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Abstract

We propose a comprehensive and coherent approach for mortality projection using a max-
imum likelihood method which benefits from full use of the substantial data available on
mortality rates, their improvement rates, and the associated variability. Under this ap-
proach we fit a negative binomial distribution to overcome one of the several limitations of
existing approaches such as insufficiently robust mortality projections as a result of employ-
ing a model (e.g. Poisson) which provides a poor fit to the data. We also impose smoothness
in parameter series which vary over age, cohort, and time in an integrated way. Generalised
Additive Models (GAMs), being a flexible class of semi-parametric statistical models, allow
us to differentially smooth components, such as cohorts, more heavily in areas of sparse data
for the component concerned. While GAMs can provide a reasonable fit for the ages where
there is adequate data, estimation and extrapolation of mortality rates using a GAM at
higher ages is problematic due to high variation in crude rates. At these ages, parametric
models can give a more robust fit, enabling a borrowing of strength across age groups. Our
projection methodology assumes a smooth transition between a GAM at lower ages and a
fully parametric model at higher ages.

Keywords: Age-period-cohort model, generalised additive model, overdispersed data,
projection, expert opinion.

1 Introduction

Recent mortality improvements in most countries have led to higher life expectancies. Since this
has significant social policy implications, for example in such areas as pensions and healthcare,
modelling and projecting mortality rates becomes imperative. For example, in the insurance
industry, the risk of higher than expected annuity payments, or the so-called ‘longevity risk’ needs
to be quantified for solvency requirements. The mortality projections are not only important for
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pensions or healthcare but also in allocating resources and government planning, for example, for
housing, education and labour market. This requires probabilistic models for mortality rates. In
the past decade, a vast literature on probabilistic mortality models has been developed. However,
very few of them are suitable for the entire age range. In this paper, instead of focusing only on
older ages, we present a mortality projection methodology for the entire population.

Probabilistic mortality projection models can be broadly summarised under four categories:
generalised bilinear, generalised linear, semi-parametric and generalised additive models. The
original Lee-Carter model (Lee and Carter, 1992) is the pioneering method in this area. This
model is an example of a bilinear model and has two factors, i.e. age and period, to model and
forecast mortality rates. The other bilinear models include extensions of the Lee-Carter model,
for example three-factor models that encompass the cohort effect or Poisson error structure
instead of an implied normality assumption (see e.g. Renshaw and Haberman (2006); Brouhns
et al. (2002)). Whilst these models can provide a satisfactory fit, they also have some undesirable
features. In particular their parameter estimates can be sensitive to the range of years used for
fitting, they are challenging to estimate efficiently.

Alternatively, linear (rather than bilinear) models with age and period as factors were investi-
gated by Renshaw and Haberman (2003). Different linear structures were developed and com-
pared by Cairns et al. (2009, 2011a). Many studies show that coherent mortality forecasts can
be obtained for different populations using these models (e.g. Cairns et al. (2011b); Li and
Hardy (2011); Börger and Aleksic (2014)). Currie et al. (2004) proposed modelling mortality
as a smooth function in two dimensions (age and time) using P-spline methodology, although
such an approach can be difficult to incorporate into a projection since it ignores the majority
of the observed historical mortality experience and is too sensitive to mortality in the base year,
even after smoothing (Li et al., 2010). Besides, this approach does not allow for coherent projec-
tions for different populations (Börger and Aleksic, 2014). Approaches which fully account for
uncertainty include Cairns et al. (2006, 2011b), Bennett et al. (2015) and Hilton et al. (2019).

In particular, Hilton et al. (2019) provide a Bayesian approach to producing mortality projections
based on the use of generalised additive models (GAMs) for the majority of the age range, but
with an inclusion of a parametric model at older ages where the data are sparse. Their approach
allows for smooth functions of age and cohort effects and provides estimates of mortality at
young ages as well as extreme ages. Bayesian models incorporate multiple sources of uncertainty
and expert opinion in a natural way. However, implementing a full Bayesian approach might be
expensive, especially if computing marginal likelihoods requires high dimensional integrals and
posterior distributions are analytically intractable.

In this paper we present the maximum likelihood approach to the methodology presented in
Hilton et al. (2019). Additionally, we incorporate expert opinion in our projections. We model
the mortality improvements instead of mortality rates allowing for overdispersion. This is be-
cause we believe mortality improvements can be modelled by a stable process which is required
to be projected forward based on the past experience. Projection of mortality improvement
rates is advocated by Plat (2011), Haberman and Renshaw (2012, 2013) and more recently by
Börger and Aleksic (2014). In the United Kingdom (UK), the Continuous Mortality Investigation
(CMI) introduced Age-Period-Cohort Improvement (APCI) model as a new mortality projection
method (CMI, 2016). However the CMI does not use the APCI model as a stochastic model
to project future mortality rates. The CMI uses the APCI model to simply obtain the initial
mortality improvements (separated by age, period and cohort related improvements) for projec-
tions. Richards et al. (2019) implemented the APCI model as a fully stochastic model. They
compared this model to the Age-Period, Age-Period-Cohort and Lee-Carter models and found
that the APCI model fits the data better than these other models considered in their paper.

In CMI (2016), the CMI recognises that the Office for National Statistics (ONS) dataset show
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considerable overdispersion, relative to a Poisson error distribution. In the existence of overdis-
persion, modelling the observed number of deaths under a single parameter distribution such
as a Poisson distribution (where the variance is restricted to be equal to the mean) will lead
to underestimation of uncertainty. To allow for overdispersion, we use a more flexible negative
binomial distribution in modelling. We also impose smoothness in parameter series which vary
over age, cohort, and time in an integrated way. GAMs, being a flexible class of semi-parametric
statistical models, allow us to differentially smooth components, such as cohorts, more heavily
in areas of sparse data for the component concerned.

While GAMs can provide a reasonable fit for the ages where there is adequate data, estimation
and extrapolation of mortality rates using a GAM at higher ages is problematic due to high
variation in crude rates. At these ages, parametric models can give a more robust fit, enabling
a borrowing of strength across age groups. Our projection methodology is based on a smooth
transition between a GAM at lower ages and a fully parametric model at higher ages. We model
infant rates separately and propose a new method to model and predict them. Since spline-based
methods are used widely in the literature (especially for the entire age range), as discussed above,
we compare our results to the P-spline model where relevant.

The rest of the paper is organised as follows: In Section 2, we introduce the data and our
methodology for modelling the mortality improvements, and how a smooth transition from the
smoothing spline to an old-age model is attained. In Section 3, we present our estimates for
mortality rates and investigate the robustness of the proposed methodology. In Section 4 we
present our mortality projections and provide comparisons with the UK national population
projections. Our conclusions are in Section 5.

2 The data and the model

We use the UK population data between 1961 and 2013 obtained from the Human Mortality
Database (Human Mortality Database, 2019). The data include the mid-year exposures and
number of deaths for each year of age for males and females.

Here we propose a model that contains terms which specifically account for variation of mortality
differences over time and between different ages and cohorts. Let mxt denote central mortality
rates at age x in year t, then we consider as the initial model specification

log
mxt

mx t−1
= αx + κt + γt−x (1)

where αx can be interpreted as a baseline annual mortality improvement at age x, κt as the
level of mortality improvement in year t and γt−x represents cohort differences in mortality
improvement since cohorts are indexed by year of birth (t− x).

Model (1) is an age-period-cohort model for log-mortality differences (mortality logratios). Here
we represent mortality improvements as logratios, rather than as relative differences, where the
model (1) would be expressed as

mxt −mx t−1

mx t−1
= αx + κt + γt−x.

For all but large mortality rates, differences between log mxt
mx t−1

and mxt−mx t−1

mx t−1
are negligible.

This model is similar in structure to models proposed by Renshaw and Haberman (2003) and
the non-spatial component of Bennett et al. (2015).

Note that in terms of mortality rates, model (1) can be expressed as

logmxt = µx + αx t+ κt + γt−x (2)
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where there is a straightforward correspondence between the κt and γt−x parameters of models
(1) and (2). Due to the linear relationship between age, period and cohort components of the
model, constraints are required in order to identify these effects. The identifiability constraints
we use for model (1) are ∑

κt = 0, (3)∑
γt−x = 0, (4)∑
(t− x)γt−x = 0. (5)

That is, the period effect is constrained to sum to zero. Similarly, the cohort effect is constrained
so that the sum of effects is zero, and display zero growth over the whole range of cohorts.

In Section 3 we present parameter estimates for model (1), together with µx. This model, being
simply a generalised linear model, is efficient to fit. Furthermore its parameter estimates seem
to be robust to the time window used to fit the models. Börger and Aleksic (2014) advocate the
use of this model for projecting mortality, and we also find that it has the required properties of
adequately and robustly fitting the observed data.

In the literature it is very common to estimate the model parameters based on the Poisson log-
likelihood. However, under the Poisson model the variance is restricted to be equal to the mean,
an assumption which is implausible for a large inhomogeneous population. A more flexible model
would be a negative binomial model where the log-likelihood is

l(θ, a) =
∑
x,t

a log

(
a

Extmxt(θ) + a

)
+
∑
x,t

dxt log

(
Extmxt(θ)

Extmxt(θ) + a

)
+
∑
x,t

log Γ(a+dxt)−n log Γ(a).

Here θ represents the model parameters (αx, κt, γt−x), dxt is the observed death count, Ext is the
central exposure to risk at age x in year t, a is the dispersion parameter such that the variance
is Extmxt(θ) + (Extmxt(θ))2/a and n is the number of positive values of Ext.

One disadvantage of model (1) is that the maximum likelihood estimates of some of the model
parameters do not vary smoothly (Figure 1). However, this can be easily overcome by adopting
an estimation method which penalises roughness in the series of estimates for model (1) (e.g.
penalised likelihood or Bayesian). One possible way of obtaining smoother estimates is to modify
(2) to yield a generalised additive model of the form:

mxt = exp (sµ(x) + sα(x) t+ κt + sγ(t− x)) , (6)

In (6), sµ, sα and sγ denote arbitrary smooth functions, which can be estimated by balancing
goodness-of-fit to the observed data with smoothness of the corresponding function (Wood,
2006). This can be fitted by using standard gam packages in R (e.g. using gam function in mgcv
package).

For the highest ages x, for which observed mortality experience is sparse, we recommend that
the baseline mortality µx and the age-specific mortality differences αx are estimated by using
parametric models, for example log-linear model or logistic model, with parameters estimated
from the mortality data for the older ages. The resulting log-linear model, with µx = µ + µXx
and αx = α+ αXx has the form

mxt = exp (µ+ µXx+ (α+ αXx)t+ κt + sγ(t− x)) , for x ≥ x0 (7)

and logistic model has the form

mxt =
β exp (µ+ µXx+ (α+ αXx)t+ κt + sγ(t− x))

1 + exp (µ+ µXx+ (α+ αXx)t)
, for x ≥ x0 (8)
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where x0 is an optimal age to make the transition from smooth to linear model, κt and sγ(t−x)
are the estimates obtained from fitting (6) to the main body of data (0 < x < x0). In (8), κt
and sγ(t− x) can be considered as an unstandard ‘offset’ as they only appear in the numerator
and therefore can be fitted using a general optimisation function (e.g. optim or nlm) in R .

The log-linear model has therefore the following estimates of the baseline mortality

µx =

{
sµ(x) x < x0
µ+ µXx x ≥ x0

and mortality improvement

αx =

{
sα(x) x < x0
α+ αXx x ≥ x0

for both males and females. For the logistic model these estimates are, respectively,

µx =

{
sµ(x) x < x0

log
(
β exp(µ+µXx)
1+exp(µ+µXx)

)
x ≥ x0

and

αx =

{
sα(x) x < x0

log
(
β exp(µ+µXx+α+αxx)
1+exp(µ+µXx+α+αxx)

)
− log

(
β exp(µ+µXx)
1+exp(µ+µXx)

)
x ≥ x0

also for both males and females. In this paper we only present the results using the logistic
model for older ages.

We treat infant (age 0) mortality separately. Here, we exclude the period effect κt, and fit the
model

m0t = exp (µ0 + α0 t+ sγ(t)) (9)

where sγ(t) is the estimate of the cohort effect for x = 0 obtained from fitting (6) to the main
body of data (0 < x < x0). We have investigated the dependence of infant mortality rates on
both the time and the cohort effects, estimated from the rest of the data. It transpired that
infant mortality has a unique pattern of period variation and therefore the time effect was a
very weak predictor for the infant rates. On the other hand, the infant mortality exhibits strong
dependence on the cohort effect estimated from the rest of the data (see Figure 9).

3 Estimation of mortality rates

Dodd et al. (2018) suggest that for England and Wales mortality data, an optimal age (x0) at
which to make the transition from smooth to logistic model is 93 for males and 91 for females,
based on 2010-2012 mortality data. We assume that these thresholds are fixed over time. This
is a strong assumption and the transition age x0 at each year might be included in the model
as an unknown parameter. However, the added complexity required for different threshold ages
may not be justified since our preliminary investigation shows negligible effect on mortality
projections.

Figure 1 presents the maximum likelihood estimates of the parameters of model (1) under the
Poisson distribution (black solid line) and negative binomial distribution (red solid line) for males
aged between 1 and 92 years, using data for the period 1961-2013.

For model (1) to be considered as a credible alternative to the commonly used P-spline method-
ology for smoothing observed mortality rates, the fit of the model to the observed data should
not be significantly worse. With regard to an assessment of model fit, Figure 2 presents the

5



0 20 40 60 80 100

−8

−7

−6

−5

−4

−3

−2

−1

Age

µ x

0 20 40 60 80 100

−0.04

−0.03

−0.02

−0.01

0.00

Age

α x

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Year

κ t

1963 1973 1983 1993 2003 2013

−0.10

−0.05

0.00

0.05

0.10

Cohort

γ t−
x

18
73

18
83

18
93

19
03

19
13

19
23

19
33

19
43

19
53

19
63

19
73

19
83

19
93

20
03

20
13

Figure 1: Maximum likelihood estimates of the parameters of model (1) under the Poisson model
(black line) and the negative binomial model (red line), data for males, 1961-2013.
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Figure 2: Comparison of residuals, data for males, 1961-2013: the P-spline approach (left panel)
and model (1) assuming the Poisson distribution (right panel). For each year and age group the
residual is categorised according to its absolute value and plotted with a corresponding colour
ranging from green (small residuals) through to red (large residuals).
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square of Pearson residuals from the P-spline method, and from model (1) assuming the Poisson
distribution.

It can be observed from Figure 2 that model (1) fits the data at least as well as the P-spline
method. Indeed, by conventional goodness-of-fit measures (residual deviance), model (1) fits
significantly better than the P-spline model, even allowing for its increased complexity in terms
of the number of degrees of freedom required for parameter estimation. Model (1) seems to do
a better job of estimating mortality in the age range 15-20 (at the start of the ‘accident hump’
related to external causes of death during early adulthood, especially for men). Both models
have difficulty fitting the 1919 cohort (see Cairns et al., 2014), but arguably this cohort is of
limited significance for population projection. Both models, however, fail to fit when assessed by
conventional goodness-of-fit measures. Evidence for this is the large number of Pearson residuals
with absolute value greater than 3. On the other hand, estimates which allow for overdispersion,
either model (1), fitted by maximising a negative binomial likelihood, or a P-spline fitted by quasi-
likelihood produce residuals within a much more acceptable range (see Figure 3). Therefore, we
use the negative binomial model to estimate the model parameters for the rest of our analyses.
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Figure 3: Comparison of residuals, data for males, 1961-2013: the P-spline approach allowing
for overdispersion (left panel) and model (1) assuming the negative binomial distribution (right
panel). For each year and age group the residual is categorised according to its absolute value
and plotted with a corresponding colour ranging from green (small residuals) through to red
(large residuals).
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One advantage of the P-spline approach is that it provides estimates of mortality rates that vary
smoothly over age and time, as illustrated in Figure 4, which accounts for overdispersion through
the maximum Poisson quasi-likelihood estimation. Significant cohort effects, and cohorts with
large annual mortality improvements can be also seen in this figure. Under this P-spline method,
the projections will only depend on the most recent years and they would be largely insensitive
to historical data.

For model (1), the maximum likelihood estimates of some of the model parameters, illustrated
in Figure 1, do not vary smoothly and as a consequence the estimated mortality rates, presented
in Figure 5, are also more irregular than would be desirable.
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Figure 4: Heatmap of the fitted mortality improvements for the P-spline model allowing for
overdispersion through a penalised quasi-likelihood method, data for males, 1961-2013. For each
year and age group the estimated mortality improvement is categorised according to its absolute
value and plotted with a corresponding colour ranging from green (large decrease) through to
red (large increase).

To obtain smoother estimates we use model (6). Figure 6 displays the estimates for the resulting
smooth model (6), superimposed over the corresponding estimates for model (2) on a mortality
improvement scale. Not surprisingly, the estimates for model (6) are much more regular and have
the desired smoothness, and the fitted mortality rates, displayed in Figure 7, are also smoother.
There is an increase in residual deviance, but this is compensated by a corresponding decrease
in the effective complexity of the model. Note also that the vertical strips correspond to the year
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Figure 5: Heatmap of the fitted mortality improvements for model (1), data for males, 1961-2013.
For each year and age group the estimated mortality improvement is categorised according to
its absolute value and plotted with a corresponding colour ranging from green (large decrease)
through to red (large increase).
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effect, which we do not smooth.
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Figure 6: Estimates of the parameters of model (6) (red lines), superimposed over the corre-
sponding estimates for model (2) (black lines) on a mortality improvement scale, data for males,
1961-2013.

Figure 8 presents the combined estimates of the parameters of models (9), (6) and (8). Under the
logistic model (8) mortality rates flatten off, converging to a limiting rate β as x tends to infinity.
We estimate β as 1.48 for males and 0.99 for females – the values which we set as constant over
time.

The observed and fitted infant mortality using model (9) are displayed in Figure 9. If the cohort
effect is not considered in the model, the estimates of infant mortality rates would be a straight
line (on the log scale). By borrowing information on cohort effect from the rest of the data by
age, we can identify the cohort improvements in infant mortality rates, e.g. around 1990.

Finally, we investigate the robustness of the proposed methodology by exploring the sensitivity
of the estimated mortality rates in a later year (2011) to changes in the data used to estimate
the model. Two different approaches are taken. In the first, we compare the estimates of 2011
mortality rates and 2011-12 mortality improvements for model (6) fitted for ages 1 ≤ x < x0
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Figure 7: Heatmap of the fitted mortality improvements for model (6), data for males, 1961-2013.
For each year and age group the estimated mortality improvement is categorised according to
its absolute value and plotted with a corresponding colour ranging from green (large decrease)
through to red (large increase).
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by using data from 1961-2013, with the equivalent estimates fitted for 1971-2013 and 1981-2013;
see Figure 10. Then, we compare the estimates of 2011 mortality rates and 2011-12 mortality
obtained by using data from 1961-2011 with the equivalent estimates fitted to the 1961-2012 and
1961-2013 series; see Figure 11. In Figures 10, 11 and 12 we also provide a comparison with the
P-spline approach.

Both in Figures 10 and 11 there is a big difference between our proposed model and the P-
spline method in terms of the fit for 2011. Under the P-spline method there is a quite dramatic
mortality improvement at around age 20, which we are not picking up in our model. This is
because under the P-spline model the big mortality improvement at late teens in current years
are projected forward as an age specific improvement, without taking the historical data into
account (see Figure 4). Since our model takes the whole period into account instead of only the
current years, we do not see such a dramatic improvement in mortality around age 20. This is
the largest difference between the future mortality projections produced by the two models.
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Figure 10: Estimated 2011 mortality rates (left panel), and 2011-12 mortality improvements
(right panel) for males, using model (6) and different historical fitting periods.

In the proposed projection methodology, existing cohort components are included in projections,
but the period effects (and any as yet unobserved cohorts) are projected as zero, which is consis-
tent with the model. Hence, the mortality improvements for 2011-12 in Figures 10 and 11 ignore
any estimated period effect for 2012, even where the 2012 data have been used in fitting. Our
actual proposal would be to project forward from the final year of observed data (2013) in which
case the base mortality rates and mortality improvements are presented in Figure 12.

Note that the scale of Figure 12 is different than the scale of Figure 10 and therefore the difference
between different historical fitting periods is more obvious. The 1961-2013 or 1971-2013 datasets
broadly show similar patterns. However, if we ignore the data from 1961 to 1980, we move to
a regime where there are much bigger mortality improvements at age around 20. As a result,
not surprisingly, when we lose almost 40% of the data we see some sensitivity in mortality
improvements.
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Figure 11: Estimated 2011 mortality rates (left panel), and 2011-12 mortality improvements
(right panel) for males, using model (6) and different recent fitting periods.
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Figure 12: Estimated 2013 mortality rates (left panel), and 2013-14 mortality improvements
(right panel) for males, using model (6) and different historical fitting periods.
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4 Projection of mortality rates

Based on the parameter estimates of a model such as (6), providing point projections over any
future time horizon is straightforward. Such a projection only requires extrapolation of the time
effects κt for future years t, and the cohort effects γt−x for future birth cohorts. Because the
time effects κt are constrained to zero in the final observed year and the estimated κt series
approximates a random walk with zero-mean increments (see Figure 6), then it is reasonable
to forecast κt to be zero for future t. Uncertainty about these forecasts is incorporated by
assuming normally distributed increments with variance, σ2κ, estimated from the κt series. A
similar argument suggests that it is reasonable to also set cohort effects for future cohorts to
zero. We do not include uncertainty about future cohorts, as these cohorts are likely to have a
negligible effect on population mortality over the forecast horizon.

The confidence intervals can be calculated using the standard deviation obtained from the co-
variance matrix of the estimated model parameters, the variance of the observed period effect
and the additional variance for the expert opinion, if used. More precisely for the main model
(6) we have

V ar(log m̂xt) = V ar (sµ(x) + sα(x) t+ sγ(t− x)) + σ2κ, (10)

where the first term on the right hand side is the variance of a linear function of GAM parameters
which can be computed using standard output from GAM fitting in R. For the old-age model,
applying the delta method (see e.g. Schervish (1995)), we have

V ar(log m̂xt) = ∆T
xtV∆xt + σ2κ (11)

where V is the covariance matrix of the model parameters (β, µ, µX , α, αX) and

∆xt =


1
δxt
xδxt
tδxt
xtδxt


and

δxt = 1 − exp (µ+ µXx+ (α+ αXx)t)

1 + exp (µ+ µXx+ (α+ αXx)t)
.

Where expert opinion is incorporated in the forecasts, it is also incorporated in the uncertainty
with the expert uncertainty and parameter uncertainty being weighted correspondingly.

We present our 2025 and 2055 projections for males and females in Figure 13.

In Figures 14 and 15 we compare the projections for 2025 and 2055 to the respective values from
the 2014-based national population projections of the ONS, which use the past and projected
data from the period and cohort life tables, in a range of variants: principal, high, and low
(ONS, 2015a,b). The projection methodology of the ONS is based on a P-spline model, and the
technical details can be found in ONS (2016).

We understand that the discontinuity of the ONS rates after age around 110 is due to merging
the estimated qx for different constituent countries of the UK. There is some discrepancy between
ONS projections and our projections, especially around the accident hump. As mentioned before
this is because of the current high improvement rates that is projected forward under the P-spline
method. For both males and females, from age around 60 onwards the projections are consistent
with each other.

It has to be noted that the ONS projections are moderated by experts, whereas our proposed
model is completely data driven. We believe that the use of expert knowledge is a useful tool
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Figure 13: Mortality projections for 2025 (left panel) and 2055 (right panel) for males and
females.
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Figure 14: Comparison of 2025 mortality projections for males (left panel) and females (right
panel) with ONS projections.
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Figure 15: Comparison of 2055 mortality projections for males with ONS projections.

for moderating predictions provided by the model. A slightly modified version of the proposed
approach can allow us to make full use of all available sources of information, including expert
opinion.

The ONS projections assume a convergence in annual mortality improvement to a constant value
over a fixed time horizon (currently 25 years) across all ages, for every cohort born after 1960.
For older cohorts, the convergence is imposed on the series of cohort mortality improvements.
Our modification remains in the spirit of the approach proposed earlier, with the age-specific
mortality improvements (αx) converging to a common, expert-specified value and the cohort
effects converging to zero over a 25 year time horizon. We incorporate the convergence using the
same weight function given in (12):

wh =

{
1 − 3

(
h
25

)2
+ 2

(
h
25

)3 for 0 ≤ h ≤ 25

0 for h ≥ 25
(12)

where h represents the projection period. So, for example, the age-specific mortality improve-
ments incorporating the experts in period h, α̂ex,h, becomes

α̂ex,h =

{
αe(1 − wh) + α̂xwh for 0 ≤ h ≤ 25

αe for h ≥ 25
(13)

Here α̂x is the estimated year-on-year improvement by age effect using (6), (8) and (9). In line
with the ONS mortality assumptions, we assume the value of the target expert-based mortality
improvement is 1.2%, independent of age and sex, i.e. αe = −1.2%.

When projecting the mortality rates, one final adjustment is made to fix any divergence between
male and female rates at very old ages (see Figure 13). This is because we do not believe
that the male and female mortality rates will start to diverge at very high ages following steady
convergence up to this point. This also applies where the divergence occur after the rate functions
cross. Therefore starting from the age where the difference between male and female mortality
rates starts to increase (if that occurs) we keep the difference between the male and female
mortality rates at a constant value and we obtain weighted mortality rates using
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mm
xt = mm

xtw
l
xh +

(
mf
xt + min(mm

xt −mf
xt)
)

(1 − wlxh)

and
mf
xt =

(
mm
xt − min(mm

xt −mf
xt)
)
wlxh +mf

xt(1 − wlxh)

where
wlxh =

lmxh

lmxh + lfxh

and lxh represent the expected number of survivors to exact age x in year h from a birth popu-
lation of size l0 = 100, 000 and the weights are used as a proxy for survivorship probabilities at
age x and any future year for males and females.

The comparison of 2025 and 2055 projections after these adjustments can be seen in Figure 16.
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Figure 16: Mortality projections for 2025 (left panel) and 2055 (right panel) for males and
females.

In Figures 17 and 18, we compare our 2025 and 2055 mortality projections, this time incor-
porating the expert opinion and other adjustments we mentioned, with the 2014-based ONS
projections. These adjustments, especially incorporating the expert opinion, visibly decreases
the difference between two sets of projections. Also, restricting continuous year-on-year improve-
ments by age enables us to avoid implausible long term projections at ages where we estimate
high mortality improvements from the model.

Finally, in order to investigate the forecast performance of the proposed model, we present the
2014-2017 forecasts against the out of sample outcomes obtained from ONS (2018). Note that
we used mortality data between 1961 and 2013 to estimate the model parameters. In Figure 19
we present the mortality projections for males under the proposed model, the realised mortality
rates for a 4-year forecast horizon and the 2014-based mortality projections of the ONS for the
same horizon.

Although we have not implemented any formal tests of how well these forecasts subsequently
performed, for the majority of the ages, the mortality projections under the proposed model
adheres acceptably well to the realised mortality rates.
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Figure 17: Comparison of 2025 mortality projections for males (left panel) and females (right
panel) with ONS projections.
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Figure 18: Comparison of 2055 mortality projections for males with ONS projections.
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Figure 19: Comparison of out of sample mortality rates (+) for males with the mortality pro-
jections under the proposed model (–) and ONS projections (–).
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5 Conclusion

In this paper we have developed a method for estimating and projecting mortality rates, which
takes advantage of the ease with which a wide range of smooth and parametric models can rou-
tinely be fitted. We model mortality improvement using generalised additive models for ages
where we have reliable data and a parametric model at older ages where the data is sparse. Our
methodology is based on a smooth transition between a GAM at lower ages and a fully para-
metric model at higher ages. To obtain the estimates we use maximum likelihood method. The
approach described in this paper provides a computationally straightforward way of estimating
and projecting mortality rates across the whole age range, including older ages where data are
sparse or non-existent. Furthermore, our approach allows uncertainty and expert opinion to be
coherently incorporated.

Under a fully Bayesian estimation method all different sources of uncertainty – in data series,
model parameters, including the choice of the model cut-off x0, as well as expert judgement –
would be treated jointly in a coherent, fully probabilistic manner. However, this would come
at a considerable expense in terms of computing effort. In contrast, our method is very simple,
and is therefore computationally very cheap and easy to implement, as it requires no Markov
chain Monte Carlo sampling and is based on pre-existing R functions. For that reason, the
approach proposed in this paper offers an appealing alternative for implementing a sophisticated
and robust analytical method in actuarial practice.
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