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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FAULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES
MATHEMATICAL SCIENCES

Doctor of Philosophy

by Fulin Xie

Emergency response services play a key role in protecting public safety and health, and
therefore developing effective and efficient response systems is of critical importance. In
this thesis, we focus on the workforce scheduling and routing problems (WSRPs) that
are commonly faced by emergency response organisations.

We first present a simulation model for real-time emergency vehicle dispatching and
routing, developed based on a case study of a British company providing emergency road
services. The developed model is used to evaluate system performance, test scenarios
and compare the effectiveness of different dispatching policies.

The results of simulation study motivate us to design more advanced heuristic algorithms
for the static WSRP. To this purpose, we develop a simple and fast algorithm based on
the iterated local search (ILS) framework. The performance of the proposed algorithm
is evaluated on benchmark instances against an off-the-shelf optimizer and an existing
adaptive large neighbourhood search algorithm. The proposed ILS algorithm is also
applied to solve the skill vehicle routing problem, which can be viewed as a special case
of the WSRP.

To further improve the decision making, we exploit the stochastic information about
future requests and integrate this part of information into the solution method for the
dynamic WSRP. A stochastic set-partitioning model is described and integrated with
a sampling-based approach. The proposed model uses a two-stage framework, where
the first-stage is concerned with finding a set of feasible routes covering known requests,
while the second-stage estimates the effect of the same routes with respect to future
requests. The performance of the proposed model is evaluated against a deterministic
model and a naive greedy heuristic within a simulation framework.
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摘要
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谢福林

应急响应服务在社会安全和公共健康领域中扮演着重要的角色，因此，开发有效并且高

效的应急响应系统至关重要。在本论文中，我们重点研究在应急中心以及相关管理部门

中经常面对的难题：人员调度和路径问题。

首先，根据英国的一个道路紧急救援服务公司的实际案例，我们设计了一个实时的应急

车辆调度与路径规划的仿真模型。该模型主要用于评估现有系统的性能，测试各类运行

策略以及比较不同调度方案的有效性。

仿真实验结果表明，开发一个更为有效的启发式算法去解决静态人员调度和路径问题是

有必要的。因此，基于迭代局域搜索算法的构架，我们提出了一个简单并且高效的算法。

为了验证算法的高效性，我们采用了一些典型算例进行测试，并与现有的优化软件和一

个自适应大规模领域搜索算法比较。此外，我们的算法还用来解决带技能约束的车辆路

径问题。该类型的问题可以被视为人员调度问题的特列。

为了进一步提高决策质量，我们探索了关于未知服务需求的随机信息，并将此信息整合

到动态人员调度问题的解决方法中。我们提出了一个引入采样思想的集合划分模型。该

模型使用两阶段的框架：第一阶基于已知的需求信息，设计出可行的人员路径；第二阶

段评估该路径方案对未来服务需求的表现。为了证明模型的有效性，我们在一个仿真模

型下进行测试，并与一个确定性模型和一个简单的贪婪算法进行比较。
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A.2 PDF of sample Ŝ1 with a gamma distribution fitted . . . . . . . . . . . . 128
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Chapter 1

Introduction

This chapter consists of four sections. Section 1.1 provides a brief background of our
study, while Section 1.2 gives a detailed description of the problem considered. In Section
1.3, the main goal and objectives of our study are discussed, and finally in Section 1.4,
the outline of the thesis is presented.

1.1 Background

The application of operational research (OR) techniques to emergency response services
(ERSs) began during the World War II. Since that time, extensive OR work has been
carried out on various aspects of ERSs. For example, the survey of Simpson and Hancock
(2009) has identified 361 ERSs-related OR articles published between 1965 and 2007.
The motivation for the huge amount of research efforts in this field is very simple. ERSs
play a key role in protecting public safety and health, and hence developing effective and
efficient emergency response systems is of critical importance. In the meantime，various
OR techniques including modelling, simulation and visualisation have been recognised
as useful tools to aid decision making for complex real-world problems. Despite the
large body of OR studies on ERSs, there still exist many areas that have not been
explored (Simpson and Hancock, 2009). Moreover, recent advances in computer and
telecommunications technologies bring unprecedented opportunities for developing new
models and algorithms to enhance the performance of emergency response systems.

The ERSs involve a wide range of decisions and actions taken to address the effects
of different emergencies. The most common emergency response organisations are po-
lice, fire department and emergency medical services, which belong almost exclusively
to the public sector, receiving extensive attention from OR researchers. Some classical
problems considered in this domain are designing police patrol districts, locating fire sta-
tions, and dispatching emergency vehicles such as ambulances. In addition to the above

1
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emergency services, the emergency road service, which provides repair and recovery for
disabled vehicles, is also within the context of ERSs. This type of services is usually
provided by the private sector as part of the main mission of their business. Compared
to other emergency services mentioned above, only few OR studies have been conducted
in this area.

Our study focuses on the emergency road service by carrying out a case study of our
partner company, the Automobile Association (AA), which is the largest breakdown
cover organisation in the UK, maintaining about 2, 500 roadside assistance patrols and
recovery trucks in order to provide emergency services for their customers. The company
responds to an average of 10, 000 service requests every day.

A brief description of the AA emergency breakdown services is given as follows. When
customers have their vehicle break down, they send service requests to the call centre.
The system collects information from customers, and determine whether or not to accept
the requests. If a requests is accepted, it must be assigned to a technician with required
skills and tools, and a service time window is assigned, within which a technician is
expected to perform roadside assistance at the customer location. Since a technician may
have been assigned several tasks, the system needs to determine the sequence of tasks
to be carried out by each technician. If no sufficient resources are available to provide
the required service within the time window or if better operational performance can be
achieved, tasks can be outsourced (rejected) to a third party, albeit at the expense of
additional costs. Since service requests arise continuously and randomly over time, the
AA response system is required to make the request acceptance/rejection decisions as
well as scheduling and routing decisions in an ongoing fashion as new requests arrive.

The above description implies that the AA emergency services contain two classical
optimisation problems: the general scheduling problem and the vehicle routing problem.
The combination of these two problems gives rise to the workforce scheduling and routing
problems (WSRPs), which are the main problems addressed in our study.

The WSRPs are commonly faced by many service providers, and have applications of
home health care, field technician scheduling, security personnel routing and manpower
allocation. Due to the complexity of the problems, the majority of existing studies
focus on either the routing aspect or the personnel scheduling aspect, and the developed
approaches are usually not suitable for the WSRPs. Therefore, it is important to develop
new algorithms that are effective and efficient in dealing with WSRPs.

1.2 Problem Description

The workforce scheduling and routing problem (WSRP) refers to a class of optimization
problems where service personnel are required to carry out tasks at different locations.
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For example, nurses visiting patients at their homes, and technicians performing mainte-
nance jobs in different companies can each be modelled as a WSRP. As service personnel
need to travel between different locations, minimising their distances and times for travel
is usually considered as one of the objectives when making operational decisions. This
results in a routing problem of finding a set of least cost routes for a given workforce,
where each route consists of a sequence of locations. Sometimes, tasks have associated
time windows, within which service must start. This type of problem can be modelled
as an extension of the vehicle routing problem with time windows (VRPTW), which is
a well-known variant of the classical vehicle routing problem (VRP).

Service personnel often specialize in different skill domains, and possess skills at differ-
ent levels. The tasks themselves have different skill requirements. For example, in the
telecommunications industry, tasks may include maintenance, installation, construction
and repair jobs, and technicians are trained in skills that allow them to only be able to
service a subset of these tasks. Thus, skill compatibility must be taken into account to
ensure that tasks are performed only by qualified personnel. The associated scheduling
problem involves the assignment of tasks to service personnel. In some applications,
tasks can be outsourced to a third party, albeit at the expense of additional cost, if
appropriate resources are not available to provide the required service, or better opera-
tional performance can be achieved. The version of the WSRP that we consider allows
for outsourcing.

A closely related problem to the WSRP is the skill vehicle routing problem (Skill VRP),
which is introduced by Cappanera et al. (2011). The main feature of the Skill VRP is
that the routing costs are defined based on the travelling distance and the technician in
such a way that increasing the skill level of the technician causes an increase in costs.
The algorithm presented in our study can also be applied to solve Skill VRP.

Depending on the problem setting, the WSRP can be either static or dynamic. In the
former case, all parameters are assumed to be known before plans are made and that the
designed routing plans are fixed during the execution stage. In the latter case, all or part
of the input data are revealed dynamically during the execution stage, and scheduling
and routing plans are designed in an ongoing fashion. Our study will consider both the
static and dynamic versions of the WSRP.

1.3 Research Objectives

This study aims to develop models and algorithms for scheduling and routing problems
arising in emergency response services. The main goal of the study is split into three
objectives, given as follows:
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1. To develop a simulation model for real-time emergency vehicle dispatching and
routing.

2. To design algorithms that are effective and efficient in solving the static WSRP.

3. To exploit stochastic information about future requests to improve decision making
for dynamic WSRP.

The first objective is essentially to provide an analytical tool allowing managers to have
a better understanding of the real system and also evaluate the performance of different
operational strategies. The second objective focuses on heuristic methods to solve the
static WSRP. More specifically, we aim to develop a fast and simple algorithm that can
be easily adapted to tackle different variants of the WSRP, since the literature review
(Chapter 2) reveals that most of the existing algorithms for WSRP are sophisticated
and highly problem-oriented. The third objective is concerned with exploiting stochastic
knowledge about future requests and incorporating this part of information into the
solution methods for the dynamic WSRP.

1.4 Outline of the Thesis

The rest of the thesis is organised as follows. Chapter 2 provides a detailed review
of relevant OR work within the context of ERSs, and discusses various solution meth-
ods including mathematical programming, heuristics, simulation, and hybrid methods.
The relevant body of literature on personnel scheduling problems and vehicle routing
problems is also review.

Chapter 3 describes the development of a simulation model for real-time emergency
vehicle dispatching and routing. The process of model development including procedures
used for data collection, data analysis, distribution fittings, model design as well as
model verification and validation are introduced in great detail. The evaluation of model
performance and comparison of different operational strategies are also presented in this
chapter.

Chapter 4 presents an iterated local search (ILS) for the static WSRP. The proposed
algorithm is evaluated on benchmark instances against a mixed integer programming
formulation of the problem solved by using an off-the-shelf optimizer and an existing
adaptive large neighbourhood search approach. The proposed ILS algorithm is also
applied to solve the Skill VRP.

Chapter 5 investigates how to exploit stochastic information about future requests and
integrate this part of information into solution methods for the dynamic WSRP. Four
mathematical models are developed in this chapter, where two of them are deterministic
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without using any stochastic information, and the other two incorporate stochastic infor-
mation about future requests. The proposed models are evaluated within a simulation
framework using realistic instances.

Finally, 6 summarises the work of this thesis, discusses the limitation of our models and
possible future research directions.





Chapter 2

Literature Review

This chapter begins with an overview of relevant operational research (OR) studies
within the context of emergency response services (ERSs). Then various solution meth-
ods including mathematical programming, heuristics, simulation, and hybrid methods
are discussed. Finally, the relevant studies on general scheduling problems, vehicle rout-
ing problems as well as the combination of these two problems are described.

2.1 Emergencies and Operational Research

Over the last several decades, OR techniques have been applied in addressing various
decision problems arising in ERSs. The earliest OR articles on ERSs include the studies
of the fire stations location problem by Valinsky (1955) and Hogg (1968), and a sim-
ulation study of the emergency ambulance service by Savas (1969). Since that time,
extensive OR work has been carried out to address various problems arising in ERSs.
For example, the survey of Simpson and Hancock (2009) has identified 361 ERSs-related
OR articles published between 1965 and 2007. The motivation for the large amount of
work in this field is very simple. ERSs play a key role in protecting public safety and
health, and hence developing effective and efficient emergency response systems is of
critical importance. Moreover, continuing advances in computer and telecommunica-
tions technologies have enabled researchers to develop new models and algorithms to
enhance the performance of emergency response systems.

The survey of Simpson and Hancock (2009) summarises the research focus of the majority
of ERSs studies into the following categories: (1) urban emergency response services
including fire, police, patrol, ambulance and emergency medical services; (2) disaster
services such as evacuation and rescue; (3) specific hazards which includes typhoon,
terrorism, flood, earthquake and wildfire; and (4) other general emergency services. The
emergency road services considered in our study fall into the first category. Additionally,
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the survey has identified the most frequently used OR techniques in the domain of
ERSs, which are the mathematical programming, probability and statistics, simulation,
decision theory, system dynamics, and queuing theory. These methods will be discussed
in detail in Section 2.2.

In addition to the above survey offering a broad overview of OR and ERSs, two earlier
reviews conducted by Green and Kolesar (2004) and Altay and Green (2006) focus on
the application of OR techniques to specific areas of ERSs. Green and Kolesar (2004) ex-
amine the relevant OR studies within the context of urban emergency response systems,
while Altay and Green (2006) summarise OR applications to disaster operations. More
recent review papers of OR research in disaster operations management are provided by
Galindo and Batta (2013) and Caunhye et al. (2012). The former aims to identify recent
developments in the area, and also supply a continuation of the survey conducted by
Altay and Green (2006), while the latter focuses on optimisation models by discussing
the model types, decision variables, objectives and constraints. The location problem of
emergency response facilities is also frequently studied in the ERS literature. For this
specific subject, Li et al. (2011) conduct a survey to examine various covering models
proposed in the area.

The majority of existing ERS studies are concerned with the following problems (Jotshi
et al., 2009; Haghani et al., 2004):

(1) Location Problem: identify the locations of response vehicles or service stations
within a region in order to satisfy selected performance criteria;

(2) Staffing Problem: determine the minimal number of response vehicles or service
stations required in order to fulfil the demand within a given area;

(3) Dispatching and Routing Problem: dispatch response vehicles to service requests
under consideration of a number of factors such as priority, skill requirements,
stochastic travelling time, and redeployment of resources.

The above problems are often addressed separately by different ERS models. How-
ever, there are some studies considering multiple problems simultaneously. For exam-
ple, Schmid (2012) considers a dynamic ambulance relocation and dispatching problem,
where two decisions are required to be made in real-time: (1) after a request arises, an
appropriate vehicle needs to be dispatched; (2) after completing the service, the vehicle
needs to be relocated to a designated waiting location. Similar relocation and dispatch-
ing strategies have been investigated by Andersson and Värbrand (2007a) and Zhen
et al. (2014).

With the above overview of relevant OR work on ERSs, the following section focuses on
solution methodologies by discussing different OR techniques and which situations they
have been applied to. As there is an abundant literature relating to OR work within the
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context of ERSs, the examination of all the relevant literature would require extensive
efforts and time. Moreover, the purpose of our review is not to offer a comprehensive
survey of all OR work that have been done in this area, but to provide a general overview
of what OR techniques have been applied to ERSs and how. Therefore, the review
predominantly considers the relevant papers published in or after 2000.

2.2 Methodology

The surveys of Simpson and Hancock (2009) and Altay and Green (2006) provide a
general ranking of OR techniques appeared in the ERS literature, identifying that the
mathematical programming including heuristics is the most frequently used method,
followed by probability and statistics, and then by simulation. Although the probability
and statistics ranks second, they are usually integrated into other OR methods, such
as mathematical programming, to handle stochastic aspects of the problems arising in
ERSs. Therefore, the following sections mainly discuss mathematical programming,
heuristics, simulation and hybrid methods.

2.2.1 Mathematical Programming

The mathematical programming (MP) consists of a number of methods, including linear
programming (LP), integer programming (IP), mixed integer programming (MIP), and
goal programming, which are described respectively below.

Linear programming (LP) “is an optimisation method for finding the maximum or mini-
mum of a linear objective function, subject to a set of linear equality or linear inequality
constraints” (Winston and Goldberg, 2004). It is an important OR technique that has
been widely used to solve optimisation problems in various industries such as manu-
facturing, transportation, banking and education. “A LP problem in which some or all
variables are restricted to be non-negative integers is called an integer programming (IP)
problem” (Winston and Goldberg, 2004). Since optimisation problems in ERSs usually
contain some or all decision variables required to be non-negative integers, the majority
of LP models proposed in this area also fall into the scope of the IP.

IP is a powerful technique widely used to formulate real-world problems. It has been
applied to solve location, scheduling and routing problems arising in emergency ser-
vices. For example, Gendreau et al. (2006) develop an IP model to address a location
and relocation problem for emergency vehicles, where the objective is to maximise the
expected coverage . Curtin et al. (2010) propose an IP model with a maximal covering
formulation and a backup covering formulation for the location problem of police pa-
trols. Abounacer et al. (2014) develop a multi-objective IP model to address a location
and transportation problem for disaster response.
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In terms of scheduling problems, Church et al. (2001) use IP to model a police patrol
scheduling system. The application of their model to San Francisco reveals that the
model provides better manpower personnel deployment compared to that of the real
system. Yan and Shih (2007) propose an IP model to address the work team scheduling
problem after a major disaster. Liu et al. (2011) apply IP to solve a hospital and response
vehicle scheduling problems to rescue the victims from chemical and biological terrorist
attacks.

In addition to location and scheduling problems, IP has also been used to solve rout-
ing problems by a number of studies. For instance, Viswanath and Peeta (2003) use
IP to formulate a multi-commodity maximal covering network design problem in order
to identify critical routes for earthquake response. Chiu and Zheng (2007) apply IP
to solve an emergency response and evacuation problem with consideration of different
destinations and varying priorities. Zhang et al. (2012) use IP to formulate an emer-
gency response problem with multiple resources, multiple depots and consideration of
secondary disasters.

Mixed integer programming (MIP) is an IP in which decision variables are a mixture of
those required to be non-negative integers and those which can take real number values
(Winston and Goldberg, 2004). It is a useful OR technique that has been practised
on a wide range of optimisation problems, such as general scheduling problems, vehicle
routing problems and assignment problems. For example, Barbarosoǧlu et al. (2002) use
MIP to model the helicopter mission planning in disaster relief operations. Their model
consists of two levels of MIP models. The top level deals with the helicopter fleet, pilot
assignment and the total number of tours to be constructed, while the base level model
solves the vehicle routing of helicopters from the operation depot to service locations.
Sathe and Miller-Hooks (2005) propose a MIP model with two objectives, maximizing
coverage and minimizing cost, in order to solve a location and relocation problem for
a fixed fleet of response unites in a transportation network with uncertainty in travel
conditions. Pal and Bose (2009) apply MIP to address a location problem of incidence
response depots and an assignment problem of response vehicles to these depots.

Goal programming is an variant of LP, which applies when a problem can be formulated
as a LP with multiple, normally conflicting, objectives (Winston and Goldberg, 2004).
For instance, Alsalloum and Rand (2006) use goal programming to solve a station loca-
tion problem of emergency response vehicles. Their model contains two goals: the first
one is concerned with locating stations to maximise the expected number of demands
that are covered within a predefined response time; while the second goal ensures that
any demand appearing within the service area is covered by at least one response vehi-
cle. The goal programming is also applied by Kanoun et al. (2010) to address a location
problem for a fire and emergency service station in Tunisia, where the conflicting goals
are proximity to industrial firms and response time. Lastly, Zhan and Liu (2011) use
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goal programming to solve a multi-objective model for a location and allocation problem
in emergency logistics networks.

2.2.2 Heuristics and Metaheuristics

Although mathematical programming (MP) approaches are very useful, the problem
size they can handle is rather limited. Heuristics and metaheuristics provide alternative
approaches for dealing with challenging optimisation problems, especially for large-scale
problems.

Heuristics are defined as “techniques which seek good (near optimal) solutions at a
reasonable computational cost without being able to guarantee either feasibility or op-
timality, or even in many cases how close to optimality a particular feasible solution is”
(Reeves, 1995). Nevertheless, the time taken by an exact method to find the optimal so-
lution to a complex problem, if such a method exists, is normally in a much greater order
of magnitude than the heuristic one (Martí and Reinelt, 2011). The computational time
is often considered as a crucial measurement which must be taken into account when
developing practical algorithms. Therefore, heuristic methods are commonly applied to
solve real-world optimisation problems.

Heuristics can be designed as solution approaches for MP models. For example, Yan
and Shih (2007) integrate a heuristic algorithm into a mathematical solver to address
an IP model proposed for a disaster response team scheduling problem. Their algorithm
first decomposes the original problem into smaller sub-problems, each solved by the
mathematical solver, and then the obtained solutions are combined to construct a feasible
solution which is finally improved by a heuristic method. Zhang et al. (2012) apply a
heuristic approach based on linear programming and network optimisation to solve an IP
model developed for an emergency response problem with multiple resources, multiple
depots and consideration of secondary disasters.

Heuristic algorithms can also be developed without using knowledge of the MP, but
such heuristics are often highly problem-oriented, aiming at a specific type of problems
or instances. For example, Yan et al. (2009) propose a heuristic method to solve a
project scheduling problem of maritime disaster rescue. Their algorithm applies five
tailored rules to determine the insertions of tasks in order to generate a schedule with
the minimum project duration and the activities start times. Chern et al. (2010) de-
velop a heuristic method to handle a routing problem in the emergency supply chain
management. In their algorithm, demands are first grouped and sorted based on their
information such as the required product, the due dates and the distances to the depot.
Then, these demands are planned individually using a shortest travelling time tree and
a minimum cost production tree.
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Metaheuristics have also been widely applied to address problems arising in ERSs. Talbi
(2009) defines metaheuristic methods as “upper level general methodologies that can be
used as guiding strategies in designing underlying heuristics to solve specific optimisation
problems”. There exist a wide variety of metaheuristics in the literature, and different
taxonomy have been proposed, such as nature inspired versus nonnature inspired, mem-
ory usage versus memoryless, deterministic versus stochastic, iterative versus greedy, and
single-solution based versus population based (Talbi, 2009). In the following review, we
use the last criterion to group metaheuristics.

Single-solution based algorithms manipulate and improve a single solution during the
search (Talbi, 2009). Commonly used single-solution based metaheuristics include sim-
ulated annealing, tabu search, iterated local search, variable neighbourhood search, and
guided local search.

Simulated annealing (SA) is a probabilistic technique that enables the local search to
escape from the local optima in order to find good solutions for difficult problems. A
general framework of a SA algorithm is described as follows. First an initial solution
is generated using simple construction algorithms such as greedy heuristic. Then some
local search operators are applied to the initial solution to find a neighbourhood, which
replaces the incumbent solution immediately if it offers improvement; otherwise, the
neighbourhood is only accepted with a given probability, where the probability reduces
as time passes. The above local search procedure repeats until the predefined termination
rule is met (Van Laarhoven and Aarts, 1987).

Tabu search also accepts worse moves in order to escape from local optima if no im-
proving move can be found, but this is achieved by maintaining a tabu list of the search
area that has been previously visited (Talbi, 2009). The tabu list is a memory structure
describing the visited solutions or user defined rules. If a solution has been visited within
a certain period (usually defined as tabu strength), or it has violated a rule, it is set to
“tabu” so that the local search is prohibited from revisiting it until its “tabu” status has
been released or it meets a specific rule which is usually called the aspiration criterion
(Glover and Laguna, 1997).

In contrast to simulated annealing and tabu search, the iterated local search (ILS) does
not accept non-improving solutions, but it ensures the local search to escape from the
local optima by performing a perturbation mechanism on the previously visited local
optimal solution and restarting the local search from this modified solution (Lourenço
et al., 2003). The ILS is one of the most simple and robust algorithm as it has a relatively
simple structure and a small number of parameters (Burke et al., 2010).

Variable neighbourhood search (VNS), proposed by Mladenović and Hansen (1997),
is a metaheuristic method which successively explores a set of defined neighbourhood
structures to get different local optima and to escape from local optima (Talbi, 2009).
The fundamental idea of VNS is that a local optima for a neighbourhood structure is
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not necessary a local optima for another neighbourhood structure, and thus by changing
neighborhood structures, different local optima may find and among them there exists
a global optimal with respect to all possible neighbourhood structures (Mladenović and
Hansen, 1997). Like the ILS, VNS usually contains a perturbation mechanism, also
called shaking phase, which is applied to local optima if no improvement can be found
by all neighbourhood structures, and then the VNS procedures restart from this modified
solution again.

Unlike the metaheuristics described above, the guided local search (GLS) helps the local
search escape from the local optima by dynamically modifying the objective function
according to the features of already obtained local optima (Talbi, 2009). The key of
GLS is the scheme applied to modify the objective function.

The above single-solution based metaheuristics have been used to solve a wide variety
of optimisation problems. For applications in the area of emergency services, D’Amico
et al. (2002) and Zhang and Brown (2014a) both use simulated annealing to address a
partitioning problem of police jurisdiction. Ghandehari and Abdollahi (2014) develop a
two-stage simulated annealing algorithm to deal with location and routing problems of
large-scale emergency response facilities. Blais et al. (2003) apply tabu search to solve
a home-care districting problem. Zheng et al. (2013) also use tabu search to address
an emergency equipment maintenance problem in disaster operations. VNS has been
used by Grujičić and Stanimirović (2012) and Mišković et al. (2015) to solve location
problems in different emergency service networks.

In contrast to single-solution based metaheuristics, population based algorithms main-
tains a population of solutions, generates new solutions according to population charac-
teristics, and integrates those new solutions into the population based on some selection
criteria (Talbi, 2009). Population based metaheuristics can be classified into two main
categories: evolutionary algorithms and swarm intelligence.

Evolutionary algorithms are stochastic metaheuristics, which are based on the evolu-
tion of a population of artificial individuals (Talbi, 2009). They have been successfully
applied to solve complex optimisation problems in various domains. The most popular
class of evolutionary metaheuristics is genetic algorithms (GAs), which is first introduced
by Holland (1975). The general framework of a GA can be illustrated as followed: first,
a population of candidate solutions, coded in genetic representations, are initialised;
then new solutions, usually called offspring, are generated using a crossover operator,
plus a mutation operator to randomly modify the individuals in order to diversify the
population; next, a selection process based on a fitness function is applied to deter-
mine survival offspring to replace the parents. The generation of new solutions and the
selection process are repeated until certain termination criteria are met (Talbi, 2009).

Swarm intelligence is a category of metaheuristics which are inspired by a collective
behaviour of species such as ants, bees, fish and birds (Bonabeau et al., 1999). The main
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characteristics of swarm intelligence based algorithms are simple agents interacting by
an indirect communication medium, and moving in decision space (Talbi, 2009). The
most popular metaheuristics within this category are ant colony and particle swarm
optimisation.

Population-based metaheuristics have been successfully applied to solve a wide variety of
real-world problems. In the area of emergency services, Yang et al. (2007) use a genetic
algorithm to address a fuzzy multi-objective programming model proposed for a fire
station location problem. Yi and Kumar (2007) apply ant colony to deal with routing
and multi-commodity dispatching problem arisen from disaster relief operations. Ant
colony has also been used by Liu et al. (2011) to solve a hospital and response vehicle
scheduling problems for rescuing victims from chemical and biological terrorise attacks.

2.2.3 Simulation

Simulation has now become one of the most widespread modelling approaches in opera-
tions research, management science, and engineering (Rubinstein and Melamed, 1998).
Pegden et al. (1995) define simulation as “the process of designing a model of a real
system and conducting experiments with this model for the purpose of understanding
the behaviour of the system and evaluating various strategies for the operation of the
system”.

Simulation models can be classified based on three dimensions: deterministic or stochas-
tic, static or dynamic, and continuous or discrete (Law, 2007), as shown in Figure 2.1.
The term deterministic refers to models which do not contain any random variables,
while stochastic models contain random or unpredictable components. In terms of static
and dynamic, the former represents a system at a particular time point and the passage
of time has no impact on the system, while the latter refers to a system which evolves
over time. Lastly, a continuous simulation model represents a system in which the state
variables change continuously with respect to time, while in a discrete model, the state
variables change instantaneously at separate time points (Law, 2007).

The majority of real-world systems are characterised as dynamic and complex due to the
variability, interconnectedness and complexity of the nature of the system (Robinson,
2004). The variability refers to the variations exist in the system, such as stochastic
demand and uncertainties in traffic conditions. The interconnectedness means the cor-
related relationships between components of a system, and thus a change in a component
may affect other components that are related to it. The complexity indicates the number
of components in the system and the interaction between them.

The complex nature of the real-world systems implies the demand of powerful tech-
niques to help understand and analyse the complex behaviour of systems. Simulation
is one of such techniques that allows managers to predict system performance, compare
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Figure 2.1: Illustration of simulation classification (Law, 2007)

different design strategies and investigate the impact of changes in some components of
the system.

Simulation has been widely used in the field of ERSs, especially in emergency medical
services (EMSs) due to the increased realism and accuracy it provides (Henderson and
Mason, 2004; Yue et al., 2012; McCormack and Coates, 2015). For example, Ingolfsson
et al. (2003) develop a discrete-event simulation model for the EMSs in the city of
Edmonton in order to evaluate the performance of a single station strategy, where all
ambulances begin and end their shift at the same station. The model is also used to
examine the effect of various scenarios including the addition of stations, the addition
of ambulance, different shifts, and a different redeployment strategy.

The technique of discrete-event simulation has also been used by Haghani et al. (2004),
Henderson and Mason (2004), Yue et al. (2012), and McCormack and Coates (2015) to
deal with the ambulance planning problems, which involve a number of operational de-
cisions such as ambulance dispatching and routing, ambulance shift design, base station
location, and ambulance redeployment strategies. In addition, Andersson and Värbrand
(2007b) design a continuous simulation model for the ambulance dispatching and relo-
cation problem, where the model is driven by time using a step of one minute.

In addition to applications of simulation techniques to ambulance planning problems,
Zhang and Brown (2013) develop an agent-based simulation model to evaluate the per-
formance of different districting plans for police patrols, where the model is referenced
in a later study by Zhang and Brown (2014b) to compare with a discrete event simu-
lation model, proposed for the same problem by Zhang and Brown (2014a). Moreover,
Lee et al. (2006) develop a simulation model to assist public health administrators to
investigate clinic design and staffing scenarios in emergency response to bioterrorism
and infectious disease outbreak.
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The problem considered in our study affords a great amount of similarities to the am-
bulance planning problems. For example, emergency service requests arrive online, re-
sponse vehicles are required to carry out services at different task locations, and dis-
patching decisions must be made within a short time frame. Therefore, the above
review confirms that simulation is a useful approach to tackle the emergency vehicle
dispatching and routing problem at hand.

2.2.4 Hybrid Methods

There are some studies focusing on the development of hybrid methods that combine
components of different OR techniques in order to deal with complex problems arising in
emergency response services (ERSs). The hybridisation of different algorithmic concepts
has become one of the most successful trends in optimisation, as it combines strength
and advantages of the individual pure strategies (Blum et al., 2010).

The most commonly used hybrid method is integrating mathematical programming
(MP) with heuristics. For example, Iannoni et al. (2011) propose a hybrid approach
combining a hypercube queuing model and a greedy heuristic to solve the location and
districting problems of large-scale ambulance operations on highways. Geroliminis et al.
(2011) integrate a genetic algorithm with a queuing model and a location model to solve
a deploying problem of large-scale emergency response vehicles. Marić et al. (2013)
develop an algorithm which consists of the evolutionary approach with variable neigh-
bourhood search (VNS) method to address a location problem for long-term health care
facilities. Toro-Díaz et al. (2013) develop a hybrid model which combines an integer pro-
gramming (IP) model and a hypercube queuing model for the location and dispatching
problems of emergency medical service, where the model is solved by a genetic algorithm.

In addition to the combination of MP and heuristics, some studies integrate simulation
with other OR techniques. For example, McCormack and Coates (2015) integrate a
genetic algorithm into a simulation model in order to solve ambulance fleet allocation
and base station location problems. Yue et al. (2012) embed an efficient greedy algo-
rithm into a simulation model designed for ambulance fleet allocation and redeployment
problems. Lastly, Zhang and Brown (2014a) integrate a simulated annealing algorithm
into a simulation model to solve a districting problem for police patrols.

2.2.5 Discussion of Methods

The above review has shown that mathematical programming (MP) methods have been
widely applied to address various optimisation problems arising in emergency response
services (ERSs). Among those MP approaches, the integer programming (IP) and mixed
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integer programming (MIP) are the most frequently used techniques, since a large num-
ber of real-world applications can be formulated as linear models with some or all de-
cision variables required to be non-negative integers. Although IP and MIP offer very
useful ways to deal with the location, scheduling, dispatching and routing problems,
the problem size they can handle is rather limited, and therefore heuristics as well as
metaheuristics may be preferable, especially for large-scale problems.

Heuristics can be developed based on the knowledge of MP models and used as solution
approaches. Also, they can be developed without using information from MP models
and applied directly to solve optimisation problems. However, this type of heuristic algo-
rithms are often highly problem-oriented. In contrast to those heuristics, metaheuristics
provide a higher-level framework for designing effective and efficient algorithms. There
exist a number of metaheuristics, such as simulated annealing, tabu search, generic al-
gorithm, variable neighbourhood search and iterated local search. Those methods have
been successfully applied to solve a wide range of scheduling and routing problems.

Simulation is an effective modelling approach to deal with complex systems in ERSs.
A large number of researchers have used simulation to evaluate system performance,
compare different operational strategies and investigate the impact of changes in some
components of the system. The review of relevant literature in this area suggests that
the discrete-event simulation is a useful approach for the real-time emergency vehicle
dispatching and routing problem considered in our study.

2.3 Personnel Scheduling Problems

Personnel scheduling problems are commonly faced by many industry sectors and service
providers, such as call centres, healthcare systems, tourism, retail and manufacturing.
The survey of Ernst et al. (2004b) has identified main modules of personnel scheduling
problems, including demand modelling, days off scheduling, shift scheduling, line of work
construction, task assignment and staff assignment. These modules are briefly described
as follows.

Demand modelling is concerned with finding how many staff required at different times
over the planning horizon. For example, hospital mangers need to determine the number
of nurses required at different times of the day in order to satisfy the nurse-patient ratios
guided by healthcare departments. In some organisations, such as telecommunication
company, employees are trained in different skill domains and customers have different
skill requirements, which forms a complex problem of designing a multi-skilled workforce
with different number of employees for each skill domain. This class of problems are
often solved using forecasting techniques.
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Days off scheduling determines how the rest days are scheduled for each employee over
the planning horizon. Recent studies in this area include Elshafei and Alfares (2008),
Kyngas and Nurmi (2011) and van Veldhoven et al. (2016).

Shift scheduling involves shift design (e.g., shift length, start time and end time), de-
termination of the number of employees for each shift as well as allocation of suitably
qualified employees to specific shifts in order to meet demand. There exist a large num-
ber of solution algorithms in this area, including both exact methods (e.g., Maenhout
and Vanhoucke (2010), Côté et al. (2013) and Boyer et al. (2014)) and heuristics (e.g.,
Quimper and Rousseau (2010), Dahmen and Rekik (2015) and Ciancio et al. (2018)).

Line of work construction, also known as tour scheduling, combines both the days off
and shift scheduling problems, aiming to design work hours of the day and workdays of
the week for each employee. Tour scheduling is one of the most studied problems in the
personnel scheduling literature, as it offers flexibility in handling personnel preferences
and flexible shift patterns (e.g., different shift start times, shift lengths, and daily break
windows) (Van den Bergh et al., 2013). A comprehensive survey of relevant studies in
this area can be found in Alfares (2004), where the author has summarised solution
techniques for tour scheduling problems into ten categories: (1) manual solution, (2)
integer programming, (3) implicit modelling, (4) decomposition, (5) goal programming,
(6) working set generation, (7) LP-based solution, (8) construction and improvement,
(9) metaheuristics, and (10) other methods.

Task and staff assignment considers what tasks to be carried out during each shift, as
well as the assignment of qualified staff to the corresponding shifts in order to meet the
specific demand of services. Some studies (e.g., Caramia and Giordani (2009), Cordeau
et al. (2010), and Montoya et al. (2014)) have focused on the assignment of tasks to
a limited amount of resources, where tasks may require different skills, associate with
different priority levels or have time-dependent constraints (e.g., one task needs to start
after the completion of another task). In such problems, the objective is usually con-
cerned with finding a feasible scheduling plan such that the number of served tasks
is maximized or the schedule length (i.e., the makespan) is minimised. This class of
problems can be integrated with vehicle routing problem (VRP), which gives rise to the
workforce scheduling and routing problem (WSRP), described in Section 2.5.

The above modules form a wide variety of personnel scheduling problems, which have
attracted extensive research efforts in the past decades. For instance, Ernst et al. (2004a)
have identified about 700 references in personnel scheduling. Instead of providing a
comprehensive review of all relevant studies in this area, we refer the interested reader
to the following excellent surveys: Ernst et al. (2004b), Van den Bergh et al. (2013)
and De Bruecker et al. (2015). Among them, the first two consider various aspects of
personnel scheduling problems by discussing application areas, solutions approached and
models, while the last review paper focuses on the skill aspect of scheduling problems
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and examines various skill modelling approaches. These surveys have identified that
mathematical programming, heuristics, and simulation are the most frequently used
techniques in the area of personnel scheduling.

2.4 Vehicle Routing Problem

Vehicle routing problem (VRP) is a classical combinatorial optimisation problem, which
concerns with finding a set of least cost routes for a fleet of vehicles to serve a set
of customers (Golden et al., 2008). Since VRP was first proposed by Dantzig and
Ramser (1959), a huge number of studies have been dedicated to applications of VRP
to a wide variety of real-world problems, such as school bus routing, goods delivery
service, mail distribution and emergency services. There are two important dimensions
associated with VRP applications: evolution and quality of information (Psaraftis, 1980).
The former reflects that the available information may change during the execution of
the routes, while the latter implies possible uncertainties in the available data. Based
on these dimensions, Pillac et al. (2013a) propose four categories for VRPs (the same
taxonomy for VRPs has also been introduced in Bektaş et al. (2014)), as described
below:

(1) Static and Deterministic

All input data are known in advance and the routing plan is fixed during the execution
stage. This class of problems have been studied extensively in the literature, using both
exact and approximation methods. The existing exact methods for VRP can be classified
into following types: branch-and-band algorithm, dynamic programming, branch-and-
cut algorithm, and column generation algorithm. Although exact methods guarantee
optimality, they may not always be applicable, especially for large size instances. Instead
of finding the optimal solution, approximation algorithms are able to produce good
quality solutions in much shorter computational times. There exists a wide body of
literature describing various heuristics and meta-heuristics algorithms for VRPs. For
recent surveys on these methods, interested readers are advised to Baldacci et al. (2007);
Laporte (2009); Vidal et al. (2013a) and Toth and Vigo (2014).

(2) Static and stochastic problems

Part of input parameters are stochastic or unknown at the time of making decisions.
In such situations, an a priori plan is established before any random parameters being
revealed. During the execution of the plan, the information of random parameters is re-
vealed and only minor adjustments to the a priori plan are allowed. The main sources of
uncertainty considered in stochastic VRPs (SVRPs) literature are stochastic demands,
stochastic customers and stochastic times (service times, travelling times or both) (Gen-
dreau et al., 2016). Among them, the VRP with stochastic demands (VRPSD) is the
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most common variant of SVRPs. In VRPSD, the demand of each customer is only re-
vealed on arrival at the customer location. When the demand realization exceeds the
remaining capacity of the vehicle, recourse actions are applied to the a priori routes (e.g.
vehicle returns to the depot to replenish the capacity and then continues its route). Some
of recent studies in this field include Lei et al. (2011), Goodson et al. (2012), Gauvin
et al. (2014), Jabali et al. (2014), Biesinger et al. (2016) and Mendoza et al. (2016).

Compared to VRPSD, the VRP with stochastic customers (VRPSC) has been much
less investigated. In VRPSC, the presence of customers is considered to be stochastic.
The stochastic information on the expected number of customers is available and can
be used to design an a priori routing plan. At the execution stage, the set of present
customers is revealed and vehicles perform the planned routes by skipping the absent
customers. This class of problems has been studied by Bertsimas (1988) and Waters
(1989). Some researchers have investigated the VPR with stochastic customers and
demands (VRPSCD), which combines the characteristics of VRPSD and VRPSC. For
example, Gendreau et al. (1995) propose the first exact algorithm for the VRPSCD based
on the integer L-shaped method. However, their algorithm can only solve relatively small
instances to optimality. For the same problem, Gendreau et al. (1996) develop a tabu
heuristic algorithm.

Some studies have investigated the VRPs with stochastic times (VRPST). In this class
of problems, travelling times or service times are considered as random parameters.
The problem is usually concerned with finding an a priori routing plan that minimizes
the expected routing costs and the expected penalty costs associated with time related
constraints (e.g., route duration constraints and customer time windows). Recent studies
on VRPST include Li et al. (2010), Lei et al. (2012), Taş et al. (2013a), Taş et al. (2013b),
Taş et al. (2014) and Adulyasak and Jaillet (2015)). For more details about static and
stochastic VRPs, interested readers are advised to a comprehensive survey conducted
by Gendreau et al. (2016).

(3) Dynamic and Deterministic

All or part of the input data are unknown and revealed dynamically during the execution
of the routing plan. In this context, the routing plans are designed in an ongoing fashion.
This class of problems are usually referred as dynamic, real-time or online VRPs in the
literature. The most common source of dynamism is the arrival of customer requests, but
demands, travel times and service times are also possible dynamic elements. The solution
methods for dynamic VRPs can be divided into two categories: periodic and continuous
reoptimisation. The former refers to the policy that the reoptimisation procedure is
only carried out at some predefined time points or at periodic intervals (e.g., Yang et al.
(2004); Montemanni et al. (2005); Chen and Xu (2006) and Rizzoli et al. (2007)), while
the latter reflects the strategy of performing reoptimisation whenever there is a change
or update to the available data (e.g., Gendreau et al. (1999); Ichoua et al. (2000, 2003);
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Attanasio et al. (2004) and Bent and Van Hentenryck (2004)). For recent reviews on
dynamic and deterministic VRPs, interested readers are referred to Pillac et al. (2013a)
and Bektaş et al. (2014).

(4) Dynamic and Stochastic

Similar to the previous group, some input data are unknown and revealed dynamically
during the execution of the routes, but the stochastic information on dynamically re-
vealed parameters is available and used in the construction of the routing plan. The
solution methods developed in this area can be divided into three categories: anticipa-
tory strategies, stochastic modelling approaches and sampling-based algorithms. The
relevant studies for each category of solution methods are discussed in detail in Chap-
ter 5.

2.4.1 Vehicle Routing Problem with Time Windows

The classical VRP is often integrated with additional characteristics and constraints
in order to model real-world problems, which results in a significant number of VRP
variants, such as multi-depot vehicle routing problem (MDVRP), open vehicle routing
problem (OVRP), vehicle routing problem with pickup and delivery (VRPPD), and
vehicle routing problem with time windows (VRPTW). The family of those VRP variants
have been the subject of intensive research for more than 50 years, which yields an
extremely large amount of literature in this area. For example, Eksioglu et al. (2009)
have identified 1,021 journal articles with VRP as the main topic, published between
1959 and 2008, while Braekers et al. (2016) have revealed 277 articles on the same subject
published between 2009 and 2015. To keep our review manageable, the emphasis of our
review is given to VRPTW, since it is highly related to the problem considered in our
study. For surveys on other VRP variants, we refer the reader to Eksioglu et al. (2009),
Laporte (2009) and Braekers et al. (2016).

A general description of the VRPTW is given as follows: a set of geographically scattered
customers with known demands and time windows are serviced by a fleet of vehicles with
limited capacity from the same depot. The main objective is to design least cost routes
under a set of constraints: (1) every route starts and ends at the same depot; (2) each
customer is visited once by exactly one vehicle; (3) the total load of each route cannot
exceed vehicle’s capacity; (4) the service at each customer should start between the
customer’s time window (Toth and Vigo, 2014). In some studies, the violation of time
window constraints is allowed, which is known as VRP with soft time windows in the
literature.

The existing solution methods for the VRPTW can be classified into two categories:
exact methods and heuristic algorithms, discussed respectively as follows.
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Since the first dynamic programming algorithm for the VRPTW was proposed by Kolen
et al. (1987), a number of exact algorithms have been developed for the problem,
which can be roughly classified into three categories: dynamic programming, Lagrange
relaxation-based methods and column generation (Larsen, 1999). The dynamic program-
ming approach is used by Kolen et al. (1987) to address the VRPTW, where their work
is partially inspired by the study of Christofides et al. (1981), which applied dynamic
programming to solve the VRP. Lagrange relaxation-based methods have been used to
solve the VRPTW by a number of studies, such as Fisher et al. (1997) and Kohl and
Madsen (1997). The best exact methods published on the VRPTW are based on the set-
partitioning (SP) model, solved by branch-and-price methods, which integrates column
generation and branch-and-bound techniques. Desrosiers et al. (1984) present the first
column generation algorithm for the VRPTW. Then a more efficient version of the same
model is presented in Desrochers et al. (1992), which can find optimal solutions for some
large instances containing up to 100 customers. This method is improved by Kohl et al.
(1999) by using 2-path inequalities. Jepsen et al. (2008) introduce a branch-and-price
framework with subset-row inequalities based on the SP model, which is improved by
Desaulniers et al. (2008) by adding generalized k−path inequalities and applying a tabu
search heuristic to generate negative reduced cost columns in a short computational
time. Finally, Baldacci et al. (2011) describe an exact solution framework based on the
SP formulation for the VRPTW, enhanced by a new route relaxation called ng−route.
Recent surveys on exact methods for VRPTW can be found in Baldacci et al. (2012)
and Kallehauge (2008).

Although exact algorithms are able to solve the VRPTW to optimality, the problem
size they can handle is relatively small. Therefore, there exist a large number of stud-
ies focusing on heuristic and metaheuristic approaches for the VRPTW. Some of the
successful algorithms developed in this field are tabu heuristic (e.g. Cordeau et al.
(2001); Cordeau and Laporte (2001) and Cordeau et al. (2004)), genetic algorithm (e.g.
Berger and Barkaoui (2004) and Vidal et al. (2013b)), simulated annealing (e.g. Chi-
ang and Russell (1996) and BañOs et al. (2013)), variable neighbourhood search (e.g.
Bräysy (2003); Polacek et al. (2004) and Paraskevopoulos et al. (2008)), adaptive large
neighbourhood search (e.g. Ropke and Pisinger (2006)) and iterated local search (e.g.
Hashimoto et al. (2008); Michallet et al. (2014) and Vansteenwegen et al. (2009)). For
comprehensive surveys on those methods, the interested reader is advised to two ex-
cellent review papers by Bräysy and Gendreau (2005a,b), where the former focuses on
traditional route construction methods and local search algorithms, while the later ex-
amines existing metaheuristics for the VRPTW.



Chapter 2 Literature Review 23

2.5 Workforce Scheduling and Routing Problems

Workforce scheduling and routing problems (WSRPs) combines characteristics of the
general scheduling problem and vehicle routing problem (VRP), and refers to a class
of optimization problems where service personnel are required to carry out tasks at
different locations (Castillo-Salazar et al., 2012). A review of relevant studies on WSRPs
is presented in Chapter 4.

2.6 Conclusion

In this chapter, we have reviewed the relevant body of literature on applications of
operational research (OR) techniques to various aspects of emergency response services
(ERSs). Mathematical programming (MP), heuristics including metaheuristics and sim-
ulation have been identified as useful approaches to handle optimisation problems arising
in ERSs. Simulation provides an effective way to evaluate system performance, test sce-
narios and compare the effectiveness of different scheduling and routing policies. This
motivates us to develop a simulation model for real-time emergency vehicle dispatching
and routing, as presented in Chapter 3.

Among various MP methods, the integer programming (IP) and mixed integer program-
ming (MIP) are the most frequently used techniques in ERSs, since a large number of
real-world applications can be modelled as linear models with some or all decision vari-
ables required to be integers. In Chapter 4, a MIP model is proposed for the workforce
scheduling and routing problem (WSRP). Moreover, the literature review on the WS-
RPs (as given in Chapter 4) indicates that most of the existing heuristic algorithms for
the WSRP are sophisticated and highly problem specific, and hence our study aims to
provide a simple and fast heuristic algorithm, based on the iterated local search (ILS)
framework. Our work is also the first application of the ILS to the WSRP.

Finally, the review on dynamic and stochastic vehicle routing problems (as presented
in Chapter 5) shows that exploiting stochastic information about future requests is
advantageous for making dynamic decisions, and sampling-based algorithms provide an
effective way for this purpose. However, due to the complexity of sampling-based models,
the existing studies have focused on the integration of sampling-based approaches into
heuristic algorithms. In Chapter 5, we present a sampling-based model for the dynamic
WSRP, where the proposed model can handle reasonable size instances of a real-life
problem in short computational times without the need for using heuristic approaches.





Chapter 3

Simulation of Real-Time
Emergency Vehicle Dispatching
and Routing

Simulation has now become one of the most widespread modelling approaches in oper-
ations research (OR), management science, and engineering (Rubinstein and Melamed,
1998). One of the main objectives of this doctoral work is to provide an analytical tool
to help managers have a better understanding of the real system and also evaluate the
performance of difference operational strategies. To this purpose, a simulation model of
the real-time emergency vehicle dispatching and routing is developed based on a case
study of a British company providing emergency road services. This chapter starts with
a detailed description of the real system and its main components. Then the process of
model development including procedures used for data collection, data analysis, distri-
bution fittings, model design as well as model verification and validation are described.
Next the results of simulation experiments are presented, and finally the chapter ends
with some concluding remarks.

3.1 Background

The emergency road service, which provides repair or recovery for disabled or crashed
vehicles, is also within the context of emergency response services (ERSs). However, it
has received much less attention from the OR community, compared to other emergency
response organisations, such as police, fire department and emergency medical services.
Our study focuses on the emergency road service by carrying out a case study of a
British company, the Automobile Association (AA), which is the largest breakdown
cover organisation in the UK, maintaining about 2, 500 roadside assistance patrols and
recovery trucks in order to help their customers whose cars break down on their way.

25
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The AA service operates 24 hours a day and 7 days a week, and responds to an average
of 10, 000 requests every day. Since service requests arise continuously and randomly
over time, the AA response system is required to make the request acceptance/rejection
decisions as well as scheduling and routing decisions in an ongoing fashion as new requests
arrive. The following sections illustrate how those decisions are made by discussing the
AA resources, tasks, and the decision making process.

3.1.1 AA Resources

The AA motoring breakdown service consists of roadside repair service and recovery
operation. The former is carried out by mobile patrols with skilled technicians. If a
roadside repair is not possible, the recovery operation is required and is carried out by
trucks with recovery technicians (hereafter referred to as truckers) or those patrols that
are equipped with the vehicle recovery system allowing patrols to lift the front or rear of
disabled vehicles in order to move them from original locations to recovery destinations.
However, the patrol recovery operation has restrictions on weight, transmission, the
number of passengers (patrols only have two passenger seats), and recovery distance
(up to 60km from patrol home bases). If a recovery task violates any of the above
restrictions, it must be assigned to a recovery truck.

Technicians are specialised in different skill domains, which can be classified into fol-
lowing categories: (1) battery technician, who has skills of dealing with battery issues
(e.g., flat battery) and minor repair tasks (e.g., tyre punctures); (2) fuel technician, who
is specialised in handling fuel issues (e.g., fuel drain) and minor repair tasks; (3) key
technician, who addresses key issues only, such as key lost and key locked in the vehicle;
(4) JLR technician, who is specialised in particular brands of vehicles, such as Jaguar
and Land Rover; (5) general technician, who can deal with both minor and major repair
tasks (e.g., engine and gearbox issues).

Moreover, each technician have an associated home base, at which the technician starts
and ends the shift. A period of 45 minutes must be reserved to allow technicians to drive
back to their home bases at the end of their shifts. In contrast to technicians, truckers
start and end their shifts at designated depots.

In addition to the AA resources, requests can be outsourced to the garage (the third
party providing motoring breakdown services), albeit at the expense of additional costs.
The garage resource is split into two categories: garage A and garage R. The former
is equivalent to AA patrols that can carry out roadside repair tasks, while the latter is
similar to AA trucks which can perform recovery operation.
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3.1.2 AA Tasks

When a service request arrives at the call centre, the call handler collects information
from the customer, and then creates a task characterised by location, faulty type, and a
service time window within which the service is expected to commence. The fault type
(e.g., tyre punctures, engine issues, and flat battery) determines the skill requirement
of the task, which belongs to one of the following categories: (1) battery assistance; (2)
fuel assistance; (3) key assistance; (4) JLR (Jaguar/Land Rover) assistance; (5) repair
1 (minor); (6) repair 2 (major); (7) recovery 1 (truck not required) and (8) recovery 2
(truck required). Recall that technicians are trained in different skills, which allow them
to only be able to perform a subset of task categories. Therefore, skill compatibility (as
illustrated in Figure 3.1) must be taken into account to ensure that tasks are assigned
only to qualified personnel.
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Figure 3.1: Skill compatibility between tasks and resources

3.1.3 Service Process

Figure 3.2 illustrates the decision making process of the real system. When customers
have their vehicles break down, they send service requests to the call centre. The call
handlers collect information from customers, create tasks and determine the skill re-
quirements. Then the system identifies whether there are available resources to perform
tasks within the required time limit (e.g., two hours). If no resource is available or better
operational performance can be achieved, tasks are outsourced to the garage; otherwise,
tasks are assigned to appropriate resources under the consideration of skill compatibil-
ity. Repair tasks must be assigned to technicians, while recovery tasks can be assigned
to either technicians or truckers depending on the requirement of truck.
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Figure 3.2: A flowchart of the decision making process at the AA

Once assignment decisions are made, tasks are inserted into job plans of the technicians
or truckers assigned. Each job plan consists of all tasks that have been assigned but
not yet completed. The system needs to determine the sequence of tasks to be carried
out by the associated resource. Once a technician or trucker starts travelling to a task,
they cannot serve another task until the current one is completed. In this case, the
task is defined as locked, which means that it cannot be reassigned to another resource.
Technicians and truckers are allowed to swap unlocked tasks in their job plans, however,
the skill compatibility must be always taken into account.

After arriving at the task location, the technician carries out detailed vehicle diagnostics
to identify what the fault is, whether the issue can be repaired at roadside and how long
the service will take. This part of information is sent back to the system to determine
whether further actions are required. If the service cannot be completed by the resource
assigned (e.g., the resource does not have the required skills and tools), the current task
is closed and a new task is created for the same customer in order to dispatch a more
appropriate resource or use the garage option. Once the current task is completed, the
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technician or trucker is required to travel immediately to the next task location assigned
or if there are no further tasks in the job plan, the technician can stay idle at the current
location but the trucker must travel back to the associated depot.

3.2 Data Collection and Description

Two data sets, task data and staff data, covering the entire UK and a time period from
01/05/2014 to 31/05/2014 are collected from the company. The task data contain the
following categories: task creation time (request arrival time), task location, skill re-
quirement, initial service duration, response vehicle arrival time, task completion time,
recovery destination and recovery start time if the recovery service has been carried out.
The staff data contain scheduled shifts of technicians and truckers, with the following
categories: location of each technician home base, location of the associated depot of
each trucker, shift start date and time, shift end date and time, shift type (e.g., regu-
lar, standby, call-back and overtime) , and duty type (e.g., roadside service, meeting,
training, maintenance and break). The above data are used to generate inputs for the
simulation model.

(a) Service Request (b) Service Vehicles

Figure 3.3: Geographic distributions of service requests and home bases of tech-
nicians
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The total number of service requests received during the study period is 303, 212, which
gives an average of 9, 781 requests per day. Figure 3.3a shows the geographical distribu-
tion of service requests received on the 01/05/2014 in the UK. The area that receives the
highest density of service requests is London, followed by other urban areas including
Manchester, Birmingham, Leeds and Glasgow. Figure 3.3b presents the geographical
distribution of home bases of technicians who were on duty on 01/05/2014. It can
be seen that the distribution of technicians follows similar patterns to that of service
requests.

As stated in Section 3.1.2, tasks are split into eight categories based on their skill re-
quirements. Figure 3.4 shows the percentage of each task category, where Battery, Fuel,
Key, JLR, Level 1, and Level 2 form the six types of repair tasks, and Recovery 1 and
Recovery 2 are tasks that require recovery services, but the former does not require
recovery trucks while the latter requires. More than 70% of tasks are repairable, where
the level 2 tasks account for the largest proportion among tasks (42.86%), followed by
the level 1 which has a percentage of 25.50%. The total proportion of other repair tasks
is less than 7%. In terms of recovery tasks, the percentage of tasks requiring recovery
truckers is about half of that of tasks not requiring truckers.

Figure 3.4: Percentage distribution of task categories

The total numbers of technicians and truckers are 2293 and 515, respectively. As de-
scribed in Section 3.1.1, technicians are grouped into five categories: battery, fuel, key,
JLR and general technicians. The percentage of each category is reported in Table 3.1.
Among those resources, general technicians have the largest proportion (73.93%), fol-
lowed by truckers which account for 18.34%. The total proportion of other resources is
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only about 8%. The percentage distribution of resources follows similar patterns to that
of tasks.

Resource Type Battery Fuel Key JLR General Trucker

Count 72 63 16 66 2076 515
Percentage (%) 2.56 2.24 0.57 2.35 73.93 18.34

Table 3.1: Percentage distribution of resource categories

3.3 Distribution of Service Requests

This section describes the process used to identify the arrival distribution of service
requests. We first discuss possible seasonality and trends in the time series of service
requests, and then define the demand zones. Lastly, we describe how the arrival distri-
bution is constructed for service requests.

3.3.1 Seasonality and Trends of Service Requests

Figure 3.5 presents the average number of service requests by day of the week and by
hour of the day. During the study period, there are two bank holidays (public holiday in
the UK), 05/05/2014 and 26/05/2014, and therefore we create a separate group, namely
“BankHoliday”, as shown in Figure 3.5.

The arrival rate, defined as the average number of service requests received per hour,
exhibits a significant daily pattern with a strong morning peak appearing between 8:00
and 10:00, a long and off-peak period between 10:00 and 18:00, and low values during
the night.

In addition to the daily pattern, there exist a clear weekly pattern in the graph. Monday
receives more requests than other days of the week. Particular, the arrival rate during
the morning peak of Monday is nearly 1,200, which is about one-third greater than the
values during the same time period of other days. This is due to the fact that a large
number of people may visit other cities during the weekend and holidays, and they often
return to their home cities on the Monday morning, which leads to an increased volume
of traffic, and as a result the demand of emergency road services increases. Tuesday
seems to receive a slight higher volume of service requests than Wednesday, Thursday
and Friday. This can be explained by the two bank holidays mentioned above, where
those holidays were on Monday, which makes the following Tuesday present a similar
daily pattern to that of the regular Monday. In contrast to weekdays, the arrival rate
during weekend and holidays does not present morning and afternoon peaks.
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Figure 3.5: The arrival distribution of service requests

3.3.2 Definition of Demand Zones

The geographic distribution of service requests (as shown in Figure 3.3a) indicates that
the density of service requests varies significantly over different regions of the UK. There-
fore, we split the UK into demand zones.

Figure 3.6: Grid Map of the UK
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The grip map of Figure 3.6 shows that the UK is split into 56 square areas with a
side length of 100km. To provide a more accurate estimation, we further divide each
area into 100 smaller squares with a side length of 10km and discard those that do
not represent land areas (e.g., ocean), which results in a total of 2723 demand zones.
We assume that the daily and weekly patterns are identical over all demand zones. To
capture the geographical distribution of service requests, we define a density factor αj

for each demand zone j ∈ {1, 2, ..., 2723}, and computed as αj = λj/λ̄, where λj is the
average number of requests received in zone j per day, and λ̄ =

∑2723
j=1 λj is the sum of

the averages of all demand zones.

3.3.3 Identification of Arrival Distribution

The Poisson distribution is commonly used to model the arrival process of queuing
systems (Law, 2007). For example, Fujiwara et al. (1987) and Cortés et al. (2011) have
used the Poisson process to model the arrival of calls within an ambulance deployment
system and a technician dispatching system, respectively. In the following section, we
will show that the arrival of service requests considered in our study also follows the
Poisson process.

The analysis in Section 3.3.1 reveals that the arrival rate of service requests has strong
daily and weekly patterns, and therefore a time-dependent arrival distribution is rec-
ommended. The weekly pattern implies the creation of three groups, namely, Week-
end, Monday, and TueToFri, where TueToFri represent a group consisting of Tuesday,
Wednesday, Thursday and Friday. The group Weekend includes public holidays, such
as bank holiday. The group Monday also considers the fist weekday after a public hol-
iday, but excluding those Mondays that are the public holiday. In terms of the hourly
pattern, 24 groups are created to reflect the variations of arrival rates throughout the
day. Therefore, a total of 72 groups are created and each group has an associated arrival
rate of service requests.

To examine whether the arrival of service requests follows a Poisson process, we carry out
the following procedure. We first extract a sample group (e.g., TueToFri & 09:00) from
the task data, and then count the number of service requests received in each minute
over the time period covered by the sample data. The obtained set of count data is
used to construct a frequency distribution and calculate the probability of each possible
count value by dividing its frequency by the sum of the frequencies. Finally, the obtained
probability distribution is compared with the expected probability distribution derived
from a Poisson distribution estimated based on the sample data. Figure 3.7 presents
an example of the comparison of observed and estimated probability distributions using
the sample group “TueToFri & 09:00”. The x-axis gives the possible number of arrivals
per unit of time (minute), while the y-axis represents the corresponding probabilities.
The histograms show that the Poisson distribution can provide a very good fit to the
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Figure 3.7: Comparison of observed and expected probabilities of each possible
number of arrivals per minute

sample data. The same procedure is performed on other groups of data, and similar
results have been observed. Therefore, we use a non-homogeneous Poisson distribution
to model the arrival of service requests.

Once a random request is generated from the distribution, we need to determine the
demand zone from which it comes. One straightforward way is to construct an arrival
distribution for each demand zone, and then generate random requests for each demand
zone separately. This method is particularly useful for problems with a small number of
demand zones (e.g., Fujiwara et al. (1987) and Ingolfsson et al. (2003)). As our problem
considers a large-scale region (2723 demand zones), it is neither practical nor efficient to
apply the method described above. Therefore, we use a different procedure to determine
the demand zone of a random request, described as follows.

1. Random requests are generated using the non-homogeneous Poisson distribution
identified;

2. Once a request is generated, it is allocated to a demand zone using the following
cumulative probabilities:

pj =

0 if j = 0,∑j
i=0 αi otherwise.
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The selected zone j is determined by the condition pj−1 ≤ u < pj , where u is a random
number drawn from a uniform distribution U [0, 1].

3.4 Service Duration and Recovery Distance

The service duration is defined as the time gap between the starting time and the
completion time of a service. For a repair task i carried out by a technician k, the
associated repair duration si is simply computed as si = ci− aki , where ci represents the
service completion time and aki denotes the arrival time of technician k at the location
of task i. Technicians are assumed to start services as soon as they arrive at the scenes.
For a recovery task j carried out by a technician or trucker k, its service duration sj

consists of two components, preparation duration ŝj and recovery duration s̄j . The
former refers to the amount of time that resource k spends at the scene on diagnosing
issues and preparing for the recovery operation (e.g., connecting the disabled vehicle
with the recovery system), computed as ŝj = bj − aki , where bj represents the departure
time of the recovery journey between the scene and the recovery destination. The latter
represents the amount of time required for moving the disabled vehicle to the recovery
destination, and it is determined based on the required recovery distance d̄j . Therefore,
we need to identify three distributions in this section, which are: (1) the distribution of
repair durations of repair tasks; (2) the distribution of preparation durations of recovery
tasks; (3) the distribution of recovery distance of recovery tasks.

3.4.1 Distribution of Service Durations

Based on the given data and the equations defined above, we extract a sample S of
repair durations of repair tasks and a sample Ŝ of preparation durations of recovery
tasks. Since recovery tasks are classified into two categories: recovery 1 and recovery 2
(as shown in Table 3.7), we split Ŝ into two samples Ŝ1 and Ŝ2 for each of the recovery
categories.

The box plots (Figure 3.8) show that the obtained samples S, Ŝ1 and Ŝ2 contain nega-
tive and extremely large values (highlighted in red colour), which are known as outliers.
These outliers are identified using the following criterion: an observation point beyond
either the lower bound 0 or the upper bound Q3 + 3 ∗ IQR is considered as an outlier,
where IQR is the interquartile range which represents the difference between the third
quartile Q3 and the first quartile Q1 of a given sample. Based on the above definition,
the upper bounds of samples S, Ŝ1 and Ŝ2 are computed as 109, 82 and 49 respectively.
For outliers beyond the lower bound, we simply remove them from the samples as they
are obvious errors possibly caused by missing or incorrectly entered data. For those
outliers having large values, we cannot simply remove them as they may reflect the
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Figure 3.8: Distributions of repair and preparation durations (minutes)

actual variations of the variable considered. However, we need to ensure that unreason-
ably large outliers are excluded from the sample, as they may cause misleading analysis.
After consultation with company experts, the upper bounds of samples S, Ŝ1 and Ŝ2

are adjusted to 240, 180 and 120 respectively. We remove the points beyond the corre-
sponding upper bounds from the samples, and summarise the descriptive statistics of the
obtained samples in Table 3.2. It can be observed that there exist significant differences
between the means and standard deviations (shown as SD. in table 3.2) of samples S,
Ŝ1 and Ŝ2. This indicates that these samples are drawn from different distributions.

Sample Min. Q1 Median Q3 Max. Mean SD.
S 1.00 17.00 26.00 40.00 239.00 31.88 22.59
Ŝ1 1.00 10.00 18.00 29.00 178.00 21.87 17.18
Ŝ2 1.00 10.00 14.00 19.00 119.00 16.12 11.54
Average 1.00 12.33 19.33 29.33 178.67 23.29 17.10

Table 3.2: Descriptive statistics of repair and preparation durations (minutes)

As the data of sample S is continuous and positive, the potential distributions that may
fit to S are exponential, gamma, log-normal, normal and Weibull distributions. Thus,
we first fit these distributions to our sample S using the maximum likelihood method.
Then we compare the empirical cumulative distribution function (CDF) of S with the
theoretical CDFs of the parametric distributions obtained previously. As illustrated in
Figure 3.9, the black line shows the empirical CDF while the coloured lines present the
theoretical CDFs. We can see that the exponential and normal distributions do not
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provide a good fit to S, because the shapes of the corresponding lines are different to
that of the empirical CDF and there exist significant gaps between these lines. Although
the other three lines are quite close to the empirical CDF, the log-normal distribution
appears to fit S best than the gamma and Weibull distributions.
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Figure 3.9: Empirical CDF of sample S against theoretical CDFs of estimated
distributions

Figure 3.10 presents the probability density function (PDF) of sample S (as shown
by blue bars), fitted with a log-normal distribution, of which the mean and standard
deviation of the variable’s natural logarithm are estimated to 3.25 and 0.67 respectively.
The obtained log-normal distribution presents a very good fit to sample S, and thus we
use this distribution to model the repair duration.

The same procedure used above is carried out on the samples Ŝ1 and Ŝ2. The results show
that Ŝ1 can be fitted to an gamma distribution with shape 1.73 and rate 0.08, and Ŝ2

can be fitted to a log-normal distribution with parameters estimated to be 2.58 and 0.65.
The details of fitting distributions on these two samples can be seen in Appendix A.1.

3.4.2 Initial Service Duration

The above distributions are used to model the actual repair or preparation duration
required by a task. The information about the actual service duration is only available
after the technician or trucker arrives at the scene and carries out vehicle diagnostics.
When making the scheduling and routing decisions, we only know the initial service
duration which is estimated based on the information collected from the customer. Ac-
cording to the historical data, the value of initial service duration is selected from the
vector {15, 20, 25, 30, 35, 40, 45}. To investigate how the value is determined, we perform
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analysis using three samples of initial service durations, corresponding to repair tasks,
recovery 1 and recovery 2 tasks, respectively.

Time Repair Recovery 1 Recovery 2 All Tasks
(minutes) Freq. % Freq. % Freq. %t Freq. %

15 2624 13.82 140 2.89 35 1.79 2799 10.85
20 14259 75.12 3784 78.04 1423 72.75 19466 75.49
25 614 3.23 315 6.50 134 6.85 1063 4.12
30 1119 5.90 443 9.14 269 13.75 1831 7.10
35 50 0.26 28 0.58 18 0.92 96 0.37
40 215 1.13 113 2.33 62 3.17 390 1.51
45 100 0.53 26 0.54 15 0.77 141 0.55

Total 18981 100.00 4849 100.00 1956 100.00 25786 100.00

Table 3.3: Percentage distribution of initial repair durations (minutes)

Table 3.3 shows that all samples have similar percentage distributions on the values of
initial service duration, where about 75% of tasks having their initial service durations
equal to 20 minutes. The scatter plot (Figure 3.11) indicates that there is no clear
relationship between the initial service durations and the actual service durations. In
other words, the initial service duration does not provide a good estimation for the actual
time required. Based on the above results, we simply use 20 minutes as the initial service
duration of each random task generated by the simulation model.

3.4.3 Distribution of Recovery Distance

For a recovery task i, let (xi, yi) be the coordinates of the task location and (x̄i, ȳi) be
the coordinates of the associated recovery destination. Then the recovery distance d̄i is
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Figure 3.11: Scatter plot of initial vs. actual service durations

defined as the Euclidean distance between the task location and the recovery destination,
and computed as d̄i =

√
(xi − x̄i)2 + (yi − ȳi)2. Using this equation, we obtain a sample

D̄ of recovery distances from the historical data. We split D̄ into two samples D̄1 and
D̄2 to represent recovery 1 and recovery 2 tasks, respectively.

The distributions of samples D̄1 and D̄2 are displayed in Figure 3.12, where the red points
represent outliers beyond the upper bounds 54.19 and 180.65 respectively, computed
using Q3 + 3 × IQR. Both D̄1 and D̄2 contain a considerable amount of outliers.
We need to adjust these outliers to reasonable values as they may affect the results of
analysis. The category Recovery1 refers to tasks that require basic recovery services
which are usually performed by patrols. Patrols are subject to home constraints, which
enforce that the maximum service distance is 60km from the home bases. For tasks
requiring long recovery distances (more than 60km), they can only be carried out by
trucks, and thus are classified into the category Recovery 2. For this reason, we adjust
the upper bound of D̄1 to 60km. In contrast to patrols, trucks are not subject to home
constraints, and so they can carry out tasks requiring long recovery distances. However,
they must return to the depots at the end of their shifts. If an extremely long recovery
distance (e.g., 400km) is required by a customer, the request is usually assigned to more
than one trucks, each performing part of the recovery journey. In this situation, there
are actually more than one tasks created for this customer, each assigned to a different
truck. Thus, it is very unlikely to have a task requiring very long recovery distance.
Sample D̄2 contains ten data points that are greater than 300km. Comparing to the
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Figure 3.12: Distributions of recovery distances (km)

size of D̄2, which is 15561, those large outliers are negligible, and so we simply remove
them from D̄2.

Table 3.4 presents the descriptive statistics of D̄1 and D̄2 after addressing the outliers
identified above. The mean and standard deviation of D̄2 are significantly higher than
those of D̄1, which implies that these two samples are drawn from different distribu-
tions. Because D̄1 is subject to a strict bound (recovery distance must be not greater
than 60km), we construct an empirical distribution to fit D̄1. Figure 3.13 shows the
probability distribution of the empirical distribution obtained, where the interval (0, 60]
is equally split into 20 bins, each having a width of 3, and each blue bar represents the
probability that a number falls into the associated bin.

Sample Min. Q1 Median Q3 Max. Mean SD.
D̄1 0.01 1.78 5.52 13.16 59.98 9.87 11.71
D̄2 0.02 5.71 15.98 49.40 296.10 36.62 46.70
Average 0.02 3.74 10.75 31.28 178.04 23.24 29.20

Table 3.4: Descriptive statistics of samples D̄1 and D̄2

To find the most appropriate distribution for D̄2, we carry out the same fitting procedure
used previously for service durations. The results show that there is no suitable para-
metric distribution to fit D̄2, and therefore we choose to use the empirical distribution.
The details of the fitting procedure for D̄2 can be seen in Appendix A.2.
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Figure 3.13: Probability of the empirical distribution fitted on sample D̄1

3.5 Development of Simulation Model

This section discusses the development of a simulation model to represent the real system
used by the AA company. The model is developed using the programming language C++
rather than bespoke simulation software. Although the use of programming language
requires extensive efforts and time, it provides better flexibility in model design and
allows us to implement complicated strategies and dispatching algorithms. An overview
of the simulation model is initially presented, followed by a discussion of simplifications
and assumptions that have been made. Then we describe how the travel distance and
time are computed. Next the model inputs and outputs as well as dispatching policies
are illustrated. After that the model verification and validation are described. Finally,
the user interface developed for the simulation model is presented.

3.5.1 Overview of Simulation Model

The developed simulation model is event-based, which is also known as discrete event
simulation (DES). In a DES model, the state of the system is only changed at discrete
points in time at which events occur, and thus the simulation can directly jump in time
from one event to the next. According to the three-phase approach described by Tocher
(1963), the simulation events can be classified into two categories: B (bound or booked)
events and C (conditional) events. The former refers to the events that are scheduled to
occur at a point in time, while the latter represents the events that are dependent on the
conditions of the model. Based on the real system described in Section 3.1, a number of
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Event Type Change in state Future event

B1 Arrival New request arrives and enters the decision
queue.

B1

B2 Update status Shift starts and resource logs into the system.
Technician departs from the home base, and
trucker departs from the depot.

B2

B3 Update status Shift ending time is reached and resource
cannot accept new tasks.

B3

B4 Update status Break requirement is triggered. Set the re-
source status to ‘break required’.

B4

B5 Update status Resource finishes the break. Set the resource
status to available.

B6 Arrival Resource arrives at task location. Set veloc-
ity to 0.

B7 Arrival Technician arrives at the home base. Set ve-
locity to 0 and status to idle.

B8 Arrival Trucker arrives at the depot. Set velocity to
0 and status to 0.

B9 Finish activity Resource completes recover preparation and
starts the recovery journey. Compute veloc-
ity and set status to travelling.

B11

B10 Finish activity Technician completes repair service and re-
moves task from the job list. Set status to
idle.

B11 Finish activity Resource arrives at the recovery destination,
completes recovery service and removes task
from the job list. Set the status to idle.

B12 Finish activity Request is outsourced to garage and service
is completed.

Table 3.5: List of B events

B events and C events (as illustrated in Table 3.5 and 3.6) have been identified to drive
the simulation model.

Figure 3.14 illustrates the framework of our simulation model, based on the three-phase
approach proposed by Tocher (1963). The simulation starts with an initialisation step,
which initialise input data, states and events. Then the A-phase is executed, which
identifies the time of the next event and advance the simulation clock to that time. The
elapsed time is also computed and the locations of resources with status of travelling
are updated. In the B-phase, all B-events that are due at the current simulation clock
are executed, while in the C-phase, all C-events are attempted and those for which
their conditions are satisfied are executed. If no further C events can be executed,
the simulation returns to the A-phase to perform another iteration of the three-phase
procedure until the termination criterion is met.
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Event Condition Change in state Future event

C1 Decision queue is not empty Outsourcing, scheduling and
dispatching decisions are
made.

B12

C2 (1) Resource type is techni-
cian; (2) Current time is less
than 45 minutes to the end of
the shift; (3) The job list is
empty.

Technician starts returning to
the home base. Compute ve-
locity and set status to trav-
elling.

B7

C3 (1) Resource type is trucker;
(2) Trucker is away from the
depot; (3) The job list is
empty.

Trucker starts returning to
the depot. Compute velocity
and set status to travelling.

B8

C4 (1) Break requirement is trig-
gered; (2) resource is not serv-
ing customer.

Resource starts taking the
break. Set resource status to
‘on break’.

B5

C5 (1) Resource is idle; (2) the
job list is not empty.

Resource starts travelling to
the location of the first task
in the list. Compute velocity
and set status to travelling.

B6

C6 (1) Technician arrives at the
task location; (2) Repair task.

Technician starts repair ser-
vice. Set technician status to
serving

B10

C7 (1) Resource arrives at the
task location; (2) Task re-
quires recovery operation.

Resource starts the recovery
preparation and set the status
to serving.

B9

Table 3.6: List of C events

3.5.2 Simplifications and Assumptions

According to Robinson (2004), a simulation model must be designed as simple as possible
to meet objectives of the study. A well simplified model speeds up the development
process and increases the utility of the model. The main purpose of model simplification
is to reduce the complexity of a model while maintaining an acceptable level of its
validity or credibility. Model simplification can be achieved by removing components
and interconnections that have a small influence on the model accuracy; or by using a
simpler representation for complex components and interconnections while ensuring the
model accuracy at certain level (Robinson, 2004). In developing the simulation model
for the real system used by the company, the following simplifications are made:

1. The percentage distribution of resource categories (Table 3.1) indicates that bat-
tery, fuel, Key and JLR technicians only account for a very small proportion among
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Figure 3.14: The three-phase simulation framework (Tocher, 1963)

all resources (7.72%), and hence we merge them into the group of general techni-
cians. Therefore, the AA resources are simplified into two categories: technician
and trucker.

2. With the simplification on the categorisation of resources, task categories are nat-
urally simplified into: repair, recovery 1 and recovery 2. The first category refers
to repair tasks, including battery, fuel, key, JLR, repair 1 and repair 2 tasks. The
percentage distribution of the simplified task categories is presented in Table 3.7.

3. If a request is sent to the garage, the request is assumed to be completed and the
simulation model does not track the service provided by the garage.
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Category Description Probability
Repair Tasks require technicians to carry out roadside

repairing services
0.75

Recovery 1 Tasks require either technicians or truckers to
provide recovery services

0.17

Recovery 2 Tasks require truckers to perform recovery ser-
vices

0.08

Table 3.7: Distribution of task categories

Unlike simplifications, assumptions integrate uncertainties and beliefs about the real
world into the model (Robinson, 2004). The proposed simulation model is built based
on the following assumptions:

1. Service requests are independent of each other.

2. Driving speed does not vary over time and vehicle are travelling using the same
speed function.

3. The skill requirements are assumed to be known at the time of receiving service
requests.

4. All requests must be responded to, either by an AA resource, or by a garage, with
no cancellation allowed.

5. All requests are assumed to require immediate services, and no appointment is
allowed.

6. Each request can be assigned to at most one service vehicle. Once a vehicle starts
travelling to the location of a task, it has to complete this task.

3.5.3 Calculation of Travel Distance

Task locations and vehicle positions are represented by points in a Euclidean plane, and
the distance between two points is defined by the Euclidean distance. Therefore, the
travel route from a vehicle position to a task location is estimated by the straight-line
path between them. However, this method may not always be applicable, since the
actual road network generally contains physical barriers such as major rivers, mountains
and irregular coastlines. To overcome this issue, we introduce the via points, where if
the straight-line path between a vehicle and a task crosses a barrier, it has to go via the
specified point.

Figure 3.15 shows that a vehicle (the blue car icon) is required to visit a request (the
red phone icon), which is located on the other side of the port, represented by the red
line. The vehicle has to visit the via point (the red pin) first, and then travel from the
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Figure 3.15: Illustration of computing travel distance

via point to the request location. Therefore, the distance between the vehicle and the
customer is estimated as the total distance of two straight-line paths, which are shown
as the dashed lines. The full list of barriers and via points of the UK is provided by
the company, and it is taken as input by the simulation model when estimating travel
distances.

3.5.4 Calculation of Travel Time

The driving speed is computed using a speed function that takes the travel distance as
input and outputs the driving speed. The speed function actually estimates the non-
linear relationship between the driving distance and speed, where longer distances lead
to higher driving speeds (as illustrated in Figure 3.16).

In addition to the speed function, a time function that takes the travel distance and
driving speed as input is used to compute the travel time required. The time func-
tion applies adjustment factors to account for the circuitous nature of the actual road
network. The same speed and time functions are also used in the real system. For
confidentiality reasons, the details of these functions are not presented here.

3.5.5 Model Inputs and Outputs

The inputs of the simulation model include random task instances, staff rota, barriers
and via points. Task instances are generated by an instance generator, which takes the
distributions identified previously as input and produces random task samples, where
each task i has the following categories: arrival time ti, coordinates (xi, yi) of the request
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Figure 3.16: Relationship between driving distance and speed

location, roadside service duration si, skill requirement qi, and coordinates (x̄i, ȳi) of the
recovery destination if recovery service is required.

Figure 3.17 presents the procedure of generating a random request. First, we generate
a request i following the Poisson process, where the arrival time ti is the sum of inter-
arrival times generated by the corresponding exponential distribution. Since the arrival
rate of our Poisson process is time-dependent, we apply the thinning approach (Lewis
and Shedler, 1979) in order to ensure that the number of arrivals generated in each
hour is close to the rate derived from the historical data. The idea behind the thinning
approach is to generate a Poisson arrival process at the maximum rate λ∗, but accept
each arrival with probability pj = λj/λ

∗, where λj is the arrival rate for a given time
interval j. After a request i is generated and accepted, we allocate it to a demand
zone using the method described in Section 3.3.3. The actual location (xi, yi) within
the demand zone is determined according to uniform distributions along the X and Y

axes. Then the skill requirement qi is determined using the probability distribution of
task categories given in Table 3.7. Based on the skill requirement, the roadside service
duration si is determined using the corresponding duration distribution. If the request
requires recovery service, we use the corresponding distance distribution to determine
the recovery distance d̄i. Given the distance d̄i, the recovery destination (x̄i, ȳi) is a point
on a circle with the centre at (xi, yi) and a radius of d̄i. The value of x̄i is determined
by a uniform distribution over the interval [xi − d̄i, xi + d̄i], and then ȳi is randomly
selected between two values yi−

√
d2r − (xi − x̄i)2 and yi +

√
d2r − (xi − x̄i)2 with equal

probability. After performing the above steps, the attributes of a random request are
determined. To generate an instance containing requests that occur over a predefined
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Figure 3.17: Flow chart for generating a random request

period of time, the above procedure is repeatedly executed until the request arrival time
reaches the time limit.

The staff rota includes the following categories: shift start time, shift end time, resource
type (technician or trucker), coordinates of the technician home base and the truck
depot. We choose to use the real rota data provided by the company, because the design
of staff rota is very complicated and time consuming. Moreover, the use of real staff
rota ensures that the simulation accurately reflects the real system.

The outputs of the simulation model are the average response time, the total number of
rejected (outsourced) requests and the total driving distances. The average response time
and the total driving distance are computed for requests responded by the AA resources,
since the simulation model does not track the services provided by the garage.
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3.5.6 Dispatching Policies

The dispatching policy determines the acceptance/rejection decisions as well as the
scheduling and routing decisions for every request arriving at the system. We first
consider a quickest response (QR) policy, which reflects the dispatching policy used by
the company. The QR policy is based on a greedy algorithm, of which the pseudo-code
is illustrated below.

Algorithm 1 The quickest response (QR) policy
1: Input: new request i, vehicle set K, upper limit of response time TMax, upper

limit of service distance DMax, and a sufficiently large constant M
2: Output: the minimum expected response time t∗ and the corresponding vehi-

cle k∗

3: set t∗ = M
4: for each vehicle k in K do
5: if SkillCompatibility(i, k) = true then
6: if Distance(xi, yi, xk, yk) < DMax then
7: Insert i at the end of the job queue of k
8: Compute the expected response time t
9: if t < t∗ then

10: t∗ ← t
11: k∗ ← k
12: end if
13: end if
14: end if
15: end for
16: if t∗ >= TMax then
17: k∗ ← Garage
18: end if

The inputs of the QR policy are the new request i with coordinates (xi, yi) , a set of
active vehicles K, the maximum response time allowed TMax, the maximum service
distance allowed DMax and a sufficiently large constant M that is used to initialise the
variable t∗. The current location of each vehicle k ∈ K is given by (xk, yy). The lines 4
to 15 present the main loop of the QR policy. For each vehicle k in K, we check the skill
constraint and the home constraint between i and k. If both constraints are satisfied, we
insert i at the end of the job queue of the vehicle k and compute the expected response
time t for request i. If the value of t is strictly less than the current best response time
t∗, then t∗ and v∗ are replaced by t and v respectively. The main loop terminates until
all vehicles in K are examined. If the minimal response time t∗ is greater or equal to
the time limit TMax, request i is rejected to the garage; otherwise, the function outputs
the best vehicle v∗ selected.

In addition, we consider a shortest path (SP) policy, which is developed based on the
same framework of the QR policy, but it selects the one producing shorter driving
distance when comparing two candidate vehicles.
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3.5.7 Model Verification and Validation

One of the most important step during the development of a simulation model is the
model verification and validation. Specifically, verification refers the process of confirm-
ing that the conceptual model has been correctly transformed into a computer model,
while validation is process of ensuring that the simulation model provides a sufficiently
accurate representation of the real system (Robinson, 2004). The following section de-
scribes the methods that have been applied to verify and validate our simulation model.

Model verification:
1. To ensure that the implementation of the instance generator is correct, the gener-

ated task samples are verified to ensure that they follow the input distributions;

2. To ensure that the simulation model performs correctly, small instances have been
used to test the model and the outputs are carefully checked to guarantee that the
service flow of each vehicle is logically correct and calculations of time information
and driving distance are correct;

3. To ensure that the dispatching policies work as expected, small instances have been
used to test dispatching policies and the results are verified with those obtained
from a spreadsheet implementation of the same algorithm;

4. Visual checks have been conducted by linking the simulation with Google map and
watching how each element of the model behaves.

Model validation:
1. Prior to developing the model, extensive consultations have been held with the

company experts who have excellent knowledge of the real system in order to give
us a clear understanding of the problem;

2. Once the model is set up, it is discussed with the company experts to ensure that
the model accurately reflects the operation of the real system;

3. The simulation model is compared with the real system using the correlated in-
spection approach, where the simulation model is driven using historical data and
the model outputs are compared with those obtained from the real system. In
such scenario, the input data is also known as traces, where a trace represents a
stream of data that describes a sequence of events collected from the real system
(Robinson, 2004). Applying traces is particularly useful for validating the model,
since it allows the modeller to examine whether the behaviour of the simulation
is close to that of the real system when the same event occurs. To compare the
outputs, we compute the mean values and standard deviations of the response
times obtained from the simulation model and the real system respectively. We
also apply a pairwise comparison method to examine the mean differences and the
associated confidence intervals. The detailed results are presented in Section 3.6.
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3.5.8 User Interface

To enable users to interact with the model and have a visual view of the simulation,
we have developed a user interface, which is presented in Figure 3.18. The developed
user interface consists of two main components: view window and control panel. The
former gives the visualisation of the real-time emergency vehicle dispatching and routing,
where the yellow, blue and red points represent the service vehicles, the locked tasks and
the waiting tasks respectively. The control panel include a time window to display the
current simulation time and a result window to display the average response time, the
garage percentage and the total driving distance of service vehicles at the end of a
simulation run. The buttons names Shortest Path and Quickest specify the dispatch
policy applied by the simulation model, and they correspond to the SP and QR policies
respectively. The rest of buttons allow users to configure the model, such as whether or
not to display the visualization, pause/resume during a simulation run and export the
detailed results to an external file. In addition, the simulation model is linked with an
external map provided by the Google. By clicking the button titled Map on the control
panel of the user interface, users can view the current locations of service vehicles and
requests, and the scheduled vehicle routes on the real map.

Figure 3.18: The user interface of the simulation model
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3.6 Simulation Results

This section presents the results of simulation experiments. We first discuss the com-
parison of the simulation model and the real system. Then we assess the performance
of the simulation model under different demand levels. Next we examine the effect of
using different values of time limit TMax. Lastly, we compare the performance of two
dispatching policies described previously, which are the QR and SP policies.

3.6.1 Simulation Setup

The developed model is a non-terminating simulation, since the real system operates 24
hours a day and 7 days a week. For non-terminating simulations the output must only be
collected when the model reaches the steady state, otherwise it causes the initialisation
bias. At the start of our simulation, all job queues of vehicles are empty and there is no
work in progress. This is obviously not the realistic condition. In order to ensure that
the simulation output is accurate, we apply a warm-up period to run the model until
it reaches the steady state and only collect results after this point. To determine the
length of the warm-up period, we apply the time-series inspection method (Robinson,
2004) to the simulation output. As recommended by (Robinson, 2004), at least five
replications should be performed, since the output data of a single run can be noisy and
so it is difficult to identify the initialisation bias through the time-series. For this reason,
we perform ten replications, each covering a duration four weeks (28 days) with each
week starting on Monday and ending on Sunday. In addition, the simulation model uses
random staff shift data derived from the given historical data. The mean averages of
the output data of the ten replications are recorded hourly over the four weeks’ period
and the results are illustrated as follows.

Figure 3.19 displays the time-series of the average response time. The plot presents that
there are strong fluctuations during the first week. Then the data appear to be steady
state with no significant upward or downward trend. This indicates that the simula-
tion requires one week to reach the steady state. The time-series of other performance
indicators including garage percentage and the average driving distance can be seen
in Appendix A.3. Those time-series also present similar patterns to the one described
above. Therefore, we set the warm-up period to one week.

In addition to the initialisation bias, we need to ensure that enough output data is
collected from the simulation in order to delivery accurate estimation of the model per-
formance. This can be achieved by selecting an appropriate run-length of the simulation
and performing multiple replications. Accounting to Law (2007), the run-length of a
non-terminating simulation must be much longer than the warm-up period, otherwise
there may still exist some bias in the model output. Banks et al. (2005) suggest that
the run-length is at least ten times the length of the warm-up period. We follow this
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Figure 3.19: Time-series of average response time from ten replications

recommendation, and set the duration of a simulation run to ten weeks (70 days). To
determine the number of replications required, we examine the changes of the mean
averages of the simulation output when different number of replications are used. The
results are presented below.
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Figure 3.20: Cumulative mean of average response time with 95% confidence
intervals

In Figure 3.20, the solid line displays the cumulative mean of average response responses,
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while the dashed lines show the corresponding confidence intervals at the 95% level. It
can be observed that the confidence interval becomes narrow as the number of repli-
cations increases. Particularly, the wideness of the confidence interval is significantly
reduced as the number of replications increases from 2 to 5. Then only small improve-
ments can be achieved event the number of replications rises up to 20. This suggests that
performing five replications is appropriate. Similar results have been obtained for other
performance indicators including garage percentage and the average driving distance
(see Appendix A.4). Therefore, our simulation experiments use the following setting:
five replications, each corresponding to a simulation run of ten weeks with the first week
used for the warm-up purpose.

3.6.2 Results of Simulation Validation

As described in Section 3.5.7, we use the historical data to drive the simulation and
compare the model output with those obtained from the real system. The data collected
from the company covers the time period from 01 May 2014 to 31 May 2014. We discard
the data of the last three days (28/05/2014 to 31/05/2014) and split the rest equally into
four groups, each corresponding to a task instance covering a time period of seven days.
In addition, we extract the corresponding shift data covering the same period of each
task instance. As described in the previous section, a warm-up period must be applied
to the simulation model in order to avoid initialisation bias. Thus, we also generate
four initialisation sets, each consisting of random tasks and shift data covering a time
period of one week. The simulation starts with running an initialisation set. Once the
initialisation is completed, the model runs with a real instance and collects the results.
Instead of performing multiple replications, we only conduct one simulation run for each
of the real instances since there is no randomness in those instances.

Real System Simulation Mean 95% Confidence
Instance Mean SD. Mean SD. Difference Interval

1 44.78 38.76 43.26 42.09 −1.53 −2.78 −1.82
2 44.11 41.77 44.94 38.72 0.83 −1.23 −0.28
3 45.64 41.07 46.26 45.58 0.61 −0.25 0.78
4 46.30 43.19 45.87 41.92 −0.44 −2.29 −1.28

Average 45.21 41.20 45.08 42.08 −0.13 −1.63 −0.65

Table 3.8: Comparison of response times produced by simulation model and
real system

Table 3.8 presents the statistical comparison of the response times produced by the
simulation model and the real system. Columns titled Mean and SD. show the mean
values and standard deviations of the obtained output data. In addition, we compute
the mean differences between the values of the simulation model and the real system,
and also calculate the 95% confidence intervals of the mean differences using the method
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described in (Robinson, 2004). The results are reported in the last three columns of the
table. The average response times produced by the simulation model are very close
to those of the real system, with an overall mean difference of −0.13. The confidence
interval for the instance 3 covers zero, which indicates that the simulation output for
instance 3 is not significantly different from the output of the real system in terms of the
response times. The confidence intervals for other instances are on the left-hand side of
zero, which suggests that the average response times produced by the simulation model
are slightly lower than those of the real system.
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Figure 3.21: Distribution of response times produced by simulation and real
system

The standard deviations of the simulation and the real system outputs are both around
40. In addition, we use box plots to examine the spread of the output data. Figure
3.21 presents that the output data of the simulation and the real system have similar
patterns and distributions. It can be concluded that the developed model can provide
reasonable estimation to the real system in terms of the response times.

Figure 3.22 shows the comparison of garage percentages, where the red bars and blue
bars present the results obtained from the real system and the simulation model re-
spectively. For each instance tested, the simulation model produces about 1% higher
garage percentage than the real system. This can be explained by the differences in
the staff data used by the simulation and the real system. In addition to the scheduled
staff shifts, the real system has a group of standby staff that can be assigned to perform
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Figure 3.22: Comparison of the garage percentage

services if the actual demand is higher than expected. Moreover, the staff may work
overtime if necessary. This implies that the real system can dynamically adjust the staff
rota based on the real-time information of the actual demand. However, the simulation
model does not consider the standby staff and overtime possibility, and thus it has to
reply on the garage option when facing unexpectedly high demand. We have examined
the performance of the simulation model when the standby staff is used and overtime is
allowed. The obtained average response times and garage percentages are significantly
lower than those of the real system. This indicates that simply adding standby staff
and allowing the overtime possibility leads to an over estimation of the actual staffing
level. The real system actually has experienced dispatchers to make decisions on when
to use those additional resources. However, it is difficult to incorporate this feature
into the simulation model. Although there exist gaps between the garage percentages
obtained from the model and the real system, the data appear to have the same pattern,
where the instances 3 and 4 have higher garage percentages than instance 1 and 2. This
implies that the simulation model is able to accurately reflect the changes of the garage
rate when different task instances are used. Therefore, it can be concluded that our
simulation model provide a sufficient accuracy level for the purpose at hand.

3.6.3 Evaluation of the Model under Different Demand Levels

This section presents the results of evaluating the model performance under different
demand levels. Let β be the demand level. We examine 16 values of β, selecting from
{50%, 60%, ..., 200%}. The current demand level β∗ is represented by 100%. Thus,
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β = 50% indicates the scenario of reducing β∗ by 50%, while α = 200% refers to the
scenario of doubling the value of β∗. To generate a task instance for a given β value,
we first adjust arrival rate λi, i ∈ {1, 2, .., 72} by βλi, and then use the adjusted arrival
rates as input to run the instance generator described in Section 3.5.5. The performance
of the model under different demand levels is assessed through simulation experiments
using the setting discussed in Section 3.6.1. The results are illustrated as follows.
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Figure 3.23: Average response time vs. demand level

Figure 3.23 shows the average response times obtained from the simulation model under
different demand levels. It can be observed that when the demand level increases from
50% to 70%, the average response time remains roughly on the same level, which is 24
minutes. This actually implies the lower bound of the average response time. When
the demand level rises from 80% to 140%, the average response time increases from 27
minutes to 94 minutes. However, the increasing rate of the average response time drops
quickly as the demand level goes up from 130% to 150%. It can be expected that the
average response time will reach a peak value when the demand level increases up to
a certain point. This is due to the restriction of the time window constraints, where
the expected response time must be less than 120 minutes when making the dispatching
decision for each request. Therefore, when the job queue of a vehicle has been filled with
a certain number of tasks, we cannot assign new requests to this vehicle as it violates
the time window constraints.

The green bars of Figure 3.24 present the average number of requests responded by
the AA resources per day. When the demand level increases from 140% to 150%, the
increase in the average number of accepted requests is very small. This implies that the
current staffing level has a capacity limit, which is about 12, 000 requests per day. When
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Figure 3.24: Average number of accepted requests per day vs. demand level

the demand level is higher than this limit, the system has to relay on the garage option,
which results in an increasing garage percentage (as illustrated in Figure 3.25).
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Figure 3.25: Garage percentage vs. demand level
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3.6.4 The Effect of the Response Time Limit

To evaluate the effect of the response time limit TMax, we conduct simulation exper-
iments using a normal demand level (β = 100%). We examine 13 values of TMax,
selecting from 30 minutes to 150 minutes using a step size of 10 minutes. The obtained
results are displayed in figures below.
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Figure 3.26: Average garage percentage vs. response time limit

Figure 3.26 presents the average garage percentage produced by the simulation model
when different values of TMax applied. When TMax is set to 30 minutes, the model has
to reject a large proportion of requests because the internal resources are not able to
reach these requests within the required time limit. With a higher garage percentage,
the model is able to achieve a smaller average response time (as shown in Figure 3.27).
The graph also shows that the average garage percentage decreases as the value of TMax

increases from 30 minutes to 90 minutes, then it remains briefly on the same level,
even TMax increases up to 150 minutes. This can be explained by the fact that the
garage decision is not only determined by TMax but also the service distance constraint
(DMax = 60km). Using the time function provided by the company, the driving time
required for a driving distance of 60km is 80.54 minutes. Thus, even TMax is allowed
to take large values, the driving time of technicians must be less than 80.54 minutes.
This actually significantly restricts the possibility of accepting requests that have large
expected response times.

Figure 3.27 shows that the average response time consistently increases as the value of
TMax increases. This indicate that the average response time is more sensitive than the
garage percentage to the changes of TMax. The current value of TMax used by the real
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Figure 3.27: Average response time vs. response time limit

system is 120 minutes, which gives an average response time of 44.73 minutes. When
the value of TMax is decreased to 90 minutes, the average response time is improved
by 13.59%, which is 38.65 minutes. On the other hand, the corresponding increase
on the garage percentage is only about 0.25%. This suggests that under the current
conditions of the real system, using TMax = 90 can provide a better performance than
using TMax = 120, since it is able to achieve around 10% improvement on the average
response time with the garage percentage increases less than 1%.

3.6.5 Comparison of the QR and SP Policies

In addition to the QR policy, we have developed a SP policy, described in Section 3.5.6.
The performance of the SP policy is compared with QR policy using the simulation
model. The results are discussed as follows.

Dispatching Mean Response Garage Mean Dispatching
Policy Time Percentage (%) Distance (km)

SP 63.75 16.94 9.18
QR 43.68 15.08 13.03

Table 3.9: The comparison of the QR and SP policy

As shown in Table 3.9, the average response time achieved by the QR police is 43.68

minutes, which is 31.48% lower than that of the SP policy. This indicates that the
closest vehicle may not be the one giving the quickest response to the customer. Instead,
the strategy of always assigning the closest vehicle actually leads to the situation that
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some customers have to wait a significant amount of time before the assigned vehicles
become available for them. The average garage percentage produced by the QR policy is
16.39%, and it is about 2% lower than that of the SP policy. In addition, we compute the
average dispatching distance of each request, and the results produced by the QR and
SP policies are 13.03km and 9.18km respectively. The SP policy improves the driving
distance by nearly 30% than the QR policy. This suggests that potential cost savings
may be achieved by applying a dispatching policy that considers both the response time
and driving distance.

3.7 Conclusion

This chapter presents a discrete-event simulation model of real-time emergency vehicle
dispatching and routing, developed based on a case study of a British company providing
emergency road services. The developed model was used to identify key characteristics
of the real system, as illustrated below:

1. Under the current system setting, the average response time is around 45 minutes,
the garage rate is about 15% and the average dispatching distance is about 13 km;

2. With different demand levels, the average response time varies between 20 minutes
and 110 minutes;

3. Under the current staffing level, the system’s capacity is around 12,000 requests
per day. For any demands beyond this limit, the system has to fully relayed on
the garage option.

In addition, the simulation model was used to evaluate the effect of the response time
limit TMax. We found that compared to strategy of using TMax = 120 (default setting
of the real system), using TMax = 90 can lead to around 10% improvement on the
average response time with the garage rate increases less than 1%. Finally, we assessed
the performance of two dispatching policies: quickest response (QR) and shortest path
(SP). The former reflects the dispatching policy used by the company, while the latter is
a naive greedy algorithm which always dispatches the closest vehicle. The experimental
results show that these two policies can lead to quite different solutions. Compared
to the QR policy, the SP policy can produce nearly 30% improvement on the average
dispatching distance, however, its average response time is 30% greater than that of the
QR policy. This indicates that a better policy that considers both the response time
and driving distance may be possible.





Chapter 4

Iterated Local Search for
Workforce Scheduling and
Routing Problem

The integration of scheduling workers to perform tasks with the traditional vehicle rout-
ing problem gives rise to the Workforce Scheduling and Routing Problems (WSRP). In
the WSRP, a number of service technicians with different skills, and tasks at different
locations with pre-defined time windows and skill requirements are given. It is required
to find an assignment and ordering of technicians to tasks, where each task is performed
within its time window by a technician with the required skill, for which the total cost of
the routing is minimized. This chapter describes an iterated local search (ILS) algorithm
for the WSRP. The performance of the proposed algorithm is evaluated on benchmark
instances against an off-the-shelf optimizer and an existing adaptive large neighbour-
hood search algorithm. The proposed ILS algorithm is also applied to solve the skill
vehicle routing problem, which can be viewed as a special case of the WSRP.

4.1 Introduction

The workforce scheduling and routing problem (WSRP) and its variants are commonly
faced by many service providers, and have applications of home health care, field tech-
nician scheduling, security personnel routing and manpower allocation.

The term WSRP is coined by Castillo-Salazar et al. (2012), and refers to a class of op-
timization problems where service personnel are required to carry out tasks at different
locations. For example, nurses visiting patients at their homes, and technicians per-
forming maintenance jobs in different companies can each be modelled as a WSRP. As
service personnel need to travel between different locations, minimizing their distances
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and times for travel is usually considered as one of the objectives when making opera-
tional decisions. This results in a routing problem of finding a set of least cost routes
for a given workforce, where each route consists of a sequence of locations. Sometimes,
tasks have associated time windows, within which service must start. This type of prob-
lem can be modelled as an extension of the vehicle routing problem with time windows
(VRPTW), which is a well-known variant of the classical vehicle routing problem (VRP).

Service personnel often specialize in different skill domains, and possess skills at differ-
ent levels. The tasks themselves have different skill requirements. For example, in the
telecommunications industry, tasks may include maintenance, installation, construction
and repair jobs, and technicians are trained in skills that allow them to only be able to
service a subset of these tasks. Thus, skill compatibility must be taken into account to
ensure that tasks are performed only by qualified personnel. The associated scheduling
problem involves the assignment of tasks to service personnel. In some applications,
tasks can be outsourced to a third party, albeit at the expense of additional cost, if
appropriate resources are not available to provide the required service, or better opera-
tional performance can be achieved. The version of the WSRP that we consider allows
for outsourcing.

Due to its complexity, most of the existing research on the WSRP has aimed at develop-
ing efficient heuristic solution algorithms. However, most of them are sophisticated and
highly problem specific. In this paper, a simple heuristic algorithm based on iterated
local search (ILS) is proposed to solve the WSRP. ILS is one of the most conceptually
simple and robust algorithms (Burke et al., 2010). The essential idea of ILS is that
when the local search is trapped at a local optimum, the ILS perturbs the previously
visited local optimum instead of generating a new initial solution, and then restarts the
local search from this modified solution (Lourenço et al., 2003). Although the ILS has a
very simple framework, it has been successfully applied to a wide variety of optimization
problems including the graph colouring problem (Chiarandini and Stützle, 2002), the job
shop scheduling problem (Lourenço, 1995) and the vehicle routing problem (Hashimoto
et al., 2008; Chen et al., 2010; Walker et al., 2012; Penna et al., 2013; Michallet et al.,
2014) . However, no study has been reported on the application of the ILS to the
WSRP, which is the aim of this paper. The contribution of the paper is a fast and
simple algorithm for the WSRP with the objective of minimizing the total travel cost
and outsourcing cost. The proposed algorithm is also applied to solve the skill vehicle
routing problem (Skill VRP). To the best of our knowledge, this is also the first ILS
approach for the Skill VRP.

The remainder of the paper is organized as follows. Section 2 reviews the related lit-
erature on the WSRP. A formal definition of the problem is presented in Section 3.
Section 4 gives a description of the proposed ILS. Computational results for benchmark
instances are presented in Section 5. The paper ends with some concluding remarks in
Section 6.
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4.2 Related Works

Recent studies on the WSRP include the work of Kovacs et al. (2012). They present an
adaptive large neighbourhood search (ALNS) algorithm to solve the service technician
routing and scheduling problem (STRSP). In this problem, tasks are associated with
time windows and skill requirements, outsourcing tasks is allowed, and team building
may be required in order to fulfil skill requirements of difficult tasks. The objective
is to minimize the total operational cost comprising the routing and outsourcing cost.
The scheduling aspect of this problem is adapted from the study of Cordeau et al.
(2010), which considers a technician and task scheduling problem arising in a large
telecommunications company. Cordeau et al. (2010) focus on the construction of teams
and the assignment of tasks to teams without considering routing costs between tasks.
Their problem is solved by using a construction heuristic and an ALNS algorithm. Pillac
et al. (2013b) extend the study of Kovacs et al. (2012) by taking tools and spare parts
into account, where each task must be carried out by a technician with the required
skills, tools, and spare parts, and within the prescribed time window. The problem
is solved by a matheuristic consisting of a parallel version of ALNS algorithm and a
mathematical programming based post-optimization procedure.

Xu and Chiu (2001) also consider a field technician scheduling problem arising in the
telecommunications industry. The objective is to maximize the number of jobs scheduled
to technicians, while accounting for each job’s priority and skill constraints. Three
different heuristic approaches, namely, a greedy heuristic, a local search algorithm, and
a greedy randomized adaptive search procedure (GRASP) are proposed to solve the
problem. Castillo-Salazar et al. (2015) describe a greedy heuristic to address the WSRP
with five types of time-dependent constraints, which model the relationship between
tasks, e.g. one task needs to start after the completion of another task.

A variant of the WSRP is the skill vehicle routing problem (Skill VRP), which is intro-
duced by Cappanera et al. (2011). The Skill VRP differs from other problems reviewed
above in two aspects: (1) tasks do not have associated time windows, and (2) the
routing costs depend both on the travelling distance and the technician in such a way
that increasing the skill level of the technician causes an increase in costs. The use of
technician-dependent routing costs is motivated by practical applications, since high-
skilled employees usually have higher salaries than those with only basic skills. The
Skill VRP is also studied by Schwarze and Voß (2012), but their study incorporates load
balancing and resource utilization when constructing tours for service vehicles. Their
motivation for proposing this model is their finding that many Skill VRP solutions usu-
ally use only a subset of vehicles, and a considerable number of tasks are assigned to
vehicles that have higher skills than necessary.

Some studies have considered stochastic elements in the WSRP. For example, Weintraub
et al. (1999) study a scheduling and routing problem for service vehicles belonging to
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an electric utility company in Chile, where service requests are stochastic. Pillac et al.
(2012) also consider a technician routing and scheduling problem with stochastic service
requests, which is solved by a parallel adaptive large neighbourhood search (pALNS) and
a multiple plan approach. Binart et al. (2016) solve a field service routing problem with
stochastic travel and service times using a two-stage stochastic programming model.
Finally, Chen et al. (2015) describe a technician routing problem with experience-based
service times, where technicians learn over time, which results in service times being
reduced as experience increases.

Other problems closely related to the WSRP are the site-dependent vehicle routing
problem with time windows (Cordeau and Laporte, 2001; Cordeau et al., 2004), the home
health care scheduling problem (Blais et al., 2003; Bertels and Fahle, 2006; Akjiratikarl
et al., 2007) and the manpower allocation problem (Dohn et al., 2009).

4.3 Problem Definition

In this section, we first provide a formal description of the WSRP problem that we
address. We then formulate a mixed integer programming (MIP) model for our problem.

The WSRP is defined on a complete graph G = (V,A), where V = {0, 1, ..., n+ 1} is a
set of vertices and A = {(i, j) : i, j ∈ V, i ̸= j} is a set of arcs. The vertex 0 denotes the
depot and vertex n+1 is a copy of the depot, and C = V \ {0, n+1} represents the set
of vertices that each has a unique task. Depending on the context, we refer to a task i

or a vertex i for any i ∈ C. A set K of technicians are available to perform the tasks.
Each technician is specialized in a number of skill domains at different proficiency levels.
Each task i ∈ C has an associated service duration di, a time window [ei, li] within which
service should commence, and a skill requirement. The depot and its copy also have
time windows, which define the earliest departure time e0 and the latest return time
ln+1 of any technician. Also, the route duration of each technician must not exceed a
given time D. Each arc (i, j) ∈ A has an associated cost cij and travel time tij .

In the studies of Cordeau et al. (2010) and Kovacs et al. (2012), each technician’s skills
and each task’s skill requirements are described by skill matrices, which are used to
determine if a single technician or a team of technicians would be able to perform a
given task. In this paper, we do not consider the possibility of building a team of
technicians, and thus simply define a binary parameter qki , where qki = 1 if technician
k ∈ K is qualified to perform task i ∈ C, and qki = 0 otherwise. The values of qki can
be easily computed based on technicians’ skills and tasks’ skill requirements. Finally,
any task i ∈ C can be outsourced by incurring a cost oi, in the event that resources are
insufficient or too expensive to undertake all of the tasks.
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The WSRP can be formulated as a mixed integer programming model that contains the
following binary variables:

xkij =

1 if arc (i, j) is traversed by technician k,

0 otherwise,
∀(i, j) ∈ A, k ∈ K;

yi =

1 if task i is outsourced,

0 otherwise,
∀i ∈ V ;

and the continuous variable bki , ∀i ∈ V, k ∈ K, that lies within the interval [ei, li] if
technician k does not perform task i; otherwise, it is the time at which service of task
i commences, or the leaving time and returning time of technician k from and to the
depot when i = 0 and n+ 1 respectively.

The mathematical model is presented as follows:

minimize
∑
k∈K

∑
(i,j)∈A

cijx
k
ij +

∑
i∈C

oiyi (4.1)

subject to:

∑
k∈K

∑
j∈V

xkij + yi = 1 ∀i ∈ C (4.2)

∑
j∈V

xkij ≤ qki ∀k ∈ K, ∀i ∈ C (4.3)

∑
j∈V

xk0,j = 1 ∀k ∈ K (4.4)

∑
i∈V

xki,n+1 = 1 ∀k ∈ K (4.5)∑
i∈V

xkih −
∑
j∈V

xkhj = 0 ∀k ∈ K, ∀h ∈ C (4.6)

bki + (di + tij)x
k
ij ≤ bkj + li(1− xkij) ∀k ∈ K, ∀(i, j) ∈ A (4.7)

ei ≤ bki ≤ li ∀k ∈ K, ∀i ∈ V (4.8)

bkn+1 − bk0 ≤ D ∀k ∈ K (4.9)

xkij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A (4.10)

yi ∈ {0, 1} ∀i ∈ C (4.11)

bki ≥ 0 ∀k ∈ K, ∀i ∈ V. (4.12)

The objective function (1) minimises the total operation cost comprising routing and
outsourcing cost. Constraints (2) ensure that each task is either visited exactly once
or outsourced, while constraints (3) guarantee that the tasks can only be performed by
technicians satisfying the skill requirements. Constraints (4) and (5) ensure that each
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technician departs from the depot and returns to the copy of the depot after completing
their service. Constraints (6) are the typical flow conservation equations. Constraints
(7) set the time variables bki , while constraints (8) enforce the time window restrictions.
Constraints (9) guarantee that the route duration for each technician is no more than
the maximum time allowed. Constraints (10) and (11) represent the binary restrictions
on variables xkij and yi, and (12) are the non-negativity constraints on the variables bki .

4.4 Iterated Local Search

This section describes our proposed iterated local search (ILS) algorithm for solving the
WSRP. The ILS consists of three main components: initial solution construction, local
search procedure and perturbation mechanism. They are combined into a multi-start
framework as given in Algorithm 2. At each iteration of the main loop between lines 3
to 18, an initial feasible solution s is constructed for the ILS loop (lines 6 to 14). At
each ILS iteration, the local search procedure takes as input the solution s, and returns
an improved solution s′, which is accepted as the new best current solution if it is
feasible and has a value f(s′) that is strictly smaller than that of the incumbent solution
s̄, denoted by f(s̄). Then a new starting solution s for the local search procedure is
generated by perturbing on the incumbent solution s̄ (line 12). The ILS loop repeats
until the maximum number of iterations without improvement MaxItNI is met. Then the
incumbent solution s̄ replaces the global best solution s∗ if f(s̄) < f(s∗). This procedure
repeats until a predefined number MaxIt of iterations have been executed.

Algorithm 2 Iterated Local Search
1: procedure ILS
2: It← 1, f(s∗)← +∞
3: for It← 1 to MaxIt do
4: generate initial solution s
5: set s̄← s, ItNI ← 0
6: while ( ItNI < MaxItNI) do
7: s′ ← Local Search (s)
8: if ((s′ is feasible ) and (f(s′) < f(s̄))) then
9: s̄← s′

10: ItNI ← 0
11: end if
12: s← Perturb(s̄)
13: ItNI ← ItNI + 1
14: end while
15: if (f(s̄) < f(s∗)) then
16: s∗ ← s̄
17: end if
18: end for
19: Return s∗

20: end procedure
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4.4.1 Search Space

A number of studies have shown that an efficient exploration of infeasible solutions can
contribute significantly to the performance of a heuristic (Cordeau et al., 1997; Glover
and Hao, 2011; Cordeau et al., 2001; Vidal et al., 2012, 2013b). We follow the same
line of thought here and allow the ILS to search infeasible, as well as feasible solutions,
where the constraint violations in the former relate to the route duration and time
window constraints. However, the skill requirement constraint is always respected, since
it is concerned with the scheduling aspect of the WSRP and its relaxation would enlarge
the search space dramatically. A solution s is therefore evaluated by an augmented cost
function, which is defined by

f(s) = c(s) + αd(s) + βw(s), (4.13)

where c(s) is the total operation cost as defined in (1), and d(s) and w(s) are the total
violations of duration and time window constraints, which are weighted by parameters
α and β, respectively.

The time window violation is measured based on a method proposed by Nagata et al.
(2010). If there is a late arrival to a customer i ∈ C at time ai > li, then it is assumed
that there is a penalty for the delay ai − li, and that service starts at time li. In case
of an early arrival at time ai < ei, then the technician has to wait until time ei, but the
waiting time is not penalized. The same method is used by Vidal et al. (2013b), who
refer to the penalty as ‘time warp’. Figure 4.1 illustrates the waiting time and time warp
of a route with visits involving five vertices v1, . . . , v5. The horizontal axis corresponds
to time, while the vertical axis presents the sequence of visits. The dots on each line
show the start time of each visit, and the brackets on each line indicate the time window
of the corresponding task. As seen in Figure 1, there are no penalties associated with
tasks v1, v3, and v5 as the visits are made within the respective time windows. The bold
line displays a possible schedule having a waiting time period at vertex v2 and a time
warp at vertex v4.

4.4.2 Move Evaluation

Most local search heuristics spend the largest part of the overall computational effort on
move evaluation (Vidal et al., 2014). Efficient move evaluation techniques are therefore
crucial for improving algorithm performance, particularly when the search space involves
infeasible solutions.

The operation cost c(s) consists of the outsourcing cost and the total travelling distance
which can be computed in amortized O(1) time (Kindervater and Savelsbergh, 1997).
However, it takes O(n) to compute the penalties d(s) and w(s) in (4.13).



70 Chapter 4 Iterated Local Search for Workforce Scheduling and Routing Problem

v1 [ ]
e1 l1

v2 [ ]
e2 l2

Se
rvi

ce

&
tra

ve
l

Wait

v3 [ ]
e3 l3

v4 [ ]
e4 l4

Time warp

v5 [ ]
e5 l5

Time

Figure 4.1: Illustration of waiting time and time warp

Nagata et al. (2010) propose an evaluation technique to compute the violation of time
window constraints in amortized O(1) time for most traditional neighbourhood operators
including 2-opt, inter-route swaps, and inter-route inserts. Vidal et al. (2013b) extend
this technique to allow the evaluation of both duration and time windows violations
not only for inter-route but also for intra-route operators. A preprocessing phase is
required to develop relevant data for their evaluation techniques, and the data must be
updated once the route under consideration has been modified. Our ILS incorporates the
technique (see Appendix B.1) proposed by Vidal et al. (2013b) to compute the violation
of infeasible solutions.

4.4.3 Initial Solution Construction

Our procedure for constructing a feasible solution includes the following steps. The
existence of a feasible solution is guaranteed due to the possibility of outsourcing. First,
a task list L1 is created as follows. The first task in the list is selected at random.
The remaining entries in the list are constructed by sorting the remaining tasks of C in
non-decreasing order of the angle they make with a line drawn from the depot to the
randomly selected first task on L1. Then, a technician list L2 is constructed by sorting
the technicians of K in non-increasing order of the number of tasks they are qualified
to perform. We then randomly select a task i ∈ C from the list L1 and insert it into the
cheapest feasible position of the route of the first technician on list L2. If the insertion
violates feasibility, we insert i into the following technician’s route. In the case where
no feasible route can be constructed that incorporates task i, we set i to be outsourced.
The procedure repeats by inserting tasks sequentially into technicians’ routes following
the above steps, yielding a feasible solution that consists of technicians’ routes and a list
of outsourced tasks.
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4.4.4 Local Search Procedure

Our local search procedure consists of an inter-route search operator, an intra-route
search operator, and an update mechanism of the weight parameters α and β using in
(4.13).

The inter-route search uses a single neighbourhood structure called Swap & Relocate
that removes two paths, each containing at most two tasks from two different routes, and
then exchanges them. One of these paths may contain zero tasks, which results in the
path from the other route being relocated. Figure 4.2 gives an example of this operator
which removes two successive vertices v2 and v3 from route r1 and one vertex v6 from
route r2, and then exchanges them. This neighbourhood structure is extended to allow
an outsourced task to be swapped or relocated into the route of one of the technicians.
When considering new routes created by this operator, the skill requirement constraints
must be always respected, but any violations of duration and time window constraints
are allowed.

r1 v1 v2 v3 v4

swap

r2 v5 v6 v7

Figure 4.2: Example of the Swap & Relocate operator

The intra-route search consists of three neighbourhood structures, namely, opt1, opt2
and 2-opt (Croes, 1958), that operate on a single route. Operator opt1 removes one task
and inserts it into another position on the same route, while operator opt2 is similar
but removes and inserts two adjacent customers on a route. Operator 2-opt reverses the
order of a sequence of successive visits on a route. Figure 4.3 provides an example of
the 2-opt operator which removes a path consisting of four vertices {v2, v3, v4, v5} from
route r, reverses the order of visits on this path, and then inserts the path back into
the same position to form a new route r′. The cost of r′ is evaluated by the method
described in Section 4.4.2.

r v1 v2 v3 v4 v5 v6

reverse

r′ v1 v5 v4 v3 v2 v6

Figure 4.3: Example of the 2-opt operator
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The inter-route search and the intra-route search can be combined in different ways
within the local search procedure. To test the effect of the search strategy on the
performance of the algorithm, we investigate the three following strategies:

1. Execute only the inter-route search operator;

2. Execute both the inter-route and intra-route search operators at each iteration of
the local search procedure;

3. Apply the intra-route search as a post-optimization procedure on the locally opti-
mal solution returned by the inter-route search.

After each iteration of the local search, the weight parameters α and β are adjusted
according to the duration violation d(s) and the time window violation w(s) of the
incumbent solution s as follows. If d(s) = 0, then the parameter α is divided by a factor
1 + δ; otherwise, it is multiplied by 1 + δ, where δ > 0 is a parameter that controls the
strength of adjustment. The same rule applies to the parameter β with respect to w(s).
The initial values of α and β are both set to 1, as suggested by a number of studies that
have similar cost functions and weight parameters (Cordeau et al., 2001, 1997; Ibaraki
et al., 2008; Nagata et al., 2010).

The structure of the local search procedure is illustrated in Algorithm 3. The current
best solution s′ is set to the incumbent solution s. Then s is taken as input by the
SearchStrategy function, which applies inter-route or intra-route search depending on
the search strategy selected and returns an improved solution ŝ if such a solution exists.
If f(ŝ) < f(s′), then ŝ replaces s′ as the current best solution. Then, the duration
violation d(ŝ) and time window violation w(ŝ) are computed, and parameters α and β

are adjusted accordingly by the control mechanism described above. The pre-processed
data for the routes that have been modified at the current iteration are updated. This
procedure repeats until the local search becomes trapped at a local optimal solution.

4.4.5 Perturbation Mechanism

The perturbation mechanism uses a random cross exchange operator, which removes
two paths from two randomly selected routes and exchanges them. Figure 4.4 gives an
example of the perturbation operator which removes a path of four successive visits from
route r1 and a path of two successive visits from route r2 ̸= r1, and then exchanges them.
Violations of duration and time window constraints are allowed, but the skill requirement
constraint must be respected. The perturbation procedure is always carried out on the
best solution found thus far, and applies the random cross exchange operator p times,
where p is a positive integer denoting the perturbation strength.
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Algorithm 3 Local Search Procedure
1: procedure LocalSearch
2: input solution s
3: set α = 1 and β = 1
4: set s′ = s
5: set LocalOptimumFound = false
6: while (LocalOptimumFound = false) do
7: ŝ← SearchStrategy(s)
8: if (f(ŝ) < f(s′)) then
9: s′ ← ŝ, s← ŝ

10: Compute d(ŝ) and w(ŝ), and update α and β
11: Update PreprocessData
12: else
13: set LocalOptimumFound = true
14: end if
15: end while
16: return s′

17: end procedure

r1 v1 v2 v3 v4 v5 v6

swap

r2 v7 v8 v8 v9 v10

Figure 4.4: Example of the random cross exchange

The perturbation strength p is a crucial parameter of the ILS. If p is too small, the
local search may not be able to escape from a locally optimal solution. If p is too
large, the ILS may behave similar to a random restart algorithm, making it difficult to
discover better quality solutions (Lourenço et al., 2003). In order to determine the most
appropriate value of p, we developed an adaptive mechanism, which adjusts p according
to the number of consecutive iterations without improvement, denoting by ItNI. Let γ

be a trigger for the adjustment of p. More precisely, whenever ItNI has increased by γ,
the value of p will be increased by 1 until it reaches the upper bound p̄, where p̄ is used
to prevent excessively large values of p to be chosen. For example, if γ = 10 and p̄ = 5,
then p starts from 1 and increases by 1 when ItNI ∈ {10, 20, 30, 40}.

4.4.6 Reducing Outsourcing Cost

As the cost of outsourcing a task is usually higher than that of serving it by internal re-
sources, reducing the outsourcing cost is considered as an objective within the algorithm.
This is achieved by a simple mechanism embedded in the perturbation procedure of the
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proposed ILS. At the beginning of the perturbation procedure, we check the list of out-
sourced tasks. If it is not empty, we randomly select a task and insert it to the cheapest
position of the current solution, and then proceed with the perturbation procedure; oth-
erwise, we only apply the random cross exchange operator. The insertion of outsourced
tasks and the perturbation procedure is likely to produce an infeasible solution, which
will be improved by the local search procedure. Infeasible solutions are evaluated by a
cost function defined in (4.13), and weight parameters α and β are dynamically adjusted
based on the rule described in Section 4.4.4. If the local search procedure cannot repair
the infeasibility during the first few iterations, the weight parameters will be adjusted
to large values, such that the cost of scheduling a task to a technician becomes greater
than the cost of outsourcing it. As a consequence, the local search tends to repair the
infeasibility by simply outsourcing the relevant tasks. In order to avoid the overuse of
the outsourcing option, we force the local search procedure to always select improved
solutions with lower outsourcing costs, even if solutions with higher outsourcing costs
but lower overall costs exist.

4.5 Computational Results

This section presents results of our computational tests conducted to assess the perfor-
mance of the proposed ILS. The ILS algorithm is coded in C++, and run on a personal
computer with Intel Core i5-3570 3.40 GHz processor and 4GB Memory (RAM). The
MIP model is implemented on the same machine, and solved by the commercial solver
CPLEX 12.6. Our ILS results are compared with existing solutions of an ALNS algo-
rithm (Kovacs et al., 2012), where the reported ALNS results are based on the average
of five runs of the algorithm. To maintain consistency and provide a fair comparison,
we also perform five random runs of the ILS for each instance tested and report the
obtained results.

4.5.1 Test Instances

The experiments are conducted using the technician routing and scheduling problem
(TSRP) instances introduced by Kovacs et al. (2012). These instances are adapted
from the Solomon’s benchmark instances (Solomon, 1987) for the VRPTW and the
test instances provided for the ROADEF 2007 challenge. They are available online at:
http://prolog.univie.ac.at/research/STRSP/.

The set of instances of Kovacs et al. (2012) are generated using 12 instances of Solomon
(1987), namely, R101, R103, R201, R203, C101, C103, C201, C203, RC101, RC103,
RC201, RC203, where R, C and RC represent the random, clustered and a mix of
random and clustered geographical setting, respectively. Instance sets with prefixes R1,

http://prolog.univie.ac.at/research/STRSP/
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C1 and RC1 have a short scheduling horizon, while those with prefixes R2, C2 and RC2
have a long scheduling horizon. The final two digits in the name of the instance indicate
the time window density. In the 01 instances, all customers are associated with time
windows, while in the 03 sets, only 50% of customers have time windows. In terms
of the skill requirements, Kovacs et al. (2012) generate three types of skill requirement
matrices shown by 5× 4, 6× 6, and 7× 4 based on the ROADEF data, where the rows
of the matrices correspond to skill domains, and the columns correspond to skill levels
under each skill domain. The customer data of Solomon’s instances are randomly paired
with the skill data, which results in a total of 36 test instances. All instances have 100

customers and a single depot. For each instance, Kovacs et al. (2012) define a ‘team’
and a ‘no team’ version. As our study does not consider the possibility of team building,
we only use the ‘no team’ version of instances in our experiments. For each instance,
there are two sets of technician data: one has a sufficient number of technicians that
feasibility can be achieved without outsourcing, while the other has limited technicians
such that it is impossible to service all tasks without the use of the outsourcing option.
The outsourcing cost of a task i is defined as oi = 200 + µ1.5

i , where µi measures the
difficulty of task i, and is calculated as the sum of the skill requirement for i in the skill
matrix. The outsourcing cost is always higher than the cost of assigning a task to a
technician.

4.5.2 Parameter Setting

The ILS requires five input parameters as follows: MaxIt; MaxItNI; δ, which is the factor
used to adjust weight parameters of duration and time window violations; p̄, which is
the upper bound that is used in the perturbation mechanism; and γ is the adjustment
factor of the perturbation strength. The value of MaxItNI is defined by Penna et al.
(2013) as

MaxItNI = |C|+ λ|K|, (4.14)

where |C| is the number of customers, |K| is the number of technicians, and λ is a
weight parameter determining the influence of |K| on the value of MaxItNI. Thus,
instead of finding the most appropriate value for MaxItNI, the value of λ is examined.
To find the set of parameters that produces the best performance, we have carried
out extensive parameter tuning experiments using a holdout set of instances containing
different numbers of customers and technicians, as well as different skill settings. The
results suggest that a parameter setting shown in Table 4.1 performs well.

Parameter MaxIt δ p̄ γ λ

Value 5 0.5 5 20 10

Table 4.1: Parameter setting for the proposed ILS
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4.5.3 Performance Measurement

The proposed ILS is evaluated against the MIP model and the ALNS (Kovacs et al.,
2012) using benchmark instances. To compare the ILS and ALNS solutions, we compute
the relative percentage difference defined as

ImpS
A/I =

vS(ALNS)− vS(ILS)
vS(ALNS) × 100. (4.15)

where vS(ALNS) and vS(ILS) represent values of the ALNS and ILS solutions respec-
tively, and S = {−, ∗,+} denotes the minimum, mean, and maximum values over five
random runs of the algorithm. For example, Imp−

A/I represents the relative percentage
difference between the values of the best solutions found by the ALNS and ILS over
five random runs. A positive value of ImpS

A/I indicates an improvement of the ILS over
ALNS; otherwise, the cost of the ILS solution is greater or equal to that of the ALNS
solution.

By replacing vS(ALNS) of the expression (4.15) with vS(CPLEX), we obtain the relative
percentage difference between the values of the ILS solutions and the optimal values
produced by CPLEX, denoted by ImpS

C/I. There is no difference between v−(CPLEX),
v∗(CPLEX) and v+(CPLEX), as they all refer to the value of the optimal solution found
by CPLEX.

In addition to the comparison of solution values, we compare the computational times
required by our ILS and the ALNS. Kovacs et al. (2012) run their ALNS on a Pentium D
computer with two 3.2 GHz CPUs and 4 GB memory (the algorithm only uses one CPU),
which is different from our machine that is used to implement the ILS and MIP model.
In order to provide a fair comparison of computational speed, we scale the reported
CPU times according to the speed factors provided in the report of Dongarra (2014).
The report does not cover the two computers considered in our experiments. Thus, we
use a slower but similar computer (Pentium IV with 3.0 GHz) available in Dongarra
(2014) instead of the computer used by Kovacs et al. (2012), and use a speed factor of
1573 Mflop/s (millions of floating-point operations per second). As there is no suitable
substitute available in Dongarra (2014), we apply the same software used by Dongarra
(2014) to record the speed factor of our computer, which yields 2462 Mflop/s. Based on
the speed factors, the reported CPU times of the ALNS are adjusted by multiplying a
factor of (1573/2462), when comparing with the ILS times.

4.5.4 Evaluation of Search Strategies

Results on comparing the three search strategies described in Section 4.4.4 are shown
in Table 4.2. Columns headed Avg. show the average solution values produced by
the ALNS and the ILS using three different strategies over five random runs. The



Chapter 4 Iterated Local Search for Workforce Scheduling and Routing Problem 77

corresponding relative percentage difference between the values of the ALNS solutions
and ILS solutions are reported in columns titled Imp∗

A/I.

Comparing Strategy 1 with Strategy 2 and Strategy 3, it can be seen that by applying
the intra-route search, the solution quality improves significantly from −0.21% to 0.54%
and 0.51%, with the average computational time increasing accordingly. The intra-route
search is seen to be especially useful on the R2, C2 and RC2 types of instances, which are
characterized by a long scheduling horizon and a low number of technicians, where each
route contains a relatively high number of tasks. Comparing Strategy 2 with Strategy
3, the difference between the average Imp∗

A/I values is only 0.03%. However, the average
computational time of Strategy 2 is about 13% higher than that of Strategy 3. Therefore,
Strategy 3, which applies the intra-route search as a post-optimization procedure on the
local optimum returned by the inter-route search, is recommended based on efficiency
and effectiveness, and is used in the remainder of our tests.
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4.5.5 Comparison of Performance

This section presents the results of evaluating our ILS against the MIP model and the
ALNS using benchmark instances containing 25, 50, and 100 tasks. In the tables pre-
sented hereafter, the first group of columns shows the instance identifier, the number
of tasks |C|, and the maximum number of technicians |K|. Columns Opt. and Avg.
show, for each instance, the optimal solution value found by CPLEX, and the average
solution values found by the ALNS and ILS over five random runs. Columns Imp∗

C/I and
Imp∗

A/I give the relative percentage difference between the values of the ILS solutions
and the CPLEX solutions and the ALNS solutions, respectively. The average number of
outsourced tasks, the average number of technicians used, and the average CPU time in
seconds are reported in the columns headed |Co|, |K∗|, and CPU, respectively. Embold-
ening in the ILS columns is used to highlight values that correspond to an improvement
over the corresponding values of the ALNS.

Table 4.3 gives experimental results on small instances containing 25 tasks. Compared to
CPLEX, our ILS algorithm consistently finds optimal solutions in all five random runs for
19 out of 23 instances and produces an overall average gap of −0.18% over all instances.
Moreover, the average number of outsourced tasks given by the ILS is exactly the same
as that for CPLEX. Compared to ALNS, our ILS algorithm gives better solutions for four
instances, in particular RC101_5×4 and RC101_6×6, for which the solutions found by
the ILS improve the ALNS solutions by 9.32% and 12.56% respectively. The significant
improvement on these two instances is achieved by the reduction in the number of
outsourced tasks. To test the statistical significance between the performances of ALNS
and ILS, we conduct the two-tailed Wilcoxon test on the paired samples between the
average solution values obtained by ALNS and ILS. The test is performed at a 95%
significance level, where a p-value of less than 0.05 indicates the rejection of the null
hypothesis, which says that there is no significant difference between the results of
ALNS and ILS. The p-value of the Wilcoxon test for instances containing 25 tasks is
0.24, which suggests that the performances of ALNS and ILS on this set of instances are
similar. This can be explained by the fact that both ALNS and ILS can solve a large
majority of small instances to optimality. Perhaps the most significant feature of ILS
is the speed with which it produces good-quality solutions, and it is significantly faster
than the ALNS. With an average CPU time of 0.11 seconds, it only requires 7% of the
time used by the ALNS. Although our computer is faster, the effect of the computer
speed is negligible compared to the improvement on CPU times.

Table 4.4 presents results of the experiments on instances with 50 tasks. Of the 12
instances, our ILS algorithm discovers optimal solutions for seven and yields an overall
average deviation of −0.14% in comparison to CPLEX. The average deviation of the ILS
from the ALNS in terms of the solution values is 0.67%, and it finds better solutions for
five instances. The p-value of the Wilcoxon test for this set of instances is 0.06, which
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is very close to the margin of significance. This suggests that when the problem size
increases to 50, our ILS tends to perform better than the ALNS. Using the computer
speeds, the average computation time of the ALNS is adjusted to 4.77 seconds, which is
still considerably greater than the 1.89 seconds for ILS.

For instances with 100 tasks, a time limit of 7200 seconds is imposed on CPLEX. Tables
4.5 and 4.6 report computational results on instances with limited and unlimited techni-
cians, respectively. The third to fifth columns of each table are associated to the results
of the MIP model solved by CPLEX, where the columns Best and Gap present, for each
instance, the value of the optimal or best solution found by CPLEX within the time
limit, and the percentage gap of the LP bound with respect to the best solution value.
In addition, we report the minimum and maximum solution values found by the ALNS
and ILS over five random runs in columns titled Min. and Max., and the corresponding
percentage differences between the values of ALNS and ILS solutions are presented in
columns Imp−

A/I and Imp+
A/I respectively. Proven optimal solutions are underlined.

Of the 36 instances with unlimited technicians, CPLEX is only able to find optimal
solutions for 9, and for the 36 instances with limited technicians, the model finds optimal
solutions for 5 instances within the required time limit. This indicates that instances
with limited technicians tend to be more difficult to solve than those with unlimited
technicians, as the former problem considers the additional set of decisions concerning
the selection of tasks to be outsourced.

A comparison of ILS and ALNS on instances with 100 tasks and limited technicians is
given in Table 4.5. Of the 36 instances, our ILS algorithm outperforms ALNS in 17. In
particular, for instances R101_5×4, RC101_6×6 and RC101_7×4, the solutions found
by the ILS are between 5% and 8% better in cost than those for ALNS. The significant
improvement on these instances can be explained by the reduced use of the outsourcing
option by the ILS. The average number of outsourced tasks of the ILS solutions is 9.76,
which is about 3% less than the value of the ALNS solutions. To determine the statistical
significance between the numbers of outsourced tasks produced by the ILS and ALNS
on this set of instances, we conduct a two-tailed Wilcoxon test and a p-value of 0.004
is obtained. This confirms that our ILS uses significantly less outsourcing option than
the ALNS, and also implies that the proposed mechanism of reducing outsourcing cost
(described in Section 4.4.6) is effective. The average percentage difference between the
ILS and ALNS solution values is 0.82%. Comparing the worst solutions found during
five random runs, the ILS improves the ALNS solutions by 1.24%, which indicates that
our ILS is more stable than the ALNS when performing multiple runs. The average
computational time required by ALNS is 52.87 seconds, which is equivalent to 33.78

seconds after applying the conversion factor, and is 16.59% higher than that of ILS.

Table 4.6 provides a comparison of ILS and ALNS on large instances with unlimited
technicians. The average number of outsourced tasks is not reported in this table,
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as these instances have enough technicians to avoid outsourcing. The ILS algorithm
outperforms ALNS in 30 out of 36 instances, and improves the best solutions for 24
instances. Of the 9 instances that are solved to optimality by CPLEX, our ILS algorithm
finds optimal solutions for 5 of them. The average percentage difference between the ILS
and ALNS solution values is 0.64%. Moreover, the ILS solutions tend to have smaller
deviations within five random runs since the overall average values of Imp−

A/I and Imp+
A/I

are both greater than 0. In terms of speed, ALNS requires an average solution time of
79.17 seconds, which is equivalent to 50.58 seconds under the adjustment of computer
speeds, but is still 20% higher than the average CPU time required by ILS. Lastly,
we conduct a two-tailed Wilcoxon test on the solutions values of all large instances
containing 100 tasks and a p-value of 0.02 is obtained. This indicates that our ILS has
a significantly better performance than the ALNS on the set of large instances since the
p-value is less than the chosen significance level 0.05.
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4.5.6 Skill VRP Instances

The proposed ILS algorithm is also applied to solve a set of Skill VRP instances, which
are generated based on the benchmark instances of Solomon (1987) and the skill pattern
introduced by Cappanera et al. (2011). As the Skill VRP does not involve time window
and capacity constraints, we use only the geographical information of Solomon’s in-
stances to generate three types of geographical data for Skill VRP instances, namely, R,
C and RC, which represent the random, clustered and a mixed of random and clustered
geographical setting, respectively. Similar to Cappanera et al. (2011) and Schwarze and
Voß (2012), we consider a skill set with three levels 1, 2 and 3, where skill 1 denotes the
lowest level, and skill 3 the highest. Each task i ∈ C is associated with a skill require-
ment si ∈ {1, 2, 3}, which must be fulfilled by a technician k ∈ K having a skill level
ŝk ≥ si, where ŝk ∈ {1, 2, 3}. The skill data is randomly generated according to the four
patterns introduced by Cappanera et al. (2011), as given in the Table 4.7, where each
row of values represent a pattern that indicates the distribution of skill requirements
over tasks. For example, the first pattern {50, 10, 40} indicates that a task i has a skill
requirement si = 1 with probability 0.5, si = 2 with probability 0.1 and si = 3 with
probability 0.4. For each combination of skill pattern and geographical data, we gener-
ated three random instances, which results in a total of 36 instances. All the instances
have two sizes, where one has 20 tasks and the other has 30 tasks. Each instance has a
set of three technicians K = {1, 2, 3}, where each technician k ∈ K is specialised at a
different skill level ŝk ∈ S; for example, ŝ1 = 1, ŝ2 = 2 and ŝ3 = 3.

Skill
Pattern 1 (%) 2 (%) 3 (%)

1 50 10 40
2 50 20 30
3 40 40 20
4 30 30 40

Table 4.7: Distribution of skill requirements over tasks

In the Skill VRP, the routing costs depend on both the traveling distance and the
technician, such that the increasing skill level of the technician causes increasing costs.
Thus, for each arc (i, j) ∈ A and each technician k ∈ K, we follow the approach of
Schwarze and Voß (2012) by defining a skill dependent routing cost ckij by

ckij = cijθŝk, (4.16)

where cij is the traveling distance of arc (i, j) ∈ A, and θ is a weight parameter of the
skill level ŝk of the technician k ∈ K. Following the suggestion of Schwarze and Voß
(2012), we set θ = 1 in our experiments.
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4.5.7 Results for Skill VRP Instances

The above Skill VRP instances are solved by using our ILS, and the results are compared
with the solutions obtained from a basic MIP model of Cappanera et al. (2011) that is
solved by using CPLEX 12.6. A time limit of 7200 seconds is imposed on CPLEX, and
for instances not solved to optimality, we report the best values of the solutions found
within this time limit.

Table 4.8 presents results of the experiments for instances with 20 tasks. Of the 36
instances tested, CPLEX finds optimal solutions for 27 and exceeds the time limit for
9 instances. The solutions produced by our ILS algorithm are exactly the same as the
optimal or best solutions found by CPLEX for all instances. The average computational
time of our ILS is 0.08 seconds, which is negligible compared to the time used by CPLEX.

Table 4.9 shows results of the experiments on instances with 30 tasks. For this size of
instances, CPLEX is only able to find optimal solutions for 10 out of 36 instances. Among
these 10 instances, our ILS can produce optimal solutions for 9, with the exception
being instance R_4_1 for which our ILS found slightly worse solutions that have an
average gap of −0.66% to that of CPLEX. Of the remaining instances that are not
solved to optimality by CPLEX, our ILS produces better solutions for 6 and equal cost
solutions for 20 compared to the best solutions found by CPLEX within the time limit.
The average percentage difference between the values of our ILS solutions and CPLEX
solutions is 0.74%. The average computational time required by our ILS is 0.48 seconds,
which is also negligible compared to the time used by CPLEX.

4.6 Conclusion

This paper presents an iterated local search (ILS) algorithm for solving the workforce
scheduling and routing problem (WSRP). We have examined different combinations of
neighbourhood structures, and results show that the strategy of apply the intra-route
search as a post-optimization procedure for the inter-route search provides effective and
efficient performance. The proposed ILS is evaluated against a mixed integer program-
ming (MIP) model and an adaptive larger neighbourhood search (ALNS) algorithm
(Kovacs et al., 2012) on benchmark instances with up to 100 tasks. Computational
experiments indicate that the proposed algorithm can produce solutions that are within
an average gap of 1% to the optimal values in at most 40 seconds on average for all
instances tested here. Compared to other heuristic approaches (Kovacs et al., 2012;
Castillo-Salazar et al., 2015) for the similar problems, the proposed ILS has a relatively
simple structure and a small number of parameters.
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CPLEX ILS
Instance Best Gap |K∗| CPU Avg. Imp∗

C/I |K∗| CPU

C_1_1 370.93 0.00 1.00 122.82 370.93 0.00 1.00 0.07
C_1_2 367.55 4.79 2.00 7200.00 367.55 0.00 2.00 0.12
C_1_3 367.55 8.85 2.00 7200.00 367.55 0.00 2.00 0.09
C_2_1 370.93 0.00 1.00 353.27 370.93 0.00 1.00 0.06
C_2_2 367.55 11.36 2.00 7200.00 367.55 0.00 2.00 0.17
C_2_3 367.55 9.63 2.00 7200.00 367.55 0.00 2.00 0.08
C_3_1 370.93 0.00 1.00 239.05 370.93 0.00 1.00 0.06
C_3_2 367.55 4.38 2.00 7200.00 367.55 0.00 2.00 0.15
C_3_3 367.55 0.00 2.00 2742.05 367.55 0.00 2.00 0.17
C_4_1 370.93 0.00 1.00 28.27 370.93 0.00 1.00 0.09
C_4_2 367.55 0.00 2.00 1307.39 367.55 0.00 2.00 0.13
C_4_3 370.93 0.00 1.00 1648.17 370.93 0.00 1.00 0.06

R_1_1 781.09 0.00 2.00 8.78 781.09 0.00 2.00 0.07
R_1_2 772.50 0.00 2.00 73.35 772.50 0.00 2.00 0.10
R_1_3 710.16 0.00 2.00 18.66 710.16 0.00 2.00 0.04
R_2_1 781.09 0.00 2.00 33.40 781.09 0.00 2.00 0.11
R_2_2 729.12 0.00 2.00 76.47 729.12 0.00 2.00 0.06
R_2_3 710.16 0.00 2.00 68.49 710.16 0.00 2.00 0.09
R_3_1 777.40 0.00 3.00 191.36 777.40 0.00 3.00 0.04
R_3_2 702.26 0.00 2.00 143.98 702.26 0.00 2.00 0.09
R_3_3 748.90 0.00 2.00 323.30 748.90 0.00 2.00 0.14
R_4_1 787.01 0.00 1.00 6.76 787.01 0.00 1.00 0.08
R_4_2 787.01 0.00 1.00 15.46 787.01 0.00 1.00 0.09
R_4_3 755.20 0.00 2.00 56.62 755.20 0.00 2.00 0.07

RC_1_1 658.21 0.00 1.00 27.38 658.21 0.00 1.00 0.05
RC_1_2 658.21 1.89 1.00 7200.00 658.21 0.00 1.00 0.03
RC_1_3 570.00 0.00 2.00 2034.46 570.00 0.00 2.00 0.03
RC_2_1 658.21 0.00 1.00 83.90 658.21 0.00 1.00 0.03
RC_2_2 658.21 8.77 1.00 7200.00 658.21 0.00 1.00 0.04
RC_2_3 570.00 4.21 2.00 7200.00 570.00 0.00 2.00 0.03
RC_3_1 658.21 0.00 1.00 786.79 658.21 0.00 1.00 0.06
RC_3_2 658.21 13.29 1.00 7200.00 658.21 0.00 1.00 0.04
RC_3_3 570.00 0.00 2.00 893.34 570.00 0.00 2.00 0.03
RC_4_1 658.21 0.00 1.00 26.89 658.21 0.00 1.00 0.05
RC_4_2 658.21 0.00 1.00 3180.79 658.21 0.00 1.00 0.03
RC_4_3 658.21 0.00 1.00 3042.84 658.21 0.00 1.00 0.03
Average 586.20 1.87 1.58 2287.06 586.20 0.00 1.58 0.08

Table 4.8: The comparison of exact and ILS solutions on Skill VRP instances
with 20 tasks
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CPLEX ILS
Instance Best Gap |K∗| CPU Avg. Imp∗

C/I |K∗| CPU

C_1_1 439.45 2.87 1.00 7200.00 439.45 0.00 1.00 0.33
C_1_2 432.86 25.93 1.00 7200.00 432.86 0.00 2.00 0.11
C_1_3 429.52 31.50 2.00 7200.00 429.52 0.00 2.00 0.37
C_2_1 439.45 11.92 1.00 7200.00 439.45 0.00 1.00 0.40
C_2_2 432.86 26.22 2.00 7200.00 432.86 0.00 2.00 0.12
C_2_3 429.52 32.25 2.00 7200.00 429.52 0.00 2.00 0.39
C_3_1 439.45 23.09 2.00 7200.00 439.45 0.00 1.00 0.41
C_3_2 440.30 28.08 2.00 7200.00 439.45 0.19 1.00 0.42
C_3_3 449.16 32.15 2.00 7200.00 439.45 2.16 1.00 0.49
C_4_1 439.45 0.00 1.00 530.36 439.45 0.00 1.00 0.23
C_4_2 475.39 28.19 2.00 7200.00 439.45 7.56 1.00 0.51
C_4_3 505.33 32.30 2.00 7200.00 439.46 13.03 1.00 0.56

R_1_1 956.66 0.00 2.00 122.79 956.66 0.00 2.00 0.57
R_1_2 912.68 0.00 2.00 1319.63 912.68 0.00 2.00 0.60
R_1_3 812.97 0.00 2.00 797.14 812.97 0.00 2.00 0.56
R_2_1 956.66 0.00 2.00 766.26 956.66 0.00 2.00 0.67
R_2_2 921.17 7.18 3.00 7200.00 912.68 0.92 2.00 0.71
R_2_3 812.97 0.00 2.00 6507.53 812.97 0.00 2.00 0.57
R_3_1 964.61 0.28 3.00 7200.00 964.61 0.00 3.00 0.82
R_3_2 896.06 4.19 2.00 7200.00 896.06 0.00 2.00 0.71
R_3_3 890.27 4.01 2.00 7200.00 890.27 0.00 2.00 0.71
R_4_1 973.72 0.00 2.00 25.01 980.11 −0.66 2.00 0.74
R_4_2 981.64 0.00 1.00 3549.01 981.64 0.00 1.00 0.43
R_4_3 919.09 0.00 2.00 7036.77 919.09 0.00 2.00 0.73

RC_1_1 928.31 6.57 1.00 7200.00 928.31 0.00 1.00 0.40
RC_1_2 928.31 37.44 1.00 7200.00 928.31 0.00 1.00 0.34
RC_1_3 773.66 30.98 2.00 7200.00 773.66 0.00 2.00 0.47
RC_2_1 928.31 23.40 1.00 7200.00 928.31 0.00 1.00 0.48
RC_2_2 928.31 21.32 2.00 7200.00 928.31 0.00 1.00 0.34
RC_2_3 773.66 34.10 2.00 7200.00 773.66 0.00 2.00 0.46
RC_3_1 920.74 25.82 2.00 7200.00 920.74 0.00 2.00 0.50
RC_3_2 928.31 39.12 1.00 7200.00 928.31 0.00 1.00 0.37
RC_3_3 842.32 33.62 2.00 7200.00 842.32 0.00 2.00 0.52
RC_4_1 928.31 0.00 1.00 1429.17 928.31 0.00 1.00 0.43
RC_4_2 928.31 17.15 1.00 7200.00 928.31 0.00 1.00 0.33
RC_4_3 953.07 26.58 2.00 7200.00 920.74 3.39 2.00 0.48
Average 753.14 16.29 1.75 5813.44 749.06 0.74 1.58 0.48

Table 4.9: The comparison of exact and ILS solutions on Skill VRP instances
with 30 tasks
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The proposed ILS algorithm is also applied to solve a set of Skill VRP instances, and
results show that our algorithm is able to find optimal or near-optimal solutions in less
than 0.5 seconds on average for all instances tested. Although the proposed algorithm
is designed for solving the workforce scheduling and routing problem, it can be easily
adapted to tackle other types of scheduling and routing problems.



Chapter 5

Incorporating Future Requests in
the Dynamic Workforce
Scheduling and Routing Problems

This chapter considers a dynamic workforce scheduling and routing problem (WSRP),
where service requests arrive continuously and randomly over time, and operational
decisions are made in an ongoing fashion. To address this problem, we describes a
sampling-based model that incorporates stochastic knowledge about future requests.
The proposed model uses a two-stage set-partitioning framework, where the first-stage
is concerned with finding a set of feasible technician routes covering known requests,
while the second-stage estimates the effect of the same routes with respect to future
requests. The performance of the proposed model is evaluated against a deterministic
model and a naive greedy heuristic within a simulation framework, and tested on realistic
instances generated using probability distributions derived from historical data.

5.1 Introduction

The workforce scheduling and routing problem (WSRP) is commonly faced by many
service providers, and arises in applications of home health care, field technician schedul-
ing, security personnel routing and manpower allocation. In the classical setting of the
WSRP, all parameters are assumed to be known before plans are made and that the
designed routing plans are fixed during the execution stage. However, this is not nec-
essarily the case in real-world applications where all or part of the input data are often
incomplete or unknown during the design phase. In such situations, the challenge is
to make operational decisions under uncertainties, which has given rise to stochastic or
dynamic scheduling and routing problems. Existing studies in this area usually focus
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on either the stochastic version or the dynamic version exclusively (Bent and Van Hen-
tenryck, 2004). Recent advances in computer and telecommunications technologies have
enabled researchers to develop more effective solution tools to simultaneously address
the stochastic and dynamic aspects of the problem. This paper aims to exploit stochas-
tic information about future requests and integrate this part of information into the
solution methods for the dynamic WSRP.

In this paper, we consider a dynamic WSRP, where service requests arise continuously
and randomly over time, and operational decisions are made in an ongoing fashion as
new requests arrive. This work is motivated by a British company providing emergency
motoring breakdown services to its customers in the UK. A general description of the
problem is given as follows. When customers have their vehicles break down, they
send service requests to the call centre. The call handlers collect information from
customers, and determine whether or not to accept the requests. If a request is accepted,
it must be assigned to a technician with required skills and tools, and a service time
window is assigned, within which a technician is expected to perform roadside assistance
at the customer location. A late service is allowed at the expense of a penalty cost
proportional to the amount of time delay. Since a technician may have been assigned
several tasks, the system needs to determine the sequence of tasks to be carried out by
each technician. If no sufficient resources are available to provide the required service
within the time window or if better operational performance can be achieved, tasks can
be outsourced (rejected) to a third party, albeit at the expense of additional costs. Our
objective is to develop an algorithm that can effectively and efficiently address the task
acceptance/rejection decisions as well as scheduling and routing decisions in real-time,
while minimising the total response times (the time interval between the arrival time of
a request and the time at which service begins), the penalty cost related to late services,
and the cost of rejections.

The main contributions of this paper can be summarised as follows. First, we present
a deterministic set-partitioning (DSP) model for the offline WSRP. Based on the struc-
ture of the problem considered, we introduce two dominance rules and a set of route
size constraints to enhance the performance of the DSP model. Second, we integrate
the stochastic information about future requests into the DSP model, which results in
a stochastic set-partitioning (SSP) model. The proposed SSP model uses a two-stage
framework, where the first-stage considers finding a set of feasible routes covering known
tasks, while the second-stage evaluates the performance of the first-stage decisions with
respect to future requests. The stochastic information on future requests is exploited
in the form of sampled scenarios by the SSP model. Similar scenario-based approaches
have been proposed by a number of studies for dynamic and stochastic vehicle routing
problems (VRPs), which are closely related to the WSRP. However, due to the com-
putational complexity of the sampling-based models, the existing studies have focused
on developing heuristic solution algorithms. In this paper, we show that the proposed
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SSP model can handle reasonable size instances in short computation times by exact
methods. Lastly, we use a simulation framework to assess the performance of the DSP
model, the SSP model and a naive greedy heuristic.

The rest of the paper is organised as follows. Section 5.2 provides a brief review of the
stochastic and dynamic scheduling and routing problems, with a particular emphasis on
the sampling-based algorithms. Section 5.3 formally defines the problem considered in
this paper and presents a deterministic formulation for the offline version of the problem.
Section 5.4 describes a sampling-based model that incorporates knowledge about future
requests. Computational results are presented in Sections 5.5 and 5.6. The chapter ends
with concluding remarks in Section 5.7.

5.2 Relevant Body of Literature

The WSRP is closely related to the vehicle routing problem (VRP). Since this paper
considers the stochastic and dynamic version of the problem, our review predominately
focuses on the papers published in the area of dynamic VRPs. In contrast to the static
version, the dynamic VRPs, also referred as real-time or on-line VRPs, assume that part
or all input data are revealed dynamically during the execution stage. In this context,
scheduling and routing plans are designed in an ongoing fashion. The most common
source of dynamism is the arrival of customer requests, but demands, travel times and
service times are also possible dynamic elements. According to the classification of Pillac
et al. (2013a), dynamic VRPs can be divided into two classes: deterministic and stochas-
tic. The difference between two lies in the exploitation of probabilistic knowledge about
stochastic parameters. In the stochastic and dynamic VRPs, the stochastic information
on dynamically revealed parameters is investigated and used to support the construction
of scheduling and routing plans, while in the deterministic version there is no stochastic
element. For surveys on the deterministic and dynamic VRPs, interested readers are
advised to Pillac et al. (2013a) and Bektaş et al. (2014). The following review discusses
the models and algorithms proposed for addressing stochastic and dynamic VRPs. The
solution methods developed in this area can be divided into three groups: anticipatory
strategies, stochastic modelling approaches and sampling-based algorithms, which are
described below.

5.2.1 Anticipatory Strategies

The most common anticipatory strategies proposed for dynamic VRPs are repositioning
and waiting. The former relocates idle vehicles to strategic locations, where new requests
are likely to appear. This type of strategies have been recognised as important elements
for dynamic VRPs, especially for emergency vehicle dispatching problems (e.g., deploy-
ment of police, fire and ambulance services). Some of recent studies in this area include
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Bent and Van Hentenryck (2007); Maxwell et al. (2010); Naoum-Sawaya and Elhedhli
(2013) and Van Barneveld et al. (2016). Unlike repositioning strategies, which only con-
sider idle vehicles, waiting strategies allow a vehicle to wait at a strategic location for
a predefined amount of time before travelling to the destination already assigned to it.
Prior studies, e.g., Ichoua et al. (2006); Branke et al. (2005); Thomas (2007); Bent and
Van Hentenryck (2007) and Branchini et al. (2009), showed that waiting strategies are
very useful for dynamic VRPs, especially for the problems with time windows, where
time lags exist between requests.

5.2.2 Stochastic Modelling Approaches

Stochastic modelling approaches, like Markov Decision Process (MDP), have been ap-
plied by a number of studies to address dynamic VRPs. Thomas and White III (2004)
consider a dynamic pick-up and delivery problem (DPDP), where a single vehicle with
unlimited capacity travels from a known origin to a known destination and responds to
potential requests at known locations along the route. The problem is modelled as a
finite-horizon MDP, and an optimal routing policy is derived based on the structural
results. The same problem is also studied by Thomas (2007), where waiting strategies
regarding where and how long to wait are exploited in more detail. The problem is also
modelled as a finite-horizon MDP. Based on structural results, a real-time heuristic is
developed, and its effectiveness is demonstrated by comparing with five waiting heuris-
tics. In Powell (1996), a hybrid model is built for a dynamic assignment problem, where
vehicles are assigned to loads that arise randomly over time. The developed model re-
plays on a hybrid network that combines known and forecasted demands. Experimental
results confirm that taking forecasted demands into account is advantageous for making
dynamic decisions. Yang et al. (2004) consider and compare five rolling horizon strate-
gies for a DPDP. Three of the strategies are based on simple heuristic approaches, while
the other two use a repeated re-optimisation procedure on mathematical models of the
corresponding offline problem. One of the offline models incorporates some probabilistic
knowledge about incoming requests, and this model shows the best performance in their
computational experiments. Other studies in this area include Novoa and Storer (2009);
Secomandi and Margot (2009) and Goodson et al. (2013).

5.2.3 Sampling-Based Algorithms

A sampling algorithm generates a number of scenarios at each decision epoch that de-
scribe possible realisations of future events, which are then evaluated in order to de-
termine the best action. For example, Bent and Van Hentenryck (2004) use a multiple
scenario approach (MSA) to solve a partially dynamic vehicle routing problem with
time windows (VRPTW), where some customers are known in advance while others are
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dynamic. The objective is to maximize the number of serviced customers. The MSA
populates and maintains a pool of routing plans, which are constructed for scenarios con-
taining known and predicted customers. Once a route plan is obtained for a scenario,
the predicted customers are removed. At each decision epoch, a plan is selected from
the solution pool using a consensus function, in which new customers can be accommo-
dated, since extra room has been reserved during the design phase. A similar problem is
considered by Hvattum et al. (2006), where the objective is to minimize the number of
vehicles used and the total travelling time. They also apply a scenario-based approach,
namely a dynamic stochastic hedging heuristic (DSHH). Similar to the MSA, the DSHH
incorporates stochastic knowledge by generating scenarios containing known and ran-
domly sampled future customers. Each scenario is then solved as a static VRPTW to
produce a routing plan. The main difference between the DSHH and the MSA is that,
instead of choosing an executed plan from the solution pool, the DSHH combines com-
mon features of scenario solutions to build a unique solution. Based on the framework of
DSHH, Hvattum et al. (2007) propose a branch-and-regret heuristic for a dynamic and
stochastic VRP, where the goal is to minimize the number of unserviced customers, the
number of vehicles used and the total distance travelled. Ghiani et al. (2012) compare
the performance of a sampling-based algorithm and an anticipatory insertion heuristic
proposed for a dynamic and stochastic travelling salesman problem, where a single, un-
capacitated vehicle responds to a mix of advance and late customers at known locations.
Their results indicate that the anticipatory insertion heuristic can match the solution
quality of the sampling-based algorithm and use less computational effort, particularly
when the degree of dynamism is low (e.g., low percentage of late customers). However,
the sampling-based algorithm tends to perform better for instances with a high degree
of dynamism.

Instead of solving scenarios to construct a routing plan, some studies apply scenario-
based methods to estimate the influence of current decisions on future customers. Ghiani
et al. (2009), for example, propose anticipatory insertion and local search algorithms to
solve a dynamic VRP with pick-up and delivery (PDP), where the objective is to mini-
mize the total expected customer inconvenience. To take future requests into account,
they define a penalty function that estimates the expected cost of accommodating fu-
ture request into a candidate solution. The expected value of the penalty function is
approximated based on a set of scenarios containing only future requests. The candi-
date solution that gives the best objective value consisting of the cost of serving known
requests and the penalty cost regarding future requests is selected as the executed plan.
In Azi et al. (2012), a scenario-based approach is applied to assess the opportunity value
of new requests for a dynamic VRP with multiple delivery routes to dynamically de-
cide whether to accept new incoming requests. They define the opportunity value of
a new request by the sum of the differences on solution values over a set of scenario
solutions with and without the insertion of the new request. Each scenario solution is
constructed for known requests and a scenario containing future requests by using an
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adaptive large neighbourhood search (ALNS) algorithm. Only the new request with
positive opportunity value is accepted in the solution. Sarasola et al. (2016) develop a
sampling-based variable neighbourhood search (VNS) to solve a VRP with stochastic
demand and dynamic requests, where the goal is to minimize the total travelling cost and
the delay penalty related to route duration constraints. The proposed heuristic applies a
sampling-based method to evaluate and compare solutions. Tirado and Hvattum (2016)
also apply sampling-based methods in the solution evaluation mechanisms of three local
search heuristics developed for a dynamic and stochastic PDP. Their results show that
the performance of three existing heuristics presented in Tirado et al. (2013), Bent and
Van Hentenryck (2004) and Hvattum et al. (2007) can be improved by incorporating
the proposed local search heuristics. Table 5.1 presents an overview of sampling-based
algorithms proposed for dynamic and stochastic VRPs.

Author Request
Type

Time
Windows

Route Du-
ration

Objectives Method
Type

Bent and Van Henten-
ryck (2004)

Mixed Hard - Max. number of
serviced customers

Heuristic

Hvattum et al. (2006) Mixed Hard - Min. number of
vehicles used &
travel time

Heuristic

Hvattum et al. (2007) Mixed - - Min. number of
unserviced cus-
tomers & vehicles
used & travel
distance

Heuristic

Ghiani et al. (2009) Dynamic Soft - Min. expected
customer inconve-
nience

Heuristic

Ghiani et al. (2012) Mixed - - Max. number of
serviced customers

Heuristic

Azi et al. (2012) Dynamic - Hard Max. total profit
(revenue minute
travel distance)

Heuristic

Sarasola et al. (2016) Mixed - Soft Min. travel dis-
tance & time delay
penalty

Heuristic

Tirado and Hvattum
(2016)

Mixed Hard - Min. travel cost &
other operational
cost

Heuristic

Table 5.1: Overview of sampling-based algorithms for dynamic and stochastic
VRPs

The above overview shows that the majority of existing studies consider partially dy-
namic problems, where some requests are known in advance and others are dynamic (
indicated as ‘Mixed’ in Table 5.1). Moreover, the objective functions are usually con-
cerned with the number of serviced or unserviced customers, the number of vehicle used
and various travelling related costs. Unlike these studies, the problem considered in our
study has a high degree of dynamism, where only dynamic requests are considered and
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the service at customers must start as soon as possible. Our objective function mini-
mizes the total response times, delay penalties and rejection costs. Although sampling-
based algorithms are able to provide high quality solutions, the computational effort
increases with the number of scenarios. Previous studies have focused on the integra-
tion of sampling-based approaches into heuristic algorithms. In contrast, we present a
sampling-based model that can handle reasonable size instances of a real-life problem in
short computational times without the need for using heuristic approaches.

5.3 The Dynamic WSRP: Definition and Formulation

The dynamic WSRP is defined on a planning horizon, within which service requests
arrive randomly, and operational decisions are made whenever a new request arrives.
We refer to the set of time points at which decisions are made by decision epochs,
which correspond to the arrival times of requests. Each request represents a task i

requiring a technician to carry out emergency assistance at a customer location, and it
is characterized by a 6-tuple (ei, li, di, si, vi, oi) with the following definitions, all revealed
at the time of receiving the request.

• [ei, li] is the time window within which the service at task i is expected to com-
mence. As illustrated in Figure 5.1, the earliest time ei is simply defined as the
arrival time of request i and the latest time li is defined as ei + T Tar, where T Tar

is the target response time. A late service after li is allowed, but at a penalty cost
proportional to the amount of delay. To ensure that all customers are served within
reasonable amount of waiting time, we define UMax as the maximum amount of
time delay allowed at every task. As a results, each task effectively has a soft
time window [ei, li] and a hard time window [ei, li+UMax]. The service at a given
task must start within its hard time window and preferably within its soft time
window. Similar definitions have been used by Fagerholt (2001) and Calvete et al.
(2007);

• di and si are the service duration and the skill requirement respectively;

• vi is the location of task i, defined as a point on a Euclidean plane, as are the
vehicle positions, where the distance between two points is the Euclidean distance;

• oi is the penalty cost of rejecting task i.
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Figure 5.1: Timeline of a service request

Service requests can be either accepted or rejected, but the decisions must be made
within TRej units of time. As shown in Figure 5.1, the epoch ei + TRej represents
the deadline of making the final acceptance/rejection decision for task i. Before this
deadline, task i can be either temporarily accepted or rejected. If a task is accepted,
it will be inserted to the job plan of a technician. Once a technician starts travelling
to a task, they cannot serve another task until the current one is completed. In this
case, the task is defined as locked, which means that it cannot be reassigned to another
technician. Technicians are allowed to swap unlocked tasks in their job plans. We use a
parameter Iti to represent the state of a known task i at time t, defined as follows.

• Iti = 0: task i arrives and no decision has been made;

• Iti = 1: task i is temporarily rejected and the deadline for rejection has not passed;

• Iti = 2: task i is accepted but not locked, and the deadline for rejection has not
passed;

• Iti = 3: task i is permanently rejected, and the decision cannot be changed;

• Iti = 4: task i is accepted but not locked, and the deadline for rejection has passed;

• Iti = 5: task i is accepted and locked;

• Iti = 6: task i is accepted and the service is completed by a technician.

At each time point, every known task is in one of the seven states defined above. Figure
5.2 shows the states and the state transitions that can occur from the time a task
arrives until it is completed by a technician (state 6) or rejected (state 3). Tasks can be
temporarily rejected if they are in state 0 or 2. For tasks that are in state 2 or 4, they
are allowed to be swapped between technicians. Once a task is in state 5, the scheduling
plan for this task is fixed, which must be carried out by the technician assigned.
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Figure 5.2: State diagram of a task

Our objective is to find a scheduling strategy that minimizes the total solution costs
over the planning horizon, where the solution costs consist of (1) response times, (2)
penalty for late service and (3) cost of rejecting requests. As illustrated in Figure 5.1,
the response time to a task i is computed as bi−ei, where bi > ei is a continuous variable
that denotes the time at which service commences at task i. The amount of time delay
is computed as bi − li, if bi > li, and 0 otherwise. Each unit of time delay is penalized
by a factor β.

The dynamic WSRP defined above can be solved in a rolling horizon framework. At
each decision epoch, a scheduling plan is generated based on the information up to that
epoch. The designed plan is then carried out until the next decision epoch, at which the
current plan is interrupted and a new plan is made. To generate a scheduling plan, we
solve an offline WSRP, as defined in the following section.

5.3.1 Deterministic Formulation

The offline WSRP aims to find a scheduling and routing solution for a set K of techni-
cians, to carry out a set of tasks at different locations, defined at each decision epoch of
the dynamic WSRP. Let C be a set of tasks that are in state 0, 1, 2 or 4 at the epoch.
Let C ′ be a subset of C, where each task i ∈ C ′ is in state 4, indicating that the subset
C \ C ′ is the set of tasks that can be rejected. At a decision epoch, each technician
k ∈ K can be idle, travelling to a task, or performing service. We define ek and vk for
each k ∈ K to denote the earliest time and location at which the technician becomes
available for the next task, respectively. The objective is to find an assignment and
ordering of tasks to technicians, such that each task i ∈ C is carried out by a technician
with the required skills or rejected if task i is in the subset C \ C ′; the amount of time
delay must not exceed UMax for each scheduled tasks; each technician k ∈ K starts at
the current location vk at a time not earlier than ek, visits a subset of tasks, and ends
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at the location of the last task; and the total cost consisting of response times, penalty
cost of late service, and cost of task rejections is minimized.

The above problem is formulated as a deterministic set-partitioning (DSP) model with
following parameters and variables. Let V = K ∪ C = {1, ...,m,m + 1, ...,m + n} be
the set of vertices, where K = {1, 2, ...,m} and C = {m + 1, ...,m + n} correspond to
m technician and n tasks, respectively. Let ti,j , ∀i, j ∈ V be the travel time between
vertices i and j. Let R be the set of all feasible technician routes, where each feasible
route r ∈ R is defined by starting at a technician vertex, visiting a sequence of task
vertices and ending at the location of the last task assigned, with the relevant time and
skill constraints satisfied. For example, a route r = (1,m + 1,m + 3,m + 5) represents
technician 1 departing from the current location v1, visiting tasks 1, 3 and 5, and ending
at the location of task 5. For each route r = (k, i1, i2, ..., iQ) assigned to technician k

to serve Q tasks, let wr and ur be the total response and delay times over the route,
calculated as follows:

wr =

Q∑
q=1

(biq − eiq) (5.1)

ur =

Q∑
q=1

max{biq − liq , 0}, (5.2)

where

bi1 = max{ek + tk,i1 , ei1} (5.3)

biq = max{biq−1 + diq−1 + tiq−1,iq , eiq} ∀q = 2, ..., Q. (5.4)

We introduce two sets of binary parameters:

γkr =

1 if technician k is used by route r,

0 otherwise,
∀k ∈ K, r ∈ R;

δir =

1 if task i is covered by route r,

0 otherwise,
∀i ∈ C, r ∈ R;

and two sets of binary decision variables:

xr =

1 route r is selected,

0 otherwise,
∀r ∈ R;

zi =

1 if task i is rejected,

0 otherwise,
∀i ∈ C.



Chapter 5 Incorporating Future Requests in the Dynamic Workforce Scheduling and
Routing Problems 101

The DSP model is presented as follows:

minimize
∑
r∈R

(wr + βur)xr +
∑
i∈C

oizi (5.5)

subject to:
∑
r∈R

γkrxr ≤ 1 ∀k ∈ K (5.6)∑
r∈R

δirxr + zi = 1 ∀i ∈ C (5.7)

zi = 0 ∀i ∈ C ′ (5.8)

xr ∈ {0, 1} ∀r ∈ R (5.9)

zi ∈ {0, 1} ∀i ∈ C. (5.10)

Constraints (5.6) ensure that each technician is assigned to at most one route. Con-
straints (5.7) guarantee that each task is either covered by a route or rejected, while
constraint (5.8) impose that tasks in the subset C ′ cannot be rejected. Constraints (5.9)
and (5.10) are the binary restrictions on the decision variables.

In addition to the DSP model defined above, we have proposed a deterministic vehicle-
flow (DVF) formulation for the off-line WSRP. The details of the DVF model and the
computational results can be found in Appendix C.1. As the computational comparison
of the two models indicate that the DVF model is not as efficient as the DSP model, we
choose to use the latter in what follows.

5.3.2 Route Size Constraints

Compared to the vehicle flow formulation, the set-partitioning formulation generally
has stronger linear relaxations, but this comes at the expense of an exponential number
of binary variables (Baldacci et al., 2004). Sophisticated techniques such as column
generation are required to solve such formulations. However, the nature of the problem
we address here is such that customers request immediate service and we are required
to assign resource to provide emergency services as soon as possible. In such situation,
constructing long routes is neither necessary nor practical, as it leads to long waiting
times for some of customers on the route. For this reason, we introduce a set of route
size constraints, which enforce that each route is constrained to at most α tasks. With
this set of constraints, the number of binary variables of the DSP model is reduced from
O(mn!) to O(m n!

(n−α)!). Such a practical consideration also reduces the computational
complexity of the DSP model without losing optimal solutions. Section 5.3.4 describes
the way in which we determine the value of α.
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5.3.3 Dominated Routes

To further improve the performance of the DSP model, we introduce two dominance rules
that describe the dominance relationship between candidate routes. Any dominated
route can then be eliminated, because they will never be optimal, as they can be replaced
by the corresponding non-dominated routes. The two dominance rules are defined as
follows.

Rule 1 Suppose r1 and r2 (r1, r2 ∈ R) are two routes that are carried out by the same
technician to visit same sets of tasks, but have a different ordering of tasks. If inequalities
(5.11) and (5.12) are both satisfied with at least one as inequality, then route r2 is said
to be dominated by r1 (or r1 dominates r2).

wr1 ≤ wr2 (5.11)

ur1 ≤ ur2 . (5.12)

Under the objective function (5.5), the above dominance rule is equivalent to the in-
equality below:

wr1 + βur1 < wr2 + βur2 . (5.13)

Rule 1 can be viewed as solving a shortest path problem for a given set of tasks and a
technician, where the objective function consisting of the response time and the amount
of time delay is minimised.

Rule 2 Suppose r1 and r2 (r1, r2 ∈ R) are two different routes that are carried out by
the same technician, but r1 only includes a subset Cr1 of the set Cr2 of tasks covered by
r2. Then route r2 is said to be dominated by r1 (or r1 dominates r2), if the inequality
below is satisfied:

wr1 + βur1 +
∑

i∈Cr2\Cr1

oi < wr2 + βur2 . (5.14)

When Cr1 = Cr2 , inequality (5.14) is equivalent to (5.13), and thus the two dominance
rules are equivalent. In the extreme case Cr1 = ∅, route r1 only includes the technician
vertex, and the above dominance relationship suggests that the solution of rejecting all
tasks in Cr2 and allowing the technician to stay idle is better than selecting route r2.

5.3.4 Optimality Condition

The impact of route size constraints on the number of feasible routes is controlled by
the parameter α. With the increase in the value of α, the route size constraints tend
to be weaker. In the extreme case α = |C|, the set of route size constraints becomes
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redundant, as all possible and feasible routes are considered by the DSP model. On the
other hand, if α takes small values, the route size constraints will filter out all possible
routes that contain more than α tasks, and the optimal solution may be excluded from
the searching space. In order to find as small as possible a value of α, such that the
optimal solution is not discarded, we define the following optimality condition:

Rule 3 For a given task set C, let R1 and R2 be two sets of all feasible routes, where
r1 ∈ R1 and r2 ∈ R2 contain α and α+1 tasks, respectively. If any r2 ∈ R2 is dominated
by a route r1 ∈ R1 by the Rule 2, then R2 is said to be a completely dominated route
set and any route containing more than α + 1 tasks is also a dominated route. Thus,
the optimal solution only includes routes which contain up to α tasks.

Therefore, to determine the minimum value of α without loss of optimality, we can start
with a small enough value of α (e.g. α = 1) and increment the value by 1 until it is
no longer possible to construct feasible routes or a completely dominated route set is
obtained

5.4 Exploiting Stochastic Information about Future Re-
quests

To exploit the stochastic information on future requests, we develop a new strategy that
allows the above deterministic model to consider potential requests that may arise in
the near future. More precisely, we extend the set R of routes of the DSP model to
include a set C+ of random tasks assumed to arrive up to a near future epoch. To
keep the resulting model tractable, we limit the size of C+ to the number of technicians
|K|, and impose that each technician route can be appended at most one future task.
With this restriction, we only need to deal with an assignment problem of future tasks
to technician routes, where the information about service times of future tasks will not
be required. This strategy actually allows us to evaluate the impact of current routing
decisions on the incoming requests. An example of this strategy is illustrated in Figure
5.3, where white circles represent four known tasks, and red circles show two future
tasks, each appended to a route. According to the solution shown, technicians 1 and 2

will perform future tasks 6 and 5 after they complete their assigned tasks.
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Figure 5.3: Example of the proposed strategy with future tasks

The proposed strategy aims to find a set of routes which cover the set of currently
known tasks and also can provide prompt response to future customers. The set C+ of
future tasks is randomly generated based on the probability distribution derived from
the historical data. As different random sets of C+ will yield different solution, which
may be arbitrarily poor if C+ is not a good representation of the true realization. We
apply a scenario-based approach to implement the strategy described above. Let S be
the set of scenarios, where each scenario s ∈ S corresponds to a set C+

s of future tasks
with an associated probability ps. Let C+ = C+

1 ∪C
+
2 ∪ ...∪C

+
|S| be the set of all future

tasks. Each task j ∈ C+ is also associated with a time window (ej , lj) and a penalty cost
of rejection o′j . For a late service at task j, each unit of tardiness is penalized by a factor
β′. Lastly, we define t′r,j , ∀r ∈ R, ∀j ∈ C+ to be the travel time from the destination
of route r to the future task j. The above problem is formulated as a two-stage model,
where the first stage considers finding a set of feasible routes for the known tasks, while
the second stage handles the assignment of future tasks to the routes found in the first
stage. We have examined two formulations for the above two-stage problem. The first
one is straightforward, which combines the DSP model and an assignment model to
deal with the first-stage and second-stage problems, respectively. The second one is
based on a single set-partitioning framework, but the variables need to be defined in
a novel way. The computational results (see Appendix C.3.1) indicate that the second
model performs better than the first one. The details of the first model can be found in
Appendix C.3, while the second model is presented in the following section.

5.4.1 Stochastic Set-Partitioning Model

Recall that R to is the set of all feasible routes that cover known tasks in C. As we
need to maintain the structure of the two-stage model, we cannot simply extend routes
in R to include future tasks. Thus, we introduce the concept of future routes, defined
by starting at the destination of a current route r ∈ R, visiting a future task j ∈ C+
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and ending there. Let r+ = (r, j), r ∈ R, j ∈ C+ represent a feasible future route. It
must satisfy the following constraints: (1) the start time of r+ must be not earlier than
the completion time cr of the current route r and the arrival time of future task j, (2)
the amount the time delay at j must not exceed UMax, and (3) the technician of r has
the required skills for serving j. We define wr+ and ur+ to be the response time and the
amount of time delay of r+, computed as:

wr+ = max{cr + t′r,j − ej , t
′
r,j}

ur+ = max{cr + t′r,j − lj , ej + t′r,j − lj , 0}.

For each scenario s ∈ S, we define R+
s to be a set of feasible future routes. Then

R+ = R+
1 ∪ R+

2 ∪ ... ∪ R+
|S| is the set of all feasible future routes. We define a binary

parameter δ+jr, ∀j ∈ C+, ∀r ∈ R+, which equals to 1 if future task j is covered by
future route r, and 0 otherwise; and a binary parameter ρr1r2 , ∀r1 ∈ R, ∀r2 ∈ R+ which
equals to 1 if current route r1 is linked with future route r2, and 0 otherwise. Lastly, we
introduce the following binary variables:

ysr =

1 if future route r of scenario s is selected,

0 otherwise,
∀r ∈ R+

s , ∀s ∈ S;

zsi =

1 if future task i of scenario s is rejected,

0 otherwise,
∀i ∈ C+

s . ∀s ∈ S.

The proposed stochastic set-partitioning (SSP) model is presented below:

minimize
∑
r∈R

(wr + βur)xr +
∑
i∈C

oizi+λ
∑
s∈S

ps(
∑
r∈R+

s

wr+y
s
r + β′

∑
r∈R+

s

ur+y
s
r +

∑
j∈C+

s

o′jz
s
j )

(5.15)

subject to: (5.6)–(5.10)∑
r∈R+

s

δ+iry
s
r + zsi = 1 ∀i ∈ C+

s , ∀s ∈ S (5.16)

∑
r2∈R+

s

ρr1r2y
s
r2 ≤ xr1 ∀r1 ∈ R, ∀s ∈ S (5.17)

zsi ∈ {0, 1} ∀i ∈ C+
s , ∀s ∈ S (5.18)

ysr ∈ {0, 1} ∀r ∈ R+
s , ∀s ∈ S. (5.19)

Constraints (5.16) ensure that each future task is either covered by a future route or
rejected. Constraints (5.17) enforce that a future route can be selected only if the
associated current route is selected in the first stage.
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5.4.2 Evaluation of Stochastic Solutions

To evaluate the performance of the stochastic solutions, we carry out the following
experiment. We first solve the SSP model to obtain a set R∗ of technician routes.
We assume that the routing plan is fixed such that R∗ is carried out by the technicians
assigned. Once technicians complete their scheduled routes, they become available again
for new tasks. Let Q(R∗) be the cost of executing R∗. We then randomly generate a set
ξ of realisations, where ξi ∈ ξ is the true realisation in the near future and contains a
set C+

ξi
of new tasks, where |C+

ξi
| = |K|. To investigate how the current routing plan R∗

performs in responding to new tasks, we solve |ξ| assignment problems in terms of R∗

and each of the realisations, ξi ∈ ξ. The assignment problem aims to find the optimal
plan between R∗ and C+

ξi
, such that either a technician k ∈ K can carry out a new task

i ∈ C+
ξi

upon completion of the assigned route rk ∈ R∗ or the task is rejected, and where
the total costs of serving C+

ξi
is minimised. Let Q(R∗, ξi) be the optimal solution value

of such an assignment problem. We define Q(R∗, ξ) to be the average solution value in
terms of R∗ and the entire set ξ of realisations, and compute it as

Q(R∗, ξ) =
1

|ξ|

|ξ|∑
i

Q(R∗, ξi),

used to indicate the performance of a routing plan R∗ with respect to the future re-
alisation set ξ. We define Q∗(R∗) = Q(R∗) + Q(R∗, ξ) to be the overall performance
indicator of R∗, which takes both known tasks and future tasks into account. A smaller
value of Q∗(R∗) indicates better performance of the routing plan R∗.

We also apply two commonly used measurements, the expected value of perfect informa-
tion (EVPI) and the value of the stochastic solution (VSS) (Birge and Louveaux, 2011),
to assess the importance of using stochastic information. The EVPI estimates the dif-
ference between the solution values of SP and WS, where SP corresponds to the solution
produced by our stochastic model, and WS refers to a wait-and-see solution (Madan-
sky, 1960), obtained under the assumption that decisions are made after waiting and
observing the realisation of the random variables. To compute the WS solution, we first
separate our stochastic model by scenarios, which results in |S| independent determinis-
tic problems, each is associated with a particular scenario s ∈ S. Let min F (xr, zi, s) be
such an optimisation problem. Then the WS solution can be defined as the average ob-
jective value shown as Es∈S [min x F (xr, zi, s)]. The EVPI is the percentage reduction in
the solution value if perfect information about future realisation is available, computed
as 100× (SP−WS)/SP.

The VSS compares the SP solution with the solution of a much simpler expected value
(EV) problem, in which the random variables are replaced by their expected values
(Birge and Louveaux, 2011). The expected value of using the EV solution is defined by
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EEV, which measures the performance of the second-stage solution when the first-stage
decisions are determined by the EV problem. The VSS is equal to the difference between
the solution values of EEV and SP. For the problems considering stochastic demands,
stochastic travel times and stochastic service times, the corresponding EV problems can
be obtained by simply replacing stochastic parameters with their mean values. However,
we cannot use this approach to construct our EV problem, as our models consider future
requests as the random parameters. Thus, we simply use the DSP model to represent the
EV problem, where the stochastic information of future tasks are not utilised. Once the
EV solution is obtained, we evaluate how the solution performs in terms of responding
to future tasks described by the scenario set S. The procedure of computing the EEV
is actually similar to the one defined above for calculating Q∗(R∗), where the scenario
set S is considered as the realisation set ξ and the routing plan R∗ is generated without
utilizing stochastic information. We defined VSS as the percentage difference between
the solution values of SP and EEV, and it is calculated as 100× (EEV− SP)/EEV.

The following sections presents the results of the computational experiments conducted
to assess the performance of the proposed models. The models are implemented on a
personal computer with Intel Core i5-3570 3.40 GHz processor and 4GB Memory (RAM),
and solved by CPLEX 12.6. We first describe the results of off-line experiments, and
then present the results of on-line experiments within a simulation framework.

5.5 Off-line Experiments

The off-line experiments aim to compare the performance of the proposed models in
terms of the solution quality and the computational speed, and also investigate the
influence of different parameter settings. We first describe the test instances used in the
experiments. Then we investigate the effect of dominance rules and route size constrains.
Lastly, we assess the performance of our stochastic solutions using the performance
indicators described above.

5.5.1 Generation of Test Instances

The test instances are generated based on historical data containing service requests
received within the area of Southampton in the UK. The entire area is split into 95

squares (as shown in Figure 5.4), where each square has a side length of 5 km and
represents a demand zone. We assume that the entire region is in a two-dimensional
Euclidean space, and the location of each demand zone j ∈ {1, 2, ..., 95} is represented
by the coordinates of its bottom-left corner.

Each instance contains a set of service requests, generated using the arrival distribution
of customers and the service time distribution, defined as follows.
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Figure 5.4: Illustration of the demand areas of the Southampton area

1. The arrival distribution is modelled by a Poisson process, where the arrival rate of
each demand zone is defined by the average number aj of requests received in zone
j ∈ {1, 2..., 95}. According to the superposition property of the Poisson process,
the arrival of service requests in the entire area also follows a Poisson process with
rate of ā =

∑95
j=1 aj . To capture the geographical distribution of service requests,

we define a density factor Dj for each demand zone j, and computed as Dj = aj/ā.

2. Service durations: the analysis of historical data suggests that the service duration
does not follow any specific parametric distributions, for which reason we construct
an empirical distribution with mean service duration equal to 31.25 minutes. The
distribution of service durations is shown in Figure 5.5.
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Figure 5.5: Probability distribution of service durations
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Service requests are generated independently by demand zones. The location of a service
request within a demand zone is determined according to uniform distributions along the
x and y axes. Once a task i is generated, an associated time window (ei, li) is created,
where ei is set to the arrival time of the task and li is computed as ei+T Tar. The values
of T Tar and UMAX (the maximum amount of time delay allowed) are both set to 60

minutes according to the policy of the company. Thus, the service at a task must start
within two hours of receiving the associated request; otherwise, it is outsourced.

Each instance corresponds to a decision epoch corresponding to the arrival time of the
latest task of the instance and contains a set of N tasks that have been received but not
yet locked or permanently rejected. We set the total arrival rate ā to N , and then com-
pute the individual arrival rate of each demand zone based on the corresponding density
factor defined above. By adjusting ā to N , we assume that each instance only consists
of tasks that are received within approximately an one-hour time interval. This assump-
tion ensures that all tasks can be reached by technicians within reasonable amount of
response times if accepted. Next, we generate random tasks and store them in a task
list denoted by LS. This is implemented by a loop structure, where at each iteration,
we generate tasks that will arise in the next one-hour interval, denoted by TLimit. Tasks
are generated independently by demand zones. Once the generation has been completed
for all demand zones, we check the size of LS. If |LS| < N , we repeat the above proce-
dure to generate tasks for another one-hour period; otherwise, the loop terminates and
produces a task list LS containing at least N tasks. Finally, we sort the task list LS in
ascending order of the arrival times of tasks and select the first N tasks to form a test
instance. The pseudo-code of the above procedure can be found in Appendix C.4.

Each instance also includes a set of technicians, whose locations are distributed randomly
across the entire demand region, but following a similar geographical distribution of
requests to avoid placing technicians to unrealistic locations. The earliest available
times of technicians are set to the decision epoch of the corresponding instance. We
assume that all technicians are initially idle and can start service as soon as tasks have
been scheduled to them. This assumption allows to better assess the influence of different
staffing levels on the scheduling and routing solutions. For simplicity reasons, technicians
are assumed to be identical and have the required skills to provide services for all tasks.
Moreover, we assume that all technicians travel at the same constant speed of 40 km/h
determined by using the average driving speed on local roads in England according to
the UK Department for Transport (Department for Transport (DfT), 2016). To estimate
the travel distance between two locations within the demand region, we first calculate
the Euclidean distance, and then adjust it by multiplying a factor estimated as 1.40

for England (Ballou et al., 2002) in order to account for the circuitous nature of actual
road network. Lastly, we introduce a parameter called resource ratio, denoted by θ,
which describes the staffing level. For an instance containing |C| tasks, the number of
technicians is determined by θ|C|.



110
Chapter 5 Incorporating Future Requests in the Dynamic Workforce Scheduling and

Routing Problems

When solving each of the instances defined above, the proposed stochastic models use
a set of random scenarios. Each scenario corresponds to a set of future tasks, which
are generated using an approach similar to the one used for generating known tasks.
The initial time of the generation procedure is set to the current decision epoch of the
instance. The generation terminates until the number of future tasks generated is equal
to the number of technicians, since our models only allow each of the technician routes
to accommodate at most one future task.

Based on preliminary experiments, the parameters α and β are set to 5 and 1 respectively.
The penalty cost of rejecting a task is set to a relatively high value equal to 300, making
it preferable to schedule a task rather than to reject it, since the cost of serving a task at
its latest time is 180 (including 120 minutes of response time and 60 minutes of allowable
time delay), which is much less than the rejection cost. However, if tasks are difficult
and require long service times, we may achieve cost savings by rejecting them. Lastly,
a time limit of 3,600 seconds is imposed on the CPLEX. For instances not solved to
optimality, we report the values of the best solutions found within the time limit and
the final optimality gaps.

5.5.2 The Effect of the Dominance Rules

To assess the effectiveness of the dominance rules defined in Section 5.3.3, we conduct
computational experiments based on 15 instances containing up to 50 tasks. For each
instance, we test three resource ratios, for low (θ = 0.2) , medium (θ = 0.5) and high
(θ = 0.8) staffing levels. Table 5.2 presents the computational results. The first group of
columns show the instance identifier, the number of tasks |C|, and the resource ratio θ.
The columns titled Var and T(s) show, for each instance, the number of variables and
the CPU solution time in seconds, respectively. The solution values and the number of
constraints are not reported in this table, because the dominance rules only affect the
number of variables and computational times, and the model with or without dominance
rules produces exactly the same optimal solutions on all instances tested. In addition to
the two dominance rules defined previously, the table includes a third called Dominance
Rule Three, where rules one and two are used together. To compare the performance of
dominance rules, we define the percentage decrease in the number of variables as

GapVar
i/j =

vVar(i)− vVar(j)

vVar(i)
× 100, (5.20)

where vVar(i) and vVar(j) represent the number of variables of using policies i and j

respectively, and i, j ∈ {0, 1, 2, 3}. Policy 0 refers to the model without using dominance
rules, and policies 1, 2 and 3 correspond to the model running with dominance rule one,
two and three, respectively.
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No Dominance Dominance Rule One Dominance Rule Two Dominance Rule Three

Instance |C| θ Var T(s) Var GapVar
0/1 T(s) Var GapVar

0/2 T(s) Var GapVar
0/3 T(s)

1 10 0.2 55 0.00 50 9.09 0.02 55 0.00 0.00 50 9.09 0.00
2 10 0.5 125 0.00 112 10.40 0.02 124 0.80 0.00 111 11.20 0.02
3 10 0.8 208 0.00 178 14.42 0.02 207 0.48 0.00 177 14.90 0.02
4 20 0.2 829 0.02 611 26.30 0.02 806 2.77 0.02 597 27.99 0.02
5 20 0.5 3669 0.05 2377 35.21 0.05 3569 2.73 0.05 2328 36.55 0.05
6 20 0.8 5843 0.03 3783 35.26 0.03 5682 2.76 0.03 3702 36.64 0.03
7 30 0.2 3329 0.08 2246 32.53 0.09 3305 0.72 0.08 2246 32.53 0.08
8 30 0.5 13914 0.47 8149 41.43 0.45 13758 1.12 0.48 8104 41.76 0.45
9 30 0.8 20142 0.11 11979 40.53 0.08 19875 1.33 0.11 11912 40.86 0.09
10 40 0.2 4669 0.06 3204 31.38 0.06 4648 0.45 0.06 3200 31.46 0.08
11 40 0.5 11849 0.25 8047 32.09 0.23 11786 0.53 0.38 8037 32.17 0.33
12 40 0.8 19289 0.11 13004 32.58 0.09 19181 0.56 0.11 12987 32.67 0.09
13 50 0.2 49616 0.83 22689 54.27 0.77 47785 3.69 0.73 22450 54.75 0.73
14 50 0.5 117956 1.15 53370 54.75 0.95 113488 3.79 1.22 52640 55.37 0.92
15 50 0.8 212368 1.23 93343 56.05 0.83 203967 3.96 1.19 92120 56.62 0.83
Average 30924.07 0.29 14876.13 33.75 0.25 29882.40 1.71 0.30 14710.73 34.30 0.25

Table 5.2: The comparison of the dominance rules

Rule one achieves an average reduction of 33.75% on the number of variables. For large
instances containing 50 tasks, more than 50% of the feasible routes are identified as
dominated by rule one. Rule two, however, can only reduce the number of variables
by less than 5%. This can be explained by the fact that the task rejection cost is set
to a relatively high value, which is 300, where tasks are rejected mostly due to the
time window constraints rather than solution costs. Dominance rule three reduces the
number of variables by 34.30% on average. The reduction on the number of variables
results in an improvement in computational speed, where the model is able find optimal
solutions for instances containing up to 50 tasks within a second.

5.5.3 Evaluation of Route Size Constraints

To investigate the effect of different values of parameter α, we conduct computational
experiments based on the same set of instances used above, and ten values of α ∈
{1, 2, ..., 10} are tested. Figure 5.6 displays the average solution values of the instances
solved by the DSP model with different values of α.

From Figure 5.6a, it can be observed that the average objective value decreases when
the value of α increases from 1 to 6, and then remains the same even if α increases up
to 10. This implies that even if longer routes are allowed, near-optimal solution can be
obtained with α = 4 or 5, where α ≥ 6 yields optimal values. Comparing results of
α = 4 with α = 5, the percentage difference between the corresponding objective values
is only 0.25%. When α ≤ 2, the average objective values are considerably worse, as a
proportion of tasks are rejected due to the limitation on the route size and the lack of
technicians. This is also shown in Figure 5.6b, where the average numbers of rejections
for α = 1 and α = 2 are much higher than those of other groups. By increasing α from 5

to 10, the number of rejected tasks remain the same, which suggests that the rejections
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Figure 5.6: The solution values of the SP model running with different values
of alpha

are due to the restriction of time window constraints and possibly the consideration of
routing costs rather than the route size constraints.

Figure 5.6c displays that the average number of variable increases until α = 7, even
though the change from α = 5 or 6 is insignificant. The set of all possible routes con-
taining seven tasks is a completely dominated set according to the definition in Section
5.3.4. Therefore, it is actually not necessary to test α > 7, as any route containing more
than 7 tasks is an infeasible or dominated route and it will not be selected in the opti-
mal solution. Increasing the value of α does not significantly increase the computational
times required, because the number of variables is strongly affected by the dominance
rules. However, increasing α significantly increase the amount of time required for the
data preprocessing step (see Figure 5.6d), which involves the evaluation of all possible
routes and selection of non-dominated routes. Based on the efficiency and effectiveness,
we choose α = 4 in the remainder of the tests.



Chapter 5 Incorporating Future Requests in the Dynamic Workforce Scheduling and
Routing Problems 113

5.5.4 Number of Scenarios vs. Computation Times

To assess the effect of the number |S| of scenarios on the computational times required
by the SSP model, we examine twenty values of |S|, starting with 5 until 100 using
a step size of 5. Each value of |S| is tested on two sets of instances, where one set
contains ten instances of 10 known tasks and the other contains ten instances of 20

known tasks. Each scenario s ∈ S has the same probability ps = 1/|S|. The weight
parameters λ and β′ of the objective function (5.15) are both set to 1. The penalty cost of
rejecting a future task is set equal to the cost of rejecting a known task (o′j = oi = 300,
∀j ∈ C+,∀i ∈ C). To keep the computational experiments manageable, we fix the
resource ratio to 0.5, which corresponds to a medium staffing level. The results are
illustrated in Figure 5.7, where the graphs display the changes of the average CPU
times against the value of |S|. Even the number of scenarios is increased to 100, the
SSP model can solve all instances to optimality. With the increase of the number of
scenarios, the computational time increases accordingly, and the graphs suggest that
there exists a roughly linear relationship between them.
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Figure 5.7: The relationship between the number of scenarios used and the
computational times required

5.5.5 Number of Scenarios vs. Performance of Stochastic Solutions

As defined in Section 5.4.2, we use Q∗(R∗) to measure the performance of stochastic
solutions. In addition to the two sets of instances used previously, we introduce two
sets, which contains 50 and 100 realisations, respectively. Each instance is paired with a
set of realisations, which results in a total of 40 combinations. The resource ratio is fixed
to 0.5. To compute Q∗(R∗), we first use the SSP model to solve an instance to generate a
routing plan R∗ and compute the corresponding solution cost Q(R∗). Then we evaluate
R∗ on a set ξ of realisations to get Q(R∗, ξ). Lastly we sum the values of Q(R∗) and
Q(R∗, ξ) to obtain Q∗(R∗). To investigate the sensitivity of Q∗(R∗) to the number of
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scenarios, we examine 11 values of |S| given by {1, 5, 10, ..., 50}. Each combination of
instance and set of realisations is solved ten times using the SSP model with randomly
generated scenarios. We report the average solution values and the standard deviation
obtained over these ten runs.
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Figure 5.8: Sensitivity analysis of stochastic solutions to the number of scenarios
on instances with 10 known tasks
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Figure 5.9: Sensitivity analysis of stochastic solutions to the number of scenarios
on instances with 20 known tasks

Figure 5.8 and Figure 5.9 present the changes of the average solution values and standard
deviations when the number of scenarios used varies between 1 and 50, where the solid
lines and the dotted lines display the results of using 50 and 100 realisations, respectively.
It can be seen that the average solution values of |S| = 1 are significantly higher than
those of other groups. This indicates that the SSP model occasionally produces bad
solutions when only one scenario is used. The average solutions values decrease as
the number of scenarios used increases from 1 to 20, and then remain briefly stable.
The standard deviation also shows a similar pattern. There is no significant difference
between the results of using 50 realisations and 100 realisations. Based on the above
results, we choose to use 20 scenarios for the SSP model.

To assess the performance of the stochastic solutions, we conduct the same experiments
defined above, but this time by using the DSP model. Since no random scenario is used,
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each pair of instance and realisation set is solved only once using the DSP model. The
obtained output is compared with the stochastic solutions obtained previously using
the SSP model with a set of 20 scenarios applied. The average solution values for each
instance set are displayed in Table 5.3. The columns titled Obj1 and Obj2 show the
average solution values with respect to known tasks and future realisations respectively,
which also correspond to Q(R∗) and Q(R∗, ξ) defined previously. The sum of Obj1 and
Obj2 is displayed in column Obj3, which corresponds to Q∗(R∗). The corresponding
numbers of rejections are shown in columns named Rej1, Rej2 and Rej3.

DSP Model SSP Model Using 20 Scenarios
Set |C| |ξ| Obj1 Rej1 Obj2 Rej2 Obj3 Rej3 Obj1 Rej1 Obj2 Rej2 Obj3 Rej3

1 10 50 882.47 0.30 915.87 1.73 1798.34 2.03 1046.28 1.86 597.63 0.47 1643.91 2.33
2 10 100 882.47 0.30 914.64 1.73 1797.10 2.03 1051.91 1.90 589.52 0.45 1641.43 2.35
3 20 50 1450.48 0.10 1579.34 2.18 3029.82 2.28 1742.83 2.14 1082.98 0.68 2825.81 2.82
4 20 100 1450.48 0.10 1586.27 2.20 3036.75 2.30 1736.42 2.10 1092.52 0.70 2828.93 2.80
Avg 1166.47 0.20 1249.03 1.96 2415.50 2.16 1394.36 2.00 840.66 0.57 2235.02 2.57

Table 5.3: Comparison of deterministic and stochastic solutions

It can be seen that the deterministic solution has better performance on known tasks
than the stochastic solution. However, stochastic solutions have much better perfor-
mance on future realisations. Considering both known and future tasks, the stochastic
solution outperforms the deterministic solution by 7.42% on average. The improvement
achieved by the stochastic solution can be explained by the increase on the number of
rejections. The stochastic model tends to reject some of known tasks in order to achieve
a better resource management and provide quick response to future tasks.

5.5.6 VSS and EVPI

To compute the values of VSS and EVPI, we follow the method described in Section
5.4.2. The experiments are based on two sets of instances used above, and each instance is
associated with a set of 20 scenarios. Moreover, we examine seven values of the resource
ratio θ ranging from 0.2 to 0.8 in increments of 0.1. Table 5.4 presents the average
solution values for each instance set. In addition to the columns defined previously,
we use columns GapRej

1/2 and GapRej
2/3 to display the percentage differences between the

rejection numbers of EEV and SP, and SP and WS solutions, respectively, and they are
computed using a equation similar to (5.20).

Over all instances and resource ratios tested, the average value of VSS is 4.52% that
shows the value of the SSP model using stochastic information. When θ = 0.4, the
average values of VSS for the 10 tasks set and the 20 tasks set are 9.88% and 9.25%, re-
spectively. This indicates that when a median staffing level is used, exploiting stochastic
information is particularly important as it allows the SSP model to produce a better
resource management for both known and future tasks. However, the average rejection
number of SP solutions is about 7% greater than that of EEV solution, which implies
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EEV SP WS
Set |C| θ Obj Rej Obj Rej Obj Rej VSS GapRej

1/2 EVPI GapRej
2/3

1 10 0.2 2436.49 6.32 2408.10 6.22 2366.93 6.00 1.17 1.58 1.74 3.62
2 10 0.3 2169.87 4.55 2067.85 4.51 2030.99 4.16 4.70 0.88 1.82 7.66
3 10 0.4 1993.11 3.06 1796.22 3.07 1758.21 2.73 9.88 −0.49 2.16 11.07
4 10 0.5 1724.98 1.99 1597.84 2.11 1564.16 1.83 7.37 −6.30 2.15 13.51
5 10 0.6 1460.58 1.14 1436.74 1.28 1406.59 1.14 1.63 −11.84 2.14 10.98
6 10 0.7 1278.75 0.65 1252.87 0.74 1234.20 0.66 2.02 −14.73 1.51 10.81
7 10 0.8 1135.08 0.42 1112.77 0.43 1098.00 0.39 1.97 −3.61 1.34 9.30
8 20 0.2 4499.57 10.77 4356.71 10.54 4293.08 10.07 3.18 2.14 1.48 4.51
9 20 0.3 3929.71 7.02 3684.44 6.83 3624.45 6.37 6.24 2.71 1.66 6.73
10 20 0.4 3506.66 4.41 3182.39 4.40 3125.55 4.00 9.25 0.34 1.82 8.99
11 20 0.5 2923.17 2.27 2749.82 2.53 2701.88 2.20 5.93 −11.45 1.77 13.24
12 20 0.6 2490.94 1.19 2404.36 1.58 2362.09 1.30 3.48 −32.77 1.79 17.72
13 20 0.7 2187.03 0.78 2109.96 0.80 2075.87 0.80 3.52 −3.23 1.64 0.63
14 20 0.8 1963.75 0.47 1905.24 0.59 1877.06 0.53 2.98 −24.47 1.50 10.26

Avg 2407.12 3.22 2290.38 3.26 2251.36 3.01 4.52 −7.23 1.75 9.22

Table 5.4: Comparison of EEV, SP and WS solutions

that the SSP model tends to reject some known requests in order to achieve higher
service quality for future requests. On the other hand, when an extremely low or high
staffing level (θ = 0.2 or 0.8) is used, the average value of VSS is only around 3%.
In the case of a low staffing level, a large proportion of tasks have to be rejected and
very limited improvement can be obtained by utilizing stochastic information. In the
case of a high staffing level, there is enough resource to service both known and future
tasks, and using stochastic information to prepare for the future therefore becomes less
important. In contrast to the results of VSS, the EVPI is less sensitive to the value of
θ. Although the average value of EVPI over all instances conducted is only 1.75%, the
average rejection number of SP solutions is 9.22% higher than that of WS solutions. If
the penalty cost of rejecting tasks increases, the value of EVPI is expected to increase
accordingly. The results also indicate that better quality solutions with significantly less
number of rejections can be identified if the information about future tasks is known in
advance.

5.6 On-line Experiments

With the above off-line experiments confirming the advantage of exploiting stochastic
information about future requests, this section presents on-line experiments which assess
the performance of the SSP model within a simulation framework.

5.6.1 Simulation Setup

In the simulation, the task arrival is modelled by a Poisson process. To reduce the model
complexity, we assume that the arrival rate is not dependent on time, and thus the task
arrival rate of each demand zone is set to a constant value. The arrival rate is relevant
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to the peak period of the day (9am to 10 am), which corresponds to 19.26 requests per
hour within the entire Southampton area. Tasks are generated independently by demand
zones. The number |K| of technicians is set to a constant in each simulation run. The
initial locations of the technicians are randomly distributed across the Southampton
area, but following a similar geographical distribution of requests. Technicians are not
required to return to their home bases, and only travel between task locations within
each simulation run. The simulation model is driven by random instance sets, where
each set contains 1, 000 tasks generated based on the Poisson process. Each instance set
is split into a training set and a test set, where the former contains the first 100 tasks
and the latter includes the remaining 900 tasks. The simulation starts with a warm-
up period using the training set. Once the warm-up period is finished, the simulation
runs with the test set to collect the results. The outputs of the simulation include the
average solution value, the average response time, the average amount of time delay and
the overall rejection rate.

The simulation is run under a simple policy, which reoptimises the model whenever a
new task arrives. In each re-optimisation run, we interrupt the current plan and generate
a new plan to be carried out until the next decision epoch, where the plan is generated
by solving the corresponding offline problem using the DSP or SSP model. In addition
to these two models, we also develop a simple policy based on a naive greedy algorithm
(NGA). For a new task i, the NGA calculates the incremental cost of inserting it at the
end of the job list of every technician. If all the incremental costs are higher than the
rejection cost oi, task i is rejected; otherwise, it is assigned to the technician that gives
the minimum incremental cost. A similar heuristic has been used by Yang et al. (2004).

The DSP and SSP model are solved by CPLEX under a time limit of 20 seconds to keep
the overall optimization time manageable. If CPLEX is not able to solve the problem
within the time limit, we use the NGA policy to generate the new plan. The new
scheduling plan is carried out until the next decision epoch is reached.

5.6.2 Simulation Results

To assess the effect of the number of technicians on the system performance, we examine
six values of |K| displayed in Table 5.5. Each value of |K| is tested under ten simula-
tion runs using respectively the DSP, SSP and NGA policies, and report the average
solution. Columns titled Obj, Res, Tard, and RejR, display the average objective value,
the average response time, the average amount of time delay, and the rejection rate
respectively.

Comparing the results of the three policies, the SSP clearly outperforms the DSP and
the NGA, while the DSP performs better than the NGA, confirming that using optimal
solutions at each decision epoch yields a better performance than a naive heuristic,
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DSP Policy SSP Policy NGA Policy
Set |K| Obj ResT DelT RejRate Obj ResT DelT RejRate Obj ResT DelT RejRate

1 10 182.75 93.91 36.52 30.86 137.00 73.11 20.90 20.87 205.47 103.73 43.75 38.02
2 12 158.13 91.12 34.52 18.63 105.89 66.01 16.08 10.92 183.07 100.00 40.07 26.89
3 14 118.57 78.91 25.69 7.16 72.00 54.04 9.06 3.76 157.51 94.19 34.60 16.78
4 16 57.41 49.11 7.59 0.29 43.77 38.95 3.13 0.66 117.45 79.65 23.71 7.17
5 18 31.08 30.27 0.82 0.00 27.77 26.80 0.61 0.13 62.14 51.97 7.96 0.92
6 20 23.10 22.93 0.17 0.00 20.85 20.65 0.17 0.01 29.56 28.71 0.79 0.02

Avg 95.17 61.04 17.55 9.49 67.88 46.59 8.33 6.06 125.87 76.37 25.15 14.97

Table 5.5: Simulation results of using different re-optimisation policies

and future improvements are possible by exploiting stochastic information about future
request. In the off-line experiments (Table 5.3), the SSP model finds better solution
values than the DSP model, but it produces higher rejections numbers. In contrast, the
simulation experiments show that the SSP policy improves the solution values found by
the DSP, and also yields lower rejection rates. This indicates that the SSP policy has a
much better performance on making the acceptance/rejection decision from a long-term
perspective. With the increase on the number of technicians, the performance of each
policy improves. However, there is still a significant gap between the quality of solutions
identified by DSP and SSP policies.

5.6.3 Evaluating Weight Parameters via Simulation

To evaluate the effect of the weight parameter, we examine 16 different values of λ

varying from 0 to 2 with a step size of 0.2, each tested under ten simulation runs using
the SSP policy. The results are illustrated in the Figure 5.10, where Figure 5.10a shows
the changes of the average objective values against the value of λ, and the other three
present the values of the three components of the objective function.

The results suggest an inversely proportional relationship between the average response
time and λ, and between the average time delay and λ. This indicates that when the
objective function applies a large weight on the term concerning future tasks, the SSP
model tends to keep more resources for future customers in order to provide quicker
response once they materialise. However, this may lead to a high rejection rate of
currently known tasks. This can be seen in Figure 5.10d, where the average rejection
rate steadily increases as the value of λ is changed from 1 to 3. However, when λ ≤ 1,
the average rejection rate drops as the value of λ increases. This confirms that taking
future requests into account can lead to a better resource management, lowering the
overall rejection rate. Figure 5.10a shows that the average objective value drops quickly
as the value of λ increases from 0 to 1, decreases slowly until reaches the minimum value
at λ = 2.2, and then shows an upward trend for λ > 2.2 since the increase on the cost
of rejecting tasks is greater than the savings on the response time and the amount of
time delay. The setting λ = 2.2 provides the best trade-off between the service quality
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Figure 5.10: Evaluation of the weight factor with varying values

(response time and time delay) and the rejection rate. However, if the cost of rejecting
a task is increased, the optimal value of λ is expected to decrease accordingly.

5.6.4 Evaluating Route Size Constraints via Simulation

The off-line experiments in Section 5.5.3 indicates that the parameter α controls the
strength of route size constraints, and therefore affects the solution quality, which dete-
riorates when α takes small values such as 1 or 2. The results also suggest that it is not
necessary to use large values of α, since long routes that contain large number of tasks
are usually infeasible or less competitive due to the nature of the problem considered.
This section assesses the impact of route size constraints within a real-time environment.
We examine five values of α, which are shown in Table 5.6, and perform ten random
simulation runs for each value using the SSP policy, where the weight parameter λ is
set equal to 2.2. The average solution values are reported in Table 5.6.

The results show that the average rejection rate for instances with α = 1 is about 20%
higher than those with α ≥ 2. This can be explained by the fact that when α = 1,
the model assigns only one task to each technician at each decision epoch, and the rest
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α Obj ResT DelT RejRate
1 69.91 35.49 1.33 12.58
2 65.89 37.42 1.98 10.17
3 64.50 37.07 2.02 9.74
4 65.61 37.48 2.02 10.02
5 65.49 37.44 1.94 10.02
Average 66.28 36.98 1.86 10.51

Table 5.6: Running simulation with different values of α

of tasks that have not been scheduled are temporarily rejected. Once the deadline of
acceptance has passed and they have not been assigned to technicians, the tasks have
to be rejected permanently. Moreover, the simulation only reoptimises the scheduling
plan whenever a new task arrives. When technicians complete all tasks assigned, they
stay idle until the next reoptimisation epoch, at which point new tasks are assigned
to them. Thus, if each technician is assigned only one task at each decision epoch, the
technician is likely to wait a period of time before being assigned a new task again. Such
idle waiting can be avoided by performing another reoptimisation whenever a technician
completes the current task. Although α = 3 yields the best performance, the percentage
differences between the average solution value of α = 3 and those of α = 2, 4 and 5

are only about 2%. To assess the statistical significance between the solution values of
these four groups, we conduct an analysis of variance (ANOVA) based on the individual
results of the ten simulation runs. The p value of this test is 0.88, which indicates that
there is no significant difference between the solution values of α = 2, 3, 4 and 5. This is
opposed to what we observed in the off-line experiments, where the solutions of α = 2

and α = 3 are much worse than those of α ≥ 3. This indicates that, in contrast to what
is observed with off-line problems, allowing the model to construct long routes becomes
less important since the re-optimisation is frequently performed, especially for instances
with high degree of dynamism. Even if a long route is constructed at a decision epoch,
this route is likely to be modified at later epochs. Moreover, as our model takes future
requests into account, it tends to balance the workload between technicians and avoid
constructing long routes which contain large number of tasks.

5.7 Conclusion

This paper has presented ways in which stochastic information about future requests
can be taken into account in the dynamic workforce scheduling and routing problem. To
this end, a stochastic set-partitioning model is described and integrated with a sampling-
based approach to exploit the stochastic information about future requests. Two domi-
nance rules and a set of routing size constraints are proposed to enhance the performance
of the proposed model. The numerical tests show that the proposed model can handle
realistic instances in short computational times without the need to resort to heuristic
approaches. The effect of route size constraints is also investigated within a simulation
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framework. The results suggest that the effect of using tighter route size constrains is
comparable with that of using weaker constraints. This implies that for problems with
high degree of dynamism, applying route size constraints can significantly reduce the
computational effort without affecting the solution quality too much. The performance
of the proposed stochastic model is evaluated against a deterministic set-partitioning
model, and a naive greedy heuristic. The results demonstrate that the proposed model
provides significant improvement over the approaches that do not utilize stochastic in-
formation.





Chapter 6

Concluding Remarks

In this thesis, we have studied both static and dynamic versions of workforce scheduling
and routing problems (WSRPs) arising in the emergency response services. The first
section of this chapter summarizes the work of the thesis and reports the main research
findings and contributions. We then discuss research directions that may be considered
in future work.

6.1 Summary of the Work

This section is split into three subsections, each for one of the three objectives of our
study.

6.1.1 Objective One

The first objective is to develop a simulation model of real-time emergency vehicle dis-
patching and routing. The literature review (Chapter 2) suggests that discrete event
simulation (DES) is a suitable approach for modelling the problem at hand, for which
reason we chose to build a DES model based on a case study of a British company
providing emergency road services. The process of model development including data
collection, data analysis, distribution fittings, model design as well as model verification
and validation were described in detail in Chapter 3. The developed model was used to
identify key characteristics of the real system, as illustrated below:

1. Under the current system setting, the average response time is around 45 minutes,
the garage rate is about 15% and the average dispatching distance is about 13 km;

2. With different demand levels, the average response time varies between 20 minutes
and 110 minutes;
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3. Under the current staffing level, the system’s capacity is around 12,000 requests
per day. For any demands beyond this limit, the system has to fully rely on the
garage option.

In addition, the simulation model was used to evaluate the effect of the response time
limit TMax. We found that compared to the model performance of using TMax = 120

(default setting of the real system), using TMax = 90 can lead to around 10% improve-
ment on the average response time with the garage rate increases less than 1%. Finally,
we assessed the performance of two dispatching policies: quickest response (QR) and
shortest path (SP). The former reflects the dispatching policy used by the company,
while the latter is a naive greedy algorithm which always dispatches the closest vehicle.
The experimental results show that these two policies can lead to quite different solu-
tions. Compared to the QR policy, the SP policy can produce nearly 30% improvement
on the average dispatching distance, however, its average response time is 30% greater
than that of the QR policy. This indicates that a better policy that considers both the
response time and driving distance may be possible.

6.1.2 Objective Two

The objective two is to design algorithms that are efficient and effective in dealing with
the static WSRP. As our literature review reveals that the majority of existing algorithms
for WSRP are sophisticated and highly problem specific, we aimed to develop a fast and
simple heuristic algorithm based on iterated local search (ILS) framework. The proposed
ILS was also applied to solve the skill vehicle routing problem (Skill VRP). To the best
of our knowledge, this is the first ILS approach for WSRP and Skill VRP.

The proposed ILS algorithm consists of three main components: initial solution con-
struction, local search procedure and perturbation mechanism, which are combined into
a multi-start framework. The initial solution construction uses a greedy heuristic which
always inserts a task at the cheapest feasible position. The local search procedure in-
cludes an inter-route search operator and an intra-route search operator. We have ex-
amined different combinations of these two operators, and results show that the strategy
of applying the intra-route search as a post-optimisation procedure on the locally opti-
mal solution returned by the inter-route search gives the best performance in terms of
efficiency and effectiveness. Our perturbation mechanism uses a random cross exchange
operator, and the perturbation strength is controlled by an adaptive mechanism. More-
over, we proposed a simple mechanism for reducing the outsourcing cost, which was
confirmed to be useful and effective by the computational experiments.

The proposed ILS was evaluated against a mixed integer programming (MIP) model
and an existing adaptive larger neighbourhood search (ALNS) algorithm (Kovacs et al.,
2012) on benchmark instances with up to 100 tasks. Computational experiments indicate
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that the proposed algorithm can produce solutions that are within an average gap of
1% to the optimal values in at most 40 seconds on average for all instances tested here.
Compared to other heuristic approaches (Kovacs et al., 2012; Castillo-Salazar et al.,
2015) for the similar problems, the proposed ILS has a relatively simple structure and
a small number of parameters.

The proposed ILS algorithm was also applied to solve a set of Skill VRP instances, and
results show that our algorithm is able to find optimal or near-optimal solutions in less
than 0.5 seconds on average for all instances tested. Although the proposed algorithm
is designed for solving the workforce scheduling and routing problem, it can be easily
adapted to tackle other types of scheduling and routing problems.

6.1.3 Objective Three

The third objective is to investigate how to exploit stochastic information about fu-
ture requests in order to improve decision making for dynamic WSRP. To address this
problem, we developed a sampling-based model that incorporates stochastic knowledge
about future requests. The proposed model uses a two-stage set-partitioning frame-
work, where the first-stage is concerned with finding a set of feasible technician routes
covering known requests, while the second-stage estimates the effect of the same routes
with respect to future requests. To enhance the performance of the proposed model, we
introduced two dominance rules and a set of route size constraints. We have examined
alternative formations that are based on the vehicle-flow framework and the assignment
model. However, they are not as competitive as the set-partitioning based models as
indicated by the computational results.

The review of relevant studies shows that sampling-based algorithms are able to provide
high quality solutions, but the computational effort increases dramatically with the
number of scenarios, for which reason the existing studies have focused on the integration
of sampling-based approaches into heuristic algorithms. In contrast, we showed that our
model can handle realistic instances in short computational times without the need to
resort to heuristic approaches.

We also investigated the effect of route size constraints within a simulation framework.
The results suggest that the effect of using tighter route size constraints is comparable
with that of using weaker constraints. This implies that for problems with high degree
of dynamism, applying route size constraints can significantly reduce the computational
effort without affecting the solution quality too much.

Finally, the performance of the proposed stochastic set-partitioning model was evaluated
against a deterministic model and a naive greedy heuristic within a simulation frame-
work, and tested on realistic instances generated using probability distributions derived
from historical data. The computational results demonstrate that the proposed model
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provides significant improvement over the approaches that do not utilize stochastic in-
formation.

6.2 Limitations and Future Research

In chapter 3, we have presented a simulation model of real-time emergency vehicle
dispatching and routing, where the model is driven by two simple greedy algorithms.
Chapter 4 describes a fast and simple ILS algorithm that can find near-optimal solutions
for instances with up to 100 tasks within one minute.

A question that naturally arises as to whether the integration of the ILS algorithm into
the simulation model can lead to improvement. To address this question, we adapted the
ILS algorithm to a dispatching policy and tested it on a scale-down model that covers a
small area of the UK, since the ILS was not designed for problems with large sizes. The
results show that the ILS algorithm does not offer improvement over the simple greedy
heuristics. The reason is that the ILS algorithm was designed for static problems,
where routes are typically constructed to accommodate a relatively high number of
requests. Therefore, the ILS algorithm applies a variety of neighbourhood structures to
explore different request ordering. However, the simulation model deals with a problem
characterized by a high degree of dynamism, where each route often contains a small
number of requests. In such situations, the ILS algorithm becomes less useful as finding
the best request ordering is much easier. Therefore, the development of a more suitable
metaheuristic algorithm for the simulation model could be considered in the future.

The sampling-based model described in Chapter 5 was tested within a simplified sim-
ulation model, which covers only the Southampton area. The results show that the
proposed model is able to handle instances generated from the simplified simulation
model in short computational times without the need to resort to heuristic approaches.
However, the original simulation model (Chapter 3) considers a very large-scale prob-
lem (e.g., 10,000 requests per day and 2,500 vehicles), and it is also highly dynamic,
which requires decisions to be made within a short time period. Therefore, it would
require a new solution algorithm in order to apply the sampling-based model to the
large simulation model.

In this thesis, we have considered static and dynamic aspects of the WSRP and also
exploited the stochastic information about future requests. However, there still exist
many areas that we have not explored. For example, uncertainties in traffic conditions,
service times and skill requirements. Those uncertainties have been recognised as impor-
tant elements affecting the decision making in emergency response services. Therefore,
it would be useful to extend our model to consider the stochastic elements listed above.



Appendix A

A.1 Distribution Fitting for Preparation Duration

This section presents the results of fitting distributions to two samples Ŝ1 and Ŝ2. The
former refers to the data sample of preparation durations of tasks requiring recovery 1
services, while the latter consists of the duration data of tasks requiring recovery 2
services.
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Figure A.1: Empirical CDF of sample Ŝ1 against theoretical CDFs of estimated
distributions

In Figure A.1, the black line shows the empirical cumulative distribution function (CDF)
of sample Ŝ1, while the coloured lines display theoretical CDFs of estimated distributions.
Among all the parametric distributions considered, the gamma distribution seems to
provide the best fit to Ŝ1.
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Figure A.2: PDF of sample Ŝ1 with a gamma distribution fitted

Figure A.2 displays the probability density function (PDF) of Ŝ1, with a gamma distri-
bution (shape 1.73 and rate 0.08) fitted. It can be seen that the gamma distribution can
provide reasonable fit to Ŝ1. Thus, we choose to use the gamma distribution to model
the preparation duration of recovery 1 services.
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Figure A.3: Empirical CDF of sample Ŝ2 against theoretical CDFs of estimated
distributions

Figure A.3 shows the empirical CDF of sample Ŝ2 and theoretical CDFs of estimated
distributions. Among all the distribution considered, the gamma and log-normal distri-
bution appear to give good fit to Ŝ2. However, it is difficult to determine which one of
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them has a better fit. Thus, we use the QQ plot to compare the fitting performance of
the gamma and log-normal distributions to Ŝ2. The plot in Figure A.4 indicates that
the log-normal has a better fit than the gamma distribution.
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Figure A.4: QQ plot of sample Ŝ2 against the gamma and log-normal distribu-
tion estimated

Figure A.5 presents the PDF of Ŝ2, fitting with a log-normal distribution, of which
the parameters are estimated to be 2.58 and 0.65. It can be seen that the log-normal
distribution is able to give a reasonable fit to Ŝ2. Thus, we use this distribution to model
the preparation duration of recovery 2 services.
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Figure A.5: PDF of sample Ŝ2 with a log-normal distribution fitted
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A.2 Distribution Fitting for Recovery Distance

This section presents the results of fitting distributions to the sample D̂2, which consists
of the distance data of tasks requiring recovery 2 services.

Figure A.6 shows the empirical CDF of D̂2 and theoretical CDFs of estimated distri-
butions. It can be seen that the lines of the gamma and weibull distribution are close
to the one representing the empirical CDF of D̂2, and they have similar shapes. Apart
from these two distributions, the rest do not present a good fit to D̄2.
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Figure A.6: Empirical CDF of sample D̄2 against theoretical CDFs of estimated
distributions

We use the QQ plot to compare the fitting of the gamma and weibull distribution to
sample D̄2. The figure shows that the points from both distributions are fairly close to
the straight line, except in the extreme tails. This means that the proposed distributions
have higher probability of having large values than the actual distribution of D̄2. Since
there is no suitable parametric distribution for D̄2, we choose to construct an empirical
distribution, which is shown in Figure A.8.
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Figure A.7: QQ plot of sample D̄2 against the gamma and weibull distribution
estimated
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Figure A.8: Probability distribution of the empirical distribution fitted for D̄2
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A.3 Results of Determining the Warm-Up Period

This appendix contains additional results from the experiments of determining the warm-
up period.
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Figure A.9: Time-series of garage percentage from ten replications
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Figure A.10: Time-series of average driving distance from ten replications
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A.4 Results of Selecting the Number of Replications

This appendix contains additional results from the experiments of selecting the number
of replications.
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Figure A.11: Cumulative mean of garage percentage with 95% confidence inter-
vals
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Figure A.12: Cumulative mean of average driving distance with 95% confidence
intervals
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B.1 Move Evaluation

This section describes the move evaluation method proposed by Vidal et al. (2013b),
which can be applied to compute the violations of duration and time window constraints
of the routes in amortized O(1) time for most classical neighbourhood operators. Their
method was inspired by the following observation: any neighbourhood move can be
viewed as a separation of routes into subsequences, which are then concatenated into
new routes. Therefore, the proposed procedure requires a preprocessing phase to develop
the following data for each subsequence σ, containing visits to depots or customers:

– The accumulated distance C(σ);

– The minimum duration D(σ);

– The minimum time-warp use TW (σ), which measures the time window violation
in our study;

– The earliest time E(σ) and the latest time L(σ) to visit the first vertex allowing a
schedule with minimum duration and minimum time-warp use.

For a sequence σ containing a single vertex i, the above data can be easily obtained as
C(σ) = 0, D(σ) = di, TW (σ) = 0, E(σ) = ei and L(σ) = li. Then, we can compute the
same data on concatenations of sequences based on the following proposition:

Proposition Concatenation of two sequences (Vidal et al., 2013b). Let σ = (i, ..., j)

and σ′ = (i′, ..., j′) be two subsequences of visits. The concatenated subsequence σ ⊕ σ′
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is characterised by the following data:

D(σ ⊕ σ′) = D(σ) +D(σ′) + tji′ +∆WT (B.1)

TW (σ ⊕ σ′) = TW (σ) + TW (σ′) + ∆TW (B.2)

E(σ ⊕ σ′) = max{E(σ′)−∆, E(σ)} −∆WT (B.3)

L(σ ⊕ σ′) = min{L(σ′)−∆, L(σ)}+∆TW (B.4)

C(σ ⊕ σ′) = C(σ) + C(σ′) + cji′ (B.5)

where ∆ = D(σ)−TW (σ)+tji′ , ∆WT =max{E(σ′)−∆−L(σ), 0} and ∆TW =max{E(σ)+

∆− L(σ′), 0}.

With the above proposition and the relevant data developed in the preprocessing phase,
we can evaluate the costs, as well as the violations of duration and time window con-
straints of the new routes generated by the neighbourhood moves in constant time.
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C.1 Deterministic Vehicle Flow Formulation (DVF)

This section presents a deterministic vehicle flow (DVF) model proposed for the of-
fline WSRP. We define the problem on a complete graph G = (V,A), where V =

{0, 1, ..., n, n+1} is a set of vertices and A = {(i, j) : i, j ∈ V, i ̸= j} is a set of arcs. The
vertices 0 and n+1 are two dummy depots, and C = V \ {0, n+1} represents the set of
vertices that each has a unique task. Depending on the context, we refer to a task i or
a vertex i for any i ∈ C. All feasible routes are defined by starting at the dummy depot
0, visiting a subset of customer vertices and ending at the dummy depot n+ 1. Let tij ,
∀i, j ∈ C be the travel time between task vertices i and j. Since each route actually
starts at the technician’s current location, the travel time from the dummy depot 0

to any vertex j ∈ C is technician-dependent, denoted by tk0j . For arcs that ends at the
dummy depot n+1, the associated travel time are set to 0. Figure C.1 shows an example
of two feasible routes. Vertices 1 and 6 are the two dummy depots and vertices {1,..,5}
represent 5 different tasks. The two solid lines represent two actual routes carried out
by two technicians, where one route starts from the location of technician 1 and visits
tasks 1 and 4, and the other starts from the location of technician 2 and visits tasks 2,
3 and 5. However, both routes are assumed to start at the dummy depot 1 and end at
the dummy depot 2, as indicated by dotted lines. Thus, the travel times of arcs (0,1)
and (0,2) are set to the travel times from technician 1 to vertex 1 and technician 2 to
vertex 2, respectively. The travel times of arcs ending at vertex 6 are set to 0. Finally,
we introduce a binary parameter qki , ∀i ∈ C, ∀k ∈ K to model the skill compatibility
between technician k and task i, where qki = 1 if technician k is qualified to perform
task i, and 0 otherwise.

137



138 Appendix C

Figure C.1: Illustration of feasible routes

The problem can be formulated as a MIP model with following binary variables:

xkij =

1 if technician k travels directly from vertex i to j,

0 otherwise,
∀k ∈ K, i, j ∈ V, i ̸= j,

zi =

1 if task i is rejected,

0 otherwise,
∀i ∈ C,

and non-negative continuous variables bi, wi and ui, ∀i ∈ C, that denote respectively
the time at which service commences, the response time and the amount of time delay
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at task i. The mathematical model is presented as follows:

minimize
∑
i∈C

wi + β
∑
i∈C

ui+
∑
i∈C

oizi (C.1)

subject to:
∑
k∈K

∑
j∈V \{0}

xkij + zi = 1 ∀i ∈ C (C.2)

∑
j∈V

xkij ≤ qki ∀k ∈ K, ∀i ∈ C (C.3)

∑
i∈C

∑
j∈V \{0}

xkij ≤ α ∀k ∈ K (C.4)

∑
j∈V \{0}

xk0j = 1 ∀k ∈ K (C.5)

∑
i∈V \{n+1}

xki,n+1 = 1 ∀k ∈ K (C.6)

∑
i∈V \{n+1}

xkih −
∑

j∈V \{0}

xkhj = 0 ∀k ∈ K, ∀h ∈ C (C.7)

ek0 + tk0j ≤ bj +Mk
0j(1− xk0j) ∀k ∈ K, ∀j ∈ C (C.8)

bi + di + tij ≤ bj +Mij(1− xkij) ∀k ∈ K, ∀i, j ∈ C (C.9)

bi ≥ ei ∀i ∈ C (C.10)

wi ≥ bi − ei ∀i ∈ C (C.11)

ui ≥ bi − li ∀i ∈ C (C.12)

ui ≤ UMAX ∀i ∈ C (C.13)

ui ≥ 0 ∀i ∈ C (C.14)

zi = 0 ∀i ∈ C ′ (C.15)

xkij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A (C.16)

zi ∈ {0, 1} ∀i ∈ C. (C.17)

The objective function (C.1) minimizes the total cost comprising the response times,
delay penalty, and cost of rejecting tasks. Constraints (C.2) impose that each task is
either visited exactly once by a technician or rejected. Constraints (C.3) ensure that the
tasks can only be carried out by technicians satisfying the skill requirements, and (C.4)
are the route size constraints. Constraints (C.5) and (C.6) enforce that each technician
departs from the dummy depot 0 and returns to the dummy depot n + 1. Constraints
(C.7) are the typical flow conservation equations. Constraints (C.8) and (C.9) set the
time variables bi, where Mk

0j and Mij are large constants which guarantee the schedule
feasibility with respect to time considerations when xk0j = 0 and xkij = 0 respectively.
Constraints (C.10), (C.11), (C.12), (C.13) and (C.14) specify the ranges of variables bi,
wi and ui. Constraints (C.15) prevent rejection of tasks in the subset C ′. Constraints
(C.16) and (C.17) represent the binary restrictions on variables xkij and zi.
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The large constants Mk
0j can be replaced by max{ek0 + tk0j − ej , 0}, and constraints (C.8)

need only be imposed for arcs with Mk
0j > 0, because when max{ek0 + tk0j − ej , 0} = 0,

constraints (C.8) can be written as ek0 + tk0j < bj , which are satisfied for any values of bj
and xk0j since ek0 + tk0j ≤ ej and ej ≤ bj . In terms of large constants Mij , they can be
replaced by max{li +UMAX + di + tij − ej , 0}, and we only need to consider constraints
(C.9) for arcs having Mij > 0, because when Mij = 0, constraints (C.9) are equivalent
to bi+di+ tij ≤ bj , and they are always satisfied because of inequalities bi ≤ li+UMAX ,
li + UMAX + di + tij ≤ ej and ej ≤ bj .

C.2 Comparison of DVF and DSP Model

The comparison of the DVF and DSP models are conducted using instances containing
up to 50 tasks. For each instance, we test three resource ratios, namely θ = {0.2, 0.5, 0.8},
which correspond to low, median and high staffing level. The results are displayed in
Table C.1. In addition to the columns already described in Section ??, we use columns
titled Cons and IG to show, for each instance, the number of constraints and the in-
tegrality gap (the percentage gaps of the best integer solutions to the linear relaxation
solutions).

DVF Model DSP Model
Instance |C| θ Var Cons Obj IG T(s) Var Cons Obj IG T(s)
1 10 0.2 263 286 1812.37 0.00 0.38 55 12 1812.37 0.00 0.00
2 10 0.5 596 625 1011.24 0.00 5.48 125 15 1011.24 0.00 0.00
3 10 0.8 929 964 713.05 0.00 19.38 208 18 713.05 0.00 0.00
4 20 0.2 1765 1812 3440.51 56.46 3600.00 829 24 3440.51 0.00 0.02
5 20 0.5 4291 4350 1486.19 67.14 3600.00 3669 30 1471.23 0.00 0.05
6 20 0.8 6817 6888 1147.31 68.53 3600.00 5843 36 1139.79 0.00 0.03
7 30 0.2 5707 5778 5065.19 63.36 3600.00 3329 36 5014.01 0.00 0.08
8 30 0.5 14086 14175 2240.27 98.72 3600.00 13914 45 1759.71 0.00 0.47
9 30 0.8 22465 22572 1381.11 99.61 3600.00 20142 54 1212.66 0.00 0.11
10 40 0.2 13289 13384 7320.34 66.95 3600.00 4669 48 6722.15 0.00 0.06
11 40 0.5 32981 33100 5212.66 99.69 3600.00 11849 60 2957.06 0.00 0.25
12 40 0.8 52673 52816 3559.33 99.76 3600.00 19289 72 2022.16 0.00 0.11
13 50 0.2 25711 25830 8964.14 66.48 3600.00 49616 60 7052.32 0.00 0.83
14 50 0.5 63976 64125 3497.13 100.00 3600.00 117956 75 2666.54 0.00 1.15
15 50 0.8 102241 102420 5506.91 100.00 3600.00 212368 90 1983.97 0.00 1.23
Average 23186.00 23275.00 3490.52 65.78 2881.68 30924.07 45.00 2731.92 0.00 0.29

Table C.1: The comparison of the DVF and DSP models

Of the 15 instances, the DVF model is only able to find optimal solutions for three,
while the DSP model can solve all instances to optimality using an average time of 0.29
seconds. For instance 4, both models find exactly the same solution value, however the
DVF model is not able to prove the optimality within the given time limit. Except large
instances containing 50 tasks, the numbers of variables of the DSP model are much
less than that of the DVF model. This implies that the hard time window constraints
(the amount of time delay must be less than UMAX) and the route size constraints
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significantly restrict the number of feasible routes. Moreover, the DSP model has only
a very small number of constraints, which is equal to the number of tasks |C| plus the
number of technicians |K|. The number of constraints of the DVF model is similar to the
number of variables, and they increase significantly with the size of instances. Therefore,
the DSP model clearly outperforms the DVF model for the problem considered in this
paper.

C.3 Stochastic Set-Partitioning and Assignment Model

In addition to the parameters and variables already defined for the DSP model, we
introduce a binary parameter qrj , ∀r ∈ R, j ∈ C+ to describe the skill compatibility
between technician route r and a future task j, where qrj = 1 if the associated technician
of route r is qualified to perform task j, and 0 otherwise. Moreover, we define the
following binary variables:

yrj =

1 if future task j is assigned to route r,

0 otherwise,
∀j ∈ C+, r ∈ R;

z+j =

1 if future task j is rejected,

0 otherwise,
∀j ∈ C+.

and the continuous variables w+
j and u+j , ∀j ∈ C+, that denote respectively the response

time and the amount of time delay at a future task j.
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The proposed formulation is presented below:

minimize
∑
r∈R

(wr + βur)xr +
∑
i∈C

oizi+λ
∑
s∈S

ps(
∑
j∈C+

s

w+
j + β′

∑
j∈C+

s

u+j +
∑
j∈C+

s

o′jz
+
j )

(C.18)

subject to: (5.6)–(5.10) and∑
j∈C+

s

yrj ≤ xr ∀r ∈ R, ∀s ∈ S (C.19)

∑
j∈C+

s

yrj ≤ qrj ∀r ∈ R, ∀s ∈ S (C.20)

∑
r∈R

yrj + zj = 1 ∀j ∈ C+ (C.21)

w+
j ≥ (cr + trj − ej)yrj ∀j ∈ C+, ∀r ∈ R (C.22)

w+
j ≥ trjyrj ∀j ∈ C+, ∀r ∈ R (C.23)

u+j ≥ (cr + trj − lj)yrj ∀j ∈ C+, ∀r ∈ R (C.24)

u+j ≥ (ej + trj − lj)yrj ∀j ∈ C+, ∀r ∈ R (C.25)

u+j ≥ 0 ∀j ∈ C+ (C.26)

z+j ∈ {0, 1} ∀j ∈ C+ (C.27)

yrj ∈ {0, 1} ∀r ∈ R, ∀j ∈ C+ (C.28)

The objective function (C.18) minimises the first-stage cost plus the expected second-
stage cost weighted by parameter λ. Constraints (5.6) to (5.10) are taken from the DSP
model. Constraints (C.19) guarantee that a future task can be assigned to a route only
if the route is selected in the first-stage, while (C.20) ensure that a future task can only
be assigned to a technician route satisfying the skill requirements. Constraints (C.21)
impose that each future task is either assigned to a route or rejected. Constraints (C.22),
(C.23), (C.24), (C.25) and (C.26) set the lower bounds of variables wj and uj , ∀j ∈ C+.
Constraints (C.27) and (C.28) are the binary restrictions on the decision variables.

C.3.1 Comparison of SSPA and SSP Model

The comparison of the SSPA and SSP model is performed based on the instances
containing up to 30 tasks. Each instance is solved with a set of scenarios S, where
|S| ∈ {1, 5, 10, 15, 20}. The resource ratio is set to 0.5, which corresponds to a median
staffing level. The results are presented in Table C.2.

Of the 15 instances tested, the SSPA model is only able to find optimal solution for one
instance within the one hour time limit, while the SSP model can solve all instances to
optimality using an average computational time of 11.50 seconds. Moreover, the SPP
model has significantly less numbers of variables and constraints than those of the SSPA
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SSPA Model SSP Model
No. |C| |S| Var Cons Obj IG T(S) Var Cons Obj IG T(S)
1 10 1 2606 4755 1314.19 0.00 64.62 1498 450 1314.19 0.00 0.03
2 10 5 11266 23715 1340.69 11.62 3600.00 5817 2190 1340.69 0.00 0.77
3 10 10 22091 47415 1422.89 18.42 3600.00 9312 4365 1422.89 0.00 0.56
4 10 15 32916 71115 1413.15 19.59 3600.00 14456 6540 1408.86 0.00 0.62
5 10 20 43741 94815 1402.74 24.08 3600.00 20315 8715 1371.58 0.00 1.01
6 20 1 19235 36674 2648.12 27.50 3600.00 5582 1784 2612.18 0.00 0.13
7 20 5 89115 183250 2943.90 38.81 3600.00 23451 8800 2718.64 0.00 1.31
8 20 10 176465 366470 2767.74 36.14 3600.00 52242 17570 2635.49 0.00 2.17
9 20 15 263815 549690 3510.87 48.71 3600.00 72041 26340 2665.13 0.00 4.09
10 20 20 351165 732910 3825.91 52.68 3600.00 95650 35110 2669.03 0.00 6.41
11 30 1 127420 246804 4577.22 33.20 3600.00 46280 8019 4341.94 0.00 0.94
12 30 5 605140 1233840 5517.91 43.42 3600.00 181119 39915 4415.67 0.00 5.49
13 30 10 1202290 2467635 13500.00 100.00 3600.00 341313 79785 4396.10 0.00 13.62
14 30 15 1799440 3701430 13500.00 100.00 3600.00 520068 119655 4396.99 0.00 31.95
15 30 20 2396590 4935225 13500.00 100.00 3600.00 689695 159525 4406.63 0.00 103.37
Avg. 476219.67 979716.20 4879.02 43.61 3364.31 138589.27 34584.20 2807.73 0.00 11.50

Table C.2: The comparison of the SSPA and SSP Model

model. Therefore, the SSP model clearly outperforms the SSPA model in terms of the
solution quality and computational speed.
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C.4 Pseudo-code of Test Instance Generation

Algorithm 4 Construct an instance containing N tasks
1: Input: Set Z of demand zones, each j ∈ Z defined by the coordinates of its bottom-

left corner (Xj , Yj) and an associated density factor Dj .
2: procedure Generate random tasks
3: Initialize the arrival rates: ā← N and aj ← Dj ā, j ∈ Z

4: TStart ← 0, TLimit ← 1 and LS ← empty task list
5: while |LS| < N do
6: for (each demand zone j, j ∈ Z) do
7: TCur ← 0

8: while (TCur < TLimit) do
9: t← generate_exponential_distribution (aj)

10: TCur ← TCur + t

11: if (TCur < TLimit) then
12: Create a task i with time window ei = TStart+TCur, li = ei+T Tar

13: rand1, rand2 ← generate_random [0, 10]

14: Coordinates: xi = Xj + rand1 and yi = Yj + rand2

15: Service duration: di ← generate_empirical_distribution
16: Insert task i to LS

17: end if
18: end while
19: end for
20: Sort list LS in ascending order by the earliest times of tasks
21: TStart ← the arrival time of the last task on LS

22: end while
23: if (|LS| > N) then
24: Remove the last |LS| −N tasks from the task list LS

25: end if
26: return LS

27: end procedure
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