuals. These
are given by g—tt, i.e. they are the ordinary residuals divided by their estimated standard
deviation. If the fit is acceptable, the diagnostic plots should behave the same as those
for an ARMA model[136]. In this particular case, since the ARM A fit was acceptable,
the ARM A — GARCH fit is not substantially better.

In our previous discussion of ARMA fits, we discussed how the variance appeared to
change over time for machine OP-110-0, as well as some machines that showed a similar
pattern. In theory, ARMA-GARCH models should be able to provide more satisfactory

fits for these machines.

Figure 4.19 contains the diagnostic plots for the ARMA-GARCH fit of OP110-0. As
before, most of the plots are satisfactory. The plot of the residuals versus time is
substantially better than for an ARMA fit, although it still appears to show some residual
change in variance over time. This suggests that perhaps including higher-order GARCH
terms may be valuable for this series. For a number of other machines, the picture is
the same as for OP110-0, i.e. the ARMA-GARCH model provides some improvement

but does not necessarily generate a perfect fit.

In other cases, the ARMA-GARCH model allows the model to compensate somewhat for
data anomalies. An example of this is machine OP80-4, whose diagnostic plot is shown
in Figure 4.20. The corresponding plot for an ARMA model is shown in Figure 4.21
Comparing the two figures, the anomalous residuals near the end of the series are less
apparent in the GARCH version and the residual versus fitted value plot looks somewhat
better. However, the GARCH terms were unable to fully capture the anomaly in the
data.
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FI1GURE 4.21: ARMA diagnostic plots for machine OP80-4

Another way to assess whether GARCH terms are having a significant impact on the
model is to plot the conditional standard deviation of each observation. In an ARMA
model without GARCH terms, this would be a constant. Significant changes in this
value therefore indicate that the GARCH terms are substantially affecting the model.

Figures 4.22 and 4.23 show the conditional standard deviation for machines OP80-4 and
OP110-0, respectively. The plot for OP80-4 shows that the standard deviation varies
over the entire series, not only in the anomaly near the end. This suggests that the
GARCH model is having an impact beyond just compensating for the anomalous data
at the end of the series. For OP110-0, the standard deviation varies more smoothly,

with some periods having substantially lower standard deviation.

To provide a more objective comparison between ARMA and ARMA-GARCH fits for
the uptime data, we can consider the AIC value of each model. For 57 of the 77 machines
we fitted the models to, the AIC of the ARMA-GARCH model was lower, indicating the
GARCH terms improved the fit. In many cases, the improvement in AIC was small, but
some machines showed more significant improvements. Diagnostic plots for all machines

are provided for reference in Appendix B.

In all, both the AIC comparison and the diagnostic plots show that adding GARCH
terms to the ARMA models can improve the fit to Ford’s uptime data. Though the
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FIGURE 4.23: Conditional standard deviation for machine OP110-0

improvement in fit is small, some of the diagnostic plots we obtained suggest that higher-

order GARCH terms might improve this situation.

The fitting results for ARMA-GARCH model and the AIC for both ARMA and ARMA-
Garch models are illustrated in Table 4.1.

Table 4.1: Selected model order (p, q, r and s) and AIC for
ARMA and ARMA-GARCH fits

Type Machine | P | Q | R | S | ARMA AIC | GARCH AIC
OP10 31111 1]0 38204 38208
OP 170_SCR 03] 2] 1|1 111887 111879
OP20 4121211 44903 44895
OP 70 62211 67278 67277
OP20 10003 112 58001 57992
OP10 6|4 1| 1]1 47863 47856
DAGO0160 O 1} 1| 1|2 7858 7856
OP 40 Oj11 1) 1]0 22225 22230
OP120 212211 95997 95988
OP10 21 1] 2] 1)1 26967 26957
OP20 116|412 36846 36846

Continued on next page
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Table 4.1 — Continued from previous page

Type Machine | P | Q | R | S | ARMA AIC | GARCH AIC
OP 140 0|2 4|11 31583 31568
OP170_.LEAK 02| 2|1|0 118374 118373
OP20 513 1] 1]1 48802 48765
OP 125 0Oy1, 2|10 91994 91975
0OP20 8131 2] 1]1 49855 49843
OP10G 0] 1] 1] 2]1 38220 38205
OP20 6|13 3] 1]1 63717 63654
OP130 21112112 35789 35757
OP 150 03] 3] 1]1 33447 33445
OP20 9131 1] 1]0 32042 32042
OP 160 0] 1] 3] 1]1 65133 65073
OP 45A O 1111 26753 26749
OP 10A 0] 1] 1] 1]1 93780 93761
OP20 mj2 2011 74371 74343
OP10A-30AG 0|1} 1]1]0 64588 64590
OP130G 0|1 1] 1]0 63336 63335
OP130 113111 32649 32634
OP10 4132|110 32315 32320
0OP20 212121 1]|1 54014 53991
OP 100 2131 1]1]0 18750 18738
OP20G 02 1] 1]1 65548 65550
0OP20 1213 2] 1|1 40432 40408
OP20 T4 4] 2|1 45235 45239
OP100G 03] 1] 2]1 71513 71497
OP20 3131310 41068 41069
OP 110 03] 1] 1]1 39559 39549
OP 135 06| 0] 1]1 86981 86970
OP 30A O 1| 1] 1|1 27315 27310
OP70 8111 3] 1]1 63160 63155
OP80 9131 3]1]0 47981 47984
OP70 512121110 59973 59973
OP70 0312112 68788 68779
OP90 213121111 71787 71786
OP80 5131 1] 1]0 53409 53416
OP80G 0|1} 1]1]0 49306 49306
0OP30-40G 0| 1] 4] 1]0 32408 32414
OP45-50C 03] 1] 2]1 72207 72202
OP90 91 1] 2| 1]2 91766 91761
OP80 11221110 46251 46249

Continued on next page
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Table 4.1 — Continued from previous page

Type Machine | P | Q | R | S | ARMA AIC | GARCH AIC
OP90 412 2| 1|2 92467 92448
OP55 0] 4] 0] 1]1 29828 29820
OP70 41 3] 1] 1]2 88706 88699
OP90 512121111 75329 75323
OP90 1122111 75707 75699
OP70 3131 3] 1]1 55014 55010
OP90 8121 2| 1]2 86907 86884
OP80 6|12 2]1]0 47405 47407
OP70 71221 1|1 104101 104071
OP70 121 3] 1] 1] 2 91447 91433
OP90 6|3 1] 1]1 98229 98199
OP80 21313] 211 42948 42952
OP90G 0|2 2| 1]2 97238 97194
OP70 2121211 84757 84728
OP80 712121 1]0 50823 50825
OP90 w3111 82300 82300
OP70 9121 2] 1]1 84415 84368
OP80 3131 1] 2]1 43519 43511
OP80 81 3] 1] 2]1 47125 47125
OP70G 0] 1] 3] 1]1 71183 71185
OP90 T3 1] 1]1 83292 83287
OP90 1213 1] 1|1 82112 82109
OP80 0131221 44993 45002
OP80 4191 0] 112 140610 140517
OP90 3131211 80999 81005
OP50_BLTRD 03] 1] 1]1 85899 85879
OP70 1122111 77430 77416

4.5.5 Generating uptimes from an ARMA-GARCH model

As with ARMA models previously, we will now consider how we may generate uptimes
from an ARMA-GARCH model. This allows Ford to use these models in simulation.

The method presented here is that used in R’s fGarch package[133].

Before we can start simulating from the model, we need to compute suitable initialisation
values. The fGarch package uses the following approach to generate initial innovations

¢, standard deviations h and observations x, using the notation from (4.10).

1. Generate z according to a standard normal distribution.
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2. Set h = gy Toer
3. Set € = \/EZ
4. Set y = #”_151

Given the initialisation values above, the conditional standard deviation at time t, hy,

the innovation €; and the observation y; are generated as follows:

S T
hi=70+ Y vieri+ > Oihii (4.15)
i=1 i=1
et = Vhize (4.16)
p q
Y =p+ Z Biyt—i + Z Qi€ (4.17)
i=1 i=1

The equations above may be iterated as often as desired to generate the simulated
observations of the ARMA-GARCH process. As with an ARMA process, the initial
part of the sequence should be discarded. To obtain uptimes from the ARMA-GARCH

observations, we again invert the data transformation.

4.6 Conclusion

In this chapter, we have discussed how ARMA models may be fitted to the uptimes of
Ford’s machines. For the vast majority of the machines, the ARMA models produce

quite reasonable fits.

In one exceptional case, the residuals appear to be non-symmetrically distributed. This
behaviour rules out ARMA models and any other models with symmetric error distri-

butions.

For other machines, such as OP110-0, the residuals do appear to be symmetric, but their
variance may change over time. In an attempt to improve these fits, we discussed fitting
ARMA-GARCH models to Ford’s data. In general, this led to a small improvement
in the quality of fit. However, some of the diagnostic plots we obtained suggest that
higher-order GARCH terms might lead to even better fits.






Chapter 5

Modelling uptimes using a
Markov-Modulated Poisson

Process

5.1 Introduction

In this chapter, we consider a different view of machine uptimes based on a Markov-
Modulated Poisson Process (MMPP). In an MMPP, machine breakdowns occur with a
finite number of different rates. This allows us to directly model machines that have high
or low breakdown rates that vary over time. The change in breakdown rates over time
also leads to positive autocorrelation between uptimes, as we have observed in Ford’s
data.

In the next section, we begin by reviewing the definition of the MMPP and some of its
uses in the literature. We also consider how an MMPP may be fitted to an observed

series of uptimes.
Thereafter, we apply the MMPP to Ford’s data and discuss the results.

The chapter concludes with a brief summary of the MMPP, fitting MMPPs and our
results in applying MMPPs to Ford’s data.

5.2 The Markov-Modulated Poisson Process

5.2.1 Definition of the Markov-Modulated Poisson Process

The Markov-modulated Poisson process(MMPP) is an extension of the Poisson process,

where the arrival rate varies between a finite number of possible values. As the MMPP

85
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is related to several other types of arrival processes and Markov Models, we will begin
by briefly recalling these. Thereafter, we will define the MMPP itself and discuss its

applications.

Counting Process A stochastic process {N(¢),t < 0} is a counting process if N(t)
represents the total number of events that have occurred up to time ¢t. A counting

process N (t) must satisfy the following conditions[12]:

e N(t) >0;

e N(t) is integer valued;

If s <t, then N(s) < N(t);

For s < t, N(t) — N(s) equals the number of events that have occurred in the

interval (s, t].

Counting processes have been used to model arrivals, which are the occurrences of some
types of events. For example, N(t) is the number of customers who arrive at a shop by
time ¢t. Figure 5.1 shows a possible sample path of a counting process, where 11,75, T3

that represent the arrival times are the only sources of randomness.

L IN©
3 —
2 — ©
1 ——o
t
T T T

FIGURE 5.1: A sample path of a counting process

One of the most widely-used counting process is the Poisson process, which is usually
used in cases where the occurrences of events appear to happen at a certain rate, but
still at random. For instance, we know that the number of car accidents that happen in
an area has a rate of 3 per month. Other than this information, the exact time of an

accident is completely unknown. A Poisson process is defined as follows.
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Poisson Process The counting process {N(¢),t > 0} is a Poisson process with rate
A, A > 0 provided that the following axioms hold [12][30]:

e N(0)=0
e for any t,s > 0, Nyys — V; is independent of {Ny;u < t};

e The number of events in any interval of length ¢ is Poison distributed with mean
At. That is, for any t,s > 0,

P{N(t+s) — N(s) :n}:e*)‘t()\t)n,nzo,l,... (5.1)

The Poisson processes are suitable to model many counting phenomena, but they are
insufficient in some cases because the assumption of a deterministic arrival rate is
unrealistic[19]. For instance, in financial data, people tend to observe bursts of trading
activities followed by periods of quite activities[37]. Therefore, there is a non-constant
behavior for the number of activities, and the Poisson model may not be suitable to

model such a phenomena.

Cox[32] introduced the idea of doubly stochastic Poisson process, and it is studied in
detail by Bartlett [10]. A doubly stochastic Poisson process is a generalization of a
Poisson process where the arrival rate itself is a stochastic process. The aim of such
a generalization is to allow an external process, which is called information process to
influence the intensity of the occurrences of arrivals. A doubly stochastic process is also

known as a Cox process, and is defined as follows.

Doubly Stochastic Poisson Process {N(t),t > 0} is a doubly stochastic Poisson
process with intensity process {A(¢,z(t)), ¢ > 0} if for almost every given path of the
process {z(t),t > 0} , N{.} is a Poisson proses with intensity function {\(¢, z(t)), ¢t > 0}.
In other words, {N(t),¢t > 0} is conditionally a Poisson process with intensity function
{A(t,z(t)), t > 0} given {x(t),t > 0}[52].

As in Grandell[52], the process {z(t),¢ > 0} in many applications conveys useful infor-
mation. Therefore, {z(t),t > 0} is called the information process. In simple cases, the
information process is a finite collection of random variables independent of time. The
applications of the doubly stochastic Poisson process are diverse when the parameters

of interests are modeled as random variables instead of unknown but not random.

The Markov-Modulated Poisson Process (MMPP) is a special case of the doubly-stochastic
Poisson process. In an MMPP, the information process z(t) is a Markov process. Before
we define the MMPP itself, we will briefly review Markov processes. The definition of a

Markov process is taken from [30].
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Markov Processes Let S be a finite set of possible states. A Markov Process is a

stochastic process X;, such that, for all t,s > 0 and j € S

P(Xtrs = j|Xusu < t) = P(Xeys = j|1X4) (5.2)

Intuitively, the value X; captures all the information about the process up to and in-
cluding time ¢. In general, the right-hand side of (5.2) may depend on t. We will assume
that this is not the case, and (5.2) may be rewritten as (5.3). Markov processes with

this property are said to be time-homogeneous.

P(XtJrs = ]’Xt = Z) = Ps(iaj) (5'3)

The function Ps(i,j) defines a specific Markov process. A Markov Process may also
be defined using a matrix of transition rates, called the generator of the process. The

generator () has the following properties:

1. Qi = —X;, where ); is the rate at which the process leaves state ¢

2. Qij = \iP(i,j), where P(i, j) is the probability that the process jumps in one step

from state ¢ to state j

Markov-Modulated Poisson Process A Markov-Modulated Poisson Process(MMPP)
is a doubly-stochastic Poisson process, whose information process is an m-state irre-
ducible Markov process X (t) [16]. Since X () can take a finite number of values, the
MMPP can be viewed as switching between a finite number of Poisson processes, based
on the Markov process [43]. Whenever X (¢) = 4, that is, the Markov process is in state
i, arrivals occur with the associated rate A;. In this chapter, we will assume that the
MMPP is defined by the generator matrix @) of its Markov process and the arrival rates
A

The MMPP can also be seen as a Hidden Markov Model[51] where the the state is
not directly visible, but the output, which are the event times that depend on the
states, are visible. Expressing an MMPP as a Hidden Markov Model allows methods for
the Hidden Markov Models to be used for calculating likelihood and estimating model

parameters|[16].

The application of the MMPP is mainly in queuing theory. For instance, Du[41] models
the arrival process of a single-server queue as a three-level MMPP. Other authors, such
as Latouche and Ramaswami[73], Lucantoni et al.[85], and Lucantoni[84] provide algo-
rithms to solve the MMPP /G/1 queue to derive the queue statistics of interest. There are
other interesting applications of the MMPP. Scott[119] uses a two-state MMPP to model
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fraud committed by a criminal on the telephone network. Davison and Ramesh[38] ap-
ply an MMPP to model the times of exposures to air pollution at a number of receptors

in Western Europe.

5.2.2 Fitting an MMPP

We will now consider how an MMPP may be fitted to observed data. The method
discussed here is based on the maximum-likelihood estimator (MLE). As shown by Rydén
[113], the MLE is a consistent estimator for the MMPP.

The main difficulty in implementing the MLE for an MMPP is that the likelihood
involves the state of the hidden markov chain, which must be integrated out. This leads
to a difficult to maximise likelihood function. To avoid this problem, Rydén[113][114]
proposed using EM algorithms to obtain the MLE.

Before we discuss the details of Rydén’s EM algorithm from [114], we will very briefly re-
view the general scheme of an EM algorithm. Consider a statistical model parameterised
by the parameters ¢ and the likelihood function L(¢;y). Suppose further that there ex-
ist hidden variables X, whose values are x, that we cannot observe. Let L¢(¢;y,x) be

the complete likelihood, that is, the likelihood function including the hidden values z.

To find the maximum of L, an EM algorithm proceeds as follows. First, we pick starting

values ¢g. Then, we iterate, replacing ¢g by <ZA>, given by (5.4). As mentioned by Rydén
[114], L(d;y) = L(do; y)-

¢ = argmazyQ($; ¢o) (5.4)
Q(¢; do) = Eg, (log L(¢5y, X)|y) (5.5)

In the literature, evaluating (5.5) is known as the E-step of the algorithm and maximising
(5.4) is known as the M-step. According to Rydén[114], the M-step often has a closed-

form solution, while maximising the likelihood L directly is difficult.

To state Rydén’s EM algorithm for an MMPP, we require some more notation. First, let
Q@ be the generator of the MMPP’s hidden chain, and assume the MMPP has r states.
Furthermore, let A; be the arrival rate in state 7, and let A = diag{A1, \2,...,A+}. The
parameter space for the MMPP is given by ® = {(Q,A) : @ is irreducible and \; >

0 for at least one i}.

Next, let f be the transition density matrix of the MMPP, viewed as a Markov-Renewal
process, given by (5.6). Then, the hidden Markov chain has transition matrix P, given
by (5.7). We denote the probability density 7 satisfying (5.8), by m(Q, A). Furthermore,
let F(t) be an r x r matrix, whose ij" element is the probability that an MMPP starting



90 Chapter 5 Modelling uptimes using a Markov-Modulated Poisson Process

in state i is in state j at time ¢ and no arrivals occur in [0,¢]. This matrix is given by

(5.9).

f(y) = exp{(Q — A)y}A
P=(A-Q)'A
TP =

F(t) = exp{(Q — A)t}

Finally, for a particular sequence of uptimes y1, 42, ... yn, let to = 0 and £t = y1+. . .+ yx.

With the notation discussed above, one step of the EM algorithm is performed using

the pseudocode in Algorithm 2. In this algorithm, f and F must be evaluated using the

parameters (Qo, Ag). Further details of implementing this algorithm may be found in

[114].

Set L(0) = 7%
for £k + 1 ton do
| Set L(k) = L(k — 1) f(y);
end
Set R(n +1) = 1;
for k< n to 1 do
| Set R(k) = f(y) R(k + 1);
end
for i < 1 tor do
Set B; = 0;
for j < 1 tor do
‘ Set A;j = 0;
end
end
for £+ 1 ton do
t
Set Aij « Ay + Lk —1) | F(t -ty 1) 117 f(ty — H)dtR(E +1);
tk—1
end
for i+ 1 tor do
The new estimate \; = ﬁiz. for j < 1 to r, such that i # j do

Update the estimates ¢;; = ¢;; T
end
end

Algorithm 2: Rydén’s[114] EM algorithm for the MLE of an MMPP
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5.3 Fitting MMPPs to Ford’s data

We will now consider how an MMPP may be fitted to the uptimes of Ford’s machines.
For each machine, we obtain the sequence of its uptimes and view a machine breakdown

as an arrival. In this way, a machine may be viewed as an arrival process.

To fit an MMPP to the interarrival sequence, we have used the R package HiddenMarkov,
which implements Rydén’s[114] EM algorithm. The EM algorithm was initialised using
the method of Deng and Mark[39]. To select the order of the MMPP, model selection as
performed using AIC, choosing an order between 2 and 10. The R code implementing

these methods is seen below.

library (’HiddenMarkov’)

window.smooth <- function(x, r){
res <- c()
for(i in 1:length(x)){
if (i < r+1){
nxt <- sum(x[1:i])/i
} else if(i < length(x) - r){
nxt <- sum(x[(i-r):(i+r)])/(2*r+1)
} else {
nxt <- sum(x[(i-r):(length(x))])/(length(x) - i + r + 1)
}

res <- c(res, nxt)

res

box.range <- function(x, N){
m <- min(x)
M <- max(x)
m + (0:N)*(M - m)/N

cluster.range.iter <- function(y, b){
totals <- vector (mode="numeric", length(b)-1)
counts <- vector(mode="numeric", length(b)-1)
for(k in 2:(length(b))){
in_bounds <- y >= b[k-1] & y < bl[k]
counts [k-1] <- sum(in_bounds)
totals [k-1] <- sum(y[in_bounds])
}
next_b <- b
numer <- totals[1:(length(totals)-1)] + totals[2:length(totals)]
denom <- counts[1:(length(counts)-1)] + counts[2:1length(counts)]
next_b[2:(length(b)-1)] <- numer/denom

next_b

cluster.range <- function(y, N, tol=1e-3) {
b <- box.range(y, N)
while (T){
next.b <- cluster.range.iter(y,b)
if (sum(abs (next.b - b) < tol))
break;
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next.b

stationary <- function(Q, lambda){
Lambda <- diag(lambda)
P <- solve(Lambda - Q, Lambda)
A <- rbind(diag(length(lambda)) - t(P), 1)
x <- c(vector (mode="numeric", length(lambda)), 1)
qr.solve (A, x)

params.from.range <- function(y, b){

N <- length(b) - 1
assignments <- vector(mode="numeric", length(y))
lambda <- vector (mode="numeric", N)
Q <- matrix (0, N,N)
for(i in 1:N){

in.i <- y >= b[i] & y < b[l[i+1]

assignments[in.i] <- i

lambda[i]l <- sum(in.i) / sum(y[in.il)
}
truncy <- y[1:(length(y)-1)]
truncated <- assignments[1:(length(y)-1)]
shifted <- assignments[2:length(y)]
for(i in 1:N){

for(j in 1:N){

if(i '= A
in.scope <- truncated == i & shifted == j

Q[i,j] <- sum(in.scope)/sum(truncy[in.scopel)

}
Qli,i] <- -sum(Q[i,])
}
delta <- tryCatch(stationary(Q, lambda), error = function (e){rep.int(1.0/
length(lambda),length(lambda))l})
list(lambda = lambda, Q = Q, delta = delta)

mmppfit <- function(upt, k){
supt <- window.smooth(upt, 2)
b <- cluster.range (supt, k)
parms <- params.from.range (supt, b)
m0 <- mmpp (cumsum(upt), parms$Q, parms$delta, parms$lambda, F)
bwc <- bwcontrol (prt=F)
BaumWelch (m0O, bwc)
}
for(l in levels(rejected$Type)){
max.n <- max(rejected$Number [rejected$Type==11]1)
if (max.n >= 0){
for( n in 0:(max(rejected$Number [rejected$Type==1]1))){
upt <- get.machine(durs, 1, n)
if (length (upt) > 1){
min.AIC <- Inf
best.model <- 0
for ( order in 2:max.mmpp){
model <- tryCatch(mmppfit (upt, order), error= function(e)
list (LL=-1Inf))
aic <- 2xorder”2 - 2%model$LL
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if (aic < min.AIC){
min.AIC <- aic
rejected$MMPPorder [rejected$Type == 1 & rejected$Number
== n] <- order
rejected$MMPPaic[rejected$Type == 1 & rejected$Number ==
n] <- aic
best.model <- model

}
best.model$delta <- best.model$delta / sum(best.model$delta)
simmed <- simulate(best.model, nsim=10x*length (upt))

sim.upt <- simmed$taul[2:length(simmed$tau)] - simmed$taull:(
length(simmed$tau)-1)]
plotassessfit (upt, sim.upt, paste(’mmpp-acf-’, 1, ’-’, n, ’.png’,
sep=’’),
paste (’mmpp-qq-’, 1, ’-’, n, ’.png’, sep=’’))
realified <- cliptoreal(sim.upt)
plotassessfit (toreal (upt),
realified,
paste (’mmpp-acf-trans-’, 1, ’-’, n, ’.png’, sebcop=
7)),
paste (’mmpp-qq-trans-’, 1, ’-’, n, ’.png’, sep=’’))
}
}
}

LisTiNnG 5.1: Fitting MMPPs in R

To illustrate the EM algorithm’s behaviour, we will now briefly look at its convergence
in one particular case, machine OP130.1. In this example, we will use an MMPP with 2
states. Figure 5.2 shows the log-likelihood of the MMPP versus the number of iterations
performed. Figure 5.3 shows the arrival rates of the Poisson process in the two states.
Both figures indicate that the method makes rapid progress initially, but takes many
iterations for the convergence criterion to be met. This suggests that computational
effort may be saved by relaxing the convergence criterion, as many of the iterations

performed have little effect.

For Ford’s machines, the procedure discussed above chose MMPP orders of 2 or 3 only,
never using a larger MMPP. This could indicate that the larger MMPPs do not provide
a significant enough improvement in the fit to justify their extra parameters. However,
it is equally possible that the EM algorithm failed to find the maximum of the likelihood

for larger models.

To assess the quality of the MMPP’s fit to the uptime data, we will consider a series of
diagnostic plots. Unlike with ARMA models, there is no suitable notion of a “residual”
for an MMPP. As such, the diagnostic plots available are somewhat limited. The plots
we will use are based on simulating a long sequence of uptimes from the fitted MMPP.
For all the plots we will consider, we’ve taken a “long” sequence to mean ten times as

long as the observed uptime series.



94 Chapter 5 Modelling uptimes using a Markov-Modulated Poisson Process
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FI1GURE 5.2: Log-likelihood of the MMPP versus the number of EM iterations per-
formed, for machine OP130-1, using a 2-state MMPP
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FIGURE 5.3: Estimated arrival rates of the MMPP versus the number of EM iterations
performed, for machine OP130.1, using a 2-state MMPP
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The first plot we use is an autocorrelation plot, as shown in Figure 5.4. In this figure,
the black line is the sample autocorrelation of the original sequence. The blue line is
estimated from the simulated uptimes. If the MMPP fits the data well, we’d expect the
blue line to be similar to the black line, but somewhat smoother. In this particular case,

the fit looks quite reasonable.
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FIGURE 5.4: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP70-4

The second plot we use is a QQ-plot of the uptimes from the original data against the
simulated uptimes. This plot allows us to check whether the model reproduces a similar
distribution of uptimes. An example of this plot is shown in Figure 5.5. In this figure,
we’d expect to see the dots, representing the data, to match the black line if the fit is

perfect. In this particular case, the data matches the line reasonably well.

We will now consider a number of machines and assess the fit of the MMPP for them, us-
ing the diagnostic plots explained above. In the analysis, we will consider only machines
where the ARMA fits were unsatisfactory.

The first machine we consider is OP90G-0. The diagnostic plots in Figures 5.6 and 5.7
look satisfactory. That said, there are some outliers in the QQ plot that suggests the

model may not be able to capture the extremes of the data’s tail behaviour.

Next, we consider machine OP80G-0, whose diagnostic plots are given in Figures 5.8 and
5.9. The ACF plot looks reasonable enough, but the QQ plot shows significant deviation
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FI1GURE 5.5: QQ-plot of simulated versus observed uptimes for machine OP70-4
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FIGURE 5.6: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP90G-0
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FiGure 5.7: QQ-plot of simulated versus observed uptimes for machine OP90G-0
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autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP80G-0
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FIGURE 5.9: QQ-plot of simulated versus observed uptimes for machine OP80G-0,
based on the MMPP
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F1cUure 5.10: QQ-plot of simulated versus observed uptimes for machine OP80G-0,
based on an ARMA-GARCH model
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FIGURE 5.11: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP80-4

in the tail. Comparing this figure to the same plot for a series simulated for an ARMA
model, Figure 5.10, shows that the MMPP captures the observed distribution far better
than the ARMA model.

For the next machine, OP80-4, Figures 5.11 and 5.12 show that again, the MMPP
captures the ACF reasonably well, but the distribution’s tail behaviour is not captured

as well. As can be seen in Figures 5.13 and 5.14, the same is true for machine OP55-0.

Next, we consider machine OP20-5. For this machine, the ACF plot, Figure 5.15 shows
the MMPP understates the autocorrelation. However, this does not appear to affect
the fit to the distribution, as shown in Figure 5.15. The corresponding plots for an
ARMA model, Figures 5.17 and 5.18, show that the ARMA model also understates the
autocorrelation. Moreover, the ARMA model’s fit to the distribution is substantially
worse than the MMPP'’s.

Finally, we consider machine OP130-1, whose diagnostic plots are shown in Figures 5.19
and 5.20. These plots look rather similar to those for OP20-5 and show similar behaviour
for the MMPP.

The diagnostic plots shown above indicate that the MMPP generally captures the au-
tocorrelation of the uptimes reasonably well and tends to capture the distribution of

uptimes better than an ARMA model. However, the comparison so far has been rather
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FiGure 5.12: QQ-plot of simulated versus observed uptimes for machine OP80-4
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FIGURE 5.13: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP55-0



Chapter 5 Modelling uptimes using a Markov-Modulated Poisson Process 101

350000

250000

Simulated
150000

50000

0

\ \ \ T T \ \ T
0 50000 100000 150000 200000 250000 300000 350000

Data

FiGure 5.14: QQ-plot of simulated versus observed uptimes for machine OP55-0
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FIGURE 5.15: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP20-5, for an MMPP
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FIGURE 5.16: QQ-plot of simulated versus observed uptimes for machine OP20-5, for
an MMPP
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FIGURE 5.17: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP20-5, for an ARMA-GARCH model
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FIGURE 5.18: QQ-plot of simulated versus observed uptimes for machine OP20-5, for
an ARMA-GARCH model
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FIGURE 5.19: The autocorrelation plot for the simulated (blue) and observed (black)
uptimes of machine OP130.1
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FIGURE 5.20: QQ-plot of simulated versus observed uptimes for machine OP130.1

subjective. To provide a more objective comparison, we need to compare the AIC val-
ues of the MMPP to the ARMA and ARMA-GARCH models obtained in the previous
chapter. However, as the ARMA models were based on a data transformation, the AIC
values need to be adjusted. For this particular data transformation, a change of vari-
ables gives the adjustment (5.10), where AIC a4 is the AIC of the ARMA model
on transformed data. Here, y; is the ith uptime and a and b are the lower and upper

thresholds used in removing outliers, respectively.

~ b—a
AIC = AICamma — 23 log () 5.10
main =22 g { G (310

For the uptimes of Ford’s machines, (5.10) is almost always smaller than the AIC of
the MMPP. The exceptions are machines OP130-1 and OP55. This indicates that while
the diagnostic plots indicate the MMPP may capture some of the uptimes’ behaviour
better than an ARMA or ARMA-GARCH model, this does not necessarily result in a
lower AIC value. For reference, fitting results are in Table 5.1, and diagnostic plots for

all machines are provided in Appendices C.
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Table 5.1: Selected model order and AIC for MMPP fits

Type Machine | Order AIC
OP10 3 3| 38275
OP 170_.SCR 0 3| 113679
OP20 4 2| 45937
OP 70 6 3| 68355
OP20 10 2| 59154
OP10 6 2| 48421
DAGO0160 0 2 8024
OP 40 0 3| 22301
OP120 2 2| 98644
OP10 2 2| 27430
OP20 1 2| 37281
OP 140 0 2| 31702
OP170_LEAK 0 2 | 120616
OP20 5 3| 50059
OP 125 0 2| 93025
OP20 8 2| 50783
OP10G 0 2| 38689
OP20 6 3| 65002
OP130 2 2| 35979
OP 150 0 3| 33797
OP20 9 2| 32349
OP 160 0 3| 66065
OP 45A 0 2| 27278
OP 10A 0 2| 94745
OP20 11 3| 75918
OP10A-30AG 0 3| 65678
OP130G 0 3| 63593
OP130 1 2| 32442
OP10 4 2| 32485
OP20 2 2 | 55219
OP 100 2 2| 18919
OP20G 0 3| 66501
OP20 12 2| 41295
OP20 7 2| 45909
OP100G 0 3| 72695
OP20 3 2| 41701
OP 110 0 3| 40551
OP 135 0 2| 88465

Continued on next page



106 Chapter 5 Modelling uptimes using a Markov-Modulated Poisson Process

Table 5.1 — Continued from previous page

Type Machine | Order AIC
OP 30A 0 2| 27818
OP70 8 2| 64643
OP80 9 2| 48683
OP70 5 2| 61201
OP70 10 2| 70302
OP90 2 3| 73022
OP80 5 2| 54569
OP80G 0 2| 49548
OP30-40G 0 3| 32630
OP45-50C 0 3| 73223
OP90 9 3| 93575
OP80 1 2| 46979
OP90 4 2| 94975
OP55 0 3| 29801
OP70 4 3| 90772
OP90 5 2| 77245
OP90 1 3| 77002
OP70 3 2| 56018
OP90 8 2| 88534
OP80 6 3| 48028
OP70 7 2| 106973
OP70 12 3| 93498
OP90 6 3 | 100939
OP80 2 3| 43418
OP90G 0 3| 97637
OP70 2 3| 86662
OP80 7 3| 51647
OP90 10 2| 84259
OP70 9 2| 86724
OP80 3 3| 44410
OP80 8 2| 47955
OP70G 0 2| 72267
OP90 7 2| 85535
OP90 12 2| 83975
OP80 10 3| 45546
OP80 4 3 | 143337
OP90 3 2| 82937
OP50_BLTRD 0 2| 87217

Continued on next page
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Table 5.1 — Continued from previous page
Type Machine | Order AIC
OP70 1 3| 79517

5.4 Simulating MMPPs

In the previous section, we used simulated data from MMPPs to validate their fit to
Ford’s uptime data. Furthermore, Ford need to be able to generate simulated uptimes
to include MMPPs in their simulated production lines. We will now discuss how these
uptimes may be generated. The discussion here is based on the approach used by R’s

HiddenMarkov package. We split the generation process into the following parts:

1. Generating an initial state
2. Generating sojourn times in every state

3. Generating arrivals during the sojourn time

Initialising the simulation To initialise the simulation, we randomly generate a
starting state according to the stationary distribution of the MMPP’s hidden chain.

This gives us an initial state Yy = k£ at time zero.

Generating sojourn times Whenever the MMPP moves to a particular state, we
need to generate the duration the MMPP will spend in this state. To do so, we use the
fact that —@Q);; is the total rate at which the hidden chain leaves state ¢. Therefore, if the
MMPP is in state Y; at time X, the time spent in state Y; is distributed Exp(—Qy;y;).
Drawing from this distribution gives us the time the process will leave state Y;, as
Xit1 = Xi+ Ezp(—Qy,y;). The state Y;11 may be drawn from the set of possible states,
with P(Yig = j) = —2i

—Qv,v;

Generating arrivals during the sojourn time Having simulated the time the
MMPP will spend in state Y;, we need to generate the arrivals that will occur dur-
ing this time. To do so, we initialise Tj0 = X;, and draw inter-arrival times A;; from
Exp(\;). Recursively, we set Ti; = Tj;_1) + A and draw inter-arrival times until

T;j > Xit1. As long as T;; < X411, an arrival is generated at time Tj;.
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5.5 Conclusion

In this chapter, we have discussed the application of Markov-Modulated Poisson Pro-
cesses (MMPPs) to the uptimes of Ford’s machines. We have also presented some model
diagnostics, which indicated that the MMPP generally captured the uptimes’ autocorre-
lation well and was substantially better than an ARMA model at capturing the uptimes’
distribution. However, comparing AIC values to those obtained for ARMA-GARCH
models in the previous chapter showed that, despite these advantages of the MMPP,
ARMA-GARCH models are still preferred in most cases. The exceptions, machines
OP130.1 and OP55, were particularly hard to fit with ARMA-GARCH models.

In all, our results indicate that the MMPP may be a good alternative to ARMA-GARCH
models if the distribution of the uptimes needs to be captured exactly. In addition, an
MMPP may provide a better fit, as measured by AIC, when an ARMA-GARCH model
fits poorly.



Chapter 6

Application to Simulation at Ford

6.1 Introduction

Previously, we discussed how the uptimes may be predicted for a single machine, using
either an ARMA-GARCH or an MMPP model. In this chapter, we discuss how this
technique may be used in the context of a large-scale simulation model of a real-world

production line, as used at Ford.

A production line at Ford consists of multiple workstations. Each workstation has
either a single machine or a number of parallel machines. Workstations are connected

by conveyors in a complex network.

In the next section, we begin by discussing the role of uptimes in Ford’s current simula-
tion model. We then propose a method to extend this, using the simulation approaches
we have developed in Chapters 4 and 5. We conclude this chapter with a brief look at

how these changes may affect simulation modelling at Ford.

6.2 Uptimes in Ford’s model

To simulate a production line at Ford, the next time each machine will break down
needs to be generated. Currently, Ford do this by picking one of the machine’s observed

uptimes at random.

As discussed in previous chapters, we have written code to simulate an ARMA-GARCH
or MMPP model instead. Since each machine is modelled independently, this code can

be applied to each machine individually.

In all, the changes Ford would need to make to implement our models are as follows:

109



110 Chapter 6 Application to Simulation at Ford

1. First, Ford will need to fit models to their machines’ uptimes, selecting a suitable
ARMA-GARCH or MMPP model for each machine

2. Second, the parameters of these models will need to be included in the simulation

3. Third, in simulation, the state of the MMPP or the lagged values used in ARMA-
GARCH need to be tracked for each machine

4. Fourth, when generating an uptime for a machine, Ford should sample from the
MMPP or ARMA-GARCH, as discussed in past chapters.

6.3 The impact of our models on Ford’s simulation

At the time of writing, Ford have not yet made the changes suggested in the previous
section. As such, the impact of our models on Ford’s simulations is as yet unknown.

That said, we can briefly consider what this impact might be.

Both ARMA-GARCH and MMPP models allow us to model autocorrelated uptimes. In
Ford’s case, we have observed positive correlation between uptimes, indicating that short
uptimes tend to be followed by further short uptimes. In other words, machines tend
to break down repeatedly after short periods of work, effectively increasing the repair
time needed before the machine can work again. In turn, this could cause machines
that depend on the workstation’s output to become starved more often, in turn starving
other machines further down the line. Conversely, since long uptimes tend to be followed
by long uptimes, Ford are likely to see long periods without breakdowns, where the

production line is running efficiently.

6.4 Conclusion

In this chapter, we have briefly considered the changes Ford would need to make to
incorporate our models into their simulations. We have indicated that the changes
required are relatively modest and can be applied to machines individually, without
affecting the rest of the simulation model. Though we expect our models to change the
behaviour of the simulation, this cannot yet be confirmed as the required changes have

not yet been made.
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Conclusion

To conclude, we will now briefly review the main problem of the thesis and the contri-
butions of each chapter. In this thesis, we have discussed how Ford can model the times
between breakdowns of machines in a production line, without assuming that the times

are independent.

7.1 Obtaining uptimes from historical data

We began by considering the data Ford have available about their production line and
how it was obtained. We noted that various issues may cause problems with the data

collection process, leading to inaccurate data.

One of the main issues here was the presence of nonproductive periods, during which
the production line was not operational. As we assumed that machines should not break
down or be repaired during these times, the uptimes and downtimes need to be adjusted

to take them into account.

After adjusting the uptimes, we noted that a large number of them are unrealistically

small or large. This led us to exclude these outliers.

7.2 Detecting autocorrelation in uptimes

Second, we discussed how we may detect autocorrelation in the uptimes of Ford’s ma-

chines. In the course of this, we needed to solve two problems:

1. How can we test for autocorrelation in the uptimes of a single machine?
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2. Given the results of the tests for each machine, how can we decide which machines
show autocorrelation, such that we do not make an overly large number of Type I

errors?

To solve the first problem, we applied a Ljung-Box test [82]. This test allowed us to test
whether the autocorrelation for a given time series was non-zero at a number of lags

simultaneously.

Given the p-values of the Ljung-Box tests for all machines, we then needed to decide for
which machines we should reject the null hypothesis. This multiple comparison problem
can be solved in a number of ways, which we briefly reviewed. For the particular case
of Ford’s machines, we decided it may not be reasonable to assume the tests of different
machines are independent. As such, we applied a Holm-Bonferroni [62] correction to
compute adjusted p-values[132]. Comparing the adjusted p-values to the threshold of

0.05, we concluded that the uptimes are autocorrelated for most of Ford’s machines.

7.3 ARMA and ARMA-GARCH models of uptimes

We then turned to applying time series analysis to the uptimes. First, we applied ARMA
models to the uptimes. While, for many machines, these models provided an acceptable

fit, the residuals of some machines appeared to vary over time.

To model uptimes with variance changing over time, we added GARCH terms to the
ARMA models. The ARMA-GARCH models thus obtained provided a better fit for
the uptimes of most machines. However, some of the machines still appeared to have
residuals whose variance changed over time. For these machines, using higher-order
GARCH terms might lead to an improved fit.

For both ARMA and ARMA-GARCH models, we also provided a procedure to generate

uptimes using simulation.

7.4 Markov-Modulated Poisson Processes for uptimes

As an alternative to using ARMA and ARMA-GARCH models, we treated a sequence
of times between breakdowns as arrival times in an arrival process. This allowed us to

model the uptimes using a Markov-Modulated Poisson Process.

Using the EM algorithm of Rydén[114], we obtained fits of the MMPP to the uptimes
of each of Ford’s machines. Our fitting procedure chose MMPPs of order 2 and 3,

suggesting that higher-order MMPPs do not provide a sufficiently large improvement in
fit.
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Our diagnostic plots for MMPPs showed that they were generally better than ARMA
models at modelling the distribution of the uptimes. Despite this heuristic result, an
objective comparison using AIC showed that the ARMA and ARMA-GARCH models

are preferred in most cases.

As well as fitting MMPPs and providing diagnostics, we also provided a procedure to
simulate uptimes from the MMPP.

7.5 Conclusion and future work

In this thesis, we have considered a number of models Ford can use to model the corre-
lated times between breakdowns of their machines. These models enable Ford to improve

their simulations.

As discussed in a previous section, most manufacturing models to date have assumed
independence of all random variables in the system. In this thesis, we extend this
literature by studying autocorrelation in machine uptimes in detail. Our work focuses
on the practical aspects of detecting and modelling autocorrelated uptimes, as well as

including them in simulations.

Our first contribution is a practical procedure to detect autocorrelation in uptimes. The
procedure has very mild assumptions and compensates for the number of machines it is

applied to, ensuring that the probability of a Type I error is kept low.

Second, we provide two ways to model autocorrelated uptimes. The first, an extension
of the autoregressive and ARTA methods discussed previously, is to use ARMA models
including GARCH terms. We also provide a method based on the Markov-Modulated

Poisson Process, a special case of the Markov Arrival Process.

For both methods, we provide diagnostic plots and a quantitative way to select the most
appropriate model for a given series of uptimes. This allows us to automatically select

an appropriate model.

Finally, to enable Ford to use our methods in simulation, we provide a way to generate

simulated uptimes from each of our models.
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Diagnostic plots for ARMA fits
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Ficure A.1: ARMA diagnostic plot for machine DAG0160-0
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Ficure A.2: ARMA diagnostic plot for machine OP 100-2
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Ficure A.3: ARMA diagnostic plot for machine OP 10A-0
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F1GUure A.5: ARMA diagnostic plot for machine OP 125-0
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F1GURE A.6: ARMA diagnostic plot for machine OP 135-0

=T =T 4°
o™ ™ -
ERE ERCE
= =
@0 o w o -
@ . @ .
o o
Al A
) o
L < @ 4 2 @
T T T T T T T T
0 500 1000 1500 -7 -6 &) -4
Index Fitted value
Normal Q-Q Plot Correllogram of residuals
) <
< -
8 oA ER
é w
g o o [P =T
[ 3]
2 b < ; _
E T o
[ZR =1
? o &
B e et
T T T T T T T T T T T T T T
G302 1 0 1 2 3 0 5 10 15 20 25 30
Theoretical Quantiles Lag

FiGure A.7: ARMA diagnostic plot for machine OP 140-0
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F1GUrRE A.9: ARMA diagnostic plot for machine OP 160-0
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FicUure A.10: ARMA diagnostic plot for machine OP 170_SCR-0
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FIGUureE A.11: ARMA diagnostic plot for machine OP 30A-0
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F1cUureE A.12: ARMA diagnostic plot for machine OP 40-0
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FIGURE A.13: ARMA diagnostic plot for machine OP 45A-0
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F1GURE A.14: ARMA diagnostic plot for machine OP 70-6
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F1Gure A.15: ARMA diagnostic plot for machine OP10-1
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F1GURE A.16: ARMA diagnostic plot for machine OP10-2
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F1GUurE A.17: ARMA diagnostic plot for machine OP10-3
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F1GURE A.18: ARMA diagnostic plot for machine OP10-4
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F1GUureE A.19: ARMA diagnostic plot for machine OP10-5
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F1GURE A.20: ARMA diagnostic plot for machine OP10-6
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FIGUrRE A.21: ARMA diagnostic plot for machine OP100G-0
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Ficure A.22: ARMA diagnostic plot for machine OP10A-30AG-0
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F1GURE A.23: ARMA diagnostic plot for machine OP10G-0
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FI1GURE A.24: ARMA diagnostic plot for machine OP120-1
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FI1GURE A.25: ARMA diagnostic plot for machine OP120-2
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FIGURE A.26: ARMA diagnostic plot for machine OP130-1
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FI1GUurE A.27: ARMA diagnostic plot for machine OP130-2
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FicUure A.28: ARMA diagnostic
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FIGUurE A.29: ARMA diagnostic plot for machine OP170_LEAK-0
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F1GureE A.31: ARMA diagnostic plot for machine OP20-10
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FI1GUrRE A.32: ARMA diagnostic plot for machine OP20-11
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F1GUrRE A.33: ARMA diagnostic plot for machine OP20-12
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F1GURE A.34: ARMA diagnostic plot for machine OP20-2
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F1GUurE A.35: ARMA diagnostic plot for machine OP20-3
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F1GURE A.36: ARMA diagnostic plot for machine OP20-4
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F1Gure A.37: ARMA diagnostic plot for machine OP20-5
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F1GURE A.38: ARMA diagnostic plot for machine OP20-6
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F1GUurRE A.39: ARMA diagnostic plot for machine OP20-7

Residual

ACF

Residual

ACF

1.0

00 02 04 06 08

00 02 04 06 08 1.0

15 <10 65 60 -55 50

Fitted value

Correllogram of residuals

0 5 10 15 20 25 30 35

Lag

Fitted value

Correllogram of residuals

5 10 15 20 25 30

Lag



Appendix A Diagnostic plots for ARMA fits

135

{'s]
g o
=
H
H
o
w
0 500 1000 1500 2000 2500
Index
Normal Q-Q Plot
[+
o -
w
2
]
S oo
a
@
=
E
5 o
&

T T T T T
302 4 0 1 2

Theoretical Quantiles

Residual

ACF

1.0

00 02 04 06 08

F1GURE A.40: ARMA diagnostic
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F1GURE A.41: ARMA diagnostic plot for machine OP20-9
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FIGURE A.42: ARMA diagnostic plot for machine OP20G-0
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F1GURE A.43: ARMA diagnostic plot for machine OP30-40G-0
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F1cURE A.44: ARMA diagnostic plot for machine OP45-50C-0
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FIGURE A.45: ARMA diagnostic plot for machine OP50_BLTRD-0
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FI1GURE A.46: ARMA diagnostic plot for machine OP55-0
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F1GURE A.47: ARMA diagnostic plot for machine OP70-1
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FIGURE A.48: ARMA diagnostic plot for machine OP70-10
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FIGURE A.49: ARMA diagnostic plot for machine OP70-12
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F1GURE A.54: ARMA diagnostic plot for machine OP70-7
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F1GUurE A.55: ARMA diagnostic plot for machine OP70-8
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F1GURE A.56: ARMA diagnostic plot for machine OP70-9
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F1GURE A.57: ARMA diagnostic plot for machine OP70G-0
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F1GUrRE A.58: ARMA diagnostic plot for machine OP80-1
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FIGURE A.59: ARMA diagnostic plot for machine OP80-10
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F1GURE A.60: ARMA diagnostic plot for machine OP80-2
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F1GUurRE A.61: ARMA diagnostic plot for machine OP80-3
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FI1GURE A.62: ARMA diagnostic plot for machine OP80-4
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F1GURE A.63: ARMA diagnostic plot for machine OP80-5
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F1GURE A.64: ARMA diagnostic plot for machine OP80-6
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F1GURE A.65: ARMA diagnostic plot for machine OP80-7
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F1GURE A.66: ARMA diagnostic plot for machine OP80-8
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F1GURE A.67: ARMA diagnostic plot for machine OP80-9
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FI1GUureE A.70: ARMA diagnostic plot for machine OP90-10
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F1Gure A.71: ARMA diagnostic plot for machine OP90-12
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F1GUurRE A.72: ARMA diagnostic plot for machine OP90-2
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F1cure A.73: ARMA diagnostic plot for machine OP90-3



152 Appendix A Diagnostic plots for ARMA fits

w w
© ©
3 E]
2 o 2 o
@ @
@ @
o o
b "
0 1000 2000 3000 4000 5000
Index Fitted value
Normal Q-Q Plot Correllogram of residuals
2
FR 2
€
g .
a [=T Q
@ < =
= =
E
] o~
RN S ]
=
=
T T T T T T T
-4 2 0 2 4 0 10 20 30
Theoretical Quantiles Lag

F1GURE A.74: ARMA diagnostic plot for machine OP90-4
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F1Gure A.75: ARMA diagnostic plot for machine OP90-5



Appendix A Diagnostic plots for ARMA fits

Residual
20
| |

4
|

o
@ o Yo

T T T T T T
0 1000 3000 5000

Index

Normal Q-Q Plot

0z
1|

Sample Quantiles
-2
|

Theoretical Quantiles

Residual

ACF

2 0

4

Fitted value

Correllogram of residuals

1.0

00 02 04 06 08

F1GURE A.76: ARMA diagnostic plot for machine OP90-6
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FiGure A.77: ARMA diagnostic plot for machine OP90-7
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F1GURE A.78: ARMA diagnostic plot for machine OP90-8
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F1Gure A.79: ARMA diagnostic plot for machine OP90-9
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F1GURE A.80: ARMA diagnostic plot for machine OP90G-0
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Ficure B.1: ARMA-GARCH diagnostic plot for machine DAG0160-0
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Ficure B.3: ARMA-GARCH diagnostic plot for machine OP 10A-0
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Ficure B.4: ARMA-GARCH diagnostic plot for machine OP 110-0
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Ficure B.5: ARMA-GARCH diagnostic plot for machine OP 125-0
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Ficure B.6: ARMA-GARCH diagnostic plot for machine OP 135-0
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Ficure B.7: ARMA-GARCH diagnostic plot for machine OP 140-0
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Ficure B.8: ARMA-GARCH diagnostic plot for machine OP 150-0
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Ficure B.9: ARMA-GARCH diagnostic plot for machine OP 160-0
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Ficure B.10: ARMA-GARCH diagnostic plot for machine OP 170_SCR-0
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Ficure B.11: ARMA-GARCH diagnostic plot for machine OP 30A-0
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Ficure B.12: ARMA-GARCH diagnostic plot for machine OP 40-0
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Ficure B.13: ARMA-GARCH diagnostic plot for machine OP 45A-0
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Ficure B.14: ARMA-GARCH diagnostic plot for machine OP 70-6
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F1cure B.15: ARMA-GARCH diagnostic plot for machine OP10-1



Appendix B Diagnostic plots for ARMA-GARCH fits

165

Residual

Sample Quantiles

FIGURE

Residual

Sample Quantiles

FiGure B.17: ARMA-GARCH diagnostic plot for machine OP10-3
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Ficure B.18: ARMA-GARCH diagnostic plot for machine OP10-4
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Ficure B.19: ARMA-GARCH diagnostic plot for machine OP10-5
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Ficure B.21: ARMA-GARCH diagnostic plot for machine OP100G-0
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Ficure B.22: ARMA-GARCH diagnostic plot for machine OP10A-30AG-0
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Ficure B.23: ARMA-GARCH diagnostic plot for machine OP10G-0
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.24: ARMA-GARCH diagnostic plot for machine OP120-1
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Ficure B.25: ARMA-GARCH diagnostic plot for machine OP120-2
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Ficure B.26: ARMA-GARCH diagnostic plot for machine OP130-1
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Ficure B.27: ARMA-GARCH diagnostic plot for machine OP130-2
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Ficure B.28: ARMA-GARCH diagnostic plot for machine OP130G-0
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B.30: ARMA-GARCH diagnostic plot for machine OP20-1
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Ficure B.31: ARMA-GARCH diagnostic plot for machine OP20-10
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Ficure B.32: ARMA-GARCH diagnostic plot for machine OP20-11
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Ficure B.33: ARMA-GARCH diagnostic plot for machine OP20-12
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B.34: ARMA-GARCH diagnostic plot for machine OP20-2
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Ficure B.35: ARMA-GARCH diagnostic plot for machine OP20-3
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Ficure B.36: ARMA-GARCH diagnostic plot for machine OP20-4
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Ficure B.37: ARMA-GARCH diagnostic plot for machine OP20-5
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B.38: ARMA-GARCH diagnostic plot for machine OP20-6
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Ficure B.39: ARMA-GARCH diagnostic plot for machine OP20-7
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Ficure B.40: ARMA-GARCH diagnostic plot for machine OP20-8
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F1GurE B.41: ARMA-GARCH diagnostic plot for machine OP20-9
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Ficure B.42: ARMA-GARCH diagnostic plot for machine OP20G-0
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F1Gure B.43: ARMA-GARCH diagnostic plot for machine OP30-40G-0
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F1GurE B.46: ARMA-GARCH diagnostic plot for machine OP55-0
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F1GUuRrRE B.47: ARMA-GARCH diagnostic plot for machine OP70-1
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FicUure B.48: ARMA-GARCH diagnostic plot for machine OP70-10
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Ficure B.50: ARMA-GARCH diagnostic plot for machine OP70-2
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Ficure B.51: ARMA-GARCH diagnostic plot for machine OP70-3
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Ficure B.53: ARMA-GARCH diagnostic plot for machine OP70-5
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Ficure B.54: ARMA-GARCH diagnostic plot for machine OP70-7
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F1Gure B.55: ARMA-GARCH diagnostic plot for machine OP70-8
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Ficure B.56: ARMA-GARCH diagnostic plot for machine OP70-9
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Ficure B.57: ARMA-GARCH diagnostic plot for machine OP70G-0
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Ficure B.58: ARMA-GARCH diagnostic plot for machine OP80-1
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Ficure B.59: ARMA-GARCH diagnostic plot for machine OP80-10
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Ficure B.60: ARMA-GARCH diagnostic plot for machine OP80-2
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F1Gure B.61: ARMA-GARCH diagnostic plot for machine OP80-3



188 Appendix B Diagnostic plots for ARMA-GARCH fits

E =
= - = -
o~ o~
© ©
3 E]
o =
5 o 5 o —® @
@ @
o o
o 4
hi T4
T T T T T T T
0 2000 4000 6000 8000 -9 -8 -7 -6 -5
Index Fitted value
Normal Q-Q Plot Correllogram of residuals
) 2
- =
z EN
£ ©
s ] 2 = |
= =]
E oo o
w =10
T 9 o _ph-—---2 fhroathoafcoonooTes
s  —phoccccorhroathoabooanooses
T T T T T °oh T T T T
4 2 0 2 4 0 10 20 30 40
Theoretical Quantiles Lag

F1Gure B.62: ARMA-GARCH diagnostic plot for machine OP80-4
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F1cure B.63: ARMA-GARCH diagnostic plot for machine OP80-5
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F1Gure B.64: ARMA-GARCH diagnostic plot for machine OP80-6
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Ficure B.66: ARMA-GARCH diagnostic plot for machine OP80-8
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F1GurE B.67: ARMA-GARCH diagnostic plot for machine OP80-9
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Ficure B.72: ARMA-GARCH diagnostic plot for machine OP90-2
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Ficure B.78: ARMA-GARCH diagnostic plot for machine OP90-8
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FiGure B.79: ARMA-GARCH diagnostic plot for machine OP90-9
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Ficure B.80: ARMA-GARCH diagnostic plot for machine OP90G-0
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Diagnostic plots for MMPP fits
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Ficure C.3: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 100-2
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Ficure C.5: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 10A-0
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Ficure C.7: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 110-0
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Ficure C.9: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 125-0
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Ficure C.11: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 135-0
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Ficure C.15: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 150-0
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Ficure C.17: Autocorrelation plot of simulated and actual uptimes of MMPP fit for

machine OP 160-0
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Ficure C.19: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 170_SCR-0
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Ficure C.23: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 40-0
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Ficure C.25: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 45A-0
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Ficure C.27: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP 70-6
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Ficure C.29: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP10-1
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Ficure C.31: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP10-2
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Ficure C.35: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP10-4
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Ficure C.37: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP10-5
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Ficure C.39: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP10-6
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FicUure C.43: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP10G-0
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Ficure C.45: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP120-1
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FicUure C.47: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP120-2



Appendix C Diagnostic plots for MMPP fits 223

100000 120000

Simulated
20000 40000 80000  BOOOO
| 1 1 1

%

o,

0
|

T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000

Data

Ficure C.48: QQ-plot of simulated and actual uptimes of MMPP fit for machine
OP120-2

1.0

Autocorrelation
04 06 08

02

0o

o 4
o 4
S
-
o
[\ |
=}
[
[}
]
=}
o
[

Lag

Ficure C.49: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP130-1
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Ficure C.51: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP130-2
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Ficure C.55: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP170_LEAK-0
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Ficure C.59: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-10
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Ficure C.61: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-11
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Ficure C.63: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-12



Appendix C Diagnostic plots for MMPP fits

231

FIGURE C.64:

FIGURE C.65:

150000 200000

Simulated

100000

50000
1

T T T T T
0e+00 1e+05 2e+05 3e+05 4e+05

Data

QQ-plot of simulated and actual uptimes of MMPP fit for machine
OP20-12

1.0

Autocorrelation

04

02

0.0

Lag

Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-2



232 Appendix C Diagnostic plots for MMPP fits

150000 200000

Simulated
100000

50000
|

T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000

Data

Ficure C.66: QQ-plot of simulated and actual uptimes of MMPP fit for machine
OP20-2

Autocorrelation
02 04 06 08 1.0

0.0

Lag

Ficure C.67: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-3
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Ficure C.69: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-4
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Ficure C.71: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-5
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Ficure C.73: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-6
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Ficure C.75: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-7
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Ficure C.79: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP20-9
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Ficure C.80: QQ-plot of simulated and actual uptimes of MMPP fit for machine
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Ficure C.83: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP30-40G-0
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Ficure C.87: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP50_BLTRD-0
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Ficure C.88: QQ-plot of simulated and actual uptimes of MMPP fit for machine
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Ficure C.91: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-1
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Ficure C.93: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-10
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OP70-10

1.0

Autocorrelation

04

02

0.0

Lag

Ficure C.95: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-12
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Ficure C.97: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-2
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Ficure C.99: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-3
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Ficure C.103: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-5
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Ficure C.107: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70-8
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Ficure C.111: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP70G-0
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Ficure C.115: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP80-10
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Ficure C.117: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP80-2
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Ficure C.119: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP80-3



Appendix C Diagnostic plots for MMPP fits

259

Simulated
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Ficure C.123: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP80-5
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Autocorrelation plot of simulated and actual uptimes of MMPP fit for
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Ficure C.127: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP80-7
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Ficure C.131: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP80-9
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Ficure C.135: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-1
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Ficure C.137: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-10
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Ficure C.139: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-12
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Ficure C.143: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-3
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Ficure C.147: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-5
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Ficure C.151: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-7
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Ficure C.155: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90-9



Appendix C Diagnostic plots for MMPP fits 277

Simulated
50000 100000 150000 200000 250000
1

0
|

T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000

Data
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Ficure C.157: Autocorrelation plot of simulated and actual uptimes of MMPP fit for
machine OP90G-0
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