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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

by Alice Harpole

Type I X-ray bursts are thermonuclear burning events which occur on the surface of ac-

creting neutron stars. Burning begins in a localised spot in the star’s ocean layer before

spreading across the entire surface. By gaining a better understanding of X-ray bursts,

tighter limits can be determined for other neutron star properties such as the mass,

radius, spin frequency and magnetic field. The ocean environment is very extreme, in-

volving much higher pressure, temperature and magnetic field strength compared to the

conditions typically found in terrestrial systems. We shall be looking at the effects of the

strong gravitational field, modelling the ocean using general relativistic hydrodynamics.

The physics of X-ray bursts acts over a wide range of scales, which introduces a number

of challenges when modelling them. In this work, we use the multiscale approach to

couple together multiple physical models in order to best capture the physics across

these various scales. On the smallest scales, the physics is dominated by turbulent

burning. The speed of propagation of the burning front is much slower than the acous-

tic speed, making it difficult to model this with conventional numerical schemes. We

therefore instead use the low Mach number approximation, which we have derived and

implemented for the relativistic fluid equations based on the existing approach devel-

oped for the Newtonian case. On larger scales, the burning front can be thought of as

a discontinuity. To model this, we investigate the reactive Riemann problem for rela-

tivistic deflagrations and detonations and develop a numerical solver. The large scale

propagation of the burning front is believed to be dominated by the Coriolis force. To

capture this behaviour, we have derived and implemented a model for the relativistic

form of the shallow water equations. Finally, we construct a hybrid scheme to combine

the best features of these approximations, extending existing adaptive mesh refinement

techniques to include different physical models at different scales.
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https://www.southampton.ac.uk/about/departments/faculties/faculty-social-human-sciences.page
https://www.southampton.ac.uk/maths
mailto:alice.harpole@soton.ac.uk




Contents

List of figures ix

List of tables xi

Nomenclature xiii

Declaration of authorship xv

Acknowledgements xvii

1 Background & motivation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Low mass X-ray binaries . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 X-ray bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Burst oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Frequency drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Multiple peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.5 Photospheric radius expansion . . . . . . . . . . . . . . . . . . . . 10

1.3.6 Superbursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.7 Ignition latitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.8 Accretion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.9 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.10 Magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.11 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.12 Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.13 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Background physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.1 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Finite volume methods . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.3 Codes in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



vi Contents

2 Relativistic low Mach number equations 41

2.1 Sound-proof models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Newtonian low Mach number equations . . . . . . . . . . . . . . . 44

2.1.2 Alternative sound-proof methods . . . . . . . . . . . . . . . . . . . 46

2.2 Relativistic low Mach number equations . . . . . . . . . . . . . . . . . . . 46

2.2.1 Conservative derivation . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Covariant 3+1 form . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.3 Wilson formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Numerical methodology . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 R3D2 63

3.1 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 The reactive Riemann problem . . . . . . . . . . . . . . . . . . . . 66

3.1.2 The relativistic reactive Riemann problem . . . . . . . . . . . . . . 69

3.2 Approximate solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 RHLLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2 RHLLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.3 Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 1d simulations using the exact solver . . . . . . . . . . . . . . . . . 79

3.3.2 1d simulations using the compressible solver . . . . . . . . . . . . . 86

3.3.3 2d simulations using the compressible solver . . . . . . . . . . . . . 87

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Shallow water equations 95

4.1 Newtonian shallow water equations . . . . . . . . . . . . . . . . . . . . . . 96

4.2 General relativistic shallow water equations . . . . . . . . . . . . . . . . . 97

4.2.1 Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 Axisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.3 Layer interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.4 Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.5 Characteristics of the relativistic equations . . . . . . . . . . . . . 103

4.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 Dam break problem . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Multiscale methods 115

5.1 Adaptive mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.2 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.3 Error estimation and regridding . . . . . . . . . . . . . . . . . . . . 118

5.1.4 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.5 AMR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Adaptive mesh and algorithm refinement . . . . . . . . . . . . . . . . . . . 121



Contents vii

5.3 Analytic multiscale methods . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Low Mach number equations . . . . . . . . . . . . . . . . . . . . . 123

5.3.2 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.3 Limitations of the multiscale approach . . . . . . . . . . . . . . . . 126

5.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.1 Shallow water to compressible . . . . . . . . . . . . . . . . . . . . . 128

5.4.2 Compressible to shallow water . . . . . . . . . . . . . . . . . . . . 129

5.5 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.1 Compressible solver . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.2 Multiscale solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Discussion & conclusions 159

A Details of 3+1 low Mach number equations 165

B Detailed derivation of the relativistic low Mach number equations 169

B.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2.1 Comparison to Newtonian case . . . . . . . . . . . . . . . . . . . . 174

B.3 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.4 Velocity constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.5 Hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.6 Newtonian limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C Changes to the MAESTRO numerical method 181

D Derivation of the solution of the dam break problem 187

References 189





List of figures

1.1 Neutron star structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Structure of the atmosphere and ocean of an accreting neutron star . . . . 4

1.3 Observed light curve of X-ray burst from 4U 1728-34 . . . . . . . . . . . . 7

1.4 Dynamic power spectra of X-ray bursts . . . . . . . . . . . . . . . . . . . 9

1.5 Burning regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Comparison of laminar and turbulent burning profiles . . . . . . . . . . . 21

1.7 Initial data for the Riemann problem . . . . . . . . . . . . . . . . . . . . . 24

1.8 Solution of the Riemann problem . . . . . . . . . . . . . . . . . . . . . . . 24

1.9 Shock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.10 Rarefaction characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.11 Contact wave characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.12 Slope limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.13 Accuracy of TVD methods at extrema . . . . . . . . . . . . . . . . . . . . 32

1.14 Accuracy of TVD methods at discontinuities . . . . . . . . . . . . . . . . 33

1.15 Conservative schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.16 Ghost cells at boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.17 Regime diagram for codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Regime diagram for sound-proof models . . . . . . . . . . . . . . . . . . . 42

2.2 KH simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 KH simulation produced using GRHydro . . . . . . . . . . . . . . . . . . . 55

2.4 RT simulation after 1000 timesteps . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Gresho vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Gresho vortex, energy conservation . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Reactive bubble simulation at initial time t = 0 . . . . . . . . . . . . . . . 59

2.8 Reactive bubble simulation after 500 timesteps . . . . . . . . . . . . . . . 60

3.1 Wave pattern for the Riemann problem . . . . . . . . . . . . . . . . . . . 64

3.2 Detonation characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Deflagration characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Solutions of the reactive Riemann problem . . . . . . . . . . . . . . . . . . 69

3.5 Pressure-volume plot for reactive relativistic RP, varying q . . . . . . . . . 72

3.6 Pressure-volume plot for reactive relativistic RP, varying vt . . . . . . . . 73

3.7 HLLE wave pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 HLLC wave pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9 Wave pattern for the reactive Riemann problem . . . . . . . . . . . . . . . 78

3.10 Exact solution of inert relativistic Riemann problem, varying vt . . . . . . 80

ix



x List of figures

3.11 Exact solution of a strong detonation wave for different values of q . . . . 81

3.12 Exact solution of a deflagration wave for different values of q . . . . . . . 82

3.13 DDT for different values of q . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.14 Exact solution of a strong detonation wave for different values of vt,L . . . 83

3.15 DDT for different values of vt,L . . . . . . . . . . . . . . . . . . . . . . . . 84

3.16 Plot of the critical tangential velocity for different values of ρL . . . . . . 84

3.17 Pressure-velocity plot for inert relativistic Riemann problem . . . . . . . . 85

3.18 Pressure-velocity plot for the reactive relativistic Riemann problem . . . . 86

3.19 Solution of the inert relativistic Riemann problem . . . . . . . . . . . . . 87

3.20 Solution of the reactive relativistic Riemann problem . . . . . . . . . . . . 88

3.21 Solution of the inert relativistic Riemann problem using RHLLE & RHLLC 88

3.22 Special relativistic shock before shock wave passes through bubble . . . . 90

3.23 Special relativistic shock after shock wave passes through bubble . . . . . 93

3.24 Spinning bubble after shock has passed through . . . . . . . . . . . . . . . 94

4.1 Newtonian dam breaking test, varying resolution . . . . . . . . . . . . . . 107

4.2 Newtonian radial dam breaking test, varying resolution . . . . . . . . . . 108

4.3 Relativistic dam breaking test, varying resolution . . . . . . . . . . . . . . 109

4.4 Relativistic radial dam breaking test, varying resolution . . . . . . . . . . 110

4.5 Relativistic radial dam breaking test, pressure . . . . . . . . . . . . . . . . 111

4.6 Relativistic dam breaking test, varying vt . . . . . . . . . . . . . . . . . . 112

5.1 AMR grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Grid refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Shallow water layers embedded in compressible grid . . . . . . . . . . . . 127

5.4 Sod shock tube wave structure . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Newtonian shock tube test, varying resolution . . . . . . . . . . . . . . . . 132

5.6 Relativistic shock tube test . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Newtonian blast wave test, varying resolution . . . . . . . . . . . . . . . . 135

5.8 Relativistic blast wave test . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 Newtonian multiscale 1d dam breaking . . . . . . . . . . . . . . . . . . . . 138

5.10 Newtonian multiscale 2d dam breaking . . . . . . . . . . . . . . . . . . . . 139

5.11 Relativistic incompressible 1d dam breaking, height . . . . . . . . . . . . . 140

5.12 Relativistic incompressible 1d dam breaking, pressure . . . . . . . . . . . 140

5.13 2d relativistic incompressible dam breaking, height . . . . . . . . . . . . . 141

5.14 2d relativistic dam breaking, multiscale, SW & incompressible . . . . . . . 142

5.15 Multiscale compressible 1d dam breaking, primitive y-velocity . . . . . . . 144

5.16 Multiscale compressible radial dam breaking, height . . . . . . . . . . . . 145

5.17 Multiscale radial dam breaking, line plot . . . . . . . . . . . . . . . . . . . 146

5.18 Dam breaking with fixed mesh, height . . . . . . . . . . . . . . . . . . . . 147

5.19 Gaussian with fixed mesh, p . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.20 Gresho vortex, height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.21 Gresho vortex, model comparison . . . . . . . . . . . . . . . . . . . . . . . 151

5.22 Gresho vortex, energy conservation . . . . . . . . . . . . . . . . . . . . . . 152

5.23 Initial data for the scaling test . . . . . . . . . . . . . . . . . . . . . . . . 153

5.24 Scaling of the multiscale model . . . . . . . . . . . . . . . . . . . . . . . . 154

D.1 Analytic dam break solution . . . . . . . . . . . . . . . . . . . . . . . . . . 187



List of tables

5.1 Initial conditions for the Sod shock tube . . . . . . . . . . . . . . . . . . . 131

5.2 Initial conditions for the blast wave . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Scaling of the multiscale model . . . . . . . . . . . . . . . . . . . . . . . . 154

xi





Nomenclature

Symbols used in this thesis are as below unless otherwise specified.

ρ density

p pressure

ε specific internal energy

cs speed of sound

h specific enthalpy / fluid height

T temperature

γ adiabatic index

Γ1 first adiabatic coefficient, Γ1 = d log p/d log ρ|s
t time

ν frequency

u velocity

vi components of the 3-velocity

Xk species mass fraction of species k

ω̇k production rate of species k

qk energy release per unit mass of species k

Q reaction energy per unit mass

M neutron star mass

M� mass of the Sun, M� = 1.989× 1033 g
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1 Background & motivation

1.1 Introduction

Type I X-ray bursts are thermonuclear burning events which occur on the surface of

accreting neutron stars. Burning is thought to begin in a localised spot in the ocean of

the star before spreading across the entire surface (Joss, 1978; Shara, 1982). By gaining a

better understanding of X-ray bursts, tighter limits can be determined for other neutron

star properties such as the mass, radius, spin frequency and magnetic field strength. In

this thesis, we aim to develop and build a numerical model of type I X-ray bursts in

order to improve our understanding of the physics that produces them.

Neutron stars are compact objects, so the effects of strong gravity must be taken into

account when investigating the ocean physics. We shall therefore include general rela-

tivistic effects in our model of this system, using the fluid equations on a curved back-

ground spacetime. The speed of propagation of the burning front is much slower than the

acoustic speed in the ocean, which introduces challenges when modelling these systems

numerically (Cavecchi, 2013). This is addressed here by applying the low Mach number

approximation to the fluid equations, extending the approach developed for the Newto-

nian case by Nonaka et al. (2010) to relativistic fluids. There are additional problems

when modelling the burning front itself, as the physics involved acts over a very large

range of both spatial and temporal scales (Almgren et al., 2008). On the scale of the

entire neutron star ocean, the burning front can be thought of as a discontinuity. This

motivates taking a closer look at the physics of detonations and deflagrations in general

relativistic fluids. The large scale propagation of the front is believed to be dominated

by the Coriolis force (Spitkovsky et al., 2002; Cavecchi et al., 2016). To investigate this

behaviour, we use the shallow water equations to model the large scale motion of the

ocean. To accurately model the propagation of burning fronts, we need to represent both

the small scale and large scale physics. To do this we use multiscale methods, building a

hybrid scheme that incorporates multiple physical models to capture the physics across

a range of scales.

In this thesis, we shall begin by discussing the physics and theoretical background of

X-ray bursts and the motivation for studying them in Chapter 1. We shall then derive

1
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the low Mach number approximation of the relativistic fluid equations used to describe

the burning front propagation, following this with a description of their numerical im-

plementation in Chapter 2. Next, we will present a discussion of relativistic detonations

and deflagrations and the work done to model them in Chapter 3. In Chapter 4, we

shall present the shallow water equations for modelling the large scale propagation of

the burning front. We shall combine these with the compressible and low Mach number

equations to produce a multiscale model, with the implementation of this described in

Chapter 5. Finally, we conclude the thesis with a discussion of the work done and plans

for the future in Chapter 6.

1.2 Neutron stars

Neutron stars are compact objects thought to form in one of two ways: either when

a main sequence star of mass 8 M� . M . 30 M� undergoes gravitational collapse

following a supernova, or from a collapsing white dwarf (Carroll and Ostlie, 1996).

They are typically of mass M ∼ 1.4 M� and radius 10 km . R . 15 km (Haensel et al.,

2007), however there remains a large amount of uncertainty in these quantities as they

are difficult to measure using existing techniques. Neutron stars’ compactness, the ratio

of mass and radius M/R, is ∼ 105 times greater than that of the Sun: consequently, they

have large enough surface gravity that general relativistic effects become important.

Accurate models of X-ray bursts will help provide a method to determine neutron star

radii and masses more accurately (Miller, 2013; Watts et al., 2016; Özel and Freire,

2016). A number of different techniques for measuring mass and radii using bursts

currently exist (see e.g. Özel and Freire (2016), Section 1.3.5), however they are limited

by uncertainties in the underlying model. If we can accurately model the propagation

across the neutron star surface of the burning fronts that produce these bursts, we will

be able to put tighter limits on these quantities. This would help put tighter constraints

on the interior’s equation of state, giving a better idea of its composition and structure.

As will be described in the next section, there are many uncertainties in existing models

of the interior, so tighter constraints would help to strengthen these models. It may also

be possible to put limits on other quantities such as the magnetic field strength, which

is likewise difficult to measure but crucial to understanding the interior physics, as well

as giving us information about the neutron star’s binary companion.

1.2.1 Structure

The internal structure of neutron stars is poorly understood: the lack of certainty in

the mass and radius means it is hard to put firm constraints on any particular equation

of state (Lattimer and Prakash, 2016; Özel and Freire, 2016; Oertel et al., 2017). It
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Figure 1.1: Neutron star structure, consisting of the exterior layers (blue), the crust
(green) and the core (pink) (Haensel et al., 2007). Note that the relative thickness of

the layers is not to scale.

is believed to consist of five main regions: the inner and outer cores, the crust (which

can be further divided into the inner crust, outer crust and mantle), the ocean and the

atmosphere (Lattimer and Prakash, 2004; Haensel et al., 2007). This is illustrated in

Figure 1.1.

The outermost layer of a neutron star is the atmosphere. Its thickness varies with the

effective surface temperature of the star, from ∼ 10 cm for a hot neutron star with

effective surface temperature Ts ∼ 3× 106 K, to ∼ 1 mm for a cold star with Ts ∼
3× 105 K. The atmosphere consists of a plasma of charged ions and molecules. Despite

being so thin, the atmosphere is important in determining the star’s electromagnetic

spectrum.

Beneath the atmosphere is the ocean layer, which is about 10 − 50 m thick. This is

not an ocean in the sense of liquid oceans on Earth, being composed of a plasma of

electrons and nuclei. The Coulomb interaction energy between the ions is greater than

the thermal energy, such the plasma behaves like a liquid (Medin and Cumming, 2011;

Cavecchi, 2013). The ocean influences the transport and release of thermal energy from

the neutron star’s surface. It is in this ocean layer that the burning which produces X-ray

bursts takes place. Due to the strong gravitational field in the ocean, the composition

and density is highly stratified (Brown et al., 2002; Peng et al., 2007). This is illustrated

in Figure 1.2. In the case of the accreting neutron stars that shall be studied in this

thesis, the outermost layers are rich in the matter accreted from the donor star, so are
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Figure 1.2: Structure of the atmosphere and ocean of an accreting neutron star,
showing the depths and density at which thermonuclear ignition occurs. Note that the

relative thickness of the layers is not to scale. Adapted from (Watts, 2012).

primarily made up of hydrogen and helium. Beneath them are layers made up of the

ashes from previous bursts: carbon and heavier elements.

Beneath the ocean is the crust layer, which extends to 1 − 2 km below the surface and

primarily consists of nuclei (Chamel and Haensel, 2008). This can be split into the

outer crust (a few hundred metres thick) and the inner crust (up to a kilometre thick).

The outer crust takes the form of a cubic iron lattice. As the density increases towards

the centre of the star, the matter in the crust undergoes a number of transitions. At

densities of ρ ∼ 104 g cm−3, the atoms become fully ionised, and at ρ ∼ 107 g cm−3

the composition of the nuclei becomes more neutron rich due to electron captures. The

physics of the outer crust is important for X-ray bursts (especially for superbursts which

occur deeper in the ocean, see Section 1.3.6), as heating and cooling of the crust will

influence the thermal properties of the ocean (Deibel et al., 2016; Meisel and Deibel,

2017).

The boundary of the inner and outer crusts is defined by the neutron drip point at

ρND ' 4× 1011 g cm−3. This corresponds to the point where the net neutron chemical

potential of a neutron in a nucleus is zero, such that neutrons are no longer bound

within nuclei and begin to ‘drip out’ (Bethe et al., 1970). The inner crust extends down

to ∼ 0.1ρ0 ' 1014 g cm−3, where ρ0 is the density at the centre of the star. In this region,

the free neutrons may condense into a superfluid phase (Baym and Pethick, 1979). At

the base of the crust there is a thin mantle layer, where it is thought that the matter

transitions from the nuclear lattice to a neutron fluid in a series of ‘pasta’ phases between
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∼ 0.1ρ0 − 0.3ρ0. This begins with a 3d lattice of voids, followed by 2d cylindrical voids,

1d slabs of nuclei interlaid with planar voids, 2d cylindrical nuclei and finally 3d nuclei

(Hashimoto et al., 1984; Oyamatsu et al., 1984; Watanabe, 2007).

The core makes up to 99% of the total mass of the neutron star. Like the crust, it can

also be split into outer and inner regions. The outer core consists primarily of a neutron

fluid, with the remaining few percent made up of protons, electrons and muons. All

components in the plasma are strongly degenerate. The electrons and muons produce

an ideal Fermi gas, and the neutrons and protons form a strongly interacting Fermi

liquid which may be in a superfluid state (Shternin et al., 2011). The central region of

the star is known as the inner core and can be several kilometres in radius. Due to the

extremely high densities in this region that go far beyond anything we can produce in

the laboratory, its composition is largely unknown. It is possible that it may consist of

exotic particles like hyperons, pions or kaons, or even that there may be a transition

into a mixed phase of hadronic and deconfined quark matter (Potekhin, 2010).

The above description outlines our current understanding of the interior structure of

neutron stars, however much uncertainty remains. The physics of the core is particularly

challenging. It is not currently possible to recreate the extremely high densities of the

core in the laboratory, and there does not yet exist a precise relativistic many body

theory of strong interacting particles – we must instead rely on theoretical models. At

present, the strongest constraint for the equation of state comes from the fact that

neutron stars have been observed with masses M > 2 M� (Antoniadis et al., 2013).

Knowledge of the interior structure of neutron stars is relevant for our work as dynamics

within the interior can have important consequences for physics on the surface. For

example, the motion of superfluid neutrons in the outer core may alter the core’s mag-

netic field, resulting in changes in the star’s crust and surface magnetic field (Ruderman

et al., 1998). The star’s equation of state will determine its mass and radius, which

in turn will determine the surface gravity. This interior physics will therefore directly

affect processes on the surface such as X-ray bursts.

1.2.2 Low mass X-ray binaries

All known sources of type I X-ray bursts are believed to belong to low mass X-ray

binaries (LMXBs). LMXBs are binary systems consisting of a degenerate star (a neutron

star or a black hole) and a main sequence star of mass M . M�. Approximately 190

of the X-ray sources in the galaxy are believed to be LMXBs, with around 100 of

these containing a neutron star (Liu et al., 2007; Lau et al., 2018). They are primarily

visible in the X-ray part of the electromagnetic spectrum. The degenerate stars in

these systems accrete hydrogen- and helium-rich matter from their companions at rates

of Ṁ ∼ 10−11 − 10−8 M� yr−1 (Cumming and Bildsten, 2000) via stable Roche lobe
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overflow. This matter spirals inwards towards the degenerate star, forming an accretion

disk. The accretion process releases gravitational potential energy, heating up the inner

regions of the disk to temperatures of T ∼ 107 K, which then emit the observed X-ray

radiation (Cavecchi, 2013).

LMXBs are typically long lived, with lifetimes up to ∼ 1010 yr; by contrast, high mass X-

ray binaries (HMXBs) consisting of a degenerate star and a main sequence star of mass

M & 10 M� have much shorter lifetimes of only ∼ 105 yr (Mineo et al., 2012; Walter

et al., 2015). Most LMXBs are believed to be older than 106 − 107 yr; consequently,

they are old enough that the crusts of the neutron stars in these systems have been

entirely replaced by accreted material and are therefore substantially different from the

crusts of isolated neutron stars (Lau et al., 2018). The magnetic field of the degenerate

stars in LMXBs is typically very weak, B . 108 − 109 G (Mukherjee et al., 2015) (by

contrast, magnetars are believed to have magnetic fields up to B ∼ 1015 G (Esposito

et al., 2018)), and is believed to be the result of accretion-induced field decay (Tauris and

van den Heuvel, 2006). Consequently, very few of these systems contain X-ray pulsars

(Casares et al., 2016).

1.3 X-ray bursts

About 110 (or 5%) of the neutron stars that have so far been observed in the Milky Way

belong to LMXBs and have been seen to exhibit type I X-ray bursts (Galloway et al.,

2008; Galloway and Keek, 2017) (see Zand (2018) for an up-to-date list of sources).

Matter in the accretion disk eventually reaches the neutron star surface where it forms

an ocean layer (see Figure 1.2). The large lateral pressure gradients caused by the

strong gravitational field at the surface are expected to cause the matter to rapidly

spread across the surface (Galloway and Keek, 2017). As matter is accumulated, the

density and temperature in the ocean increases until it is high enough that nuclear

fusion can commence. For the nuclear processes involved, the thermonuclear burning

rate increases very sharply with temperature, so this leads to thermonuclear runaway.

As a result, although the burning is thought to begin in a small region on the surface –

a hot spot – it will very quickly spread throughout the entire ocean (Joss, 1978; Shara,

1982).

As shall be described in the subsequent sections, X-ray bursts display a wide range of

features. Although there have been many models proposed to explain individual features,

there remain many open questions and there exists no model which can consistently

explain all observed features for all observed sources.
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Figure 1.3: Observed light curve of an X-ray burst from 4U 1728-34 (Strohmayer
et al., 1996). The rise, peak and decay phases of the burst can clearly be seen. The
inset panel shows the power spectrum of the burst: there is a peak at around ∼ 364 Hz,
showing that the burst exhibits burst oscillations at a frequency which coincides with

the neutron star’s spin frequency.

1.3.1 Observations

The first type I X-ray bursts were detected in 1975 by the SAS-3 and ANS satellites

(Grindlay et al., 1976; Clark et al., 1976). They have since been observed by almost

all major X-ray satellites (Galloway et al., 2018), with previous and current missions

including the Rossi X-ray Timing Explorer (RXTE) (Galloway et al., 2008), BeppoSAX

(Cornelisse et al., 2003), Swift (Gehrels et al., 2004), INTEGRAL (Sguera et al., 2005),

MAXI (Matsuoka et al., 2009), NuSTAR (Harrison et al., 2010), ASTROSAT (Singh

et al., 2014) and NICER (Gendreau et al., 2016). 111 burst sources have been observed

to date (Zand, 2018; Multi-INstrument Burst ARchive (MINBAR)).

The burning is observed as a very sharp increase in the X-ray radiation of the star: a

type I X-ray burst. The bursts produce distinctive light curves (see Figure 1.3) which

distinguish them from type II X-ray bursts (Hoffman et al., 1978). The light curve of a

type I burst can be split into three distinct phases: the rise, lasting ∼ 1 − 10 s, where

the flux increases sharply as the flame spreads across the surface and the ocean ignites;

the peak, where the flux reaches a maximum as the entire ocean undergoes burning; and

the decay, lasting ∼ 20− 200 s, where the flux slowly decreases as the ocean cools again.

In type II bursts, the peak is much flatter. Type I bursts occur every few hours to days

and their spectra almost always soften (i.e. the energy in the spectra moves from harder,

higher energy X-ray wavelengths to softer, lower energy X-ray wavelengths) during the
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decay, with the average spectrum during the first few seconds of the burst generally

harder than the persistent X-ray emission of the source. On the other hand, type II

bursts occur every few seconds to minutes and their spectra do not soften during the

decay. These differences between the two types of burst arise due to their different

origins: type I bursts occur due to thermonuclear burning on the surface, whereas type

II bursts result from instabilities in the accretion flow (Hoffman et al., 1978).

Less frequently, bursts with much longer durations have been observed. These inter-

mediate duration bursts and superbursts are believed to occur deeper in the ocean,

resulting from deep helium and carbon burning respectively. These bursts also have

longer recurrence times as it takes longer to accumulate sufficient fuel. A comparison of

the properties of these bursts can be seen in Table 2 of Galloway and Keek (2017).

1.3.2 Burst oscillations

Burst oscillations are coherent oscillations observed in the flux during bursts (see van der

Klis (2000); Watts (2012); Chakraborty et al. (2017) for reviews). The power spectrum

of a burst displaying burst oscillations can be seen in the inset panel of Figure 1.3.

Burst oscillations generally have frequencies very close to the spin frequency of the star

(Chakrabarty et al., 2003). They may appear in the rise part of the burst, the decay

part of the burst or in both.

Burst oscillations have so far only been detected from 18 sources (see Watts (2015) for

an up-to-date list), with possible claims for bursts from 9 more (Galloway and Keek,

2017). For some sources, oscillations have been detected during some bursts but not

others. Why this is so is not currently clear, but there does seem to be a greater number

detected at higher accretion rates, where oscillations can have larger amplitudes (Muno

et al., 2004; Ootes et al., 2016).

There is some evidence that for a few sources the burst oscillation frequency is twice

the spin frequency (van der Klis, 2000; Miller, 2000); the cause of this m = 2 azimuthal

asymmetry is not known (Cumming and Bildsten, 2000), though it may be due to the

excitation of some global mode in the ocean (Heyl, 2004; Lee and Strohmayer, 2005;

Berkhout and Levin, 2008).

In the standard model of X-ray bursts, burning starts in a hot spot induced by the

ignition of nuclear fusion. However, this does not explain why burst oscillations are not

solely confined to the rise (Chamel and Haensel, 2008). In the rise, the burning front

is still spreading across the surface; burst oscillations are likely to be a result of this

temperature asymmetry on the star’s surface, which is near stationary in the corotating

frame and is modulated by its rotation (Watts et al., 2005). In the decay stage, the

whole surface of the star is burning and so there is no longer this surface temperature
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Figure 1.4: Dynamic power spectra computed from two different bursts from 4U
1728-34, separated by 1.6 yr (Strohmayer et al., 1998). The bursts both show frequency

drifts of ∼ 3 Hz, increasing to the same asymptotic frequency.

asymmetry and so no obvious mechanism to cause oscillations to continue (Chakraborty

et al., 2017).

A number of models have been proposed to explain the observation of burst oscillations in

the decay stage, including the ideas that they could be produced by the dynamic forma-

tion of vortices driven by the Coriolis force (Spitkovsky et al., 2002; Bhattacharyya and

Strohmayer, 2007), by non-radial surface oscillations (Heyl, 2004; Lee and Strohmayer,

2005; Berkhout and Levin, 2008), or by latitudinal shear instabilities produced by differ-

ential rotation between the pole and equator (Cumming, 2005). (Cumming and Bildsten,

2000) suggested decay oscillations may be due to a ‘cooling wake’, a temperature asym-

metry during the cooling of the neutron star that results from the fact that it takes a

finite amount of time for the atmosphere to cool and for the burning to spread around

the star. This was studied further by Mahmoodifar and Strohmayer (2016), who found

that this model produced higher oscillation amplitudes than conventional cooling models

and so is more consistent with observations.

Another model to explain oscillations in the decay stage is that the flame front does not

spread across the entire surface of the star, and is instead stalled by some mechanism;

the temperature asymmetry would then persist into the decay stage. Possible stalling

mechanisms include confinement by the Coriolis force (Spitkovsky et al., 2002) or by the

magnetic field (Cavecchi, 2013).
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1.3.3 Frequency drifts

As described by Strohmayer and Bildsten (2003); Piro (2006), the frequency of burst

oscillations can vary by ∼ ∆1 − 5 Hz over the course of the burst (see Figure 1.4).

Typically, the frequency increases as the burst progresses, with the oscillations’ frequency

increasing to some limiting, asymptotic frequency, however there have been observations

of decreases in the frequency as well. Bursts with detectable burst oscillations during

the rise exhibit the largest frequency shifts, indicating that the process driving frequency

evolution begins at the start of the burst (Muno et al., 2002; Watts, 2012). There is also

evidence that frequency drifts occur more frequently in cases where the spin frequency

is lower (Chakraborty et al., 2017).

There have been several models proposed to explain frequency drifts. Strohmayer et al.

(1997b) suggested that they could be explained by the horizontal motion of the spreading

flame front, however this would require the rotation to set a preferred direction in which

the flame spreads. Alternatively, they could be caused by the conservation of angular

momentum as the atmosphere expands then shrinks again as it cools (Strohmayer et al.,

1997a; Cumming, 2000). Lee and Strohmayer (2005); Bhattacharyya et al. (2005) found

that including general relativistic effects (gravitational redshift, light bending and frame

dragging) gave corrections to frequency drift estimates of 5− 10%.

1.3.4 Multiple peaks

There have been several observations of bursts with two or even three peaks (Fisker et al.,

2003; Bhattacharyya and Strohmayer, 2006a,b; Cooper and Narayan, 2007; Zhang et al.,

2009). It is believed that some kind of stalling mechanism halts the burning front for a

few seconds before it becomes re-energised and continues propagating across the surface

(Zhang et al., 2009; Cavecchi et al., 2015); the physical nature of this stalling mechanism

is not currently known. It has been proposed by Bhattacharyya and Strohmayer (2006a)

that multiple peaks may be produced by the flame stalling as it crosses the star’s equator,

where the Coriolis force decreases to zero. However, this effect does not stall flame

propagation for long enough and does not explain observations of more than two peaks.

Alternatively, Fisker et al. (2003) suggested that double-peaked bursts are caused by a

waiting point in the thermonuclear reaction chain.

1.3.5 Photospheric radius expansion

As described by Strohmayer and Bildsten (2003), in bright bursts the local X-ray lumi-

nosity may reach the Eddington limit

LEdd =
4πcGM

κ

(
1− 2GM

c2R

)−1/2

= 4πR2σT 4
eff, (1.1)
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where M is the neutron star mass, R the radius, κ the atmospheric opacity, σ the Stefan-

Boltzmann constant and Teff the effective surface temperature. At this luminosity, the

outwards force produced by the radiation pressure exceeds the inwards gravitational

force, causing the photospheric layers to be lifted off the neutron star’s surface and

producing a photospheric radius expansion (PRE) burst. This causes the atmosphere

to expand outwards by ∼ 10 − 50 m (∼ 5 − 25 m) during a mixed H/He (pure He)

burst (Cumming and Bildsten, 2000). During such bursts, the blackbody temperature

decreases as the inferred blackbody radius increases; the total X-ray flux stays approxi-

mately constant. The amount by which the photosphere can be lifted varies considerably

between different bursts and different sources, and can sometimes be large enough to

shift the effective surface temperature below the X-ray band entirely.

PRE bursts are of particular interest as they can act as (approximate) ‘standard candles’,

allowing us to measure the mass and radius of the star. As we know that they are likely

to reach the Eddington flux limit, this measurement can be combined with measurement

of the apparent angular size and distance (Özel and Freire, 2016). The apparent angular

size is found by measuring the bolometric thermal flux Fbol, and combining this with

the effective surface temperature Teff (calculated from the spectrum) and the distance

measurement D to get

Robs

D
=

(
Fbol

σTeff

)1/2

, (1.2)

where σ is the Stephan-Boltzmann constant. Due to their extreme compactness, neu-

tron stars will gravitationally lens their own emission. This means the observed radii

found from the apparent angular size and distance must be modified to include this

gravitational lensing effect,

Robs =

(
1− 2GM

c2R

)−1/2

R. (1.3)

Combining this with (1.1), we can then solve for the mass and radius.

1.3.6 Superbursts

Superbursts are a type of X-ray burst which have larger luminosity (energy ∼ 1042 erg),

longer duration (4 − 14 hours) and occur less frequently (recurrence time ∼ 1 year)

(Cumming et al., 2006); see Zand (2017) for a review. All sources of observed superbursts

are known to also be normal X-ray burst sources (Serino et al., 2016). They are believed

to occur deeper in the ocean, where crustal heating triggers the unstable ignition of
12C + 12C fusion (Deibel et al., 2016) (where 12C has been produced as the ashes of

burning during normal X-ray bursts). Because of this, superbursts are more sensitive to

the thermal properties of the crust and core, so can be used to put tighter constraints
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on the thermal conductivity of the neutron star crust and the neutrino cooling rate in

the core (Brown, 2004; Schatz and Rehm, 2006).

After a superburst, normal X-ray bursts are quenched, with the next burst not occurring

until several 10s-100s of days later (Cornelisse et al., 2000; Kuulkers et al., 2002; Serino

et al., 2016). This occurs because the superburst deposits heat in the outer layers,

causing freshly accreted hydrogen and helium to burn stably. Only once the envelope

has cooled again does burning become unstable and the previous bursting behaviour

resumes.

Current superburst models require a larger heat flux than can be supplied solely by

crustal heating (Cumming et al., 2006); it is not known where this extra heating comes

from. Burst oscillations have also been observed during superbursts at frequencies very

close to those of the burst oscillations during regular bursts (Strohmayer and Mark-

wardt, 2002). This indicates that despite burning occurring at a deeper ocean depth for

superbursts, the physical processes producing burst oscillations are the same.

1.3.7 Ignition latitude

There is some uncertainty with regards to whereabouts on the surface of the star ignition

first occurs. It has long been thought that it is very unlikely that all the accreted fuel over

the entire surface will ignite simultaneously (Joss, 1978; Shara, 1982): it must instead

begin at a localised ‘hot spot’ then spread across the surface of the star. The latitude

of this hot spot is an open question. It was found by Spitkovsky et al. (2002) that the

latitude of ignition is very important in determining the speed of the burning front’s

propagation and that ignition on a rapidly rotating neutron star is most likely to occur

on the equator due to reduced effective gravitational acceleration. However, observations

of burst rise oscillations and double-peaked bursts by Bhattacharyya and Strohmayer

(2005, 2006a,b) suggest that the ignition must, at least in the systems studied, occur at

or near the rotational pole. The case for ignition occurring at a latitude other than the

equator was also made by Cooper and Narayan (2007) (where the ignition latitude was

found to depend on the accretion rate) and Maurer and Watts (2008); Cavecchi et al.

(2015).

1.3.8 Accretion rate

The accretion rate strongly influences whether thermonuclear burning will be stable or

unstable (Fujimoto et al., 1981; Bildsten and Hall, 1998; Keek et al., 2009). A higher rate

of accretion will lead to more heating due to compression, increasing the temperature.

Assuming a neutron star of mass 1.4 M� with a radius of 10 km, a hydrogen mass

fraction of X = 0.7 and a CNO mass fraction of ZCNO = 0.01, models predict that
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hydrogen burning via the CNO cycle will be stable for accretion rates of Ṁ & 10−2ṀEdd.

Theory predicts that helium burning via the triple-alpha process will be stable for Ṁ &

ṀEdd, but if the accreted matter is hydrogen-deficient this could be as high as Ṁ &

10ṀEdd. However, observations indicate that stable helium burning in fact occurs at

lower accretion rates of Ṁ & 0.1ṀEdd. Models by Keek et al. (2009) suggested that this

could be due to magnetic instabilities and rotation-induced mixing.

It has been found that there is a strong link between the accretion rate and the appear-

ance of burst oscillations (Strohmayer and Bildsten, 2003; Watts, 2012; Zhang et al.,

2015; Lampe et al., 2016). The accretion rate of a neutron star in an LMXB can vary

with time, with burst oscillations only observed when a star is in a particular accre-

tion state. Galloway et al. (2008) found that persistent pulsars (i.e. those that display

accretion-powered pulsations throughout their accretion episodes, and not just in tran-

sient episodes), including those who have displayed burst oscillations, tend to remain

in a low accretion state; sources that are not persistent pulsars tend to have detectable

burst oscillations only when they are in a high accretion state. Zhang et al. (2013, 2015)

concluded that bursts with oscillations ignite at high latitude when the mass accretion

rate onto the NS surface is high, and those without oscillations ignite at low latitude

when the mass accretion rate is low.

As described by Cavecchi et al. (2017), the relationship between rotation, accretion rates

and burst properties such as burst rate is complex and unclear. Burst rates are generally

expected to increase with increased accretion, however in certain ‘delayed mixed burst’

regimes the reverse is found to be true (Narayan and Heyl, 2003).

1.3.9 Rotation

Neutron stars in LMXBs tend to have very high rotation rates. Consequently, bursts

have been detected for stars with spin frequencies in the range 11−620 Hz, with the vast

majority having frequencies & 300 Hz. Such rapid rotation is likely to have an effect on

the evolution of a burst.

The importance of rotation on ocean dynamics can be estimated from the Rossby num-

ber, R0, the ratio of inertial to Coriolis forces in the fluid equations,

R0 =
v

4πνs` cos θ
, (1.4)

where v is the velocity of motion, ` the characteristic lengthscale, νs the spin frequency

of the star and θ the colatitude (Watts, 2012). When R0 . 1, the Coriolis force becomes

dominant. If we assume that the flame spreads due to pressure gradients, then we can

take the velocity to be v =
√
gH, where g is the gravitational field strength and H the

ocean scale height (Spitkovsky et al., 2002). We then find that the Coriolis force starts
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to significantly slow the flame spread, balancing pressure gradients that develop as the

hot fluid expands, for spin frequencies of

νs > 25 Hz
( g

1014 cm s−2

)1/2
(

H

10 m

)1/2(10 km

R

)
, (1.5)

implying that this will indeed be very important for almost all observed systems (Cavec-

chi et al., 2011).

The effect of the Coriolis force in flame spreading was first modelled by Spitkovsky et al.

(2002). They found that initially the Coriolis force is unimportant due to the small

size of the hot spot, and the flame spreads with the ‘geostrophic speed’1. After the

flame has spread to encompass a larger region, the Coriolis force will become important

and the flame will spread at the much slower ‘ageostrophic speed’2, decreasing as the

latitude of the burning front increases. This model was found by Bhattacharyya and

Strohmayer (2007) to be consistent with the evolutionary structure of observed burst

oscillation amplitudes.

Rapid rotation will also affect oscillation modes in the ocean and atmosphere (Watts,

2012), and could affect ignition conditions by lowering the effective gravity at the equa-

tor, leading to a higher fuel accumulation rate there and therefore making ignition more

likely on the equator (Spitkovsky et al., 2002; Cooper and Narayan, 2007). Rotation

induces mixing of newly accreted material with the ashes from previous bursts, which

can change the temperature profile of the ocean (Piro and Bildsten, 2007; Keek et al.,

2009; Cavecchi et al., 2017)

Another consequence of fast rotation is to deform the neutron star at the equator,

making it oblate (Chandrasekhar and Fermi, 1953; Bocquet et al., 1995; Cadeau et al.,

2007; Morsink et al., 2007; Haskell et al., 2008; Bauböck et al., 2013). The oblate shape

means that the gravitational field near the poles is stronger than near the equator. This

could have important consequences for e.g. bursts with multiple peaks, where it could

help provide a stalling mechanism as the flame crosses the equator, enhancing the effect

studied in spherical geometry by Cavecchi et al. (2015).

1.3.10 Magnetic fields

Neutron stars which exhibit X-ray bursts are believed to have relatively weak magnetic

fields of B . 108 − 109 G (Mukherjee et al., 2015); this contrasts with magnetars which

can have magnetic fields up to B ∼ 1015 G. Although it is very difficult to measure

1The geostrophic speed is the speed of a flow in which the force of the pressure gradient is balanced
by the Coriolis force.

2The ageostrophic speed is the speed of the component of the flow that deviates from the geostrophic
flow and typically represents friction and other effects. For the burning front, it is likely to be dominated
by the turbulent flame speed.
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the magnetic field strength for these systems, an upper limit is inferred from the lack of

persistent pulsations during accretion, implying that the spherical magnetospheric radius

must be inside the neutron star (Strohmayer and Bildsten, 2003). Even if the magnetic

field is much weaker than this, it could have significant consequences for the propagation

of the burning front. Cumming and Bildsten (2000) argued that even a field as weak

as B ∼ 106 G could become dynamically important if an initially poloidal field becomes

wound up by differential rotation. It is possible that the diffusive magnetorotational

instability may play a role in vertical angular momentum transport within the burning

layer (Menou, 2004; Cumming, 2005).

There are also several features of X-ray bursts which could be explained by the effects

of magnetic fields, including frequency drifts (Cumming, 2000) and burst oscillations

(Spitkovsky et al., 2002; Watts et al., 2005; Cavecchi, 2013). Cumming et al. (2001)

suggested that while magnetic fields are screened by accretion in most LMXBs, this is

not so in systems where the accretion rate is unusually low (Ṁ < 10−2ṀEdd). The

presence of dynamically important magnetic fields will also influence the accretion ge-

ometry (Kajava et al., 2014). Simulations by Cavecchi et al. (2016) found that even

weaker magnetic fields of B ∼ 107 G can have a non-negligible effect on the flame propa-

gation, partially obstructing the Coriolis force such that the confinement decreases and

the flame speed increases.

As described in Cavecchi (2013), if the Alvén speed is much less than the sound speed (i.e.

it has low Mach number), then a hydrostatic scheme will filter out vertically-propagating

sound waves but will not entirely filter out vertically-propagating magnetic waves. In the

low Mach number regime to be investigated, it may therefore be the case that magnetic

waves need to be taken into account when evolving the system. Although magnetic

fields have not been included in the models developed in this thesis, this is something

that we hope to do in future work.

1.3.11 General relativity

For compact objects such as neutron stars, general relativistic effects can significantly

modify the physics. For example, a correction of up to 25% is needed in the surface

gravity of a neutron star with a rotation frequency of 600 Hz when general relativity

is taken into account (Cumming et al., 2002). However, no study has yet modelled

the ocean dynamics during type I X-ray bursts using the fully general relativistic fluid

equations.

In general relativity, a rotating body will experience frame dragging effects (Paschalidis

et al., 2017). The effect of this on spectral lines was found by Bhattacharyya et al.

(2006) to be small for spin frequencies of 300 − 700 Hz, however it is likely that it will

have important consequences for the propagation of the burning front itself.
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There have previously been some studies of X-ray bursts which have included gen-

eral relativistic effects, such as the conservation of angular momentum, as described

in Abramowicz et al. (2001); Cumming et al. (2002). Including this effect, as well as

gravitational redshift, light bending and frame dragging, were found to give corrections

of 5− 10% in frequency drifts when calculating light curves (Lee and Strohmayer, 2005;

Bhattacharyya et al., 2005). In Ayasli and Joss (1981), general relativistic corrections

to the equations of stellar structure from Thorne (1977) were found to have a signifi-

cant effect on the burst profile, increasing the accretion-driven luminosity by a factor of

2zs(1 + zs)/[(1 + zs)
2 − 1] (where zs is the surface redshift), while decreasing the peak

burst luminosity by a factor of ∼ (1 + zs)
−2. Wielgus et al. (2015b,a) showed that in

general relativity, there exist radiation-supported atmospheres outside the surface of a

radiating spherical body, close to the radius where the gravitational and radiative forces

balance. These shells may be relevant for PRE bursts and could explain frequency drifts

(Abarca and Kluźniak, 2016).

1.3.12 Burning

The burning front in a type I X-ray burst is a subsonic deflagration. Due to the high

temperature sensitivity of the nuclear fusion reactions, the burning is confined to a nar-

row region in space (Klein, 1998; Hillebrandt et al., 2013). Consequently, this produces

scale problems in both time and space when modelling the propagation of the front: if it

is treated as a discontinuity (which it is on the scale of the whole star), then the internal

structure of the flame cannot be resolved. On macroscopic scales, the burning front

propagates due to turbulence (Reinecke et al., 1999), so it is not sufficient to merely

model the microscopic flame structure. The timescales of the hydrodynamic flow and

the nuclear reactions are also very different.

The reactions within the flame structure itself are very important in determining the

propagation of the burning front (Klein, 1998; Schatz, 2011). They determine the condi-

tions required for ignition to take place, the rate of burning and the products produced.

These in turn determine the flame’s behaviour, including the energy generation rate, the

propagation speed and the turbulent flame brush thickness3 (Smiljanovski et al., 1997;

Peters, 2000).

The nuclear burning reactions depend on the thermodynamic properties of the ocean:

the temperature, density and composition. These properties are strongly influenced by

the accretion rate and composition of the accreted material. For lower accretion rates of

Ṁ . 0.24ṀEdd, where ṀEdd is the Eddington limit4, nuclear burning will occur at lower

3The turbulent flame brush thickness is defined to be the average distance between the mean front
location and the instantaneous front location, and grows as turbulent eddies cause the flame front to
become increasingly wrinkled.

4The Eddington limit is the maximum accretion rate beyond which the outwards radiation pressure
produced by the infalling matter exceeds that of the inwards gravitational force.
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temperatures T . 7× 107 K where the CNO process dominates (Ayasli and Joss, 1981;

Taam et al., 1996); consequently, the CNO abundance of accreted matter is important

for such stars. For higher accretion rates, burning is instead dominated by the rp process,

and so the CNO abundance is unimportant. For accretion rates Ṁ & ṀEdd, burning is

steady and so no bursts are seen (Fushiki and Lamb, 1987; Schatz et al., 1999).

In current state-of-the-art simulations, reactions in X-ray bursts are implemented using

approximate reaction networks which track many different species. For example, the

MAESTRO code (Nonaka et al., 2010) uses a network containing 10 species based on the

description of Wallace and Woosley (1981), and approximates hot CNO burning, triple-

α, rp-process breakout and burning up to 56Ni (Malone et al., 2014).

1.3.13 Turbulence

The propagation of the burning front is driven by turbulent combustion (Reinecke et al.,

1999). Turbulence operates differently in 2d and 3d systems. In 3d systems, there is

a turbulent energy cascade where the energy in large scale features is transferred to

smaller scales. In 2d systems this is reversed, with smaller scale features coalescing to

form larger scale features, and transferring energy from smaller scales to larger scales

(Kraichnan, 1967). In order to properly capture the physics of the turbulent burning

front, it is therefore necessary to use a 3d model.

It has been suggested that relativistic turbulence may behave differently to Newtonian

turbulence, which could influence the overall propagation of the front. In Radice and

Rezzolla (2013), high order direct numerical simulations of driven relativistic turbulence

of a hot plasma found that relativistic effects such as nonlinear couplings via the Lorentz

factor need to be taken into account even when the Lorentz factor is small. The standard

Kolmogorov model of the velocity power spectrum and intermittency5 of the velocity

field in the inertial range was found to carry over to the relativistic regime. However, the

relativistic turbulent velocity was found to experience exponential decay rather than the

classical power-law decay, an effect consistent with the findings of Zrake and MacFadyen

(2011); Inoue et al. (2011). It was also found that relativistic turbulence is significantly

more intermittent than its classical counterpart due to non-classical sources of intermit-

tency such as the relativistic constraint that the velocity field cannot be Gaussian as

the velocity field PDFs must have compact support in (−c, c) (i.e. the speed cannot be

greater than the speed of light). As the Lorentz factor increases, the PDFs flatten and

the velocity field shows larger deviations from Gaussianity.

5Intermittency in a turbulent flow is characterised by the local appearance of anomalous, short-lived
flow features. As first observed by Batchelor and Townsend (1949), fluctuations in velocity gradients
become more extreme, with longer tails in their probability distrubution with increasing Reynolds num-
ber.
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It should be noted that it remains uncertain whether these findings are genuine features

of relativistic turbulence – it has been suggested that current simulations have not yet

achieved a sufficiently long inertial range to yield reliable results (Eyink and Drivas,

2018).

1.4 Background physics

This section will give a brief overview of some of the physics that shall be used in

subsequent chapters of this thesis. It shall begin by looking at the physics of fluids, then

consider general relativity. It shall finish by looking at the physics of burning.

1.4.1 Hydrodynamics

In this work, we are mainly concerned with the physics of the neutron star ocean.

Despite being primarily composed of H/He plasma, the extremely high pressure in the

ocean causes interactions between the ions and degenerate electrons such that it behaves

as a liquid. We can therefore describe it using hydrodynamics.

The time-dependent Euler equations of ideal Newtonian hydrodynamics are given by

Toro (1999) as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.6)

∂ (ρu)

∂t
+ ∇ · (ρuu) + ∇p = 0, (1.7)

∂E

∂t
+ ∇ · (u[E + p]) = 0, (1.8)

where ρ, u and p are the density, velocity and pressure, and E = ρ(e+ 1
2u ·u) is the total

energy per unit volume, where e is the specific internal energy. These equations describe

compressible fluids at high pressures, where the effects of body forces, viscous stresses

and heat flux are neglected. In order to close this system, an appropriate equation of

state must be provided, for example the gamma law equation of state. This relates the

pressure, density and specific internal energy by

p = (γ − 1)ρe, (1.9)

where γ is the adiabatic index, given by the ratio of the specific heat capacities at

constant pressure and at constant volume.
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In stellar environments, we obtain additional terms due to the presence of gravitational

fields, heat transport and species evolution. These are given by Bell et al. (2004) as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.10)

∂ (ρu)

∂t
+ ∇ · (ρuu) + ∇p = −ρger, (1.11)

∂E

∂t
+ ∇ · (u[E + p]) = ∇ · (κ∇T )− ρg (u · er)−

∑
k

ρqkω̇k, (1.12)

∂ (ρXk)

∂t
+ ∇ · (ρuXk) = ρω̇k, (1.13)

where T is temperature, g(r) is the radially dependent gravitational acceleration, er

is the unit vector in the radial direction and κ is the thermal conductivity. Xk is the

abundance of species k, which has the production rate ω̇k and reaction energy release

per unit mass qk. The system is closed with an equation of state e = e(ρ, T,Xk). These

equations assume that the effects of fluid viscosity and species diffusion are negligible

compared to energy transport. Gravity is assumed to only act in the radial direction

and be time independent (i.e. there is no back reaction from the fluid). This model

also neglects the effects of magnetic fields (though as described in Section 1.3.10, it is

important to be aware that this assumption may not be entirely valid for neutron star

oceans).

1.4.2 Burning

As discussed in Section 1.3.13, the burning in type I X-ray bursts is extremely turbulent.

The degree of turbulence in a system can be measured by the Reynolds number, the

ratio of the inertial forces to viscous forces. Assuming equal diffusivities for all reactive

scalars and that the Schmidt number Sc = ν/D = 1, where ν is the kinematic viscosity

and D is the diffusivity, we can define the flame thickness `F and the flame time tF to

be

`F =
D

sL
, tF =

D

s2
L

, (1.14)

where sL is the speed of the laminar flow. The (turbulent) Reynolds number can then

be defined as

Re =
v`

ν
=

v`

sL`F
, (1.15)

where ` is the characteristic length scale of the eddies (the integral scale6) and v is

the turnover velocity of integral scale eddies (Peters, 2000). Taking ρ ∼ 105 g cm−3,

v ∼ 105 cm s−1, ` ∼ 102 cm (∼ 0.1 times the ocean depth) and µ ∼ 0.3 (Niemeyer et al.,

1999), we can estimate the Reynolds number in neutron star oceans to be Re ∼ 109. This

is much higher than the Reynolds number of burning in terrestrial systems: for example,

6More specifically, the integral scale is defined as the length scale of the eddies in the turbulent
cascade at which the power spectrum is at a maximum.
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Figure 1.5: Regime diagram for premixed turbulent combustion, adapted from (Pe-
ters, 2000; Aspden et al., 2010). Labels indicate lines of constant Reynolds number,
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(where η is the Kolmogorov length scale, the size of the smallest eddies in the turbu-
lent cascade). Burning in neutron star oceans is thought to have a very high Reynolds
number and therefore take place in the stirred flames regime, where the reaction zone

has become completely disrupted by the turbulent vortices.

the Reynolds number of hydrogen/air turbulent catalytic combustion is typically ∼ 104

(Arani et al., 2018).

The relative size and speed of the turbulent eddies with respect to the burning length

and timescales determines the properties of the burning, which can be split into several

distinct burning regimes (see Figure 1.5). In the laminar flames regime, the Reynolds

number is Re < 1 and the effects of turbulence are negligible. In the flamelet regimes

(wrinkled flamelets, corrugated flamelets and the thin reaction zone), the turbulent

eddies are larger than the reaction zone thickness `δ, and cause the burning front to

wrinkle. This increases the flame surface area and so increases the burning rate, but has

no effect on the microphysics of the burning reactions.

In neutron star oceans, as in type Ia supernovae, it is thought that the burning takes

place in the stirred flames regime (Aspden et al., 2008). Here, the turbulent eddies are

smaller than the burning length scale, and so are able to penetrate the reaction zone

(Niemeyer and Woosley, 1997). This causes the reaction zone to become completely

disrupted, causing the burning front to broaden significantly (Klein, 1998; Peters, 2000),
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Figure 1.6: Comparison of laminar and turbulent burning profiles from Aspden et al.
(2008). In these plots, the dark blue curves show the density, the red curves the
temperature, the light blue curves show the baryon fraction of the fuel, carbon, the
green curves the baryon fraction of the product, magnesium, and the black curves the
fuel consumption rate (FCR). Note that the length scale on the x-axis spans a distance
120 times greater for the turbulent profile than it does for the laminar profile: the

turbulent flame is ∼ 60 times wider than the laminar flame.

as can be seen in Figure 1.6. Although the disruption of the reaction zone in the turbulent

case greatly reduces the fuel consumption rate, the broadened flame width causes the

overall fuel consumption rate across the entire flame to increase.

1.4.3 General relativity

The main aim of our work is to extend the current models of type I X-ray bursts to

include general relativity. To do this, we shall use the fully general relativistic form of

the fluid equations.

Before going any further, we shall briefly state the notation that shall be used. Through-

out this work, the Greek indices µ, ν, . . . will be used to indicate summation over all 4

spacetime dimensions, whereas the Latin indices i, j, . . . will be used to indicate sum-

mation over the 3 spacelike dimensions. The signature (−,+,+,+) will be used. Unless

otherwise specified, for all relativistic calculations we shall use natural units, setting

G = M� = c = 1, (1.16)

where G is Newton’s gravitational constant, M� is the solar mass and c is the speed of

light.

Einstein’s field equations are given by

Gµν = Rµν −
1

2
Rgµν = 8πTµν , (1.17)
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where Gµν is the Einstein tensor, Rµν the Ricci tensor, R the Ricci scalar, gµν the metric

tensor and Tµν the stress-energy tensor. For a perfect fluid, this can be written as

Tµν = ρhuµuν + pgµν , (1.18)

where ρ is the proper rest-mass density, uµ the 4-velocity and p the fluid pressure. The

specific enthalpy is

h = 1 + ε+
p

ρ
, (1.19)

where ε is the specific internal energy (Font, 2008; Rezzolla and Zanotti, 2013; Mart́ı and

Müller, 2015). As the system we are studying operates over short timescales with respect

to any non-rotational time variation of the metric (caused by e.g. significant changes in

the mass or structure of the neutron star), we will be solving the field equations with

the approximation that the metric is static or stationary (the Cowling approximation

(Cowling, 1941)).

The relativistic fluid equations are given by the five conservation laws

∇µJµ = 0, (1.20)

∇νTµν = 0, (1.21)

where Jµ = ρuµ is the density current. By projecting the second of these two con-

servation laws with the projection operator hµν = uµuν + δµν , we can obtain the fluid

equations in a form closer to the Newtonian equations (Gourgoulhon, 2006):

∇µ (ρuµ) = 0, (1.22)

uµ∇µ (ρh− p) + ρh∇µuµ = 0, (1.23)

ρhuν∇νuµ +∇µp+ uµu
ν∇νp = 0. (1.24)

In numerical relativity, it is useful to split spacetime into one timelike and three spacelike

coordinates. We do this using the ADM 3+1 formalism of Arnowitt et al. (1962). This

is done by foliating the spacetime with a set of non-intersecting spacelike hypersurfaces

Σ = Σ(t), with each parametrised by a constant value of the timelike coordinate t.

The general 3+1 metric is

ds2 = −(α2 − βiβi)dt2 + 2βidx
idt+ γijdx

idxj , (1.25)

where α(t, xj) is the lapse function, which measures the proper time between adjacent

hypersurfaces, βi(t, xj) is the shift vector, which measures the change of coordinates

between hypersurfaces, and γij is the spacelike 3-metric on the hypersurfaces (Alcubierre,

2008). The contravariant components of the 3-velocity, vi = γijvj , are defined in terms
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of the 4-velocity uµ as

vi =
ui

αu0
+
βi

α
, (1.26)

and the Lorentz factor is given by W = αu0 = (1 − vivi)−1/2 (Font, 2008; Mart́ı and

Müller, 2015).

Our choice of foliation Σ is not unique. We can measure the curvature of a 3d hyper-

surface Σt with respect to the 4d spacetime in which it is embedded using the extrinsic

curvature, which can be defined as

Kij = −1

2
Lnγij = − 1

2α
(∂t − Lβ) γij , (1.27)

where nµ ≡ −α∇µt is the future-pointing timelike unit normal vector to the hypersur-

face.

1.5 Numerical methods

In this section, we shall outline some of the numerical methods that shall be used later

in this thesis to implement the various numerical models. We shall first describe the

Riemann problem, then give an overview of its use in finite volume methods.

For many techniques in numerical modelling, we approximate a system defined in a

continuous domain by discretising it, covering the domain in a grid and calculating the

solution only at a finite number of points in this grid. For a time-dependent system, we

also discretise in time, calculating the solution only at certain points in time, separated

by the timestep ∆t. When referring to data defined at a specific timestep and location on

a numerical grid, we shall use the upper index to denote the timestep and the lower index

to denote the spatial location. For example, the density ρ at timestep n and grid cell (i, j)

would be denoted by ρni,j . The location x at the centre of a cell is given by xi,j , where the

cell’s domain is [xi−1/2,j , xi+1/2,j ] × [xi,j−1/2, xi,j+1/2]. We define xi±1/2,j = xi,j ± ∆xi/2,

where ∆xi is the grid spacing in the i-direction.

1.5.1 The Riemann problem

The Riemann problem is a special type of initial value problem consisting of a system

of m hyperbolic partial differential equations (PDEs) of the form

∂tq +A(q)∂xq = 0, (1.28)

where A(q) is some m × m matrix of coefficients (Toro, 1999). As the system is hy-

perbolic, A(q) is diagonalisable with m real eigenvalues and m linearly independent
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Figure 1.7: Initial data for the Riemann problem. At t = 0, the system consists of
two states qL and qR separated by a discontinuity at x = 0.
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Figure 1.8: Structure of the solution of the Riemann problem for a system of m
hyperbolic PDEs with constant coefficients. The solution consists of m characteristic

curves propagating at constant speeds λi.

eigenvectors (LeVeque, 2002). This problem has the discontinuous initial data

q(0, x) = q0(x) =

qL if x ≤ 0,

qR if x > 0,
(1.29)

where qL and qR are some constant states separated by a discontinuity at x = 0. This

is illustrated in Figure 1.7.

The solution of the Riemann problem consists of m characteristic curves7 emanating

from the origin, as shown in Figure 1.8. Across each characteristic is a discontinuity in

the state propagating at constant speed. These constant speeds are the eigenvalues λi

of A.

7Characteristic curves are curves x = x(t), along which the PDE becomes an ODE such that the
solution is constant along the curve.
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1.5.1.1 Rankine-Hugoniot conditions

For a system of hyperbolic conservation laws,

∂tq + ∂xf(q) = 0, (1.30)

where q is the conserved state vector and f(q) the flux, if the solution contains a

discontinuity, then its speed of propagation vS can be found using the Rankine-Hugoniot

conditions (Toro, 1999; LeVeque, 1992). These are given by

Jf(q)K = vSJqK, (1.31)

where we define JqK ≡ qR − qL to be the difference in some quantity q to the right and

left of the wave. In the case of a linear system where f(q) = Aq and A is some matrix

of constant coefficients, the Rankine-Hugoniot conditions become

AJqK = vSJqK. (1.32)

This is now an eigenvalue problem, and the speed of propagation of the discontinuity

will therefore be an eigenvalue of the matrix of coefficients A, so vS = λi.

1.5.1.2 Shocks, rarefactions & contact waves

The solution of the Riemann problem for an m×m hyperbolic system consists of m+ 1

constant states separated bym waves. For nonlinear systems such as the Euler equations,

these waves may take the form of discontinuities such as shocks and contact waves, or

smooth transitions such as rarefactions.

Shocks

A (right-going) shock wave occurs when the characteristic speeds in the left state are

greater than those on the right, such that

λ(qL) > vS > λ(qR), (1.33)

where vS is the speed of the shock. This is known as the Lax entropy condition. The

converging shock characteristics can be visualised using Figure 1.9. Characteristics from

either side of the initial discontinuity meet, forming a shock front propagating at speed

vS . The speed of this shock front can be found using the Rankine-Hugoniot conditions,

as described in Section 1.5.1.1.
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Figure 1.9: Converging characteristics of a shock. Characteristics (blue lines) from
the initial left and right states meet, forming a shock front (thick black line) propagating

at speed vS .
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Figure 1.10: Diverging characteristics of a rarefaction. Characteristics (blue lines)
from the initial left and right states move apart, producing a smooth transition region
between them. The right edge of the rarefaction – the head – moves with speed λ(qR),

and the left edge – the tail – moves with speed λ(qL).

Rarefactions

A (right-going) rarefaction occurs when the characteristic speeds in the left state are

less than those on the right, such that

λ(qL) < λ(qR). (1.34)

This results in the characteristics diverging, as illustrated in Figure 1.10. The initial

constant states move apart, producing a smooth transition region (rather than a discon-

tinuity) – the rarefaction wave. The right edge of this wave is known as the head of the

rarefaction, travelling at λ(qR). The left edge is the tail, travelling at λ(qL).
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Figure 1.11: Parallel characteristics of a contact wave. Characteristics (blue lines) in
both states run parallel to the wave (thick black line).

Contact waves

Contact waves are produced when there is a discontinuity in the initial data between

the left and right states, but the characteristic speeds in the states are equal such that

λ(qL) = λ(qR) = vS . (1.35)

This is illustrated in Figure 1.11. The contact wave is parallel to the characteristics in

the left and right states.

Detonations and deflagrations

Detonations and deflagrations are the counterparts of shocks and rarefactions respec-

tively for the reactive Riemann problem. The initial left and right states now consist of

the unburnt (or unreacted) material prior to the reaction and the burnt post-reaction

material. Across detonations and deflagrations, a reaction takes place which may be

endo- or exothermic. Consequently, there is an additional heat source across the wave.

The left and right states may also have different equations of state. Detonations and

deflagrations shall be described in more detail in Section 3.1.1.

1.5.2 Finite volume methods

In all systems modelled in this thesis, we shall be solving hyperbolic PDEs of the form

given in (1.28) using finite volume methods.

Finite volume methods solve these systems by splitting the domain into a set of grid

cells and approximating the total integral of the state over each cell. For a 1d domain

split up into intervals, the average value q̄ni of some quantity q(tn, x) over the ith interval
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at time tn is approximated by qni as

qni ≈ q̄ni ≡
1

∆x

∫ xi+1/2

xi−1/2

dx q(tn, x), (1.36)

where the interval length is given by ∆x = xi+1/2 − xi−1/2. If q(tn, x) is smooth, then

this integral will always agree with q at the midpoint of the interval to O(∆x2).

Note that in the rest of our discussion of finite volume methods in this section, for the

sake of simplicity we shall continue to restrict ourselves to look at a 1d domain, however

the schemes presented can also be extended to multidimensional domains.

Finite volume methods are among the most popular in computational fluid dynamics

and in relativistic hydrodynamics. They offer many advantages over classical finite

difference schemes, chief among them being that they are inherently conservative: for a

system without source terms, the flux entering a given volume is always identical to that

leaving the adjacent volume. This therefore makes them ideal for solving conservation

laws, homogeneous hyperbolic equations that describe how a particular physical quantity

remains constant in time over an entire physical domain. They also tend to be more

robust for systems with discontinuities such as shocks.

However, they do have some disadvantages. High order finite volume schemes are much

more complex to extend to the multidimensional case, and become particularly expensive

in the general relativistic case where they require very high order schemes to calculate

the metric and metric source terms (Radice, 2013). To obtain high order accuracy, they

depend on reconstruction techniques with large stencils. They are difficult to implement

for problems with complicated geometries and the treatment of boundary conditions can

be non-trivial (Palaniappan et al., 2004).

In order to get a sufficiently accurate solution for our problem, we can use a MUSCL-

type scheme (Monotonic Upstream-centred Scheme for Conservation Laws) (van Leer,

1979). This involves reconstructing the data to the cell boundaries and constraining this

reconstruction so that spurious oscillations that will destabilise the solution are avoided.

1.5.2.1 Method of lines

The method of lines allows us to solve a system of PDEs by converting them into a set

of ordinary differential equations (ODEs). This is done by discretising in terms of the

spatial dimension(s) and leaving time continuous, such that for the PDE

∂tq(tn, xi) + ∂xf(q(tn, xi)) = 0, (1.37)

we obtain
d

dt
q̄i(t

n) +
1

∆x

[
f(q(tn, xi+1/2))− f(q(tn, xi−1/2))

]
= 0, (1.38)
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where ∆x is the grid spacing. To solve this we require the fluxes f(q), which can be

approximated by the intercell fluxes fni±1/2 ≈ f(q(tn, xi±1/2)). This is done by first find-

ing the approximation of the state vectors at the cell boundaries qni±1/2 ≈ q(tn, xi±1/2),

then solving the Riemann problem at the cell boundaries to get the intercell flux. The

exact solution typically requires a computationally expensive root-finding operation, so

approximate solvers are normally used instead. These will be described in more detail

in Section 3.2.

1.5.2.2 Reconstruction

Given the approximate cell average state vector qi given by (1.36), we need to find the

state vectors at the cell boundaries, qi−1/2 and qi+1/2. We do this by reconstructing

the state at the boundaries. We wish to do this in a way that minimises non-physical

oscillations that will destabilise the code. This can be achieved by using slope limiters,

as first introduced by van Leer (1979), such that the state at a point x ∈ [xi−∆xi/2, xi+

∆xi/2] is given by

q(x) = qi + Si(x− xi), (1.39)

where Si is the slope across cell i. The slope is calculated using a limiter function;

this reduces the slope near a shock or discontinuity such that spurious oscillations are

reduced.

The slope in cell i is given by

Si = φ(r)Sav
i , (1.40)

where φ(r) is the limiter function, Sav
i is the average slope across the cell,

Sav
i =

1

2

(
qi+1 − qi
xi+1 − xi

+
qi − qi−1

xi − xi−1

)
, (1.41)

and r is the ratio of slopes either side of the cell,

r =
qi+1 − qi
qi − qi−1

. (1.42)

Slope limiters have the property that they are total variation diminishing (TVD) (LeV-

eque, 2002). If we define the total variation of the approximate cell average state vector

qn at time t = tn to be

TV(qn) =
∞∑

i=−∞

∣∣qni − qni−1

∣∣ , (1.43)

then a method is total variation diminishing if for any set of data qn, the values qn+1

computed by the method satisfy

TV(qn+1) ≤ TV(qn). (1.44)
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A consequence of this is that if data is initially monotonic, such that qni ≥ qni+1 for all

i, then it shall remain so for all time. This is known as the monotonicity-preserving

property.

The choice of slope limiter φ(r) is important to the accuracy of the solution. If slopes are

limited too much, then discontinuities will be smeared out as the simulation progresses.

If slopes are not limited enough, non-physical oscillations will be able to develop and

grow. Three possible functions for the slope limiter, going from most to least diffusive,

are given by Toro (1999) as

� minmod

φ = max

(
0,min

(
1,

4

1 + r

))
, (1.45)

� monotised centred (MC)

φ = max

(
0,min

(
2r

1 + r
,

2

1 + r

))
, (1.46)

� and superbee

φ =



min
(

2,min
(
r, 2

1+r

))
r ≥ 1,

1 0.5 ≤ r < 1,

2r 0 < r < 0.5,

0 otherwise.

(1.47)

An illustration of the slope limiting procedure using the minmod limiter can be seen

in Figure 1.12. In the figure, it can be seen that the limited slopes are in general less

steep than the gradient of the curve showing the ‘real’, continuous data. Where there

are steep gradients in the original data, there are large jumps in the boundary data

reconstructed from adjacent cells. As the simulation is evolved in time, this will lead to

smearing of this feature.

1.5.2.3 Solution of the Riemann problem

Once the states have been reconstructed to the boundaries, the intercell flux is found by

solving the Riemann problem with initial data given by

qL = q−+1/2, qR = q+
−1/2, (1.48)

where q− is the reconstructed state of the neighbouring cell on the left and q+ is the

reconstructed state of the neighbouring cell on the right. The intercell flux is then

calculated using a numerical flux function. One such function is the Lax-Friedrichs flux,

fLF(q) =
1

2
(f(qL) + f(qR) + α (qL − qR)) , (1.49)
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Figure 1.12: Illustration of slope limiters used to reconstruct boundary data. The
red curve shows the ‘real’, continuous data, the black circles show the values of this
data at the centres of the cells, and the black lines show the limited slopes calculated
using the minmod slope limiter. The intersection of these lines with the cell boundaries

(the vertical dashed lines) gives the reconstructed boundary data.

where α is the magnitude of the maximum wave speed across the whole domain (which in

our relativistic simulations we shall set to c = 1 for simplicity). The Lax-Friedrichs flux

is first order accurate and it is always guaranteed to converge to the correct solution as

the grid is refined. However, it is also highly diffusive. This helps make the scheme more

stable to spurious oscillations (LeVeque, 2002), however if higher accuracy is required,

a higher order approximation for the intercell flux should be used.

1.5.2.4 Runge-Kutta methods

Once we have obtained the intercell fluxes, we will now be able to do the time integration.

Using the method of lines, this can be done using Runge-Kutta methods, a family of

implicit and explicit methods for the numerical solution of ODEs. For an ODE of the

form
dq

dt
= f , (1.50)

the standard third-order SSP (strong stability preserving) Runge-Kutta method (RK3)

is given by Gottlieb et al. (2009) as

q(1) = qn + ∆tf(qn), (1.51)

q(2) =
1

4

(
3qn + q(1) + ∆tf(q(1))

)
, (1.52)

qn+1 =
1

3

(
qn + 2q(2) + 2∆tf(q(2))

)
. (1.53)

It is said that a method is strongly stable if there exists a value ∆tFE such that

‖qn + ∆tf(qn)‖ ≤ ‖qn‖ ∀qn and for 0 ≤ ∆t ≤ ∆tFE . (1.54)
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Figure 1.13: Accuracy of TVD methods at extrema (LeVeque, 2002). In order to
remain TVD, slope limiters will set the slope to be zero in the region of extrema, which

results in clipping of the peak value.

This is known as the forward Euler condition. Provided that this holds, a Runge-Kutta

method is strong stability preserving if

‖qn+1‖ ≤ ‖qn‖ for 0 ≤ ∆t ≤ C∆tFE (1.55)

for some coefficient C > 0 (Hadjimichael et al., 2013).

SSP methods can be used to ensure the stability of hyperbolic PDEs with discontinuous

solutions such as shocks.

As can be seen, for each timestep in the RK3 method it is necessary to calculate two

intermediate states q (1) and q (2). This increases the computational cost of the method.

Higher order methods will require the calculation of additional intermediate states.

1.5.2.5 Accuracy

In the previous sections, we have shown how we can use TVD methods in order to

mitigate the development of non-physical spurious oscillations that may destabilise the

simulation. However, by using these techniques, we will lose some accuracy in our

solution. As can be seen in Figure 1.13, at extrema slope limiters will produce a slope of

zero in order to ensure the method is TVD. Any other choice will produce reconstructed

data q̃(tn) with greater total variation than the real data, TV (q̃(tn)) > TV(qn), which

can then result in an increase in the total variation at the next timestep, TV(qn+1) >

TV(qn). However, setting the slope to zero leads to clipping of the solution, such that

at each timestep the values at extrema will be reduced by O(∆x2) = O(∆t2). This error

grows as the simulation progresses, with the consequence that after T/∆t timesteps it

will produce a global error in the region of the extrema that is O(∆t). Even if the

method is higher order, its accuracy will be reduced to first order near the extrema.
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x
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Figure 1.14: Accuracy of TVD methods at discontinuities. Slope limiters reduce
the gradients in the reconstructed data, leading to smearing of discontinuities. In this
example, the exact solution contains a discontinuity (black line). In the numerical
solution calculated using slope limiters (red crosses), this has been smeared out across

multiple cells.

It is possible to remedy this by relaxing the TVD property to allow for the total variation

to slightly increase so that smooth peaks can be better represented. This must be done

in a way that allows for small increases in the total variation around extrema while

still preventing the growth of spurious oscillations. Essentially nonoscillatory (ENO)

methods are one of such approach to this, and can obtain high accuracy even in the

region of extrema.

As mentioned above, using slope limiters also leads to errors at discontinuities. As can be

seen in Figure 1.12, the slope is limited the most where the gradient of the data becomes

especially steep. This will lead to the reduction of the gradient of the reconstructed data

around the discontinuity, so that over time the discontinuity will become smeared out

across multiple cells, as shown in Figure 1.14. The choice of limiter is important here:

for this example, we used the minmod limiter. If we had instead used a less diffusive

limiter such as MC or superbee, the gradients of the reconstructed slopes would have

been allowed to be greater, leading to smaller jumps in the reconstructed data at the

boundary and therefore less smearing of the discontinuity in the solution.

1.5.2.6 Conservative schemes

The differential equation

∂tq(t, x) + ∂xf (q(t, x)) = 0 (1.56)

is not valid for solutions containing discontinuities such as shocks, as it only holds if

q(t, x) and f (q(t, x)) are smooth functions. However, the original integral form of

the conservation law from which this differential equation was derived does still hold

when discontinuities are present. To recover this, we shall first integrate (1.56) in space
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between x1 and x2 and in time between t1 and t2 to give∫ t2

t1

dt

∫ x2

x1

dx [∂tq + ∂xf(q)] = 0. (1.57)

We can make this more general by introducing the test function φ(t, x) such that the

integral becomes ∫ ∞
0

dt

∫ ∞
−∞

dx [∂tq + ∂xf(q)]φ(t, x) = 0, (1.58)

which reduces to (1.57) if

φ(t, x) =

1 if x ∈ [x1, x2]× [t1, t2],

0 otherwise.
(1.59)

If we assume φ(t, x) to be some smooth function with compact support8, then we can

integrate by parts to get∫ ∞
0

dt

∫ ∞
−∞

dx [q∂tφ+ f(q)∂xφ] = −
∫ ∞
−∞

dx q(0, x)φ(0, x). (1.60)

This is known as the weak form of the equations. It no longer contains derivatives

of q(t, x) and f (q(t, x)), so will still hold if one or both of them are discontinuous.

The function q(t, x) with the initial data q(0, x) is considered a weak solution of the

differential equation (1.56) if its weak form (1.60) holds for all test functions φ(t, x) that

are continuously differentiable and have compact support.

Finite volume schemes are based on the integral form of the conservation law. As

described above, using this form of the equations ensures that the scheme is conservative.

If a conservative scheme is used, then the computed results are guaranteed to converge

to a weak solution of the system; this is not true of nonconservative schemes for systems

where discontinuities are present. This property of conservative schemes was first shown

by Lax and Wendroff (1960), and is known as the Lax-Wendroff theorem. It states

that if the solution computed with a consistent and conservative method converges to

a function of q(t, x) as the resolution is increased, then q(t, x) is a weak solution of the

conservation law.

This property is illustrated in Figure 1.15, where we show the location of a shock front

computed using conservative and nonconservative schemes. For a conservative scheme,

even if the computed solution is not particularly accurate due to e.g. clipping, the shock

will still be centred about the correct location. A nonconservative scheme will not

compute the correct shock speed, and so the computed location of the shock will not be

correct even as the resolution is increased.

8The function φ(t, x) has compact support if it vanishes outside of some bounded region of the t-x
plane.
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Figure 1.15: Conservative schemes are important when modelling systems with dis-
continuities, as from the Lax-Wendroff theorem they are guaranteed to converge to a
weak solution of the conservation law. This is not the case for nonconservative schemes.
In the plots, the black line shows the real, discontinuous solution, and the red crosses
show the computed solution. If a nonconservative scheme is used, the solution will not
converge to a weak solution if there are discontinuities such as shocks present. Such a
scheme will not calculate the correct shock speeds, such that the computed location of

a shock will be incorrect even as the resolution of the simulation is increased.

1.5.2.7 Well-balanced schemes

For many of the systems we will be investigating in this thesis, the system will remain

close to hydrostatic equilibrium (or the relativistic equivalent) throughout its evolution.

The modelling of flows in systems such as these is challenging for standard finite volume

schemes, as the discrete form of the equations used to evolve the system typically does

not satisfy the discrete form of the equation for hydrostatic equilibrium (Käppeli and

Mishra, 2016). Consequently, equilibrium states will not be preserved, and instead an

error will be produced proportional to the truncation error of the scheme. In order to

capture small perturbations of a steady state solution, the numerical resolution may have

to be significantly increased (thereby making the simulation much more computationally

expensive) such that the truncation errors are small enough not to obscure the features

of interest.

One way that we can ameliorate this issue is by using a well-balanced scheme. First

introduced by Greenberg and Leroux (1996), well-balanced schemes satisfy exactly the

discrete form of the equations for hydrostatic equilibrium. A well-balanced scheme for

the Euler equations with a gravitational source term can be implemented by modifying

the reconstruction of the pressure at the cell interfaces (Käppeli and Mishra, 2016).

Standard reconstruction of the pressure at cell interfaces is incompatible with the pres-

sure stratification produced by a gravitational field. As the pressure profile produced by

a gravitational field is typically not a polynomial, any reconstruction based on piecewise

polynomials will not be able to accurately represent hydrostatic equilibrium. This causes

pressure differences at the cell interfaces, which are interpreted by the Riemann solver as

propagating waves. These waves may then go on to destroy the equilibrium state of the
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ql−1 qr+1ql−2 qr+2ql ql+1 qr−1 qr. . .

ghost cells interior cells ghost cells

Figure 1.16: In order to calculate an update for the data at the edge of the domain,
we can extend the grid to include ghost cells. Here, we have extended the 1d domain
(with data at the left and right edges given by ql and qr) by adding two ghost cells

outside of each of the boundaries.

system. The well-balanced scheme instead reconstructs the pressure using the discrete

form of the equation for hydrostatic equilibrium, ensuring that this is always satisfied

and so hydrostatic equilibrium is maintained.

1.5.2.8 Boundary conditions

As has been described in previous sections, in order to update a cell’s data using finite

volume methods, we require the data in neighbouring cells. This becomes non-trivial

for cells at the edge of the domain, where the neighbouring cells would lie outside of

the simulation’s physical domain. The solution is to surround the physical grid by a

region of ghost cells, whose values are calculated from data within the physical domain

(the interior cells) by imposing boundary conditions. This is illustrated in Figure 1.16

for a 1d domain. The number of ghost cells required depends on the stencil of the

numerical methods used in a cell’s update, i.e. how many neighbouring cells are used in

the calculation of a cell’s data over a single timestep.

The boundary conditions can take a variety of forms – the choice of which to use depends

on the nature of the problem to be solved. Some examples of commonly used boundary

conditions in computational fluid dynamics are:

� Reflective – This is typically used for domains with a solid outer boundary, e.g. a

wall. Incoming waves are reflected by the boundary, such that the data in the ghost

cells is the mirror image of the data within the interior domain. The component

of the velocity normal to the boundary is reversed. To illustrate this, consider the

left boundary of the 1d domain illustrated in Figure 1.16. Let the state in the

interior cell just inside the boundary be ql (except the velocity, which we denote

vl), then the data in the ghost cell i ≥ 1 cells away from the boundary is given by

ql−i = ql+i−1, vl−i = −vl+i−1. (1.61)

� Outflow – Often used for domains with a free outer boundary, incoming waves

simply flow straight through the boundary and leave the domain without reflection.

The simplest form of outflow boundary conditions is zero order extrapolation: data
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in the ghost cells is copied from the outermost cell in the interior region. Again

considering the left edge of the 1d domain, the data in the ghost cells would be

ql−i = ql. (1.62)

Higher order extrapolation may be used, however this can lead to stability problems

(LeVeque, 2002).

� Inflow – Used to model a flow into the domain. This could be e.g. a flow of

material or a flow of heat from some source outside the domain. Inflow boundary

conditions are typically calculated by applying some function to the data at the

edge of the interior domain.

� Periodic – Used to model (effectively) infinite domains. The data in the ghost cells

on one edge of the domain is copied over from interior data on the opposite edge.

Defining the interior cell just within the right boundary to be qr, the ghost cells

outside the left boundary would be

ql−i = qr−i+1. (1.63)

More complex boundary conditions can be used, for example data can be reconstructed

using the reconstruction techniques described in Section 1.5.2.2. For certain systems,

it makes sense to impose physical boundary conditions, e.g. for fluid flowing through a

pipe, ‘non-slip’ boundary conditions can be used, where the velocity tangential to the

boundary is set to zero.

For most of the tests below, we shall be using outflow or periodic boundary conditions.

However, for systems with a gravitational field, the case becomes more complex for the

boundaries in the vertical direction. As discussed in the previous section, gravitational

fields typically produce a non-linear pressure profile. If standard outflow boundary con-

ditions or piecewise linear reconstruction are used, then the pressure at the bottom

boundary will be underestimated and the pressure at the top boundary will be overes-

timated. This can lead to the development of unphysical oscillations at the boundaries

and can cause the material in the simulation to gradually sink over time. This can be

prevented by explicitly enforcing hydrostatic equilibrium in the ghost cells.

1.5.3 Codes in this thesis

Over the course of this thesis, a number of different codes shall be presented and dis-

cussed in detail. These codes have been designed to work at different scales and in

different physical regimes, e.g. for low Mach number flows, for relativistic fluids, for

shallow water environments. These regimes are illustrated in Figure 1.17. It is worth

noting that the regimes illustrated are very approximate and are meant to demonstrate
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Figure 1.17: Regime diagram for the codes used in this thesis, demonstrating their
regions of validity. The axes are the characteristic speed v as a fraction of the speed
of light c, and the characteristic length scale `. Note that the lengths here are not to

scale, but are merely meant to roughly illustrate the various regions.

Indicated on the plot are some extra constraints for the models to be valid: the low
Mach number models require that the characteristic speed is much less than the speed
of sound cs; the multilayer shallow water models require that each layer thickness ∆zI
is much less than the characteristic horizontal length scale `xy; and the single layer
shallow water models require that the fluid height z is much less than the characteristic

horizontal length scale `xy.

In the case of CASTRO and pyro, two versions of the codes are shown: the original
Newtonian codes, and the extended relativistic codes (labelled CASTRO+ and pyro+).

where the codes work most effectively. For example, many of the relativistic codes will

work for Newtonian systems, however it would be inefficient to use them there.

The codes that shall be discussed are as follows:

� pyro (Zingale, 2014) – A Python-based code for computational astrophysical hy-

drodynamics. It is used in Section 2.3 for modelling the low Mach number equa-

tions, where it is extended to model relativistic fluids. In the diagram above, we

label this version as pyro+.

� The Einstein Toolkit (Löffler et al., 2012) – A computational infrastructure for

relativistic astrophysics. It is used in Section 2.3 to compare low Mach number

solutions against compressible solutions.
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� AMReX (Zhang et al., 2016; Zingale et al., 2017) – A software framework for mas-

sively parallel, block-structured adaptive mesh refinement (AMR) applications,

used by MAESTRO and CASTRO.

� MAESTRO (Almgren et al., 2007) – A low Mach number stellar hydrodynamics code.

An extension of the Newtonian low Mach number solver in pyro to model rela-

tivistic fluids incorporated much of the algorithm used in this code.

� R3D2 (Harpole and Hawke, 2016) – Reactive relativistic Riemann problem solver

for detonations and deflagrations. Its development and application is described in

Chapter 3.

� CASTRO (Almgren et al., 2010) – An adaptive mesh, astrophysical radiation hy-

drodynamics simulation code. The shallow water model in Chapter 4 and the

multiscale model developed in Chapter 5 were implemented by extending CASTRO,

labelled in the diagram above as CASTRO+.

1.6 Summary

As described in Section 1.3, X-ray bursts display a wide range of features, many of which

cannot be fully explained using current models. Part of the challenge in modelling them

is due to the extreme nature of the environment in which they occur: neutron star

oceans have very high pressure, density and temperature and experience very strong

gravitational and magnetic fields. They are therefore very different to any fluid we

encounter here on Earth, and so it is challenging to determine which physical processes

dominate.

Despite the fact that magnetic fields are likely to be important in the system we are

looking at (as described in Section 1.3.10), we have chosen not to include them in the

models presented here as this would make our calculations significantly more complex.

The magnetic field of neutron stars is still poorly understood (Belvedere et al., 2015;

Glampedakis and Lasky, 2016), so care would need to be taken in selecting a physically

reasonable model for the field. A simple approximation would be to take the approach

used by Cavecchi et al. (2016) in their study of X-ray bursts and model the initial mag-

netic field as purely vertical with some homogeneous value, though it would also be of

interest to consider more complex configurations. Another difficulty is that there is no

existing derivation of the low Mach number equations in Newtonian magnetohydrody-

namics (MHD), so there would be no independent work against which we could test the

Newtonian limit of our relativistic version. It is likely that the presence of Alvén waves

in MHD may introduce some extra complexity for low Mach number MHD if these waves

travel at velocities comparable to the slower flame propagation speed. In this case, care

would need to be taken to ensure that these waves are not filtered out along with the

sound waves.
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In this thesis, we shall be concentrating on the strong gravitational field to see if general

relativistic effects can have a significant effect on the propagation of the burning front.

To do this, we shall develop a series of models valid on a range of different scales, with

the aim to combine these models to produce a multiscale model capable of capturing

both the large scale and small scale physics in a computationally efficient way.

We shall begin in Chapter 2 by extending the low Mach number approximation, used to

model X-ray bursts in Newtonian physics by (Nonaka et al., 2010), to general relativis-

tic fluids. We shall then implement these new equations numerically and test against

existing Newtonian results to measure what effects our general relativistic model may

have. In Chapter 3, we shall investigate relativistic detonations and deflagrations, im-

plementing a solver for the reactive relativistic Riemann problem, R3D2. As described

in Section 1.3.9, the large scale motion of the burning front is believed to be strongly

affected by the Coriolis force. To capture this, in Chapter 4 we shall consider the shallow

water equations, developing a relativistic formulation of these and implementing them

numerically. Finally, in Chapter 5 we shall discuss mesh refinement methods and their

extension to incorporate multiple numerical schemes and physical models. We shall then

use this approach to combine the shallow water and compressible models to produce a

multiscale model.



2 Relativistic low Mach number equa-

tions

When evolving hyperbolic systems of differential equations numerically, the size of the

timestep, ∆t, is limited by the Courant-Friedrichs-Lewy (CFL) limit (Courant et al.,

1967): ∣∣∣∣v∆t

∆x

∣∣∣∣ ≤ Cmax, (2.1)

where ∆x is the spatial resolution, v is the characteristic velocity of the system and

Cmax is the Courant number. This is typically less than one, but it can be greater

than 100 for some implicit schemes. This limit is simply a result of causality: a scheme

cannot be evolved such that information travels between timesteps at a speed greater

than v. If this limit is violated, then spurious oscillations may develop in the solution,

leading to instabilities. A consequence of the CFL limit is that if the characteristic

velocity of a system is very high, it is very computationally expensive to get good

spatial resolution (small grid spacing ∆x) as this would require the timestep to be very

small to compensate.

In neutron star oceans, the characteristic velocity is the sound speed. This is much

higher than typical terrestrial sound speeds due to the high pressure and density, and

so good spatial resolution is not possible using conventional methods without signif-

icant computational effort. We can illustrate this difficulty by calculating the Mach

number Ma = v/cs, the ratio of the speed of propagation of the burning front v and

the sound speed cs. Simulations by Spitkovsky et al. (2002); Cavecchi (2013) found

propagation speeds of v ∼ 105 − 106 cm s−1. Taking the pressure on the surface to be

p ∼ 1022 erg cm−3 and the density to be ρ ∼ 105 g cm−3 (Strohmayer and Bildsten,

2003), this gives a sound speed of

cs ∼
√
p

ρ
∼
√

1022 erg cm−3

105 g cm−3 ∼ 108.5 cm s−1. (2.2)

Consequently, the Mach number of the burning fronts is

Ma =
v

cs
∼ 10−3 � 1. (2.3)

41
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Ma/Fr

Da/Ma

1

1

incompressible
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pseudo-
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Figure 2.1: Regime diagram for sound-proof models demonstrating their approximate
regions of validity. Along the horizontal axis, we plot the ratio of the Mach number to
the Froude number. Along the vertical axis, we plot the ratio of the Damköhler number

to the Mach number.
The Froude number Fr = u√

g`
is the ratio of the flow inertia and the gravitational field.

The Damköhler number is given by Da = ω`
u , where ω is the net production rate per

unit mass, u the characteristic velocity and ` the characteristic length scales, and is the
ratio of the characteristic flow time and the characteristic reaction time.

This motivates the use of sound-proof models, where we expand the hydrodynamic equa-

tions in order of the Mach number and take the limit as Ma → 0. By doing this, it is

possible to effectively filter out the sound waves, allowing us to treat the much slower

propagation speed of the burning front as the characteristic velocity of the system. This

allows the use of much larger time steps in simulations, and so significantly better reso-

lution and considerable computational speed up over conventional compressible schemes

can be achieved. Several methods for doing this shall be described in the next section.

2.1 Sound-proof models

Over the years, there have been a number of different approaches to deriving formu-

lations of the Newtonian hydrodynamics equations which filter out the sound waves

(Nonaka et al., 2014; Kupka and Muthsam, 2017). A diagram illustrating the relation-

ships between these models can be seen in Figure 2.1.
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Incompressible

The simplest low Mach number approximation is incompressible hydrodynamics: the

limit of the hydrodynamics equations as Ma→ 0. This was first derived by Boussinesq

(1903) and subsequently used by Rayleigh (1916) to study the onset of convective insta-

bility. It is valid provided that the vertical dimension of the fluid is much less than the

scale height and that the relative horizontal variations of physical quantities are � 1

(Spiegel and Veronis, 1960). A result of this is that velocities in the problem must be

small compared to the sound speed. In this limit, the velocity satisfies the constraint

∇ · u = 0, (2.4)

such that the flow is instantaneously equilibrated and all sound waves are filtered out.

This constraint also leads to the density being constant along particle paths, such that

the system is incompressible:
Dp

Dt
= 0. (2.5)

Anelastic

In the anelastic approximation, as first derived by Batchelor (1953); Charney and Ogura

(1960); Ogura and Phillips (1962); Gough (1969), the density is allowed to vary as small

perturbations to a static hydrostatic background density ρ0 which satisfies the constraint

∇ · (ρ0u) = 0. (2.6)

As in the incompressible case, relative variations of physical quantities and the Mach

number must be small. It is also required that the flow does not exhibit features that

occur on timescales shorter than the crossing time of the domain. The anelastic approx-

imation is not a good model for rapidly rotating systems, where the large Coriolis force

can cause the time derivative of the density perturbation ∂tρ
′ to become large (Calkins

et al., 2015).

Low Mach number

The low Mach number approximation can be found by taking a low Mach number

expansion of the fluid equations. It was first introduced by Rehm et al. (1978) and

later rigorously derived from low Mach number asymptotic analysis by Klainerman and

Majda (1982); Andrew and Sethian (1985). It was subsequently extended to stellar

environments by Day and Bell (2000). In the approximation, the pressure is decomposed

into a thermodynamic base state pressure, p0, and a dynamic perturbational pressure,
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π:

p(t, x) = p0 + π(t, x), (2.7)

where π/p0 = O(Ma2). This decouples the pressure and density and filters out sound

waves. It is required that the total pressure remains close to the background pressure,

which is assumed to be constant. Unlike in the previous models, large variations in the

density and temperature are permitted. The velocity constraint resembles that of the

incompressible approximation (2.4), but now includes a source term which represents

local compressibility due to energy generation and thermal diffusion:

∇ · u = S. (2.8)

Unfortunately, as was pointed out by Guillard et al. (1999); Guillard and Murrone

(2004), whilst this approximation holds for the continuous equations, for the discrete

equations the pressure fluctuations scale with the Mach number rather than its square.

Consequently, as the Mach number decreases results become worse and solutions of the

low Mach number equations do not converge to the incompressible solution. This can be

rectified by using a suitable preconditioning matrix, as shown by Guillard et al. (1999),

or by using predictor corrector methods, as used by Day and Bell (2000).

Pseudo-incompressible

In the low Mach number approximation, the background pressure is assumed constant.

This assumption will break down when modelling fluids in large enough domains that

there is significant stratification. This can be remedied by using pseudo-incompressible

(PI) methods, where the background pressure is allowed to vary (Durran, 1989). It is

required that the Mach number and the normalised horizontal pressure perturbations

are small, however no such restriction is made of the normalised horizontal temperature

and density perturbations. The PI approximation gives the velocity constraint

∇ ·
(
p

1/γ
0 u

)
= H, (2.9)

where γ is the adiabatic index and H is a source term representing heating effects.

2.1.1 Newtonian low Mach number equations

The pseudo-incompressible equations can be developed further to allow to for a non-

trivial equation of state (which was assumed in Durran (1989)’s original derivation).

These are (somewhat confusingly) also known as the low Mach number equations, though

they are not the same as those described in the previous section. Following the ap-

proach used in the papers that describe the Newtonian low Mach number MAESTRO code
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(Almgren et al., 2006b,a; Nonaka et al., 2010; Jacobs et al., 2016), the following set of

equations can be derived:

∂ρ

∂t
= −∇ · (ρu) , (2.10)

∂u

∂t
= −u ·∇u− β0

ρ
∇
(
π

β0

)
− (ρ− ρ0)

ρ
ger, (2.11)

∂(ρh)

∂t
= −∇ · (ρhu) +

Dp0

Dt
+ ρHnuc + ρHext, (2.12)

where h is the specific enthalpy and the source terms Hnuc and Hext describe the external

heating rate and the nuclear energy generation rate per unit mass. The pressure has

been decomposed into a hydrostatic base state pressure p0 = p0(t, r) and a dynamic

pressure perturbation π = π(t, xi), such that |π|/p0 = O(Ma2). The base state density

ρ0 = ρ0(t, r) is defined by the equation for hydrostatic equilibrium of the base state

pressure p0, ∇p0 = −ρ0ger, where er is the unit vector in the outwards radial direction.

The buoyancy term in the momentum equation, β0ρ ∇
(
π
β0

)
, is derived from a constraint

that explicitly conserves energy, as proposed by Klein and Pauluis (2012) and by Vasil

et al. (2013) in their ‘generalised pseudo-incompressible’ (GPI) model. The equation of

state is cast into an elliptic constraint on the velocity field,

∇ · (β0u) = β0

(
S − 1

Γ̄1p0

∂p0

∂t

)
, (2.13)

where β0 is a density-like variable that captures the expansion of a fluid parcel as it rises

due to the background stratification, defined as

β0(t, r) = ρ0(t, 0) exp

(∫ r

0
dr′

1

Γ̄1p0

∂p0

∂r′

)
. (2.14)

Γ̄1 is the lateral average of Γ1 = d log p/d log ρ|s, and the expansion term, S, incorporates

local compressibility effects due to heat release from reactions and external sources,

S = σHnuc + σHext, (2.15)

where σ ≡ pT /(ρcppρ), pT ≡ ∂p/∂T |ρ, pρ ≡ ∂p/∂ρ|T and cp ≡ ∂h/∂T |p.

The equations themselves do not enforce that the Mach number remains small. If the

Mach number does become O(1) over the course of a numerical simulation, the solution

to the equations will no longer be physically meaningful (Nonaka et al., 2010).

In the MAESTRO papers, further equations are derived for the base state and pertur-

bational variables by splitting them in a similar way to the pressure (Almgren et al.,

2006a), e.g. for the velocity

u = w0(t, r)er + ũ(t, xi), (2.16)
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where the average of the radial component of the velocity perturbation (ũ · er) = 0

and the base state velocity is defined to be the average of the radial component of the

velocity, w0 = (u · er).

In the rest of this thesis, we shall refer to (2.10)–(2.12) with the constraint (2.13) as the

(Newtonian) low Mach number equations.

2.1.2 Alternative sound-proof methods

In this section, we have described how sound-proof models can be implemented by

changing the equations of hydrodynamics to filter out sound waves. This is the technique

we are going to use in the rest of this work. However, as described in the review of

Kupka and Muthsam (2017), it is also possible to take an alternative approach when

modelling low Mach number systems. Rather than developing new approximations of

the hydrodynamics equations, these alternative methods solve the original equations,

which means they have the advantage that solvers can be built using the vast quantity

of existing numerical methods developed for the Euler and Navier-Stokes equations.

One such method is to change the model parameters so that the system is no longer in

the low Mach number regime, while preserving the quantities of interest. This has been

used by Wang et al. (2015) in their compressible CHORUS code to model thermal con-

vection in stellar and planetary interiors, where they scale up the luminosity to achieve

higher Mach numbers whilst leaving the Rossby number unchanged. Doing this made it

computationally feasible to model low Mach number flows of Ma ∼ 10−2, however the

simulation was still much more computationally expensive than an equivalent run using

the anelastic ASH code.

Another approach is to instead adapt the numerical methods used to solve the hy-

drodynamics equations so that the timestep is no longer restricted by the strict CFL

condition for low Mach number flows. Such methods include preconditioning (Miczek

et al., 2014) and implicit methods (Viallet et al., 2011). These methods can be very

powerful, however are typically more difficult to implement than standard schemes.

2.2 Relativistic low Mach number equations

Our aim is to construct the relativistic equivalent of the low Mach number equations

described in the previous section, and put them in a form which allows for a numeri-

cal evolution scheme to be deduced. We have chosen the low Mach number approach

as it is well suited to the system we wish to study and has previously been used in

the Newtonian case to study type I X-ray bursts. Alternative relativistic sound-proof

models exist, however these neglect physics which we believe to be important for the
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system. For example, the traditional approximation of Maniopoulou and Andersson

(2004) neglects the horizontal component of the Coriolis vector, so would not be able

to account for the effects of the Coriolis force on the propagation of the burning front.

The relativistic anelastic approximation of Bonazzola et al. (2007), like the Newtonian

anelastic approximation, does not evolve the density perturbation.

Initially, the derivation was attempted using the Valencia formulation (see Section 2.2.1

below), however the form of the low Mach number equations derived was quite different

from the Newtonian equations found in the MAESTRO papers. The equations were also

derived using the 3+1 form of Alcubierre (2008) (see Section 2.2.2): this produced

equations which were clearly of a similar form to the Newtonian ones, but which are

not suitable for numerical implementation (at least if we are to base our scheme on the

existing Newtonian one). Using the Wilson formulation in Section 2.2.3, the equations

derived are much more similar to the Newtonian low Mach equations, making them both

easier to compare and easier to implement numerically, as a scheme could be built on

the existing Newtonian code.

2.2.1 Conservative derivation

The Valencia formalism of Mart́ı et al. (1991); Banyuls et al. (1997) expresses the rel-

ativistic fluid equations in a balance law form. As given in Font (2008), the conserved

quantities of the general relativistic hydrodynamic system can be written in terms of

the primitive variables w = (ρ, vi, ε), the proper rest-mass density, fluid 3-velocity and

specific energy density of the fluid in its rest frame, as

D = ρW, Sj = ρhW 2vj , E = ρhW 2 − p, (2.17)

which can be interpreted physically as the rest-mass density, momentum density in the

j-th direction and the total energy density respectively. The enthalpy is given by

h = 1 + ε+
p

ρ
. (2.18)

We can write the relativistic hydrodynamic equations in 3+1 conservative Eulerian form

as
1√−g

(
∂
√
γq(w)

∂x0
+
∂
√−gf i(w)

∂xi

)
= S(w), (2.19)

with the metric determinant g ≡ det(gµν) and
√−g = α

√
γ, where γ = det(γij) is the

determinant of the spatial 3-metric. We define conserved state vector to be

q(w) = (D,Sj , τ), (2.20)
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where τ ≡ E −D. Finally, the flux vector is defined as

f i(w) =

(
D

[
vi − βi

α

]
, Sj

[
vi − βi

α

]
+ pδij , τ

[
vi − βi

α

]
+ pvi

)
, (2.21)

and the sources are given by

S(w) =

(
0, Tµν

[
∂gνj
∂xµ

− Γδνµgδj

]
, α

[
Tµ0∂ lnα

∂xµ
− TµνΓ0

νµ

])
, (2.22)

where for an ideal fluid in thermodynamic equilibrium, the energy-momentum tensor

takes the form

Tµν = ρhuµuν + pgµν = (ρ+ ρε+ p)uµuν + pgµν . (2.23)

2.2.1.1 Low Mach number limit

The derivation of the low Mach number limit of this form of the equations is very similar

to the derivation used for the Wilson formulation given in Appendix B. The equations

obtained are as follows:

the continuity equation

∂0(
√
γρW ) + ∂i

(√−gρui) = 0; (2.24)

the constrained momentum equation

√
γW∂0 (h0uj) =−√−gui∂i (h0uj) +

1

ρ

√−g∂j(p0 + π)

+
√−gh0u

µuνΓνjµ −
1

ρ

√
γWζ∂0

(
π

ζ

)
− 1

ρ

√−gζ∂j
(
π

ζ

)
, (2.25)

where ζ is the relativistic counterpart of the β0 variable found in the Newtonian low

Mach number equations to ensure energy conservation, which we have relabelled in

order to avoid confusion with the shift vector.

The energy equation is

√
γρW∂0(h0W ) ≈ −√−gρui∂i(h0W ) + ∂0(

√
γp0)− ∂i

[√−gp0
βi

α

]
+
√−g

(
ρh0u

µW + p0αg
µ0
)
∂µ lnα−√−gα (ρh0u

µuν + p0g
µν) Γ0

νµ; (2.26)

and the velocity constraint

∂i
(√−gζ0u

i
)

= ζ0

(
S̃ −

√
γW

ρpρ

[
1 +

pThp
hT

]
∂0p0

)
. (2.27)
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These equations are significantly more complicated than those that shall be found in

Section 2.2.3 using the Wilson formulation and are not directly comparable to the New-

tonian low Mach number equations. Consequently, a lot more work would have to be

done to implement these numerically and to test that they produce the correct results

in the Newtonian limit.

2.2.2 Covariant 3+1 form

The Newtonian equations of Nonaka et al. (2010) are presented in a covariant form: by

using the covariant (non-conservative) 3+1 form of the relativistic fluid equations, it is

therefore hoped that this will produce equations which will have a sensible Newtonian

limit that is directly comparable to the Newtonian equations. Alcubierre (2008) gives

the equations of relativistic hydrodynamics in explicitly 3 + 1 form as(
∂t − βk∂k

)
D + (3)∇k

(
αDvk

)
= αKD, (2.28)

(∂t − Lβ)Si + (3)∇k
[
α
(
Siv

k + δki p
)]

= − (E +D) (3)∇iα+ αKSi, (2.29)(
∂t − βk∂k

)
E + (3)∇k

[
αvk (E + p)

]
= (E + p+D) (αvmvnKmn − vm∂mα) + αK (E + p) .

(2.30)

Here α, βi are the lapse and shift gauge variables, (3)∇k is the covariant derivative

associated with the spatial 3-metric γij , Lβ is the Lie derivative with respect to the shift

vector, and Kmn is the extrinsic curvature with K its trace. The conserved variables

are

D = ρ0W,

Si = HW 2vi,

E = HW 2 − p−D, (2.31)

where H = % + p = ρ0 (1 + ε) + p, p is the pressure, ρ0 the specific rest mass density, ε

the specific internal energy, % the energy density, H the enthalpy and W is the Lorentz

factor of the flow.

2.2.2.1 Low Mach number limit

To obtain the low Mach number limit of these equations, we make two fundamental as-

sumptions. Firstly, that there is a reference state in which the metric and ‘background’

fluid quantities are time independent. We will use overbars, e.g. p̄, to denote this. Sec-

ondly, we will assume that the full fluid quantities are perturbations from this reference

state, so p = p̄ + π, and that the perturbation in the pressure is second order in the

perturbation in the velocity: π/p̄ = O(V 2).
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Details of the derivation can be found in Appendix A. We find that the momentum

equation becomes

(∂t − Lβ)Vi + αV k(3)∇kVi +
(3)∇iπ
H

= −%− %̄
H

(3)∇iα. (2.32)

Taking the Newtonian limit sends the enthalpy H to the energy density %, and the

equation has the expected Low Mach form.

With the assumptions we have made, the energy equation reduces to(
∂t − βk∂k

) (
HW 2

)
+ (3)∇k

[
αvkHW 2

]
= −βk∂kp̄+H (−vm∂mα+ αK) . (2.33)

This equation is less straightforward to compare in the Newtonian limit, but after some

manipulation we can obtain a suitable form for comparison which reduces to the correct

Newtonian limit.

2.2.3 Wilson formulation

In this derivation, we start with the relativistic fluid equations in the form given in

Section 1.4.3. The equations are then put into the Wilson formulation (Wilson, 1972;

Font, 2008), where we define D = ρu0 and Uµ = uµ/u0 to get

∇µ (DUµ) = 0, (2.34)

DhUν∂ν
(
u0Uµ

)
+ ∂µp+ UµU

ν
(
u0
)2
∂νp = Dhu0ΓρνµU

νUρ, (2.35)

∇µ (DhUµ) = u0Uµ∇µp. (2.36)

The Wilson formulation does not typically perform as well as other formulations (e.g. the

Valencia formulation) for flows with high Lorentz factor. However, we are investigating

low Mach number systems, this shall not be an issue for us. The relativistic effects that

we are interested here are those due to the strong graviational field rather than due to

velocities approaching the speed of light.

The full derivation of the relativistic low Mach number equations using this formulation

is given in detail in Appendix B; we shall just summarise them here. In our derivation,

we have assumed that the spacetime is stationary, that the background state satisfies

the TOV equations and have neglected terms that are quadratic in velocity (and are

therefore O(Ma2)). We obtain the following set of equations:

the continuity equation

∂tD = −∂i(DU i)−DΓµµνU
ν ; (2.37)
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the constrained momentum equation

∂tUj = −U i∂iUj − Uj
D lnu0

Dt
− 1

Dhu0

(
∂jp0 + ζ∂j

[
π

ζ

])
+ ΓρνjU

νUρ; (2.38)

where we have defined the convective derivative Dq
Dt = ∂tq + U i∂iq.

The energy equation is

∂t(Dh) = −∂i(U iDh) + u0 Dp0

Dt
−DhΓµµνU

ν ; (2.39)

and the velocity constraint

∂i
(
ζU i

)
= ζ

(
S − 1

Γ̄1p0

∂p0

∂t

)
, (2.40)

where

ζ(t, r) = ζ(0, t) exp

[∫ r

0
dr′

1

Γ̄1p0

∂p0

∂r′

]
, (2.41)

and S = −ΓµµνUν are gravitational source terms.

Comparing these to the Newtonian equations (2.10) – (2.13), it can be seen that they are

mostly very similar, but with the addition of the relativistic gravitational source terms.

The ζ(t, r) term used here in the velocity constraint and momentum equation is the

relativistic counterpart of the β0 term in the Newtonian equations – we have renamed

it in order to prevent potential confusion with the shift vector.

2.3 Numerical implementation of the relativistic low Mach

number equations

In this section, we shall describe the numerical implementation of the relativistic low

Mach number equations given above in Section 2.2.3, which were implemented by extend-

ing the Newtonian pyro code (Zingale, 2014). This code is a simplified, Python-based

version of the full MAESTRO code (Nonaka et al., 2010); using this simplified code allowed

us to focus on the implementation of the equations without worrying about the com-

plexities of the numerical methods. In a weak planar gravitational field, the relativistic

code produces qualitatively the same results as the original Newtonian code, indicating

that the equations are behaving correctly in the Newtonian limit.

2.3.1 Numerical methodology

Rather than starting from scratch in our implementation of a solver for the relativistic

low Mach number equations, the existing low Mach number pyro code was used as a base
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so that we could take advantage of its multigrid solvers, high resolution shock capturing

methods and overall framework. This was then built upon to implement a solver for our

relativistic equations, using a numerical method adapted from that of the full MAESTRO

code (Nonaka et al., 2010).

As in MAESTRO, a predictor corrector formalism is used to evolve the system. In the

predictor step, an estimate of the expansion of the base state is calculated, followed by

an estimate of the state at the new time. In the corrector step, this is used to compute

a new base state update as well as the full state update. The reaction and gravitational

source terms in the continuity and energy equations are included using Strang-splitting

(Strang, 1968) in order to achieve second-order accuracy in time.

The main differences between our method and that of Nonaka et al. (2010) are:

� the use of gravitational source terms in addition to reactions when evolving D and

Dh,

� the inclusion of gravitational source terms when evolving U i,

� the addition of routines to deal with the metric and calculations of related quan-

tities (e.g. Lorentz factor, Christoffel symbols).

Changes to specific steps of the numerical procedure are discussed in more depth in

Appendix C.

2.3.1.1 Primitive variable recovery

In relativistic hydrodynamics, the transformation from the primitive variables (ρ, vi, p)

to the conserved variables is a simple algebraic relation with a closed-form solution.

However, the inverse transformation requires solving a set of nonlinear equations with

explicit dependence on the equation of state p = p(ρ, ε) (Mart́ı and Müller, 2015). In

the Valencia formulation, the pressure of the physical state can be obtained by finding

the root of the function

f(p̄) = p(ρ∗(p̄), ε∗(p̄))− p̄, (2.42)

where we define

ρ∗(p̄) =
D

W∗(p̄)
, (2.43)

ε∗(p̄) =
τ +D(1−W∗(p̄)) + p̄

(
1−W∗(p̄)2

)
DW∗(p̄)

, (2.44)

W∗(p̄) =
1√

1− vi∗(p̄)v∗i(p̄)
, (2.45)

vi∗(p̄) =
Si

τ +D + p̄
, (2.46)
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and D, Si and τ are the conserved variables, as given in Section 2.2.1. The root of (2.42)

is found using a nonlinear root-finder, e.g. Newton-Raphson or Brent’s method (Brent,

1973). The equation of state implemented in our code is

p = (γ − 1)ρε. (2.47)

For the Wilson formulation (with fixed lapse function α and zero shift vector βi) used

in our implementation of the relativistic low Mach number equations, we can use an

analagous technique to reclaim the primitive variables. From the momentum equation

(2.38), we have U i = ui/u0, which we can use to calculate the Lorentz factor W∗ using

(2.45). Using the fact that α is fixed and W = αu0, this will give us u0
∗ = W∗/α. This

can then be used to find the density ρ∗ = D/u0
∗. We can next find ε∗ from

ε∗(p̄) =
Dh− p̄− ρ∗(p̄)

D
, (2.48)

then use the equation of state to give us p(ρ∗, ε∗). Finally, we can use this to find the

root of (2.42).

2.3.2 Numerical results

We tested our equations by modelling several standard 2d systems and comparing the

results to models produced using the general relativistic compressible solver GRHydro

(Baiotti et al., 2005) from the Einstein Toolkit (Schnetter et al., 2004; Einstein Toolkit,

2010; Löffler et al., 2012). In order to test our methodology and compare it to existing

work, we worked in the Newtonian regime. To our knowledge, there exist no previous

derivations of the relativistic low Mach number equations, so there are no previous

relativistic low Mach number results for us to compare against. By working in the weak

gravity, Newtonian regime, we can compare against the results produced by pyro and

MAESTRO to ensure that our implementation is consistent in the Newtonian limit.

To work in this limit, we used a 2 + 1 metric that describes a Newtonian perturbation

from Minkowski space (Reall, 2011),

ds2 = −c2

(
1− 2GM

rc2

)
dt2 +

(
1 +

2GM

rc2

)(
dx2 + dr2

)
, (2.49)

where G is the gravitational constant and M the mass of the star. Tests were performed

with and without reactions.

The elliptic velocity constraint is solved in pyro and MAESTRO using multigrid methods.

In pyro, the multigrid solver is cell-centred, whereas in MAESTRO the solver is nodal.

Due to the stencil used by the cell-centred solver, at late times in the evolution some

odd-even decoupling becomes noticeable in the solution. Nodal solvers do not suffer

from such issues, however they are more difficult to implement numerically. We do not
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believe that the odd-even decoupling is significant enough to affect our conclusions, so

at this stage where we are testing the validity of our methodology, we believe the simpler

cell-centred solver is sufficient.

The modelling in GRHydro was in 3+1 dimensions: we made the simulations effectively

2+1 by using very low resolution, uniform initial conditions and periodic boundary

conditions in the redundant third spatial dimension such that they could be compared

to the 2+1 pyro simulations.

2.3.2.1 Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability (Helmholtz, 1868; Kelvin, 1910; Chandrasekhar, 1961a)

is produced by the unstable growth of perturbations at the interface of two fluid flows

and is driven by shearing motions. It was simulated by placing a layer of dense fluid

on top of a less dense one, with a weak planar gravitational field acting in the vertical

direction. The two layers of fluid are given a small initial horizontal velocity so that they

move slowly in opposite directions, resulting in shearing at their interface. Typically,

numerical tests are performed using a sharp transition at the shear interface, however

in order for the solution to converge with increasing resolution, this interface should be

smoothed so that spatial derivatives are finite (Robertson et al., 2010).

Using the initial conditions of McNally et al. (2012); Miczek et al. (2014), the initial

horizontal velocity was given by

Ux =

U1 − Um exp
(
y−ycenter

Lx

)
if y ≤ ycenter

U2 + Um exp
(
−y+ycenter

Lx

)
if y > ycenter

, (2.50)

where Lx is the horizontal extent of the numerical domain, U1, U2 are the velocities of

the sections of fluid at infinity in the vertical direction and Um = 1
2(U2−U1). The initial

conditions for the density are identical to those for the horizontal velocity, but with D

exchanged for U .

Outflow boundary conditions were used for the vertical boundaries and periodic for the

horizontal. The instability was seeded by making a small sinusoidal perturbation to the

vertical velocity,

Uy = A sin

(
4πx

Lx

)
, (2.51)

where A is some small constant (A = 0.5U1 was used here).

The simulation after the Kelvin-Helmholtz instability has evolved 250 timesteps can

be seen in Figure 2.2a for a run with resolution 512 × 512. The plot shows a passive

advective scalar X that was initialised with the value X = 1 in the lower half of the

domain and X = 0 in the upper half of the domain. Over the course of the simulation,
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(a) 250 timesteps (b) 600 timesteps

Figure 2.2: Kelvin-Helmholtz instability simulation after 250 and 600 timesteps with
resolution 512× 512. The plot shows the passive advective scalar.

Figure 2.3: Kelvin-Helmholtz instability simulation produced using GRHydro after
90,000 timesteps. The plot shows the passive advective scalar.

shearing at the interface has produced the characteristic Kelvin-Helmholtz vortices. In

Figure 2.2b, we show the same simulation evolved to 600 timesteps. The spirals are now

more developed. It can be seen that even at this later stage the innermost spirals are

very well resolved, however the boundary of the outermost spirals is a little smeared due

to numerical dissipation.

The results produced by pyro can be compared to those produced by GRHydro in Fig-

ure 2.3. This figure is at a comparable stage in the evolution of the Kelvin-Helmholtz

instability as Figure 2.2a, though as GRHydro is a fully compressible code it has taken

many more timesteps to reach this point (90,000, so 360 times more than for the first

pyro figure). As a result of the large number of timesteps required, the numerical errors

at this point are much greater, leading to a larger amount of numerical dissipation. Con-

sequently, the inner spiral has become significantly smeared. Clearly, this demonstrates

how compressible codes such as GRHydro are ill-suited to modelling low Mach number

flows.
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2.3.2.2 Rayleigh-Taylor instability

Like the Kelvin-Helmholtz instability, the Rayleigh-Taylor instability (Rayleigh, 1900;

Taylor, 1950; Chandrasekhar, 1961b) is produced by the unstable growth of perturba-

tions at the interface of two fluids, however in this case the instability is produced by the

acceleration of the fluids towards each other (e.g. due to a gravitational field). This was

modelled by placing a layer of dense fluid on top of a less dense one, with a weak planar

gravitational field acting in the vertical direction. Unlike in the Kelvin-Helmholtz ex-

ample above, the fluid is initially stationary. The instability was then seeded by making

a small sinusoidal perturbation of the vertical velocity:

Uy = A cos

(
2πx

Lx

)
exp

(
−(y − ycenter)

2

σ2

)
, (2.52)

where Lx is the horizontal extent of the numerical domain, ycenter is the vertical coordi-

nate at the centre of the domain and A, σ are some small constants (0.1 was used here).

The boundary between the fluids of different densities was smoothed to eradicate very

high density gradients in the initial data, which can be difficult to deal with numerically,

giving the initial density profile

D = D1 +
1

2
(D2 −D1)

(
1 + tanh

[
y − ycenter

0.5ysmooth

])
, (2.53)

where D1 < D2. Outflow boundary conditions were used for the top and bottom bound-

aries and periodic for the horizontal boundaries.

The resulting instability after the simulation has evolved 1000 timesteps with resolution

512× 512 can be seen in Figure 2.4. The plot of the passive advective scalar shows that

the code has performed well in this case, producing the characteristic Rayleigh-Taylor

spirals with very little smearing at the interface.

2.3.2.3 Gresho vortex

The Gresho vortex (Gresho and Chan, 1990; Liska and Wendroff, 2003) is a time inde-

pendent solution of the hydrodynamics equations, with centrifugal forces balanced by

pressure gradients. The initial angular velocity is given by

uφ(r) =


u0

r
R 0 ≤ r < R,

u0

(
2− r

R

)
R ≤ r < 2R,

0 r ≥ 2R,

(2.54)

where r is the radial distance from the centre of the vortex, and u0 and R are parameters

which determine that the maximum value of the angular velocity uφ,max = u0 occurs at
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Figure 2.4: Rayleigh-Taylor simulation after 1000 timesteps with resolution 512×512.
The plot shows the passive advective scalar.

r = R. The pressure gradient required to balance the vortex’s centripetal force is

p(r) =


p0 +

u20
2

(
r
R

)2
0 ≤ r < R,

p0 + u2
0

[
1
2

(
r
R

)2
+ 4

(
1− r

R + ln r
R

)]
R ≤ r < 2R,

p0 + u2
0 (4 ln 2− 2) r ≥ 2R,

(2.55)

where p0 is a parameter that determines the maximum Mach number of the flow at

r = R (Miczek et al., 2014). For this test, we set R = 0.2, u0 = 0.1 and p0 = 100.

The Gresho vortex test is one that traditional compressible codes tend to perform poorly

with compared to low Mach number codes. To evolve the simulation to the same point

in time, compressible codes will have to carry out a much greater number of timesteps.

With each timestep, a small amount of additional error will be produced. This error

will build up, so that by the end of the simulation the larger number of timesteps will

have resulted in a significantly less accurate solution.

The results for the low Mach number pyro simulation can be seen in Figure 2.5 for a test

with a resolution of 512× 512 after 660 timesteps. The initial data has been conserved

fairly well, with the largest errors occurring where the speed in the vortex is greatest

and at the edge of the vortex where it meets the static fluid. Elsewhere, the change in

speed is negligible. In Figure 2.6, we show the relative change in the total kinetic energy

over the course of the simulation. The total kinetic energy steadily decreases linearly

with time for the majority of the simulation, the energy loss appearing to slightly slow

down at the very end. At this point, it has only lost 0.25% of its initial energy.
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Figure 2.5: Gresho vortex after 660 timesteps. The plot shows the magnitude of the
primitive velocity and the relative change in the velocity compared to the initial data.
It can be seen that the initial data has been conserved to a high degree of accuracy,
with the largest errors occurring where the speed is greatest and at the edge of the

vortex.

Figure 2.6: Change in the total kinetic energy for the Gresho vortex test over 660
timesteps. The kinetic energy decreases uniformly over the majority of the simulation.

By the end, it has lost only 0.25% of its initial kinetic energy.

2.3.2.4 Reacting bubble rise

To test reactions in the code, we use the reacting bubble rise test found in the MAESTRO

papers (Almgren et al., 2006b,a, 2008). In this test, a circular region of hot, underdense

material was placed in a fluid which has been vertically stratified by a weak planar

gravitational field (see Figure 2.7). A resolution of 512 × 512 was used. As can been

seen in Figure 2.8, the bubble is convectively unstable, so rises. The bubble is deformed,

its outer edges curling round underneath. In this example, as material in the bubble

reaches the ignition temperature, it begins to burn, increasing the baryon fraction of

burnt material. We use baryon fraction rather than mass fraction here as in nuclear

fusion baryon number is conserved, whereas mass is not due to energy release (Townsley

et al., 2016). In the plots, the top of the bubble appears to have some ridges; these
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Figure 2.7: Reactive bubble simulation at initial time t = 0. The plots show the
conserved density variable, D = ρu0, the baryon fraction of burnt material, X, a

passive advective scalar, ψ, and the logarithm of the temperature, lnT .

are believed to be numerical artefacts (e.g. because the initial data was discontinuous,

the movement of the bubble produces Kelvin-Helmholtz instabilities at the interface

(Robertson et al., 2010)), as they reduce in size as the resolution is increased. This was

observed by repeating the test at a range of resolutions between 64 × 64 and 1024 ×
1024. Some horizontal bands outside of the bubble can also be seen in the density and

temperature plots. These are likewise thought to be purely numerical, resulting from

certain horizontal averaging steps in the algorithm.

Comparing our results to the Newtonian simulations in the MAESTRO papers (Almgren

et al., 2006b,a, 2008), we can see that they are qualitatively similar, with the same

curling up of the bubble at the edges. However their simulations, which were performed

at much higher resolution than ours, produced evolved bubbles with smooth tops, again

suggesting that these are most likely numerical artefacts in our code.
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Figure 2.8: Reactive bubble simulation after it has been evolved through 500
timesteps. The plots show the conserved density variable, D = ρu0, the baryon fraction
of burnt material, X, a passive advective scalar, ψ, and the logarithm of the tempera-

ture, lnT .

2.4 Summary

In this chapter, we have described the development of a relativistic low Mach number

formalism for modelling type I X-ray bursts and demonstrated its numerical implemen-

tation. We first discussed the advantages of sound-proof models when looking at systems

where the characteristic velocity of the system is much smaller than the sound speed

and various ways they can be implemented. We then summarised the derivation of the

low Mach number equations in the Newtonian case, before presenting the derivation of

the relativistic low Mach number equations. This was attempted using several different

formulations of the general relativistic fluid equations; we concluded that the Wilson

formulation was the most suitable as it produced a set of equations that most closely

resembled the equations implemented in existing Newtonian codes such as MAESTRO

(Nonaka et al., 2010) and pyro (Zingale, 2014). This therefore makes them easiest to

compare and to implement numerically.
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The rest of this chapter described how these equations were implemented numerically.

Modelling of several test cases has shown that our code produces qualitatively the results

that we would expect, indicating that the code and formalism are working correctly. As

expected, our code has enabled us to gain a considerable speed up in simulating these

systems when compared against conventional compressible solvers.

The numerical implementation presented here extended the Python-based pyro code.

This code was chosen over the more accurate MAESTRO code for its relative simplicity,

allowing us to focus on the implementation of the equations and additional requirements

of a relativistic code. This choice was sufficient for the purposes of demonstrating the

properties of the relativistic low Mach number equations, however this solver will not be

suitable for conducting simulations of the scale we require to model X-ray bursts. In the

future, we therefore intend to implement these equations in MAESTRO as well, enabling

us to do much larger, more accurate simulations.





3 R3D2: the relativistic reactive Riemann

problem

As described in Section 1.3, during an X-ray burst the burning front propagates as

a deflagration through the ocean. On the scale of the entire star, the front can be

treated as a discontinuity, with the burning reactions happening on very short timescales

compared to the propagation of the front. In this case, we can approximate the system

as a reactive Riemann problem. In this section, we shall describe work done to create an

exact relativistic reactive Riemann solver (R3D2: Relativistic Reactive Riemann problem

solver for Deflagrations and Detonations, DOI: 10.5281/zenodo.51096), building on work

that has previously been done for the inert relativistic and the reactive Newtonian cases.

We shall compare this to results gained from a compressible relativistic hydrodynamics

code with a source term modelling the reactions, which itself was created by extending

the fully compressible solver in pyro (Zingale, 2014). Some of this work is also described

in Harpole and Hawke (2016).

3.1 The Riemann problem

As described in Section 1.5.1, the Riemann problem is defined as a system of hyperbolic

conservation laws whose initial data q(0, x) consists of two states, qL, qR, separated by

a single jump discontinuity (LeVeque, 2002),

q(0, x) =

qL(0, x) if x < 0,

qR(0, x) if x > 0.
(3.1)

The solution of the Riemann problem involves computing the breakup of the initial

discontinuity. This consists of a set of waves separating a set of constant states. These

waves can be simple waves, which can take the form of nonlinear waves (such as shocks

or rarefactions) and linear waves (such as contact discontinuities1 and rotational linear

waves in MHD). As shall be seen for the reactive Riemann problem, the solution may

1For fluids, across a contact discontinuity the density is discontinuous, but the pressure and normal
velocity are continuous.
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x
I

t

W→W←
C

L R

L∗ R∗

Figure 3.1: Wave pattern for the Riemann problem of a non-reactive fluid with initial
left and right states L, R. The initial discontinuity decays into two nonlinear waves
W←, W→, between which there are two new constant states L∗, R∗ separated by a

contact discontinuity C.

also contain compound waves if the flux is non-convex2. These consist of multiple simple

waves ‘attached’ to each other, moving as one. The exact nature of the wave pattern,

including the number of waves in the final state, depends on the initial conditions of the

problem. The solution is self-similar, such that it can be written as a function a single

independent variable,

ξ =
x

t
. (3.2)

Waves in the solution follow lines of constant ξ. In the case of a non-reactive fluid,

the discontinuity will decay into two nonlinear waves moving in opposite directions.

Between these two waves will be two new constant states q∗L, q∗R, separated by a contact

discontinuity.

We can represent the time evolution of the Riemann problem in a non-reactive fluid

with the initial state I as

I → LW←L∗CR∗W→R, (3.3)

whereW denotes a simple wave (a shock or a rarefaction) and C a contact discontinuity.

The states are labelled L,L∗, R∗ and R. The arrows represent the direction from which

a fluid element enters the wave. This solution is illustrated in Figure 3.1.

The distinction between shock and rarefaction waves is defined as

W =

R, pb ≤ pa
S, pb > pa,

(3.4)

2The flux function f(q) is convex if f ′′(q) does not change sign in the domain over which q is defined.
Consequently, the characteristic speed f ′(q) varies monotonically with q.
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where the subscripts indicate quantities ahead of and behind the wave: a ≡ L(R) and

b ≡ L∗(R∗) for W←(W→). The initial discontinuity can decay in three distinct ways,

I →


LS←L∗CR∗S→R, if pL < p∗ and pR < p∗,

LS←L∗CR∗R→R, if pL < p∗ ≤ pR,
LR←L∗CR∗R→R, if p∗ ≤ pL and p∗ ≤ pR,

(3.5)

where pL∗ = pR∗ = p∗. Which of these three wave patterns the solution takes depends

on the initial data.

3.1.0.1 Exact solution

For the Riemann problem of the inert non-relativistic Euler equations, it is possible to

find an exact solution if the initial states qL and qR are known. As the pressure and

normal velocity are constant across the contact wave, we can find the solution by solving

an implicit equation for the pressure in the star states p∗ (Toro, 1999),

f(p∗, qL, qR) ≡ fL(p∗, qL) + fR(p∗, qR) + ∆v = 0, (3.6)

where ∆v ≡ vx,R− vx,L is the difference across the wave of the normal velocity, vx. This

implicit equation is derived by considering the Rankine-Hugoniot conditions (previously

described in 1.5.1.1). Denoting the left and right states L, R by S, the functions fL, fR

are given by

fS(p∗, qS) =


(p∗ − pS)

(
AS

p∗+BS

) 1
2

if p∗ > pS (shock),

2cs,S
γS−1

[(
p∗
pS

) γS−1

2γS − 1

]
if p∗ ≤ pS (rarefaction),

(3.7)

where the constants AS , BS are given by

AS =
2

(γS + 1)ρS
, BS =

γS − 1

γS + 1
pS . (3.8)

The adiabatic index γS = cp,S/cV,S is the ratio of specific heat capacities. It need not be

the same in the left and right states – this solution holds even if the initial states have

different equations of state. Once the pressure in the star states has been obtained, the

other variables in the star states can then be calculated using the equation of state. The

normal velocity in the star state vx,∗ is given by

vx,∗ =
1

2
(vx,L + vx,R) +

1

2
[fR (p∗)− fL (p∗)] . (3.9)
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Finding this solution requires solving an implicit equation. This is often computationally

expensive, so for many cases it is often preferable to use an approximate solver. Such

solvers shall be described shortly in Section 3.2.

3.1.1 The reactive Riemann problem

In the reactive Riemann problem, we are interested in systems where the reactions

happen ‘instantly’, i.e. where the species creation rate ω̇ →∞. If we work in the frame

of the flow, we see that the jump in the energy is given by

Q =

∫ X=1

X=0

dX

ρ
= q, (3.10)

where X is the species mass fraction and q is the specific binding energy. Therefore, we

can model the system by replacing the source terms that model the heat release by a

change in the equation of state across the sharp, nonlinear wave that models the reaction.

Specifically, the total internal energy e that specifies the equation of state will change

to e → e − q when the reaction takes place. This is precisely the model considered by

Zhang and Zheng (1989) when constructing their Newtonian reactive Riemann problem

solution.

3.1.1.1 Detonations

A detonation is a discontinuous reactive wave across which the pressure increases. The

equations are identical to those for shocks, but the interpretation changes. All ‘known’

(pre-shock) variables have the reactive equation of state. All ‘unknown’ (post-shock)

variables use the inert equation of state – the reaction has taken place across the dis-

continuity.

It is possible that the resulting detonation wave is unstable. In general, detonations

fall into two classes: unstable weak detonations and stable strong detonations. For the

stable strong detonations, the characteristic waves impinge on the discontinuity from

both sides (see Figure 3.2a). For the unstable weak detonations, the characteristics only

enter the discontinuity on one side.

If the solution takes the form of an unstable weak detonation, the single detonation

wave is replaced by a compound wave. The compound wave is composed of the fastest

detonation wave that is stable, a Chapman-Jouget (CJ) detonation, and a rarefaction.

This CJ detonation is where the characteristic waves are parallel to the discontinuity,

propagating at the same speed. It can be thought of the ‘weakest’ possible strong

detonation. As the post-detonation pressure will now no longer match the required

post-wave pressure, the additional rarefaction wave is needed. This is illustrated in

Figure 3.2b.
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(a) Strong detonation
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qL qR

(b) CJ detonation + rarefaction

Figure 3.2: Characteristics of detonations. For the strong detonation, characteristics
(blue lines) from the initial left and right states meet, forming a strong detonation

(thick red line).
For the unstable weak detonation, the characteristics impinge only on the right side of
the discontinuity. It is replaced by a compound wave made up of a CJ detonation (red
line) and a rarefaction (thick black lines and dashed blue lines). The dotted green line
between them illustrates that the characteristics to the left of the CJ detonation are
parallel to the discontinuity – in reality, the width of this region shrinks to zero and

the detonation and rarefaction waves are attached together.

Using the calligraphic notation above used to represent the time evolution of the Rie-

mann problem, we shall denote strong detonations by SDT and CJ detonations by

CJDT .

3.1.1.2 Deflagrations

A deflagration is a discontinuous reactive wave across which the pressure decreases.

If the equation of state is convex and the reaction exothermic, then across a reactive

discontinuous wave the pressure increases. Consequently, reactions cannot happen across

a rarefaction wave and a discontinuity is required. However, this discontinuity will

reduce the temperature along with the pressure. This means that, unless the material

was already at the right temperature to react, any reaction across this wave would be

unphysical. The solution for a deflagration therefore requires a compound wave.

The compound wave starts with an inert precursor shock which raises the temperature

of the material to the ignition temperature. This follows the exact equations of the

shock above (3.7). Next, there is a deflagration wave, across which the reaction takes

place and the pressure drops. Again, this follows the shock equations for a rarefaction,

but with the same interpretation as in the detonation case.

The deflagration wave need not be stable. As with detonations, deflagrations fall into

two classes: stable weak deflagrations and unstable strong deflagrations. For the stable

weak deflagrations, the characteristic waves from one side impinge on the discontinuity,

but not the other (see Figure 3.3a). For the unstable strong deflagrations, neither set of

characteristic waves impinge on the discontinuity.
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Figure 3.3: Characteristics of deflagrations. For the weak deflagration, the charac-
teristics (blue lines) impinge on the left side of the discontinuity only. To the right is a
smooth transition zone (dashed red lines), on the left edge of which the reaction takes

place.
In the case of an unstable strong deflagration, characteristics on either side of the
discontinuity diverge. It is therefore replaced by a compound wave composed of a CJ
deflagration (red lines) and a rarefaction (thick black lines and dashed blue lines). The
dotted green line between them illustrates that the characteristics to the left of the CJ
deflagration are parallel to the discontinuity – in reality, the width of this region shrinks

to zero and the deflagration and rarefaction waves are attached together.

As for detonations, in the case of an unstable strong deflagration, the deflagration wave is

replaced with a compound wave composed of a CJ deflagration (where the characteristics

are parallel to the discontinuity) and a rarefaction wave (see Figure 3.3b).

In the calligraphic notation, we shall denote weak deflagrations by WDF and CJ defla-

grations by CJDF .

3.1.1.3 Pressure-volume plot

Another way to visualise the possible solutions for the reactive Riemann problem is to use

a pressure-volume plot such as Figure 3.4 (Law, 2006). Here, we plot the dimensionless

pressure p̂ = p∗/pS against the specific volume v̂ = 1
ρ∗
/ 1
ρS

, such that the known state S

corresponds to the point (1, 1). From the Rankine-Hugoniot relations, which relate the

known state to the unknown state, we obtain equations for the Rayleigh lines (solid red

and blue)
p∗ − pS
1
ρ∗
− 1

ρS

= −m2, (3.11)

where the mass flux m = ρSvS = ρ∗v∗, and for the Hugoniot curve (solid black)

γ

γ − 1

(
p∗
ρ∗
− pS
ρS

)
− 1

2

(
1

ρ∗
+

1

ρS

)
(p∗ − pS) = Q, (3.12)

where Q is the reaction energy released per unit mass defined in (3.10).

The possible solutions are bounded by the intersections of the Rayleigh lines and the

Hugoniot curve. The pressure jump across a detonation must therefore be somewhere
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v̂ = 1/ρ̂

p̂

1

1

weak deflagration

strong deflagration

CJ deflagration

strong detonation

weak detonation

CJ detonation

Figure 3.4: Solutions of the reactive Riemann problem, as bounded by the Rayleigh
lines (solid red and blue lines) and the Hugoniot curve (solid black curve). The point
(1, 1), where p̂ = v̂ = 1, corresponds to the known state. The dashed lines indicate the
tangents to the Hugoniot curve passing through the known state, which intersect with

the curve at the CJ points.

between that of a weak detonation and a strong detonation (and similarly for deflagra-

tions). The two tangent lines to the Hugoniot curve that pass through the known state

intersect at the CJ points. These points separate strong detonations (deflagrations)

from weak detonations (deflagrations), and occur where the flow in the unknown state

is sonic, with velocity v∗ = cs,∗.

3.1.2 The relativistic reactive Riemann problem

In Newtonian hydrodynamics, the solution to the Riemann problem depends only on

the normal component of any vector quantities in the initial conditions. However, in

relativistic systems, the Lorentz factor introduces a coupling between the normal and

tangential components. As found by Pons et al. (2000); Rezzolla and Zanotti (2002) for

the inert case, for high enough tangential velocities, the solution will smoothly transition

from one wave pattern to another while maintaining the initial states otherwise unmod-

ified. This is an entirely relativistic effect for which there is no Newtonian counterpart.

For the problem we are interested in (modelling neutron star oceans), we require general

relativistic hydrodynamics. However, as described by Pons et al. (1998), we need only

consider the simpler special relativistic Riemann problem. The Riemann problem for

general relativistic fluids can be solved using special relativistic solvers following an

appropriate coordinate transformation which transforms the coordinates at the interface

to be locally Minkowskian. This follows from the equivalence principle, which states that
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physical laws in a local inertial frame for an arbitrary spacetime have the same form as

those of special relativity.

The introduction of this gauge transformation will change the component representation

of the initial data and therefore change the detailed solution of the Riemann problem.

However, the qualitative wave pattern is gauge invariant. Therefore transforming to the

local inertial frame and using special relativistic solvers will allow us to determine the

qualitative wave pattern with gravity.

In the following sections, we shall present the solutions for rarefactions and shocks, based

on the equations given in Mart́ı and Müller (1994); Pons et al. (2000); Mart́ı and Müller

(2003, 2015).

3.1.2.1 Rarefactions

Given the known state S ahead of the rarefaction wave, we wish to calculate the unknown

state behind the wave. Across a rarefaction, the normal velocity vx satisfies

dvx
dp

= ± 1

ρhW 2cs

1√
1 + g (ξ±, vx, vt)

, (3.13)

where vt is the modulus of the tangential velocity, and we define the quantities

g(ξ±, vx, vt) =
v2
t (ξ± − 1)

(1− ξ±vx)2 , (3.14)

and

ξ± =
vx(1− c2

s)± cs
√

(1− v2)[1− v2c2
s − v2

x(1− cs)2]

1− v2c2
s

. (3.15)

The +(−) sign corresponds to S = R (S = L), and cs is the local sound speed. The

local speed v =
√
v2
x + v2

t is used to calculate the Lorentz factor W = (1− v2)−1/2.

We also solve for the rest mass density and specific internal energy across the wave using

d

dp

(
ρ

ε

)
=

(
1
hc2s
p

ρ2hc2s

)
. (3.16)

To find the unknown state, we connect the known state ahead of the wave to the unknown

state behind the wave by integrating (3.13). Using the fact that hWvt = const across a

rarefaction wave, we can then calculate the tangential velocity as

vt = hSWSvt,S

[
1− v2

x

h2 + (hSWSvt,S)2

] 1
2

, (3.17)

where the S subscript denotes the value of the variable in state S. The relation for the

tangential velocity holds across both continuous and discontinuous waves.
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3.1.2.2 Shocks

Across a shock, the post-shock state can be found from the Taub adiabat (Thorne, 1973)

Jh2K =

(
hb
ρb

+
ha
ρa

)
JpK, (3.18)

where JqK = qb − qa. In general, this is solved using the equation of state to obtain the

post-shock enthalpy as a function of the post-shock pressure, h = h(p).

From this we can compute the mass flux j across the shock

j(p) =

√
pS − p

h2S−h(p)2

pS−p − 2hS
ρS

. (3.19)

This gives the shock velocities

V±(p) =

ρ2
SW

2
Svx,S ± j(p)2

√
1 + ρ2

SW
2
S

(
1− v2

x,S

)
/j(p)2

ρ2
SW

2
S + j(p)2

. (3.20)

Given the shock velocity we can compute the shock Lorentz factor WS = (1 − V 2
±)−1/2,

from which the post-shock normal velocity is

vx =

(
hSWSvx,S ±

(p− pS)

j(p)
√

1− V±(p)2

)[
hSWS + (p− pS)

(
1

ρSWS
± vx,S

j(p)
√

1− V±(p)2

)]−1

.

(3.21)

The tangential velocity is the same as for the rarefaction wave in (3.17).

3.1.2.3 Pressure-volume plot

As we did in Section 3.1.1.3 for the Newtonian case, we can visualise the solutions of

the relativistic reactive Riemann problem using a pressure-volume plot (Gao and Law,

2012). For relativistic flows, the Rayleigh and Hugoniot relations are given by

(p̂− 1) = −u2
S

[
v̂ − 1 +

γ

γ − 1

(
p̂v̂2 − 1

)
− q̂
]
, (3.22)

γ + 1

γ − 1
(p̂v̂−1)− (p̂− v̂)−2q̂ =

γ

γ − 1
p̂(1− v̂2)− γ

(γ − 1)2
(p̂2v̂2−1)+

(
p̂+

γ + 1

γ − 1

)
q̂+ q̂2,

(3.23)

where the normal 4-velocity for state S is uS = vx,SWS , p̂ = p∗/pS , v̂ = ρS/ρ∗ and

q̂ = ρS
pS
Q. Comparing these to (3.11) and (3.12), the key difference is the appearance of

the q̂ term in the Rayleigh relation. This is because in the relativistic fluid equations, the

reaction heat release term is present in the momentum conservation equation (through



72 3. R3D2

Figure 3.5: Pressure-volume plot for the relativistic reactive Riemann problem for
normal 4-velocity uS = 0.35 and various values of q̂. Plotted are the Rayleigh lines and
the Hugoniot curves. Unlike for the Newtonian case, both the Rayleigh lines and the
Hugoniot curves are functions of functions of q̂, with only the lines for q̂ intersecting

the (1,1) point.

the enthalpy). A consequence of this is that the Rayleigh lines are now a function of q̂

and will no longer pass through the (1,1) point in the p̂− v̂ diagram if q̂ 6= 0.

This can be seen in Figure 3.5, where the Rayleigh lines and Hugoniot curves are plotted

for various values of q̂. As q̂ increases, both the Rayleigh lines and Hugoniot curves

move rightwards, away from the (1,1) point. By varying q̂, the possible solutions of the

problem changes. For q̂ = 0, there is a single intersection of the curves at (1,1): only

weak deflagrations are a valid solution. For q̂ = 1, there are two intersections, indicating

that both weak and strong deflagrations are valid for the range of p̂ and v̂ where the

Rayleigh line is above the Hugoniot curve. For q̂ = 2, there are no intersections. There

are therefore no valid deflagration solutions for this initial data.

In the Newtonian Rayleigh relation (3.11), the normal velocity appears in the mass flux

term. In the corresponding relativistic relation (3.22), the tangential velocity vt appears

due to the introduction of the Lorentz factor in the normal 4-velocity. This means that

the Rayleigh curve is now a function of vt, and its intersection with the Hugoniot curve

will change as vt. This is illustrated in Figure 3.6, where the Rayleigh lines are plotted

for a range of tangential velocities. For vt . 0.65, there is only a single intersection

of the Rayleigh line and the Hugoniot curve – only weak deflagrations are possible for

this system. For 0.65 . vt . 0.9, the lines intersect twice, such that both weak and

strong deflagrations are valid solutions for the range of p̂ and v̂ where the Rayleigh line
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Figure 3.6: Pressure-volume plot for the relativistic reactive Riemann problem for
normal 3-velocity vx,S = 0.25 and q̂ = 0.5. Plotted are the Hugoniot curve and Rayleigh
lines for various values of tangential velocity vt. Unlike for the Newtonian case, the
coupling of the tangential velocity via the Lorentz factor means that the range of

possible solutions changes with the tangential velocity.

is above the Hugoniot curve. For vt & 0.9, there are no intersections of the curves in

the bottom right deflagration quadrant, and so no deflagration solutions exist for the

problem. However, it can be seen for the curve with vt = 0.96 that if the tangential

velocity is increased still further, the lines will now intersect in the detonation quadrant

of the diagram. Weak detonations are therefore now valid solutions of the problem. As

the Lorentz factor W →∞, the Rayleigh and Hugoniot curves still only intersect once.

There are therefore no possible strong detonation solutions for this system for any value

of the tangential velocity.

Another feature of the relativistic Rayleigh curves that can be seen in this plot is that

they become less straight as W increases. In the Newtonian problem, the Rayleigh curves

are straight lines. In the relativistic problem, the curvature of the curves increases with

the Lorentz factor. It is this that changes their intersection with the Hugoniot curve

and results in the changes in the range of possible solutions.

3.2 Approximate solvers

For fully compressible codes, we can solve the evolution equations using Godunov’s

method (Godunov, 1959), where intercell fluxes are treated as the solutions to local
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Riemann problems (Toro et al., 1994; Toro, 1999). We then evolve the system by solving

these Riemann problems.

Godunov’s method can be summarised as follows for the hyperbolic system of PDEs

∂tq + ∂x (f(q)) = 0, (3.24)

where f(q) is the flux vector. The intercell flux f n
i+1/2 at time t = tn is calculated

by solving the Riemann problem to find the state at the cell boundary, q∗(q̄
n
i , q̄

n
i+1),

using the cell-averaged variables, q̄, on either side of the boundary as initial data. The

intercell flux is then

f̄
n
i+1/2 = f

(
q∗(q̄

n
i , q̄

n
i+1)

)
. (3.25)

Using this, the solution at time t = tn+1 is given by

qn+1
i = qni −

∆t

∆x

(
f n
i+1/2 − f n

i−1/2

)
, (3.26)

where ∆t is the timestep and ∆x is the cell spacing. In the vast majority of cases,

it is too computationally expensive and unnecessary to calculate the exact solution of

the Riemann problem each time: we therefore use approximate solvers. This method is

conservative and first order; there also exist higher order methods based on this approach

known as high-resolution shock-capturing (HRSC) methods, such as the MUSCL-type

solvers described in Section 1.5.2.

We implemented two approximate solvers, the RHLLE and RHLLC methods, in a rela-

tivistic reactive compressible solver that was built by extending the existing Newtonian

compressible solver in pyro (Zingale, 2014). This compressible solver performs reason-

ably well for systems with moderate Mach number, however breaks down for high Mach

number Ma & 10. This could be improved by implementing alternative methods to deal

with the stiff burning source term, for example the modified fractional step method of

Helzel et al. (2000). Such methods resolve the sub-grid structure of the burning region,

rather than smearing out the reaction across the entire cell.

3.2.1 RHLLE

An approximate solution for the relativistic Riemann problem can be found using the

relativistic HLLE method, as described in Mart́ı and Müller (2003, 2015) and derived

by Schneider et al. (1993) based on the method of Harten, Lax and van Leer (Harten

et al., 1983). Like this original Newtonian HLL method, it is positively conservative in

the sense that it preserves initially positive densities, energies and pressures. It is based
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Figure 3.7: Wave pattern for the Riemann problem used in the HLLE method.

on an approximate solution with a single intermediate state:

qHLLE
(x
t

; qL,uR

)
=


qL for x < aLt,

q∗ for aLt ≤ x ≤ aRt,
qR for x > aRt,

(3.27)

where aL, aR are lower and upper bounds for the smallest and largest signal velocities

and q = (D,Si, τ) is the state vector of conserved variables. The intermediate state is

the average of the Riemann solution between the slowest and fastest signals and is given

by

q∗ =
aRqR − aLqL − f(qR) + f(qL)

aR − aL
, (3.28)

and the numerical flux vector by

f̂
HLLE

=
a+
Rf(qL)− a−Lf(qR) + a+

Ra
−
L (qR − qL)

a+
R − a−L

, (3.29)

where

a−L = min{0, aL}, a+
R = max{0, aR}. (3.30)

The limiting characteristic wavespeeds are given by

aL =
v̄ − c̄s
1− v̄c̄s

, aR =
v̄ + c̄s
1 + v̄c̄s

, (3.31)

where v̄, c̄s are the averages (arithmetic or Roe-like) between the left and right states

of the fluid velocity and sound speed.

3.2.2 RHLLC

The HLLC method was originally developed by Toro et al. (1994), and builds on the

HLLE method by including the contact surface in the wave pattern. This means it can

better resolve contact discontinuities.
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Figure 3.8: Wave pattern for the Riemann problem used in the HLLC method.

Mignone and Bodo (2005) extended the HLLC method to relativistic fluids. The full

scheme shall be presented here as the notation and state vector used in the paper is

different from that used here and there is a sign error in Equation (17). The solution is

given by

qHLLC
(x
t

; qL, qR

)
=



qL for x < aLt,

q∗L for aLt ≤ x ≤ a∗t,
q∗R for a∗t ≤ x ≤ aRt,
qR for x > aRt,

(3.32)

where a∗ is the speed of the contact discontinuity separating the left and right interme-

diate states L∗, R∗. The corresponding intercell numerical flux is given by

f̂
HLLC

=



fL for x < aLt,

f∗L for aLt ≤ x ≤ a∗t,
f∗R for a∗t ≤ x ≤ aRt,
fR for x > aRt,

, (3.33)

where the intermediate state fluxes f∗L and f∗R can be expressed using the Rankine-

Hugoniot jump conditions as

a(q∗ − q) = f∗ − f , (3.34)

where all quantities are on the same side (the L or R subscript shall henceforth be

dropped for clarity).

If aL and aR are given, then (3.34) represents a system of 2n equations (where n is

the number of components of q) for the 4n + 1 unknowns q∗L, q
∗
R,f

∗
L,f

∗
R and a∗. We

can obtain three additional constraints from requirements that the pressure and normal

velocity are continuous across the contact wave: v∗x,R = v∗x,L and p∗R = p∗L, and that

a∗ = v∗x,R = v∗x,L. This brings the total of equations to 2n+ 3, which is still not enough

to solve the system. Further assumptions must therefore be made on the intermediate
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state fluxes f∗. We assume that they can be written as

f∗ =


D∗v∗x

S∗xv
∗
x + p∗

S∗yv
∗
x

S∗x −D∗v∗x

 . (3.35)

Consequently, both q∗ and f∗ are expressed in terms of the five unknowns D∗, v∗x, S
∗
y , τ
∗

and p∗. The normal components of the momentum in the star region, S∗x,L and S∗x,R, are

not independent, as for consistency we require that S∗x = (τ∗ + p∗ + D∗)v∗x. This gives

11 equations with 11 unknowns, so the system can now be solved.

Writing out (3.34) explicitly gives the following set of equations

D∗(a− a∗) = D(a− vx),

S∗x(a− a∗) = Sx(a− vx) + p∗ − p,
S∗y(a− a∗) = Sy(a− vx),

τ∗(a− a∗) = τ(a− vx) + p∗a∗ − pvx. (3.36)

Substituting the second and last of these into the consistency condition for S∗x, we get

the following expression for a∗ in terms of p∗

(A+ ap∗)a∗ = B + p∗, (3.37)

where A = (τ +D)a− Sx and B = Sx(a− vx)− p.

If we impose the condition p∗R = p∗L across the contact discontinuity, a quadratic equation

can be found for a∗,

fHLLE
E (a∗)2 − (EHLLE + fHLLE

Sx )a∗ + SHLLE
x = 0, (3.38)

where fHLLE
E and fHLLE

Sx
are the energy and momentum components of the HLLE flux

(note the HLLE flux used here is slightly different from the one above and uses aL and aR

rather than a−L and a+
R). EHLLE and SHLLE

x are the energy and momentum components

of the HLLE state vector, where the energy E = τ +D. Only the root with the minus

sign is physically acceptable, since a∗ must lie in the range (−c, c).

To solve the system, a∗ is found using (3.38), then this is used to calculate p∗ from

(3.37). These can then be used to calculate the components of q∗ and therefore f∗ using

(3.36).
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Figure 3.9: Wave pattern for the reactive Riemann problem, adapted from (Beccantini
and Studer, 2010). ac is the contact wave speed, arf the reaction rarefaction wave speed

and ars the reaction shock wave speed.

3.2.3 Reactions

If reactions are included, we obtain a source term such that the system of equations to

be solved is now given by
∂q

∂t
+
∂f (i)(q)

∂xi
= S. (3.39)

The state vector of conservative variables is extended to account for the evolution of the

baryon fraction X,

q =


D

Sj

τ

DX

 , (3.40)

and the fluxes are extended to produce

f (i) =


Dvi

Sjvi + pδij

τvi + pvi

DXvi

 . (3.41)

The source term is given by

S =


0

0

Dqω̇

Dω̇

 , (3.42)

where q is the specific energy release of burning.

In the HLLC method, we obtain the additional jump condition

DX∗(a− a∗) = DX(a− v∗x). (3.43)
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Despite the fact that introducing burning adds an additional burning wave to the wave

pattern (see Figure 3.9), with high enough resolution this shall be resolved without

changing the numerical method to include this wave (just as HLLE will resolve contact

discontinuities properly at high enough resolution).

3.3 Numerical results

The following section contains results of simulations performed for a range of 1d systems

using the exact and compressible solvers R3D2 and pyro, and for a 2d system using the

compressible solver.

3.3.1 1d simulations using the exact solver

R3D2 solves the reactive relativistic Riemann problem by solving the equations given

in Section 3.1.1 and Section 3.1.2 to find the characteristic waves and the intermediate

states. To do this, it makes use of root finders and ODE solvers from the numpy and

scipy Python libraries. Given the solution’s wave pattern, wavespeeds and states, the

full solution can be plotted.

3.3.1.1 Inert relativistic Riemann problem

The effect of tangential velocity in the inert relativistic Riemann problem can be seen in

Figure 3.10. In this example, the final state is made up of a left-going rarefaction wave, a

contact wave and a right-going shock wave: R← C S→. We can see that the introduction

of a tangential velocity changes the intermediate wave states. In the case with a non-

zero right state tangential velocity vt(L,R) = (0, 0.9), the density and pressure in the

intermediate states is increased, whereas in the case with non-zero tangential velocities

for both states vt(L,R) = (0.9, 0.9), they are decreased. For both cases, the normal

velocity in the intermediate states is reduced.

3.3.1.2 Reactive relativistic Riemann problem

The wave pattern of the solution to the reactive Riemann problem can be very sensitive

to initial conditions. In Figure 3.11, the effect on a detonation of changing the energy of

reaction q can be seen. For q = 0.1, the solution is a single left-going strong detonation

wave, SDT←. Decreasing to q < 0.1 causes a contact wave and a right-going shock wave

to be produced, SDT← C S→, as the decrease in reaction energy increases the pressure

and density in the intermediate star state. Increasing to q > 0.1 produces a contact
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Figure 3.10: Exact solution of the inert relativistic Riemann problem for different
initial tangential velocities, calculated using R3D2. All cases share the initial conditions
(ρ, vx, ε)L = (1, 0, 10), (ρ, vx, ε)R = (1, 0, 1). For the blue curves, vt(L,R) = (0, 0),
for the orange dashed curves, vt(L,R) = (0, 0.9), and for the green dot-dashed curves,
vt(L,R) = (0.9, 0.9). The final state consists of a left-going rarefaction wave, a contact
wave and a right-going shock wave: R← C S→. Increasing the tangential velocity alters

the intermediate state, reducing the normal velocity.

wave and a right-going rarefaction wave, SDT← C R→, as the increase in reaction energy

decreases the pressure, density and velocity in the intermediate star state.

Similarly, varying the reaction energy q also changes the wave pattern in the case of

a deflagration, as seen in Figure 3.12. For q = 0.1, the solution is a single left-

going deflagration wave, CJDF←R←. For q < 0.1, a right-going shock wave is pro-

duced, CJDF←R← C S→, and for q > 0.1, a right-going rarefaction wave is produced,

CJDF←R← C R→.

As can be seen in Figure 3.13, varying the reaction energy can also cause the reactive

wave to transition. In this example, increasing the reaction energy causes the left-going

reactive wave in the system to transition from a CJ deflagration to a weak deflagration,

then on to a CJ detonation.

3.3.1.3 Tangential velocity

As described above, Pons et al. (2000); Rezzolla and Zanotti (2002) found that suffi-

ciently high tangential velocities can change the wave pattern in the inert relativistic

Riemann problem. Here we investigate this for the reactive relativistic system to see

whether it could be relevant for X-ray bursts on rapidly rotating neutron stars: given
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Figure 3.11: Exact solution of a strong detonation wave for different values of
q = (0.0, 0.1, 0.4), corresponding to the solid blue, dashed orange and dash-dotted green
curves respectively. The initial conditions are (ρ, vx, vt, ε)L = (5, 0, 0, 2), (ρ, vx, vt, ε)R =
(8.114,−0.349, 0, 2.773). For q = 0.1, the solution is SDT←. Varying q introduces a con-
tact wave and a right-going wave. Decreasing to q < 0.1 instead produces SDT← C S→,

and increasing to q > 0.1 produces SDT← C R→.

the conditions in the ocean, would be possible for a fast enough tangential velocity to

develop that could induce a deflagration to detonation transition.

As seen in Figure 3.14, it was found that varying the tangential velocity did indeed

change the wave pattern. For vt,L = 0, the solution consists of a left-going strong

detonation, a contact wave and a right-going rarefaction, SDT← C R→. As the tangential

velocity increases, the pressure and density in the intermediate star state increases until

at vt,L ' 0.70541 the rarefaction disappears and there is just a strong detonation and

contact wave, SDT← C. For higher tangential velocities, there is then a right-going shock

wave, SDT← C S→.

In the Figure 3.14, a transition is induced in the non-reactive wave by introducing a non-

zero tangential velocity. As shown in Figure 3.15, we can also induce a transition in the

reactive wave by introducing a non-zero tangential velocity. Increasing the tangential

velocity in the right state from zero, we can observe the reactive wave to transition from

a CJ deflagration to a weak deflagration, to a CJ detonation then finally on to a strong

detonation.

We can define a critical tangential velocity at which the wave pattern transitions between

these different states. This critical tangential velocity is plotted against the density ρL

in Figure 3.16. The solver that was used here to find the critical velocity breaks down
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Figure 3.12: Exact solution of a deflagration wave for different values of q =
(0.0, 0.1, 0.4), corresponding to the solid blue, dashed orange and dash-dotted
green curves respectively. The initial conditions are (ρ, vx, vt, ε)L = (5, 0, 0, 2.0),
(ρ, vx, vt, ε)R = (0.1, 0.973, 0, 0.149). For q = 0.1, the solution is CJDF←R←. As for
the detonation, varying q introduces a contact wave and a right-going wave. For q < 0.1,

the solution becomes CJDF←R← C S→, and for q > 0.1 it is CJDF←R← C R→.

for vt,crit . 0.06, but it can be seen that it tends towards vt,crit = 0 at ρ ∼ 7. At this

point, the pressure in the star state p∗ = pR, such that the right-going wave transitions

from a rarefaction wave to a shock wave.

From Figure 3.16, we can see that unless the system with zero tangential velocity is

already very near the deflagration to detonation transition point, the tangential velocity

required to induce a transition is close to the speed of light. In neutron star oceans, the

flame is very unlikely to come close to the deflagration to detonation transition point

and the star does not rotate rapidly enough for such high tangential velocities to be

obtained. Consequently, this effect is not relevant for these systems.

3.3.1.4 Pressure-velocity plots

Another way to to look at the Riemann problem is by plotting the solution in pressure-

velocity, p-v, phase space. The velocity plotted here is the normal velocity vx. Pressure-

velocity plots can be thought of a graphical way of solving the Riemann problem to

find the wave pattern and intermediate state. The Hugoniot curves of the left and right

states are plotted. Their point of intersection determines the intermediate state. By

considering the change in pressure and velocity along the lines joining the left, inter-

mediate and right states, the nature of the waves can be determined. Moving from the
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Figure 3.13: Deflagration to detonation transition for different values of q =
(0.01, 0.6, 0.7), corresponding to the solid blue, dashed orange and dotted green curves
respectively. The initial conditions are (ρ, vx, vt, ε)L = (1, 0, 0, 5.0), (ρ, vx, vt, ε)R =
(1,−0.3, 0, 2). For q = 0.01, the solution is a CJ deflagration, (CJDF←R←)C S→. As q
is increased to q = 0.6, the CJ deflagration becomes a weak deflagration,WDF← C S→,

and at q = 0.7 this has transitioned to a CJ detonation, (CJDT←R←)C S→.

Figure 3.14: Exact solution of a strong detonation wave for different values of vt,L =
(0.0, 0.70541, 0.9), corresponding to the solid blue, dashed orange and dash-dotted green
lines respectively. The initial conditions are (ρ, vx, ε)L = (5, 0, 2.0), (ρ, vx, vt, ε)R =
(8,−0.2, 0.0, 2.5). For vt,L = 0, the solution is SDT← C R→. At vt,L ' 0.70541, the
rarefaction disappears to produce SDT← C. At even higher tangential velocities, the

solution becomes SDT← C S→
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Figure 3.15: Deflagration to detonation transition for different values of vt,L =
(0.0, 0.3, 0.6, 0.8), corresponding to the solid blue, dashed orange, dash-dotted green
and dotted red lines respectively. The initial conditions are (ρ, vx, vt, ε)L = (1, 0, 0, 5.0),
(ρ, vx, vt, ε)R = (1,−0.3, vt, 2). For vt,L = 0, the solution is (CJDF←R←) C S→. At
vt,L = 0.3, the CJ deflagration has transitioned to a weak deflagration, producing the
solution WDF← C S→. At vt = 0.6, the deflagration has transitioned to a CJ detona-
tion, (CJDT←R←) C S→, then at vt = 0.8, this has transitioned to a strong detonation,

SDT← C S→.

Figure 3.16: Plot of the critical tangential velocity for different values of ρL. The
initial conditions are (vx, ε)L = (0, 2.0), (ρ, vx, vt, ε)R = (8,−0.2, 0.0, 2.5). The method
used to find the critical tangential velocity has failed to converge for vt,crit . 0.06,

hence the lack of points in this region.
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Figure 3.17: Pressure-velocity plot for the inert relativistic Riemann problem with
initial conditions (ρ, vx, vt, ε)L = (10, 0, 0, 2), (ρ, vx, vt, ε)R = (2, 0, 0, 0.5) and solution

R← C S→.

left/right state to the intermediate state, a positive change in pressure along the line

connecting the states corresponds to a shock (and a negative change to a rarefaction).

Inert relativistic Riemann problem

Figure 3.17 shows the pressure-velocity plot for an inert problem with the solution

R← C S→. The plot shows that the left and right states qL, qR are connected by a

left-going rarefaction (dashed blue line) and a right-going shock (solid red line). The

two curves intersect at the intermediate star state q∗.

Reactive relativistic Riemann problem

Figure 3.18 shows the plot for a reactive problem whose solution consists of a compound

CJ deflagration-rarefaction wave preceded by a shock: R→ CJDF→ S→. Beginning with

the unburnt fluid in the right state qR, the precursor shock wave (solid orange line) raises

the temperature of the fluid until it reaches the lower ignition point, marked i, and the

gas ignites. There is then a discontinuity in the phase space as the burning reaction

increases the pressure and velocity of the gas to that of the upper ignition point, which

intersects the curve with the equation of state of the burnt gas (solid green line). This

point is intersected by the Chapman-Jouget deflagration wave, which then joins to the

rarefaction wave (dashed blue line) at the Chapman-Jouget point CJ .
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Figure 3.18: Pressure-velocity plot for the reactive relativistic Riemann problem
with initial conditions (ρ, vx, vt, ε)L = (0.2432,−0.3992, 0, 0.6168), (ρ, vx, vt, ε)R =
(0.5, 0, 0, 1) and solution R→ CJDF→ S→. In the initial data, the burnt fluid is on

the left and the unburnt fluid on the right.

3.3.2 1d simulations using the compressible solver

In the previous section, we demonstrated the performance of the exact solver R3D2. In

this section, we shall use this as a benchmark to test the reactive relativistic compressible

solver implemented in pyro and investigate how accurate it is.

Inert relativistic Riemann problem

Figure 3.19 shows the solutions for the inert problem with solution R← C S→. It can be

seen that the compressible solver performs well, with a slight smoothing of the pressure

and normal velocity at the tail of the rarefaction. This is to be expected: as described

in Section 1.5.2.5, the use of slope limiters in finite volume methods leads to clipping at

extrema.

Reactive relativistic Riemann problem

Figure 3.20 shows the solutions for the reactive problem, where the initial conditions have

produced a left-going deflagration wave and a right-going shock wave: CJDF←R← C S→.

The solution found by the compressible solver follows the exact solution fairly closely

away from the waves, but there is a lot of smoothing and some overshooting at the

discontinuities. The compressible solver has also failed to capture the CJ deflagration

on the left hand side, with the solution instead taking the form of an unstable strong de-

flagration. Given that the solver performed much better for the previous inert problem,

this indicates that the significant reduction in accuracy is largely due to the introduction

of the reactive source terms. Stiff source terms such as these are often difficult to model



3.3. Numerical results 87

Figure 3.19: Solution of the inert relativistic Riemann problem with the initial con-
ditions (ρ, vx, vt, ε)L = (1, 0, 0, 10), (ρ, vx, vt, ε)R = (1, 0, 0.9, 1) and solution R← C S→.
The solid blue curve shows the solution found using the exact solver, the dotted red

curve using the compressible solver with a resolution of 256 in the x-direction.

using standard schemes, especially if the reaction zone is underresolved and the region

where the source terms become non-negligible is smeared out across a larger region of

the grid.

RHLLE vs RHLLC

The effect of using the RHLLC solver rather than the RHLLE solver can be seen in

Figure 3.21 for a test with resolution of 256 in the x-direction. It can be seen that the

RHLLE solver produces some smearing of the data across the contact wave. This smear-

ing decreases as the resolution is increased. As expected, the RHLLE solver performs

about as well as the RHLLC solver at resolving the shock and rarefaction waves.

3.3.3 2d simulations using the compressible solver

3.3.3.1 Bubble in shock tube

The compressible solver can also be used to model 2d systems. Here we use it to

investigate the case of a bubble in shock tube. In this system, a hot bubble of unburnt

fluid was placed in a tube of cooler, burnt fluid. A resolution of 512 × 512 was used.

A shock wave travelling at relativistic speed was then sent along the tube in order to
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Figure 3.20: Solution of the reactive relativistic Riemann problem with the initial
conditions (ρ, vx, vt, ε)L = (5, 0, 0, 2.1), (ρ, vx, vt, ε)R = (0.5, 0.7, 0, 2). In the initial
data, the unburnt fluid is on the left and the burnt fluid on the right. The solid blue
curve shows the solution found using the exact solver, the dotted red curve using the

compressible solver with a resolution of 256 in the x-direction.

Figure 3.21: Solution of the inert relativistic Riemann problem using the RHLLE
and RHLLC solvers in pyro with a resolution of 256 in the x-direction. The initial
conditions were (ρ, vx, vt, ε)L = (1, 0, 0, 10), (ρ, vx, vt, ε)R = (1, 0, 0.9, 1). It can be seen

that there is some smearing at the contact discontinuity by the RHLLE solver.
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investigate the behaviour of the bubble under the impact of the wave. The test was

carried out for both the inert and reactive cases so as to determine which effects were

due to the shock and which due to the burning reactions. The code was able to cope

with systems containing shocks with Mach number Ma . 5, however at Ma = 10 the

code was unstable at the shock front for the resolutions tested.

Among the quantities plotted for these systems is the Schlieren number. Plots of this

quantity help to clearly illustrate density discontinuities, so are particularly useful for

systems with shock waves. The Schlieren number S is calculated as

S =
∣∣∇2ρ

∣∣ . (3.44)

Figure 3.22 shows the system just before the shock wave with Ma = 5 makes contact

with the bubble. In Figure 3.23, we plot the bubble after the shock wave has passed

through, with the inert case shown in the top half of each plot and the reactive case

in the lower half. Comparing the plots before and after the shock wave has passed

through, it can be seen that the shock wave deforms the bubble, increasing its density

and changing its shape to that of a disc whose edges have curled inwards. Comparing

the inert and reactive bubbles, the density and Schlieren plots are qualitatively very

similar. However, looking at the species creation rate and the baryon fraction, it is clear

that the burning has changed the composition of the bubble. Comparing the density

and species baryon fraction plots in the reactive case, it can be seen that ahead of the

remaining unburnt fluid is a disc of burnt fluid with lower density – this is the fluid that

was originally in the bubble that has now burnt due to the impact of the shock wave.

Behind this disc, the unburnt fluid is still burning – the species creation rate peaks in

this region with the lowest baryon fraction of burnt material.

The Schlieren plot illustrates the different waves produced by the wave interacting with

the bubble. The left-most wavefront was produced when the wave first hit the left side

of the bubble, the next wavefront when the wave exited the right side of the bubble.

3.3.3.2 Spinning bubble

In order to investigate the performance of the code for a more complex system, the

previous system was modified to give the bubble an initial angular momentum of ω = 0.5.

The bubble is rotating clockwise in the 2d plane of the simulation. The results of this

test can be seen in Figure 3.24. It was found that in this case the bubble no longer

ignited; this could be due to a number of reasons. As can be seen, the structure of

the bubble post-shock is significantly distorted compared to the previous non-spinning

case. The interaction of the spinning bubble with the shock front has caused many

smaller vortices to be created, which in turn have broken up the structure of the bubble.

Focusing of reflected shocks is reduced, lowering the peak temperature such that the
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Figure 3.22: Special relativistic shock with Ma = 5 before the shock wave passes
through the bubble. Plots from top to bottom are of density, species creation rate,
baryon fraction of burnt material and the log Schlieren number. Note that the scales in
all plots are arbitrary (with the exception of the baryon fraction which is a dimensionless

quantity).
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ignition temperature is not reached. The initial rotation of the bubble in the plane of

the simulation accounts for the asymmetry of the shocked bubble.

Although this is an ideal fluid simulation, it is possible that numerical viscosity here

is acting to mimic physical viscosity and producing turbulence. If this is so, then this

simulation demonstrates the effects described in Section 1.4.2, where turbulent eddies

can seriously disrupt burning regimes. Here, the formation of turbulent eddies has

prevented ignition from being reached entirely – the peak species creation rate has been

reduced by three orders of magnitude from ∼ 13.4 to ∼ 0.01. This test was repeated for

a range of resolutions between 64×64 and 1024×1024 in order to determine whether this

effect was due to insufficient resolution. As the resolution was increased, the focusing and

peak temperature did increase, however not at a rate that indicates the peak temperature

would ever approach the peak temperature seen in the previous case of the static bubble,

even if a much greater resolution that presented here was used. We therefore believe

that the disruption of the burning regime is a genuine effect, and not a consequence of

insufficient resolution.

3.4 Summary

In this chapter, we have looked at the relativistic reactive Riemann problem. We began

by looking at the theory of the Riemann problem, and how an exact solution can be

obtained for the inert, reactive and relativistic reactive cases. This theory was then used

to construct an exact solver of the relativistic reactive Riemann problem, R3D2. The

performance of this solver was compared against a fully compressible relativistic solver

implemented in pyro, where burning was accounted for by including reactive source

terms. Several tests of the two codes were performed, showing that their results were

generally consistent with each other and produced qualitatively the features expected.

In neutron star oceans, it is conceivable that a burning front moving latitudinally may

encounter a region with a fast tangential velocity produced by the star’s rotation. In

Section 3.3.1.3, we investigated whether a fast tangential velocity may be able to cause

a deflagration wave to transition to a detonation. Unlike for the Newtonian Riemann

problem where only the velocity perpendicular to the interface is relevant, in the rela-

tivistic case the tangential velocity can become significant through the Lorentz factor.

It was found that such a transition is possible, but only for tangential velocities that are

a significant fraction of the speed of light or for systems already on the verge of tran-

sitioning. Consequently, it is unlikely that such a transition would occur for a burning

front in a neutron star ocean.

Relativistic deflagrations also occur in other astrophysical systems such as supernovae

and gamma ray bursts. However, given the combination of extreme conditions required

for the transition to take place, it seems unlikely that this transition would occur in
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these systems either. As we’ve seen, not only does there need to be some process which

generates an extremely high, relativistic tangential velocity (preferably over an extended

period of time in order to maximise the chances of the reaction occurring), but the fluid

must also be very hot and on the verge of reacting (without already having done so). The

fluid must also be dense enough that burning in the fluid with zero tangential velocity

propagates as a deflagration rather than a detonation.

Core-collapse supernovae involve explosive burning of fast moving material. The progen-

itor stars can have very high rotation rates, so may even be possible for a fast tangential

velocity to develop. However, even taking an optimistic estimate of the surface rota-

tional velocity of the progenitor of ∼ 300 km s−1, this is still only a fraction of a percent

of the speed of light. The burning is also believed to propagate as a detonation from

the start, so there would be no opportunity for it to transition.

Black hole accretion disks are another system where hot, burning material moving at

high speeds can be found. Instabilities in the inner accretion disk are believed to be

a source of gamma ray bursts (Perna et al., 2006). If the accretion disk was rotating

fast enough, and unreacted material from the black hole jet were to fall back onto the

disk, the necessary conditions could potentially be reached for the transition to occur.

However, this is again very unlikely given how extreme the conditions need to be.

In Section 3.3.2, we saw that the accuracy of the compressible solver was significantly

reduced by the introduction of the stiff reactive source terms. This is likely to be a

result of the way we have implemented source terms in the code. We used the first

order operator splitting method for its simplicity and stability, however for stiff source

terms this leads to significant errors, especially if the reaction zone is underresolved

such that it is smeared across a larger region than is physical. For improved accuracy

for reactive problems, we could use a higher order method for the source terms such as

Strang splitting (LeVeque, 2002) or the modified fractional step method of Helzel et al.

(2000).

In Section 3.3.3.2, the simulation of a special relativistic shock passing through an ini-

tially spinning bubble found that the burning was disrupted by the formation of turbu-

lent eddies, which prevented ignition from being reached. This is consistent with the

standard theory of turbulent combustion where turbulent eddies broaden flames, lower-

ing the temperature in the reaction zone such that the reaction rate decreases (Klein,

1998; Peters, 2000). Tests were repeated for a range of resolutions to investigate whether

this result was due to insufficient resolution: these suggested that the disruption of the

burning observed is likely to be a genuine effect, and even a test with much greater

resolution would be unable to reach the same peak temperature as seen in the case of

the static bubble. It would be of interest to investigate this system further using a more

accurate model to investigate further whether this observed turbulence is a real physical

effect or a numerical artefact.
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Figure 3.23: Special relativistic shock with Ma = 5 after the shock wave has passed
through the bubble. Note that we have reduced the limits of the x-axis so as to focus
on the region around the bubble, rather than plotting the full domain as in Figure 3.22.

The top half of each plot shows the inert case, the bottom half the reactive case.

It can be seen that the density ρ and log Schlieren number ln |S| plots appear to be
unchanged in the reactive case. On the other hand, the species reaction rate ω̇ shows
that the material to the left of the bubble is burning. This corresponds to the region of
low species fraction X. In the inert case, the material in the bubble remains unburnt,
however in the reactive case much of this has reacted, and the unburnt material has

been pushed to the rear side of the bubble.
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Figure 3.24: Special relativistic reactive shock with Ma = 5 after it has passed
through an initially spinning bubble. The bottom right plot shows the vorticity.

Comparing to the non-spinning bubble in Figure 3.23, we can see that the bubble has
become distorted and broken up by the vortices. The peak reaction rate ω̇ is much
lower: the vortices have inhibited burning. This can also be seen in the plot of the
species fraction X: in the non-spinning case, the minimum mass fraction was higher
as material in the bubble had burnt, and the unburnt material had been pushed to
the rear side of the bubble. For the spinning bubble, there is now a region centred at
∼ (7.5, 2.5) of completely unburnt material corresponding to a region of low density.
The unburnt material largely corresponds to the regions of lower density which indicate
material initially inside the bubble. Given the low reaction rate, it is possible that a
large part of the increase in species fraction in these regions may have come from the
turbulent mixing with the burnt material outside the bubble rather than burning taking

place.



4 Shallow water equations

The propagation of the burning front is a multiscale problem: the behaviour on large

scales is dominated by the Coriolis force (Spitkovsky et al., 2002), whereas on small

scales turbulent burning reactions dominate (Malone et al., 2011). Another large scale

effect that needs to be considered in general relativity is that rotating systems experience

frame dragging effects and will deform at the equator (Paschalidis et al., 2017). There

have not yet been any studies of how these may affect the propagation of fronts in

the ocean, but it is possible that they may provide mechanisms that explain observed

features such as multiple peaks and burst oscillations. We therefore believe it will be

important to include these large scale effects in our model. In order to accurately model

the whole system, it will be necessary to use a scheme that captures the physics at

both large and small scales. In the previous sections, we have described work to better

understand the small scale physics; in this section, we shall instead concentrate on the

large scale physics.

On the scale of the entire neutron star, the ocean itself is relatively shallow: its depth

is only ∼ 10 m, whereas the neutron star’s radius is ∼ 10 km. In meteorology, the ocean

and atmosphere are often modelled using the shallow water equations, an approximation

derived from integrating the (spatially) 3d fluid equations in the vertical direction to get

a 2d set of equations. This reduced dimensionality reduces the computational cost of

evolving the system considerably. It therefore seems reasonable that such an approach

could be useful to model the large scale physics of our problem. This approach has been

used previously in the context of neutron star atmospheres by Spitkovsky et al. (2002) in

their paper modelling the effects of the Coriolis force on the propagation of the burning

front and by Inogamov and Sunyaev (2010) to model the spread of matter over the star’s

surface during accretion. Both groups used the Newtonian shallow water equations.

The reduced dimensionality of the shallow water model may also help avoid vertical

boundary issues. As described in Section 1.5.2.8, for the low Mach and compressible

models, care must be taken with the vertical boundary conditions. In the horizontal

directions, it is possible to simply use periodic or outflow boundary conditions. However,

this is not appropriate in the vertical direction, where it is necessary to ensure that

hydrostatic equilibrium is properly enforced.

95



96 4. Shallow water equations

Due to the highly stratified nature of the neutron star ocean (see Figure 1.2) and the

extreme temperature sensitivity of the nuclear reactions, the nuclear burning processes

in type I X-ray bursts are confined to a thin shell (Schwarzschild and Härm, 1965;

Yoon et al., 2004; Galloway and Keek, 2017). This confinement produces the thin-shell

instability, leading to thermonuclear runaway. This motivates a multilayer shallow water

model, such that the burning layer can be accurately resolved.

In this chapter, we shall describe our derivation of the relativistic shallow water equations

and how we include multiple layers and reaction terms. We shall then present a numerical

implementation of the single layer Newtonian and relativistic shallow water equations.

4.1 Newtonian shallow water equations

The shallow water equations are an approximation for modelling the flow of a fluid

with a free surface under gravity. They are derived by assuming that the depth of the

fluid is small with respect to the wave length or curvature of the top free surface, or

equivalently that the pressure distribution is given by hydrostatic equilibrium and is a

result of assuming that the vertical acceleration of the fluid has a negligible effect on the

pressure (Toro, 2001).

To derive the shallow water equations, we consider fluid in a channel of unit width,

assuming that the vertical velocity of the fluid is negligible and that the horizontal fluid

velocity u(t, x) is roughly constant across the cross section of the channel (LeVeque,

2002). The gravitational field is taken to be constant and act in the vertical direction,

with its acceleration given by g. Assuming that the fluid is incompressible with constant

density ρ̄ and depth h(t, x), the total mass in the section of the channel between [x1, x2]

at time t is ∫ x2

x1

dx ρ̄h(t, x). (4.1)

The momentum density is given by ρ̄u(t, x); integrating this vertically gives the mass

flux ρ̄u(t, x)h(t, x). Substituting this into the continuity equation, we find the evolution

equation for the fluid depth

∂th+ ∂x(hu) = 0. (4.2)

Looking at the momentum equation and substituting for the mass flux, we obtain

∂t(ρ̄hu) + ∂x(ρ̄hu2 + p) = 0. (4.3)

Assuming that the fluid is in hydrostatic equilibrium, with the pressure at distance h−y
below the surface given by ρ̄g(h−y), the total pressure is found by integrating vertically

to get

p =
1

2
ρ̄gh2. (4.4)
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Substituting into the momentum equation, we find

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= 0. (4.5)

This can be trivially extended to a 3d domain to give

∂th+ ∂i (hui) = 0, (4.6)

∂t (hui) + ∂j

(
huiuj +

1

2
gh2δij

)
= 0. (4.7)

With the view to deriving a general relativistic form of these equations, it will be useful

to give these equations in a form which does not assume a constant gravitational accel-

eration. Instead of using the fluid depth h as a primitive variable, we can instead use

the geopotential Φ (St-cyr et al., 2008). For a flat spacetime with constant gravitational

field, Φ = gh. This gives us the following alternative form of the Newtonian shallow

water equations

∂tΦ + ∂i (Φui) = 0, (4.8)

∂t (Φui) + ∂j

(
Φuiuj +

1

2
Φ2δij

)
= 0. (4.9)

4.2 General relativistic shallow water equations

When deriving the Newtonian shallow water equations, we integrated the 2d fluid equa-

tions in the vertical direction to obtain their integral average. For the relativistic case,

this is not so straightforward: for a non-static spacetime, what exactly we define to be

the vertical direction becomes less obvious (i.e. rather than just radial lines from the

centre of the star, it might now make more sense to follow the geodesics defined by the

timelike Killing vectors).

We shall begin with the fully compressible GR hydrodynamics equations:

∇µ(ρuµ) = 0, (4.10)

uν∇νuµ +
1

ρh
h ν
µ ∇νp = 0, (4.11)

where h ν
µ = uµu

ν + δ ν
µ is the projection operator, and h = 1 + ε + p

ρ now represents

the fluid enthalpy. Note that we only need the continuity and momentum equations –

by assuming (the relativistic equivalent of) hydrostatic equilibrium, we no longer need

the energy equation.
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4.2.1 Spherical symmetry

For this first derivation, we shall assume that the background spacetime is spherically

symmetric. For a static, spherically symmetric spacetime, Birkhoff’s theorem tells us

that the metric can be written as

ds2 = −e−2Φ(r)dt2 + e2Ψ(r)dr2 + r2dΩ2, (4.12)

where Φ(r) and Ψ(r) are functions of the radius only. The Tolman-Oppenheimer-Volkoff

(TOV) equation for the gradient of the pressure is then given by

∇µp− ρh∇µΦ = 0. (4.13)

Assuming a gamma-law equation of state, we can write ρh in terms of the vertically

averaged density ρ̄ and the pressure p as

ρh = ρ̄+
γ

γ − 1
p. (4.14)

We then find that
γ − 1

γ
∇µ
(

ln

[
ρ̄+

γ

γ − 1
p

])
−∇µΦ = 0. (4.15)

Substituting in the vertically averaged density, the continuity equation can be written

as

∇µ(ρ̄uµΦ) = 0 ⇒ ∇µ(Φuµ) = 0. (4.16)

Using the TOV equation (4.13), we can substitute for the second term in the Euler

equation to get

uν∇νuµ + h ν
µ ∇νΦ = 0. (4.17)

Multiplying by Φ, we can find this in conservative form

∇ν (Φuνuµ) +
1

2
h ν
µ ∇νΦ2 = 0. (4.18)

We can now write the equations in the hyperbolic form used before, with the primitive

variables, conserved variables and fluxes given by

w = (Φ, vj),

q(w) =
(
ΦW,ΦW 2vj

)
= (D,Sj),

f (i)(w) =

(
ΦWvi,ΦW 2vjv

i +
1

2
Φ2δij

)
=

(
Dvi, Sjv

i +
D2

2W 2
δij

)
. (4.19)
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As we have assumed the background spacetime to be spherically symmetric, the compo-

nents of the shift vector βi = 0. The non-trivial components of the stress energy tensor

used in the source terms are given by

T̃ tt = Φgtt, T̃ ij =
1

2
Φ2δij . (4.20)

Integrating the TOV equation (4.13), we find that the pressure p is

p(r) =
γ − 1

γ

(
Ae

γ
γ−1

Φ − ρ̄
)
, (4.21)

where A is some constant that can be defined by setting e.g. the surface pressure p(h) =

ph.

We also find that ρh is

ρh = ρ̄Ae
γ
γ−1

Φ
. (4.22)

By fixing e.g. the surface pressure, we can obtain a value for the constant A, and this

therefore allows us to convert between the shallow water equations’ conserved variables

and those of the compressible equations.

4.2.2 Axisymmetry

In the previous section, an expression was derived for the pressure gradient assuming the

background metric to be spherically symmetric. Such a metric describes the spacetime

that would be produced by a spherical, non-rotating neutron star. However, we are

interested in the effects of the Coriolis force on the propagation of the burning front,

which requires that the background metric is at the very least axisymmetric to account

for the rotation of the neutron star. In this section we shall therefore find an expression

for the pressure gradient assuming axisymmetry, using the integral of motion approach

given in Section 3.4.3 of Gourgoulhon (2010).

For a spherical star rotating at angular velocity Ω, the fluid 4-velocity is given by

u = utk, (4.23)

where

k = ξ + Ωχ (4.24)

is a Killing vector if Ω is constant, and where ξ = ∂t and χ = ∂φ are Killing vectors

generating the timelike and axisymmetric symmetries of the system. Exploiting the

symmetries of the system, the fluid equation of motion can be written as

∇ ln (−hu · k)− u · χ
u · k∇Ω = 0, (4.25)
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where h is the fluid enthalpy. If we assume that Ω is constant, this gives us the first

integral of motion

ln (−hu · k) = const. (4.26)

Given that W = αut and ut = u · ξ, we find that

u · k = ut = gttu
t = −α2W

α
= − α

W
. (4.27)

The first integral therefore becomes

ln

(
h√
(3)γ

)
= const. ⇒ h√

(3)γ
= A, (4.28)

where
√

(3)γ is the square root of the determinant of the spatial 3-metric γij and A is

some constant.

We can use this to find an expression for the pressure using the definition of the enthalpy

from the ideal gas equation of state,

h = 1 +
γp

(γ − 1)ρ
, (4.29)

where γ is the adiabatic index.

Substituting this into (4.28), we find

p =
(γ − 1)ρ

γ

(
A

√
(3)γ − 1

)
. (4.30)

For the shallow water equations, we assume that the density ρ is constant. Taking the

gradient, we then find an expression for the gradient of the pressure which is proportional

to the gradient of the spatial metric determinant

∇p =
(γ − 1)ρ̄

γ
A∇

√
(3)γ. (4.31)

4.2.3 Layer interaction

If there are multiple layers of fluid, extra terms must be included to account for inter-

action between the layers. For a simple system with no heat or mass transfer, buoyancy

terms must be included so that the motion of the layers is coupled together. If there is

some heat or mass transfer, friction and mass transfer terms must also be included.
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In the multilayer shallow water model of Spitkovsky et al. (2002); Bouchot et al. (2010),

the buoyancy terms are included in the momentum equation for layer j as

∂t(hjuj) + ∂x(hju
2
j + gh2

j/2) + ghj∂x

∑
k>j

hk +
∑
k<j

ρk
ρj
hk

 = 0. (4.32)

These terms are simply the gradient of the pressure, ∂xp = ∂x(ρgh) = ρg∂xh, where

ρ = ρ̄h and so appears as just hj in the above equation. Given that for the Newtonian

system Φ = gh, in the relativistic system this term will become Φj∇Φk.

The multilayer relativistic shallow water equations then become

∇µ
(
ΦLuLµ

)
= 0, (4.33)

∇µ
(
ΦLuLν u

Lµ
)

+
1

2
δiν∇i

(
ΦL
)2

+ ΦLδiν∇i
(∑
M>L

ΦM +
∑
M<L

ρM

ρL
ΦM

)
= 0, (4.34)

where the L,M... superscript indicates the layer.

If we instead include heating and friction terms, the Newtonian equations become

∂t(ghj) + ∇ · (ghjuj) + g

(
(Qj−1 −Qj) +

ρj+1

ρj
(Qj+1 −Qj)

)
= 0 (4.35)

∂t(ghjuj) + g∂x(hju
2
j + gh2

j/2) + g(Qj + µf )

(
(uj − uj−1) +

ρj+1

ρj
(uj − uj+1)

)
= 0,

(4.36)

where Qj is the mass flux into the layer and µf is the friction. Note that if j − 1 < 0 or

j + 1 > nlayers, then the pair of terms involving these quantities are ignored.

The presence of the g coefficient of the heating and friction terms complicates matters

when it comes to adding this to the relativistic equations, not least because it remains

a challenge to concretely define heat transport in relativistic fluids from first principles

(Andersson and Lopez-Monsalvo, 2011). We can mitigate this by using a qualitative

model and redefining Q and µ: instead of being mass flux (or flux of h) and the friction

coefficient of h, we redefine them as the flux of Φ = gh and the friction coefficient of Φ,

such that in the Newtonian limit

Q̃ = gQ, µ̃f = gµf . (4.37)
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Including the heating and friction terms as well, the multilayer relativistic shallow water

equations then become

∇µ
(
ΦLuLµ

)
+
(
Q̃L−1 − Q̃L

)
+
ρL+1

ρL

(
Q̃L+1 − Q̃L

)
= 0, (4.38)

∇µ
(
ΦLuLν u

Lµ
)

+
1

2
δiν∇i

(
ΦL
)2

+ ΦLδiν∇i
(∑
M>L

ΦM +
∑
M<L

ρM

ρL
ΦM

)

+ (Q̃L + µ̃f )

([
uLν − uL−1

ν

]
+
ρL+1

ρL
[
uLν − uL+1

ν

])
= 0. (4.39)

4.2.4 Burning

In order to include reactions in the relativistic shallow water equations, we shall first add

reaction terms to the relativistic compressible equations. To model burning, we shall use

the simple 2-species model of Cumming and Bildsten (2000); Spitkovsky et al. (2002)

which simulates the triple alpha reaction. Let us assume that the helium abundance Y

is given by
dY

dt
= − ε3α

EHe
, (4.40)

where ε3α is the heating rate per unit mass due to the triple alpha reaction, given by

Cumming and Bildsten (2000) as

ε3α = 5.3× 1021 erg g−1 s−1 ρ
2
5Y

3

T 3
8

exp

(−44

T8

)
, (4.41)

where ρ5 is the density in units of 105 g cm−3 and T8 is the temperature in units of

108 K. EHe is the energy release per unit mass of helium burning during the triple alpha

process. As shown in Ooyama (1969); Spitkovsky et al. (2002), the height of the top

fluid layer represents the temperature. An increase in the temperature of the fluid due

to heating corresponds to addition of fluid to a shallow water layer and therefore an

increase in its height. An adiabatic temperature rise corresponds to a decrease in the

pressure, which in the shallow water equations also corresponds to an increase in height.

Defining the species creation rate as dY
dt = Ẏ , in the relativistic case the continuity

equation gives

∇µ (ρuµY ) = ρẎ , (4.42)

such that we obtain the new conserved variable and corresponding flux

ζ = ρWY, fζ = ρuiY = ζ

(
vi − βi

α

)
. (4.43)
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The energy equation must also be amended to account for the heating produced during

burning. Starting from the compressible energy equation

∇µ(ρhuµ)− uµ∇µp = ρH, (4.44)

where H is the heating rate per unit mass (which for our case will be equal to ε3α).

Writing this in terms of the conserved variables and performing the 3+1 decomposition,

we get

∂t(
√
γτ) + ∂i

(√−g [τ (vi − βi

α

)
+ pvi

])
=
√
γDH. (4.45)

In order to obtain the reactive relativistic shallow water equations, we can introduce the

mass fraction X to the primitive state vector and ΦXW = DX to the conserved state

vector (as we did for the first of the reactive continuity equations), such that

∇µ (ΦXuµ) = ΦẊ. (4.46)

As the shallow water equations do not evolve any energy or temperature-like quantities,

no heating term is required.

The previous interlayer mass transfer approach makes sense if we assume that the ocean

is highly stratified, with heavier burnt material sinking below the product layer on a

timescale much less than that of the burning (such that they can be treated as in-

stantaneous) and that each layer has its own distinct composition with no (or at least

negligible) mixing. The layers then will represent the physical stratified layers of the

ocean. However, in reality it is likely that these layers will not be quite so distinct, and

so using instead a species mass fraction to represent the ocean composition is more ap-

propriate and makes it a lot easier to link the shallow water and compressible equations.

The mass transfer term is essentially just redefining the layer boundaries, shifting the

geopotential up/down but not necessarily representing real physics.

Adding the evolution of the species mass fraction to the multilayer shallow system, we

can obtain the reactive relativistic multilayer shallow water equations. This extends

(4.38) with the addition of

∇µ
(
ΦLXLuLµ

)
= ΦLẊL. (4.47)

4.2.5 Characteristics of the relativistic equations

In the numerical implementation below, we shall be using the inert relativistic shallow

water equations with a constant gravitational field in the vertical direction. Before we

carry out any tests, we shall investigate the characteristics of these equations in order to
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determine their physical regime of validity. This is necessary as the equations themselves

do not enforce that the speeds remain less than c = 1. As described in Section 1.5.1,

by looking at the eigenvalues of the Jacobian, we can determine the wavespeeds of the

characteristics of the Riemann problem for the system. This will tell us if we need to

place limits on other quantities such as the geopotential in order for the speeds in the

system to remain subluminal and therefore physical.

For the relativistic system with a constant gravitational field in the vertical direction, we

can set Φ = gh in the general relativistic equations (4.19), giving the conserved variables

and fluxes

q =
(
hW, hW 2vj

)
= (D,Sj) ,

f (i) =

(
hWvi, hW

2vjvi +
1

2
gh2δij

)
=

(
Dvi, Sjvi +

gD2

2W 2
δij

)
. (4.48)

In the solution of the Riemann problem, the wavespeeds can be calculated from the

eigenvalues of the Jacobian J(q) = ∂f(q)/∂q. Looking at the 1d case where v = vi, we

obtain the eigenvalues

λ± =
1

2
v
(
Φv2 − Φ + 2

)
± 1

2

√
Φ(1− v2)

√
Φv2 + 4. (4.49)

These are clearly significantly more complex than the eigenvalues of the Newtonian

shallow water equations, λ± = v ±
√

Φ. In order to gain some physical insight, we can

consider various limits of the eigenvalues. Taking the Newtonian limit (small Φ and v),

we find

lim
Φ→0
v→0

λ± = v ±
√

Φ, (4.50)

which is the same as the advective wavespeed in the Newtonian case. Taking the limit

as v → 0, we find the acoustic speed to be

lim
v→0

λ± = ±
√

Φ, (4.51)

which again is the same as for the Newtonian system. This limit has the important

consequence for our numerical tests that in order for the wavespeeds to be physical

(i.e. less than the speed of light c = 1), we will need to make sure that Φ < 1.

To investigate the behaviour of the system as the speed becomes relativistic, we can take

the limit as the Lorentz factor W →∞, or equivalently as W−2 → 0, which is

lim
W−2→0

λ± = 1. (4.52)
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The wave speed therefore tends to c = 1 as the fluid speed becomes highly relativistic.

This demonstrates that the relativistic shallow water equations given above are consis-

tent with special relativity, as a Riemann problem with physical, subluminal initial data

shall produce a solution with physical, subluminal waves.

4.3 Numerical implementation

We implemented a solver for the Newtonian and relativistic shallow water equations by

extending the CASTRO code (Almgren et al., 2010), a compressible solver for astrophysical

flows that is built on top of the AMReX adaptive mesh refinement framework (Zhang et al.,

2016). In the following sections, we demonstrate the results of 1d and 2d dam break

tests performed to validate this implementation.

The Newtonian solver solves the standard shallow water equations in their conservative

form ∂tq + ∂if
(i) = 0, where

q =

 h

hvx

hvy

 and f (i) =

 hvi

hvxvi + 1
2gh

2δix

hvyvi + 1
2gh

2δiy

 . (4.53)

The relativistic solver solves the equations given in (4.48). Note that because we no

longer evolve any thermodynamic variables, reclaiming the primitive variables for the

conserved variables used here is much more straightforward than for the relativistic Euler

equations. The Lorentz factor can be found from

W =

√
1 +

SiSi

D2
, (4.54)

allowing the fluid height and 3-velocity to be calculated from D and Sj .

The spatial integration is carried out using the finite volume method with the MC flux

limiter (as described in Section 1.5.2) and HLLE solver (see Section 3.2.1). The time

integration is carried out using the method of lines with RK3. The shallow water solvers

were implemented by modifying the existing hydrodynamics routines so that they used

the above fluxes, adjusting the conservative/primitive variables conversion routines and

adjusting the HLL solver to use the correct signal speed. For the relativistic solver, care

had to be taken to ensure that the primitive variables were properly calculated (in a

few parts of the original code it was found that the trivial variable recovery possible for

Newtonian systems was assumed – this had to be changed so that it called the conserved

to primitive routine instead).
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4.3.1 Dam break problem

The dam break problem is a special case of the Riemann problem where vL = vR = 0,

so called because it models what would happen if a dam separating two bodies of water

at different heights were to suddenly burst (LeVeque, 2002). It is the shallow water

equivalent of the shock tube problem, with initial data for the height h = h(t, x) and

fluid velocity v = v(t, x) given by

h(0, x) =

hl ifx < 0,

hr ifx > 0,
v(0, x) = 0. (4.55)

In the sections below, a 1d test shall be performed with an initial discontinuity at x = 0.

A 2d problem can be created by producing a circular dam. There exists no analytic

solution for the circular dam, however the problem can be reduced to a 1d problem in

the radial direction with geometric source terms (Alcrudo and Garcia Navarro, 1993).

The 2d solution can therefore be compared against a high resolution 1d solution.

4.3.1.1 Newtonian dam break

The analytic solution for the dam break problem with non-zero initial water height on

both sides was first derived by Stoker (1957). Given the scarcity of this solution in the

literature, its derivation is outlined in Appendix D.

The results of the 1d dam breaking test can be seen in Figure 4.1. The initial conditions

used were hl = 11, hr = 1 and g = 1. The simulation was run at two resolutions to

demonstrate the convergence of the solver. The results match up with the exact solution

very well, particularly for the high resolution run. In the low resolution run, the locations

of the head and tail of the rarefaction fan are slightly over-/underestimated (as can be

seen in the inset plot) and there is a small amount of smearing at the shock front. This

will largely be a result of the slope limiters used in the finite volume solver, as discussed

in Section 1.5.2.5.

In the high resolution run, there are some small oscillations in the velocity in the region

behind the shock front. In the low resolution case, these have been smeared out, however

they have been able to grow in the higher resolution run. They are likely to have occured

due to the large height difference in the initial data, which have produced a very strong

shock. This is supported by the fact that when the height of the left state was reduced

from hl = 11 to hl = 2, these oscillations were no longer present.

Figure 4.2 shows the results of the 2d radial dam breaking test. The initial conditions of

LeVeque (2002) were used: a dam of initial radius r = 0.5 and fluid height h = 2 inside
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Figure 4.1: Results of the Newtonian dam breaking test with hl = 11 and hr = 1 at
time t = 1. The simulation was carried out on a the domain x = [−5, 5], y = [0, 0.15625],
with 256 grid points in the x-direction and 4 in the y-direction for the low resolution
run and 4096 in the x-direction and 64 in the y-direction for the high resolution run,
making it effectively 1d. The plot shows the fluid height and velocity. The inset
plots demonstrate the over/undershooting in the low resolution run at the tail of the

rarefaction.

the dam, and h = 1 outside. As mentioned above, there is no exact solution for this

system that we can compare the results against: instead, the results shall be compared

against a high resolution simulation of the reduced 1d system

∂tq + ∂rf = S, (4.56)

where

q =

(
h

wh

)
, f =

(
wh

w2h+ 1
2gh

2

)
, S =

(
−wh/r
−w2h/r

)
. (4.57)

w =
√
u2 + v2 is the radial velocity and r the radial distance from the centre of the

domain.

Comparing the 1d and 2d solutions, it can be seen that they match up very well for the

high resolution run. In particular, the high resolution 2d simulation has been able to

capture the shock fronts well, with no noticeable smearing or overshooting. The smearing

of the shock fronts is clearly visible in the low resolution run, however as expected this

is much reduced as the resolution is increased, demonstrating the convergence of the

solver.
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Figure 4.2: Results of the Newtonian radial dam breaking test with hin = 2 and
hout = 1 and the initial dam at r = 0.5 at time t = 0.15. The 2d simulation was carried
out on a the domain x = [−1, 1], y = [−1, 1], with 64 × 64 grid points for the low
resolution run and 1028 × 1028 for the high resolution run. The plot shows the fluid

height and momentum in the x-direction at y = 0.

4.3.1.2 Relativistic dam break

The results of the 1d relativistic dam breaking test with hl = 0.9 and hr = 0.05 at time

t = 0.4 can be seen in Figure 4.3. Unfortunately, for this case we do not have an exact

solution to compare against, however we can compare the low resolution run against

the much sharper high resolution run. The low resolution run is more diffusive, with

smearing at the shock front and at the head and tail of the rarefaction. The shock front

has propagated at a significant fraction of the speed of light, with the shocked fluid in

the intermediate region having a high, relativistic speed of 0.635.

The radial dam breaking test results with initial data hin = 0.9 and hout = 0.2 at time

t = 0.5 can be seen in Figures 4.4 and 4.5. As for the Newtonian case, we have no exact

solution against which to compare the results, but can instead compare against a high

resolution 1d solution with radial source terms. The state vector, flux and source terms

for the 1d simulation are given by

q =

(
ΦW

ΦW 2w

)
, f =

(
ΦWw

ΦW 2w2 + 1
2Φ2

)
, S =

(
−ΦW/r

−ΦW 2w/r

)
, (4.58)
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Figure 4.3: Results of the relativistic dam breaking test with hl = 0.9 and hr = 0.05
at time t = 0.4. The simulation was carried out on a the domain x = [−0.5, 0.5],
y = [0, 0.03125], with 128 grid points in the x-direction and 4 in the y-direction for the
low resolution run and 1024 in the x-direction and 32 in the y-direction for the high
resolution run, making it effectively 1d. The plot shows the fluid height and primitive

3-velocity in the x-direction.

where w =
√
v2
x + v2

y is the primitive radial velocity and r the radial distance from the

centre of the domain.

It can be seen that the high resolution 2d simulation matches up well with the 1d

simulation, however there is some smearing at the discontinuities as a result of clipping

by the slope limiters. As can be seen, this smearing is significantly reduced in the high

resolution run, indicating that the solution is converging towards the correct solution.

Although we have used different initial data for this relativistic test than for the previous

Newtonian test in Figure 4.2 in order to ensure the shock speeds remain within the

physical regime, we can compare the tests in the two regimes qualitatively. The profiles

of the conserved variables are mostly similar, however there are a couple of noticeable

differences. The curves on either side of the central peak in the conserved height variable

D = hW are noticeably curved in the relativistic case. For the Newtonian system, these

were straight, linear functions of distance. This is due to the nonlinear coupling of the

wave speed and the Lorentz factor. Another consequence of this nonlinear coupling is

that the region around the maximum/minimum conserved speed variable Sx = hW 2vx is
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Figure 4.4: Results of the relativistic radial dam breaking test with hin = 0.9 and
hout = 0.2 and initial dam radius of r = 0.2 at time t = 0.5 compared against a high
resolution (2048 grid points) 1d simulation with geometric source terms. The simulation
was carried out on a the domain x = [−0.5, 0.5], y = [−0.5, 0.5], with 32×32 grid points
for the low resolution run and 256 × 256 for the high resolution run. The plot shows

the conserved variables hW and hW 2vx.

significantly rounded for the relativistic system. This was a sharp peak for the Newtonian

case.

Tangential velocity

In Section 3.3.1.3, we found that a fast tangential velocity could change the wave pattern

in the relativistic Riemann problem. This was investigated by repeating the 1d dam

breaking test with an additional tangential velocity of vt = 0.5, vt = 0.7 and vt = 0.9.

The results of this can be seen in Figure 4.6. With the addition of a non-zero tangential

velocity, in order for the wavespeeds to remain subluminal the initial height of the fluid

had to be reduced to ensure that D = hW < 1 for even the most relativistic case, where

the Lorentz factor W ∼ 2.3. The initial heights used were hl = 0.41, hr = 0.01.

As the primitive normal velocity in the intermediate star state was already reasonably

high for the case with zero tangential velocity (vx = 0.561), the effects of introducing

a tangential velocity to this system are quite significant. As the tangential velocity is

increased, the shock speed is decreased, such that the shock front has propagated less
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Figure 4.5: Results of the relativistic radial dam breaking test with hin = 0.9 and
hout = 0.2 and initial dam radius of r = 0.2 at time t = 0.5. The simulation was carried
out on a the domain x = [−0.5, 0.5], y = [−0.5, 0.5], with 256 × 256 grid points. The

plot shows the fluid pressure.

far in the final state. We can interpret this physically by thinking of the inertia of the

system. If the fluid is already moving at high speed in the tangential direction, then

it will take a greater force in order to get it to change direction. Consequently, as the

tangential velocity is increased, the shock speed in the normal direction decreases.

The conserved variable hW increases monotonically with increased tangential velocity.

As vt is increased, this increases the energy of the intermediate state, increasing hW in

the region. Given the nonlinear coupling between vt and the Lorentz factor, this change

is nonlinear, with hW in the vt = 0.9 case significantly greater than it is for the runs

with smaller tangential velocities.

As the inset plot shows, increasing vt causes the height in the intermediate state to in-

crease, however this is a very small change, even for vt = 0.9. The normal velocity in the

intermediate state is reduced. This is in accordance with the findings of Section 3.3.1.3,

where the magnitude of the normal velocity in the intermediate state was reduced with

increased tangential velocity, and is what would be expected for a relativistic system

where the overall speed of the flow cannot exceed the speed of light. For the case with

the highest tangential velocity, vt = 0.9, the inset plot shows that in the intermediate

state there are some small oscillations present in the height. This is likely due to the
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Figure 4.6: The effects of introducing a non-zero tangential velocity in the relativistic
dam breaking test. The previous 1d dam breaking test was repeated with the addition
of a non-zero tangential velocity vt. A resolution of 512 was used in the x-direction.
The plots show the conserved variable D = hW , the height and the normal velocity at
time t = 0.6. Increasing vt increases hW , decreases the shock speed and changes the
height and normal velocity in the intermediate state. The inset plot shows a close up

of the height in the intermediate state.

high relativistic velocities involved in this test. The inset plot also shows that there is a

small undershoot at the tail of the rarefaction for all values of vt.

4.4 Summary

In this chapter, we looked at the shallow water equations, considering how they may

be extended to model relativistic fluids and include multiple layers and reactions. We

began by looking at the motivation behind the shallow water equations and how they

can be derived from the compressible fluid equations. This derivation was then repeated

for the general relativistic fluid equations to obtain a set of general relativistic shallow
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water equations. In order to compare these with the Newtonian equations, a non-

traditional form of the Newtonian equations was used which evolved the geopotential of

the fluid layer rather than the fluid height. This was done in order for it to be possible

to model a varying gravitational field in the general relativistic case (the traditional

form of the equations assumes constant gravitational acceleration g). The tests of the

numerical implementation presented here all use a constant graviational field, however

this is something that we hope to implement in the future. The shallow water equations

were then extended to allow for multiple layers of fluid, adding buoyancy terms, and

adding an equation for the evolution of the species mass fraction(s) so that reactions

could be modelled.

We then implemented the relativistic form of the single layer equations in the CASTRO

hydrodynamics code. Results of dam breaking tests in 1d and 2d were presented, demon-

strating the performance of the code. For the Newtonian 1d dam breaking test, the code

was shown to reproduce analytic results. The 2d circular dam breaking tests were shown

to match up well with high resolution 1d dam breaking simulations with geometric source

terms. The effects of a non-zero tangential velocity were investigated for the relativistic

1d dam breaking problem. As found in the previous chapter, it was shown that varying

the tangential velocity changes the shock speed and intermediate state.

The numerical implementation of the relativistic shallow water equations presented here

can be considered special relativistic in the horizontal plane of the domain, where we have

used the Minkowski metric. However, a key component of the shallow water equations

is the inclusion of a gravitational field in the vertical direction. This gravitational field

means that overall the metric for our system is non-Minkowski, and we can consider

the implementation to be general relativistic for a system with a constant gravitational

field. In the future, we intend to extend this to the full general relativistic shallow water

equations, allowing for a gravitational field that may vary in time and/or across the

physical domain to be studied. This will allow us to use a Kerr- or Schwarzschild-like

metric to investigate the effects of frame dragging and the oblateness of the neutron star

on X-ray burst propagation.

The numerical implementation we have demonstrated includes only the single layer,

inert shallow water equations. In the future, we hope to extend this to multiple layers

and reactions using the formulation presented in this chapter.
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In previous chapters, we have looked at modelling the small scale features of the burning

front using the low Mach number approximation, and at modelling the large scale,

Coriolis-force dominated front propagation using the shallow water equations. In this

chapter, we shall combine these different models in order to produce a multiscale model

which incorporates the physics from the smallest centimetre scales up to the scale of the

entire neutron star.

In standard mesh refinement techniques (Berger and Oliger, 1984), the same physical

model is used at all levels of the mesh refinement hierarchy. However, by using different

physical models at different resolutions, we will be able to better capture the physics at

different length scales: a model that works well at one length scale is unlikely to be the

best model at length scales 6 orders of magnitude smaller.

Adaptive mesh and algorithm refinement (AMAR) (Weinan, 2011) builds on the stan-

dard adaptive mesh refinement (AMR) algorithm, adding the possibility for different

physical models or numerical solvers to be used at different levels of the grid hierarchy.

This can offer significant computational speed up, with cheaper models used on coarser

grids where accuracy is less important. It can also help model systems where there exists

a separation of scales, with some processes operating at larger scales only, and some at

smaller scales only. Allowing for different physical models at these different scales can

help to better capture the physics of these processes.

In our system, we wish to model scales from ∼ 10 km down to ∼ 1 cm. This will allow

us to capture both the large scale Coriolis forces and the small scale nuclear reactions

(Malone et al., 2011). Assuming the coarsest grids to have a resolution of ∼ 10 m, we

estimate that around 10 levels of mesh refinement will be required, giving an increase in

resolution of a factor of 210 ∼ 103 at the finest level. The coarsest grid shall cover the

whole domain and evolve the system using the single layer shallow water equations. This

shall then be refined to grids which will evolve the multilayer shallow water equations.

The next levels of refinement, around the 1 m scale, will evolve the system using the fully

compressible fluid equations. The finest grids shall cover only the part of the domain

at the flame front and its immediate vicinity, and will evolve this using the low Mach

number equations.

115
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To couple these different grids together, it will be necessary to communicate the data

between them where they overlap and intersect. As the grids have different resolutions,

mesh refinement methods must be used to increase or decrease the resolution. On

different grids we will be using different physical models and so will use different sets

of conserved variables. Consequently, we will need to develop techniques to consistently

convert variables between the models.

At this point, it may appear that the intermediate compressible model is unnecessary:

why not use a multiscale model comprised of the shallow water and low Mach number

models alone? Whilst the low Mach number model will require much fewer timesteps

than a compressible simulation of the same spatial resolution, it is a lot more expensive to

evolve a single timestep of the low Mach number model since it requires computationally

time-consuming projection methods and elliptic solves. This trade off means that on the

coarser grids with fewer grid points and a less restrictive timestep condition, it is more

efficient to use the faster compressible model. As suggested by Heyl (2004), there could

be large scale modes in the ocean that interact with the small scale features in the flame

front as they pass through. In order to get proper coupling between these small and

large scale features, it is necessary to have sufficient compressible levels, as described by

Motheau et al. (2018).

In this chapter, we shall begin by looking at adaptive mesh refinement and adaptive mesh

and algorithm refinement. We shall then describe the additional numerical methods

required to implement the multiscale model, before showing the results of tests performed

on the numerical implementation which demonstrate its performance and limitations. It

is the overall plan of this work to include the low Mach number, compressible and shallow

water models. However, in the numerical implementation of the multiscale scheme

presented in this work we shall focus on a large scale model, coupling the compressible

and shallow water models only.

5.1 Adaptive mesh refinement

Adaptive mesh refinement is a numerical technique used to efficiently model large phys-

ical domains whilst retaining the high resolution required to resolve features such as

boundary layers or regions with steep gradients, shocks or discontinuities. It was first

developed by Berger and Oliger (1984) for the solution of hyperbolic partial differential

equations. This was later developed by Berger and Colella (1989) to produce a conser-

vative scheme for modelling gas dynamics, which was then extended to the 3d case by

Bell et al. (1994). There are now a number of high level AMR frameworks, including

AMReX (Zhang et al., 2016), Cactus (Goodale et al., 2003), Chombo (Colella et al., 2013),

Enzo (O’Shea et al., 2004; Bryan et al., 2014), FLASH (Fryxell et al., 2000) and Paramesh

(MacNeice et al., 2000) (see Dubey et al. (2014) for a review).
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G0,0

G1,1

G1,0
G2,1

G2,0

Figure 5.1: Example of a 2d AMR grid hierarchy with 3 levels of mesh refinement and
refinement ratio r` = 2. The entire domain is covered by the coarsest level 0 black grid,
`0 = G0,0. The black line indicates a feature of interest that requires higher resolution.
This feature is enclosed within the red level 1 grids `1 =

⋃
iG1,i and the blue level 2

grids `2 =
⋃

iG2,i.

Several different approaches to AMR exist, including unstructured grids, mesh distortion

and point-wise structured refinement; we shall use the original block-structured approach

of Berger and Oliger (1984). The basic idea of block-structured AMR is to cover the

entire domain with a coarse grid, then adaptively place finer grids on regions where

higher resolution is needed. Finer grids still can be added until the required resolution

is reached. If the problem being solved is time dependent, the locations of the regions

requiring higher resolution are likely to move with time. Consequently, the grids must

be updated and adapted throughout the course of the simulation.

In the sections below, we shall outline the main principles of block-structured AMR.

Further details can be found in Bell and Day (2011).

5.1.1 Grid hierarchy

The set of grids of increasing resolution is known as the grid hierarchy. An example of a

grid hierarchy for a 2d problem can be seen in Figure 5.1. The entire domain is covered

by the coarsest grid, G0,0. In this example, there is a feature of interest (indicated by the

thick black line), around which we desire higher resolution. We therefore place higher

resolution grids in the vicinity of this feature so that it is completely enclosed within

grids of the finest resolution. The ratio of the resolutions between each successive level

of grids is known as the refinement ratio, r` = ∆x`/∆x`+1 – this is typically 2. Grids

must satisfy ‘proper nesting requirements’: grids at finer levels must start and end at

the corners of cells in the next coarsest level, and there must be at least nbuf > 0 level `j

cells between the edge of grids on level `j+1 and any uncovered `j−1 cells, unless the level

`j+1 grid is touching the boundary of the physical domain. An important consequence

of this is that interfaces between adjacent levels coincide with cell boundaries on both
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levels. As can be seen in the figure, a fine grid can cross a coarser grid boundary and

still be properly nested.

Note that it is not necessary for all the grids in a particular level to be connected. If

there were another feature of interest elsewhere in the domain, it would be possible for

finer grids to be created to cover that feature, with none of these grids intersecting with

or connected to the existing finer grids.

As the solution evolves with time, the feature of interest may move outside of the region

covered by the finer grid, or change in a way that it is no longer necessary to model the

feature at such high a resolution. At discrete intervals between timesteps, the simulation

will therefore assess the current state of the grids and regrid if necessary. Regridding

involves investigating the current cells to see if they satisfy some tagging criteria set by

the user. Tagged cells are then grouped into rectangular boxes, and new grids generated

or old grids destroyed where required.

5.1.2 Synchronisation

When evolving the system, finer grids are typically evolved using a shorter timestep,

∆t` = ∆t0/r
`. For every timestep of the coarse grid, grids on level ` are evolved by r`

timesteps. This is known as subcycling. For each subcycled timestep, ghost data will

be required at the interfaces of the fine grids with their adjacent coarser grids. It will

therefore be necessary to map data between the coarse and fine grids. Data will also

need to be mapped from coarser grids to finer grids when new grids are created during

regridding. Data on the fine grid is mapped to the coarse grid using a restriction routine,

and mapped from the coarse grid to the fine grid using an interpolation routine. The

restriction and interpolation operations can take the form of simple averaging and linear

interpolation, or involve more elaborate higher order reconstruction routines depending

on the behaviour of the system and the accuracy required.

The second step of synchronisation between grids is refluxing. This corrects for the

difference in coarse and fine grid fluxes at the fine grid boundaries to ensure conservation.

The correction to the coarse cell on level ` at the fine grid boundary is made by taking

the fluxes on level ` + 1 averaged over the level ` timestep and spatially averaged over

the level ` cell face.

5.1.3 Error estimation and regridding

Error estimation routines indicate areas where a higher solution accuracy is required.

Such areas are then tagged for further refinement. The method used to estimate the

error can be very simple, e.g. searching for cells where the velocity exceeds some value, or

can be more sophisticated, e.g. calculating the error on the coarse grid using Richardson
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extrapolation. In Richardson extrapolation, the data on the grid is coarsened then

integrated for a timestep, then compared to the result of integrating first then coarsening.

The method used for error estimation is ultimately determined by the properties of the

system to be modelled, the computational constraints of the problem and the level of

accuracy desired.

Once the cells requiring refinement have been tagged, these cells are clustered together

to form rectangular boxes and refined to generate the new grids. The size and number of

these new finer grids is determined by the number of buffer cells chosen to surround each

tagged cell and the grid efficiency η = (number of cells tagged)/(number of cells in new

grids). Regridding must be done simultaneously at all finer levels to ensure that the new

grid hierarchy does not violate proper nesting requirements. It is often not necessary

to regrid every timestep: provided a sufficient number of buffer cells have been chosen,

regions requiring higher resolution should not move outside of the finer grids over the

course of a single timestep. As regridding is quite a costly operation, it is therefore a

more optimal solution to instead regrid every integer n > 1 timesteps.

5.1.4 Reconstruction

Prolongation and restriction methods communicate the data between the different grid

resolutions. We shall outline these methods below for a 2d grid with a refinement ratio

r = 2; they can be trivially extended to higher dimensions.

Prolongation

Prolongation reconstructs variables on the fine grid from those on the coarse grid. This

is done by first calculating the (limited) slopes in the cells in the x and y directions, Sx

and Sy, then interpolating. Given the coarse state at the centre of cell (2i, 2j) in the

fine grid coordinate system qc,2i,2j , we then calculate the fine grid states within this cell

qf,2i,2j (as shown by Figure 5.2) as:

qf,2i,2j = qc,2i,2j −
1

4
(Sx∆x+ Sy∆y),

qf,2i+1,2j = qc,2i,2j +
1

4
(Sx∆x− Sy∆y),

qf,2i,2j+1 = qc,2i,2j +
1

4
(−Sx∆x+ Sy∆y),

qf,2i+1,2j+1 = qc,2i,2j +
1

4
(Sx∆x+ Sy∆y). (5.1)

∆x and ∆y are the grid spacings of the coarse grid.
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qc,2i,2j

qf,2i,2j+1

qf,2i,2j

qf,2i+1,2j+1

qf,2i+1,2j

Figure 5.2: Coarse grid (solid black) with respect to fine grid (dashed grey). Note
that the cells are labelled with respect to the position of the bottom left hand corner,

but the cell averaged states are assigned to live at the centres of the cells.

Restriction

Restriction interpolates the variables on the fine grid to the coarse grid. To obtain the

variables on the coarse grid, we interpolate, taking the average of its four neighbouring

fine grid cells:

qc,2i,2j =
1

4

(
qf,2i,2j + qf,2i+1,2j + qf,2i,2j+1 + qf,2i+1,2j+1

)
. (5.2)

5.1.5 AMR algorithm

An outline of the block-structured AMR algorithm for a system with 2 levels and the

refinement ratio r is as follows:

While time tc < tend:

� Regrid (if it is time)

� Advance coarse grids in time tc → tc + ∆tc

� Advance fine grids in time r times

� Synchronise coarse and fine data

This can then be extended recursively to an arbitrary number of levels of refinement.
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5.2 Adaptive mesh and algorithm refinement

As described above, in standard AMR, the same physical model is evolved on all grids.

All grids will therefore store and evolve the same sets of physical variables. In adaptive

mesh and algorithm refinement, this is no longer the case. In order to better capture

the physics at the smaller scales, a different physical model may be evolved or a more

accurate numerical method may be used on the finer grids. AMAR is a relatively new

technique that is starting to be used more widely for systems involving physics across

multiple scales. It has been used to model a number of different physical systems. Below

are listed a few recent examples.

� Garcia et al. (1999) used AMAR to embed a particle method within a continuum

model, using a strongly coupled scheme where both methods simultaneously eval-

uate different regions of flow and continuously exchange information across the

interface (Weinan, 2011).

� In the context of modelling CO2 injected into aquifers, Møyner and Nilsen (2017);

Becker et al. (2017) coupled multilayer vertical equilibrium models (which are

similar to the shallow water equations and found by integrating all quantities

vertically) with the compressible equations to produce a hybrid model. At large

scales away from the gas inlet, the coarser vertical equilibrium models are used; at

finer scales near the inlet, the compressible equations are used. At the interface,

details in the vertical direction are reconstructed from the imposed equilibrium

pressure distribution.

� A hybrid low Mach number/compressible scheme has recently been developed by

Motheau et al. (2018) and implemented in their LAMBDA code. Built using routines

from CASTRO and MAESTRO with AMReX for the AMR, this model uses a compressible

solver for the coarse grids and a low Mach number solver for the fine grids. This

allows them to capture small amplitude, large wavelength acoustic waves which

would be filtered out by a low Mach-only model.

� Xu et al. (2016) used a multiscale model to investigate the propagation of defects

in solids, using a nonlocal peridynamics model near the discontinuity, and a local

PDE model away from the discontinuity. In the immediate vicinity of the defect,

discontinuous Galerkin methods (which are better suited to modelling systems with

discontinuities) were used. Away from the defect, cheaper continuous Galerkin

methods were used instead.

The introduction of additional physical models and numerical solvers adds some addi-

tional complexity to the AMAR algorithm. The various physical models may evolve

different sets of physical variables. The finer grids may be defined using a different
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coordinate system, such that coarse grid boundaries no longer coincide with fine grid

boundaries. Solvers may involve non-local calculations requiring data defined on mul-

tiple grids and levels. As a result, synchronisation of data between the different grids

becomes much more complex (especially if the code is run in parallel). Standard restric-

tion and interpolation routines may need to be modified in order to convert between the

different sets of physical variables in a consistent way and synchronise data across grids

with different coordinate systems.

It is likely that the fine grid model will have different timestep restrictions to the coarse

grid model, such that ∆tc 6= r∆tf . It may even be the case that the system is evolved

with ‘inverse’ subcycling, with coarse grids evolved more frequently than finer grids. For

example, for a model comprised of compressible hydrodynamics on the coarse grid and

the low Mach number model on the finer grids (such as that of Motheau et al. (2018)),

the CFL condition for the compressible grids will be much more restrictive than that for

the low Mach number grids: ∆tLM/∆tcomp ∼ 1/Ma. The timesteps for the compressible

grids will therefore be much shorter than for the low Mach number grids, and for each

advancement of the coarsest low Mach number grid, the finest compressible grid will be

advanced O(1/Ma) times.

These additional complexities are some of the main reasons why AMAR has not been

used more widely in the past, as they often require significant modifications to existing

AMR frameworks. Of the examples listed above, our implementation is clearly most

similar to the work of Motheau et al. (2018): our work can be thought of as a com-

plementary approach to modelling similar astrophysical systems. However, rather than

coupling the compressible fluid equations to the low Mach number equations to better

model the small scale physics, we have chosen to focus on the opposite end of the scale,

coupling the compressible fluid equations to the shallow water equations so we can bet-

ter model the large scale physics. In the future, it would be interesting to join these two

approaches together, producing a single model that can investigate the physics across

the entire range of scales relevant for modelling X-ray bursts.

5.3 Analytic multiscale methods

In problems such as those we wish to investigate, it is often the case that the state

variables can be split into two: a set of slow variables describing slower processes that

happen on longer timescales, and a set of fast variables describing faster processes that

occur on shorter timescales. The processes that we are more interested in are described

by the slow variables, so it would be useful to extract these from the full equations to

obtain evolution equations for the slow variables alone. An analytic technique used in

multiscale modelling to obtain a model for these slow variables is to introduce a small

parameter ε to explicitly separate them from the fast variables, and use a multiscale
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expansion to match terms of the same timescale (Weinan, 2011). This small parameter

essentially rescales the slow variables to make them O(1), while reducing the fast vari-

ables to be O(ε). As we shall demonstrate in the next couple of sections, this technique

provides an alternative way to derive the low Mach number and shallow water equations

which is consistent with the traditional approaches used in previous chapters.

5.3.1 Low Mach number equations

To illustrate this method, we shall first use it to derive the Newtonian low Mach number

equations, given above in (2.10)–(2.12). In this system, the small parameter will be the

Mach number. To begin with, we shall first consider the momentum equation

Dtvi +
1

ρ
∂ip = −∂iφ, (5.3)

where Dt = ∂t + vi∂i is the material derivative. If we non-dimensionalise this, setting

all variables to be the product of a dimensionless variable q̂ and a reference parameter

qr, such that q = q̂qr, then we obtain the dimensionless momentum equation

Dtvi +
1

Ma2

1

ρ
∂ip = − 1

Fr2∂iφ, (5.4)

where Fr = vr/
√
gr`r is the (reference) Froude number. We now introduce the small

parameter ε ∼ Ma ∼ Fr, such that the dimensionless momentum equation becomes

Dtvi + ε−2 1

ρ
∂ip = −ε−2∂iφ. (5.5)

If we assume that all variables can be decomposed into a slow variable q0 and a fast

variable q1 like q = q0 + εq1, then the different scales will separate at each order of ε.

This also works for the time variable, which we can decompose into a slow timescale τ

and a fast timescale t̃ such that t̃ = ετ and Dt → Dτ + εDt̃. Looking at the order-by-

order expansion, the O(ε−2) terms give us an expression for the divergence of the slow

timescale pressure,
1

ρ0
∂ip0 = −∂iφ0, (5.6)

the O(ε−1) terms give
1

ρ0
∂ip1 −

1

ρ2
0

ρ1∂ip0 = −∂iφ1, (5.7)

and the O(ε0) terms give an evolution equation for the slow timescale velocity,

Dτ (v0)i +
1

ρ0
∂ip2 −

1

ρ1
∂ip1 = 0. (5.8)
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Repeating this analysis for the continuity equation and taking the leading order part,

we get an evolution equation for the slow timescale density,

Dτρ0 + ρ0∂i(v0)i = 0. (5.9)

Similarly, taking the leading order part of the energy equation (and assuming an ideal

gas equation of state) gives us an evolution equation for the slow timescale pressure,

Dτp0 + γp0∂i(v0)i = 0. (5.10)

Taking this last equation gives us a divergence constraint for the slow timescale velocity,

∂i(v0)i = − 1

γp0
Dτp0. (5.11)

Just as we did in our original derivation, we have obtained this divergence constraint

from the energy equation and the equation of state. If we impose that the slow timescale

pressure p0 is constant in time such that Dτp0 = 0, then we regain the divergence

constraint of incompressible hydrodynamics for the slow timescale velocity.

Given that in our problem the gravitational field will be constant in time so φ = φ0, and

taking (5.6), we find that the slow timescale pressure must be in hydrostatic equilibrium,

∂ip0 = −ρ0∂iφ. (5.12)

As φ1 = 0, (5.7) now tells us that p1 is a linear function of p0 (i.e. it is not a linearly

independent variable),

∂ip1 =
ρ1

ρ0
∂ip0 = −ρ1∂iφ. (5.13)

This is consistent with the ‘traditional’ derivation of the low Mach number equations,

where we find that lowest order pressure perturbations of relevance to the low Mach

number approximation are at second order in Mach number.

Finally, from the momentum equation (5.8), we find the familiar low Mach number

expression containing the derivative of the second order pressure perturbation,

Dτ (v0)i +
1

ρ0
∂ip2 = −∂iφ. (5.14)

Comparing this to the Newtonian low Mach number momentum equation (2.11), we see

that we can identify p2 = π. The β0 compressibility factor of (2.11) is absent in this

multiscale derivation – as in the original derivation (see Section B.4), it is still necessary

to add this term in ‘by hand’ by carefully considering the energy conservation along

particle paths.
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5.3.2 Shallow water equations

Another system of equations we can derive using the multiscale approach are the Newto-

nian shallow water equations. In this case, instead of looking at slow and fast variables,

we can instead think of small scale and large scale variables describing processes that

occur at shorter and longer length scales. We shall use the small parameter to rescale

the vertical direction under the assumption that this is much smaller in extent than the

horizontal directions. To do this, we define the rescaled vertical coordinate Z = z/ε and

let I, J denote the horizontal coordinates, such that we can now write the continuity

and momentum equations as

∂tρ+ ∂I
(
ρvI
)

+ ε−1∂Z
(
ρvZ

)
= 0, (5.15)

∂t(ρvJ) + ∂I
(
ρvJv

I + δIJp
)

+ ε−1∂Z
(
ρvJv

Z
)

= −ρ∂Jφ, (5.16)

∂t(ρvZ) + ∂I
(
ρvZv

I
)

+ ε−1∂Z
(
ρvZv

Z + p
)

= −ρ∂Zφ. (5.17)

We next decompose the variables into a large scale part q0 and a small scale part q1,

q = q0(t, xI) + εq1(t, xI , Z). Substituting this in and keeping terms up to O(ε0), we get

∂tρ0 + ∂I
(
ρ0v

I
0

)
+ ε−1∂Z

(
ε
[
ρ1v

Z
0 + ρ0v

Z
1

])
= 0, (5.18)

∂t (ρ0v0J) + ∂I
(
ρ0v0Jv

I
0 + δIJp0

)
+

ε−1∂Z
(
ε
[
ρ1v0Jv

Z
0 + ρ0v1Jv

Z
0 + ρ0v0Jv

Z
1

])
= −ρ0∂Jφ0, (5.19)

∂t (ρ0v0Z) + ∂I
(
ρ0v0Zv

I
0

)
+

ε−1∂Z
(
ε
[
ρ1v0Zv

Z
0 + ρ0v1Zv

Z
0 + ρ0v0Zv

Z
1 + p1

])
= 0, (5.20)

where we have enforced the fact that the small scale variables are constant in the vertical

direction, ∂Zq0 = 0. We now impose a fixed boundary at the bottom, such that vZ = 0

at this boundary. As v0Z is a function of time and the horizontal directions only, v0Z =

v0Z(t, xI), this means that v0Z = 0 everywhere. This reduces our equations to

∂tρ0 + ∂I
(
ρ0v

I
0

)
+ ∂Z

(
ρ0v

Z
1

)
= 0, (5.21)

∂t (ρ0v0J) + ∂I
(
ρ0v0Jv

I
0 + δIJp0

)
+ ∂Z

(
ρ0v0Jv

Z
1

)
= −ρ0∂Jφ0. (5.22)

Finally, we can integrate the equations in the vertical direction, denoting vertically

integrated quantities by angle brackets to obtain

∂t〈ρ0〉+ ∂I
〈
ρ0v

I
0

〉
= 0, (5.23)

∂t 〈ρ0v0J〉+ ∂I
〈
ρ0v0Jv

I
0 + δIJp0

〉
= −〈ρ0∂Jφ0〉 . (5.24)

If we define the gravitational potential to be ∂jφ = gδzj , the 〈ρ0∂Jφ0〉 term then vanishes.

By definition, ρ0 is constant in Z, so using the equation for hydrostatic equilibrium

p0(z) = gρ0z, (5.25)
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we get

〈p0〉 =
1

2
gρ0H

2, (5.26)

where H = H(t, xI) is the fluid height. Again, using the fact that ρ0 is constant in Z,

we find that its vertical integral must be 〈ρ0〉 = ρ0H. Substituting this in and letting

uI = 〈vI0〉/H, we obtain the shallow water equations in their standard form

∂tH + ∂I (HuI) = 0, (5.27)

∂t (HuJ) + ∂I

(
HuJu

I +
1

2
gH2δIJ

)
= 0. (5.28)

5.3.3 Limitations of the multiscale approach

From the above multiscale derivations of the low Mach number and shallow water equa-

tions, we can gain insight into a number of limitations of the multiscale approach. With

the introduction of the small parameter ε, we have explicitly separated out the slow

and fast timescales for the low Mach number equations, and the vertical and horizontal

spatial scales in the shallow water equations. By separating the scales, we have assumed

that there is no interaction of features at the different scales. For the problems we are

interested in, this is likely to be a valid assumption for most of the behaviour we wish

to model, however it is important to keep this in mind when e.g. designing the tagging

criteria for the mesh refinement so that features are not lost when passed between the

two scales in the numerical implementation.

However, this may be more problematic when modelling other systems. The lack of

interaction between scales is particularly limiting for systems where there are resonances

between features at different scales. If this is the case, the modelled solution will pass

through these resonances, and will be unable to be ‘locked in’ to them, as may be the

case in the true physical solution. As shall be described further in Section 6, an example

of an astrophysical system with resonances between features at different scales which

the multiscale approach would have difficultly capturing is the p-g coupling instability.

In splitting the scales, we have also assumed that the higher order terms grow sublinearly

as a function of the fast timescale, i.e. q1(τ, t̃)/τ → 0 as τ → ∞. This is a necessary

condition to ensure that the leading order terms remain dominant over the time period

of interest. The multiscale approach will fail to accurately model systems where this is

not the case.

5.4 Numerical methods

In the following sections we shall describe the numerical methods used to implement

our multiscale model. For simplicity, we shall concentrate only on a system with two
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Figure 5.3: Equally spaced layers of the compressible grid (solid grey) embedded in
the shallow water grid with variably spaced layers (dashed red). Note that the bottom
layers of the shallow water and compressible grids coincide and that the top layer of

the compressible grid must be beneath the fluid surface.

levels of refinement which evolves the shallow water equations on the coarse grid and

the compressible equations on the fine grid(s).

In going between the shallow water and compressible models, the problem is different

in the vertical and horizontal directions. In the horizontal directions, the compressible

grid cells match up in a uniform, consistent way with the shallow water ones: the square

shallow water cells are split into four smaller square cells (see Figure 5.2). However,

the problem is more difficult in the vertical direction. The compressible grid layers are

uniformly spaced in height, but for the multilayer shallow water system, the layers are not

uniformly spaced and each one can intersect several compressible layers (see Figure 5.3).

Note that the surface shallow water layer must be above the top compressible layer –

the compressible cells must be contained within the fluid (i.e. they should not extend

into the atmosphere above the fluid surface). In the single layer shallow water model,

we only model the top surface layer.

In the multiscale model, at the level where we convert from one model to another we have

two grids of the same resolution but with the two different sets of conserved variables

of the models to be converted between. The conversion between the models is therefore

always done between grids of equal resolution. As described above, for the shallow

water to compressible case, this still requires some interpolation and/or refinement in

the vertical direction, which shall be outlined below.
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5.4.1 Shallow water to compressible

Single layer shallow water

In order to simplify the code, the program treats all models as if they operate over the

same number of dimensions. In the single layer case, this means that we store the 1d (2d)

shallow water variables on a 2d (3d) grid. All values in the extra dimension should be

the same, however over the course of a timestep small variations may introduced. When

converting the variables back to the compressible grids, we must therefore average the

shallow water quantities in the vertical direction to smooth out these small variations.

As shall be shown in the examples below, care must be taken when performing this

operation. In AMReX, each grid may be divided up into multiple patches which may

then be assigned to different parallel processes. Averaging in the vertical direction may

therefore require averaging variables across multiple parallel processes.

Multilayer shallow water

In the multilayer case, we will need to interpolate the data in the vertical direction

in order to represent it on the compressible grid in addition to converting it from the

shallow water to the compressible variables. Each of the shallow water layers are defined

as surfaces of equal pressure, with p = 0 at the surface. Each layer is at constant density,

which is defined in the initial data of the problem.

The first step of the shallow water to compressible conversion is to obtain the height

of each layer and reclaim the 3-velocities from the conserved variables. The height is

calculated from the geopotential as

h(Φ) =
2

1− e−2Φ
−R, (5.29)

where R is the radius of the star at its crust at the base of the ocean. The next step is

to interpolate ρ, p and vi in the vertical direction to obtain those quantities at each of

the layers of the compressible grid. The height of the compressible layer on which the

state is to be determined, hC, is calculated. For each (x, y) grid point, the heights of

the shallow water layers at that point are calculated, starting from the top layer, until

one is reached that is below hC. Calling this layer `, we have now found the two shallow

water layers above and below the compressible layer at this coarse grid point: ` and

`− 1. The state at hC will then be given by

qC = (1− α)qC(qSW,`−1) + αqC(qSW,`), (5.30)
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where α is the ‘layer fraction’, representing where the compressible layer is with respect

to its neighbouring shallow water layers and is given by

α =
hC − h`−1

h` − h`−1
. (5.31)

Once we have interpolated the primitive variables to the compressible grid, the conserved

compressible variables are calculated. At the vertical boundaries, it is necessary to

enforce hydrostatic equilibrium at this point to ensure that there is a pressure gradient;

as discussed in Section 1.5.2.8, if the standard outflow conditions are used, this can lead

to unphysical mass transfer and instabilities.

Note that we have chosen to interpolate the primitive variables rather than the conserved

variables as it was found to be more stable. It was found that the conserved variables

can vary with height in a significantly nonlinear way, such that their linear interpolation

can lead to large inaccuracies.

5.4.2 Compressible to shallow water

Single layer shallow water

When calculating the shallow water variables in the single layer case, we use the com-

pressible variables at the base of the ocean. As in the shallow water to compressible

case, this is complicated by the fact that there may be multiple patches in the vertical

direction. As (for the sake of simplicity) we treat the shallow water model as a fully

2d (3d) model (rather than the 1d (2d) model it represents physically), grid cells may

have to look at the cells in a patch ‘below’ in order to find the state at the base of

the ocean (rather than at the base of that patch). To do this, we create a new grid

containing the values of the compressible grid at the base of the ocean and synchronise

across patches on different processes before beginning the compressible to shallow water

variable conversion.

Multilayer shallow water

In the multilayer case, the first step of the compressible to shallow water conversion is

to perform the conserved to primitive calculation for the compressible variables in order

to obtain p, ρ and vi. The next step is to use the pressure to calculate the heights of the

shallow water layers at each (x, y) point and find where they intersect the compressible

grid. This can be done using simple linear interpolation or by using the equation for

hydrostatic equilibrium to more accurately model the pressure profile between layers.

Once the heights have been obtained, the horizontal 3-velocities vi are calculated on the

shallow water grid using interpolation in the vertical direction.
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Finally, the shallow water variables are calculated on the shallow water grid. The

geopotential is calculated from the layer heights by inverting (5.29); from this and the

3-velocities the conserved shallow water variables are obtained.

5.5 Numerical implementation

The multiscale model was implemented by extending CASTRO and AMReX. The numerical

implementation of the shallow water equations was demonstrated above in Section 4.3.

Here, we shall first demonstrate the compressible solver for Newtonian and relativistic

systems, then present tests demonstrating the performance and current limitations of

the multiscale solver.

5.5.1 Compressible solver

The original CASTRO code was designed for studying Newtonian compressible hydrody-

namics. We have extended it to special relativistic hydrodynamics. Its performance

shall be demonstrated in the following tests.

As for the shallow water solver, the spatial integration is carried out using the finite

volume method with the MC flux slope limiter and HLLE solver, and the time integration

is carried out using the method of lines with RK3. The compressible solver solves

the standard special relativistic hydrodynamics equations in conservative form with

gravitational source terms. The conserved state vector, flux and sources are given by

q =

 ρW

ρhW 2vj

ρhW 2 − p− ρW

 , f (i) =

 ρWvi

ρhW 2vjvi + δijp

(ρhW 2 − ρW )vi

 , s =

 −ρWg

0

−ρWvzg

 ,

(5.32)

where vj are the components of the primitive velocity and vz is the component in the

positive vertical direction.

5.5.1.1 Sod shock tube

The Sod shock tube (Sod, 1978) is a standard test used to demonstrate hydrodynamics

codes’ performance when resolving shock fronts. It is also one of the few problems in

special relativistic hydrodynamics for which an exact solution is known. It takes the

form of a Riemann problem: the initial data consists of a left and right state, separated

by a discontinuity. We shall use the initial data given in Table 5.1 in both our Newtonian

and special relativistic tests.
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ρ vx vy p

left 1 0 0 1
right 0.125 0 0 0.1

Table 5.1: Initial conditions for the Sod shock tube (Sod, 1978). The discontinuity is
located at x = 0 and the adiabatic index is γ = 1.4.
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Figure 5.4: Wave structure of the shock tube problem with initial states qL and qR,
separated by a discontinuity at x = 0. At time t > 0, the solution consists of a left-going
rarefaction, two intermediate ‘star’ states of constant pressure and velocity separated

by a contact discontinuity, and a right-going shock wave with speed vS .

Newtonian shock tube

The exact solution of the shock tube is given by Sod (1978); Toro (1999). The struc-

ture of the solution can be seen in Figure 5.4: it consists of a left-going rarefaction,

two intermediate star states of constant pressure and velocity separated by a contact

discontinuity, and a right-going shock.

The results of the test, performed using the original Newtonian CASTRO code, can be seen

in Figure 5.5. The exact solution was calculated using the method given by Toro (1999).

The numerical solution matches the exact solution very well for the high resolution run,

with very little smearing at the discontinuities. The low resolution run is clearly more

diffusive at the discontinuities, as would be expected for the finite volume methods used.

There is also a small overshoot at the tail of the rarefaction. Comparing the low and

high resolution runs to the exact solution, we can see that the results are converging to

the correct solution.

Relativistic shock tube

The shock tube test was repeated for the relativistic compressible equations. The exact

solution was calculated using the R3D2 code. The results can be seen in Figure 5.6. It

can be seen that the discontinuities are resolved fairly well for the high resolution run,
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Figure 5.5: Results of the Newtonian shock tube test using the initial conditions
in Table 5.1 at time t = 0.25. The simulation was carried out on the domain x =
[−0.5, 0.5], y = [0, 0.03125], with 64 grid points in the x-direction and 4 in the y-
direction for the low resolution run, and 512 × 16 for the high resolution run, making
it effectively 1d. Plotted are the density ρ, the pressure p and the velocity in the

x-direction v.

however there is a small amount of smearing, especially at the contact discontinuity.

This contrasts with the Newtonian simulation in Figure 5.5, which was able to capture

the contact discontinuity more clearly, despite being lower resolution than the high

resolution relativistic run. Otherwise, the solution matches up very well with the exact

solution. Comparing the low resolution and high resolution runs, we can see that the

results are converging to the exact solution.

The additional error in the relativistic simulation is likely to be a result of the signal

speeds used in the HLL solver. For the Newtonian case, we estimate these from the

speed of sound in the fluid. In the relativistic case, we instead set these to the speed of

light. This is overly conservative, and as this test shows has made our model particularly

diffusive at the contact discontinuity. This could be improved by using a better estimate
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Figure 5.6: Results of the relativistic shock tube test using the initial conditions in
Table 5.1 at time t = 0.3. The simulation was carried out on the domain x = [−0.5, 0.5],
y = [0, 0.03125], with 64 grid points in the x-direction and 4 in the y-direction for the
low resolution run and 512 × 16 for the high resolution run, making it effectively 1d.
Plotted are the primitive density ρ, the pressure p and the 3-velocity in the x-direction

v. The exact solution was calculated using the R3D2 code.

of the signal speeds, or by implementing the HLLC solver described in Section 3.2.2,

which would allow the contact discontinuities to be better resolved.

5.5.1.2 Blast wave

The blast wave is a Riemann problem with a large initial pressure jump. Like the Sod

shock tube, exact solutions exist for both the Newtonian and special relativistic cases

(Centrella and Wilson, 1984).

We shall use the initial data of Winkler and Norman (1986); Mart́ı and Müller (2003)

given in Table 5.2.
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ρ vx vy vz p

left 1 0 0 0 1000
right 1 0 0 0 0.01

Table 5.2: Initial conditions for the blast wave (Winkler and Norman, 1986; Mart́ı
and Müller, 2003). The discontinuity is located at x = 0 and the adiabatic index is

γ = 5/3.

Newtonian blast wave

The results of the Newtonian blast wave simulation can be seen in Figure 5.7. The

approximate solution matches the exact solution very well, with the discontinuities very

sharply resolved with little smearing for the high resolution run. There is a very small

overshoot in the velocity at the tail of the rarefaction and in the density on the left side

of the blast zone. The low resolution run is a lot more diffusive, with some oscillations

in the velocity behind the tail of the rarefaction. The density in the blast zone is also

underestimated, with the profile of the blast zone significantly rounded – the lower

resolution used in this run is not sufficient to resolve this feature. Comparing the low

and high resolution runs, it is clear that the solution is converging to the correct solution

as the resolution increases.

Relativistic blast wave

The results from the relativistic blast wave test can be seen in Figure 5.8. In order

to demonstrate the improvements gained from increased resolution, the test was run

without AMR on a coarse grid with 128 points in the x direction, and run with AMR

and 4 levels of mesh refinement. As can be seen, in the lower resolution run without

AMR, the blast wave has been significantly smeared due to clipping from the slope

limiters. There is also some smearing at the head and tail of the rarefaction. As would

be expected, this clipping has been significantly reduced in the higher resolution run

with AMR.

There are significant oscillations in the variables either side of the waves in the central

region. These are clearly unphysical, as the waves produced by the initial discontinuity

should not yet have reached these regions and so they should have remained in their

initial state. The oscillations appear to be greatest to the right of the shock wave,

however they also appear to the left of the rarefaction. The inset plot in the density panel

shows that the magnitude of these oscillations is actually greater in the higher resolution

run. In the lower resolution case, these oscillations have been somewhat smeared out,

slowing their growth. In this test, a CFL number of 0.5 was used. Reducing this to 0.2

and increasing the number of points in the y-direction so that they were the same as in

the x-direction did not appear to have any affect on the appearance of these oscillations.
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Figure 5.7: Results of the Newtonian blast wave test using the initial conditions
in Table 5.2 at time t = 0.007. The simulation was carried out on the domain x =
[−0.5, 0.5], y = [0, 0.03125], with 128 grid points in the x-direction and 4 in the y-
direction for the low resolution test and 1024× 32 for the high resolution test, making
it effectively 1d. Plotted are the density ρ, the pressure p and the velocity in the

x-direction v.

Looking at the plot, it appears that the density in the blast wave has been significantly

underestimated. This is especially true for the lower resolution run. In the exact solution,

the density in the blast wave is 10.4, whereas in the simulation the highest value of the

density in the blast zone is 3.1. However, on closer inspection, this may not be as bad

as it seems. As can be seen in the exact solution, the blast zone is extremely narrow.

The two points in the higher resolution run nearest the blast zone lie either side of the

peak. Looking at the peak density in consecutive timesteps, it can be seen to increase

and decrease as these points move closer and further away from the location of the peak.

The significant underestimation of the density may therefore be largely a result of lack

of resolution of the blast zone, rather than being entirely due to clipping from the slope

limiters.

The rarefaction wave is captured reasonably accurately, however the blast wave has



136 5. Multiscale methods

Figure 5.8: Results of the relativistic blast wave test using the initial conditions
in Table 5.2 at time t = 0.12. The simulation was carried out on the domain x =
[−0.5, 0.5], y = [0, 0.03125], with 128 grid points in the x-direction and 4 in the y-
direction on the coarsest grid, making it effectively 1d. The results of two runs are
shown: the dotted green line shows the results from a run without AMR, the red dots
the results from a run with 4 levels of mesh refinement. Plotted are the primitive
density ρ, the pressure p and the 3-velocity in the x-direction v. The exact solution
was calculated using the R3D2 code. The inset plots show close ups of the oscillations

in the density and of the pressure discontinuity around the shock front.

become smeared in all variables. The lack of accuracy in this example is perhaps un-

surprising given that the blast wave is highly relativistic, with its normal 3-velocity

approaching the speed of light. This test therefore demonstrates the limitations of the

code and shows that results are unlikely to be reliable for highly relativistic systems.

5.5.2 Multiscale solver

In our implementation of the multiscale solver coupling the compressible and shallow

water models, we begin with the simplest possible hydrodynamics model (Newtonian
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incompressible hydrodynamics) and gradually build up the complexity to a 3d relativistic

compressible system.

When implementing the multiscale system, the x-axis was defined to be the vertical

direction in order to make it easier to write code that could run in both 2d and 3d. This

is reflected in the plots below, where the vertical axis is labelled as the x-axis. In all of

the multiscale tests below, the shallow water model was used for the coarsest level, and

the compressible model for all finer levels (unless otherwise specified).

5.5.2.1 Incompressible + shallow water

The simplest possible version of the multiscale solver is that of 2d incompressible hy-

drodynamics coupled to the 1d shallow water equations at large scales. In this system,

the shallow water equations track the surface of the fluid. When reconstructing the 2d

system, the pressure is calculated using the equation for hydrostatic equilibrium. If the

height of the fluid at the surface is h, the pressure at a height of x above the bottom

boundary is

p(x) =
g

2
(h− x)2 . (5.33)

Given the pressure gradient in the vertical direction, the horizontal motion of the fluid in

the 2d incompressible system varies with depth, with fluid at the bottom moving faster

than that at the top. The multiscale approximation assumes that any variation in the

vertical direction (other than pressure) is negligible, so in order for the solution to be

accurate, any 2d behaviour such as this must be covered by the incompressible grids.

This can be achieved by suitable tagging criteria which check for a non-zero velocity or

gradient of a non-pressure variable in the vertical direction.

Newtonian 1d

Figure 5.9 shows the fluid pressure at time t = 0.1 for the Newtonian 1d dam breaking

simulation with three levels of mesh refinement. In the shock front near the top of the

plot there is a small kink – this is a numerical error resulting from the AMR patches.

When the data is transferred between the incompressible and shallow water models,

vertical averaging and flooring operations are carried out to translate the data from the

2d (3d) incompressible model to the 1d (2d) shallow water one. However, for this first

incompressible multiscale implementation, this operation was only carried out locally

for each patch. This has led to the error in the shock front location, which grows

as the simulation progresses, and highlights the importance of doing this calculating

globally, across all patches in the vertical direction. Unfortunately, such an operation

is much more computationally expensive as it requires communication between multiple

processes and cannot be parallelised. The improved calculation of the vertical average
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Figure 5.9: Newtonian multiscale 1d dam breaking at time t = 0.1 with hl = 5 and
hr = 4. The plot shows the fluid pressure, with the outlines of the finer grids overlaid.
The shock front has remained sharp, however there is a small kink near the top of the

plot due to a numerical error resulting from the AMR patches.

across multiple patches was implemented in the next multiscale model presented in

the following section. Looking ahead to the results of the special relativistic test in

Figure 5.12, these numerical artefacts from the patches have disappeared – the shock

front is now smooth.

Newtonian 2d

In Figure 5.10 we plot the results of the 2d radial dam breaking test. This test was

performed using the Newtonian incompressible multiscale code with three levels of re-

finement (one shallow water grid and two incompressible grids). In the plot, this is

compared against the same test run using the incompressible code only and the 1d

shallow water code with geometric source terms. As expected, the shallow water model

produces the sharpest profile – the profile of the central peak is noticeably more rounded

for the incompressible and multiscale models. There is some mismatch in the location of

the shock front and height of the shocked fluid between the shallow water model and the

other two, with the shock front in the shallow water model having a slightly lower shock

speed. This indicates that there is some small error in our model e.g. when converting

between heights and pressures.
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Figure 5.10: Newtonian multiscale 2d dam breaking at time t = 0.07 with hin = 5
and hout = 4. The shallow water and incompressible grids had resolution 256 × 256.
The multiscale model had 3 levels of mesh refinement, with the finest grid at the same

resolution as the shallow water and incompressible grids.

Relativistic 1d

The results of the relativistic incompressible multiscale 1d dam breaking test can be seen

in Figure 5.11. The shock has been sharply resolved with little smearing. There is some

smearing at the head and tail of the rarefaction, but the profile is otherwise in line with

what we expect. Figure 5.12 shows the pressure profile for the entire domain used in

this test. Comparing to Figure 5.9, we can see that the shock front is much straighter,

thanks to averaging the state across all patches in the vertical direction rather than

across individual patches.

Relativistic 2d

Figure 5.13 shows the results of the relativistic incompressible radial dam breaking test;

plotted is the fluid height at time t = 0.6, with the outlines of the finer grids overlaid.

The test was run with three levels of mesh refinement consisting of a single coarse shallow

water grid and two finer incompressible grids. The grids remained fixed over the course

of the simulation.

In Figure 5.14, this is plotted against the results produced using the incompressible

model only and the shallow water model only. As to be expected, the multiscale and
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Figure 5.11: Results of the relativistic incompressible multiscale 1d dam breaking
test with 3 levels of mesh refinement at time t = 0.048 with hl = 0.9 and hr = 0.2. The

coarse grid resolution was 128× 128. The plot shows the fluid height.

Figure 5.12: Results of the relativistic incompressible multiscale 1d dam breaking
test with 3 levels of mesh refinement at time t = 0.048 with hl = 0.9 and hr = 0.2.
The coarse grid resolution was 128 × 128. The plot shows the fluid pressure, with the

outlines of the finer grids overlaid.
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Figure 5.13: Results of the relativistic incompressible multiscale radial dam breaking
test with 3 levels of mesh refinement after 205 (coarse grid) timesteps at time t = 0.6
with an initial dam radius of r = 0.2, hin = 0.9, hout = 0.8 and g = 0.1. The coarse
grid resolution was 8 × 64 × 64. The plot shows the fluid height, with the outlines of

the finer incompressible levels overlaid.

incompressible models agree very well, especially in the central region where the mul-

tiscale model is using the incompressible equations and has the same resolution on its

finest grid as the incompressible model. The outer shock front is more smeared for the

multiscale model than it is for the incompressible run: this reflects the fact that the

multiscale model is using a coarser grid here.

There is a small error in the height at the interface of the shallow water and incom-

pressible models. This error formed at the start of the simulation, however did not

significantly grow in magnitude. It suggests that there is some mismatch in the conver-

sion of data between the two models.

The shallow water model is considerably sharper than the other two models. The loca-

tions of the shocks calculated using the shallow water solver do not quite agree with the

other two. This is to be expected: physically they are different models, so should predict

different wavespeeds. All that we require for the purposes of our multiscale model are

that the models agree ‘well enough’ in the matching region where we convert between

the two that we can capture the features we are interested in to some desired level of

accuracy.
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Figure 5.14: Comparison of the relativistic radial dam breaking test for the multiscale,
incompressible and shallow water models. The finest level of the multiscale run had
the same resolution as the incompressible and shallow water runs. The plot shows the

fluid height.

5.5.2.2 Compressible + shallow water

Adding compressibility to the system makes it significantly more challenging as it is

much harder to reconstruct the pressure and density profile of the fluid from the shallow

water variables. However, we can simplify this task greatly by assuming the fluid to be

adiabatic at the shallow water/compressible interface. This means that the thermody-

namic variables can be expressed as functions of the height only. An adiabatic fluid is

defined by

p1−γT γ = constant. (5.34)

Using the ideal gas equation of state, this means we can write the density as a function

of the pressure only

ρ(p) = Kpγ , (5.35)

where K is some constant that must be given. Using the equation for hydrostatic

equilibrium
dp

dx
= −gρ(x), (5.36)

we can now integrate this to get the pressure as a function of depth. Assuming that the

pressure vanishes at the surface, so p(x = h) = 0, we then get

p(x;h) =

(
γ − 1

γ
gK(h− x)

) γ
γ−1

. (5.37)
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Inverting this, we obtain the expression for the fluid height as a function of pressure at

some depth x

h(p;x) = x+
1

gK

γ

γ − 1
p(x)

γ−1
γ . (5.38)

Similar functions can be obtained for the density as a function of depth and height as a

function of density.

Note that the assumption of adiabaticity is only required at the shallow water/compress-

ible interface – it is entirely possible for the fluid to be non-adiabatic in the region(s)

covered by the compressible patches away from this interface. As shall be seen in the

tests in this section (and shall be discussed further at the end of the chapter), the as-

sumption of adiabaticity is clearly insufficiently accurate for all but the smoothest of

features, leading to the development of instabilities at the model interface. It has been

used here due to its simplicity, however in the future we hope to use a more accurate

model or develop better ways of matching the data at the model interface.

When converting from the compressible to the shallow water levels, we are taking 2d

(3d) data and converting it to 1d (2d) data. In order to do this, it is necessary to

take some kind of average of the data in the vertical direction. As found in the previous

section, this is complicated by the fact that there may be multiple patches in the vertical

direction, so in order to take the average across all data in the vertical direction, there

needs to be some communication of data between patches. As this will require syncing of

the parallel threads and/or processes, this will slow down the performance of the code.

In the following sections, we shall present tests performed on the multiscale model made

up of the relativistic compressible and relativistic shallow water models.

Dam breaking

The dam breaking tests of Section 4.3.1 were repeated with the multiscale solver. The

tagging criteria were the magnitude of the pressure gradient and the primitive speed,

with cells exceeding given critical values tagged for refinement. Figure 5.15 shows the

primitive y-velocity for the 1d dam breaking test for a run with 3 levels of mesh refine-

ment at time t = 0.05. It can be seen that the shock front has been properly captured,

remaining relatively sharp as the simulation has evolved.

The state appears to transition smoothly across the level interfaces, with no visible

artefacts in any of the variables. Regridding has ensured that the region of the simulation

where the state evolves remains in the section covered by the finest grid, well away from

the level boundaries. This test therefore demonstrates that the multiscale model is able

to maintain the static state of the unperturbed fluid without the development of errors

at the level interfaces.
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Figure 5.15: Results of the compressible multiscale 1d dam breaking test with 3 levels
of mesh refinement at time t = 0.05. The coarse grid resolution was 64 × 64 and the
initial data was hl = 0.9, hr = 0.4. The plot shows the primitive y-velocity, with the
outlines of the finer levels overlaid. It can be seen that the shock front has remained

sharp.

Figure 5.16 shows the height for the circular dam breaking test with three levels of mesh

refinement at time t = 0.5. The coarse grid resolution was 8 × 64 × 64, and the grids

remained fixed throughout the simulation.

The multiscale circular dam break solution was compared against similar compressible

and shallow water simulations (see Figure 5.17). These simulations had the same reso-

lution as the finest multiscale grid. It can be seen that the multiscale simulation lines

up very well with the compressible simulation in the central part of the domain where

it is using the compressible model. As was found in the incompressible test, there is a

small error in the height at the shallow water/compressible model interface. This error

first developed early on in the simulation, however did not significantly grow in magni-

tude. It most likely corresponds to a mismatch in the conversion of variables between

the two models, suggesting that e.g. our assumption of adiabaticity is not valid for this

system. This error could be reduced by employing some kind of numerical smoothing

techniques at the interface or by improving the scheme converting variables between the

compressible and shallow water models.
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Figure 5.16: Results of the relativistic multiscale circular dam breaking test at time
t = 0.5 with initial dam radius of r = 0.2, hin = 0.9 and hout = 0.8. 3 levels of mesh
refinement were used, with the locations of the grids fixed throughout the simulation.
The coarsest grid had resolution 8× 64× 64. The plot shows the fluid height, with the

outlines of the finer levels overlaid.

Fixed mesh refinement

In the dam breaking tests, we showed that the multiscale system produced results largely

consistent with simulations produced using a single model. However, in these tests large

features were intentionally kept away from the model interfaces. In this section, we shall

investigate how well the multiscale model copes when such features pass through these

interfaces.

Figure 5.18 shows the results of the previous 1d dam breaking test with fixed mesh refine-

ment. This was performed using the compressible model only and using the multiscale

model. Both tests had three levels of mesh refinement, with the coarsest grid having a

resolution of 64 × 64. The finest grids were centred around the initial discontinuity at

x = 0. The grid hierarchy was calculated at the start of the simulation, and remained

unaltered after that.

It can be seen that for the compressible-only model, the shock fronts were able to pass

through the level interfaces without producing any noticeable errors. However, this is

clearly not the case for the multiscale model, where large errors have developed at the

boundaries of both the shallow water/compressible interface and the finer compressible/-

compressible interface. These errors grew over time, first beginning to develop when the
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Figure 5.17: Height profile of the multiscale relativistic circular dam breaking simu-
lation (green crosses) with corresponding compressible (red circles) and shallow water
(blue line) simulations. The shallow water simulation produced the sharpest result,
preserving the profile of the shock fronts with minimal smearing. The compressible
case was more diffusive, with some smearing at the discontinuities. The multiscale
results line up well with the compressible simulation in the central part of the regime
where it is using the compressible model, however there are small errors at the shallow

water/compressible interfaces.

shock fronts first crossed the shallow water/compressible interface. It is likely that the

errors occurred as a result of reflections from the model interface. As the shock front

passed through the interface, small errors in the conversion of quantities between the

two models produced reflected waves. These waves interacted with the incoming waves,

causing the errors to grow greater in magnitude. This is further demonstrated by the

high resolution multiscale test, where again three levels of mesh refinement were used,

but the coarsest grid had a resolution of 256×256. The instabilities in the central region

are worse at this higher resolution: this is consistent with them being produced by the

interaction of waves produced by numerical errors at the level interfaces.

Despite the development of significant instabilities in the central part of the domain,

the shock fronts have been able to propagate through the interfaces between the two

models, and their locations are not too dissimilar from the locations produced by the

compressible-only model. The shock fronts themselves are fairly well resolved (especially

for the higher resolution run), and there is no overshooting in the region preceding the

shocks.

This test demonstrates that this implementation of the multiscale model is unable to
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Figure 5.18: Results of the 1d dam breaking test with fixed mesh refinement per-
formed for compressible only and multiscale with coarse grid resolution 64 × 64. Also
shown is the result for a higher resolution multiscale run with coarse grid resolution
256 × 256. The plot shows the height at time t = 0.09, with the outlines of the finer
levels overlaid. For the multiscale runs, the shock fronts have passed through the shal-
low water/compressible interfaces, and their locations line up with the location of the
shock fronts in the compressible case. However, significant instabilities have developed

in the shallow water region behind the shocks.

cope with features with large gradients (such as a shock front) passing through the

interfaces between models without the development of instabilities in the finer grids.

However, the shock fronts themselves were able to propagate through the interfaces

largely unchanged, suggesting that the results of this test could be much improved if

the development of instabilities at the model interfaces could be suppressed. This could

be done by introducing some artificial smoothing in this region (e.g. similar to the

slope limiting techniques used in MUSCL-type schemes to prevent the development of

spurious oscillations described in Section 1.5.2.2), or by improving the physical model

used to convert quantities between the compressible and shallow water models.

Figure 5.19 shows the results of a second test with fixed mesh refinement, however the

initial data used here was much smoother – the height was initialised with a Gaussian

profile. This smoother feature is much more like the sort of features we would expect

our model to be able to represent when modelling neutron star oceans. We would wish

sharper features to be resolved in finer detail, so would ensure that these are always

covered by finer grids and more accurate physical models. The features that would pass

through model boundaries would be larger scale, smoother features of the sort we look

at in this test.
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Figure 5.19: Fixed mesh refinement with an initially Gaussian height profile at time
t = 0.1. The coarse grid resolution was 64× 64 for the compressible and low resolution
multiscale runs, and 256 × 256 for the high resolution multiscale run. Unlike for the
dam breaking test, the smooth feature is able to pass through the level boundaries
without the development of significant errors that destabilise the code. The finer level

at the centre of the domain is outlined.

The height was initialised with a Gaussian profile at the centre of the domain with

σ = 0.1 and peak height 10% greater than that of the undisturbed fluid. Again, three

levels of mesh refinement were used, with the finer levels centred around the initial peak

at the centre of the domain. The test was again performed for a compressible-only run

and a multiscale run, both of which had a coarse grid resolution of 64× 64. It was also

repeated for a higher resolution multiscale run, with a coarse grid resolution of 256×256.

Unlike in the previous test, it can be seen that the results of this test were stable,

qualitatively correct and converging. The fluid was able to propagate through the level

interfaces without the development of instabilities in the central region. This is likely

to be because the gradient in the state as it crossed the boundaries was much smaller in

this test, so as the feature passed through, any reflected waves produced due to errors

at the boundary would have been much smaller in magnitude. Consequently, these

will have been suppressed before they could interact with incoming waves and grow

to become instabilities. This is supported by the good agreement of the low and high

resolution multiscale runs: even at the higher resolution, instabilities of the form seen

in the previous test have not developed.

As we saw with the shock fronts in the dam breaking test, the locations of the fluid

peaks produced by the multiscale model largely agree with those in the compressible

model. However, there is a significant difference in the height of these peaks.
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This test demonstrates that qualitatively the multiscale model can cope reasonably well

with smooth features passing through model interfaces, however significant quantitative

errors are produced in the state of the fluid in these features. More work is therefore

required to minimise these errors in order for the multiscale scheme to be consistent

with single model schemes.

Gresho vortex

Here we perform a variation of the Gresho vortex test described in Section 2.3.2.3. In

the following tests, we set R = 0.2, u0 = 0.1 and p0 = 0.01.

The Gresho vortex test is one where traditional compressible codes tend to perform

poorly compared to low Mach number codes. This test therefore demonstrates one of

the advantages of including the low Mach number model in our multiscale scheme to

model the physics at the smallest scales.

Unlike in the previous low Mach number tests, for these tests the solution will not be

time independent. The fluid is initially assumed to be adiabatic and in hydrostatic

equilibrium. Any pressure differences are therefore the result of differences in the height

of the fluid – regions with a higher pressure at the base of the ocean will have a greater

fluid height in the multiscale data. This height gradient means that over time, we expect

the fluid in the vortex to flow outwards under the effects of gravity. However, the overall

vortex structure should still be preserved, as should the total energy (the sum of the

gravitational potential energy and the kinetic energy).

The height profile of the vortex at time t = 1 for a multiscale test with 2 levels of mesh

refinement can be seen in Figure 5.20. As expected, the vortex structure has spread

out so that the height minimum has moved from a radius of r = 0.2 from the centre

of the vortex to r ≈ 0.3. The symmetry of the vortex has been preserved reasonably

well, though the square nature of the finer grid has distorted the profile on the outside

of the vortex so that it is no longer circular. As seen in the circular dam breaking tests,

there is a small error in the height at the model interface, however this has not grown

significantly large in magnitude.

Figure 5.21 compares the results of the multiscale test to similar runs for shallow water-

only and compressible-only models. All three tests used the same resolutions and grid

hierarchies. Looking at the multiscale test, the errors at the model interface can be seen

more clearly in this plot – as it appeared from the previous plot, these are relatively

small in magnitude.

As seen in the Gaussian test, the locations of the extrema in the multiscale run agree

well with those in the compressible-only run, however the magnitude of these extrema

are significantly different. This can be somewhat explained by this plot by looking at
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Figure 5.20: Results of the Gresho vortex test at t = 1 using two levels of mesh
refinement. The coarsest grid has a resolution of 8× 64× 64. The plot shows the fluid
height on a slice perpendicular to the vertical axis. The central region covered by the
finer compressible grid can be identified by the small height error at the boundary. In
the initial data, the height was at a minimum r = 0.2 from the centre of the vortex –

the vortex has spread out so that the height minimum is now at r ≈ 0.3.

the outer parts of the domain. Here, the height profile produced by the multiscale model

closely follows that produced by the shallow water model. This is to be expected, as

the multiscale model is using the shallow water model in this part of the domain. This

reduces the height of the fluid in this region, leading to a reduction in the height in the

compressible region as well.

In Section 2.3.2.3, we found that the low Mach number solver was able to conserve the

total kinetic energy in the Gresho vortex test very well. In Figure 5.22, we look at how

well energy is conserved by the three different models in this test. As this version of the

Gresho vortex test is not time independent, we would expect for the total energy (the

sum of the gravitational potential energy and the kinetic energy) to be conserved, rather

than just the kinetic energy. In order to calculate the total gravitational potential energy

across the domain, for each cell in the horizontal plane we integrated the gravitational

potential energy over the fluid height, then summed this over the entire grid:

Utotal =
∑
i,j

Ui,j =
∑
i,j

∆yi,j∆zi,j

∫ hi,j

0
dx gρ(x;hi,j)x, (5.39)

where ∆yi,j and ∆zi,j are the dimensions of the cell at (i, j) and ρ(x;hi,j) is the fluid
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Figure 5.21: Results of the Gresho vortex test at t = 1 for the shallow water, com-
pressible and multiscale models with 2 levels of mesh refinement. The plot shows the
fluid height along the y-axis through the centre of the simulation’s x-z domain. The
coarsest grid has a resolution of 8 × 64 × 64. The vertical dashed lines indicate the
boundaries of the central fine grid. The locations of the minima in the multiscale
model line up with those in the compressible model, however their magnitude is signif-
icantly reduced. This is likely to be due to a mismatch in the heights of the shallow

water and compressible models at their interface.

density at height x from the ocean floor, calculated using (5.37) from the assumption

of adiabaticity. The kinetic energy was calculated similarly, integrating the density in

the vertical direction up to the height at (i, j) to obtain the total mass of the fluid in

the column of fluid, multiplying this by 1
2v

2
i,j , then again summing over the entire grid.

Both vertical integrals were carried out numerically.

The plot shows evolution of the change in energy up to the time t = 1. By this point, we

can observe that the changes in energy for the 3 different models are clearly distinct. In

order to judge how concerned we should be about the overall conservation of energy, it is

important to compare this time to the dynamical timescale for the system: a decrease of

10% in total energy over several hundred dynamical timescales would indicate that the

energy is lost at a much slower rate than for the same decrease over a single dynamical

timescale. For this system, we can estimate the dynamical timescale from the maximum

speed of the vortex, u0, and its diameter, 4R: tdyn ∼ 4R
u0
∼ 8. This plot therefore shows

the change in energy over ∼ 1
8 tdyn, so given that the energy in the multiscale model has

already decreased by ∼ 6%, this demonstrates very poor energy conservation.

From the plot, it can be seen that the shallow water-only model (solid lines) conserves
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Figure 5.22: Energy conservation of Gresho vortex test. Plotted are the relative
changes in the total energy (gravitational potential energy + kinetic energy), the gravi-
tational potential energy (GPE) and the kinetic energy (KE). The line markers indicate
the results for the 3 different tests. It can be seen that the shallow water model has

the best energy conservation, the multiscale model the poorest.

the total energy very well, with the decrease in gravitational potential energy balancing

the increase in kinetic energy. The compressible-only model (dashed lines with crosses)

performs less well, with the gravitational potential energy of the system not changing

significantly over the course of the simulation and therefore not balancing off against

the increase in kinetic energy. Looking back at Figure 5.21, this is not surprising – the

height profile of the fluid in the compressible test is considerably flatter than that of the

other two tests. Consequently, the change in total energy is completely dominated by

the increase in kinetic energy. The multiscale test (dotted lines) has the poorest energy

conservation. The change in kinetic energy is comparable to that of the compressible-

only model, however this is not enough to balance off against the much greater decrease

in gravitational potential energy. This large decrease in gravitational potential energy

is most likely a result of the underestimate of the height.

This test is an example of a system where the shallow water and compressible models

we have implemented do not agree particularly well. Despite this, our multiscale model

has performed reasonably well, with the resulting height profile largely consistent with

the models it is using in each of the domains. The errors are largely a result of the

disagreements between the two models we have tried to couple.
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Figure 5.23: Initial data used for the scaling test. A small cylinder of fluid was
initialised with a height of h = 0.8, with the surrounding fluid height h = 0.78. Overlaid

are the outlines of the finer grids for a run with 5 levels of mesh refinement.

Scaling

The aim of the multiscale model is to be able to capture the physics across a wide range

of physical scales in a computationally efficient way. It is therefore the aim for it to

be faster to run a simulation using the multiscale model than using a compressible-

only model. In this section, we show the results of a test devised to investigate this.

The initial data can be seen in Figure 5.23. A small cylinder of fluid with a height of

h = 0.8 was placed in the top right of the domain, with the surrounding fluid having

a height of h = 0.78. The cylinder’s radius was approximately the width of two coarse

grid cells. This data was evolved to the time t = 0.0002, approximately one coarse

grid timestep. This test was repeated with increasing numbers of grids for the shallow

water-only model, compressible-only model and the multiscale model. For the multiscale

model, all grids evolved the shallow water model with the exception of the finest, which

used the compressible model.

This test was devised to try and represent the sort of grid hierarchy we might use when

modelling X-ray bursts. In our models, the total domain would be ∼ 10 km across, with

the flame front only spanning a few metres. The compressible grids would only cover

the front and the surrounding area, . 1% of the total domain.
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N levels 1 2 3 4 5

SWE 0.15 0.22 0.59 3.56 35.72
Compressible 1.21 1.68 4.17 26.61 306.78
Multiscale 0.15 1.34 2.91 23.94 275.69

Table 5.3: Time taken for the scaling test with coarse grid resolution 8× 64× 64 to
reach t = 0.0002 for various models and maximum number of AMR levels. The time
is quoted in seconds without the initialisation time for simulations run using 6 MPI
processes. All grids in the multiscale tests were shallow water grids, except the finest

which used the compressible model.

Figure 5.24: Plot showing the total CPU time taken for various runs of the 1d dam
breaking test against the maximum refinement level used in the simulation. The plot
shows runs using the multiscale model, the compressible model only and the shallow

water model only.

The total CPU time taken to run each test is listed in Table 5.3 and plotted in Fig-

ure 5.24. As would be expected, the shallow water-only model is by far the fastest,

consistently more than 8 times faster than the compressible-only model. The multiscale

model is faster than the compressible-only model, though not by as much as might be

hoped. Despite the fact that the finest compressible grid only covers a very small part

of the domain, it appears that the multiscale calculations are still completely dominated

by the evolution of this grid, and suggests that there are significant overheads incurred

in converting between the two models. The performance of the multiscale model could

be improved by optimising this conversion such that these overheads are reduced – little

work has been made in optimising the code at this point, so there is almost certainly

significant room for improvement.
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Matching data at the model interface

As demonstrated in the tests in this section, the multiscale model presented here is

unable to accurately model the propagation of features across the model interface unless

the features are very smooth (as in the Gaussian test of Section 5.5.2.2), with significant

instabilities developing at the interface when the features first begin to cross it. As has

been suggested, these errors are likely arise from the failure to match the fluid properties

produced by the two models at the interface to sufficient accuracy.

One way that the errors could be reduced is by dropping our assumption of adiabaticity

at the interface. This was used in order to simplify the conversion of variables between

the two models, however it may not be sufficiently accurate to use in our multiscale

scheme for modelling non-smooth features.

Another way that errors could be reduced is by introducing numerical techniques that

minimise the non-physical waves produced by the Riemann solvers across the cell bound-

aries at the interface of the models when the models do not match up sufficiently well.

One such technique is the Ghost Fluid Method, first developed by Fedkiw et al. (1999)

and later extended to relativistic fluids by Millmore (2010); Muddle (2015). This method

was developed in order to eliminate nonphysical oscillations produced at material inter-

faces when solving the Euler equations. The model interface in our multiscale model

is equivalent to the material interface considered in the original Ghost Fluid Method:

although the real, physical system on either side of the interface is the same, the dif-

ferent models used to describe the fluid on each side of the interface means that they

in effect act as if they are in fact different materials with different physical properties.

It should be noted that the original Ghost Fluid Method shows unphysical solutions in

certain cases, but modified Ghost Fluid Methods such as those used by Muddle (2015)

can alleviate these problems.

5.6 Summary

In this chapter, we looked at combining the physical models described in previous chap-

ters to produce a multiscale model that captures the dominant physics across a wide

range of scales. In the first section, we presented an overview of standard adaptive mesh

refinement techniques and described how they may be extended to include different

physical models at different scales using adaptive mesh and algorithm refinement. In

the following section, we looked at the derivation of the low Mach number and shallow

water equations using the analytic multiscale approach of decomposing the equations

into variables associated with the problems’ fast and slow timescales. Next, we described

the numerical methods used implement the multiscale model, in particular how infor-

mation was converted between the two models. We then presented tests of a multiscale
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solver which couples the shallow water and compressible models for both Newtonian and

relativistic systems.

The next step in developing our multiscale model is to include the low Mach number

equations, applying them to the finest grids. There has already been some work on

a hybrid low Mach number/compressible model by Motheau et al. (2018), who have

implemented a Newtonian model built on the CASTRO and MAESTRO codes to create the

new hybrid LAMBDA code. It is expected that from a modelling perspective, coupling

the low Mach number and compressible models should be relatively simple compared to

the shallow water/compressible coupling, as both models evolve largely the same sets of

variables. However, for this system it will be important to ensure that care is taken at

the interface to filter out any sound waves and ensure that any features entering grids

covered by the low Mach number model are travelling at suitably subsonic speeds. The

main difficulty here which has prevented this from being included in this work is that

CASTRO uses the C++ interface of AMReX, however MAESTRO still uses the older Fortran

interface (a C++ version is currently being developed). This makes the implementation

of the coupling of the two models much less straightforward. In the future, we intend to

incorporate some of the routines from the LAMBDA code in the code in this work to add

the (relativistic) low Mach number equations to our model.

In the multiscale model implemented here, we have used a metric with a constant grav-

itational acceleration, such that the system can be considered special relativistic in the

horizontal plane of the domain. We intend to extend this in the future to the full general

relativistic shallow water and compressible equations, allowing us to model the physical

system we are most interested in: neutron star oceans. To model X-ray bursts, we shall

also evolve the species fraction(s) and include heating terms in order to model burning.

Another improvement that could be made to our model would be to use higher order

numerical schemes in order to obtain better accuracy. In our current model, we have

used low order schemes as they are simpler to implement and are more stable. However,

as seen in the tests above, these methods are highly diffusive and high resolution is

necessary in order to obtain high accuracy. This is not optimal, as higher resolution

simulations are more computationally expensive to run. A better way to obtain higher

accuracy is to use higher order numerical methods in the first place. For example, we

could use a higher order WENO scheme for the reconstruction, rather than the HRSC

methods used here which reduce to first order at nonlinear features (as described in

Section 1.5.2.5). Likewise, we could use a higher order Runge-Kutta method for the

time integration instead of the third order method we have used.

The fixed mesh refinement tests in Section 5.5.2.2 demonstrated that our current model

is vulnerable to the development of errors at level interfaces as features pass through

them. If the features include large pressure gradients, the errors can grow so large that

they destabilise the code. As described in Section 1.5.2.7, one reason why these errors
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occur because our scheme is not well-balanced – the discrete equations we evolve do not

satisfy the discrete form of the equations of hydrostatic equilibrium. In our simulations

of X-ray bursts, there should not be any features with large gradients passing through

level interfaces. As the flame propagates as a deflagration rather than a detonation, we

do not expect there to be discontinuities present in the solution. In addition to this,

regridding should ensure that any features with large gradients remain well away from

the level boundaries. However, smoother features should be able to pass between the

levels. The errors from the scheme not being well-balanced grow over time, so if we are

to model any significant time period, it is likely that we will need to take steps to make

sure that our scheme is well-balanced.

When translating between the shallow water and compressible models, we assumed

that the fluid was adiabatic and in hydrostatic equilibrium. As shown in the radial

dam breaking and Gresho vortex tests, this led to errors at the model interfaces. This

suggests that this assumption is not sufficiently valid for this system. The accuracy

could therefore be improved by finding a better way of ‘translating’ the data between

the two models. As described in Section 5.5.2.2, one way to do this would be to use

the Ghost Fluid Method of Fedkiw et al. (1999); Millmore (2010); Muddle (2015). Care

must be taken here – as seen in the scaling tests in Section 5.5.2.2, there is a numerical

cost involved in these data translation routines. It is necessary to ensure that the

additional costs of translating the data between state vectors, grids etc. does not end

up outweighing the gains of the AMAR approach. Additional complications will arise

here when we extend our model to general relativity and will need to use the general

relativistic equivalent of the hydrostatic equilibrium equations – the TOV equations –

which are likely to be significantly more complex for all but the most simple spacetimes.

As described in Section 5.2, in previous work AMAR has been used to produce schemes

with multiple numerical models as well as multiple physical models. This is an approach

that we could use in our model, using higher order numerical solvers on the finest grids

and cheaper, lower order methods on the coarser grids. This would give us improved

accuracy on the finest scales, potentially meaning that fewer levels of refinement are

required in order to obtain the desired accuracy and therefore leading to improved

computational efficiency overall. At the same time, using lower order methods on the

coarsest grids would enable us to keep calculations on these grids as cheap as possible,

so that the expensive higher order calculations are only performed where needed.





6 Discussion & conclusions

In this thesis, we have looked at the physics of type I X-ray bursts in neutron star oceans

and have developed new techniques to model these systems numerically. In particular,

we have extended the existing low Mach number and shallow water approximations to

general relativistic fluids, combining these models to produce a multiscale model which

is computationally efficient whilst capturing the relevant physics across a wide range of

scales.

In Chapter 1, a literature review of X-ray bursts was presented. It was found that X-ray

bursts have a very rich phenomenology, with an array of different observed features. The

physics in neutron star oceans is very extreme compared to that on Earth, and as such

it is difficult to ascertain the dominant processes that drive the propagation of burning

fronts during bursts. There have been many models proposed to try and explain the

observed features, but currently there does not exist a universal model that can explain

all observations. A few studies have included general relativistic effects, however no

simulations of the propagation of the burning front have been carried out using the fully

general relativistic fluid equations. In the rest of this thesis, we therefore developed tools

that will allow general relativistic effects to be included in simulations of bursts.

Chapter 2 described the derivation of the general relativistic low Mach number equations,

extending the existing Newtonian low Mach number equations to the general relativistic

case. After considering a range of formulations of the general relativistic equations, the

Wilson formulation was selected in order that the resulting relativistic equations would

resemble the Newtonian equations, and therefore making it easier to compare them and

implement numerically. This numerical implementation was then described, and was

carried out by adapting the existing Newtonian pyro code. Some standard tests were

performed on this code, with the metric set to model a weak, planar gravitational field.

The code produced qualitatively the results that would be expected for this regime.

Chapter 3 described work carried out to model relativistic detonations and deflagra-

tions. An exact Riemann solver was developed to investigate relativistic detonations

and deflagrations, and in particular to see if the effects of tangential velocities could

be important for deflagrations in neutron star oceans. The code for this solver, R3D2,

has been published in Harpole and Hawke (2016). It was found that a fast tangential

159
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velocity can cause a deflagration to transition into a detonation. However, the velocity

required is so great that unless the state is already on the verge of transitioning, this

process is unlikely to occur in any real, physical system, and certainly would not occur in

neutron star oceans. A compressible solver, built by extending the compressible solver

in pyro to reactive relativistic systems, was used to investigate 2d systems.

In Chapter 4, we derived the general relativistic shallow water equations. This model

was developed in order to capture the large scale effects of the Coriolis force on the prop-

agation of the burning fronts. The equations were extended to a multi-layer model by

including layer interaction terms, and burning was also included by evolving the species

fraction(s). A numerical implementation of the relativistic shallow water equations was

demonstrated.

Chapter 5 described how the models of the previous sections may be combined to produce

a multiscale model, with the small scale physics captured by the low Mach number

equations and the large scale physics by the shallow water equations. We first looked at

standard adaptive mesh refinement, and described how this can be extended to include

algorithm refinement. Analytic multiscale methods were investigated and shown to be

an alternative approach to deriving the low Mach number equations. The numerical

implementation of a relativistic multiscale model coupling the shallow water equations

and compressible hydrodynamics was presented.

In this thesis, we developed several models to capture the physics across a range of scales

and implemented these in a number of codes. We extended the Newtonian pyro code

to model relativistic low Mach number systems. While the numerical implementation

was more complex than for conventional compressible codes, the low Mach number

approximation allowed us the gain considerable computational speed up when modelling

flows in this regime. We developed an exact solver for the reactive relativistic Riemann

problem, R3D2, allowing us to investigate the behaviour of detonations and deflagrations

in relativistic fluids. We implemented relativistic shallow water equations in Castro.

This was shown to be far cheaper to evolve than the full relativistic compressible system,

enabling us to model the large scale flow of (shallow) relativistic fluids. Finally, we

coupled this relativistic shallow water model with the relativistic compressible equations

to produce a hybrid multiscale model. This was challenging to implement, given that

we had to adapt an existing AMR code that assumed the same physical model was to

be used on all levels of refinement. In the tests presented in this thesis, our current

implementation of this multiscale model did not demonstrate the considerable speed up

we might have hoped for. However, given how much faster the shallow water model is

to evaluate than the compressible model, we believe that with some optimisation this

could potentially offer a huge computational speed up when applied to modelling flames

in the neutron star ocean, allowing us to model a much larger fraction of the neutron

star surface than is currently possible using existing approaches.
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The overall plan for this project is to improve and extend the current computational

model such that simulations can be run on larger physical domains and include more

of the relevant physics. As mentioned above, this would include adding the low Mach

number equations to the multiscale model to capture the physics at the smallest scales.

Eventually, will be able to create a model on the scale of the whole neutron star ocean

that can produce phenomena consistent with X-ray burst observations, and which there-

fore can help shed some light on the underlying physics.

A key part of the physics that we would like to investigate are the effects of rotation.

In general relativity, rotating systems experience frame dragging effects and will deform

at the equator (Paschalidis et al., 2017). There have not yet been any studies of how

these may affect the propagation of fronts in the ocean, but it is possible that they

may provide mechanisms that explain multiple peaks and burst oscillations. In order

to study rotation, we will need to use a stationary reference state (rather than the

current static one); this will considerably complicate our equations and their numerical

implementation.

To our knowledge, this is the first time such a model coupling the shallow water and

compressible equations has been used. We believe that this model and the general

multiscale approach has many other potential applications and could be of great use in

astrophysical modelling, which often involves systems with physics across a wide range

of scales.

For example, in core collapse supernovae there are many processes operating across a

large range of length scales. The dominant physics acting at the smallest and largest

scales is very different, and so is best captured using different physical models. At the

smallest scales, the physics is dominated by turbulent nuclear burning in the detonation

front as it propagates outwards. However, the entire detonation front extends over a

region several orders of magnitudes greater in size, and in order to accurately model its

propagation, a sizeable fraction of the domain over which it spreads must be modelled

so that instabilities that manifest on larger scales such as the standing accretion shock

instability (SASI) (Blondin et al., 2003) can be captured. A multiscale approach would

couple the small scale and large scale models, allowing for the physics to be described

using the most physically appropriate and most computationally efficient model at each

scale.

Another potential application of multiscale methods would be for binary neutron star

mergers. A current challenge when modelling these mergers is to calculate the saturation

point of the magneto-rotational instability (MRI) (Pessah and Goodman, 2009; Müller,

2016; Sawai et al., 2013; Sawai and Yamada, 2016) and dynamo effects (Mösta et al.,

2015). Existing simulations have had difficulties with the convergence of these quantities,

with the saturation point continuing to grow in magnitude as the resolution is increased.
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The multiscale method, with its ability to capture different physics at different scales,

could help in solving this problem.

Convection in stellar interiors is another area where a multiscale approach could be use-

ful. In massive stars, convection occurs in the core. It is a large scale process which mixes

material in the core, taking the products of burning out from the centre and replacing

them with fresh fuel. Convection within stars is also highly turbulent, however given

the large length scales over which it operates, current computing resources are nowhere

near powerful enough to fully resolve this turbulence down to the smallest microscopic

scales. Current computational modelling therefore typically involves the use of signifi-

cantly simplified models, such as mixing length theory (MLT) and Reynolds-averaged

Navier-Stokes (RANS) (Arnett et al., 2015). The convective flow is very subsonic, so

is best modelled using solvers suited to low Mach number flows (Kupka and Muthsam,

2017). The boundary of this convective core with the radiative region is particularly

difficult to model, however is of great importance for the evolution of the star (Meakin

and Arnett, 2007). It is very thin compared to the extent of the core, and is believed to

be dominated by turbulent processes. The physics of this zone determines how efficiently

material can move in and out of the core, and therefore controls how much fuel the core

has access to before it runs out. It also determines how much of the burnt material can

move out to the outer layers of the star where it can then affect quantities we are able

to directly measure (e.g. metallic absorption lines). A multiscale model would allow us

to capture both the large scale, low Mach number convective motion in the entire core

and the small scale turbulent processes necessary to effectively model the physics in the

boundary zone.

Beyond these examples, there are many other astrophysical systems featuring physical

processes which operate over a large range of scales where multiscale methods could be

useful. However, as discussed in Section 5.3.3, there are some systems where multiscale

methods of the form presented here would not be appropriate as they would be unable

to capture physics key to the system. An example of a process that would be poorly

described by a multiscale model is stellar mode coupling. In stars, it is possible for

oscillatory modes to become coupled and subsequently grow in amplitude unstably.

One such example is the p-g coupling instability where high frequency acoustic waves

and low frequency internal gravity waves can become coupled and grow to large energies

in very short timescales. This instability could be important in e.g. the evolution of

neutron star binaries (Weinberg et al., 2013), where it could significantly influence the

gravitational wave signal and electromagnetic emission as they merge. It affects the

tidal deformability of the star and therefore will be important for the calculation of the

Love number. The ratio of the frequencies of these two modes is typically ωp/ωg � 1.

As multiscale methods rely on the assumption that features on different scales do not

interact, they would be unsuitable for modelling a system such as this without some

modifications.
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Despite the limitations of multiscale methods when modelling systems where resonant

behaviour is important, as has been shown in this thesis, multiscale methods offer many

significant advantages over traditional modelling techniques. There is currently signifi-

cant work being done in this area in the field of engineering, including the development

of new analytic and numerical tools. There is a lot of potential for the application

of multiscale methods to astrophysical systems, which will make the large scale, high

resolution modelling of a wide range of systems computationally feasible.





A Details of the derivation of the rela-

tivistic low Mach number equations

in the 3+1 formulation

In this appendix, we shall outline the derivation of the relativistic low Mach number

equations in the 3+1 formulation. We begin with the covariant 3+1 fluid equations

given by (2.28) – (2.30).

Combining the energy (2.30) and continuity (2.28) equations and expanding, we have

(
∂t − βk∂k

) (
HW 2

)
+ (3)∇k

[
αvkHW 2

]
=(

∂t − βk∂k
)
p+HW 2 (αvmvnKmn − vm∂mα+ αK) . (A.1)

We can also expand the momentum equation (2.29) as

HW 2
[(
∂t − βk∂k

)
vi + αvk(3)∇kvi

]
+ (3)∇ip+

vi

[(
∂t − βk∂k

) (
HW 2

)
+ (3)∇k

[
αvkHW 2

]]
=
(
HW 2 + p

)
(3)∇iα+ αKSi, (A.2)

which after further manipulations gives

(∂t − Lβ) vi + αvk(3)∇kvi +
(3)∇ip
HW 2

= − vi
HW 2

[(
∂t − βk∂k

)
p
]
−

vi (αvmvnKmn − vm∂mα)− %+ pW 2v2

HW 2
(3)∇iα. (A.3)

To obtain the low Mach number limit of these equations, we make two fundamental

assumptions. Firstly, we assume that there is a reference state in which the metric

and ‘background’ fluid quantities are time independent. We will use overbars, e.g. p̄,

to denote this. Secondly, we will assume that the full fluid quantities are perturbations

from this reference state, so p = p̄ + π, and that the perturbation in the pressure is

second order in the perturbation in the velocity: π/p̄ = O(V 2).
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We find that the reference state obeys the momentum equation,

− Lβ v̄i + αv̄k(3)∇kv̄i +
(3)∇ip̄
H̄W̄ 2

=

− v̄i
H̄W̄ 2

[
−βk∂kp̄

]
− v̄i (αv̄mv̄nKmn − v̄m∂mα)− %̄+ p̄W̄ 2v̄2

H̄W̄ 2
(3)∇iα. (A.4)

If we replace the gradient of the reference state pressure in the full momentum equation

with this result, we get the expression

(∂t − Lβ) vi +
H̄W̄ 2

HW 2
Lβ v̄i + αvk(3)∇kvi −

H̄W̄ 2

HW 2
αv̄k(3)∇kv̄i +

(3)∇iπ
HW 2

=

(vi − v̄i)
HW 2

[
βk∂kp̄

]
− vi
HW 2

[(
∂t − βk∂k

)
π
]
−

vi (αvmvnKmn − vm∂mα) +
H̄W̄ 2

HW 2
v̄i (αv̄mv̄nKmn − v̄m∂mα)

− %− %̄+ pW 2v2 − p̄W̄ 2v̄2

HW 2
(3)∇iα. (A.5)

Let us write vi = v̄i + Vi and assume that Vi is small, so that terms quadratic in Vi can

be dropped. We can also write H = H̄ + Θ to get

H = 1− H̄W̄ 2

HW 2
=

Θ

H

(
1− 2W̄ 2v̄iVi

)
+ 2W̄ 2v̄iVi +O(V 2). (A.6)

Using the fact that the background quantities are time independent, ∂tv̄i = 0, after some

manipulation the full momentum equation becomes

(∂t − Lβ)Vi−HLβ v̄i+α
(
V k(3)∇kVi + v̄k(3)∇kVi + V k(3)∇kv̄i +Hv̄k(3)∇kv̄i

)
+

(3)∇iπ
HW 2

=

Vi
HW 2

βk∂kp̄−
v̄i + Vi
HW 2

[(
∂t − βk∂k

)
π
]
−

(Hv̄i + Vi) (αv̄mv̄nKmn − v̄m∂mα)− v̄i (2αV mv̄nKmn − V m∂mα)−
(%− %̄) +

(
πW̄ 2v̄2 + 2 (p̄+ π) W̄ 2v̄kVk

)
HW 2

(3)∇iα. (A.7)

If we restrict this to the case where the reference state is in hydrostatic equilibrium (so

v̄i → 0 and W̄ → 1), we find the gradient of the reference state pressure to be

(3)∇ip̄
H̄

= − %̄

H̄
(3)∇iα. (A.8)

As we assume the metric, and hence the lapse, to be fixed and given by the initial data

for a particular problem, this allows us to replace derivatives of the background pressure

with known terms.

If we also assume that the perturbation in the velocity is small then the full state Lorentz

factor W ' 1, as the Lorentz factor is quadratic in the velocity, and the full momentum
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equation reduces to

(∂t − Lβ)Vi + αV k(3)∇kVi +
(3)∇iπ
H

= −Vi
H

[(
∂t − βk∂k

)
p
]
− (%− %̄)

H
(3)∇iα, (A.9)

where we have dropped all terms that are quadratic in the velocity. Finally, we argue

that the pressure derivative terms on the right hand side are, thanks to the assumptions

of hydrostatic equilibrium for the reference state, at most first order in the velocity. This

gives the final form

(∂t − Lβ)Vi + αV k(3)∇kVi +
(3)∇iπ
H

= −%− %̄
H

(3)∇iα. (A.10)

Taking the Newtonian limit of this sends the enthalpy H to the energy density %, and

the equation has the expected low Mach form.

With the assumptions we have made, the energy equation reduces to(
∂t − βk∂k

) (
HW 2

)
+ (3)∇k

[
αvkHW 2

]
= −βk∂kp̄+H (−vm∂mα+ αK) . (A.11)

We need to keep the Lorentz factor terms inside the derivatives on the left hand side, as

they may be first order in the velocity. This equation is less straightforward to compare

in the Newtonian limit. The trace of the extrinsic curvature (the final term) would

vanish in any standard Newtonian limit. The derivative of the lapse would, however,

not vanish. We instead replace it with the pressure derivative in (A.8), and obtain the

correct Newtonian limit as desired.





B Details of the derivation of the rela-

tivistic low Mach number equations

in the Wilson formulation

In this appendix, we shall give a detailed derivation of the low Mach number equations

derived from the Wilson formulation of the relativistic hydrodynamics equations, (2.34)

– (2.36).

B.1 Continuity equation

Taking (1.22) and substituting in D and Uµ, we find

∇µ(DUµ) = 0. (B.1)

Expanding out the covariant derivative and performing the 3+1 split into the time and

spatial parts, we get

∂tD + ∂i(DU
i) = −DΓµµνU

ν . (B.2)

When implementing the equations numerically, it will be necessary to have expressions

for the evolution of the base state conserved density D̄ and the perturbed state conserved

density, D′ = D − D̄. The base state conserved density evolution equation can be

defined by laterally averaging (averaging over the plane parallel to the stellar surface,

perpendicular to the radial direction) over the full continuity equation, giving

∂tD̄ + ∂r
(
D̄Ū

)
= −DΓµµνUν , (B.3)

where we have defined Ū = Ū(t, r) as the base state velocity such that the full velocity

field is given by U i = Ū(er)
i+U ′i. This can be subtracted from the full density evolution

equation to obtain the evolution of the perturbational conserved density:

∂tD
′ + ∂i

(
D′U i + D̄U ′i

)
= −

(
DΓµµνU

ν
)′
. (B.4)
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We capture the changes that can occur due to significant convective overturning by

imposing the constraint that the lateral average of the perturbational conserved density

D′ = 0 for all time, which gives

∂tD′ + ∂iηD = 0, (B.5)

where we have defined ηD = D′U r.

B.2 Momentum equation

Starting with (1.24) and substituting in D and Uµ,

DhUν∂ν(u0Uµ) + ∂µp+ UµU
ν(u0)2∂νp = Dhu0ΓρνµU

νUρ. (B.6)

Splitting the time and spatial parts of the first term and taking the j-th spatial compo-

nent,

∂tUj + U i∂iUj +
1

u0
Uj

Du0

Dt
+

1

Dhu0
∂jp+

u0

Dh
UjU

ν∂νp = ΓρνjU
νUρ. (B.7)

As described in Vasil et al. (2013), the Newtonian equivalent of this equation does

not conserve energy. It is therefore necessary to incorporate a constraint to ensure that

energy is conserved. The form of the constrained equation can be found using Lagrangian

analysis.

The Lagrangian density for relativistic fluids is given by Rezzolla and Zanotti (2013) as

Lfluid =
√−g

(
R− 2κρ

[
1 + f +

1

2
λgµνu

µuν
])

=
√−g

(
R− 2

κD

u0

[
h− sT − pu0

D
+

1

2
λgµνU

µUν(u0)2

])
, (B.8)

where R is the Ricci scalar, κ = 8πG is the standard gravitational coupling constant, λ

is a Lagrange multiplier enforcing the constraint on the 4-velocity of the fluid uµuµ = −1

and f = ε− sT = h− 1− sT − pu0

D is the specific Helmholtz free energy. We define h to

be the specific enthalpy, ε the specific internal energy, s the specific entropy and T the

temperature. The action is given by

S =

∫
d4xLfluid(g, Uµ, D, s, λ). (B.9)
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From Hamilton’s principle and assuming that perturbations to the metric δgµν vanish

(as we are considering fixed spacetimes),

δS =

∫
d4x

(
∂L
∂Uµ

δUµ +
∂L
∂D

δD +
∂L
∂s
δs+

∂L
∂λ

δλ

)
. (B.10)

Conservation of mass and entropy are given by

∇µ(DUµ) = 0, Uµ∇µs = 0. (B.11)

Varying these equations, letting D → D + δD, s → s+ δs etc., where δD/D, δs/s etc.

� 1, and only keeping terms up to first order in perturbations, we find

∇µ(DδUµ + δDUµ) = 0, (B.12)

δUµ∇µs+ Uµ∇µδs = 0. (B.13)

Varying the constraint λ(UµUµ − 1) = 0, it can be shown that consistency requires

δλ = 0.

These expressions are very similar to those found in the Newtonian case, so we can expect

they can be parametrised by ξµ, an infinitesimal displacement vector, in a similar way,

δUν = Uµ∇µξν − ξµ∇µUν = −LξUµ,
δD = −∇µ(Dξµ) = −LξD −D∇µξµ,
δs = −ξµ∇µs = −Lξs. (B.14)

Substituting these into equations (B.12) and (B.13), we find that they are consistent

and therefore that the parametrisation is valid. We can also see why δg = 0: we know

that ∇µg = 0 so, contracting with uµ,

(Uµ + δUµ)∇µ(g + δg) = 0 ⇒ δUµ∇µg + Uµ∇µδg = 0. (B.15)

It can then be parametrised similarly to δs:

δg = −Lξg = −ξµ∇µg = 0. (B.16)
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We can now substitute the parametrised perturbations from (B.14) into the perturbation

of the action (B.10) and integrate by parts to obtain

δS =

∫
d4x

(
∂L
∂Uν

[Uµ∇µξν − ξµ∇µUν ] +
∂L
∂D

[−∇µ(Dξµ)] +
∂L
∂s

[−ξµ∇µs]
)

=

[
∂L
∂Uµ

Uµξν
]
∂M
−
∫

d4x ξν∇µ
(
∂L
∂Uν

Uµ
)

−
∫

d4x ξν(∇νUµ)
∂L
∂Uµ

−
[
∂L
∂D

Dξν
]
∂M

+

∫
d4x ξµD∇µ

(
∂L
∂D

)
−
∫

d4x ξµ(∇µs)
∂L
∂s
. (B.17)

Assuming that the boundary terms vanish, then as δS must vanish for any infinitesimal

ξµ, we find

∇µ
(
∂L
∂Uν

Uµ
)

+
∂L
∂Uµ

∇νUµ −D∇ν
(
∂L
∂D

)
+
∂L
∂s
∇νs = 0, (B.18)

which is very similar to the Newtonian equation. We wish to impose the constraint that

the pressure perturbations remain small, so

C = 2
√−gκ[p(D, s)− p0(xµ)] = 0. (B.19)

For the system under this constraint, the Lagrangian density becomes

L → L− µC, (B.20)

where µ is a Lagrange multiplier. Substituting into (B.18), we get

−D∇ν
(
µ
∂C
∂D

)
+ µ

∂C
∂s
∇νs = 0. (B.21)

Using
∂C
∂D

= 2
√−gκ ∂p

∂D

∣∣∣∣
s

,
∂C
∂s

= 2
√−gκ ∂p

∂s

∣∣∣∣
D

, (B.22)

we get

0 = −D∇ν
(

2µ
√−gκ ∂p

∂D

∣∣∣∣
s

)
+ 2µ

√−gκ ∂p
∂s

∣∣∣∣
D

∇νs

= −∇ν
(
2µ
√−gκpΓ1

)
+ 2µ

√−gκ∇νp, (B.23)

where

Γ1 =
∂ ln p

∂ ln ρ

∣∣∣∣
s

=
∂ ln p

∂ lnD

∣∣∣∣
s

(B.24)
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is the first adiabatic exponent. Letting p′ = 2µ
√−gκpΓ1 and replacing p→ p0 from the

constraint equation (B.19),

−∇νp′ +
p′

Γ1p0
∇νp0 = 0. (B.25)

We can define the generalised pressure as the Legendre transform of L with respect to

D,

P = L −D ∂L
∂D

. (B.26)

Calculating this for the constrained Lagrangian density (with the unconstrained La-

grangian density taking the form of (B.8)), we obtain

P =
√−g (R+ 2κp+ 2κλΓ1p) . (B.27)

Interpreting the curvature term to act as a sort of background pressure, we find

P =
√−gR+ 2

√−gκ (p+ λΓ1p) = p0 + p′, (B.28)

so p′ = π, the perturbation to the background pressure.

We can now create a constrained version of the momentum equation by adding the con-

straint (B.25) (divided by Dhu0 to match the existing momentum terms) and replacing

p→ p0 using (B.19):

∂tUj + U i∂iUj + Uj
D lnu0

Dt
+

1

Dhu0
∂jp0 +

u0

Dh
UjU

ν∂νp0

= ΓρνjU
νUρ − 1

Dhu0
∂jp
′ +

p′

Γ1p0Dhu0
∂jp0. (B.29)

We can check the consistency of this approach by using the generalised pressure to

calculate the energy-momentum tensor. From (Andersson and Comer, 2007), this is

given by

Tµν = gλν
(
Pδµλ + nµµλ

)
, (B.30)

where nµ = nuµ = nUµu0 is the particle 4-current, µν = µuν = µUνu
0 is the momentum

covector and nµ = ρh = Dh
u0

. We can therefore rewrite this in the Wilson formulation as

Tµν = Pgµν +DhUµUνu0. (B.31)

Substituting in the expression found for the generalised pressure, we indeed regain the

form of the energy-momentum for a relativistic fluid in thermodynamic equilibrium,

Tµν = (p0 + π)gµν +DhUµUνu0 = pgµν +DhUµUνu0. (B.32)
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B.2.1 Comparison to Newtonian case

In the Newtonian case (Vasil et al., 2013), the velocity evolution equation is modified

by the constraint as

∂u

∂t
= −1

ρ
∇p′ + a → ∂u

∂t
= −β0

ρ
∇
(
p′

β0

)
+ a, (B.33)

where the acceleration

a = −u ·∇u+
ρ− ρ0

ρ
g. (B.34)

It would therefore be reasonable to assume that the relativistic version can be written

with a similar integrating factor, such that the constraint terms in (B.25) can be written

as

− ξ∇µ
(
π

ξ

)
. (B.35)

Expanding this out and using the definition of ξ, we find

∇µπ −
π

ξ
∇µξ = ∇µπ −

π

2
√−gκΓ1p0

∇µp0

⇒ 1

ξ
∇µξ =

1

2
√−gκΓ1p0

∇µp0. (B.36)

Integrating, this becomes

ξ = A exp

(
ln p0

2
√−gκΓ1

)
, (B.37)

for some constant A which we can set to 1 without loss of generality. The constrained

momentum equation then becomes

∂tUj + U i∂iUj + Uj
D lnu0

Dt
+

1

Dhu0
∂jp0 +

u0

Dh
UjU

ν∂νp0

= ΓρνjU
νUρ − ξ

Dhu0
∂j

(
π

ξ

)
. (B.38)

We can also repeat this for the other pressure derivative term to give

∂tUj =− U i∂iUj − Uj
D lnu0

Dt
+ ΓρνjU

νUρ

− 1

Dhu0

(
gνj + (u0)2UjU

ν
)(

∂νp0 + ξ∂ν

[
π

ξ

])
. (B.39)

Terms that are ∼ UjU i are O(Ma2) and so negligible compared to the other terms. We

can therefore discard these, leaving us with

∂tUj = −U i∂iUj − Uj
D lnu0

Dt
+ ΓρνjU

νUρ − 1

Dhu0

(
∂jp0 + ξ∂j

[
π

ξ

])
. (B.40)
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B.3 Energy equation

Taking the energy equation (1.23), we find

∇µ (uµρh) = uµ∇µp. (B.41)

Substituting in D and Uµ and expanding out the time and spatial derivatives, this

becomes

∂t(Dh) + ∂i(U
iDh) = u0 Dp

Dt
−DhΓµµνU

ν , (B.42)

where we have defined the convective derivative Dp
Dt = ∂tp + U i∂ip. In the low Mach

number approximation, we assume that the total pressure is close to the base pressure,

so we can replace the pressure in this term with the base pressure to give

∂t(Dh) + ∂i(U
iDh) = u0 Dp̄

Dt
−DhΓµµνU

ν . (B.43)

The equation for the base state can be found by averaging laterally to get

∂t(Dh) + ∂r
(
ŪDh

)
= u0 Dp̄

Dt
−DhΓµµνUν , (B.44)

where if

Dp̄

Dt
= ∂tp̄+ Ū∂rp̄+ U ′r∂rp̄

= ψ + U ′r∂rp̄, (B.45)

then the lateral average is Dp̄
Dt = ψ. We therefore find the evolution of the base conserved

enthalpy Dh to be

∂t(Dh) + ∂r
(
ŪDh

)
= u0ψ −DhΓµµνUν . (B.46)

Subtracting from the equation for the full state, we find the evolution of the perturbed

state to be

∂t(Dh)′+∂i
(
U i(Dh)′ + U ′iDh

)
= u0U ′r∂rp̄−

(
DhΓµµνU

ν
)′
. (B.47)

B.4 Velocity constraint

The velocity constraint casts the equation of state p0 = p0(D,T ) into an elliptic con-

straint on the velocity field.
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Differentiating the equation of state along particle paths,

Dp

Dt
= pD

DD

Dt
+ pT

DT

Dt
, (B.48)

where we have defined pD = ∂p/∂D|T and pT = ∂p/∂T |D. Rearranging,

DD

Dt
=

1

pD

(
Dp

Dt
− pT

DT

Dt

)
. (B.49)

Writing the energy equation, (B.43), in the form of convective derivatives, we find

∂iU
i +

1

D

DD

Dt
+

1

h

Dh

Dt
=

u0

Dh

Dp

Dt
− ΓµµνU

ν . (B.50)

Similarly, the continuity equation can be expressed as

DD

Dt
+D∂iU

i +DΓµµνU
ν = 0. (B.51)

Expanding out the convective derivative of the enthalpy h and rearranging,

DT

Dt
=

h

hT

(
u0

Dh

Dp

Dt
− ΓµµνU

ν − ∂iU i −
1

D

DD

Dt
− hp

h

Dp

Dt

)
. (B.52)

Substituting this into the expression above for the convective derivative of the density

and grouping terms:

DD

Dt

(
1− pTh

pDhTD

)
=

1

pD

(
Dp

Dt

[
1− pTu

0

hTD
+
pThp
hT

]
+
pTh

hT
ΓµµνU

ν +
pTh

hT
∂iU

i

)
.

(B.53)

Given that the enthalpy is given by

h = 1 + ε+ p/ρ = 1 + ε+
pu0

D
, (B.54)

and that by definition hp = u0/D, the coefficient of Dp/Dt just becomes 1/pD. Substi-

tuting this back into the continuity equation and cancelling terms, we obtain

∂iU
i +

1

pDD

Dp

Dt
= −ΓµµνU

ν . (B.55)

We can define the first adiabatic exponent as

Γ1 =
∂ ln p

∂ ln ρ

∣∣∣∣
s

, (B.56)

such that
1

pDD
=

1

Γ1p
. (B.57)
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The velocity constraint then becomes

∂iU
i +

1

Γ1p

Dp

Dt
= S, (B.58)

where we have written the curvature term on the right hand side as the source term S.

In order to express this as an elliptic equation, we now seek some function ζ(t, r) such

that
1

ζ
∂i
(
ζU i

)
= ∂iU

i +
1

Γ1p̄
U i∂ip̄. (B.59)

Expanding the left hand side and cancelling repeated terms, we get

1

ζ
∂iζ =

1

Γ1p̄
∂ip̄. (B.60)

Laterally averaging, such that ∂i → ∂r and Γ1 → Γ̄1, and indicating differentiation with

respect to r by ′, this reduces to
ζ ′

ζ
=

1

Γ̄1

p̄′

p̄
. (B.61)

Integrating this from 0 to r, we get

ζ(t, r) = ζ(0, t) exp

[∫ r

0
dr′

1

Γ̄1p̄

∂p̄

∂r

]
. (B.62)

Substituting this back in, we can now write the velocity constraint as

∂i
(
ζU i

)
= ζ

(
S − 1

Γ̄1p̄

∂p̄

∂t

)
. (B.63)

Laterally averaging this, we obtain the velocity constraint for the base state velocity ū,

∂i
(
ζŪ i

)
= ζ

(
S − 1

Γ̄1p̄

∂p̄

∂t

)
, (B.64)

then subtracting this from the constraint for the full state, we get the constraint on the

velocity perturbation,

∂i
(
ζU ′i

)
= ζ

(
S − S

)
. (B.65)

In the Newtonian low Mach number codes MAESTRO (Nonaka et al., 2014) and pyro

(Zingale, 2014), the velocity constraint is enforced by solving an elliptic equation. We

can derive this for our equations by first decomposing the velocity field (which at this

stage does not obey the constraint) into a part that does obey the constraint, U i,d, and

another part proportional to the gradient of some scalar, φ:

U i,∗ = U i,d +
ζ

Dhu0
∂iφ, (B.66)
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where the coefficient of the gradient is suggested from the form of the momentum equa-

tion, and

∂i

(
ζU i,d

)
= ζ

(
S − 1

Γ̄1p̄

∂p̄

∂t

)
. (B.67)

Multiplying the full velocity field by ζ and taking the divergence, we find

∂i
(
ζU i,∗

)
= ζ

(
S − 1

Γ̄1p̄

∂p̄

∂t

)
+ ∂i

(
ζ2

Dhu0
∂iφ

)
. (B.68)

B.5 Hydrostatic equilibrium

In order to derive suitable initial conditions for the base state pressure, we need to find

the relativistic form of the equation for hydrostatic equilibrium. If we assume the initial

metric and base state variables to be functions of r only, we can find this by deriving

the TOV equation of the system (Thorne, 1977).

Taking the r-component of the equation for the conservation of the energy-momentum

tensor, ∇µTµν = 0, we find

0 = ∂rT
rr + T rrΓνrν + T ttΓrtt + T rrΓrrr + T θθΓrθθ + T φφΓrφφ. (B.69)

Let the metric take the form of a weak planar gravitational field, gµν(t, x, y, r) =

diag
(
−c2

(
1− 2GM

rc2

)
,
(
1 + 2GM

rc2

)
(1, 1, 1)

)
, where G is the gravitational constant and M

the mass of the star. Letting r = R + r′, where R is the radius of the neutron star, r′

the vertical distance from the surface and r′ � R, expanding the gtt component, we get

1− 2GM

rc2
= 1− 2GM

(R+ r′) c2
= 1− 2GM

Rc2
(
1 + r′

R

) ≈ 1−
(

2GM

Rc2

[
1− r′

R

])
. (B.70)

Defining g ≡ GM/R, the corresponding non-zero Christoffel symbols are

Γttr = Γtrt =
g

Rα2
, Γrtt =

gα2

c2R
, Γrxx = Γryy =

g

Rα2

Γrrr = Γxxr = Γxrx = Γyyr = Γyry = − g

Rα2
. (B.71)

The non-zero components of the energy-momentum tensor for a perfect fluid and this

metric are T tt = −ρhc2gtt and T rr = pgrr = pα2/c2; substituting this into the r-th

component of the equation for the conservation of energy-momentum, we obtain

0 = ∂νT
νr + TµrΓνµν + T νµΓrµν =

1

c2
∂r
(
pα2
)

+
g

Rc2

(
ρhc2 − 3p

)
. (B.72)
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B.6 Newtonian limit

To check that the low Mach number equations derived above are of the same form as

those in Almgren et al. (2006a) in the Newtonian limit, we assume the weak planar

metric of the previous section and let D → ρ, U i → ui, u0 → 1 and α→ 1.

Doing this for the continuity equation, we find

∂tρ = −∂i
(
ρui
)
, (B.73)

which is the Newtonian continuity equation, as desired. Looking next at the energy

equation and using

UνΓµµν = ΓttrU
r =

g

Rc2α2
U r ≈ g

Rc2
ur, (B.74)

we get

∂t(ρh) + ∂i
(
uiρh

)
=

Dp

Dt
− ρhg

Rc2
ur, (B.75)

which again coincides with the Newtonian case. Looking at the momentum equation,

∂tUj = −U i∂iUj − Uj
D lnu0

Dt
+ ΓρνjU

νUρ − 1

Dhu0

(
∂jp0 + ξ∂j

[
π

ξ

])
. (B.76)

The last term will disappear, and the Christoffel term will reduce to ΓttrUtU
t = − g

Rc2
,

such that we get

∂tuj = −ui∂iuj −
g

Rc2
− 1

ρh

(
∂jp0 + ξ∂j

[
π

ξ

])
. (B.77)

Using the equation for hydrostatic equilibrium, we can write ∂jp0 = −ρ∂jφ, where φ is

the scalar gravitational potential. In the low Mach number limit, h → 1, so we again

reclaim the Newtonian equation,

∂tuj = −ui∂iuj −
ξ

ρ
∂j

(
π

ξ

)
− g

Rc2
+ ∂jφ. (B.78)





C Changes to the MAESTRO numerical method

In order to implement the relativistic equations, some changes had to be made to the

numerical method used in MAESTRO. Here we shall describe in more detail the main

departures from the time advancement algorithm described in Appendix A of Nonaka

et al. (2010), and shall refer back to specific steps of their algorithm.

React State

react state[Din, (Dh)in, X in, T in, (ΓµµνUνDh)
in
, (ΓµµνUνD)

in
, pin

0 ]→
[Dout, (Dh)out, Xout, T out, (Dω̇)out] evolves the density and enthalpy through the

half timestep ∆t/2. We first evolve the species fraction and temperature according

to
dX

dt
= ω̇,

dT

dt
=

1

hT
(−hX ω̇ +H) . (C.1)

We then define

(Dω̇)out =
Dout

(
Xout −X in

)
∆t/2

, (C.2)

(Dh)out = (Dh)in +
∆t

2

(
−ΓµµνU

νDh
)in

+
∆t

2

(
u0 Dp0

Dt

)in

+
∆t

2
(DHnuc)

out ,

(C.3)

where we have treated the curvature and pressure terms like external heat sources.

In our metric, if we assume that ∂tp0 is small, then Dp0
Dt is given by

Dp0

Dt
= ∂tp0 + U r∂rp0 ≈ U r∂rp0. (C.4)

The density also needs to be updated as, unlike in the MAESTRO case, our continuity

equation has gravitational source terms:

Dout = Din +
∆t

2

(
−ΓµµνU

νD
)in

. (C.5)

We update the temperature using the equation of state, T out = T (Dout, (Dh)out, Xout).

Enforce TOV

enforce tov[pin
0 , (Dh)in

0 ] → [pout
0 ] updates the base state pressure through ∆t in
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time. This replaces the Enforce HSE function in MAESTRO: instead we enforce

that that base state pressure obeys the relativistic TOV equations by updating

the base pressure as

pout
0,j+1 = pin

0,j +
∆r

2
(∂rp0,j+1 + ∂rp0,j) , (C.6)

where ∂rp0 is found from the TOV equations.

Calculate u0

calc u0[U i,in]→ [u0,out] calculates u0 by first calculating the Lorentz factor from

the spatial velocity:

W =
1√

1− gijU iU j
, u0 =

W

α
, (C.7)

where we have used the fact that in our metric the shift factor βi = 0 so the metric

component g0i = 0.

Predict interface states

D states[Din
ij , uij , vij ]→ [Dout

i+1/2,j , D
out
i,j+1/2] predicts the cell-centred density to the

edges. The equation for the density (without source terms) takes the conservative

form

∂tD = −∂i(ρU i). (C.8)

A piecewise linear prediction to the interface is given by

D
n+1/2
i+1/2,j = Dn

i,j +
∆x

2

∂D

∂x

∣∣∣∣
i,j

+
∆t

2

∂D

∂t

∣∣∣∣
i,j

= Dn
i,j +

∆x

2

∂D

∂x

∣∣∣∣
i,j

+
∆t

2

(
−∂(DUx)

∂x
− ∂(DUy)

∂y

)
= Dn

i,j +
∆x

2

(
1− ∆t

∆x
Ux
)
∂D

∂x
− ∆t

2
D
∂Ux

∂x︸ ︷︷ ︸
non-advective

− ∆t

2

∂(DUy)

∂y︸ ︷︷ ︸
transverse

.

psi states[ψin
ij , uij , vij ] → [ψout

i+1/2,j , ψ
out
i,j+1/2] predicts the cell-centred passive ad-

vective scalar to the edges. The equation for the scalar (without source terms)

takes the advective form

∂tψ = −U i∂iψ. (C.9)
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A piecewise linear prediction to the interface is given by

ψ
n+1/2
i+1/2,j = ψni,j +

∆x

2

∂ψ

∂x

∣∣∣∣
i,j

+
∆t

2

∂ψ

∂t

∣∣∣∣
i,j

= ψni,j +
∆x

2

∂ψ

∂x

∣∣∣∣
i,j

+
∆t

2

(
−Ux∂ψ

∂x
− Uy ∂ψ

∂y

)
= ψni,j +

∆x

2

(
1− ∆t

∆x
Ux
)
∂ψ

∂x
− ∆t

2
Uy

∂ψ

∂y︸ ︷︷ ︸
transverse

.

Steps 2C & 6C

Compute provisional base state velocity forcing by discretising the base velocity

component of the momentum equation,

∂tU0 = −U0∂rU0 − U0
D lnu0

Dt
− 1

(Dh)0u0

(
∂jp0 + ζ∂j

[
π0

ζ

])
+ ΓρνtU

2
0 (er)

ρ(er)
ν ,

(C.10)

to get [
ζ

(Dh)0u0
∂r

(
π0

ζ

)]n,∗
=− U

n+1/2,∗
0 − Un−1/2

0

(∆tn + ∆tn−1)/2
− Un,∗0 [∂rU0]n,∗

− Un,∗0

[
D lnu0

Dt

]n,∗
− [∂rp0]n,∗

[(Dh)0u0]n,∗

+
[
ΓρνtU

2
0 (er)

ν(er)
ρ
]n,∗

, (C.11)

where we define

Un,∗0 =
∆tnU

n−1/2
0 + ∆tn−1U

n+1/2,∗
0

∆tn + ∆tn−1
, (C.12)

[∂rU0]n,∗

=
1

∆tn + ∆tn−1

(
∆tn [∂rU0]n−

1/2 + ∆tn−1 [∂rU0]n+1/2,∗
)
,

[∂rp0]n,∗ =
1

∆tn + ∆tn−1

(
∆tn [∂rp0]n−

1/2 + ∆tn−1 [∂rp0]n+1/2,∗
)
.

If n = 0, then set ∆t−1 = ∆t0.

Steps 3 & 7 Construct the provisional time-centred advective velocity on the edges,

Ũ i,ADV,∗.

Use the equation for the velocity perturbation,

∂tŨj = −Ũ i∂iUj−U i∂iŨj− Ũj
D lnu0

Dt
− 1

(Dh)′u0

(
∂jp0 + ζ∂j

[
π

ζ

])
+2ΓρνjŨ

νUρ,

(C.13)
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to compute the time-centred edge velocities, Ũ i,ADV,†,∗, using U i = Ũ i,n+U
n+1/2,∗
0 ,

and where † refers to the fact that the predicted velocity field does not satisfy the

divergence constraint. Ũ i,ADV,∗ is then constructed from Ũ i,ADV,†,∗ using a MAC

projection.

Begin by upwinding Ũ i,n to get Ũ i,ADV,†,∗ at each edge. Then enforce the diver-

gence constraint by solving

DMAC

(
(ζn)2

Dhn(u0)n
Gi,MACφMAC,∗

)
= DMAC

(
ζnŨ i,ADV,†,∗

)
−ζn

(
Sn+1/2,∗ − S̄n+1/2,∗

)
(C.14)

for φ, where DMAC represents a centred approximation to a cell-based divergence

from edge-based velocities and Gi,MAC represents a centred approximation to edge-

based gradients from cell-centred data. This is solved using multigrids. The pro-

visional advective velocity is then

Ũ i,ADV,∗ = Ũ i,ADV,†,∗ − 1

Dhn(u0)n
Gi,MACφMAC,∗, (C.15)

which satisfies

DMAC
(
ζnŨ i,ADV,∗

)
= ζn

(
Sn+1/2,∗ − S̄n+1/2,∗

)
. (C.16)

Steps 4H & 8H

Update the enthalpy using a discretised version of (B.43), omitting the source

terms to get

∂t(Dh) = −∂i
(
U iDh

)
+ u0ψ + u0Ũ r∂rp0. (C.17)

i Compute the time-centred enthalpy edge state, (Dh)n+1/2,∗,pred, for the con-

servative update of (Dh)(1). Using (B.47) and ignoring the source terms,

∂t(Dh)′ = −∂i
(
U i(Dh)′ + Ũ i(Dh)0

)
+ u0Ũ r∂rp0 (C.18)

to predict (Dh)′ = (Dh)(1) − (Dh)n0 to the time-centred edges, using U i =

Ũ i,ADV,∗ + U
n+1/2,∗
0 to obtain (Dh)′n+1/2,∗,pred. We convert this to the full

state using

(Dh)n+1/2,∗,pred = (Dh)′n+1/2,∗,pred +
(Dh)n0 + (Dh)n+1,∗

0

2
. (C.19)

ii Evolve (Dh)(1) → (Dh)(2),∗.

(Dh)(2),∗ =(Dh)(1)

−∆t
{
∂i

[(
Ũ i,ADV,∗ + U

n+1/2,∗
0 (er)

i
)

(Dh)n+1/2,∗,pred
]}

+ ∆tu0Ũ r,ADV,∗∂rpn0 + ∆tu0ψn+1/2,∗ (C.20)
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For each Cartesian cell where D(2) < Dcutoff, recompute enthalpy using

(Dh)(2),∗ = D(2),∗h
(
D(2),∗, pn+1,∗

0

)
. (C.21)

Step 11 Update velocity.

First compute the time-centred edge velocities, Ũ i,n+1/2,pred, then define

Dn+1/2 =
1

2
(Dn +Dn+1), D

n+1/2
0 =

1

2
(Dn

0 +Dn+1
0 ). (C.22)

Update the velocity field Ũ i,n to Ũ i,n+1,† by discretising (C.13) as

Ũ i,n+1,† = Ũ i,n −∆t
[(
Ũ j,ADV + U j0

)
∂j

(
Ũ i,n+1/2,pred

)]
−∆tŨ r,ADV [∂r (U0)]n+1/2

+ ∆t

[
− gij ζn+1/2

(Dh)n+1/2u0
Gj

(
π

ζ

)n−1/2

+

(
ζ

(Dh)0u0
∂r

[
π

ζ

])n
(er)

i

+
{

2gijŨνUρΓρνj

}n+1/2
]
, (C.23)

where Gj approximates a cell-centred gradient from edge-centred data. Finally,

use an approximate edge-centred projection to define Ũ i,n+1 from Ũ i,n+1,† such

that Ũ i,n+1 satisfies the divergence constraint.





D Derivation of the analytic solution of

the Newtonian dam break problem

In this section, we shall summarise the derivation of the analytic solution of the Newto-

nian dam break problem given by Stoker (1957). The solution at time t > 0 consists of

four distinct regions, as illustrated in Figure D.1: undisturbed water (1), a rarefaction

fan (3) and a constant wave region with constant water depth (2) which is separated by

a shock from another region of undisturbed water (0).

t = ti

x
0

h

x
0

t

x = −c1 t

x
=
(u

2
−
c 2
)t

x =
ξtsho

ck

h1

h2 h0

1undisturbed

3

rarefaction
fan

2

constant
state

0 undisturbed

Figure D.1: Solution of the dam break problem, adapted from (Stoker, 1957). The
top plot shows the characteristic wave structure of the solution of the Riemann problem,
the lower plot shows the fluid height at time ti > 0. We can see that the solution is

much like that of the Sod shock tube test seen in Section 5.5.1.1.

The characteristics separating the regions are as follows:
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� x = −c1t between regions 1 and 3, where c1 =
√
gh1 is the sound speed in region

1,

� x = (u2 − c2)t between regions 3 and 2,

� x = ξt between regions 2 and 0, where ξ is the shock speed.

To find the height profile across the various regions, we first need to find the height in

the constant wave region, h2. An expression for this depending only on h0 and h1 was

found by Wu et al. (1999) to be(
h2

h1

)3

− 9

(
h2

h1

)2(h0

h1

)
+ 16

(
h2

h1

)3/2(h0

h1

)
−
(
h2

h1

)(
h0

h1

)(
h0

h1
+ 8

)
+

(
h0

h1

)3

= 0.

(D.1)

From this, the sound speed in region 2 can be found using

c2
2

c2
0

=
h2

h0
, (D.2)

and the fluid speed calculated using the following relation found by considering the

rarefaction region,

u2 + 2c2 = 2c1. (D.3)

This allows us to calculate the shock speed ξ as

ξ = c0

1

8

(2

(
c2

c0

)2

+ 1

)2

− 1


1/2

. (D.4)

Finally, we can calculate the fluid height in the rarefaction region, h3. Using the relation

u3 + 2c3 = 2c1, (D.5)

and the formula for the characteristic

dx

dt
=
x

t
= u3 − c3 = 2c1 − 3c3 =

3

2
u3 − c1, (D.6)

we find that

c3 =
1

3

(
2c1 −

x

t

)
, (D.7)

finally giving us the fluid height in the rarefaction region

h3 =
c2

3

g
. (D.8)
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D. Abarca and W. Kluźniak. Radial oscillations of a radiation-supported levitating shell

in Eddington luminosity neutron stars. Monthly Notices of the Royal Astronomical

Society, 461(3):3233–3238, Sep 2016. ISSN 0035-8711. DOI 10.1093/mnras/stw1432.
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M. Bauböck, D. Psaltis, and F. Özel. Narrow Atomic Features From Rapidly Spinning

Neutron Stars. The Astrophysical Journal, 766(2):87, 2013. ISSN 0004-637X. DOI

10.1088/0004-637X/766/2/87.

G. Baym and C. Pethick. Physics of Neutron Stars. Annual Review of Astronomy

and Astrophysics, 17(1):415–443, Sep 1979. ISSN 0066-4146. DOI 10.1146/an-

nurev.aa.17.090179.002215.

A. Beccantini and E. Studer. The reactive Riemann problem for thermally perfect gases

at all combustion regimes. International Journal For Numerical Methods in Fluids,

64(3):269–313, Sep 2010. ISSN 02712091. DOI 10.1002/fld.

B. Becker, B. Guo, K. Bandilla, M. A. Celia, B. Flemisch, and R. Helmig. An adaptive

multiphysics model coupling vertical equilibrium and full multidimensions for multi-

phase flow in porous media. pages 1–20, Nov 2017. URL http://arxiv.org/abs/

1711.09614.

J. Bell and M. Day. Adaptive Methods for Simulation of Turbulent Combustion. In

T. Echekki and E. Mastorakos, editors, Turbulent Combustion Modeling, number d

in Fluid Mechanics and Its Applications, pages 301–329. Springer, Dordrecht, 2011.

ISBN 9789400704114. DOI 10.1007/978-94-007-0412-1.

J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-Dimensional Adaptive Mesh

Refinement for Hyperbolic Conservation Laws. SIAM Journal on Scientific Comput-

ing, 15(1):127–138, Jan 1994. ISSN 1064-8275. DOI 10.1137/0915008.

J. Bell, M. Day, C. Rendleman, S. Woosley, and M. Zingale. Adaptive low Mach number

simulations of nuclear flame microphysics. Journal of Computational Physics, 195(2):

677–694, Apr 2004. ISSN 00219991. DOI 10.1016/j.jcp.2003.10.035.

R. Belvedere, J. A. Rueda, and R. Ruffini. On the Magnetic Field of Pulsars with

Realistic Neutron Star Configurations. The Astrophysical Journal, 799(1):23, Jan

2015. ISSN 1538-4357. DOI 10.1088/0004-637X/799/1/23.

http://dx.doi.org/10.1086/303604
http://dx.doi.org/10.1002/qj.49707934004
http://dx.doi.org/10.1098/rspa.1949.0136
http://dx.doi.org/10.1088/0004-637X/766/2/87
http://dx.doi.org/10.1146/annurev.aa.17.090179.002215
http://dx.doi.org/10.1146/annurev.aa.17.090179.002215
http://dx.doi.org/10.1002/fld
http://arxiv.org/abs/1711.09614
http://arxiv.org/abs/1711.09614
http://dx.doi.org/10.1007/978-94-007-0412-1
http://dx.doi.org/10.1137/0915008
http://dx.doi.org/10.1016/j.jcp.2003.10.035
http://dx.doi.org/10.1088/0004-637X/799/1/23


192 References

M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynam-

ics. Journal of Computational Physics, 82:64–84, 1989. ISSN 00219991. DOI

10.1016/0021-9991(89)90035-1.

M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential

equations. Journal of Computational Physics, 53(3):484–512, 1984. ISSN 10902716.

DOI 10.1016/0021-9991(84)90073-1.

R. G. Berkhout and Y. Levin. Evolution of the bursting-layer wave during a type I

X-ray burst. Monthly Notices of the Royal Astronomical Society, 385(2):1029–1035,

Apr 2008. ISSN 0035-8711. DOI 10.1111/j.1365-2966.2008.12897.x.

H. Bethe, G. Börner, and K. Sato. Nuclei in Neutron Matter. Astronomy and As-

trophysics, 7:279, 1970. URL http://adsabs.harvard.edu/abs/1970A&A.....7.

.279B.

S. Bhattacharyya and T. E. Strohmayer. Evidence for Harmonic Content and Fre-

quency Evolution of Oscillations during the Rising Phase of X-ray Bursts from 4U

1636-536. The Astrophysical Journal, 634:L157–L160, 2005. ISSN 0004-637X. DOI

10.1086/499100.

S. Bhattacharyya and T. E. Strohmayer. A Non-PRE Double-peaked Burst from 4U

1636-536: Evidence of Burning Front Propagation. The Astrophysical Journal, 636

(2):L121–L124, Jan 2006a. ISSN 0004-637X. DOI 10.1086/500199.

S. Bhattacharyya and T. E. Strohmayer. Signature of Temporary Burning Front Stalling

from a Non-Photospheric Radius Expansion Double-peaked Burst. The Astrophysical

Journal, 641(1):L53–L56, Apr 2006b. ISSN 0004-637X. DOI 10.1086/503768.

S. Bhattacharyya and T. E. Strohmayer. Thermonuclear Flame Spreading on Rapidly

Spinning Neutron Stars: Indications of the Coriolis Force? The Astrophysical Journal,

666(2):L85–L88, Sep 2007. ISSN 0004-637X. DOI 10.1086/521790.

S. Bhattacharyya, T. E. Strohmayer, M. C. Miller, and C. B. Markwardt. Constraints

on Neutron Star Parameters from Burst Oscillation Light Curves of the Accreting

Millisecond Pulsar XTE J1814338. The Astrophysical Journal, 619(1):483–491, Jan

2005. ISSN 0004-637X. DOI 10.1086/426383.

S. Bhattacharyya, M. C. Miller, and F. K. Lamb. The Shapes of Atomic Lines from the

Surfaces of Weakly Magnetic Rotating Neutron Stars and Their Implications. The As-

trophysical Journal, 644(2):1085–1089, 2006. ISSN 0004-637X. DOI 10.1086/503860.

L. Bildsten and L. Hall. Thermonuclear Burning on Rapidly Accreting Neutron Stars.

In R. Buccheri, J. van Paradijs, and A. Alpar, editors, NATO Advanced Science

Institutes (ASI) Series C, volume 515, page 419. 1998. ISBN 0792351940. URL

http://arxiv.org/abs/astro-ph/9709094.

http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1111/j.1365-2966.2008.12897.x
http://adsabs.harvard.edu/abs/1970A&A.....7..279B
http://adsabs.harvard.edu/abs/1970A&A.....7..279B
http://dx.doi.org/10.1086/499100
http://dx.doi.org/10.1086/500199
http://dx.doi.org/10.1086/503768
http://dx.doi.org/10.1086/521790
http://dx.doi.org/10.1086/426383
http://dx.doi.org/10.1086/503860
http://arxiv.org/abs/astro-ph/9709094


References 193

J. M. Blondin, A. Mezzacappa, and C. DeMarino. Stability of Standing Accretion

Shocks, with an Eye toward CoreCollapse Supernovae. The Astrophysical Journal,

584(2):971–980, 2003. ISSN 0004-637X. DOI 10.1086/345812.

M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak. Rotating Neutron Star

Models With Magnetic Field. Astronomy and Astrophysics, 301:757, 1995. URL

http://arxiv.org/abs/gr-qc/9503044.

S. Bonazzola, L. Villain, and M. Bejger. Magnetohydrodynamics of rotating compact

stars with spectral methods: description of the algorithm and tests. Classical and

Quantum Gravity, 24(12):S221–S234, Jun 2007. ISSN 0264-9381. DOI 10.1088/0264-

9381/24/12/S15.

F. Bouchot, V. Zeitlin, F. Bouchut, and V. Zeitlin. A robust well-balanced scheme for

multi-layer shallow water equations. Discrete and Continuous Dynamical Systems -

Series B, 13(4):739–758, Mar 2010. ISSN 1531-3492. DOI 10.3934/dcdsb.2010.13.739.
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