The PRIME Framework: Application- &
Platform-agnostic System Management

Graeme M. Bragg, Domenico Balsamo, Charles Leech and Geoff V. Merrett
School of Electronics and Computer Science, University of Southampton, UK. Email: gmb@ecs.soton.ac.uk

Abstract—Multi-core and heterogeneous processors in modern
embedded platforms have increased in complexity to provide
both high-performance and energy-efficient execution of appli-
cations. As a result, the runtime management and control of
these platforms has become a non-trivial process with many
different approaches being reported in the literature. In addition,
applications have become increasingly dynamic to exploit these
processors runtime adjustable parameters that can be tuned to
optimise and influence their behaviour. These two challenges
motivate the need for a consistent approach to runtime man-
agement that is cross-platform and generic in the support of
applications. This abstract presents the PRIME Framework, a
cross-layer framework that enables application- and platform-
agnostic runtime management by separating a system into three
distinct layers connected by an API and cross-layer constructs
called knobs and monitors. The motivation for the framework’s
underlying concepts are discussed and its use is demonstrated
with a range of platforms and applications.

An open-source implementation of this framework has been
released. '

I. INTRODUCTION AND RELATED WORK

Runtime adaptation and control are crucial to the efficient
execution of applications with varying performance require-
ments on modern embedded heterogeneous platforms. Users
demand ever-greater energy efficiency and throughput from
these systems, therefore proactive optimisation of their per-
formance, energy and reliability are key research challenges.
Runtime management represents an essential paradigm in tack-
ling these challenges by enabling optimisation and tradeoffs
between computational quality, application throughput, system
reliability and energy efficiency.

System behaviour can be optimised through the use
of various techniques whilst satisfying application require-
ments. These include dynamic voltage and frequency scaling
(DVES) [1], per-core power gating [2], concurrency throt-
tling [3], dynamic task mapping and thread migration [4].
Furthermore, many different approaches to runtime manage-
ment exist, from control based approaches that rely on off-
line profiling for task mapping [4] to on-line learning based
algorithms [5]. While RTMs are typically designed to address
general challenges, such as energy efficiency or thermal man-
agement, they are largely implemented on specific platforms
or with specific classes of application, e.g. multimedia [6] or
image processing [7].

This work was supported by the PRIME programme grant EP/K034448/1
(http://www.prime-project.org) and EPSRC grant EP/L000563/1.
! Available at: https://github.com/PRiME-project/PRiME-Framework

Application layer

[App2 = App Ny J

: /App\ App to RTM

' App
! knobs API monitors
[Runtime management layer]
Device RTM to device Device

monitors

Device layer

[------ }

Fig. 1. Cross-layer framework and APIs enabling communication between the
application, runtime management and device layers using knobs and monitors.

Runtime management can be enhanced by introducing ab-
straction between the different parts of a system with an
interface that is consistent across different types of platform
and application. Fig. 1 shows how this can be achieved by
separating the system into three distinct layers, i.e. application,
runtime management and device, that connected through an
API with cross-layer constructs called knobs and monitors.
Specifically, knobs allow the tuning of device and application
parameters by the runtime management layer, while monitors
enable the measurement of device properties and the observa-
tion of application behaviour.

Several framework exist that achieve partial abstraction;
however, the PRIME framework is the first to provide a fully
application- and platform-agnostic solution. Frameworks based
on the Heartbeats API [8]-[12] provide abstraction between
application and runtime management with monitors that use
periodic signals to convey application throughput. Heartbeats-
based frameworks cannot convey non-temporal metrics, such
as accuracy or quality, which can be used to provide additional
opportunities for optimisation by expanding the operating
space. For example, exposing throughput and quality can
enable tradeoffs between these metrics and power. ARGO [13]
provides more comprehensive abstraction of application to
runtime management interaction by providing both knobs
and monitors; however, ARGO does not consider interaction
between the runtime management and device layers.

The remainder of this abstract provides an overview of
the PRiIME Framework and demonstrates its operation with
multiple applications and platforms.

II. FRAMEWORK CONCEPTS

This section summarises the PRIME Framework’s underly-
ing concepts.

Structure: Separation of the system into distinct layers
reduces the design complexity of runtime management ap-
proaches and provides flexibility during operation. The ap-
plication layer comprises any number of software processes,
while the device layer includes the platform and its software
drivers. The runtime management layer comprises a runtime
manager (RTM) that is responsible for the control and moni-
toring of the other layers. This separation ensures portability
and cross-compatibility; applications and device drivers only
need to be written once for use with any implemented RTM.

Communication: Knobs and monitors facilitate communi-
cation between the layers. Bounds, attached to both knobs
and monitors in the form of minima and maxima, convey
targets and constraints to the runtime management layer. Knob
bounds represent a range of allowed values while monitor
bounds represent a range of desired values. An RTM’s primary
objective is to ensure that the monitor values of all applications
and the device remain within bounds.

Weights: Applications may have multiple monitors that
expose different performance objectives with differing pri-
orities. In the PRiIME Framework, priority is expressed as
a numeric weight attached to each monitor. These weights
instruct the RTM to expend proportional effort in optimising
each monitor’s value. In a similar manner, application priority
is indicated through an attached weight such that a higher level
of consistency can be ensured by foreground processes in a
multi-tasking scenario.

Concurrency: Real-world systems commonly execute ap-
plications concurrently that compete for hardware resources.
The RTM is required to manage resources so that each appli-
cation meets its performance targets. The PRIME framework
provides a mechanism to identify and manage concurrently
executing applications. This allows knobs and monitors to be
grouped and traded-off between applications by the RTM.

Types: Knobs and monitors each have a type selectable from
a discrete set of options. This gives hints to the RTM, which
simplifies the process of determining the function of knobs
and the properties represented by monitors, and represents
a compromise between complete agnosticism and the full
provision of information.

Spaces: Knobs and monitors are expressed in unit-less
formats to maintain application and device agnosticism. The
PRiME Framework allows discrete- and continuous-valued
versions of each knob and monitor so that the appropriate
optimisation and control process can be used by the RTM.
For example, a boolean choice (i.e. {0,1}) does not require
iterative convergence. These spaces enable the translation of
application-specific information into agnostic sets.

3
capppertmin. T -
2

Performance (KIPS)

Temperature (°C) Frequency (GHz)

)
Time (s)

Fig. 2. Device temperature optimisation under application performance
constraints using the controller RTM, including dynamic adjustment of the
temperature threshold from 80 to 60 °C. Reproduced from [16].

Adaptability: All bounds and weights are adjustable at
runtime and no restrictions are placed on when update to these
can occur. Most commonly, applications create their knobs
and monitors before being executed, however no limitation is
imposed on such events occurring partway through application
execution. Applications are allowed to be attached to and
detached from the framework at any point during runtime.
This capability is in contrast to existing frameworks, most of
which assume a constant application set, contrary to the typical
use of many contemporary systems.

III. FRAMEWORK DEMONSTRATION

Experiemnts have been carried out to validate the framework
across a range of platforms, including multi-core heteroge-
neous and many-core homogeneous systems, and a range
of applications from the numerical, multimedia and iterative
domains. The PRiME Framework has been used for exploring
reliability tradeoffs [14], demonstrating the benefit of exposing
application monitors and controls [15] and to identify pareto-
optimal points of one application operating on different het-
erogeneous platforms [16]. This section presents a selection of
these experiments to demonstrate the framework’s capabilities.

A. Agnostic Runtime Management

Fig. 2 demonstrates the basic operation of the framework
and dynamic nature of knobs and monitors with a simple
illustrative runtime controller that attempts to keep device
temperature below a specified maximum, temp_mon.max,
whist maximising application throughput above app_perf.
min. This experiment was carried out on the CPU cores
of an Odroid XU3, a heterogeneous multi-core system with
two quad-core CPU clusters and a GPU, and a Whetstone
numerical benchmark application. The application exposes a
throughput monitor and the device exposes a temperature
monitor and frequency knob. Initially, the controller set the
device frequency to maximum and observed the device temper-
ature until it exceeded the limit specified by temp_mon .max
(80°C). The controller then reduced the device frequency
until the temperature bound was met. At 50 seconds, the
device reduced the value of temp_mon .max to 60°C and the
controller responded by reducing the device frequency further.

Application Normalized
3

Gﬁ
}
f

A5 Frequent

- e
J—L i

o 0 £ 2) 50 &
Time (s)

Application Iterations

Fig. 3. Demonstration of application monitor weights for performance and
error being used to influence runtime management of the Jacobi application.
Vertical lines show when the monitor weights are updated by the application
and black lines indicate the new target values. Reproduced from [15]

The controller used for this experimenent contains no device
or application specific code. As such, it is application- and
platform-agnostic and could operate with any application and
platform that exposes the correct knobs and monitors.

B. Monitor Weighting and Tradeoffs

Fig. 3 shows how monitor weighting can be used to prioti-
tise the optimisation of one application metric over another and
how application and device knobs enable this. The controller in
this experiment uses the application monitor weighting to set
proportional targets for each monitor within their bounds and
then adjusts device and application knobs to meet these targets.
The Jacobi iterative method, an algorithm that is commonly
embedded in real-world applications as a computational kernel
for the purpose of generating an approximation to a physical
process, was used as the application for this experiment.
Jacobi exposes throughput and accuracy monitors along with
an iterations knob. Again, the Odroid XU3 was used as the
experimental platform.

Initially, the throughput monitor (top graph in Fig. 3) had a
higher weighting than the accuracy monitor (second graph in
Fig. 3). As such, the controller determined proportional targets
and adjusted the frequency and iterations knobs to prioritise
performance over accuracy. At 20 seconds, the weights of the
two monitors were swapped and the controller set new target
values that prioritise accuracy over performance. To meet these
updated targets, the controller increased the iterations knob
to improve accuracy. This reduced the throughput below the
target so the operating frequency was increased. At 30 seconds,
the weights were swapped again and the controller responded.

C. Overheads

As with any form of abstraction, the framework introduces
overheads. Energy overheads were evaluated by implementing
two recently reported runtime management approaches within
the framework and comparing to their behaviour without the
framework. Latency overheads were evaluated by timing the
operation of API interactions. The framework was found to

introduce a modest energy overhead of 4.23% to 5.48% and
a latency overhead of 80-200 us per API call [16].

IV. CONCLUSIONS AND FUTURE WORK

This abstract has introduced the PRiME Framework and
shown how it enables application- and platform- agnostic
runtime management for contemporary many-core, multi-core
and heterogeneous systems with acceptable overheads. Work
is ongoing to provide further validation of the framework and
investigations have begun into its application to future many-
core systems. While the framework enables fully agnostic
runtime management of systems, existing approaches still rely
on having specific knobs and monitors available to optimise.
Work is required to investigate the feasability of a fully
general runtime management approach that can operate with
any application and platform combination.

REFERENCES

[11 A. Das et al, “Reinforcement Learning-based Inter- and Intra-
application Thermal Optimization for Lifetime Improvement of Mul-
ticore Systems,” in ACM/EDAC/IEEE Design Automation Conf., 2014.

[2] A. M. Rahmani er al., “Reliability-aware runtime power management
for many-core systems in the dark silicon era,” IEEE Trans. on VLSI
Syst., vol. 25, no. 2, 2017.

[3] R. Cochran et al., “Pack & Cap: Adaptive DVFS and Thread Packing
Under Power Caps,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44. New
York, NY, USA: ACM, 2011, pp. 175-185.

[4] B. K. Reddy et al., “Inter-cluster Thread-to-core Mapping and DVFES on
Heterogeneous Multi-cores,” IEEE Trans. on Multi-Scale Comput. Syst.,
vol. PP, no. 99, pp. 1-1, 2017.

[5] L. A. Maeda-Nunez et al., “PoGo: An Application-specific Adaptive
Energy Minimisation Approach for Embedded Systems ,” in HiPEAC
Workshop on Energy Efficiency with Heterogenous Comput., 2015.

[6] Y. G. Kim et al., “Enhancing Energy Efficiency of Multimedia Appli-
cations in Heterogeneous Mobile Multi-core Processors,” IEEE Trans.
Comput., vol. 66, no. 11, 2017.

[71 S. Yang et al., “Adaptive Energy Minimization of Embedded Heteroge-
neous Systems using Regression-based Learning,” in Int’l Workshop on
Power and Timing Modeling, Optim. and Sim., 2015.

[8] H. Hoffmann et al., “Application Heartbeats: A Generic Interface for
Specifying Program Performance and Goals in Autonomous Computing
Environments,” in Int’l Conf. on Autonomic Comput., 2010.

[9]1 H. Hoffmann et al., “A Generalized Software Framework for Accurate

and Efficient Management of Performance Goals,” in Int’l Conf. on

Embedded Software, 2013.

E. Paone et al., “Evaluating Orthogonality between Application Auto-

tuning and Run-time Resource Management for Adaptive OpenCL

Applications,” in [EEE Int’l Conf. on Appl.-specific Syst., Arch. and

Proc., 2014.

F. Gaspar et al., “A Framework for Application-guided Task Manage-

ment on Heterogeneous Embedded Systems,” ACM Trans. on Arch. and

Code Optim., vol. 12, no. 4, 2015.

A. Baldassari et al., “A Dynamic Reliability Management Framework

for Heterogeneous Multicore Systems,” in IEEE Int’l Symp. on Defect

and Fault Tolerance in VLSI and Nanotechnology Syst., 2017.

D. Gadioli et al., “Application Autotuning to Support Runtime Adap-

tivity in Multicore Architectures,” in Int’l Conf. on Embedded Comput.

Syst.: Architectures, Modeling, and Simulation, 2015.

V. Tenentes et al., “Hardware and software innovations in energy-

efficient system-reliability monitoring,” in 2017 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), 2017.

C. Leech et al., “Application Control and Monitoring in Heterogeneous

Multiprocessor Systems,” in 13th International Symposium on Reconfig-

urable Communication-centric Systems-on-Chip (ReCoSoC), Submitted.

G. M. Bragg et al., “An Application- and Platform-agnostic Control

and Monitoring Framework for Multicore Systems,” in 3rd International

Conference on Pervasive and Embedded Computing (PEC), Submitted.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

