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a b s t r a c t 

Drift-diffusion models that account for the motion of ion vacancies and electronic charge 

carriers are important tools for explaining the behaviour, and guiding the development, 

of metal halide perovskite solar cells. Computing numerical solutions to such models in 

realistic parameter regimes, where the short Debye lengths give rise to boundary lay- 

ers in which the solution varies extremely rapidly, is challenging. Two suitable numerical 

methods, that can effectively cope with the spatial stiffness inherent to such problems, are 

presented and contrasted (a finite element scheme and a finite difference scheme). Both 

schemes are based on an appropriate choice of non-uniform spatial grid that allows the 

solution to be computed accurately in the boundary layers. An adaptive time step is em- 

ployed in order to combat a second source of stiffness, due to the disparity in timescales 

between the motion of the ion vacancies and electronic charge carriers. It is found that 

the finite element scheme provides significantly higher accuracy, in a given compute time, 

than both the finite difference scheme and some previously used alternatives (Chebfun 

and pdepe ). An example transient sweep of a current-voltage curve for realistic parame- 

ter values can be computed using this finite element scheme in only a few seconds on a 

standard desktop computer. 

© 2018 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

1. Introduction 

Recent rapid improvements in power conversion efficiency have brought metal halide perovskite solar cells (PSCs) to the

forefront of the emerging thin-film photovoltaic technologies. Efficiencies in excess of 20% [1,2] , which are comparable to

those of standard crystalline silicon devices, have been achieved using perovskite materials as absorber layers in thin film

architectures. This high performance, together with their relatively low cost of manufacture, mean that the continued devel-

opment of PSCs is an extremely active area of research. Current research aims not only to further improve their efficiency

but also to extend device lifetimes. Reviews of the field have been given in [3–7] . 
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Fig. 1. Sketch of a planar PSC showing the structure of the conduction (blue solid lines) and valence (red dashed lines) bands and the flow of electrons 

and holes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Planar PSC architectures are formed by a perovskite absorber layer sandwiched between an electron transport layer (ETL)

and a hole transport layer (HTL), see Fig. 1 . The most commonly used perovskite absorbing material is methylammonium

lead tri-iodide (CH 3 NH 3 PbI 3 ) [8] , however, recently other mixed halide formulations (in which some of the iodide ions are

substituted by other halides) and mixed cation formulations (in which the methylammonium cation is fully or partially re-

placed with e.g. formamidinium and/or cesium) have also been successfully employed [2,9,10] . Numerous different materials

have been used as ETLs and HTLs but common choices are titania (TiO 2 ) for the former and spiro-MeOTAD for the latter. 

Under illumination, incident photons with energies above the band gap are absorbed in the perovskite layer generating

weakly bound excitons (binding energy ∼ 50 meV [11] ). These excitons readily dissociate into a free electron in the con-

duction band and a hole in the valence band which then move under the influences of both thermally-induced diffusion

and electronically-induced drift. The transport layer materials are chosen such that the conduction band in the HTL is above

that in the perovskite and the valence band in the ETL is below that in the perovskite, resulting in energy barriers that

prevent the entry of holes into the ETL and electrons into the HTL. The differences in the band energies of the different

semiconductors also lead to the formation of a built-in field in the perovskite which drives electrons towards the ETL and

holes towards the HTL. A cartoon of this process is shown in Fig. 1 . 

One notable peculiarity of PSCs is their long timescale transient behaviour occurring on the order of tens of seconds. This

is observed both in current transients [12,13] and in current-voltage (J-V) curves, a phenomenon which has been termed

hysteresis by the field [13,14] . Initially, three possible explanations for the slow (relative to charge carrier motion) dynamics

were postulated [14] , namely: (i) the formation of ferroelectric domains (ii) large-scale trapping of electrons, and (iii) mobile

ions. However, there is a growing consensus that the only mechanism that offers a coherent explanation of the experimental

data is the slow motion of positively charged anion vacancies [1,15] . More recently, very long timescale reversible transients

in the efficiency of PSCs have been observed over periods of several hours, which have been attributed to the motion of

cation vacancies [16] . 

A range of approaches exist to modelling PSC behaviour that extend from fundamental atomistic density functional the-

ory (DFT) calculations (e.g. [17] ) to equivalent circuit device models (e.g. [18] ). High computational costs mean that DFT can

only be applied to a few atoms and over extremely short timescales. At the other extreme, equivalent circuit models, which

are very straightforward to solve, are hard to connect directly to the device physics. An intermediate path, which leads to a

computationally tractable model that can be directly interpreted in terms of device physics, is given by charge transport, or

equivalently drift-diffusion, modelling. Notably this approach allows for parameters obtained from DFT calculations on the

perovskite structure to be incorporated into the model [15] . It has also been used in a variety of other solar cell applications,

for example in organics [19–21] . 

Initially the importance of ion motion in PSCs was not fully appreciated and as a consequence charge transport models

that treated only electron and hole transport were formulated [22,23] . Subsequently models incorporating ion motion were

investigated. The additional physics in these revised models has necessitated that new methods for their solution have

been developed. Numerical approaches were taken in [24–27] while combined asymptotic/numeric methods were used by

Richardson et al. [12,15,16,28] . To date, numerical approaches have only been able to obtain solutions to models that have

been simplified. The solution methods in [24,27] rely on decoupling the relatively slow ion motion from the charge carrier

transport. Ion motion is also decoupled from that of the carriers in [26] , in which ion accumulation is incorporated in the

form of narrow layers of uniform charge adjacent to each interface within the perovskite. In [25] , approximations are made

to the physical system that is being modelled, including constant band energies across the three different semiconductors

and diffuse interface regions ( ∼ 10 nm wide) across which interface recombination is applied. Approximations have been

used because the incorporation of realistic densities of ion vacancies (as high as 10 19 cm 

−3 [29] ) leads to a model that

is computationally challenging to solve owing to (i) narrow Debye layers across which rapid changes in solution occur, (ii)

very large changes in the magnitude of the solution across the device and (iii) the large disparity between the timescales for

ion vacancy motion and electron and hole transport. Of the aforementioned works on charge transport modelling of PSCs,

only [12,15,28] manage to obtain solutions in physically relevant parameter regimes. In these studies, the analysis relies on

asymptotic approximations, including the assumption that the carrier densities remain much smaller than the ion vacancy
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density during the relevant experimental procedure. Whilst these approximations are well-justified in most scenarios, and

lead to accurate approximate solutions, a numerical treatment of the full system of equations, that is capable of furnishing

solutions across all relevant timescales and operating regimes without simplification, is highly desirable. Motivated by the

absence of such a method in the literature, the aim of this work is to present a numerical scheme capable of obtaining

accurate solutions to a fully coupled charge transport model of a PSC. 

The work is set out as follows. In the next section, we outline the charge transport model, non-dimensionalise and give

estimates for the sizes of the dimensionless parameters. In Section 3 , we describe the spatial discretisation and implemen-

tation of our finite element scheme in MATLAB [30] . Then in Section 4 , the equivalent description is given for our finite

difference scheme whose implementation (also in MATLAB) uses the Advanpix Multi-Precision Toolbox [31] . Results ob-

tained using this scheme were previously used for verification of our asymptotic method [28] . In Section 5 , we demonstrate

the pointwise convergence of the two methods and the importance of the spatial grid on both accuracy and computation

time. We also benchmark the two schemes against MATLAB’s built-in solver pdepe , previously used on a uniform grid [25] .

We also briefly discuss how the various approaches compare to our attempts to use spectral methods [15] . In Section 6 , we

compare solutions obtained using the finite element scheme and the asymptotic approach developed in [28,32] for some

experimentally motivated test cases. Finally, in Section 7 , we present our conclusions. 

2. The charge transport model 

We consider a model for a planar PSC consisting of a perovskite absorber layer sandwiched between highly doped elec-

tron and hole transport layers. As in [15] , we assume the doping, and the resulting high conductivity of the transport layers,

allows us to treat these layers as ‘quasi-metals’ through which the electric potential is uniform and equal to that on their

respective contacts. In turn this leads to a single-layer model in which all the relevant physics takes place within the per-

ovskite layer. Notably, the numerical scheme that we develop for the single-layer model can easily be extended to more

realistic multi-layer models. For example, a three-layer model that incorporates charge carrier dynamics in the electron and

hole transport layers. An investigation of this three-layer model will be the subject of future work. 

2.1. The single layer model equations 

The key variables in the problem are time, t ; the perpendicular distance from the interface of the perovskite layer with

the ETL, x ; the mobile anion vacancy density, P ; the free-electron density, n ; the hole density, p ; the electric field (in the

x -direction), E ; the electric potential, φ; the anion vacancy flux (in the x -direction), F P ; and the electron and hole current

densities, j n and j p , respectively. The key physical processes are the motion, generation and recombination of mobile charge

carriers (electrons and holes) and their interaction with the much less mobile anion vacancies and a uniformly distributed

stationary cation vacancy distribution. In a perovskite layer of width b, the conservation of holes and free-electrons is de-

scribed by 

∂ p 

∂t 
+ 

1 

q 

∂ j p 

∂x 
= G (x ) − R (n, p) , where j p = −qD p 

(
∂ p 

∂x 
+ 

p 

V T 

∂φ

∂x 

)
, (1)

∂n 

∂t 
− 1 

q 

∂ j n 

∂x 
= G (x ) − R (n, p) , where j n = qD n 

(
∂n 

∂x 
− n 

V T 

∂φ

∂x 

)
, (2)

where q the elementary charge, G ( x ) is the photo-generation rate; R ( n, p ) is the bulk recombination and thermal generation

rate (henceforth abbreviated to recombination rate); D p and D n are the hole and free-electron diffusivities, respectively; and,

V T the thermal voltage (i.e. k B T / q where T the absolute temperature). The conservation of positively-charged anion vacancies

takes the form 

∂P 

∂t 
+ 

∂ F P 

∂x 
= 0 , where F P = −D + 

(
∂P 

∂x 
+ 

P 

V T 

∂φ

∂x 

)
, (3)

where D + is the anion vacancy diffusion coefficient. These conservation equations couple to Poisson’s equation: 

∂E 

∂x 
= 

q 

ε 
( P − N 0 + p − n ) , where E = −∂φ

∂x 
, (4)

in which N 0 is the uniform density of cation vacancies (and, in order that the material obeys global charge neutrality, is also

the average anion vacancy density) and ε is the permittivity of the perovskite. 

2.2. Boundary and initial conditions 

At the interfaces with the ETL (on x = 0 ) and the HTL (on x = b) we require that there is no flux of anion vacancies and

that the potential is specified (and equal to that in the adjacent contact). In addition, n b , the free electron concentration

on x = 0 , is determined by the band energy offsets with the ETL; p , the hole concentration on x = b, is determined by the
b 
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band energy offsets with the HTL; and, j p | x =0 and j n | x = b are determined by R l and R r , the rates of surface recombination on

these interfaces. Hence, the boundary conditions read 

F P | x =0 = 0 , φ| x =0 = 

V bi − V ap 

2 

, n | x =0 = n b , j p | x =0 = −qR l (p) , (5) 

F P | x = b = 0 , φ| x = b = −V bi − V ap 

2 

, p| x = b = p b , j n | x = b = −qR r (n ) , (6) 

where V ap is the applied voltage and V bi is the built-in potential. The problem is closed by initial conditions for the electron,

hole and anion vacancy concentrations which we denote: 

n | t=0 = n init (x ) , p| t=0 = p init (x ) , P | t=0 = P init (x ) . (7)

2.3. Non-dimensionalisation 

In order to identify the origins of the numerical stiffness of the problem, we non-dimensionalise the problem as follows. 

x = bx ∗, t = τion t 
∗, p = �0 p 

∗, n = �0 n 

∗, 

j p = qF ph j 
p ∗, j n = qF ph j 

n ∗ P = N 0 P 
∗, F P = 

D + N 0 

b 
F P 

∗
, 

φ = V T φ
∗, E = 

V T 

b 
E ∗, V ap = V T �

∗, V bi = V T �
∗
bi , 

G = 

F ph 

b 
G 

∗, R = 

F ph 

b 
R 

∗, R l = F ph R 

∗
l , R r = F ph R 

∗
r . (8) 

Here, F ph is the incident photon flux and we take �0 to be the characteristic carrier density required to remove the photo-

generated charge in the absence of an electric field and τ ion to be the characteristic timescale for ion motion, defined by 

�0 = 

F ph b 

ˆ D 

, τion = 

L d b 

D + 
, and L d = 

(
εV T 

qN 0 

)1 / 2 

, (9) 

where ˆ D is a typical carrier diffusivity and L d is the Debye length calculated based on the most populous charged species,

which in this instance is the ion vacancies. The non-dimensionalisation gives rise to the following dimensionless quantities

that characterise the system 

ν = 

D + b 
ˆ D L d 

, κp = 

D p 

ˆ D 

, κn = 

D n 

ˆ D 

, λ = 

L d 
b 

, 

δ = 

�0 

N 0 

, n̄ = 

n b 

�0 

, p̄ = 

p b 
�0 

, �bi = 

V bi 

V T 

. (10) 

The interpretation of these parameters is self-evident from their definition except perhaps for ν , which is a ratio of the

timescales for electronic and ionic motion. 

2.4. The non-dimensional model 

On dropping the star notation, the dimensionless model consists of the three conservation equations 

∂P 

∂t 
+ λ

∂ F P 

∂x 
= 0 , where F P = −

(
∂P 

∂x 
− P E 

)
, (11) 

ν
∂n 

∂t 
= 

∂ j n 

∂x 
+ G (x ) − R (n, p) , where j n = κn 

(
∂n 

∂x 
+ nE 

)
, (12) 

ν
∂ p 

∂t 
= −∂ j p 

∂x 
+ G (x ) − R (n, p) , where j p = −κp 

(
∂ p 

∂x 
− pE 

)
, (13) 

in which G ( x ) and R ( n, p ) represent rates of charge carrier generation and recombination, respectively, coupled to Poisson’s

equation 

∂E 

∂x 
= 

1 

λ2 
( P − 1 + δ( p − n ) ) , where E = −∂φ

∂x 
. (14) 

The term (P − 1 + δ( p − n ) ) , in the equation above, is the dimensionless charge density and comprises contributions from

anion vacancies, stationary cation vacancies, holes and electrons, respectively. In practice, the three dimensionless parame-

ters λ (the ratio of the Debye length L d to the the perovskite layer width), ν (the ratio of the timescales for charge carrier

motion to that for ion vacancy motion) and δ (the ratio of typical carrier concentration to typical vacancy concentration)

are all very small, see Eq. (18) . 
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Eqs. (11) –(14) hold within the perovskite layer which is bounded by its interface with the ETL, on x = 0 , and its interface

with the HTL, on x = 1 . The non-dimensional boundary and initial conditions are 

F P | x =0 = 0 , φ| x =0 = 

�bi − �(t) 

2 

, n | x =0 = n̄ , j p | x =0 = −R l (p) , (15)

F P | x =1 = 0 , φ| x =1 = −�bi − �(t) 

2 

, p| x =1 = p̄ , j n | x =1 = −R r (n ) , (16)

P | t=0 = P init (x ) , n | t=0 = n init (x ) , p| t=0 = p init (x ) . (17)

Here the total potential drop across the cell, φ| x =0 − φ| x =1 = �bi − �(t) , is split into two parts; a built-in potential differ-

ence, �bi , that arises from the difference in band energies between the ETL and the HTL and an applied potential difference,

�( t ). Under the scalings used here, see Eq. (8) , potentials are measured in units of the thermal voltage which is approxi-

mately 0.026 V. The dimensional built-in voltage is typically around 1.1 V and standard experiments vary the dimensional

applied voltage within the range of −0 . 5 to 2 V, therefore the total dimensionless potential drop across the cell, �bi − �(t) ,

(measured in units of V T ≈ 0.026V) can be quite large. In turn this leads to very large variations in both ion vacancy and

carrier concentrations across the perovskite layer and makes the numerical solution of the problem challenging. 

2.5. Dimensionless parameter estimates 

In Section 2 of [28] , an analogous model and non-dimensionalisation are presented for the case where the cation va-

cancies, as well as the anion vacancies, are mobile. It is shown that, for a typical planar device formed by a 600 nm thick,

methylammonium lead tri-iodide perovskite absorber layer sandwiched between a titania ETL layer and a spiro HTL layer,

the dimensionless parameters defined in Eq. (10) take the values 

ν ≈ 5 . 8 × 10 

−10 , κp ≈ 1 , κn ≈ 1 , λ ≈ 2 . 4 × 10 

−3 , 

δ ≈ 2 . 1 × 10 

−7 , n̄ ≈ 20 , p̄ ≈ 0 . 30 , �bi ≈ 40 . 

(18)

The difficulty in solving Eqs. (11) –(17) arises from the extreme values of the parameters ν , λ and �bi − �(t) . The very small

value of ν reflects the large disparity in timescales for the electronic (fast) and ionic (slow) motion. This feature of the prob-

lem necessitates the use of an adaptive timestep since any fixed time stepping method would either be prohibitively slow or

incapable of capturing the fast electronic dynamics. As is typical for many electrochemical problems (see e.g. [33] ), the pa-

rameter characterising the ratio of the Debye length to the domain length, in this case λ, is also extremely small. This gives

rise to appreciable stiffness in the system owing to the rapid changes in the solution across the narrow Debye layers. This

issue is further exacerbated by the relatively large value of �bi − �(t) . The concentrations of the different charge species

in the narrow Debye layers are approximately Boltzmann distributed, i.e. they vary exponentially with the potential. A typ-

ical change in dimensional potential across one of the two Debye layers of 0.5 V corresponds to a dimensionless potential

drop of around 20. This estimate results in a change in n, p or P by a factor of around exp (20) ≈ O (10 9 ) across a region of

dimensionless width O (10 −3 ) . Therefore, what at first glance appears to be merely a stiff problem is actually an extremely

stiff problem. Notably, depending on the approach to spatial discretisation, these very large changes in the magnitudes of

the concentrations of the charged species can give rise to large condition numbers in the discrete counterparts of the partial

differential equations (PDEs) leading to significant round off errors. 

3. Finite element scheme 

The central technique underlying both numerical schemes presented in this work is the method of lines. Since the equa-

tion governing the electric potential is elliptic, in contrast to those for the charge carrier densities which are parabolic, the

discrete system takes the form of a system of coupled differential-algebraic equations (DAEs). As such, it requires a spe-

cialised algorithm for temporal integration. Here, we employ MATLAB’s integrator ode15s [30] to evolve in time. In the

physically relevant parameter regimes, typical solutions exhibit rapid changes in the narrow Debye (boundary) layers which

gives rise to significant stiffness in the DAE system. This difficulty is overcome by employing a non-uniform grid spacing.

Here we do not employ the Scharfetter-Gummel scheme [34] , that is widely used in other semiconductor applications, to

solve the conservation equations. We note that the Scharfetter-Gummel scheme is specifically designed to address issues of

charge carrier transport rather than to deal with the difficulties associated with accurately resolving the solution in narrow

Debye layers, which is the main issue here. 

In this section, the spatial derivatives in Eqs. (11) –(17) are discretised using a finite element scheme with second-order

local accuracy. The computational grid is comprised of N + 1 arbitrarily positioned grid points, denoted by x = x i for i =
0 , . . . , N, which partition the domain x ∈ [0, 1] into N subintervals. The widths of the subintervals are denoted by �i +1 / 2 =
x i +1 − x i , and we also introduce N half-points denoted by x i +1 / 2 = (x i + x i +1 ) / 2 for i = 0 , . . . , N − 1 . A sketch of the grid is
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Fig. 2. A schematic of the computational grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shown in Fig. 2 . We employ a common approach in which the dependent variables are approximated as a linear combination

of piecewise linear basis functions (aka ‘hat’ or ‘tent’ functions). For a generic dependent variable, w say, we write 

w (x, t) = 

i = N ∑ 

i =0 

w i (t) ϕ i (x ) where ϕ i (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

x − x i −1 

x i − x i −1 

if x ∈ (x i −1 , x i ) 

x i +1 − x 

x i +1 − x i 
if x ∈ (x i , x i +1 ) 

0 if x / ∈ (x i −1 , x i +1 ) 

(19) 

in which ϕi ( x ) are referred to as the basis functions. 

On eliminating the anion vacancy flux, F P , and the electron and hole currents, j n and j p , from Eqs. (11) –(13) we derive

three equations of the form 

α
∂w 

∂t 
= β

∂ 

∂x 

(
∂w 

∂x 
± w 

∂φ

∂x 

)
+ S(x, v , w ) , (20) 

in which α and β are constants and the source term S is a function of x, w and another generic dependent variable denoted

by v . Eliminating the electric field, E , between Eq. (14) leads to 

∂ 2 φ

∂x 2 
= 

1 

λ2 
( 1 − P − δ( p − n ) ) . (21) 

The spatially discretised equations are derived by multiplying both Eqs. (20) and (21) through by each of the test functions

ϕj ( x ) (for j = 0 , ..., N), integrating over the domain x ∈ (0, 1) (using integration by parts where appropriate) and substituting

the form Eq. (19) for each of the dependent variables. On doing so we arrive at 

α
i = N ∑ 

i =0 

d w i 

d t 

∫ 1 

0 

ϕ i ϕ j d x = β

(
∂w 

∂x 
± w 

∂φ

∂x 

)
ϕ j 

∣∣∣x =1 

x =0 

−β

( 

i = N ∑ 

i =0 

w i 

∫ 1 

0 

ϕ 

′ 
i ϕ 

′ 
j d x ±

i = N ∑ 

i =0 

k = N ∑ 

k =0 

w i φk 

∫ 1 

0 

ϕ i ϕ 

′ 
j ϕ 

′ 
k d x 

) 

+ 

∫ 1 

0 

S(x, v , w ) ϕ j d x , 

(22) 

∂φ

∂x 
ϕ j 

∣∣∣x =1 

x =0 
−

i = N ∑ 

i =0 

φi 

∫ 1 

0 

ϕ 

′ 
i ϕ 

′ 
j d x = 

1 

λ2 

( ∫ 1 

0 

ϕ j dx −
i = N ∑ 

i =0 

(P i + δ(p i − n i )) 

∫ 1 

0 

ϕ i ϕ j d x 

) 

. (23) 

In the equations above, each of the integrals containing expressions that depend solely on the basis functions and/or their

derivatives can be computed exactly (the results are given in Appendix A ). Likewise, terms containing quantities evaluated

on the boundaries x = 0 , 1 can be computed exactly using the boundary conditions Eqs. (15) and (16) , else the relevant

equation is replaced by the corresponding Dirichlet condition. The one remaining term that is not so readily computed is

the final integral in Eq. (22) that depends on the source terms S . For the anion vacancy conservation, S ≡ 0 and so this term

is zero. However, for the electron and hole conservation equations, Eqs. (12) and (13) , the source term comprises both the

generation and recombination rates, G ( x ) and R ( n, p ), which are usually nonlinear. Moreover, until the physical processes

in PSCs are better understood, it is desirable to maintain the flexibility to quickly alter the functional forms of these terms

without necessitating significant alterations to the scheme so that, e.g., trap-assisted recombination can be augmented by

radiative bimolecular recombination. 

In order that the integral contained in the final term of Eq. (22) can be integrated (at least approximately) regardless of

the functional form of the source term, we make a further approximation. This approximation is to replace the dependent

variables in the integrand by functions that are piecewise constant over each subinterval, x ∈ (x i , x i +1 ) , and have a value

equal to that of the full series Eq. (19) at the midpoint of that interval. In short, we make the additional approximation 

∫ 1 

0 

(G (x ) − R (n, p)) ϕ j d x ≈ � j−1 / 2 

2 

(
G | x = x j−1 / 2 

− R 

(
n | x = x j−1 / 2 

, p| x = x j−1 / 2 

))
+ 

� j+1 / 2 

2 

(
G | x = x j+1 / 2 

− R 

(
n | x = x j+1 / 2 

, p| x = x j+1 / 2 

))
. 

(24) 

The additional error incurred as a result of this approximation is comparable to the error associated with the original piece-

wise linear approximation for the dependent variables. Thus, even though some additional error is introduced, the scheme
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retains its second order local accuracy. We note that this approach to dealing with the nonlinear source terms is a special

case of the method used in the work of Skeel & Berzins [35] , but we emphasize that in contrast to their method, we only

use this additional approximation for treatment of the source terms whilst the rest of the terms are integrated exactly.

Once all the necessary integrals have been computed, the boundary conditions Eqs. (15) and (16) can be imposed to form

a system of DAEs which are closed by the initial conditions Eq. (17) . It is this DAE system which is evolved in time using

MATLAB’s ode15s . 

3.1. Spatial discretisation 

In order to write down the spatially discretised system of equations in a concise form, we introduce three discrete oper-

ators: a difference operator D i , an operator for evaluation of a dependent variables at a midpoint I i and a linear operator

L i . These act on a column vector w with the entries w i = w | x = x i ( i = 0 , . . . , N) for a generic dependent variable w as follows:

∂w 

∂x 

∣∣∣
x = x i +1 / 2 

≈ D i +1 / 2 (w ) = 

w i +1 − w i 

�i +1 / 2 

, (25)

w | x = x i +1 / 2 
≈ I i +1 / 2 (w ) = 

1 

2 

(w i +1 + w i ) , (26)

L i (w ) = 

1 

6 

�i +1 / 2 w i +1 + 

1 

3 

(
�i +1 / 2 + �i −1 / 2 

)
w i + 

1 

6 

�i −1 / 2 w i −1 . (27)

We introduce P ( t ), �( t ), n ( t ) and p ( t ) as column vectors of length N + 1 whose i ’th entries are the functions P i ( t ), φi ( t ),

n i ( t ) and p i ( t ), respectively. Using this notation we obtain discretised counterparts of the electric field, anion vacancy flux

and carrier currents from ( 11 (b)), ( 12 (b)), ( 13 (b)) and ( 14 (b)) as follows, 

E i +1 / 2 = −D i +1 / 2 (�) , (28)

F P i +1 / 2 = −
[
D i +1 / 2 (P ) − I i +1 / 2 (P ) E i +1 / 2 

]
, (29)

j n i +1 / 2 = κn 

[
D i +1 / 2 (n ) + I i +1 / 2 (n ) E i +1 / 2 

]
, (30)

j p i +1 / 2 = −κp 

[
D i +1 / 2 (p ) − I i +1 / 2 (p ) E i +1 / 2 

]
. (31)

for i = 0 , ..., N-1. We note that although the fluxes of the charged species and the field were eliminated in deriving the

spatially discretised equations it is useful to reintroduce discrete versions of them here in the interests of brevity of notation

and because it is often of interest to compute them for visualisation purposes after computations have been carried out. 

The ODEs governing the evolution of the anion vacancy density, arising from Eq. (11) , and ion flux boundary conditions,

Eqs. (15a) and (16a) are 

�1 / 2 

[
1 

3 

d P 0 
d t 

+ 

1 

6 

d P 1 
d t 

]
= −λF P 1 / 2 (32)

L i 

(
d P 

d t 

)
= −λ

[
F P i +1 / 2 − F P i −1 / 2 

]
, for i = 1 , . . . , N − 1 , (33)

�N−1 / 2 

[
1 

6 

d P N−1 

d t 
+ 

1 

3 

d P N 
d t 

]
= λF P N−1 / 2 . (34)

The algebraic equations for the potential resulting from discretisation of Eq. (14) and the boundary conditions

Eqs. (15b) and (16b) are 

0 = φ0 − � − �bi 

2 

, (35)

0 = λ2 
[
E i +1 / 2 − E i −1 / 2 

]
− L i (P ) + 

1 

2 

[
�i +1 / 2 + �i −1 / 2 

]
− δ[ L i (p ) − L i (n ) ] for i = 1 , . . . , N − 1 , (36)

0 = φN + 

� − �bi 

2 

. (37)

The ODEs for the electron and hole continuity equations, arising from Eqs. (12) and (13) , and the remaining boundary

conditions are 

0 = n 0 − n̄ , (38)

νL i 

(
d n 

d t 

)
= j n i +1 / 2 − j n i −1 / 2 + 

�i +1 / 2 

2 

[
G i +1 / 2 − R i +1 / 2 

]
+ 

�i −1 / 2 

2 

[
G i −1 / 2 − R i −1 / 2 

]
, for i = 1 , ..., N − 1 , (39)
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Fig. 3. Plots to show the positions of the nonzero entries (black dots) in the mass matrix M , panel (a), and the Jacobian matrix of f , panel (b), for the finite 

element scheme in the case N = 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν�N−1 / 2 

[
1 

6 

d n N−1 

d t 
+ 

1 

3 

d n N 

d t 

]
= − j n N−1 / 2 + 

�N−1 / 2 

2 

[
G N−1 / 2 − R N−1 / 2 

]
− R r (n N ) , (40) 

ν�1 / 2 

[
1 

3 

d p 0 
d t 

+ 

1 

6 

d p 1 
d t 

]
= − j p 1 / 2 + 

�1 / 2 

2 

[
G 1 / 2 − R 1 / 2 

]
− R l (p 0 ) , (41) 

νL i 

(
d p 

d t 

)
= −

[
j p i +1 / 2 − j p i −1 / 2 

]
+ 

�i +1 / 2 

2 

[
G i +1 / 2 − R i +1 / 2 

]
+ 

�i −1 / 2 

2 

[
G i −1 / 2 − R i −1 / 2 

]
, for i = 1 , ..., N − 1 , (42) 

0 = p N − p̄ . (43) 

in which we have used the shorthand G i +1 / 2 = G (I i +1 / 2 (x )) (in which x is a column vector of the values x i , i = 0 , . . . , N) and

R i +1 / 2 = R (I i +1 / 2 (n ) , I i +1 / 2 (p )) . 

3.2. Implementation 

The system of DAEs formulated above is evolved forward in time using MATLAB’s ode15s [36,37] which is based on

numerical differentiation formulae (of orders 1–5) or backward differentiation formulae [38] whose step size and order

are automatically varied to ensure that the specified error tolerances are met. In order to minimise computational cost, by

minimising the size of the system, we eliminate superfluous variables, namely F P , j n , j p and E , and assemble the remaining

4 N + 4 unknown functions of time into one column vector u ( t ) as follows: 

u (t) = [ P 0 , . . . , P N , φ0 , . . . , φN , n 0 , . . . , n N , p 0 , · · · . . . , p N ] T , (44) 

or equivalently, u (t) = 

[
P (t ) T �(t ) T n (t ) T p (t ) T 

]T 
, (45) 

where a superscript T denotes a transpose. The problem to be solved can now be written in the form 

M 

d u 

d t 
= f (u ) with u | t=0 = u 0 , (46) 

where f ( u ) is a nonlinear vector function of length 4 N + 4 whose entries are the right-hand sides of Eqs. (32) –(43) . The

matrix M is a (4 N + 4) × (4 N + 4) diagonal mass matrix whose entries are the coefficients of the time derivative terms in

the Eqs. (32) –(43) , see Fig. 3 . Since the governing equations for the values of φi , Eqs. (35) –(37) , and the discrete boundary

conditions Eqs. (38) and (43) contain no temporal derivatives the corresponding entries on the diagonal of M are zero and

hence the mass matrix is singular. It is this feature of the system that renders the problem a system of DAEs and motivates

our choice of solver, namely ode15s , which is one of relatively few solvers that can handle problems of this type. Moreover,

it offers an adaptive timestep which is able to deal with the numerical stiffness resulting from the disparity in timescales

between the electronic and ionic motion. 

The ode15s time step requires numerical approximation of the Jacobian of f . However, it is clear from the structure of

the discrete system that many entries in the Jacobian are zero. A heavy reduction in computational effort (around 0.005 N 

3/2 
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in the convergence test case described in Section 5.1 ) can be achieved by exploiting the jpattern option which allows the

user to ‘flag’ only a subset of the entries in the Jacobian matrix that need to be numerically approximated (those that are

not flagged are assumed to be zero) at each time step, see Fig. 3 . 

4. Finite difference scheme 

In this section we outline an alternative numerical scheme for solving the model Eqs. (11) –(17) , in which spatial deriva-

tives are discretised using second order accurate finite differences on a ‘staggered grid’. The resulting DAEs are again evolved

forward in time using MATLAB’s ode15s . The numerical stiffness arising from narrow Debye layers is tackled by (i) em-

ploying a non-uniform grid spacing, and (ii) using Advanpix’s Multiprecision Computing Toolbox [31] to overload MATLAB’s

native commands with arbitrary-precision counterparts, thereby retaining good accuracy despite the large condition num-

bers of the underlying matrices. 

We retain the computational grid, including the definition of the subinterval width and half points, defined at the begin-

ning of Section 3 . The anion vacancy profiles are determined subject to the Neumann conditions Eqs. (15a) and (16a) which

require zero flux of ions at each boundary. Thus, it is natural to compute the ion vacancy flux at the grid points and the

ion vacancy density at the half points. Not only does this allow Eqs. (15a) and (16a) to be imposed straightforwardly, it

also ensures that the property of global conservation of anion vacancies is inherited by the discrete system 

1 . The equation

determining the electric potential is to be solved subject to the Dirichlet conditions Eqs. (15b) and (16b) which motivates

tracking the potential at the grid points and the electric field at the half points. Since the governing equations for electrons

(holes) are solved subject to one Dirichlet and one Neumann condition, namely Eqs. (15c) and (16d) ( Eqs. (15d) and (16c) ), it

is not obvious whether it is better to define the concentration or the flux on the grid points. Here, we elect to track the con-

centration on the grid points and the fluxes on the half-points so that evaluating the electron and hole contributions to the

charge density on the right-hand side of Eq. (14a) can be accomplished without interpolation, thereby avoiding additional

errors. In summary we introduce discretised variables defined by 

P i +1 / 2 = P | x = x i +1 / 2 
, F P i = F P | x = x i , (47)

φi = φ| x = x i , E i +1 / 2 = E| x = x i +1 / 2 
, (48)

n i = n | x = x i , j n i +1 / 2 = j n | x = x i +1 / 2 
, (49)

p i = p| x = x i , j p i +1 / 2 = j p | x = x i +1 / 2 
. (50)

Note that this means that, in this section, P denotes a column vector of length N (rather than N + 1 as in Section 3 ) that

comprises the entries P i +1 / 2 , i = 0 , . . . , N − 1 . We also introduce three further column vectors, also of length N , namely E,

j n and j p as well as one column vector of length N + 1 namely F P . These have entries E i +1 / 2 (t) , j n i +1 / 2 (t) , j n i +1 / 2 (t) for

i = 0 , . . . , N − 1 and F P i +1 / 2 (t) for i = 0 , . . . , N respectively. 

4.1. Spatial discretisation 

Spatial discretisation is carried out using the discrete operators D i +1 / 2 and I i +1 / 2 defined in Eqs. (25) and (26) . We also

introduce D i which approximates the first derivative at a grid point in terms of data at adjacent half points, and I i which

linearly interpolates data at adjacent half points to return an approximation of a quantity at a grid point. These are defined

as follows: 

∂w 

∂x 

∣∣∣
x = x i 

≈ D i (w ) = 

w i +1 / 2 − w i −1 / 2 

x i +1 / 2 − x i −1 / 2 

, (51)

w | x = x i ≈ I i (w ) = 

w i +1 / 2 (x i − x i −1 ) + w i −1 / 2 (x i +1 − x i ) 

x i +1 − x i −1 

. (52)

A standard error analysis indicates that these both have second order local accuracy. 

The discrete operators defined by Eqs. (25), (26), (51) and (52) can be used to approximate the electric field, and electron

and hole currents at the half-points. The discretised versions of Eqs. (14b) , (12b) and (13b) are 

E i +1 / 2 = −D i +1 / 2 (�) , (53)

j n i +1 / 2 = κn 

[
D i +1 / 2 (n ) + I i +1 / 2 (n ) E i +1 / 2 

]
, (54)

j p i +1 / 2 = −κp 

[
D i +1 / 2 (p ) − I i +1 / 2 (p ) E i +1 / 2 

]
, for i = 0 , . . . , N − 1 . (55)
1 Global conservation of anion vacancy concentrations in the discrete system, up to second order, is reflected in the property that d /d t 
(∑ N−1 

i =0 P i +1 / 2 

)
= 0 , 

see Eq. (58) . 
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The anion vacancy flux can then be computed on both the internal and boundary grid points by discretising Eq. (11b) and

its boundary conditions Eqs. (15a) and (16a) . We have 

F P 0 = F P N = 0 , (56) 

F P i = −D i (P ) − I i (P ) I i (E ) , for i = 1 , . . . , N − 1 . (57) 

The ODEs governing the evolution of the anion vacancy density, arising from Eq. (11a) , are 

d P i +1 / 2 

d t 
= −λD i +1 / 2 ( F 

P ) , for i = 0 , . . . , N − 1 . (58) 

The algebraic equations for the potential resulting from discretisation of Eq. (14a) and the boundary conditions Eqs.

(15b) and (16b) are 

φ0 − � − �bi 

2 

= 0 , (59) 

λ2 D i (E ) + 1 − I i (P ) + δ(n i − p i ) = 0 , for i = 1 , . . . , N − 1 , (60) 

φN + 

� − �bi 

2 

= 0 . (61) 

It is straightforward to discretise Eq. (12) to derive a set of N − 1 ODEs governing the evolution of the electron density on

the internal grid points 

n 0 − n̄ = 0 , (62) 

ν
d n i 

d t 
= D i ( j 

n ) + G (x i ) − R (n i , p i ) , for i = 1 , . . . , N − 1 , (63) 

j n N−1 / 2 + D N−1 ( j 
n )(1 − x N−1 / 2 ) + R r (n N ) = 0 . (64) 

Here the conditions Eqs. (62) and (64) arise from the imposition of the Dirichlet boundary condition Eq. (15c) on x = 0 and

the flux condition Eq. (16d) on x = 1 , respectively. Notice that the latter is imposed by linear extrapolation of the electron

current to the boundary x = 0 . Similarly, discretisation of Eq. (13) leads to a set of N − 1 ODEs governing the evolution of

the hole density on the internal grid points 

j p 1 / 2 − D 1 ( j 
p ) x 1 / 2 + R l (p 0 ) = 0 , (65) 

ν
d p i 
d t 

= −D i ( j 
p ) + G (x i ) − R (n i , p i ) , for i = 1 , . . . , N − 1 , (66) 

p N − p̄ = 0 . (67) 

Here the conditions Eqs. (65) and (67) are derived from the flux condition Eq. (15d) on x = 0 and the Dirichlet boundary

condition Eq. (16c) , respectively. We note that the boundary conditions Eqs. (64) and (65) are the only conditions that are

not imposed exactly. However, the extrapolation involved only introduces second order errors, and therefore the scheme as

a whole is still locally second order accurate as demonstrated by Fig. 5 (a). 

4.2. Implementation 

The finite difference scheme is implemented using ode15s in the same way as the finite element scheme described

in Section 3 , except that in Eq. (45) , P ( t ) is a vector of length N whose entries are the functions of time P i +1 / 2 (t) for

i = 0 , . . . , N − 1 . The problem to be solved can again be written in the form Eq. (46) where f ( u ) is now a nonlinear vector

function of length 4 N + 3 . Its first N entries are the right-hand sides of Eq. (58) ; the subsequent N + 1 entries are the

right-hand sides of Eqs. (59) –(61) ; these are followed by the N + 1 right-hand sides of Eqs. (62) –(64) ; and finally the N + 1

right-hand sides of Eqs. (65) –(67) . The structure of the Jacobian is shown in Fig. 4 . The matrix M is a (4 N + 3) × (4 N + 3)

diagonal mass matrix whose entries are the coefficients of the time derivative terms in the Eqs. (58) –(67) , see Fig. 4 . 

When simulating many of the regimes of physical interest, we find that the condition number of the Jacobian is large,

sometimes O (10 16 ) or greater, which has the potential to severely hamper the accuracy of matrix inversions performed by

the solver, ode15s . To overcome this difficulty we make use of a third-party toolbox, Advanpix, which extends MATLAB’s

functionality to work with floating point numbers of higher precision. The use of quardruple precision results in a loss in

the speed of computation for simple cases (those which can be computed accurately on a small number of grid points) for

which runtimes, originally of a few seconds on a standard desktop computer, are typically 15–30 times longer. However,

we find the higher precision offered by Advanpix’s Multiprecision Computing Toolbox [31] is crucial in allowing this finite

difference scheme to cope with the spatial stiffness due to narrow Debye layers. 
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Fig. 4. Plots to show the positions of the nonzero entries (black dots) in the mass matrix M , panel (a), and the Jacobian matrix of f , panel (b), for the finite 

difference scheme in the case N = 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Verification 

Here, we demonstrate the convergence properties of our two schemes and benchmark their performance via comparison

to two alternative methods. One of these alternatives has appeared in the literature [25] and makes use of MATLAB’s pdepe
solver with a piecewise constant spatial grid; the other is an adaptation of the pdepe -based method to the non-uniform

grids introduced below in Section 5.2 . In order to perform the benchmarking we apply the methods to a physically pertinant

test case with appropraite physical parameters, as given in Eq. (18) . We examine the schemes’ accuracy during a transient

protocol, not just near steady state, and rate the performance in terms of numerical accuracy and computation time. We

also discuss the shortcomings of previously used methods of solution including those based upon pdepe and the Chebfun

package [39] . 

5.1. Choice of test case 

We choose the particular scenario in which an illuminated cell is initially operating at an applied voltage equal to the

built-in voltage � = �bi = 40 , so that the potential drop across the perovskite layer is zero. The applied voltage is then

rapidly decreased to � = �bi / 2 so that the device is running in its power generating regime. We accomplish this by defining

�(t) = �bi 

(
1 − tanh (βt) 

2 tanh (βt end ) 

)
with β = 10 

2 , t end = 1 . (68)

Here β characterises the timescale for altering the applied voltage and t end is the dimensionless time at which the simula-

tion is terminated. 

As is typical in such applications, we assume that the photo-generation rate, G ( x ), obeys the Beer–Lambert law, which

has the dimensionless form 

G (x ) = ϒ exp (−ϒx ) , (69)

in which 1/Y is the dimensionless absorption length. The estimate given in Section 2 of [28] is 

ϒ = 3 . 7 . (70)

We also choose the bulk recombination rate, R ( n, p ), to take the form of the Shockley-Read-Hall (SRH) recombination rate

(see [40] Section 4.5.5) and the interface recombination rates, R l ( p ) and R r ( n ), to both be zero, i.e. 

R (n, p) = γ

(
np − N 

2 
i 

n + εp + K 3 

)
, R l (p) = R r (n ) = 0 , (71)

where γ , N i , ε and K 3 are dimensionless constants, defined and estimated in [28] Section 2 to be: 

γ = 2 . 4 , N i = 8 . 6 × 10 

−9 , ε = 3 . 3 × 10 

−3 , K 3 = 8 . 6 × 10 

−9 . (72)

All other dimensionless parameter values are also as in [28] Section 2 and listed in Eq. (18) . 
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A simple choice of initial conditions that satisfies Poisson’s equation (with φ| t=0 ≡ 0 ) and six out the eight boundary

conditions (those for the carrier currents are not satisfied) is 

P init (x ) = 1 , n init (x ) = p init (x ) = p̄ x + n̄ (1 − x ) . (73) 

In practice, the choice of initial conditions is not particularly important for the modelling of PSCs as, in any experimental

procedure, it is standard practice to include a pre-conditioning step. This step involves holding the applied potential constant

for a sufficiently long time such that any initial transients associated with charge carrier and ion vacancy motion decay

towards zero. 

5.2. Choice of spatial grid 

We find that the choice of spatial grid can have a large impact on performance; this impact is shown in Fig. 6 . In antic-

ipation of the fact that the largest gradients in the solution appear in narrow Debye layers adjacent to the domain bound-

aries, we compare two spatial grids in which points are concentrated near the domain boundaries. Using this approach, we

are able to achieve good resolution in the Debye layers without wasting computational effort by over-resolving in the bulk

where the solution varies more slowly. The first grid is comprised of Chebyshev nodes on the interval [0,1] and defined by 

x i = 

1 

2 

(
1 + cos 

[
π

(
i 

N 

− 1 

)])
, for i = 0 , . . . , N. (74) 

We term this the Chebyshev grid . We define a second grid, also with points clustered toward the domain boundaries, by 

x i = 

1 

2 

( 

tanh 

[
σ
(

2 i 
N 

− 1 

)]
tanh (σ ) 

+ 1 

) 

, for i = 0 , . . . , N. (75) 

We term this the tanh grid . Here, the parameter σ represents the degree to which points are concentrated in the Debye

layers, near x = 0 and x = 1 , with large values of σ giving denser clustering of points in these layers. It is possible to relate

σ to the fraction X of grid points lying within a dimensionless Debye length, λ, of each domain boundary (i.e. in the interval

x ∈ [0, λ], or equivalently in the interval x ∈ [1 − λ, 1] ) as follows 

λ = 

1 

2 

(
tanh [ σ ( 2 X − 1 ) ] 

tanh (σ ) 
+ 1 

)
. (76) 

Based on our numerical tests we found that good results could be obtained by concentrating 20% (i.e. X = 0 . 2 ) of the grid

points within each layer (the remaining 60% span the bulk region). This entailed taking σ = 5 for a dimensionless Debye

length of λ = 2 . 4 × 10 −3 . We note that suitable values of σ depend strongly on the potential difference as well as the Debye

length and so optimal values of σ may vary. In Section 5.3 , we show the convergence of each of our schemes using the

tanh grid. Then, in Section 5.4 , we quantify the improvements made over the only previously used published method and,

in Section 5.5 , we compare all schemes considered in this work using a measure of accuracy (defined in Section 5.3 ) versus

run time. Our results, shown in Fig. 6 , demonstrate that a significant gain in performance is achieved using the tanh grid as

opposed to the Chebyshev grid, regardless of the choice of scheme. 

5.3. Convergence 

Here we demonstrate the expected second order spatial convergence of the schemes using the test case described in

Section 5.1 . Due to the choice of non-uniform spatial grid, namely the tanh grid defined in Eq. (75) with σ = 5 , we chose

to monitor the values of the following five variables. This is because, independent of the number of grid points used (N+1),

they are available immediately following the temporal integration without the need for an additional interpolation step,

thereby allowing a direct interrogation of the scheme. 

φ| x =1 / 2 , n | x =1 / 2 , n | x =1 , p| x =0 , p| x =1 / 2 . (77) 

Due to the lack of exact solutions to the model, it is necessary to verify convergence by measuring the error relative to

a solution computed on a highly refined grid. For some scalar quantity v (which could be any of those defined in Eq. (77) )

computed using the scheme on N + 1 grid points with N subintervals, denoted by v ( N ) , we can define the absolute error at

time t = T of the simulation as 

E(N) | t= T = 

∣∣v (N) | t= T − v (N M ) | t= T 
∣∣ , (78) 

for some N M 

� N . Henceforth we take N M 

= 3200 . In order to quantify the total error involved in a computation, we use this

absolute error to define a time-averaged error, averaged over all but the first time point of the evolution, as follows 

Ē (N) = 

1 

M 

i = M ∑ 

i =1 

E(N) | t= T i , (79) 
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Fig. 5. The pointwise convergence of (a) the finite element scheme and (b) the finite difference scheme demonstrated by plots of the time-averaged 

error Ē for each of the five variables listed in Eq. (77) versus the number of subintervals, N. Markers show errors for computations with N = 

10 0 , 20 0 , 40 0 , 80 0 , 160 0 estimated against a numerical solution with N M = 3200 . Dotted lines show the expected second order convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where T i are M equally-spaced dimensionless time points in the interval (1/ M , 1), i.e., 1/ M , 2/ M , ..., (M − 1) /M, 1. This time-

averaged error, for the case M = 100 , for each of the quantities in Eq. (77) is shown in Fig. 5 for both the finite element and

finite difference methods described in Sections 3 and 4 respectively. We find that these errors are representative of the error

at each time-step and do not grow appreciably in time. Stability of each method with respect to time is confirmed in the

next section in which the relative temporal tolerance is varied, but the resulting accuracy is maintained. The computations

for Fig. 5 were performed with temporal integration tolerances for ode15s controlled using the RelTol and AbsTol
settings in MATLAB; the relative tolerance was 10 −6 and the absolute tolerance was 10 −8 . Both sets of results demonstrate

second order spatial convergence, as predicted by a naive analysis of the discrete operators Eqs. (25) –(27) for the finite

element scheme in Section 3 and Eqs. (51) and (52) for the finite difference scheme in Section 4 . 

5.4. Comparison to method used by Calado et al. [25] based on MATLAB’s pdepe solver 

In order to benchmark our numerical schemes against an existing method, we turn to MATLAB’s built-in solver pdepe ,
used by Calado et al. [25] to investigate a drift-diffusion model for PSCs. The pdepe solver is a routine which can provide

numerical solution to systems of elliptic/parabolic PDEs, along with their associated boundary and initial conditions, in

one spatial dimension and in time, provided that they can be cast in the ‘standard form’ accepted by the algorithm [35] .

Temporal integration is provided by ode15s (like in our approaches) but for pdepe spatial discretisation is carried out

autonomously by the solver and is based on the method presented by Skeel & Berzins [35] . 

Calado et al. [25] perform their simulations on a uniform grid with a spacing of 0.67 nm. In order to simulate on a

grid with the same dimensional distance between adjacent grid points here would require N = 900 . It is shown in the SI

of [25] that appreciable differences were visible between the transient simulation results performed using a grid spacing of

0.67 nm and 0.5 nm (the smallest that was tried), indicating that numerical errors were non-negligible. It is stated in the

main text that this choice was a “compromise between numerical accuracy and computation time”. We find this method

can be used to obtain solutions to the test case described in Section 5.1 (see Fig. 6 and associated discussion in Section

5.5 ) however our measure of the error (the sum of the time-averaged error Ē defined in Eq. (79) for the five variables

listed in Eq. (77) ) is as large as 0.3 for N = 900 . Hence this method is prone to failure when attempting to simulate longer

experimental protocols such as J − V scans. 

Additionally, an important disadvantage of using pdepe in the context of PSC simulation is that the restriction that

equations must be cast in its standard form prevents the extension of the method to a three-layer model incorporating

charge carrier transport in the ETL and the HTL. In particular, pdepe is unable to accept jump conditions posed on internal

boundaries such as those occurring at the ETL/perovskite and the perovskite/HTL interfaces. Such jump conditions are used

to model the discontinuities in carrier currents resulting from surface recombination. In order to circumvent this technical

limitation, Calado et al. [25] artificially smeared the surface recombination across “diffuse” interface regions, however it is

acknowledged that this approach is physically unrealistic. In contrast, the tailored numerical schemes detailed in this work

can be readily extended to include more layers and incorporate any necessary type of interface condition. 
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Fig. 6. (a) The sum of the five time-averaged errors (as defined in Eq. (79) and plotted in Fig. 5 ) for each of the five variables listed in Eq. (77) versus the 

number of subintervals, N. Results are for pdepe (green lines), the finite difference scheme (pink dot-dashed lines) and the finite element scheme (blue 

dashed lines) on either the Chebyshev (circles) or tanh (squares) grid (as defined in Section 5.2 ). Red dotted lines with crosses represent results from the 

previously used method of pdepe on a uniform grid as discussed in Section 5.4 . Lines for simulations with relative temporal tolerance of 10 −4 and 10 −5 are 

almost indistinguishable on these scales. (b) The run times for each of the simulations in (a) plotted against the reciprocal of the sum of the time-averaged 

errors. The higher (slower) of each pair of lines corresponds to the stricter relative temporal tolerance of 10 −5 compared to 10 −4 . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5. Comparison between all numerical methods 

Here, we compare the performance of our methods against one another as well as MATLAB’s built-in solver pdepe using

the test case described in Section 5.1 . In Fig. 6 (a), the sum of the five time-averaged absolute errors (defined in Section

5.3 ) for each of the three schemes is shown versus the number of subintervals N on each of the nonlinear grids defined in

Section 5.2 . We show results down to the lowest multiple of 50 for N for which the solver returns a solution. Second-order

pointwise convergence is found in all cases, however it is notable that there is a significant decrease (improvement) in the

size of the error for simulations performed on the tanh grid over those performed on the Chebyshev grid, irrespective of the

method used. Fig. 6 (a) also illustrates that the methods based upon the technique of finite elements, namely the scheme

presented in Section 3 and pdepe , significantly outperform the finite difference scheme presented in Section 4 , although,

unlike pdepe , it can be readily extended to a three-layer device with interfacial recombination. 

For both panels in Fig. 6 , we apply relative temporal tolerances of 10 −4 and 10 −5 (applied via the RelTol settings in

MATLAB) while the absolute tolerance is kept at 10 −8 . In Fig. 6 (a), these results almost entirely overlap, indicating that the

methods are stable in time. We find that all methods become unstable for relative temporal tolerances larger than 10 −3 . 

Fig. 6 (b) shows the computational time required for simulation in regimes where the numerical integration was stable.

We use the term “run time” to mean only the length of time taken during the simulation by the call to either ode15s or to

pdepe . We choose to exclude the set-up time on grounds that this is a one-off cost that does not scale with the simulation

protocol and can be avoided when running repeated simulations. Run times were recorded on a computer with a 2.40 GHz

Intel processor. From the results for this test case, we conclude that computations carried out using our finite element

scheme require roughly 50 times less processing time than their counterparts. These results demonstrate the increased

accuracy versus run time afforded by our finite element scheme over the finite difference scheme computed with quadruple

precision and MATLAB’s pdepe . Such improved accuracy versus run time is highly desirable and confirms that our finite

element scheme provides a fast and robust tool that can enable thorough investigation of the varied behaviour of PSCs. 

5.6. Comments on using the Chebfun package 

We also considered schemes based on the Chebfun package available for MATLAB. We note that this has previously been

used to solve PSC models, or simplifications to such models, in [12,15,22] . Chebfun employs spectral methods which offer

high spatial accuracy when using only a relatively small number of collocation points. 

Included in the Chebfun package is one of its automatic PDE solvers, pde15s , which (like pdepe ) offers automatic

spatial and temporal treatment of systems of elliptic/parabolic PDEs in a single spatial dimension and time. Unfortunately, it

is unable to cope with the multiple sources of stiffness in this problem. We find that values of λ and/or ν below 0.25 cause

the current version (at the time of writing v5.7.0) to fail. Moreover, this method is unable to deal with the nonlinearity

introduced by the presence of the SRH recombination rate. 
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We find that it is possible to facilitate the solution of the PSC model with realistic parameter values by implement-

ing a ‘manual’ timestep; we tried both straightforward backward Euler and a more complicated predictor-corrector strat-

egy. The former approach could better cope with the extreme values of the parameters but still suffered from an inabil-

ity to deal with an SRH recombination rate. The latter remedied this issue (by linearising the recombination rate), but

the overheads associated with the iterative correction process mean that computations took an impractical length of time

(days). 

6. Comparison to asymptotic results 

In this final section, we compare numerical results from our finite element scheme to the asymptotic solution presented

in [28] for two physically relevant voltage protocols. To make this comparison, we use the realistic parameter estimates given

in Eq. (18) . The first voltage protocol is similar to that of the test case described in Section 5.1 . The second protocol describes

the measurement of a current-voltage curve. A current-voltage scan under 1 Sun illumination is the standard experimental

procedure used to determine the power conversion efficiency of a solar cell. However, in the case of PSCs, such a curve

often displays hysteresis as a result of ion migration which prevents accurate characterisation of their performance [13,14] .

The model and methods of solution presented in this work are intended to enable thorough investigation of the hysteresis

due to ion migration during current-voltage measurements, as well as other transient protocols, in order to more thoroughly

elucidate the underlying operating principles of PSCs. 

Although a significant amount of progress can be made using the asymptotic method even when a nonlinear SRH re-

combination rate is taken, separate analytic expressions for the charge carrier concentrations can only be obtained (see

[28] Section 3.3) when a linear, monomolecular bulk recombination rate is used. In order to compare directly to an analytic

solution, that depends only on the numerical solution of a single ODE (for the Debye layer ionic charge density), we choose

to compare the methods using the case where the bulk recombination, R ( n, p ), is monomolecular (depending solely on the

local hole concentration p ) and the surface recombination rates, R l ( p ) and R r ( n ) are both zero, such that 

R (n, p) = γ p, R l (p) = R r (n ) = 0 , (80)

where, as before, we take γ = 2 . 4 . As noted in [28] , monomolecular hole-dominated bulk recombination is the limit of the

SRH recombination law, given in Eq. (71) , when the electron pseudo-lifetime is much less than the hole pseudo-lifetime.

This is usually a good approximation for recombination in the perovskite material methylammonium lead tri-iodide [41] ,

however it can break down where the electron density becomes very small. Note however that the numerical schemes

presented in this work are readily able to deal with nonlinear recombination rates such as the full SRH law. For further

analysis of the asymptotic method and comparison to a mixed asymptotic/numeric approach that uses the full SRH law, see

[28] Section 4 . 

6.1. A current decay transient 

Here we simulate a cell that is preconditioned at � = �bi = 40 for a sufficiently long time to eliminate transients, before

undergoing a smooth but rapid decrease in applied bias from � = �bi at t = 0 to � = 0 some short time later, obeying, 

�(t) = �bi 

(
1 − tanh (βt) 

tanh (βt end ) 

)
with β = 10 

6 , t end = 1 . (81)

For this simulation, we set the number of subintervals N = 400 and the temporal integration tolerances RelTol = 10 −6 and

AbsTol = 10 −8 . 

A comparison between the photocurrent calculated from the numerical solution and the asymptotic solution (as de-

scribed in [28] ) is made in Fig. 7 , showing remarkable agreement between the methods for all but very small times. The

deviation in very short time behaviour is shown in the inset and represents a significant advantage of the numerical method

over the asymptotic method. The numerical method is able fully capture the fast timescale transients associated with charge

carrier motion. In contrast, the initial rise in current density is absent from the asymptotic solution. The ability of our nu-

merical scheme to capture fast electronic transients is key for accurate simulation of many experimental protocols (such as

time-of-flight measurements and impedance spectroscopy) and therefore crucial to the systematic investigation of certain

properties of PSCs. 

In Fig. 8 , we demonstrate good agreement between the numerical and asymptotic solutions, with the noticeable excep-

tion of panel (c) for the electron distribution in which the solutions vary in magnitude, but not shape. From a convergence

check (increasing both spatial and temporal accuracy) and a check against an equivalent simulation using our finite dif-

ference scheme, it can be confirmed that the finite element scheme has indeed converged. The discrepancy arises from a

small O (10 −2 ) error in the asymptotic solution to the electric potential which in turn leads to the significant error in the

asymptotic solution for electron density n , that can be seen panel (c). 
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Fig. 7. Current density as a function of time, in dimensionless units. Blue solid lines represent the full numerical solution and red circles represent the 

asymptotic result. Inset shows the extremely fast initial electronic transient which is not captured by the asymptotic solution. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. (a) Anion vacancy density, (b) electric potential, (c) electron concentration and (d) hole concentration profiles across the perovskite layer of a PSC 

at t = 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . Solid lines (blue to black for increasing time) represent the full numerical solutions and circles (red to yellow for increasing time) 

represent the uniformly-valid asymptotic expansions. Arrows indicate the direction of increasing time. Insets show magnified views of the distributions.(For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

6.2. A current-voltage curve 

Measurements of the current generated by a solar cell in response to a backwards and forwards sweep of the applied

voltage are a common way of measuring cell properties and, in the case of PSCs, frequently result in significant sweep-rate

dependent hysteresis [13,14] . This hysteresis is a signature of the slow timescale ion motion in the cell. The standard exper-

imental procedure for generating such a J − V hysteresis-curve, including a preconditioning step, is simulated as follows.

The cell is preconditioned by increasing the applied voltage from the built-in voltage to 1.2 V (corresponding to �≈ 46.7)

over 5 seconds and held there for a further 5 s. Then the voltage is scanned smoothly from forward bias ( �ap > �bi ) to

short circuit ( �ap = 0 ) and back at a scan rate equivalent to 100 mV/s (corresponding to a rate of ≈ 7.1 in dimensionless

units). This simulation was completed in approximately 6 s using our finite element scheme with N = 400 and RelTol =
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Fig. 9. Current density as a function of applied voltage during the simulated 100 mV/s J-V scan. The blue line represents the full numerical solution and 

red circles represent the asymptotic approach. Arrows show the direction of the scan. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AbsTol = 10 −8 . The resulting J-V curve is compared to the corresponding asymptotic solution from [28] in Fig. 9 . Once

again excellent agreement between the two approaches is observed. 

7. Conclusions 

We have presented two numerical schemes, one based on finite elements and the other based on finite differences, for

solving a PDE drift-diffusion model for ion vacancy and charge carrier transport in a planar perovskite solar cell (PSC). Both

approaches use the method of lines to reduce the PDEs to a (large) system of ordinary differential-algebraic equations (with

time as the independent variable) which is then evolved using the MATLAB routine ode15s [30] . Even though the two

methods are both capable of providing accurate solutions to the model in appropriate parameter regimes and use the same

tool for temporal integration, the differences in their underlying spatial discretisations lead to some significant differences

in their performance. 

For realistic parameter values and in appropriate operating regimes, the model exhibits significant stiffness owing to

(i) small Debye lengths, (ii) large potential differences across the device (giving rise to large and rapid changes in so-

lution across the narrow Debye layers), and (iii) vastly different timescales for the transport of ion vacancies and elec-

tronic charge carriers. Both the finite element and finite difference schemes robustly cope with these difficulties by (a)

utilising non-uniform meshes to selectively concentrate grids points in the Debye layers in order to maintain accuracy

without prohibitive computational cost, and (b) using an adaptive timestep. Notably, computation in the relevant regime

is not possible in a previously-used alternative, Chebfun, whose current version fails when realistic parameter values are

taken. The finite element approach distinguishes itself as the most apt when the speed of the two methods are bench-

marked. We have shown that the finite element scheme not only outperforms the finite difference method, but also

another well-known alternative in MATLAB’s pdepe , taking around 50 times less computational effort (than either of

the others) to achieve a given number of digits accuracy. This makes our finite element scheme the fastest published

method that is robust enough to furnish numerical solutions to a realistic charge transport model for a metal halide

PSC. 

We have demonstrated that our finite element method is capable of simulating a typical experimental protocol, a current-

voltage sweep, in only a few seconds on a standard desktop computer. This tool therefore opens up the possibility to garner

a deeper understanding of the principles that underpin the operation of PSCs, and in doing so effectively guide their future

development. Of particular interest is the identification of the dominant recombination pathway(s) in a given device archi-

tecture [42–44] . Such identification is useful for informing strategies for designing architectures that minimise the losses

associated with recombination. The numerical tools described here have the potential to improve the design of cells not

only by improving their power conversion efficiency but also by mitigating the build up of ions in locations that decrease

a cell’s usable lifetime. Degradation pathways enabled by ion vacancy motion have been identified in [45,46] . In addition,

there is increasing evidence to suggest that the motion of ions may be a factor in determining the long-term stability of

PSCs [16] . Crucially, our method allows one to vary each device parameter independently (something that can often not be

done by experiment) and identify its role in controlling device performance. 
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Appendix A. Integrals required for the finite element discretisation 

In Section 3 when using the finite element approach to discretise the governing systems Eqs. (11) –(16) in space the

following results are needed: 

∫ 1 

0 

ϕ i ϕ j d x = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

3 

(
� j+1 / 2 + � j−1 / 2 

)
if i = j and j = 1 , . . . , N − 1 

1 

3 

�1 / 2 if i = j and j = 0 

1 

3 

�N−1 / 2 if i = j and j = N 

1 

6 

� j+1 / 2 if i = j + 1 and j = 0 , . . . , N − 1 

1 

6 

� j−1 / 2 if i = j − 1 and j = 1 , . . . , N 

0 otherwise 

(A.1) 

∫ 1 

0 

ϕ 

′ 
i ϕ 

′ 
j d x = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

� j+1 / 2 

+ 

1 

� j−1 / 2 

if i = j and j = 1 , . . . , N − 1 

1 

�1 / 2 

if i = j and j = 0 

1 

�N−1 / 2 

if i = j and j = N 

−1 

� j+1 / 2 

if i = j + 1 and j = 0 , . . . , N − 1 

−1 

� j−1 / 2 

if i = j − 1 and j = 1 , . . . , N 

0 otherwise 

(A.2) 

∫ 1 

0 

ϕ i ϕ 

′ 
j ϕ 

′ 
k d x = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

2� j+1 / 2 

+ 

1 

2� j−1 / 2 

if i = j, k = j and j = 1 , . . . , N − 1 . 

1 

2�1 / 2 

if i = j, k = j and j = 0 

1 

2�N−1 / 2 

if i = j, k = j and j = N 

− 1 

2� j+1 / 2 

if i = j, k = j + 1 and j = 0 , . . . , N − 1 

− 1 

2� j−1 / 2 

if i = j, k = j − 1 and j = 1 , . . . , N 

− 1 

2� j+1 / 2 

if i = j + 1 , k = j + 1 and j = 0 , . . . , N − 1 

1 

2� j+1 / 2 

if i = j + 1 , k = j and j = 0 , . . . , N − 1 

− 1 

2� j−1 / 2 

if i = j − 1 , k = j − 1 and j = 1 , . . . , N 

1 

2� j−1 / 2 

if i = j − 1 , k = j and j = 1 , . . . , N 

0 otherwise 

(A.3) 
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∫ 1 

0 

ϕ j d x = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

2 

(
� j+1 / 2 + � j−1 / 2 

)
if j = 1 , . . . , N − 1 

1 

2 

�1 / 2 if j = 0 

1 

2 

�N−1 / 2 if j = N 

0 otherwise 

(A.4)

where ϕi ( x ) is a basis function often referred to as the ‘hat’ or ‘tent’ function and is defined in Eq. (19) , a prime denotes a

derivative with respect to x , and the indices i, j, k = 0 , . . . , N. 
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