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Abstract Atmospheric evaporative demand (AED) is an important variable linking climate with the
terrestrial water cycle and the biosphere. Understanding the dynamics of AED has substantial economic,
ecological, and social implications. However, how AED varies at different time scales and the drivers of
variability remain elusive. This study used spectral coherence analysis to analyze the relationships between
observed and modeled AED and climate drivers across multiple time scales at 228 Chinese stations and
explored the cross-scale effects of climate forcings on AED. The results highlight the crucial role of vapor
pressure deficit (VPD) in both energy-limited and water-limited regions, therefore models that do not
incorporate VPD or underestimate the relative importance of VPD have relatively lower skill in predicting
AED. Short-term forcing variability has potential impacts on the long-term AED changes through tempera-
ture and associated land-atmosphere feedbacks. Our study implies that model predictions for AED and
associated hydrologic impacts may not be valid in a changing climate when the key controls on AED and
their relative importance are not appropriately represented.

1. Introduction

Assessment of freshwater availability relies on accurate estimates of water supply and demand (Shiklomanov,
2000; V€or€osmarty et al., 2000). Atmospheric evaporative demand (AED) characterizes energetic and atmo-
spheric controls on terrestrial evapotranspiration (ET; Roderick et al., 2007; Wang & Dickinson, 2012), which
directly connects climate and the water-energy-food nexus (Conway et al., 2015). Understanding the variability
of AED is fundamental to predicting the variability of water demand and quantifying aridity, irrigation, and
hydropower production under a changing climate (Stocker, 2014) and has significant economic, ecological,
and social impacts. In addition, AED is the primary control on ET and the hydrological cycle in energy-limited
regions covering almost half the terrestrial surface (Nemani et al., 2003). It has been widely used as an input to
different drought indices and hydrological impact models (Dai, 2013; Greve et al., 2014; Hobbins et al., 2008;
Milly & Dunne, 2016; Sheffield et al., 2012; Zhao & Dai, 2015). It can also significantly affect transpiration and
forest productivity, which in turn affects the carbon cycle (Novick et al., 2016; Williams et al., 2013).

The drivers of AED variability have motivated numerous studies over past decades, which focus on whether
the radiative or atmospheric control dominates the changes in AED (McVicar et al., 2012; Roderick et al.,
2009; Roderick & Farquhar, 2002). The classical supply/demand framework (Roderick et al., 2009) provides a
concise picture of regional controls on AED, but it only describes the climatology without separating differ-
ent time scales. AED and its meteorological drivers, including radiation (Wild et al., 2005), vapor pressure
deficit (Liu et al., 2004), temperature and humidity (Hobbins et al., 2012), and wind speed (McVicar et al.,
2012) vary across a wide range of temporal scales (Dai et al., 1999) depending on atmospheric and land sur-
face conditions. For example, solar radiation changes dramatically from hour to hour by local effects of
clouds, although its seasonal pattern is fairly predictable. Temperature and humidity have strong diurnal
and seasonal cycles and also change with synoptic weather systems and land-atmospheric interactions over
daily to monthly scales (Seneviratne et al., 2006).

Previous studies of the driving factors of AED have focused on one specific time scale using correlations
(Matsoukas et al., 2011; Peterson et al., 1995) or attribution analysis (Donohue et al., 2010; Hobbins et al.,
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2012; Roderick et al., 2007). However, correlations contain information about both fast (hourly and daily)
and slow (seasonal and interannual) processes. In previous attribution analysis methods (e.g., Donohue
et al., 2010), the sensitivity of AED to its drivers (the first-order partial derivatives) depends on the long-term
average of atmospheric conditions, and thus do not reflect the responses of AED over various scales, espe-
cially at short time scales. These weaknesses can be overcome by applying frequency domain techniques,
which separate low-frequency and high-frequency variability. Frequency domain analysis has been widely
employed to investigate the effect of climate variability on ecosystem water and carbon fluxes (Baldocchi
et al., 2001; Ding et al., 2013; Katul et al., 2001; Paschalis et al., 2015) but has not been used to disentangle
the intertwining processes controlling AED over multiple time scales, which motivates this study.

AED is often expressed as evaporation rate under an idealized, well-watered situation (Shuttleworth, 1991),
which is often called potential evapotranspiration (PET) and/or reference ET. Historically, PET has been a
long-established hydrological concept and will be used interchangeably with AED hereinafter. AED is usu-
ally estimated from empirical or physically based methods (Federer et al., 1996; McMahon et al., 2013). The
empirical methods (often temperature-based) prevail in the literature because the use of physically based
models is usually hindered by the lack of surface radiation and wind observations (Milly & Dunne, 2011;
Sheffield et al., 2012). Previous studies typically evaluated model skill based on biases and correlations, but
models can be tuned to reduce biases and enhance correlations between certain variables, even though
the calibration may simply redistribute the error to other model components (the so-called ‘‘equifinality’’
effect, see Beven & Freer, 2001). Given the cross-scale interactions among the drivers of AED, there is a
need to assess whether widely used AED models faithfully capture the full spectrum of AED and to identify
processes that are critical for modeling AED at various time scales.

The primary goals of this study are (1) to identify the dominant drivers of AED across a range of time scales
and (2) to evaluate whether current models can reproduce the temporal dynamics of AED and identify pro-
cesses that are critical for capturing the full spectrum of AED. In addition, our study also, for the first time,
investigates how short-term forcing variability affects AED in the long run using a physically based model.
While AED is a hypothetical variable and cannot be measured directly, pan evaporation is often regarded as
a surrogate for AED (Roderick et al., 2009). This study focuses on China primarily because of the available
pan evaporation data at daily scale (Li et al., 2013; Yang & Yang, 2012). China has a variety of climate condi-
tions and its climate variability is closely linked to monsoons and large-scale atmospheric circulation (Chen
et al., 2013). Therefore, a comprehensive study of AED across China not only provides valuable insights into
the changing regional climate and hydrology but also has broader implications for other regions (Liu et al.,
2010).

This paper proceeds with descriptions of the study region, AED models, the multiscale analysis technique,
and experiments (section 2), presentation of the results (section 3), discussion (section 4), and conclusions
(section 5).

2. Methods

2.1. The Study Region and Data
In this study, we used daily meteorological data and D20 class pan evaporation measurements provided by
the China Meteorological Administration. Complete records (i.e., continuous time series) are required for
applying frequency domain analysis (see section 2.3). We selected the period of 1961–2001 during which
pan evaporation was continuously monitored (see supporting information Figure S1 and supporting infor-
mation Text S1 for details). To ensure a balance between relatively complete records and sufficient spatial
coverage, we only accepted stations with less than 20% missing data in each month, which leads to a
reduction in the number of stations from 485 to 228. Given the very low missing ratio in the original data
records (<3%, supporting information Figure S1 and supporting information Text S1), we gap-filled the
missing data with the last valid record.

Located in the eastern Eurasian Continent, China extends over a large area and has complex topography.
Within the country, there is a strong Southeast-Northwest gradient of climate and vegetation conditions. To
explore the meteorological drivers under different climates, we divided the country into four climate
regions based on the conventional China aridity classification scheme (State Education Commission of the
People’s Republic of China (SEC), 2011). For convenience, we calculated the dryness index (/ 5 PET/P, the
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ratio of mean annual potential evapotranspiration [PET] to mean annual
precipitation rate, see Budyko, 1974) at each station and defined dry-
ness thresholds as in Table 1 to reproduce a similar pattern as SEC
(2011). Figure 1a shows the locations of the 228 stations grouped by
the dryness index. Note that we also used observed pan evaporation
(Epan) instead of modeled PET in defining the dryness index.

Since AED is driven by radiation, temperature, humidity, and wind speed,
we selected five key meteorological variables for evaluation, net radiation
(Rn), air temperature (Ta), 2 m wind (u2), vapor pressure (ea), and vapor
pressure deficit (VPD), which is the difference between the saturation
vapor content of air and the actual vapor pressure (es Tað Þ2 ea).

The net radiation (Rn) is calculated as follows (see Appendix A for
details):

Rn5 12ap
� �

Rsp1Rnl (1)

First, the incoming solar radiation (Rs) is computed from the Ångstr€om-Prescott equation with observed sun
hours and theoretical day length, following the parameters in McVicar et al. (2007). Second, the incoming
solar radiation of the pan (Rsp) is estimated based on Yang and Yang (2012) for D20 pan and then used to
calculate the net shortwave radiation with a pan albedo of ap 5 0.14 (Rotstayn et al., 2006). Third, the net
long-wave radiation is estimated from the Stefan-Boltzmann law with correction for humidity and cloud
fraction estimated from sun hours, following FAO56 standard formulations (Allen et al., 1998).

Figure 1 presents the annual cycles of pan evaporation and the five meteorological variables under different
climates. For each station, we calculated the mean monthly values across 41 years for each variable and nor-
malized them by subtracting the 12 month mean and dividing by the 12 month standard deviation. The

Table 1
Stations Classified by the Dryness Indexa

Humid Subhumid Semiarid Arid All
0</< 2 2</< 4 4</< 8 /> 8

Median dryness 1.22 2.83 5.14 19.68 2.19
Number of

stations
100 78 28 22 228

aEven though the dryness index (/5PET=P) is an effective way for climate
classification, the dryness thresholds rely heavily on the calculation of PET.
This study defined the climate regions following the conventional China
aridity classification pattern and used pan evaporation to represent PET.
Therefore, this standard is different from the UNEP generalized climate
classification scheme for Global-Aridity values (1997, http://www.cgiar-csi.
org/).

Figure 1. Climatology of Epan and the other key meteorological variables. (a) Spatial distribution of stations grouped by dryness, (d) normalized annual cycles of
observed pan evaporation, net radiation (Rn), vapor pressure deficit (VPD), vapor pressure (ea), air temperature (Ta), and wind averaged across all stations. (b, c, e,
and f) Are the same as Figure 1d but for four regions with different dryness indices.
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annual cycles of VPD and Epan are very similar to that of Rn (Figure 1d). The peaks of Ta and ea occur in July,
when the East Asian Monsoon brings large amounts of rainfall. Such a lag in temperature and humidity
with respect to the seasonal cycle is consistent with other studies in China and the United States (Gaffen &
Ross, 1999; Wang & Gaffen, 2001). Wind also has a remarkably distinct seasonal cycle compared to the other
variables due to the winter monsoon. From late winter to spring (February–May), northerly winds and cold
weather prevail as the Siberian Anticyclone brings cold and dry air from the Arctic. Over most regions, April
is the month of maximum wind speed averaged across all stations, which is consistent with prior studies
(Chen et al., 2013).

2.2. PET Methods
To examine to what extent the PET models capture the temporal dynamics of pan evaporation, we esti-
mated Epan using five methods driven by the observed meteorological forcing. The five methods include
the major types of PET methods, namely, combined method, radiation-based method, and temperature-
based method. For the combined method, we selected the Penman method because it is a classical com-
bined approach that estimates PET as the evaporation rate occurring from a wet surface without surface
resistance (Penman, 1948; Shuttleworth, 1993). We also selected the Penpan method (Rotstayn et al., 2006)
because it is adjusted for pan evaporation from the Penman equation. For D20 class pan evaporation used
in this study, we applied the corrections for solar radiation and transfer coefficients in Yang and Yang
(2012) and Li et al. (2013). For the radiation-based method, the Priestley-Taylor (PT) method (Priestley & Tay-
lor, 1972) is often used. It describes evaporation from a well-watered surface based on the equilibrium evap-
oration under conditions of minimal advection; it also represents PET under ‘‘potential’’ atmospheric
conditions when water is unlimited (Brutsaert, 2015). Historically, the difficulty of collecting radiation,
humidity, and wind speed data has promoted the use of less data-intensive methods (Federer et al., 1996;
Lu et al., 2005), such as the temperature-based Thornthwaite method (Thornthwaite, 1948). Here we
selected the Turc (1961) and Hamon (1963) methods because they are commonly used and able to use daily
data as inputs. Details about each method are listed in Table 2.

2.3. Spectral Coherence Analysis
2.3.1. Coherence
Frequency domain analysis is widely used in signal processing to analyze signals of various frequencies and
has been introduced into the hydrologic science (Rodr�ıguez-Iturbe, 1967) and ecological studies (Baldocchi
et al., 2001; Katul et al., 2001). The coherence spectrum is a powerful technique to measure the linear corre-
lation structure between two variables across different time scales. It is a frequency domain analog of the
correlation coefficient (q), while being superior to the correlation because it separates short-term variability
from low-frequency signals. In this study, we used the coherence spectrum to describe the relationship

Table 2
Algorithms for Estimating PET

Method and source Base form Details

Penman-type
Wet surface evaporation

Ep5EpR1EpA EpR: radiative component
EpA : aerodynamic component

Penman (1948)
Free water evaporation

Ep5 D
D1c �

Rnp

k 1
c

D1c � EA

EA56:43 110:536u2ð ÞD (Penman, 1948)
EA5fq u2ð ÞD (drying power of the air)

Penpan (Rotstayn et al., 2006)
Pan evaporation

Ep5 D
D1ac �

Rnp

k 1 ac
D1ac EA (Li et al., 2013;

Rotstayn et al., 2006; Yang & Yang, 2012)
EA5 1:313 1 1:381u2ð ÞD (McMahon et al., 2013;

Penman, 1956)

a5fh u2ð Þ=fq u2ð Þ55 (ratio of the
effective surface areas for heat and
vapor transfer calculated based on the
pan size, based on Yang & Yang, 2012)

Priestley and Taylor (1972) Ep5a D
D1c

Rnp

k a51:26 (Priestley-Taylor parameter)

Turc (1961) RH�50%: Ep50:013 23:88Rsp150
� �

ð Ta
Ta115Þ

RH<50%: Ep50:013 23:88Rsp150
� �

ð Ta
Ta115Þð11 502RH

70 Þ
(McMahon et al., 2013)

Hamon (1963) Ep571:55 � K � es= Ta1273:3ð Þ K: day length in day

Note. Units: The slope of the saturation vapor pressure temperature curve (D) in kPa/K, psychrometric constant (c) in kPa/K, and the latent heat of vaporization
of water (k) in MJ/kg, net radiation of pan (Rnp) in MJ/m2/d, incoming solar radiation of pan (Rsp) in MJ/m2/d, vapor pressure deficit (D) in kPa, 2 m wind speed
(u2) in m/s, relative humidity (RH) in %, daily mean air temperature (Ta) in 8C, and daily mean saturated vapor pressure (es) in kPa.
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among observed Epan, modeled Epan and driving variables. Specifically, the coherence spectrum between
two series X(t) and Y(t), also called magnitude squared coherence (MSC), is defined as

Cxy5
jSxy j2

Sx � Sy
(2)

It is derived from the cross spectrum (Sxy ) and the power spectral density (Sx , Sy ). The power spectral density (Sx )
describes the energy intensity of a time series distributed at different frequencies, which is the discrete Fourier
transform of the autocorrelation sequence of a time series. The cross spectrum (Sxy ) is the discrete Fourier trans-
form of the cross correlation between two time series. The MSC is always within the range of 0 and 1. For example,
if the pan evaporation solely resonates with VPD, then the MSC between pan evaporation and VPD is expected to
be close to 1; their MSC will decrease as the contribution of other variables to pan evaporation increases.

We used a nonparametric method, the Welch’s overlapped segment averaging (WOSA) estimator (Welch, 1967) to
estimate Sxy , Sx , and Sy . Here we focused on a range of periods (reciprocal of frequencies) spanning from 2 to 1,024
days. The highest frequency (the so-called Nyquist frequency) is 2 day, as limited by the sampling resolution. The
lowest frequency is constrained by the data length in the segment averaging process (more details are provided in
Appendix B). Note that MSC from various realizations can be averaged, without affecting the phase relationship
between the two processes. Additionally, MSC is invariant under linear transformation, meaning that bias-correction
methods such as simple scaling will not have an influence on the coherence structure. Taking the PT method as an
example, adjusting the Priestley-Taylor parameter a as a way of simple scaling has no influence on MSC.
2.3.2. Partial Coherence
The meteorological drivers of AED are not necessarily independent. To partly address this, we invoke partial
coherence, which provides a means of separating the effects of multiple variables. Specifically, it is defined
as an analog of partial correlation (Rodr�ıguez-Iturbe, 1967):

Cy;a=b5
jSy;a=bj2

Sy=b � Sa=b
(3)

where

Sy;a=b5Sya 12
Syb � Sab

Sya � Sb

� �
(4)

Sy=b5Sy 12Cyb
� �

(5)

Sa=b5Sa 12Cabð Þ (6)

Partial coherence can be seen as the relative improvement of predicting time series Y from time series A
beyond considering time series B (Rosenberg et al., 1989). It also has the range between 0 and 1, with 0 indi-
cating the coherence between Y and A is solely because of their relations with B.
2.3.3. Confidence Threshold
In reality, when there are random errors in one or both time series, MSC derived from measurements is
never zero even if the two time series are independent and is always smaller than the true coherence
(Carter, 1987; Miles, 2011). Thus, one can only state that if the true MSC value is 0, the expected value of
measured MSC is within a certain confidence interval corresponding to a certain probability. This is called
the confidence threshold or confidence limit for the coherence, estimated by

E512 12Pð Þ
1

nd 21ð Þ (7)

where P is the probability that MSC is within the interval (0, E), and nd is the number of independent seg-
ments, depending on data length and parameters (Appendix B). Here we used P 5 95% significance level
for the confidence threshold.

2.4. Traditional Statistical Analysis
To evaluate the skill of the PET models, we also used traditional statistical approaches to quantify the error
and correlation between the model predictions and the observations. Three basic statistical quantities are
considered: the root-mean-square error (RMSE), correlation coefficient (q), and standard deviation (STD).
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Daily modeled Epan were aggregated into multiple time steps (daily, weekly, monthly, and annual) by aver-
aging. Statistics were then computed based on these aggregated time series and summarized using a Tay-
lor diagram (Taylor, 2001), where the distance from a model point to the reference point (1, 1) indicates the
relative skill of that model compared to observations.

Although the correlation coefficient and MSC are not directly comparable, they are closely linked because
both represent the linear covariability between two time series. For example, the coherence at the annual
cycle can be approximately viewed as the correlation coefficient between two detrended monthly time
series since both metrics measure the seasonality. Supporting information Table S1 lists q and MSC across
multiple time scales for comparison.

2.5. Climate Forcing Experiments
To evaluate the cross-scale interactions between meteorological drivers and AED, we conducted several
experiments that manipulate the short-term variability of climate inputs to a PET model. Three experiments
of generating synthetic climate inputs were considered (Table 3). In the first experiment, observed climate
inputs were used to drive the PET model.

In the second experiment, we smoothed out the short-term variability of climate inputs by applying a mov-
ing averaging (low-pass filter) to the variable of interest. Four input variables (Ta, Rn, u2, and ea) were sepa-
rately modified and used to generate four Epan series. For each variable, two window sizes were applied. In
the first case of a 7 day (7d) moving window, the synthetic input only contains memory of the past three
days, so the focus is on the effect of very short-term variations. In the second case of a 30 day (30d) moving
window, not only day-to-day, but also week-to-week fluctuations were suppressed, which represents the
combined effect of very short-term and medium-term variations within the 30 day period. These scenarios
exhibit higher autocorrelation in the modified variables but induce physical inconsistency among variables.

In the third experiment, we carried out a permutation test which breaks down the autocorrelation whilst
keeping the cross correlations among all meteorological variables. Given a day of year, we resampled all the
climate inputs simultaneously in a moving window. First, all the time indices were shuffled without replace-
ment within a time window across all years. Then the shuffled time series were scaled to match the
window-average values of the original time series. For instance, shuffled time series using a 30 day moving
window are scaled to match the monthly mean. In this way, the seasonal patterns of the observations are
retained by pairing the mean values of original and shuffled time series.

The control experiment provides a benchmark for the other experiments to be compared with. The second
experiment focuses on the effect of short-term variability and tests whether Epan dynamics can be predicted
from coarser-resolution inputs. The third experiment destroys the autocorrelations in the time series, while
partly preserving the seasonal pattern and correlation structure among variables. By employing spectral
coherence analysis between the control and the other two experiments, the loss of coherence spectra (1 -
MSC) at one frequency can be interpreted as the influence of the modified driver variability on that frequency.
This is a useful tool to investigate which cases exhibit stronger cross-scale effects (Paschalis et al., 2015).

3. Results

3.1. Observed Epan-Climate Relationships
3.1.1. Scale-Dependent Correlations Between Epan and Meteorological Variables
Figure 2 summarizes the outcome of the coherence analysis across stations between observed pan evapo-
ration (Epan) and meteorological variables. From the MSC, it can be seen that the dominant driver is vapor

Table 3
Summary of the Meteorological Input Experiments

Control experiment Second experiment Third experiment

Details Observed data Short-term variability in each
variable is removed

Randomized with sampling
without replacement

Cases (1) Moving-average window
(1) 7d, (2) 30d

Sampling window
(1) 7d, (2) 30d, (3) 90d
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pressure deficit (VPD), which accounts for nearly 80% of the variability of AED from weekly (7 days) to semi-
annual (180 days) scales. The second most important driver is net radiation (Rn), which explains about 60%
of the variability in Epan from weekly to semiannual scales. Over these scales, temperature (Ta) has only
about 30% on-average similarity with Epan while vapor pressure (ea) and wind speed have insignificant
coherence with Epan (below the 95% confidence limit indicated by the dashed line).

The largest coherence occurs at a period of 365 days with MSC values of 0.9–1.0. This is the annual har-
monic mode or the annual cycle, representing the dominant effect of solar forcing on all meteorological
variables. Compared to the dominant role of the annual cycle, the longer-term variability in Epan resonates
less with the meteorological variables. This might be caused by three factors. First of all, the interannual var-
iations of meteorological variables are usually associated with large-scale oscillations like ENSO (El Ni~no-
Southern Oscillation) and PDO (Pacific Decadal Oscillation). These slow processes tend to induce weaker
variability than the seasonal cycle, thereby complicating the detection of similarity between Epan and the
drivers. Second, counteractive long-term changes in climate forcing exist. For instance, the warming tem-
perature versus solar dimming or wind stilling has opposite effects on Epan and may result in smaller vari-
ability of Epan. Third, the reliability of the low-frequency coherence is questionable given the limited record
length, which is one of the caveats of spectral coherence analysis. Although we are interested in the scale
dependence of AED changes, decadal variations and long-term trends of AED are beyond the scope of our
analysis.

Coherence spectra for scales between 7 and 60 days remain relatively constant. VPD and Rn are still well cor-
related with Epan at these scales. However, temperature, humidity, and wind speed have very limited
effects on Epan over these short scales (Figure 2). The low coherence between Epan and these meteorologi-
cal variables in this range of time scales is caused by the fast fluctuations of meteorological variables, which
arise from weather variability and/or measurement errors. For intermediate time scales (60–120 days), varia-
tions in meteorological variables are controlled by both the shifting of the seasonal cycle and synoptic
weather systems. As a result, the relations between Epan and driving variables are highly nonlinear across
these time scales, as evidenced by the pronounced coherence declines at the period of 90 days.
3.1.2. Interactions Between VPD and Rn

VPD and Rn are the two key driving variables determining the temporal variability of Epan (Figure 2). How-
ever, a remaining open question is whether and how VPD modifies the way Rn affects Epan and vice versa.
There is a strong correlation between Rn and VPD, evidenced by the fact that the sum of VPD and Rn contri-
butions substantially exceeds unity (Figure 2). At diurnal scales, the time lag between Rn and VPD that
causes the diurnal hysteresis between ET and VPD has been observed (Zhang et al., 2014). Yet little work
has been done on how the interactions between Rn and VPD affect AED across different climates and time
scales. Figure 3e shows that the MSC of Rn-VPD is highly dependent on dryness over short-term to interme-
diate time scales (from 20 to 180 days). The Rn-VPD coherence remains high in humid regions (/< 2). At

Figure 2. The coherence spectra between Epan and the five meteorological variables. Each curve shows the magnitude
squared coherence (MSC) between Epan and each variable, with 95% significance level marked by the horizontal grey
dashed line. The x axis scale is logarithmic in terms of duration (s, days), the reciprocal of the frequency. s specifies the
duration of one cycle in a recurring event. Important time scales (weekly, monthly, seasonal, and annual) are marked by
the vertical dashed lines. The MSC value of 0.6 between pan evaporation and net radiation (Rn) at s 5 30 day indicates
that Rn explains 60% of the variability in pan evaporation at the 30 day period.
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daily scale, high radiation loads are often associated with clear sky conditions and low humidity, and thus
large VPD. At weekly to monthly scales, high radiation loads are often accompanied by high-pressure sys-
tems. During these periods, surface temperature and air temperature are anomalously high and soil mois-
ture is relatively low, which may inhibit large-scale water vapor transport and soil evaporation and increase
VPD. In the driest region, there is a significant reduction (increase) in the Epan-VPD (Epan-Rn) correlation on
the time scale of 180 days (Figures 3a–3d). This is consistent with the fact that Epan and VPD (Rn) are out-
of-phase (in-phase) in the summer time (Figure 1f).

The MSC result indicates that the regulation of Rn on Epan tends to be much stronger in humid regions (Fig-
ure 3b). Partial coherence analysis is then employed to separate the independent contributions to Epan of
VPD and Rn. After removing the effect of VPD, Rn still has divergent influences on Epan depending on the
dryness and these influences remain constant over different time scales (Figure 3d). Most notably, the rela-
tive contribution of Rn on Epan is no longer significant in drier regions (/> 2). Comparing Figure 3b with
Figure 3d, we find that the Rn-VPD relation enhances the Epan-Rn coherence from 0.4 to 0.7 (by about 75%)
in humid regions, and from insignificant to around 0.4 (by about 3 times) in arid regions. This implies that a
considerable fraction of the Epan-Rn correlation is introduced by VPD and the degree that VPD enhances
the Epan-Rn correlation depends on dryness.

In contrast, the way VPD affects Epan is found to be similar across all dryness regions over short time scales
(<60 days; Figure 3a). When the effect of Rn is excluded (Figure 3c), there is a small reduction in the MSC
across scales and the reduction is also similar across all dryness at short time scales. While Rn enhances the

Figure 3. Coherence spectra among Epan, VPD, and Rn . Coherence spectra (a) between Epan and VPD, (b) between Epan and Rn , partial coherence (c) between
Epan and VPD excluding Rn , (d) between Epan and Rn excluding VPD, (e) coherence spectra between VPD and Rn . Results are grouped by dryness indices.
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correlation between VPD and Epan, the enhancement is much smaller than the enhancement of Epan-Rn

correlation by VPD. Given that the Epan-VPD correlation is much higher than the Epan-Rn correlation (Fig-
ures 3a and 3b) and that VPD and Rn are coupled (Figure 3e), including the effect of Rn does not provide as
much additional information as the other way around.
3.1.3. The Importance of Temperature and Humidity for VPD and Rn

A surprising result is that the individual contributions of temperature and humidity to Epan are much lower
than that of VPD (Figure 2). This implies that VPD should be regarded as an integrated variable for parame-
terizing AED instead of being separated into air temperature and specific humidity or vapor pressure. The
dissimilarity between Epan and Ta is likely due to the exponential relation between saturation vapor pres-
sure and temperature described by the Clausius-Clapeyron equation. At short scales, the contribution of
temperature and humidity to VPD tends to increase with dryness (Figures 4a and 4b). This is because in
humid regions temperature and humidity are strongly coupled with an MSC of 0.4–0.5 (Figure 4e), leading
to high relative humidity and concomitantly small VPD. When variations in VPD are small (humid regions,
Figure 1b), temperature and humidity have less influence on VPD and hence Epan, even though the slope
of saturation vapor pressure is steeper at high temperature.

The correlation between temperature and Rn (Figure 4c) is much weaker than the VPD-Ta correlation (Figure
4a). The feedback mechanisms inducing such low coherence can vary between regions. In arid regions,
warmer temperature induced by higher solar radiation loads may result in increased outgoing long-wave
radiation, leading to decreased net radiation (Rn "! Ts "! Rn #). In humid regions, warmer temperature

Figure 4. How temperature and humidity affect Rn and VPD. (a, b) Coherence spectra between Ta , ea , and VPD, (c, d) coherence spectra between Ta , ea , and Rn ,
and (e) coherence spectra between Ta and ea .
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induced by radiation may trigger convection and clouds, and
hence less incoming shortwave radiation (Rn "! Ts "! ea "!
clouds "! Rn #). On the other hand, the relatively high Rn-ea correla-
tion in arid regions (Figure 4d) probably represents a unidirectional
component of such a feedback (Rn "! Ts "! ea "). That is, increased
atmospheric water vapor induced by local radiation has little contribu-
tion to clouds and precipitation and therefore has limited effect on
reducing shortwave radiation.
3.1.4. Wind
Figures 2 and 5 show near-zero associations (below the confidence
limit) between Epan and wind on time scales of 30–150 days.
Although wind is an important part of the drying power of air and has

been suggested to drive the worldwide decreasing trend in Epan (McVicar et al., 2012; Yang & Yang, 2012),
the weak coherence at short time scales (<90 days) suggests that the impact of wind on Epan is a highly
nonlinear process. In the absence of advection, wind is the main mechanism controlling turbulent diffusion
that help remove the escaped water molecules and avoid vapor condensation. In reality, however, advec-
tion can take place and the effect of wind on Epan depends on the ambient and upstream moisture condi-
tions. Wind increases evaporation if it transports drier air. In contrast, if moist air is transported, evaporation
may be dampened or limited to the equilibrium evaporation, and wind speed plays a small role in modify-
ing evaporation. Other weather events such as cloud condensation and convection may be responsible for
the nonlinear Epan-wind relationship as well. In addition, the measured data are daily mean values, which
certainly neglect the diurnal variability of wind speed. At seasonal scale, the wind and Epan can be out-of-
phase. We found that wind has a distinct seasonal cycle and is also more variable compared to the other
variables (Figure 1).

Figure 5 also shows that the wind control on Epan tends to increase along with dryness, which confirms
previous studies that show wind has a stronger effect on AED in arid regions of China (Li et al., 2013). Under
wet conditions, wind only replaces saturated air with less saturated air, and thus the influence of wind
speed on Epan is less significant.

3.2. Evaluation of PET Models
The second goal of this study is to evaluate the performance of PET models across multiple time scales. We
focus on comparing traditional metrics such as correlation, which only presents a limited view of covaria-
bilty, with spectral coherence analysis, which provides a full spectrum of correlation between observed
Epan and modeled Epan. Additionally, spectral coherence analysis allows us to identify which process
causes the model errors at a particular time scale.
3.2.1. Traditional Metrics
First, we used traditional metrics as a baseline evaluation summarized by the Taylor diagram shown in Fig-
ure 6. We calculated the basic statistical quantities for observed Epan and modeled Epan averaged across
all stations at four temporal scales (daily, weekly, monthly, and annual). We found that the PET methods
tend to underestimate the variability of AED at annual time scale, while overestimating the variability of
AED at other shorter time scales. The Penpan method has the highest skill, with RMSEs around 1 mm/d and
STDs slightly greater than the observation (red lines in Figure 6). Although the Penman and Turc methods
have larger variability than the Hamon method, the three methods have comparable RMSEs within the
range of 1.5–3.5 mm/d, except at the annual time scale. The PT method has substantially large biases, which
overestimates the magnitudes of Epan and enlarges STDs up to 4–6 mm/d. However, these biases can be
reduced by adjusting the Priestley-Taylor (PT) coefficient. In terms of covariability, which is an important fea-
ture when evaluating the model’s capability of capturing temporal variations, the Penpan method has the
best performance with correlations (q) greater than 0.95 at daily to monthly scales, followed by the Penman
method, the Turc method, and the PT method. The Hamon method yields the lowest skill with q, implying
that it cannot accurately capture the temporal variations of observed Epan.
3.2.2. Metrics Based on Spectral Coherence Analysis
Second, we applied spectral coherence analysis to observed Epan, modeled Epan, and driving variables. Fig-
ure 7 shows the coherence between observed and modeled Epan, which yields similar model rankings as

Figure 5. Coherence spectra between Epan and wind speed.
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Figure 6. Taylor diagram of daily, weekly, monthly, and annual modeled Epan (Penpan, Penman, Priestley-Taylor, Hamon, and Turc) with respect to Epan. Linear
trend of each time series is removed. The units of standard deviation and centered root-mean-square difference (RMSE) are mm/d. The distance between the red
dot and the origin denotes the observed standard deviation.

Figure 7. The relationship between the observed and modeled Epan varies across temporal scales. Each line shows the
magnitude squared coherence (MSC) between observed pan evaporation and one PET method. We used dashed lines to
connect selected periods as they are not continuous on the x axis.
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the correlations of Figure 6. Coherence spectra between all PET models and observation increase with
increasing time scale and reach a peak on the annual scale.

Since spectral coherence analysis only provides a measure of covariability, it can serve as a complementary
analysis to traditional metrics such as bias and standard deviation described above. To sum up, the Penpan
method is found to be the best model to estimate Epan. The Penman and Turc methods are comparable,
given that the Penman method has slightly higher coherence with observations but also higher biases than
the Turc method. The large biases in the PT method demonstrate the strong need for calibration. The
Hamon method has the lowest skill in reproducing the temporal dynamics of Epan, although its standard
deviations are almost identical to the observations and its biases are moderate.

Spectral coherence analysis not only assesses whether the model captures the variations but also can iden-
tify the key process (related to a certain variable and at a specific time scale) that causes the model’s dis-
crepancy. One major finding is that the success of a model depends on the accurate partitioning of

Figure 8. Coherence between the modeled Epan and the meteorological variables in humid regions (/ < 2;
on the left columnÞ and dry regions /ð > 4, on the right column). Coherence between observed Epan and driving
variables are represented by the grey circles, which refer to the benchmark. A PET method (colored squares) represents a
process best if it obtains coherence with the process-related variable closest to observed Epan (grey circles).
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radiative and atmospheric control, in other words, the relative importance of Rn and VPD. Figure 8 shows
that the Penpan method reproduces both processes very well and therefore has the highest predictability
of Epan. The Penman, PT, and Turc methods substantially underestimate the contribution of VPD while they
overestimate that of Rn (Figures 8a, 8b, 8f, and 8g). For instance, in humid regions (/< 2), the modeled
Epan from PT and Penman methods have more than 90% similarity with Rn on a range of time scales. In par-
ticular, the PT method overestimates the role of Rn by 20%–40% and underestimates the VPD contribution
by 20%–30%, which makes the PT method only explain 60%–70% of the observed Epan variability on
average.

The partitioning between radiative and atmospheric control becomes unrealistic because of two reasons.
The first reason is the lack of key, well-established processes controlling AED. The methods suffering from
this issue are mainly the temperature-based or radiation-based methods. These empirical methods tend to
distort the sensitivity of AED to its main drivers over short time scales, although they may predict AED well
from monthly to annual time scales, for which they were originally developed for. For example, the PT
method assumes that the effect of VPD is proportional to the net radiation. In humid regions where VPD is
tightly coupled with Rn (Figure 3e), the predictability of the PT method is still reasonable due to the large
contribution of Rn. In dry regions (/> 4), where VPD and Rn are decoupled (Figures 8f–8j), the PT method
produces low correlations between modeled AED and the key meteorological variables, particularly over
intermediate time scales (90–180 day). Similarly, the Hamon method uses temperature while neglecting the
other key variables. Since temperature is tightly coupled with humidity but weakly associated with Rn and
VPD in humid regions (see Figure 4), the Hamon method exaggerates the roles of temperature and humid-
ity but underrates the influences of Rn and VPD.

The second reason is the incapability of representing the relative importance of radiative control and atmo-
spheric control. Comparing the Penman and Penpan equations in Table 2, the Penpan equation includes a
heat and water vapor transfer ratio that represents the dissimilarity between water vapor and heat transfer.
The effective transfer of sensible heat is greater than that of latent heat (water vapor) because of the
enhanced heat exchange through the wall of the pan (Linacre, 1994). This ratio increases the importance of
water vapor transfer (atmospheric control) and reduces the role of net radiation (radiative control), which
better reproduces the observed Epan-Rn and Epan-VPD dynamics, especially for Epan-Rn (Figures 8a, 8b, 8f,
and 8g). Although this ratio mainly works for pan evaporation measurement (i.e., not necessarily for PET), it
illustrates that capturing the relative importance of radiative and atmospheric control is key for physically
based AED modeling.

3.3. Experimental Investigation of the Cross-Scale Effects
Our emphasis has been on identifying the key drivers of Epan variability at multiple scales by examining
observations and observation-driven model outputs. However, the above correlation and spectral coher-
ence analysis prevents investigations of nonlinearity and the interplay between short scales and long-term
scales. To overcome this limitation, we further developed a model experiment framework to explore the
connection between different scales. We constructed a series of synthetic climate inputs that remove or dis-
tort the short-term variability (section 2.5). These synthetic inputs were used to force a PET model; spectral
coherence analysis was then applied between the model outputs (i.e., the second and third experiments)
and those from the same model but forced with observed meteorological variables (i.e., the control experi-
ment). Here we selected the Penpan method because it is fully physically based and our results in section
3.2 indicate that it best reproduces the Epan dynamics across time scales and locations.

In Figure 9, the loss of coherence (12MSC) between the control experiment and the second experiment
(removing the short-term variability) summarizes the influence of the short-term variability of each variable
on Epan across time scales. First, it is observed that the influence of short-term variability of meteorological
variables will propagate to longer time scales, up to 3 times longer. For example, very short-term variations
like day-to-day variability (referred to as the 7d-window scenario) can exert an effect on the 20 day period
(supporting information Figure S2), whereas the influence of short-term and medium-term variations
(referred to as the 30d-window scenario) can spread up to the 90 day period (supporting information
Figure S2).

The response of Epan to the short-term variability of four input variables depends on time scales. Figure 9a
shows that the day-to-day variability of Rn, Ta, and wind have significant impacts on weekly cycle (2–7 day)
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of Epan variability, while humidity has the least impact (<10%). The differences between Figures 9b and 9a
(i.e., Figure 9c) indicate the effects of week-to-week forcing variability. The week-to-week variability of tem-
perature has the strongest influence on monthly cycles (7–30 day) of Epan, which results in more than 30%
loss in MSC. The week-to-week variability of Rn, wind, and humidity have moderate influences with 10%–
20% losses in MSC. Solar radiation and wind have low persistence because they are fast varying on the daily
time scale (Baldocchi et al., 2001; Ding et al., 2013). The response of Epan to the short-term forcing variabil-
ity also varies with dryness condition (Figure 9, top versus bottom). The way climate affects the importance
of different drivers is consistent with our results above: Rn is the dominant driver of Epan in wet conditions,
and wind is dominant in dry conditions, whereas the impacts of Ta and ea (VPD) do not change with
climate.

Figure 10 shows the coherence between the control experiment and the third experiment (perturbing
short-term variability) with respect to moving window size and dryness. It is found that the impact of elimi-
nating temporal autocorrelation in climate inputs is dramatic (Figure 10). The loss of coherence within the

Figure 9. The losses of magnitude squared coherence (12MSC) between the control experiment and the second experiment (removing the short-term variability)
using (a) 7d moving window low-pass filter, (b) 30d moving window low-pass filter, and (c) the differences between Figures 9b and 9a. A higher MSC loss indicates
larger influences of short-term variability on Epan dynamics. Each large grid shows the average MSC loss within unique dryness and period bins (see supporting
information Figure S2 for all frequencies). Each subgrid represents an experiment where the short-term variability of one driving variable is suppressed.

Figure 10. The losses of magnitude squared coherence (12MSC) between the control experiment and the third experi-
ment (distorting the short-term variability) grouped by (a) size of sampling window, (b) dryness indices using 7d sampling
window, (c) dryness indices using 30d sampling window, and (d) dryness indices using 90d sampling window.
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period of sampling window is close to 1 (or the coherence declines to almost zero), and it tends to propa-
gate toward longer scales up to the annual cycle. The MSC losses over smaller scales are more sensitive to
the sampling window size (Figure 10a), whereas the MSC losses beyond the 180 day scale do not vary with
the sampling window size. High coherence on semiannual and annual cycles show that the annual cycles
are not distorted with permutations within window sizes smaller than 90 days.

Although the influence of dryness is less important than the sampling window size on short-term to intra-
seasonal scales (7–90 days), it is found to be important at longer scales (Figures 10b–10d). For example, in
the case of 7 day sampling window (Figure 10b), the strongest cross-scale effect is found in the transitional
and arid regions on the intraseasonal cycle (30–120 days), and in humid regions beyond the semiannual
cycle (180–365 days). Such differences imply that there are two types of dryness-dependent mechanisms
linking the short-term and longer-term variability.

The model experiments enable an analysis of how the short-term forcing variability affects long-term vari-
ability of AED. However, we are cautious regarding the interpretation of these model experiments, given
that these conclusions rely heavily on the model selection. The contradiction between the strong influence
of wind speed (Figure 9) and the weak Epan-wind correlation in previous results (Figure 5) suggests a mis-
match between measurements and model simulations. In the Penpan method and any Penman-type
method, wind conceptually increases Epan or AED by increasing the drying power of air. In reality, the
Epan-wind relation is highly nonlinear and the model assumptions could be severely violated when the
atmospheric conditions are not uniform and large-scale advection occurs (Figure 5).

4. Discussion

4.1. The Critical Roles of VPD and Rn

Our results confirm that Rn has a stronger influence on AED in humid regions than in arid regions (Figure
3b), which supports the traditional supply/demand framework that changes in actual ET are proportional to
the changes in net radiation under energy-limited conditions (Roderick et al., 2009). While the above find-
ings are consistent with expectations, we found that VPD plays a more important role than Rn in capturing
the temporal dynamics of AED (Figures 2 and 3). Interestingly, VPD does not lose its control on AED even in
energy-limited regions (Figure 3a) where Rn was traditionally thought to be more important. For example,
many studies in hydrologic and climate sciences did not consider the role of VPD in energy-limited regions
(Seager et al., 2015). The independent contribution of VPD (i.e., excluding the contribution through Rn) does
not vary with aridity probably because humidity deficit occurs all the time, and true equilibrium condition is
not likely to occur even over wet surfaces (Brutsaert & Stricker, 1979). This is further due to the fact that the
atmospheric boundary layer is continually dried out by entrainment from the top of the boundary layer as
well as condensation. Such a universal AED-VPD relationship under different climates highlights the unique
role of VPD in regulating AED.

We also find that Rn is closely coupled with VPD through temperature and humidity especially in humid
regions (Figure 3e). This is not surprising as net radiation integrates the interactions among solar radiation,
air temperature, humidity, and cloudiness (Matsoukas et al., 2011; Trenberth et al., 2015). However, the
underlying physical process is less certain, as we are not sure whether the Rn-VPD covariability is mainly
because weather systems and clouds affect solar radiation, humidity, and DTR (Liu et al., 2010; Peterson
et al., 1995) at the same time, or because the changes in temperature and humidity affect long-wave radia-
tion. Understanding the Rn-VPD interactions at different scales, and hence the relation between the surface
energy budget and atmospheric conditions, is key to the land-atmosphere feedbacks research with implica-
tions for hydrologic extremes studies.

4.2. Model Performance and the Partitioning Between Radiative and Atmospheric Components
As to why some models show degradation in coherence over daily to seasonal scales, even though they
can obtain reasonable estimates of long-term AED with moderate biases, we identify that the major issues
in these models are (a) the neglect of key controls on AED in their formulations and (b) the incapability to
capture the relative importance of radiative control versus atmospheric control.

The Hamon method does not consider energy balance and uses an empirical temperature function to
replace radiation. The PT approach, a typical method solely relying on net radiation, does not explicitly take
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VPD into account. It assumes that the atmospheric control is proportional to the radiative control. As noted
above, VPD has a significant influence in both dry and wet climates; furthermore, the Rn-VPD relation
decreases with increasing aridity and only 60% linearity between Rn and VPD is found at wet stations (Fig-
ure 3e). Therefore, the PT method has low skill, especially in dry regions (Figure 8). In addition, even though
the PT approach predicts the monthly AED well, it is not able to reproduce the short-term variability of AED.

Although methods like Penman and Turc do consider both VPD and Rn, they substantially overestimate the
radiative control on pan evaporation, while underestimating the atmospheric control (Figures 8a and 8b).
Our results demonstrate that the relative importance of radiative control and atmospheric control is critical
to reproducing the short-term dynamics of AED. This not only provides a guideline for model selection but
also stresses the need for caution on the model predictions for AED and associated hydrologic impacts
when the key controls on AED and their relative importance are poorly represented.

Our study is based on observations of pan evaporation, including using them for model evaluation. An
important limitation of this analysis is that pan evaporation in water-limited regions is only approximate to
the ‘‘apparent’’ PET, which measures the evaporation rate from a small saturated surface rather than homo-
geneous well-watered surface and thus does not allow the adjustment of surrounding atmospheric condi-
tions (Brutsaert, 2015). The Penman-type methods can be viewed as estimating ‘‘apparent’’ PET using
‘‘nonpotential’’ atmospheric conditions, which can be much higher than the actual PET under ‘‘potential’’
atmospheric condition. With this in mind, the low coherence between Epan and PET models in water-
limited regions does not necessarily imply low coherence between AED and PET models. However, the
degree to which the climate/dryness affects the ranking of model performance seems to be smaller than
the differences due to the methods and/or the time scales (Figure 8), which indicates that our conclusions
related to the methods and time scales are relatively robust.

4.3. Processes Across Time Scales
Our study confirms that different variable-related processes do occur in different ranges of time scales (sec-
tion 3.3). The second experiment shows that the short-term variability in the forcing variables can propa-
gate to longer time scales (Figure 9 and supporting information Figure S2). The third experiment shows
that the persistence in the forcing variables has significant impacts on Epan long-term variability, up to 180
day (Figure 10). Given the fact that atmospheric anomalies can persist only for about 2 weeks (Liu & Avissar,
1999), this result is likely to be related to land surface processes that have relatively long persistence via
land-atmosphere coupling. For example, soil moisture limitations and the associated land-atmosphere feed-
backs can produce a cross-scale effect on weather systems and atmospheric circulation at time scales of
several weeks to months (Koster & Suarez, 2001; Seneviratne et al., 2010).

The cross-scale effect varies with dryness, which is consistent with a recent observational study that found
different mechanisms of land-atmosphere feedback under different climates (Tuttle & Salvucci, 2016). Our
results indicate that such dependence on dryness is associated with the time scale. On the range of weeks
to months, we found that the cross-scale effect tends to increase with dryness (Figures 10b–10d). Liu and
Avissar (1999) showed that the time scale of soil moisture persistence increases with aridity and latitude.
Based on autocorrelation, soil moisture memory persists about 2–4 months in southeastern China and 3–5
months in northern China. On the semiannual to annual time scales, we found that the cross-scale effect
tends to increase with wetness (Figures 10b–10d). In energy-limited regions, the long persistence may be a
result of biosphere-atmosphere coupling. For example, a decrease in summer AED reduces radiation and
vegetation productivity, which leads to less transpiration and precipitation recycling for the next growing
season. However, this radiation-productivity feedback was not significantly detected in a recent study by
Green et al. (2017). In water-limited semiarid ecosystems (Laio et al., 2001), there is also a potential for
short-term forcing variability to influence root water uptake, actual ET, and vegetation productivity via soil
moisture-precipitation feedback (D’Odorico & Porporato, 2004).

5. Conclusions

The processes that control AED are complex because they operate on different time scales and their impor-
tance varies between different climates. In this study, the relationships between AED and climate drivers
across multiple time scales are analyzed using both observed and modeled pan evaporation. Spectral

Water Resources Research 10.1029/2017WR022104

PENG ET AL. 3525



coherence analysis is applied to determine the importance of the drivers and the performance of different
PET models. The impacts of time scales and climate (represented by the dryness) on the behavior of AED
and its drivers have been explored. A series of experiments has been conducted to investigate the cross-
scale effect of driving variables on AED using the best model. This study confirms and extends the conven-
tional wisdom of the supply/demand framework to multiple time scales. The role of VPD in observational
studies, diagnosis, and model selection is particularly highlighted. The major findings are the following:

1. VPD is the primary driver of AED and a preferred predictor in the attribution of AED changes. The inde-
pendent contribution of VPD to Epan is not sensitive to dryness over shorter time scales. Rn is the second
most important driver of AED and its role highly depends on dryness. A considerable fraction of Epan-Rn

correlation is introduced by VPD.
2. Although most PET models can obtain reasonable estimations of AED at coarser temporal resolutions,

some of them have difficulty in predicting short-term variability due to (a) the lack of representation of
atmospheric control (VPD) and (b) the incapability of reproducing the relative importance of radiative
control (Rn) and atmospheric control (VPD).

3. Short-term forcing variability strongly affects daily to seasonal scales but has a limited direct effect on
the seasonality and interannual variability of AED, although it might affect long-term AED changes via
land-atmosphere and biosphere-atmosphere feedbacks.

Appendix A: Net Radiation of the Pan

Based on equation (1), Rsp and Rnl need to be estimated. First, incoming solar radiation (Rs, W m22) is com-
puted from the Ångstr€om-Prescott equation with the observed sun hours and theoretical day length, which
has the general form as below:

Rs5 a1b
n
N

� �
Ra (A1)

where n is the observed duration of sun hours, N is the maximum possible duration of daylight hours, and
Ra is the daytime extraterrestrial radiation (W m22) using the FAO56 approach (Allen et al., 1998). Following
the parameters in McVicar et al. (2007) due to high levels of aerosols in China, we use a50:195; b50:5125
(McMahon et al., 2013).

Then, the incoming shortwave radiation of a pan (Rsp, W m22) comes from three components: direct, dif-
fuse, and reflected solar radiation. It can be calculated as (Yang & Yang, 2012)

Rsp5 Prad fdir12 12fdirð Þ12að ÞRs (A2)

where fdir is the fraction of direct radiation depending on cloudiness, Prad is the pan radiation factor, and a
is the albedo (0.23 for short grass). According to Rotstayn et al. (2006), fdir is defined as
fdir50:11 1 1:31Rs=Ra. Rsp is greater than Rs because of the interception of energy by the pan walls. Prad

accounts for the additional direct radiation intercepted by the pan wall and is calculated as
Prad51:70 1 0:0003/2, where / is the latitude in degree (Yang & Yang, 2012).

For a D20 pan, the water surface area is 0.0314 m2, the wall area is 0.0628 m2, and the vertical wall is effec-
tively exposed to half of the diffuse and reflected radiation (Linacre, 1994). Therefore, the total diffuse radia-
tion is 0:530:0628=0:03143 12fdirð Þ1 12fdirð Þ½ �Rs52 12fdirð ÞRs. For a similar reason, the intercepted
reflected radiation is 2aRs.

Finally, net long-wave radiation (Rnl , W m22) is estimated from the Stefan-Boltzmann law with correction for
humidity and cloud fraction estimated from sun hours, following FAO56 standard formulation (Allen et al., 1998):

Rnl5
1
2

r T 4
max1T 4

min

� �
0:3420:14

ffiffiffiffiffi
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p

ð Þ � 1:35Rs

0:751231025z
� �

Ra
20:35

 !
(A3)

where z is the station elevation (m).
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Appendix B: Spectral Coherence Analysis

The procedure of coherence computation is to divide the time series into several overlapping segments,
remove the linear trend, and compute periodogram using Hanning weighting function for each segment,
and then average the individual periodograms to yield an overall spectral estimate. Here the overlapping
samples are 50% of the segment length following a common procedure. The optimal segment length is a
compromise between estimate reliability (shorter segment length) and frequency resolution (longer seg-
ment length). Shorter segment length (Np, i.e., the data points in one segment) increases the number of
segments (Ns), which can significantly reduce the bias and the variance of magnitude squared coherence
(MSC) estimates, while longer segment length produce better spectral resolution bandwidth (RBW, i.e., the
smallest frequency that can be resolved). Specifically, a segment length of size Np produces (Np/2 1 1) fre-
quency bands. Besides, shorter segment length also truncates the lower frequency end of the spectrum.
After testing out Np 5 256, 512, 1,024, and 2,048, we found that results with Np 5 1,024 obtain a balance
between low variance and frequency resolution, which cut off the period s> 1,024 day (2.8 year scale) and
ensure adequate low frequency (at least annual scale). Given the data at daily resolution, high frequency
with the period s <5 1 day (daily scale) are not available since the highest frequency is one-half the sam-
pling rate, namely, 2 day.

Other parameters in spectral estimates are listed in Table B1. We used P 5 95% significance level for the confi-
dence threshold to distinguish frequencies where MSC or partial coherence are significantly different from 0.
Note that the estimates of the cross spectrum are unreliable when the coherence itself is small (Wei, 2006).
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