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There is great scientific interest in further understanding the underlying wave impact dy-

namics on solid and/or permeable structures for coastal defences. The accurate and validated 

simulation of the dynamics of the flow at microsecond temporal scale prior to, at, and after 

impact is an outstanding and challenging numerical problem in CFD. More advanced nu-

merical models of free surface flow processes which include entrapment of large air pockets 

is required. These models will yield more insight into the trends of pulse-like forces involved 

at impact with solid and/or porous material and will enable the understanding of the mechan-

ical stability and integrity of defence structures. Furthermore, the development of advanced 

numerical models for solving such problems will need to be made accessible as information 

systems to a wider community of civil engineers in order to achieve integrated design of 

structural defences (coastal, offshore oil and gas, hydraulic dams etc.). This research is on 

the development of free surface flow simulations, flow visualisation, analyses of forces of 

impact, and analyses of the integrity of offshore structures in an information system envi-

ronment. 

A large dataset of compressible (and incompressible) numerical models have been generated 

to simulate waves impacting at solid and porous structures. Initial studies focus on the be-

haviour of wave impacts with a solid structure in a 2 dimensional domain. The simulations 

data are verified through a grid independence study.  Numerical results are validated against 

two sets of experimental data. Air bubble entrapment and consequential multi-modal oscil-

latory pressure response trends are observed in the compressible simulations during wave 



 

 

impact. Frequency domain analyses of the oscillatory impact pressure responses are under-

taken. The numerical model data sets are compared with results generated from analytic 

methods and experimental data with good agreement.  

These initial findings confirm the robustness of our numerical model predictions concerning 

the simulated air bubble formations when compared with theories on air bubbles at impact 

and their resonance frequency modes. 

The compressible numerical model is extended to a 3 dimensional simulation. A range of 

porous structure morphologies are incorporated into the domain to replace solid wall impact 

interface. A brief overview of previous research on the subject of fluid flow in porous media 

is presented. The characterisation of the porous model morphologies is examined. Various 

permeability flow models are discussed in detail. The methods for the generation of the var-

ious porous structures and their integration into the CFD model are described. The results 

from a soliton wave impact at the porous structure morphologies both with and without air 

entrainment effects at the free surface is investigated in detail. 

Finally future work to develop an experimentation specification for the analysis of fluid flow 

thorough a porous structure is discussed. It is envisioned that this experimental work with 

have dual outcomes. Firstly it will serve to validate the numerical models created over the 

course of this study and secondly the potential for clean, renewable energy harvesting from 

oscillatory pressures through the incorporation of smart sensor hardware within the porous 

structure will be investigated.       
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Chapter 1  

Introduction 

This first chapter sets out the project motivation, as well as the aims and objectives of the 

study. Also, it includes a brief overview of the methodology describing how these objectives 

will be achieved. The layout of the report and the novelty of the undertaken research work 

is subsequently described.  

 

1.1 Research motivation 

There has been an observed trend in global sea level rise which has persisted for decades. 

This is mainly attributed to thermal expansion as a consequence of ocean warming and the 

loss of polar ice sheets. As climate change continues to cause global mean temperatures to 

increase it is forecast that ocean levels will continue to rise. However, there is much 

ambiguity associated with quantifying the levels of increase, and this is mainly due to the 

uncertainty surrounding the rate and magnitude of melting of the polar ice caps. A report 

published by the National Oceanic and Atmospheric Administration (NOAA), presents four 

scenarios for the predicted rise in the global mean sea level (Parris et al., 2012). Each 

scenario has been calculated based on the findings from previous studies and also using 

semi-empirical data to extrapolate the future mean sea level increases. Figure 1.1.1 displays 

each of these scenarios up to the year 2100. The largest projected increase in sea level of 2 

meters has been computed based on the assumption that the issue of climate change is 

ignored. This forecast assumes the sustained construction of power plants for the combustion 

of fossil fuels continuing unabated in line with increasing population demands, continued 

rainforest harvesting, and the further exploitation of other natural resources.  

The fourth scenario is the best case outlook in which environmental conservation becomes 

the most important topic for governments around the globe when deciding new environment 

policies and regulations. Even with this best case scenario the projected mean sea level will 

increase by approximately 200mm. Recent research has shown however that the maximum 

predicted sea level rise of 2 meters may be an underestimation. Dewi Le et al. (2017) 
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employed a probabilistic process-based model to determine the rate of Antarctic ice sheet 

melt and they have projected a possible sea level rise of close to 3 meters by the end of this 

century.  

In the Paris Agreement ratified in 2015, efforts to limit the global temperature increase to 

1.5o C above pre industrial levels were agreed. However recent research suggests that this 

may be an unattainable target (Hulme, 2016), even more so in the context of recent global 

political uncertainty. 

It is therefore more prudent to consider that an intermediate rise in sea level between the 

projected extremes (and closer to the upper bound) will be realised. Thus a minimum global 

sea level rise of 1.5 meters should be expected over the next century. 

 

Figure 1.1.1 Predicted elevation of global mean sea level, (Parris et al., 2012). 

 

In addition, studies on storm intensity and duration in the Atlantic Ocean have been 

conducted by numerous researchers including  Emanuel (2005) and Coumou and Rahmstorf 

(2012). In many of these studies, strong correlations between increasing intensity and 

duration of hurricanes and that of increasing mean sea surface temperature (SST) have been 

found. Indeed the recent hyperactive hurricane season in the Atlantic region is in keeping 

with this trend.  

Emanuel (2005), introduced an index for the total destructiveness of storm events based on 

the energy expended by a storm integrated over the duration of the storm. He calls this the 

power dissipation index (PDI). Figure 1.1.2, (Coumou and Rahmstorf, 2012), illustrates a 

plot of the calculated PDI recorded since 1948 for the case of North Atlantic tropical storms. 

This is compared with the annual tropical Atlantic mean SST. Strong correlations between 

the PDI and SST with a general upward trend are clearly observed. 
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Figure 1.1.2 PDI and SST for period between 1948 and 2012. Also included is the northern 

hemisphere mean temperature evolution for the past century, (Coumou and Rahmstorf, 

2012). 

 

The problems associated with climate change outlined above are also predicted to have a 

major impact on a regional scale, for example see Figure 1.1.3 for wave damage inflicted on 

the UK coastline during recent storm events. A report compiled by the UK Met Office by 

Gosling et al. (2011) notes that by the 2080’s the annual number of people whose homes will 

be flooded in the UK could be around 986,300 should a higher sea level rise scenario be 

realised.  

Research using tide gauges has found that the recorded mean sea level rise around the UK 

has been increasing by about 1mm per year during the 20th century. However during the 

1990’s and 2000’s this rate has been accelerating (Jenkins et al., 2008). Research using the 

coastline of East Anglia as a case study suggests that in the event of the higher sea level rise 

scenario the significant wave height having a 100 year return period also becomes more 

frequent, (Chini et al., 2010). The projected re-occurrence of these significant waves 

escalates at the rate of 2% increase in 100 year return period for a 3.5mm sea level rise per 

annum, 4% for a 7mm rise per annum, and 12% increase in return frequency of a significant 

wave for a 19mm per annum sea level increase. These increasing frequencies in extreme 

wave conditions will have adverse effects on unprotected shorelines and also on the design 

life duration of pre-existing coastal defences which have been constructed to withstand these 

historically less extreme events, both in terms of magnitude and frequency of reoccurrence.      

 

Northern Hemisphere Mean Temperature 

PDI 

SST 
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Figure 1.1.3 Wave impact damage sustained on the south coast of Devon 

during storm events in 2014, (NCE, 2014). 

 

Severe damage can be inflicted on coastal defence structures as a result of high intensity 

wave forces during storm events. Many laboratory experiments have been undertaken to gain 

an understanding of the physical processes which occur at the wave impact interface, 

(Topliss et al., 1993),  (Bullock et al., 2006), (Bullock et al., 2007), (Bredmose et al., 2009). 

The damage is often caused by transient wave impact pressures which are at present not fully 

understood (Oumeraci et al., 1993). Also, depending on the profile of the impacting wave, a 

shock-wave which may have a velocity and pressure magnitude much larger than that 

associated with the propagation of ordinary waves under gravitational forces may be 

observed (Peregrine, 2003). Whilst laboratory experiments have yielded many valuable 

results and insights into the wave impacting process there still remains the problem of 

repeatability of experimental results. Many authors have previously commented on the 

difficulty in achieving reliable, well controlled and repeatable results from experimental 

studies, (Chan and Melville, 1988), (Schmidt et al., 1992).   This is due to the wave breaking 

process being highly non-linear, transient and in some cases chaotic in nature. Thus, the 

ability to confidently predict wave breaking forces whilst relying on previously published 

experimental data is currently inadequate. With the recent development and advances in 

computational fluid dynamics (CFD), it is now possible to simulate wave breaking with 

realistic free surface flow processes that replicate the results from independent simulations 

with identical initial conditions. This allows the investigator to confidently analyse how the 

variation of a certain parameter within the simulation will influence the free surface flow 

profile development and the associated wave impact pressures.   
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Many coastal protective structures such as breakwaters or sea defence walls are empirically 

designed. These installations are often constructed as a rubble mound breakwaters or may 

be formed through the relatively random placement of prefabricated tetrahedral concrete 

units (Figure 1.1.4), (Zhang and Li, 2014), (British Standards Institution, 1991). Because of 

the construction techniques employed in these methods of coastal defence breakwaters the 

resulting structure is inherently permeable (porous).  

 

  

(a)                (b) 

Figure 1.1.4 Typical construction methods for coastal defences,  

(a) Rock-armour (Weems Brothers, 2013) (b) concrete tetrapod units (Betonform, 

2015) 

 

The above mentioned examples of sea level rise, intensification in total storm energy, and 

empirical approaches to designing these protective structures highlights the necessity for 

readdressing the manner in which shoreline defences are designed and planned to augment 

their resilience in the years to come. While the current trends in climate change persists, 

coastal defences will inevitably face an increasing threat of destruction from inundation and 

from waves impacting during more powerful and ever more frequent storm events.    

 

1.2 Aims and objectives     

This study aims to augment our knowledge of the process of ocean wave impact forces on 

protective coastal edifices whilst developing novel concepts and methods for the design of 

more resilient structures. This will be achieved by developing a methodology which allows 

a deeper understanding of the mechanism(s) of energy transfer at the wave impact interface 

with static porous coastal defences and structures. In so doing, the ability to design these 

structures for optimal impacting wave energy attenuation can be realised. The advanced 

numerical models developed in the course of this study will also be made accessible to the 

wider community of engineers and scientists thus permitting the integrated design of the next 
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generation of robust and resilient structural defences (coastal, offshore oil and gas, hydraulic 

dams etc.) for the protection against wave impacts. 

The first objective of this study is the development of a numerical 2D/3D free surface flow 

model using the open source CFD modelling software OpenFOAM (Weller et al., 1998). The 

model is created by incrementally building on the complexity of an initially simplified model.  

The early simulations take the form of 2D investigations using dam-break modelling. Much 

experimental (Martin and Moyce, 1952), and numerical, (Sabeur et al., 1996, Sabeur et al., 

1997), (Kleefsman et al., 2005) investigation has been carried out into this model setup and 

it is often used as a benchmark test case for numerical simulations. In the early simulations 

compressibility effects of air pockets entrapped within the flow are neglected and the flow 

front impacts a non-porous vertical wall. In this study the use of the term entrained air bubble 

refers to larger air voids whereas entrapped air bubbles indicates those smaller bubbles which 

occur during turbulent wave breaking resulting in the formation of a bubble cloud.  

A spatial grid analysis based on a technique developed by Roache (1997) is carried out to 

verify the model at this stage. The model is subsequently validated by comparison of the 

flow front displacement with the experimental results published by Martin and Moyce 

(1952). When the grid independence and the validity of the model has been established the 

simulation is updated to include the effects of air as a compressible gas which can be 

entrapped within the liquid flow during wave impact. By comparison between the results 

from the simulation with the compressible air phase included, with those from the simulation 

without the compressible air phase, the influence of the compressible air entrainment on the 

impacting pressures is established and observed. The oscillatory pressure response recorded 

in the compressible simulation is analysed in the frequency domain. The oscillating 

frequencies of the air pockets entrapped within the liquid phase are then compared to values 

computed from an analytic expression developed by Minnaert (1933) and an experimentally 

derived formula  by Hattori et al. (1994). 

Once the contribution of entrapped air to the impulse pressures has been identified, the 

vertical wall on which the wave breaks is replaced by structures of varying porosity and 

varying topology. The compressible simulations are then repeated whilst varying the 

morphological parameters of the porous structure upon which the wave impacts. These 

parameters include porosity, specific surface area, permeability and tortuosity. It is thus 

projected that by varying the geometry of the permeable structure, relationships can then be 

postulated and established between the wave energy attenuation and the durability of the 

protective structure, and its geometric topology.  
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Concurrent work to investigate the feasibility of integrating clean, state of the art wave 

energy harvesting technologies into breakwater structures without impairing their 

effectiveness to act as coastal protective structures is also being undertaken. This aim of this 

separate study is to develop an experimental specification for the validation of the transient 

wave impact dynamics at the porous structure and to quantify the energy which is available 

for harvesting and conversion to usable forms. It is envisaged that this separate work will 

also concentrate on the data retrieved from embedded sensors within the porous structures, 

non-intrusive image and video analysis of the free surface flow evolution both outside and 

in the interior of the porous media. This concurrent study will yield data which will serve to 

further validate the numerical model in the future. Furthermore, this study should provide 

proof of concept for energy harvesting applications from wave impacts on breakwater 

structures which has previously been overlooked.    

The final objective of this research will be to make the model accessible to the engineering 

community as an open, web-accessible CFD service based system. This can be achieved 

through the publication of the OpenFOAM solver and the simulations data which was 

developed throughout the course of this study.  

 

1.3 Layout of report and novelty of research 

A thorough literature review constitutes Chapter 2. The progressive advances which have 

been made in understanding the effects of wave impacts on vertical surfaces is initially 

presented. This begins with some of the earliest research in this field which was performed 

by Bagnold (1939) and concludes with recent experimental research carried out by 

Wemmenhove et al. (2015). Also included in the literature review is a brief summary of 

research into acoustic bubble dynamics and more significantly for this study, a discussion on 

the oscillatory vibrations of entrapped pockets due to an external excitation force. Finally 

the literature review includes some remarks on the structure of porous topologies and the 

flow of fluids through those permeable media. 

Following Chapter 2, a section on numerical modelling methods employed in the CFD 

simulations is described. It includes an analysis of numerical discretisation schemes which 

are adopted in this study and a summary of the volume of fluid method for free surface flow 

modelling. Chapter 3 closes with a description of the OpenFOAM model case structure.  

Chapter 4 presents an overview of the CFD model developed for the study of wave impacts. 

The model geometry is reported while aspects of temporal and spatial discretisation are 

discussed.  This chapter concludes with a discussion on the parameters used to define both 
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free surface flow modelling with incompressible air and simulations with air included as a 

compressible medium. 

Results from early stages of this research obtained from the OpenFOAM CFD simulations 

are presented and analysed in Chapter 5. The procedure for verification and validation of the 

CFD model is detailed. A frequency domain investigation of the oscillatory impact pressures 

is performed and a comparison of the pressure results obtained from models with 

incompressible air and models with compressible air is documented.  Finally, analysis and 

discussion on the observed oscillatory pressure signals from air pockets entrapped within the 

fluid subsequent to the wave impacting with the obstructing structure and overturning is 

presented.   

Chapter 6 documents an analysis of the characterisation of porous topologies and hydraulic 

conductivity through permeable media. The concepts of homogeneity and isotropy of 

permeable assemblies are investigated. Parameters such as porosity, specific surface, 

tortuosity and permeability which can be used to describe the degree of complexity of a 

porous structure morphology are discussed in depth. Darcian seepage flow and Darcy-

Forcheimer inertial flow regimes are examined. Finally the different approaches to 

modelling fluid flow through porous media are discussed. 

The next chapter describes the 3 dimensional porous model simulation setup. The different 

sphere packing models and their generation are described. The varying porosity fibrous type 

structures are analysed. The procedural steps in Fortune’s Algorithm which is used to 

develop a Voronoi diagram in 2 dimensions are presented, the method to extend this 

algorithm to 3 dimensions for the construction of a random multidirectional fibrous network 

topology is then explained. The OpenFOAM simulation model geometry for the 

investigation of 3 dimensional wave impact at a porous structure is reviewed. The intricate 

meshing procedure to incorporate the porous geometries into the CFD model is investigated. 

Chapter 8 presents the results from the 3 dimensional simulations of wave impact with the 

porous structures. The results for the various morphology sphere based porous media 

simulations are first analysed followed by the results from the fibrous media simulations. 

The evolution of the free surface flow profile before, at and after wave impact with the 

different structures is examined. This is followed by an investigation into the influence of 

the porous morphology characteristics introduced in Chapter 6 on the flow field dynamics.         

The final chapter summarises the results and comments on the findings from the various 

model simulations. Proposals for future research programmes are also highlighted. 

Some of the key findings of this research have been that we have shown that OpenFOAM is 

a suitable software to simulate free surface flow waves impacting porous structures. The 
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entrapment of air pockets is confirmed to be the source of oscillatory fluctuations within the 

pressure response signal during wave impacts which has been previously observed in 

experimental research.  Additionally, we have demonstrated that the amplitude of the first 

pressure wave cycle during the entrapped bubble induced oscillatory pressure phase can be 

as energetic as the surging flow front impulse impact. This work also proves that by 

modifying the topology of the porous structure the amplitude of these oscillatory waves can 

be precisely controlled and attenuated. By varying the porous structure topologies we have 

demonstrated that different packing systems and different constituent element sizes damp 

the wave impact energy more effectively. This research has also proven that there is viable 

energy harvesting opportunity to be realised from waves impacting on porous structures. 

Also, the foundations of a new numerical method which has the capability to accurately 

predict the response of porous coastal protective structures under varying spectra wave 

impact loading has been developed.  

 Until now the design of coastal protective structures such as breakwaters has been based 

predominantly on empirical knowledge or experimental data, because of this it has proven 

difficult to validate if the optimal design has been employed in their construction. By 

conducting these rigorous numerical simulations additional information on the mechanism 

of wave energy transfer at the impact interface has been achieved. This data has improved 

our understanding of the wave impact process and can be used to augment the design method 

for coastal defence installations.     
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Chapter 2  

Literature review 

2.1 introduction 

The main geometrical characteristics of breaking waves are initially described. Breaking 

waves at a solid interface and the generation of large impact pressure impulses is discussed. 

The process of wave “flip-through” is explained.  An in-depth discussion on oscillatory 

pressure signals observed during previous wave impact experimental research follows. 

Finally a brief overview of the characteristics of a porous media are delivered, and those 

spatial features of the medium which are relevant to this study are described.  

 

2.2 Breaking wave geometries 

A strong correlation exists between breaking wave profiles and the quantity of air entrapped 

at the impact interface, (Schmidt et al., 1992). A comprehensive investigation into breaking 

wave classifications was first presented by Galvin (1968). In his study, the geometric 

parameters of the beach upon which the waves break were examined to determine its 

influence on the developing wave profiles. The wave breaking profiles can be classified into 

four groups; spilling, plunging, collapsing or surging as shown on Figure 2.1.1. 

A spilling wave occurs when the wave crest becomes unstable. Turbulent white water results 

at the crest and spills forward and downwards on the face of the inclined wave front. 

Plunging waves result when the wave crest becomes much steeper than that of a spilling 

breaker. The wave crest falls forward and curls into the base of the wave with a violent 

impact. Plunging breakers will usually trap a large air pocket which may fragment and be 

ejected through the crest creating a turbulent flow field forward of the wave. A surging wave 

results when the wave crest does not break and the toe of the wave flows up the beach with 

some very minor breaking. The surging wave has a relatively flat, horizontal profile and 

yields little or no white water. A collapsing breaker exhibits flow properties of both the 

plunging and spilling breakers. The crest of the wave does not break but rather remains 
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somewhat flat, while the bottom of the forward face of the wave steepens and collapses in 

the flow direction creating a turbulent flow which glides up the beach. 

  

Figure 2.2.1 Breaking wave profiles, (Galvin, 1968). 

   

2.3 Wave impact at solid interface   

Experimental work has shown that incident waves on vertical structures can produce impact 

pressure values which are greatly in excess of pressures which would normally be expected 

from calculations adopting shallow water theory (Peregrine, 2003). Experimental results 

have recorded pressures which can commonly exceed  10ρ𝑔(ℎ + 𝐻) where H is the wave 

height and h is the water depth at the trough of the wave. Bagnold (1939)found that these 

pressures reach their greatest value as the amount of air entrapped by the advancing wave 

front tends towards a minimum value, but not reaching zero. This indicates that the evolving 

geometry of the wave front prior to, and at impact strongly influences the velocity and 

pressure records at the impact interface. In the case of a wave crest having developed a 

forward jet just prior to impact (i.e. a plunging wave which is beginning to overturn), a large 

bubble will be entrapped within the flow. Also, if a plunging wave has collapsed prior to 

impact, the flow region immediately forward of the wave may be very turbulent and result 

in the entrainment of many smaller bubbles. In each case the trapped air will alter the 

observed flow field response to impact (Peregrine, 2003).  In most experimental work the 

difficulty with repeatability of results from identical model set-ups has been extensively 

documented. These difficulties in achieving repeatable results may be due to the randomness 

of the trapped-air dynamics during wave breaking (Chan and Melville, 1988), turbulence left 

behind by a preceding wave, or strong interaction with the reflection of the preceding wave 

(Kisacik et al., 2011). Chan and Melville (1988) provide a comparison of pressure time 

histories for an experiment repeated four times with identical initial conditions yielding 

significantly varying results. Schmidt et al. (1992) also cite the highly transient and complex 
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nature of two phase flow in addition to the scale effects of entrapped air as a difficulty in 

obtaining repeatability of results. Although recent experimental research has employed more 

accurate and sensitive equipment to record the velocity and pressure fields, repeatability of 

results is still very difficult due to the highly transient and complex nature of the wave as it 

impinges upon an obstacle. In order to accurately record the impulse pressure signal resulting 

from the wave impact, sampling rates at 10kHz or above are usually required (Peregrine, 

2003). Despite these difficulties which are associated with the replication of results and 

accuracy of recorded data, a number of experimental investigations have identified some 

common traits which are observed when examining the pressure response at the impact 

interface.  Figure 2.3.1 displays a typical solitary wave impact pressure trace sampled at a 

point adjacent to the impacting wave tip location. It should be noted that the maximum 

pressure impulse value in Figure 2.3.1 is approximately 17(𝜌𝑔ℎ)   where (𝜌𝑔ℎ)  is the 

hydrostatic pressure. However, for this impact record no information was provided on the 

impinging wave height, H or the geometry of the impacting wave.  

 

Figure 2.3.1 Pressure time series from a single wave impact at a solid  

wall- Plymouth University laboratory flume, (Peregrine, 2003) 

 

The pressure observed at the wall interface can be categorised into three temporal phases.  

At the instant of impact, the horizontal momentum at the crest of the impinging wave is 

transferred into vertical momentum and the wave is forced vertically upwards through the 

formation of a thin jet. The tall narrow pressure impulse of approximately 16.75 kPa on 

Figure 2.3.1 is responsible for the formation and upwards acceleration of this water jet when 

the wave impacts the wall. It can be observed that the peak duration of this impulse pressure 

is very short (in the order of 1-2 milliseconds). The jet however may continue to form and 

accelerate upwards for a longer duration due to inertial effects. As the pressure impulse 

rapidly decreases the inertial force resulting in the upward displacement of the jet diminishes 

thus allowing deceleration in its velocity. The jet will reach its point of maximum upwards 
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velocity, and because the pressure impulse is no longer exerting a vertical force on the water 

jet it begins to collapse.  

As the jet crest falls back its velocity will be decelerated by the fluid beneath. This results in 

a pressure increase within the fluid below the jet which can be observed as the smaller 

amplitude (5.5 kPa), longer duration pressure impulse on Figure 2.3.1. After the subsidence 

of the jet some oscillatory pressure effects can be observed. It has been suggested that these 

oscillations may be due to the irregular shape of the wave after impacting with the wall 

(Peregrine, 2003). However the regularity in both the period of oscillations and the uniform 

manner in which they are damped would seem to be at variance with this hypothesis. Much 

more likely is the alternative suggestion that these oscillations result from air bubbles 

entrained within the flow as it breaks up subsequent to impact (Schmidt et al., 1992) however 

until now this theory has not been validated by numerical investigations. 

After these pressure oscillations have been damped the pressure plot records the hydrostatic 

loading from the fluid as it is in contact with the wall.   

The high impulse pressure peaks evident on Figure 2.3.1 cannot be explained using the 

commonly applied shallow water-wave theories, thus some additional phenomenon must be 

present to which these large pressures can be attributed. Research performed by Longuet-

Higgins and Cokelet (1976), and more recently by Dold (1992) and Peregrine (2003) have 

made some advances to explain these high pressure impulses. The phenomenon to which 

they attribute these high pressures has been termed wave “flip-through” and can be explained 

according to Figure 2.3.2. 
       

 

Figure 2.3.2 The development of wave “flip-through” in the presence  

of a flow inhibiting obstacle (Peregrine, 2003). 

 

The dashed line in Figure 2.3.2 represents the evolution of a large amplitude plunging wave 

which in the absence of an obstacle would collapse forward forming a horizontal jet. If a 

structure such as a vertical wall or a breakwater is located in the path of the breaking wave 
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such that the wave will impact it at the precise time that the wave begins to overturn, i.e. 

when the wave has developed a vertical profile at its advancing face, then the wave is 

prevented from collapsing forward and the physics of how the wave breaks is very much 

altered. Such a flow obstacle is represented by the solid vertical line positioned at X = 0 in 

Figure 2.3.2. The solid wave profile lines display the manner in which the wave shape 

evolves in the presence of an obstacle in the wave’s path. The obstacle causes the water at 

the trough of the wave to accelerate rapidly in a vertically upward direction. As the trough 

depth diminishes the horizontal thrust at the crest of the wave is maintained and the free 

surface converges to a point thus tending towards a stress singularity at the position of impact. 

Peregrine (2003) notes that the vertical acceleration of the water in the trough of the wave 

can be as high as 1000g. This high vertical acceleration of the water must result in a 

correspondingly high pressure gradient being transferred to the wall face (1000𝜌𝑔), thus 

explaining the high pressure impulse such as that recorded on Figure 2.3.1. A large vertical 

jet and associated high pressures can therefore form in the absence of any clear impact of 

the crest of the wave with the wall but rather with the impact having a smooth irrotational 

flow action. This effect is illustrated on Figure 2.3.3.  Experimental research conducted by 

Chan and Melville (1988) supports the existence of the “flip-through” action at wave impact 

for certain wave breaking profiles. Free surface instabilities such as Kelvin-Helmholtz 

instability are less influential on the flow behaviour than the geometry in which the 

development of the “flip through” profile phenomenon occurs. For example, wave “flip-

through” will generally occur only in the presence of a vertical obstacle which causes a rapid 

vertical acceleration of the water constituting the trough of the breaking wave. In this case 

the geometry of the environment in which the wave breaks is the dominant factor influencing 

the profile development of the flow. Likewise, a nearshore plunging breaker wave will 

usually form due to a depth profile change at a beach. Once the wave has broken, some 

further turbulent dispersion of energy may occur during spillage due to Kelvin-Helmholtz or 

other such instabilities (Ikeda et al., 2014).  In deep water environments wherein the seabed 

is non-influential on free surface flow profile, instability effects such as Raleigh-Taylor or 

Kelvin Helmholtz may be the dominant factor in the development and breaking of waves. 

These instabilities can be induced by a velocity differential between the ocean water and 

wind blowing across the surface. This creates a shear velocity flow profile in the uppermost 

layers of the ocean water leading to the generation of surface waves.   In this study we focus 

on waves breaking on obstacles, and the influence theses obstacles have on the development 

of the flow profile, thus we neglect the effects of free surface instabilities such as Kelvin- 

Helmholtz or Raleigh-Taylor.       
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Figure 2.3.3 Development of a vertical jet at the impact interface  

through the process of “flip-through” (Peregrine, 2003). 

2.4 Pressure oscillation 

According to Peregrine (2003) “in two-dimensional laboratory experiments on a rigid wall, 

well- defined oscillations are not uncommon and are clearly related to pockets of trapped 

air”. He also states that the effect of air entrapment is to cushion the impact, the results of 

our numerical simulations do not agree with this as discussed in Chapter 5. Chan and 

Melville (1988) conducted a detailed experimental investigation into plunging wave 

pressures at vertical walls. In their research they initially determined the zone of wave 

breaking for their experimental setup. They then incrementally varied the wall location in 

the breaking zone relative to the impinging wave whilst maintaining the geometric 

parameters of the oncoming wave constant. Thus they were able to obtain a detailed insight 

into the characteristics of wave impact pressures in the wave breaking zone. In their findings 

they observed high amplitude pressure oscillations at impact when the vertical wall was 

located between the positions 3.638𝐿𝑐 ≤ 𝑥 ≤ 3.659𝐿𝑐 . Where x is the distance from the 

wave-maker to the wall and 𝐿𝑐 is the characteristic wavelength of the generated wave. These 

pressures had a frequency oscillation in the range of 300-800 Hz and coincided with the 

wave breaking profiles in which maximum air entrainment was observed. Higher frequency, 

lower amplitude pressure oscillations were also recorded at various other wall positions, 

most significantly when the wall was positioned such that the wave had broken prior to 

impact and the flow was more turbulent with the quantity of air entrainment reduced. The 

entrapped air pockets were also fragmented into smaller bubbles in these cases.  By 

comparing averaged pressure maximum results over 23 experimental runs with the averaged 

pressure maximum results from 9 experimental runs with the wall position at 𝑥 𝐿𝑐  = 3.643⁄  
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and  𝑥 𝐿𝑐  = 3.659⁄   respectively at the wall elevation 𝑧 𝐿𝑐  = 0.057⁄   (where 𝑧 𝐿𝑐 ⁄  is the 

elevation with respect to the still water level) Chan and Melville (1988) also suggest that the 

oscillatory pressures due to an entrapped air pocket may contribute to the maximum pressure 

impulse at wave impact. They contend that the pressure oscillations may be due to resonance 

effects within the air pocket entrapped just below the crest of the impinging wave.  

Schmidt et al. (1992) also conducted large scale experimental analysis of wave impacts and 

observed low frequency impact force oscillations which occurred immediately subsequent 

to the impingement of a plunging breaker with a large entrapped bubble. They attributed 

these oscillations to the cyclic compression and expansion of the bubble. Furthermore they 

found that the frequency of oscillation can be related to the bubble diameter. Additional 

discussion on this subject is included in Chapter 5. It is also significant that the period of the 

force oscillations recorded by Schmidt et al. (1992) in their large scale experiments were 

within the range of natural frequencies for typical caisson breakwater construction designs. 

This could result in resonant excitation in the structure thus accelerating damage and 

deterioration of the structure which would otherwise have been attributed to the influence of 

wave impacts alone.  Figure 2.4.1, displays the key features of a typical impact force plot for 

a plunging breaker type wave with the associated flow profiles at the key temporal points of 

interest indicated. 

 

Figure 2.4.1 Typical horizontal impact force observed during  

plunging breaker impact, (Schmidt et al., 1992). 

 

Mitsuyasu (1966) studied these pressure oscillations and concluded that the characteristic 

damping mechanism observed in his earlier experimental work and in previous studies 

(Bagnold, 1939), (Ross, 1955) was due to leakage of air from the main bubble entrapped 

within the flow subsequent to impact.  However in simulations conducted in the course of 
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this study the damped oscillations were observed without major leakage of air from the 

entrapped air pocket, this would seem to contradict Mitsuyasu’s conjecture. Whilst Zhang et 

al. (1996) also recorded the vertical dissipation of air from the entrapped bubble in their 

numerical study, the damping of the pressure oscillations in their opinion was attributed to a 

transfer of fluid kinetic energy  𝐸𝑘  to fluid potential energy 𝐸𝑝  as the wave front moved 

upwards along the wall. 

Hattori et al. (1994), have also conducted experiments to investigate impact pressures from 

a wave impinging on a vertical wall. By varying the wall location relative to the breaking 

wave they were able to capture and analyse the effects of 4 distinct geometries of breaking 

wave. High speed video recording at the impact interface was captured, from which still 

images were provided. The first generated wave broke against the wall exhibiting the 

phenomenon of flip through without the entrainment of bubbles and thus no oscillatory 

effects in the time–pressure history plot were observed. The second wave impacted the wall 

having developed a vertically flat wave front. This type of breaker yielded a very high impact 

pressure 
𝑝𝑚𝑎𝑥

𝜌𝑔𝐻𝑏
 =  108.2. In this case there were groups of small air bubbles trapped near the 

crest of the impacting wave. These bubbles appeared to be ejected upwards as the crest 

impacted the wall. The time-pressure record for this impact displayed a very high impact 

impulse followed by a series of high frequency (1.1kHz) oscillations which decayed rapidly. 

See Figure 2.4.2 for the wave breaking still images and the pressure plot. The results from 

the second wave experiment would appear to support the findings of Chan and Melville 

(1988) for the case when the wave broke just prior to impact resulting in a quantity of small 

air bubbles being entrained in a very turbulent flow.  

 

 

      

 

Bubbly mixture 
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Figure 2.4.2 Wave breaking with associated high frequency rapidly 

decaying oscillation pressure, (Hattori et al., 1994) 

 

The third type of breaking wave geometry analysed was that of a plunging breaker with a 

thin lens of air trapped at the interface. Again relatively high impulse pressures were 

recorded  
𝑝𝑚𝑎𝑥

𝜌𝑔𝐻𝑏
 =  51.9 . Subsequent to the initial impact pressure oscillations with a 

frequency of about 250 Hz were observed.  Hattori et al. (1994) note that the main bubble 

fragments in to a number of smaller bubbles immediately after impact at elapsed time 835ms 

(Figure 2.4.3). However, on the pressure plot Figure 2.4.3, the oscillation are recorded with 

a very uniform frequency which persists after the fragmentation of the main bubble. This 

point requires further investigation as smaller bubble sizes should oscillate at higher resonant 

frequencies. Therefore unless all the bubbles were resonating in a synchronised phase 

manner the recorded pressure plot should display a non-uniform oscillation after elapsed 

time 835ms. The oscillations continue until the bubbles escape upwards through the wave 

crest and Hattori et al. (1994) suggest this to be a source of the damping. It should also be 

noted that there are some high frequency, low amplitude oscillations recorded on the pressure 

plot Figure 2.4.3 between 870 and 880 ms which may be due to residual smaller air pockets 

which remain after the majority of bubbles have escaped through the wave crest. 

Unfortunately there are no corresponding photographs presented for this time period. It is 

also suggested that the high velocity rotation of the bubbles may result in some of their 

energy loss thus contributing to the damping of the pressure oscillation signal. 
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Figure 2.4.3 Regular pressure oscillation resulting from air pocket  

entrapped within the flow, (Hattori et al., 1994). 

 

The final wave profile investigated by Hattori et al. (1994) was that of a plunging breaker 

with a large trapped air bubble. They found that an increase in the diameter l of the entrapped 

bubble resulted in a decrease in both the peak impulse pressure and an associated decrease 

in the oscillating pressure frequencies recorded. The relationship between the bubble 

diameter and peak pressure, and also the bubble diameter and the mono-polar resonant 

oscillation frequency was found to vary inversely. Figures 2.4.4 and 2.4.5 show the 

relationship between the bubble diameter and the peak pressure and the bubble diameter and 

the resonant oscillation frequency respectively for a range of experiments conducted. It is 

noted that the approximate envelope curve for the oscillating pressure frequency is 

represented by 

 
𝑓𝑎𝑝 = 180𝑙−

1
2 (2.4.1) 

where 𝑙 is the bubble diameter. Equation (2.4.1) yields a very similar result to the theoretical 

relationship predicted by the Minnaert resonance frequency given in Equation (2.4.2), 

(Minnaert, 1933). This analytic equation will be further discussed in Chapter 5. 

 
𝜐 =  

1 

2𝜋𝑎𝑏
(

3𝛾𝑃0

𝜌
)

0.5

 (2.4.2) 

 

where 𝛾 is the ratio of specific heat of a gas at constant pressure to that at constant volume, 

P0 is taken to be the hydrostatic liquid pressure outside the bubble (assumed to be 

atmospheric pressure in this case) and 𝜌 is the density of the fluid, and 𝑎𝑏 is the radius of the 

entrapped bubble, (Leighton, 1994). 
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Figure 2.4.4 Entrapped bubble diameter versus maximum pressure, (Hattori et al., 1994).  

 

Figure 2.4.5 Entrapped bubble diameter versus oscillating frequency, (Hattori et al., 1994). 

 

From their experimental data and based on previous research results from Bagnold (1939),  

Hattori et al. (1994) also created a predictive model which relates the observed trapped 

bubble diameter to the maximum impact pressure and the observed bubble diameter to the 

oscillating pressure frequency. Figure 2.4.6(a) and Figure 2.4.6(b) present the predicted 

model results and the observed experimental results.  At smaller bubble diameter dimensions 

there is a high variability in the observed peak pressure in comparison to the predicted peak 

pressure, however the comparison is more favourable as the observed bubble diameter 

increases. The comparison between the measured frequency of the pressure oscillation and 

the predicted frequency of oscillation is quite favourable. 
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Figure 2.4.6 Hattori et al. (1994) model results (a) Predicted max pressure. 

(b) Predicted oscillating pressure frequency. 

 

Topliss et al. (1993) present mathematical models for the analysis of the high frequency 

pressure oscillations recorded during a wave impact at a vertical wall. They first analysed 

the oscillating pressure frequency of a bubbly mixture in proximity to the impact surface. 

Expressions were derived for the frequency of oscillation as a function of depth of the fluid 

and aeration percentage and also for frequency of oscillation as a function of the distance 

which the bubbly mixture extends from the wall and aeration percentage. A potential flow 

model for the analysis of a relatively large single bubble trapped at the impact interface was 

also developed. The mathematical models were compared to three sets of experimental 

results provided by Hattori et al. (1994), Witte (1998), and Graham and Hewson (1992). The 

mathematical models developed by Topliss et al. (1993) compare reasonably favourably for 

frequency oscillation measurements for large air bubbles, however the mathematical model 

in most cases over estimates the oscillating pressure frequency experimental results obtained 

by Hattori et al. (1994). 

More recently a study carried out by Kleefsman et al. (2005) using the ComFlow software 

developed jointly by MARIN, the University of Delft and the University of Groningen 

investigated the flow of an incompressible viscous fluid. The numerical method was based 

on the Navier-Stokes equations which were discretised on a fixed Cartesian grid using the 

finite volume method. The free surface evolution was described by the volume of fluid 

method. To validate their software they performed a dam-break numerical simulation. They 

then compared the numerical results with results generated from a dam-break experiment. 

The vertical water height in the reservoir was monitored in both the experimental setup and 

the numerical simulation as the water column collapsed. Also pressure time histories were 

recorded on an obstacle located in the path of the advancing wave front for both the 

numerical and the experimental setup.  Good general agreement was found when the results 

from the simulation were compared to the experimental results. However because the 
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simulation only considered incompressible fluids there was no oscillatory pressure response 

observed in the numerical results.  In contrast there were some small irregular pressure 

oscillations recorded in the experimental results immediately subsequent to the wave front 

impacting the obstacle. The oscillations may result from the free surface breaking up or may 

be due to small diameter bubble entrainment. Nevertheless some oscillatory pressure 

response is expected as the air bubbles entrained within the liquid phase undergo cyclic 

compression and dilation as previously discussed thus generating the oscillations in the 

recorded signal.  

Wemmenhove et al. (2015) used an updated version of the ComFlow software to investigate 

both single and two-phase wave impacts with air modelled as a compressible gas. Two sets 

of numerical simulations were performed, the first set of simulations modelled sloshing 

behaviour inside a LNG (liquid natural gas) tank; the second study examined wave run-up 

behaviour at impact with a partially immersed structure. In both cases single and two phase 

simulations were completed with both sets of numerical results also compared against 

experimental data in order to validate the numerical models. Only the first set of simulations 

which concentrated on the sloshing behaviour within the tank will be considered here. The 

experimental results in the case of the sloshing study were obtained over a 20 minute 

experiment duration. It was found that wave run-up height simulated with the two phase 

model agreed quite well with the experimental data in contrast to the single phase model 

which overestimated the wave run-up at the tank wall. The overestimated wave run-up height 

simulated by the single phase model resulted in peak pressures which were excessive when 

compared to the two phase model and the experimental results.  

The effect of air entrainment on the simulated model were also investigated. A single wave 

which exhibited the geometrical characteristics of a plunging breaker at impact from the 

experimental setup was selected for this part of the study. The simulation pressure results for 

the single and two phase models were compared to the corresponding wave pressure results 

from the experiment study. The entrapped air pocket had a diameter of order  𝑂(10−1) and 

lasted for at time duration 𝑂(10−1) before being compressed, fragmenting and ejected out 

through the impacting wave crest. The pressures were monitored at two locations in the 

experimental setup; a point below the entrapped air pocket and at a point above the entrapped 

air pocket located at the same elevation as the as the horizontal jet formed by the plunging 

breaker. At both locations the simulation results from the two phase model correlated better 

with the experimental results, in terms of impact pressure magnitude and also in terms of a 

temporal evolution of the impact pressure. However there was no evidence of a high 

frequency pressure oscillation exhibited in the two phase model as would be expected with 
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an entrapped air pocket at impact. The experimental results did however exhibit some 

irregular oscillations in the pressure response signal as would be expected during wave 

breaking with air entrapment.   

 

2.5 Porous media 

In this section we present a brief introductory description of a porous assembly. Further 

analysis and an in-depth discussion on porous topologies is included in Chapter 6. A porous 

material can be considered as an assemblage of matter which consists of two or more 

materials being composed of a minimum of two material phases. Thus a porous medium is 

usually a solid matrix containing void spaces filled with a fluid which may be a liquid, a gas 

or both. Notwithstanding this, foams may also be considered as porous materials in which 

case a solid matrix may not be a constituent of the material. Examples of porous media both 

naturally occurring and synthetic are numerous and the characteristics which can be used to 

classify them are very diverse. Properties of these porous media which are often used for 

their classification include density, permeability, and electrical conductance. These 

parameters however depend not only on the morphology of the medium, but also on the 

properties of the material which constitute the porous medium.  Material independent 

measures can be better used to classify the topology of such structures.  These material 

independent classifiers include the level of porosity of the assemblage itself, specific surface 

area and the sample tortuosity.    

In general all materials examined at an atomistic scale are porous, therefore a limit on the 

minimum constituent particle size must be established. A soil classification system presented 

by Brewer (1964) defines the lower limit of macroporous soil at 75 microns. This 

investigation will be restricted to studying porous materials at a macroscopic level using a 

direct numerical simulation method. Other modelling techniques include methods 

employing a continuum approaches. In adopting the continuum method homogenisation 

approaches are employed such as adopting a representative elementary volume (REV) of the 

material to characterise the porous assembly. Material properties such as levels of porosity, 

velocity of fluids through the porous material, entrained fluid pressures etc. are all averaged 

over this representative elementary volume. 

A comprehensive description and characterisation of porous media is presented by Bear 

(1988). He recognises that while the previous description of a porous media may be 

technically accurate, using these guidelines a hollow cylinder would satisfy the requirements 

to be considered porous. Obviously in the context of this study a hollow cylinder cannot be 
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representative of the porous medium, therefore the description of a porous medium presented 

above is somewhat deficient and needs additional constraints. According to Bear (1988) the 

solid phase should be distributed relatively uniformly throughout the material with each 

REV containing an amount of solid material. The specific surface of the material should be 

relatively high, and the interstices comprising the voids should be relatively narrow. Finally 

a proportion of the void spaces must be interconnected. This study will concentrate on 

developing a relationship between the characteristics used to describe the porous assembly 

topology at the impact interface and the attenuation of the oscillating pressure energy 

resulting from the impinging wave and air entrainment. It will be seen that these 

characteristics are highly influential to damp the resonant pressures which specific 

frequencies resulting from wave impacts with entrapped air pockets.           
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Chapter 3 

Numerical modelling methods  

3.1 Introduction 

The CFD software package OpenFOAM (Weller et al., 1998) has been selected for the fluid 

flow simulation and analysis of the wave-structure interface region during the impact event. 

OpenFOAM is an open source software program which computes the flow field variables 

such as pressure, velocity, temperature etc. through the application of the finite volume 

method.  

In the early stage of this research a review of the various CFD packages was undertaken. 

Proprietary CFD software packages such as Ansys Fluent, Star CCM+ and Ansys CFX were 

considered. However these programmes are all closed source software and the user is very 

restricted in their ability to modify the underlying programme code upon which these 

programs are built. The creation of a new bespoke code to model compressible fluid flow 

through porous structures was also briefly considered; this however was determined to be 

too large a challenge in the timeframe permitted by this research. Additionally, it was 

determined that OpenFOAM possessed much the modelling requirements which this study 

demanded.  Nevertheless for those situations which could not be modelled with the pre-

existing software, modification of the source code was required to suit the particular cases 

analysed in this research.  Because OpenFOAM is an open source platform the code can be 

modified to suit the user’s needs with relative ease once the essential physics of the problem 

are understood.  

The procedure to create an OpenFOAM model is quite straightforward. First the problem 

domain is discretised into a set of contiguous volumetric cells. These cells are defined by a 

set of interconnected faces, the number of which will depend on the shape of the volumetric 

cell. For example a hexahedral volumetric cell is defined by six faces whilst a tetrahedral 

cell has four faces. These faces are in turn defined by a series of interconnected points 

forming the domain mesh or grid. Thus the basic building blocks of a volumetric mesh to 

define a computational domain is a set of points or nodes. The values of the discrete flow 



 

26 

 

fields are computed and stored at the volumetric cell centres. The values at the cell faces 

must be computed through interpolation between the cell centred values. 

 

3.2 Governing equations of fluid flow 

Because OpenFOAM relies on a finite control volume representation of the problem domain, 

the governing flow equations which describe the mathematical model are represented in 

integral form. The form of these equations can be manipulated to indirectly obtain the 

equivalent set of partial differential equations (PDEs) (Anderson, 1995). The system of 

governing integral equations which exactly describe the spatial and temporal flow evolution 

cannot be solved analytically and so are discretised across a mesh which represents the 

problem domain. Then a numerical approximation can be achieved by substituting the 

integrals with a system of algebraic equations which are solved at the volumetric cell centre. 

The integral equations to be substituted are typically the continuity equation, the momentum 

conservation equation and the energy conservation equation; these are each presented as 

Equations (3.2.1), (3.2.2) and (3.2.3) respectively. 

 

 
𝜕

𝜕𝑡
∭ 𝜌 𝑑𝑉 +  ∬𝜌𝑼 ∙ 𝒅𝑺 = 0 Continuity equation

𝑆𝑉

 (3.2.1) 

 

In Equation (3.2.1), V is the control volume, 𝜌 the density of the fluid (an alternative flow 

field variable could be used), U is the flow velocity at a point on the control volume surface 

and dS is the vector elemental surface area defined as 𝒏 ∙ 𝑑𝑆, with n being the unit vector 

perpendicular to surface dS. 

 

 

𝜕

𝜕𝑡
∭ 𝜌𝑼 𝑑𝑉 +  ∬ 𝜌𝑼𝑼 ∙ 𝒅𝑺 = ∬𝝉 ∙ 𝒅𝑺

𝑆𝑆

                
𝑉

+ ∭ 𝜌𝒃 𝑑𝑉                                            Momentum equation
𝑉

 

 

(3.2.2) 

 

In the momentum Equation (3.2.2) the right hand side represents the forces which act directly 

on the fluid element.  These forces can be sub-divided into body forces and surface forces. 

Body forces act upon the volumetric mass of the control volume, Gravitational and magnetic 

field forces are two such examples of these body forces. The term b in Equation (3.2.2) 

represents the body forces. Surface forces act upon the surface of the control volume, shear 

stresses and surface tension forces are examples of such surface forces. 𝝉 is a stress tensor 

representing the surface forces. These act to alter the geometry of the control volume. 
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𝜕

𝜕𝑡
∭ 𝜌ℎ𝑒 𝑑𝑉 +  ∬ 𝜌ℎ𝑒𝑼 ∙ 𝒅𝑺 = ∬𝑘∇𝑇 ∙ 𝒅𝑺      

𝑆𝑆𝑉

  

+ ∭ (𝑼 ∙ ∇𝑝 + 𝜏 ∙ ∇𝑼)𝑑𝑉 +  
𝜕

𝜕𝑡
∭ 𝑝𝑑𝑉

𝑉

 

 
               Energy

𝑉

equation 

 

 

(3.2.3) 

 

Equation (3.2.3) presents the energy conservation equation. Here he represents the enthalpy 

of the system, k is the thermal conductivity of the fluid, ∇  is the gradient, T is the 

temperature, 𝜏 is the viscous shear stress and p is the pressure.  

Through the application of the divergence theorem Equations (3.2.1 - 3.2.3) can be 

transformed into an equivalent set of partial differential equations given by  

 
𝜕𝜌 

𝜕𝑡
 +  𝜵 ∙ (𝜌𝑼) = 0                  Continuity equation (3.2.4) 

 
𝜕 

𝜕𝑡
(𝜌𝑼)  +  𝜵 ∙ (𝜌𝑼𝑼) = 𝜵 ∙ 𝝉 + 𝜌𝒃 Momentum equation (3.2.5) 

 

𝜕

𝜕𝑡
(𝜌ℎ𝑒) + ∇ ∙ (𝜌ℎ𝑒𝑼 +  𝒒)                                         

= ∇ ∙ (𝝉𝑼 ) + 𝑼 ∙ 𝜌𝒃                       Energy equation (3.2.6) 

q is the heat flux vector. 

 

3.3 Numerical discretisation schemes 

Following on from spatially discretising the domain into a set of control volumes, the 

governing equations can be replaced by a system of algebraic equations which are solved at 

the cell centres. This is also termed equation discretisation. As an example consider the 

continuity equation in vector notation. 

 
𝜕𝜌 

𝜕𝑡
 +  𝜵 ∙ (𝜌𝑼)  =  0 (3.3.1) 

 

This equation contains of two terms, a temporal term and a spatial advection term which 

must be integrated in time and space respectively.  

 ∫ ∭ (
𝜕𝜌

𝜕𝑡
+  𝜵 ∙ (𝜌𝑼))

𝑉

𝑑𝑉𝑑𝑡 =  0
𝑡+∆𝑡

𝑡

 (3.3.2) 

 

The discretised spatial advection term is obtained by applying Gauss’ divergence theorem 

 ∫ ∭ 𝜵 ∙ (𝜌𝑼)
𝑉

𝑑𝑉𝑑𝑡
𝑡+∆𝑡

𝑡

 = ∫ ∯ 𝜌𝑼 ∙ 𝒅𝒔𝑑𝑡
𝜕𝑆

𝑡+∆𝑡

𝑡

≈ (∑ 𝜌𝑓𝑼𝑓𝑺𝑓

𝑓

) 𝑑𝑡 (3.3.3) 
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where 𝜕𝑆 represents the total surface enclosing the cell volume V, the subscript f indicates 

that the summation is over the faces which bound the cell volume. 

The discretised temporal term can be approximated by a first order algebraic equation as  

 ∫ ∭
𝜕𝜌 

𝜕𝑡𝑉

𝑑𝑉𝑑𝑡 ≈  𝑉 (𝜌𝑛+1 − 𝜌𝑛)
𝑡+∆𝑡

𝑡

 (3.3.4) 

 

where the superscript n+1 and n represent the new and old time steps respectively. 

Combining Equation (3.3.3) and (3.3.4) result a discrete algebraic approximation for the 

differential equation 

  
𝜕𝜌 

𝜕𝑡
 +  𝜵 ∙ (𝜌𝑼) ≈  𝑉 

𝜌𝑛+1 − 𝜌𝑛

∆𝑡
 + ∑ 𝜌𝑓𝑼𝑓𝑺𝑓

𝑓

 ≈  0 (3.3.5) 

 

3.3.1 Time schemes 

In this study numerical models were analysed with both first order and second order 

discretisation schemes applied to the time derivative. These time marching schemes are pre-

coded into the OpenFOAM software and are selected at runtime. The finite volume method 

is applied to the flow domain and the integral form of the conservation equations result. The 

derivative  𝜕/𝜕𝑡   is integrated over a control volume according to 

 𝜕

𝜕𝑡
∭ 𝜌𝜑 𝑑𝑉

𝑉

 (3.3.6) 

 

For a first order backward discretisation scheme the partial derivative is replaced by 

 (𝜌𝑃𝜑𝑃𝑉)𝑛+1 − (𝜌𝑃𝜑𝑃𝑉)𝑛

∆𝑡
 (3.3.7) 

 

Whilst this scheme is unconditionally stable due to the dependence of the projected time-

step value on the value from the current time-step only, thus eradicating the progressive 

accumulation of errors, the accuracy of this scheme is seldom sufficient and most guides 

advise the use of a higher order scheme (Ivings et al., 2004). 

In the second order scheme which is also programmed in OpenFOAM the partial derivative 

is replaced by the second order backward difference equation 

 3(𝜌𝑃𝜑𝑃𝑉)𝑛+1 − 4(𝜌𝑃∅𝜑𝑃𝑉)𝑛 + (𝜌𝑃∅𝜑𝑃𝑉)𝑛−1

2∆𝑡
 (3.3.8) 
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where the superscript n indicts the current time-step. Whilst the first order scheme is more 

stable, the second order scheme conserves the flow field properties more accurately and thus 

second or higher order schemes are usually employed for CFD analyses.  

 

3.3.2 Gradient Schemes  

The gauss linear gradient (𝛻) discretisation scheme is specified for all scalar field variables 

in each simulation in this study. By applying Gauss' Theorem to the volume integral it can 

be transformed to a surface integral according to 

 
∭ 𝛻𝜑 𝑑𝑉

𝑉

= ∬ 𝜑 𝑑𝑺
𝑆

= ∑ 𝑺𝑓𝜑𝑓

𝑓

 
(3.3.9) 

 

In the above expression 𝜑 represents a tensor field for any parameter under consideration, 

and S is the surface area vector. 

The gauss keyword is used in the OpenFOAM code to specify the standard finite volume 

discretisation of Gaussian integration which requires the interpolation of values from 

volumetric cell centres to face centres (The openFOAM Foundation, 2013) thus in the case 

of the gradient scheme defined for this study the interpolation from cell centres to face 

centres is  a linear interpolation. 

  

3.3.3 Divergence Schemes 

The divergence term (𝛻 ∙) is integrated over the control volume and linearized according to 

 
∭ 𝛻 ∙ 𝝓𝑑𝑉

𝑉

= ∬𝝓 ∙ 𝑑𝒔
𝑆

= ∑ 𝜑𝑓 ∙ 𝑺𝑓

𝑓

 
(3.3.10) 

 

(The openFOAM Foundation, 2013). The divergence scheme for each of the flow field 

variables was defined as second order accurate except in the case of the thermal flow fields 

which were specified as first order accurate. The thermal flow fields were only required to 

be specified in the case of the compressible flow simulations and not for the incompressible 

simulations. This is because the fluid temperature was a variable which needed to be 

included within the ideal gas equation which governed the compressive behaviour of the 

fluid. CompressibleInterFoam, the CFD Solver used to model the compressible 

simulations in this study is capable of modelling flows in which cavitation is present. 

However, because the degree to which the air is compressed is relatively low in this research 

the thermal change resulting from the fluid compressing is negligible. Thus a first order 
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scheme can be used to discretise the thermal flow fields in the energy equation for the 

compressible simulations.   

3.3.4 Laplacian Schemes 

The Laplacian term is integrated over the control volume and is linearized according to   

 
∭𝛻 ∙ (Γ∇𝜑) 𝑑𝑉

𝑉

= ∬(Γ∇𝜑) ∙ 𝑑𝒔
𝑆

= ∑(∇𝜑)𝑓 ∙ 𝑺𝑓

𝑓

Γ𝑓 (3.3.11) 

 

(The openFOAM Foundation, 2013). A second order accurate uncorrected Gauss linear 

discretisation scheme was specified for the Laplacian terms. The linear interpolation from 

cell volume centre to face centre was performed using a central differencing scheme. 

Because the domain mesh was hexahedral the vector joining cell centres was coincident with 

the surface normal vector, therefore a correction term was not required to be applied to the 

interpolation scheme values. In the case of a tetrahedral mesh the vector joining adjacent cell 

centres may not be orthogonal to the cell faces. In this case a correction factor may be 

required to be applied to the interpolation value.  

   

3.4 Volume of Fluid Method  

The volume of fluid (VOF) method originally developed by Hirt and Nichols (1981) is a 

numerical technique used to model complex free surface flows. It is based on an Eulerian 

approach wherein the movement of the fluid is tracked across a static mesh which defines 

the problem domain. It is a particularly suitable method for those simulations in which the 

free surface boundary undergoes large deformations where a Lagrangian approach is 

unsuitable. The transformation of the flow and the subsequent evolution of the free surface 

is achieved by using a finite volume discretisation to solve a transport equation for the fluid 

in each cell (Godderidge, 2009), (Hirt and Nichols, 1981). The method was primarily 

developed to overcome the inherent low resolution problem which occurs at a free surface 

boundary interface in a multiphase flow analysis which arises due to convective flux 

averaging of flow properties across cell boundaries when pure Eulerian or Arbitrary 

Lagrangian-Eulerian (ALE) techniques are employed.  Hirt and Nichols (1981) set out 3 

types of problems which arise in the treatment of free boundaries and how these are managed 

in the VOF method. 

1. Their discrete representation. 

2. Their evolution in time 

3. The manner in which the boundary conditions are imposed on them. 
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1. The discrete representation of free boundary surfaces 

In the volume of fluid method a function 𝐹(𝑥, 𝑦, 𝑡) is introduced at each grid cell in the 

domain. The value of this function is defined as unity at any cell entirely occupied by the 

fluid and zero at any cell completely devoid of fluid. Thus cells with an intermediate value 

0 < 𝐹 < 1   are those the cells which the free surface boundary crosses or indeed cells which 

are intersected by the surface of an entrained air bubble. Thus a cell which at least one empty 

neighbour cell (𝐹 = 0)  is by definition a free surface cell and a cell must contain a droplet 

when that cell has a value 0 < 𝐹 ≤ 1  and is surrounded by cells with a value of 𝐹 = 0 

(Sabeur et al., 1995). This method allows for the determination of the fluid proportion in 

each cell through the storage of only a single variable. Previously the Marker and Cell (MAC) 

method devised by Harlow and Welch (1965) required the fluid spatial representation 

through the positioning of marker particles which moved with the fluid flow. This required 

the storage of the velocity components of each particle which was updated at each time-step 

in the calculation. Because the VOF method requires only the value of the F function to 

determine the fluid spatial representation the computational storage requirements are 

considerably reduced compared to the MAC method. 

2. The evolution of the free boundary in time. 

Although those cells which contain the free surface are determined from the F function, the 

orientation of the surface requires additional computation. By calculating the derivatives of 

the F function at each cell boundary the free surface normal can be established (Sabeur et 

al., 1995). The normal direction to the free surface is then the direction in which the F 

function varies most rapidly (i.e.𝛻𝐹). From the value of the F function and the direction of 

the normal to the boundary a line cutting the cell can be drawn which represents the free 

surface boundary. The temporal evolution of the F function and thus the advection of the 

flow in two dimensional space is governed by the transport equation 

 

 𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
= 0 (3.4.1) 

 

Where 𝑢and 𝑣 are the velocities in the component 𝑥and y directions respectively. Then as 

the simulation proceeds in time the value of function F moves with the fluid. The fluxes 

across each cell in the fluid domain are then obtained from Equation (3.4.1). The value of F 

is then recorded and the simulation is advanced in time by the amount 𝜕𝑡 at which stage the 

value of 𝐹(𝑥, 𝑦, 𝑡) is re-computed. In OpenFOAM version 2.3.0 the advection of the free 

surface in the InterFOAM solver is controlled by the explicit Multidimensional Universal 
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Limiter with Explicit Solution (MULES) algorithm, which is a variation of the Flux 

Corrected Transport (FCT) scheme (Dianat et al., 2017). The MULES algorithm relies in a 

straightforward upwind scheme to computed advection in the interfacial cells (Deshpande et 

al., 2012). The MULES schemes ensures the fluxes into or out of a cell are limited to 

maintain boundedness of the VOF method, thus ensuring stability of the numerical code. 

 

3. The manner in which the boundary conditions are imposed on the free surface. 

Because F is a step function having a value of zero or unity in the single phase cells, certain 

considerations must be made for those cells which contain the free surface to ensure the 

discontinuous nature of the F function and prevent smearing of the boundary interface. Hirt 

and Nichols (1981) propose the implementation of a Donor-Acceptor scheme for the flux 

approximation across cells, this ensures those cells containing the free surface boundary 

maintain a sharp interface. 

Due to the restriction that fluid can only be advected to its nearest neighbour cell in a single 

time-step when implementing the Donor-Acceptor Scheme a stability time-step constraint 

follows that 

 
𝜕𝑡 < min {

𝜕𝑥𝑖

|𝑢𝑖𝑗|
,

𝜕𝑦𝑖

|𝑣𝑖𝑗|
} (3.4.2) 

 

Where 𝜕𝑥𝑖and 𝜕𝑦𝑖 are the mesh size increments in the respective x and y directions. Also 

when a non-zero value of kinematic viscosity 𝑣 is applied, the flow momentum may not 

diffuse more than a single mesh cell in a single time-step and for stability to be ensured the 

following limitation is applied 

 
𝑣𝜕𝑡 <

1

2

𝜕𝑥𝑖
2𝜕𝑦𝑗

2

𝜕𝑥𝑖
2 + 𝜕𝑦𝑗

2 (3.4.3) 

 

Godderidge (2009) lists some of the advantages and disadvantages of the VOF method. The 

main benefit includes the possibility of analysing the flow of multiple fluids (multi-phase 

flow) within a single simulation whilst including the interactive effects between the discrete 

fluids. However it is not a trivial process to incorporate these interactions. A frequently 

observed problem is the smearing of the fluid boundary. This occurs as a result of diffusion 

of the transport equation over the mesh cell in which the boundary is located. This problem 

can be addressed by specifying a high resolution mesh in the region where the fluid interface 

will occur. Figure 3.4.1 clearly shows the effects of increased mesh resolution on the 

sharpness of the fluid interfacial boundary. The mesh on the left hand side is a 1mm cubic 
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tetrahedral mesh, the mesh on the right hand side is a 0.5mm tetrahedral mesh. Whilst the 

smearing on the fluid interface extends over a single mesh cell in each case, the fluid 

interface is sharper on the right hand side as it is restricted to 0.5mm thickness.  

 

Figure 3.4.1 Fluid interfacial sharpening through mesh refinement. 

 

The interaction between the individual fluid phase constituents in the model is important as 

the pressure transfer across the free surface boundary which defines an entrained air bubble 

is central to this study. Multiphase CFD models can be implemented using either a 

homogeneous or an inhomogeneous approach. For a given transport process, the 

homogeneous model assumes that the transported quantities (with the exception of volume 

fraction or F function value) for that process are the same for all phases (ANSYS, CFX 2013). 

Thus a common flow field for velocities, temperature, pressures etc. is applied to all fluids 

within the domain. This simplifies the underlying code which defines the interaction of the 

fluids at the boundary as a single mass conservation and momentum conservation equation 

is applied to both fluid as opposed to individual conservation equations being applied to each 

fluid in an inhomogeneous model approach at the fluid interface. The conservation of mass 

and momentum equations are formulated by summing the averaged fluid properties 

according to their constituent proportion in the boundary cell. For a two phase flow, density 

𝜌 in the boundary cells is given by 

 

𝜌 = ∑ 𝑟𝑎𝜌𝑎

2

𝑎=1

 (3.4.4) 

where 𝑟𝑎 is the volumetric fraction of each constituent fluid in the free surface boundary cell. 

The conservation of mass equation for an incompressible fluid in tensor notation is 

 𝜕(𝜌)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 (3.4.5) 

and the conservation of momentum for an incompressible fluid is 
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 𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 (3.4.6) 

where 𝜌 is given in Equation (3.4.4) 

In the domain cells where 𝐹 = 1 or r 𝐹 = 0  these equations reduce to the mass and 

momentum conservation equations for a single phase fluid. The Homogeneous model 

approach is incorporated into the OpenFOAM multiphase solvers. This limits the relative 

motion between individual fluids at the boundary interface cells to zero. This is analogous 

to a “no-slip” boundary condition between the individual fluids at the cells in which the fluid 

interface is located. 
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3.5 OpenFOAM model case structure 

Each OpenFOAM simulation case is organised and structured within a hierarchical directory 

system (The openFOAM Foundation, 2013). The directories and their sub-directories 

contain files which are used to define the model flow field initial conditions and boundary 

conditions, the geometry, the fluid specifications, the solver controls and the post-processing 

commands. Figure 3.5.1 displays the basic structure of a typical OpenFOAM case simulation. 

 

Figure 3.5.1 Typical OpenFOAM case structure. 
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Chapter 4 

2 Dimensional CFD dam-break model 

definition 

4.1 Introduction 

This chapter describes the key parameters and some aspects of the underpinning theory 

which must be programmed in order to create the CFD model analysed in this study. The 

specific criteria for the incompressible simulations and the compressible simulations are 

also described.   

 

4.2 Dam-break model geometry 

The OpenFOAM model geometry consists of a 300mm long by 200 mm high tank with an 

initial 4 mm square spatial mesh discretisation resolution. All OpenFOAM models are 

initially generated in three dimensions, thus the solutions are produced in three dimensions 

by default (The openFOAM Foundation, 2013). Nevertheless, the model can be reduced to 

a two dimensional study by specifying a model thickness of 1 grid cell and applying certain 

boundary conditions on the third dimension (in the direction of the model thickness) for 

which no solution is required, i.e. an empty boundary condition. The initial study comprises 

of a two dimensional analysis of the flow.  

The tank contains a column of water at the left hand side (LHS).  The dimensions of the 

water column are specified as 57.15 mm wide by 114.3 mm high. These dimensions were 

selected to reflect the collapsing water column experimental research conducted by Martin 

and Moyce (1952). A no-slip boundary condition is prescribed at the tank base and at the 

vertical walls. As the top of the tank is considered to be open to the atmosphere the inflow 

and outflow of the fluid is permitted across this boundary. In the incompressible simulation 

a combination of boundary conditions are specified at this edge for the pressure and velocity 

terms of the fluid flow governing equations to model this inflow and outflow behaviour 
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whilst maintaining stability of the simulation. A fixedValue boundary condition with a 

value of zero is specified for the pressure term whilst a 

pressureInletOutletVelocity boundary condition is applied to the velocity term 

at the boundary edge representing the top of the tank. The boundary conditions on the air 

phase permit the inflow and outflow behaviour, however, the water phase is restricted to 

outflow only 

In the case of the incompressible model, the inflow and outflow of the air phase is permitted 

across this upper boundary, however the liquid phase is again restricted to outflow condition 

only. Then, in the case of the compressible simulation the numerical value of the 

calculated boundary condition is set to atmospheric pressure across the edge which 

represents the top of the tank for the initial pressure term. This allows the compressibility 

effects of the phases to be modelled within the domain of the simulation. The velocity 

boundary condition is unchanged from the incompressible setup with a 

pressureInletOutletVelocity boundary condition is applied. The liquid fluid 

phase has an inletOutlet boundary condition applied which permits only the outflow 

of the water, whilst the air phase has an inletOutlet boundary condition which allows 

both the inflow and outflow of air. 

Four grid points P1, P2, P3, and P4 on the impact interface are selected at which to sample 

the pressures. These points are located at the intersection of the tank base and vertical wall 

and also at 8 mm, 20 mm and 40 mm above the tank base respectively. Figure 4.2.1 displays 

the initial model setup and sampling points. Also visible on this figure is the 4mm square 

discretisation mesh. The liquid phase is represented by the red grid cells and the air phase 

by the blue cells. Because a low resolution mesh is applied to the model in Figure 4.2.1 the 

interface between the liquid and gas phase is not sharply defined. As the mesh is 

incrementally refined in later simulations this interface between the fluids is more sharply 

defined.    
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Figure 4.2.1 Initial CFD OpenFOAM model setup and sampling points. 

 

4.3 Spatial discretisation 

The spatial domain was initially discretised using a structured 4mm mesh. This initial mesh 

resolution was subsequently refined three times as part of the grid independence study. The 

grid independence was determined using the incompressible first order temporal and second 

order spatial discretisation scheme only. The spatial discretisation analysis was performed 

by calculating the maximum impulse force at initial wave impact for each level of refinement 

(see Section 5.2.1). These results were then compared to verify that with progressive mesh 

refinement the solution was trending towards convergence. Table 4.3.1 records the grid 

resolutions and associated geometrical properties applied to the model for this section of the 

study. Because two dimensional simulations in OpenFOAM are defined with a model 

thickness of a single three dimensional element as described in Section 4.2 and illustrated 

on Figure 4.3.1 then the total number of nodes for these simulations is calculated according 

to   

 
𝑛𝑛 = 2𝑒 + 2 (4.5.1) 

where 𝑛𝑛 is the total number of nodes and 𝑒 is the total number of elements. 

 

 

Grid 

[mm] 

Total 

number 

of nodes 

Number of 

nodes in x 

direction 

Number of 

nodes in y 

direction 

Total 

number of 

elements 

Number of 

elements in 

x direction 

Number of 

elements in 

y direction 

4X4 7752 152 102 3750 75 50 

2X2 30502 302 202 15000 150 100 

1X1 121002 602 402 60000 300 200 

0.5X0.5 482002 1202 802 240000 600 400 

Table 4.3.1 Grid statistics for varying levels of grid resolution 

 

Sample points 

P4 

P2 

P3 

P1 
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Figure 4.3.1 Two dimensional simulation mesh showing elements and nodes 

 

4.4 Temporal discretisation 

The OpenFOAM controlDict file within the project case constant directory contains 

the input data which controls the temporal functioning of the simulation. This file contains 

a command for specifying the simulation time step duration. It also contains a command 

which allows the user to define the maximum Courant number value. Furthermore there is 

an adjustTimeStep function which automatically over-rides and reduces the time step 

duration should the specified time-step cause the maximum Courant value to be exceeded. 

This ensures stability of the model during the simulation runtime by limiting the maximum 

Courant number value to 1. By limiting the courant number thus, Von Neumann stability is 

ensured. Initial simulations were conducted using a specified maximum Courant number of 

1.0 and an initial time-stepping length of 0.00001 sec. For the first order time and spatial 

discretisation schemes with low level grid resolution this time-step duration was sufficiently 

short to allow the Courant value to be maintained below 1.0. However as the grid was 

progressively refined and more accurate higher order temporal and spatial discretisation 

schemes were applied to the model it was observed that the program automatically reduced 

the time-step duration to enforce stability and ensure convergence of the solution. This 

reduction in time step length increased the computational cost and associated simulation 

wall-clock time. Also, as the fluid flow velocity varied during the simulation the time-step 

duration was varied accordingly.  

The controlDict file also allows the user to define the time intervals at which the 

simulation results are recorded or sampled. From preliminary simulations it was observed 

that subsequent to the water column collapse the wave front impacted the right hand side 

after approximately 0.2 seconds as shown on Figure 4.4.1 (a). During the initial simulation 

phase prior to impact the results data was sampled at 200 Hz intervals up to 0.195 seconds 

elapsed simulation time. The wave front impact generates a sharp pressure pulse on the 
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pressure history plot (see Figure 4.4.2), this causes the formation of a jet which accelerates 

vertically upwards (Figure 4.4.1(b)). Because the pressure impulse is of short duration the 

upwards acceleration of the jet is mainly due to inertial forces as described in Section 2.3. 

Then to capture these impulsive, short duration effects, the simulation was halted at 0.195 

seconds and the programme code defining the time-step sampling interval was altered to 

increase the sampling frequency from 200 Hz to 1 kHz during this phase of the simulation. 

The simulation was restarted using the results from the 0.195 seconds time-step as the 

simulation initial conditions. This sampling frequency was maintained until 0.5 seconds 

elapsed simulation time. This allowed the rapidly varying pressure impulse to be more 

accurately recorded. The pressure data from this time period was used for the grid 

convergence study as described in Section 5.2.1. As these inertial forces dissipate the 

velocity of the jet decelerates, the direction of flow reverses and the jet collapses as shown 

on Figure 4.4.1(c). During this stage of the flow simulation a quantity of the gas phase is 

trapped within the liquid phase. This is manifested as air bubbles or pockets of air trapped 

within the liquid as shown on Figure 4.4.1(d). Because this period of the flow development 

is of particular interest especially when observing the oscillatory pressure effects with the 

compressible simulation the sampling frequency interval is further reduced (by code 

modification as describe before) to 10 kHz from (0.5s to 0.7s elapsed simulation time). This 

ensures the oscillatory pressure behaviour is accurately captured. This high frequency 

sampling rate is maintained until the entrapped bubble dissipates through the free surface, or 

fragments into smaller bubbles or migrates away from the impact interface such that the 

oscillations in the observed pressures are damped out.  

Following this simulation period the time step sampling rate is increased back to 0.001s (1 

kHz) until the completion of the simulation. These alterations to the sampling frequency 

required that the simulation was halted and restarted a number of times, with each restart 

using the results from the previous time step as the initial conditions. The pressure history 

plot for the incompressible simulation is shown on Figure 4.4.2 with the approximate 

corresponding flow simulation profile visualisations from Figure 4.4.1 indicated. 

The profile of the collapsing jet and the entrainment of gas bubbles within the liquid varies 

depending on the equation discretisation schemes used for the temporal and spatial terms 

within the fluid flow governing equations. Also, with a higher mesh resolution discretisation, 

the entrainment of small bubbles of the air phase within the liquid phase is more accurately 

captured and the interface between the fluid phases is more sharply defined.  It should also 

be noted that Figure 4.4.2 was plotted using data obtained from an incompressible simulation. 
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(a) t = 0.208s               (b) t = 0.306s 

   

(c) t = 0.456s               (d) t = 0.5356s 

Figure 4.4.1 Free surface spatial evolution and bubble entrainment (4mm mesh resolution) 

 

 

Figure 4.4.2 Time-Pressure plot for incompressible 4mm spatial discretisation simulation  

(see Figure 4.4.1 for the corresponding flow profile images at points a, b, c and d). 

 

4.5 Dam-break flow simulation with incompressible air phase 

The series of simulations performed can be broadly categorised into two groups, those in 

which air compressibility effects were neglected and those in which air was considered as a 

compressible fluid. The simulation settings for the incompressible model are described in 

this sub-section. In the next sub-section the modifications to the model which are required 

to incorporate the effects of compressible air are described. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500
Incompressible First Order Time First Order Space

Time (sec)

P
re

s
s
u

re
 (

P
a
)

 

 

4 mm Mesh Discretisation

a

b 
c 

d 



 

42 

 

4.5.1 Solver controls 

The OpenFOAM solver interFoam uses Navier-Stokes equation in a single field 

formulation to model the two phase flow of two immiscible, incompressible fluid phases 

(Maric et al., 2015).Using the discretisation methods previously described in Section 3.3 a 

system of equations for each of the discretised terms in the fluid flow governing equations 

can be generated in the form  

 [𝑨][𝒙] = [𝒃] (4.5.2) 

 

Where A is a square matrix of coefficients, the size of which is directly proportional to the 

number of grid cells comprising the model domain, it is usually sparsely populated and 

diagonally dominant. The sparsity of the matrix depends on the order of discretisation stencil 

used for the equation term under consideration, i.e. pressure, velocity, F function etc. x is a 

vector of values for which the solution is sought and b is a vector of values which represents 

the known boundary condition values or source terms. The solution to x is obtained by 

employing either a direct or an iterative method for the solution of a linear system of 

equations to the coefficient matrix A in Equation (4.5.2). Gaussian elimination is an example 

of a direct method which involves row swapping, multiplication and addition operations in 

order to create an upper triangular matrix of coefficients which can then be used to solve for 

the unknown vector matrix x through back substitution. This method of solving the system 

of algebraic equations has an arithmetic complexity of O(n3) where n is proportional to the 

number of grid cells. Using this technique, the coefficient matrix is diagonally dominant and 

usually sparse prior to the row swapping operation, however, afterwards the matrix is no 

longer diagonally dominant. This results in additional memory requirements and can also be 

a source of slow algorithm solution times. It is much more efficient to employ an iterative 

method or a technique which can exploit the initial diagonal dominance of the coefficient 

matrix. 

One such technique is to utilise the direct solver in combination with a runtime updated 

iterative over relaxation scheme such as the Gauss-Seidel method. To improve accuracy a 

solution residual is introduced and computed at predefined iteration steps. An upper 

tolerance bound must be specified for the residual and this parameter is included within the 

fvSolution file in the case system directory. 

Alternatively an iterative technique such as a preconditioned conjugate gradient (PCG) 

method can be adopted with a runtime selectable matrix preconditioner such as the Diagonal 

Incomplete Cholesky (DIC) technique applied.  
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In order to obtain an approximate solution to the Navier-Stokes equations which contain 

both pressure and velocity terms a coupling algorithm must be also specified. This algorithm 

uses the values computed from the linear systems of equations to advance the flow of fluid 

through the model domain as the simulation proceeds. For this study the PIMPLE algorithm 

is used to couple the pressure and velocity terms to produce an approximate solution to the 

Navier-Stokes equations.  

 

4.5.2 Fluid constants and flow control settings    

Both the air and water phases were defined as Newtonian fluids. The kinematic viscosity , 

was defined as 1.0× 10-6 m2/s and 1.48× 10-5 m2/s  for water and air respectively while 

assuming a temperature of approximately 293k. These values reflect typical laboratory 

condition properties of water and air during experimental investigations (Seiffert et al., 2015), 

(Koch et al., 2016). The density , of water and air was set to 1027 kg/m3 and 1kg/m3 

respectively1. A model to describe the flow regime (i.e. laminar flow, turbulent RANS, 

turbulent LES model) must also be included in the Constant directory of the simulation 

case.   

As described in Section 4.4 the water wave front travels 242.85 mm (300mm-57.15mm) 

reaching the impact interface at approximately 0.2 seconds. Thus its average velocity is 1.21 

m/s.  

Defining Reynolds number as 

 
𝑅𝑒 =  

𝑼𝐿

𝜈
 (4.5.3) 

 

Where U is the flow front velocity, L is the distance the flow front traverses (the 

characteristic linear dimension) and  is the kinematic viscosity.     

Using the above values the Reynolds number for this simulation is approximately 2.94 ×105. 

Because the simulation is two dimensional with the no slip boundary condition specified 

only at the tank bottom the calculated Re value can be directly compared to the case of flow 

over a flat plate. A representative value of Re ≤  5 × 105  is often used as the critical 

transitional value for laminar to turbulent flow over a flat plate (Incropera and DeWitt, 2002). 

In this simulation the flow regime has a Reynolds number value below this critical value and 

a laminar flow model is adopted for the simulation. As this study progresses various model 

geometries may be investigated in which the flow no longer behaves in a laminar manner. In 

those cases turbulent flow effects will be included in the simulation by specifying a 

turbulence model such as RANS or LES.   
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 4.6 Dam-break flow simulation with compressible air phase 

The flow model which takes account of the compressibility of the air phase is created in a 

similar manner to the incompressible flow model. The OpenFOAM solver 

compressibleInterFoam is used to model the effects of compressibility in the phases 

which constitute the problem domain. In this model the characteristics of the liquid phase 

are defined such that it is practically an incompressible phase in comparison to the air phase 

is. 

The following modifications and additions to the incompressible case directory and its 

constituent files are required to include the simulation of the air phase as a compressible 

material. Whilst the geometrical layout is maintained identical to the incompressible 

simulation, the region of the domain not occupied by the water phase must now be explicitly 

defined as the air phase and the properties of air must also be declared. The internal pressure 

fields for both phases are initialised to atmospheric pressure rounded to 1.0×105 Pa. The 

liquid and gas phase temperature are also initialised to 293 Kelvin. 

The surface tension value at the water/air interface is set 0.07 Nm-1. This parameter is 

particularly important in describing the behaviour of the entrained air bubbles formed 

subsequent to the liquid phase striking the impact interface. In addition to the flow regime 

model described in Section 4.5.2 additional thermophysical models must be defined for each 

fluid phase. 

A thermophysical model is constructed in OpenFOAM as a pressure-temperature system 

from which other properties can be computed (The openFOAM Foundation, 2013). It is 

necessary to include a thermophysical model because the energy conservation equation (in 

addition to the mass and momentum conservation equations) is included in the PIMPLE 

algorithm when simulating the effects of compressibility within the model. The pre-

programmed thermophysical model, herhoThermo is selected for both fluid phases. This 

model is explicitly constructed for the simulation of a multiphase flow interaction. It 

computes the basic thermophysical properties of the constituent simulation phases based on 

the density of those phases which varies as the temperature within the domain changes. Thus, 

as this is a near isothermal simulation the density variation due to thermal fluctuations within 

each phase will be small and subsequently the thermophysical properties of the two fluids is 

relatively unchanged.  

 

 

1 
Since this study is concerned with oceanic waves breaking on coastal defensive structures the liquid phase is 

programmed as sea water which has an average density of 1027 kg/m3 (Roquet et al., 2015). 
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For the water phase the Perfect Fluid equation of state is selected. This model which is based 

on the ideal gas equation of state neglects shear stress, viscosity and heat conduction within 

the fluid. The equation of state which defines the behaviour of a perfect fluid is (The 

openFOAM Foundation, 2013), 

 𝜌 =  
1

𝑅𝑇
𝑝 + 𝜌0 (4.6.1) 

 

Where 𝜌 is the fluid density, R is the universal gas constant, T is the temperature p is pressure 

and 𝜌0 is the density at the reference pressure. In this equation the value of R (usually taken 

to be approximately 8.314 J K-1mol-1) is set artificially high with a value of 3000 JK-1mol-1. 

This emphasises the incompressibility of the liquid phase in contrast to the gas phase within 

the program code. The perfect gas equation of state is used for the air phase. 

The mixture model is specified as pureMixture which dictates that the composition of 

the two phases in the simulation remain unaltered and no chemical change occurs in either 

fluid as a result of their physical interaction. The transport model is defined as constant 

for both phases which limits the dynamic viscosity and the Prandtl number to fixed values 

throughout the simulation. The thermodynamic model hConst is applied to both phases. 

This model computes the system enthalpy assuming a constant pressure specific heat value 

of 4195J kmol-1 K-1 and 1007J kmol-1 K-1 for water and air respectively.  

The final parameter which must be defined in the thermophysical properties directory is the 

form of energy to be used in the thermodynamic solution. For both phases the 

sensibleInternalEnergy behaviour for the fluids is selected. Thus the behaviour of 

both phases is defined by the standard internal energy state function. The absolute enthalpy 

equation is given as  

 
ℎ𝑎 =  ℎ𝑠 + ∑ 𝑌𝑖∆ℎ𝑓

𝑖

𝑖

  (4.6.2) 

 

Where ha is the absolute enthalpy, hs is the standard internal energy, Yi is the mass fraction 

of phase i, ℎ𝑓
𝑖  is the heat of formation of phase I (The openFOAM Foundation, 2013).The 

inclusion of the sensible term in the keyword specification refers to the omission of the 

heat of formation term from the absolute enthalpy equation. Then the absolute energy of the 

system is simply equal to the sensible energy. 

 
ℎ𝑎 =  ℎ𝑠  (4.6.3) 
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Sensible energy is typically used in simulations where chemical reactions are not present or 

where large energy changes in a system are easily attributable to chemical reactions (The 

openFOAM Foundation, 2013). 

 

4.7 Domain decomposition and parallel solution over distributed 

processors 

Many factors influence the OpenFOAM simulation wall clock runtime, the most obvious 

being the mesh discretisation resolution, the discretisation scheme employed for the 

governing equations, and the OpenFOAM solver employed to compute the flow field results. 

A larger number of grid cells requires greater memory storage space and additional 

computational operations to produce a solution. Also, the particular solver employed will 

necessitate the computation of a particular set of equations. For example the incompressible 

interFoam solver computes the approximate solution to the Navier-Stokes equations. To 

generate a solution which incorporates the effects of fluid compressibility within the model 

the solver compressibleInterFoam additionally solves equations of state for each 

fluid and the energy equation which must also be incorporated into the PIMPLE algorithm.  

The temporal and spatial equation discretisation schemes also have a significant impact on 

the runtime. For example the implicit second order backward discretisation temporal scheme 

uses the grid cell values from the two previous time steps to project the value at the next 

time step. In contrast the first order time scheme uses only the values from the previous time 

step to compute the value at the next time step. Thus the latter scheme has less terms in the 

solution equation simplifying the algorithm and requiring less computer RAM space and 

processing time. This is a very important consideration especially when investigating models 

with high mesh resolution and fine time stepping. 

By default the OpenFOAM solvers are executed on a single processor in serial execution 

mode (Maric et al., 2015). However the facility to carry out parallel processing is 

incorporated into OpenFOAM through the implementation of the standard message passing 

interface (MPI). This allows the simulation to be decomposed and concurrently run across a 

number of processors thus allowing a significant saving in wall clock computation time. The 

parallelisation of the simulation is achieved by first decomposing the model domain into a 

number of sub-domains. The number of subdomains must correspond to the number of 

processors on which the computation is to be carried out. The calculations are then carried 

out on each subdomain in parallel time. The OpenFOAM reconstructPar command is 

invoked to reconstruct the decomposed fields and mesh across the sub-domain boundaries 
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into a single overall solution once the simulation has completed. The case System directory 

within the project folder hierarchy (see Figure 3.5.1) contains the decomposeParDict 

file which can be modified to define the parameters for running the simulation in parallel.  

The incompressible, low mesh resolution, first order spatial and temporal discretisation 

simulations in this study were completed using serial processing. As the simulations became 

more computationally expensive the model domain was discretised into 8 subdomains to 

achieve a solution on a 64 bit, 2.5GHz, 8 CPU laptop with 12 GB of RAM. The most 

computationally expensive simulations were decomposed into 64 subdomains and run in 

parallel on 64 processors on the University of Southampton high performance computing 

(HPC) cluster Iridis 4. 
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Chapter 5 

2 Dimensional simulation with solid wall 

impact results  

5.1 Introduction 

Results from the model verification process are initially presented.  By performing a grid 

independence study it is determined that a satisfactorily high mesh resolution has been 

applied to the model.  The model is next validated through an analysis of the time varying 

collapsing fluid column leading edge position. The results from this analysis are then 

compared to the well-recognised benchmarking experimental work performed by Martin and 

Moyce (1952). As the results from the numerical model agree well with the experimental 

case it is determined that the simulation is behaving in an accurate manner. Further validation 

is provided through comparison of the impact pressure history with impact pressure signal 

results produced through a dam-break experiment conducted at MARIN in the Netherlands. 

Again a satisfactory comparison is achieved.  

Finally the pressure responses at a number of positions are analysed in simulations in which 

the air phase is modelled as both an incompressible and a compressible medium. The 

influence of air entrapped within the liquid phase is examined to determine its effect on 

oscillatory pressure fluctuations. The pressure signals are analysed in both the time and 

frequency domains. A comparison of the simulated oscillatory pressure response is made 

with both the analytic Minnaert resonant frequency response of a single bubble in an infinite 

domain of water, and a single bubble resonant frequency expression developed 

experimentally by Hattori et al. (1994). Again satisfactory results are achieved for the 

numerical model.    
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5.2 Model verification and validation 

In order to ensure confidence in the accuracy of the simulation and the data generated from 

it, it is important to determine the correctness of the model through comparison with 

previously substantiated studies. The simulation results should be compared to data obtained 

from previous research conducted through both experimental and, or numerical means. 

There are two recognised stages in establishing the integrity of a numerical model, first the 

model should first be verified, then validated.   

The American Institute of Aeronautics and Astronautics (AIAA) define verification as “the 

process of determining that a model implementation accurately represents the developer’s 

conceptual description of the model and the solution to the model” and validation as “The 

process of determining the degree to which a model is an accurate representation of the real 

world from the perspective of the intended uses of the model”(American Institute of 

Aeronautics and Astronautics., 1998). Roache (1997) also presents a very concise definition 

for verification and validation in the application of those terms to CFD analyses; verification 

is “solving the equations right” whilst validation is “solving the right equations”. Thus to 

verify the model is to ensure that the correct numerical schemes to solve the discretised 

partial differential equations are applied, and also a sufficiently high discretisation resolution 

is adopted for both the temporal and spatial domains. Model validation is achieved by 

comparison of the model results with accepted benchmarking test cases or by comparison 

with research results which have been previously substantiated. Modelling factors which 

may invalidate the model include the selection of wrong boundary conditions, incorrect 

geometry data, erroneous fluid property parameters etc. 

A thorough analysis of numerical schemes was conducted at the initial stage of investigation. 

This was achieved by applying both first and second order solution schemes to both the 

temporal and spatial equation discretisation schemes. For each simulation then four levels 

of mesh refinement were investigated to ensure a solution which was independent of grid 

resolution. Simulations were performed using a variable time-step with an upper limit 

bounded by the Courant number. This process was repeated for two sets of simulations, the 

first neglecting the effects of compressibility of the air phase within the model whilst the 

second set of simulations incorporated the effects of compressibility for the air phase. In 

total then there were 32 simulation completed (16 with air compressible and 16 with air 

incompressible) with the impact pressures sampled at four positions at the impact interface 

for each simulation thus yielding 64 data sets for the incompressible simulation and 64 data 

sets for the compressible simulation. Consequently by comparing the two sets of results the 

influence of the air compressibility on the oscillatory impact pressure could be observed. 
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Spatial discretisation of the model was analysed by performing a grid independence study 

which compared the impact pressure impulse as the wave front impinged upon the right hand 

side wall of the tank for four levels of mesh resolution. The pressure impulse for the grid 

independence study was measured at the bottom right-hand corner of the tank, position P1 

on Figure 4.2.1.  

 

5.2.1 Impact pressure impulse 

To verify the model, a grid independence study was performed. For this analysis the results 

set from the incompressible first order in time, second order in space simulation were utilised. 

To allow for direct comparison of the results, the simulation times and pressures were first 

converted to a non-dimensional quantities. Time series values were non-dimensionalised 

according to tnd = 𝑛𝑡√(𝑔/𝑎) ,  where a is the half base width of the water column in its 

initial position, g is the acceleration due to gravity, t is time. n is calculated according to                      

𝑛 = √(ℎ/𝑎)  where h is the initial height of the water column.  The pressure series values 

were non-dimensionalised according to  𝑃 = 𝑝/𝜌𝑔ℎ,  where p is the impulse pressure and  

is the density of water. The non-dimensionalised time-pressure plots for the time period 

equivalent from 0.19 s to 0.25 s simulation time are shown on Figure 5.2.1 for the four levels 

of grid resolution. The impact pressure impulse value was obtained for each grid resolution 

by integrating the pressure over the peak rise time (Peregrine, 2003) 

 

 
𝐼(𝒙) = ∫ 𝑃(𝒙, 𝑡)𝑑𝑡

𝑅𝑖𝑠𝑒 𝑡𝑖𝑚𝑒

 (5.2.1) 

 

The peak rise time which for this study is taken as the duration of impact was determined 

for each of the four levels of mesh discretisation in the manner shown on Figure 5.2.2. The 

baseline time adopted for the calculation of the peak rise time was set at 0.19 seconds elapsed 

simulation time for all levels of grid discretisation as this was the time at which any 

significant rise in pressure was registered at P1. This small pressure increase was detected at 

location P1 (Figure 4.2.1) before the water phase impacted the wall. This pressure increase 

was due to the collapsing water phase applying pressure to the incompressible air phase 

which in turn transmitted some fraction of the pressure to the RHS wall. Thus, the peak rise 

time was computed from the time of maximum impulse impact minus 0.19 seconds elapsed 

simulation time.  The impact pressure impulse for each level of discretisation is shown on 

Table 5.2.1.  The grid independence study was conducted using a data set obtained from the 

incompressible simulation 
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Temporal discretisation was governed by the Courant-Friedrichs-Lewy Condition (CFL 

Conditioning). In applying the CFL condition each time step is bounded by an upper limit 

value according to 𝐶𝑛 = 𝑢𝑖
∆𝑡

∆𝑥𝑖
 where 𝐶𝑛 is the courant number, usually set to a maximum 

value of 1.0 to ensure Von Neumann stability of the finite volume time scheme. 𝑢𝑖 is the flux 

field value under consideration at node i, ∆𝑡 is the time step duration and  ∆𝑥𝑖 is the grid 

spacing. OpenFOAM allows an adaptive time-stepping option which reduces the time-step 

duration automatically during runtime to ensure the CFL condition is observed.  

 

Figure 5.2.1 Non-dimensionalised pressure rise time plot for four levels of mesh resolution 

 

Figure 5.2.2 Peak rise time definition for 0.5mm grid spacing simulation  

(note values are not non-dimensionalised) 

As the grid is progressively refined the rise time decreases and the pressure peak increases 

as observed on Figure 5.2.1. The non-dimensional impact pressure impulse is obtained by 

integrating the non-dimensional pressures over the non-dimensional rise time. This value is 

recorded in the final column of Table 5.2.1 
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Grid 
Dimensions 

mm x mm 

Rise 

Time 

[Rt] 

Non-Dim. 

Rise Time 

[Rtnd] 

Peak 

pressure 

[pmax] 

Non-Dim. 

Peak 

Pressure 

[pmaxnd] 

Non-Dim. 

Impact pressure 

impulse 

[Pipnd] 

1 0.5 x 0.5 0.0163 0.6040 6402.7 5.7102 0.0717 

2 1 x 1 0.0169 0.6263 4259.7 3.7990 0.0852 

3 2 x 2 0.0170 0.6300 3105.9 2.7700 0.1283 

4 4 x 4 0.0233 0.8634 2484.8 2.2160 0.3276 

Table 5.2.1 Impact pressure values at peak rise times 

 

Because the rise time duration decreases as the grid resolution increases the gradient of the 

time-pressure response plot sharpens with a finer mesh. This results in the non-dimensional 

impact pressure impulse integral value decreasing as the grid resolution increases. This 

indicates that the pressure values are more highly dependent on the spatial discretisation 

resolution than the temporal resolution. A plot of the non-dimensional grid spacing versus 1 

minus the non-dimensional pressure impulse values is shown on Figure 5.2.3. 

 

Figure 5.2.3 1 - Non dimensional impact pressure impulse Vs Non dimensional grid 

spacing 

 

Also included on the graph is a second order best fit line extrapolated to a zero value non-

dimensional grid spacing. The equation of this line is 𝑦 =  −0.0007𝑥2 + 0.0012𝑥 +

0.9283. Thus a theoretical extrapolated value for [1- Pipnd]0.0mm = 0.9283 is obtained. This 

yields a non-dimensional impact pressure impulse value of 0.0717. Note that this value is 

identical to [Pipnd]0.5mm (from Table 5.2.1) indicating that a satisfactory level of grid 

convergence has been achieved. To further verify the grid independence results the order of 
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convergence Co determined from an algorithm developed by Richardson and Gaunt (1927) 

can be computed from  

 

𝐶𝑜  =  

𝑙𝑛 (
[1 − 𝑃𝑖𝑝𝑛𝑑]

2𝑚𝑚
− [1 − 𝑃𝑖𝑝𝑛𝑑]

1𝑚𝑚

[1 − 𝑃𝑖𝑝𝑛𝑑]
1𝑚𝑚

− [1 − 𝑃𝑖𝑝𝑛𝑑]
0.5𝑚𝑚

) 

𝑙𝑛(𝑟)
 

 

(5.2.2) 

 

 

In Equation (5.2.2) only the finest 3 grid resolution results are considered. 𝑟  is the grid 

refinement ratio which should be constant for each progressive grid resolution refinement 

for ease of computation. By employing a grid doubling scheme for refinement the value of 

r is 2. The order of grid convergence using Equation (5.2.2) above was established to be Co 

= 1.676 for the finest 3 grids. This value is approximately 16.2% below a theoretical value 

of Co = 2 which is expected for second order spatial discretisation.  

The next stage in the model verification is to compute the Grid Convergence Index (GCI). 

This is a method for uniformly documenting grid convergence tests developed by Roache 

(1997) whilst also providing a means to determine if the solutions for each progressive grid 

refinement are approaching the asymptotic range of convergence. Again the three highest 

levels of grid resolution are considered. From Roache (1997), 𝐺𝐶𝐼12 = 𝐹𝑠|𝐸12| where 𝐹𝑠 is a 

safety factor with a recommended value of 1.25 for a study comparing two levels of grid 

resolution and 

 

|𝐸12| =  

(
[1 − 𝑃𝑖𝑝𝑛𝑑]

0.5𝑚𝑚
− [1 − 𝑃𝑖𝑝𝑛𝑑]

1𝑚𝑚

[1 − 𝑃𝑖𝑝𝑛𝑑]
0.5𝑚𝑚

) 

(2𝑐𝑜  − 1)
 

 

(5.2.3) 

 

 

This yields a GCI value of 0.827% for grids 1 and 2 and 2.683% for grids 2 and 3. Using 

these two values one can check that the solution is within the asymptotic range of 

convergence according to  
𝐺𝐶𝐼23

𝑟𝐶𝑜𝐺𝐶𝐼12 
≈ 1. For this study a value of 1.015 was computed thus 

indicating a satisfactory level of grid refinement has been applied at 1mm grid size resolution.   

  

5.2.2 Collapsing fluid column leading edge location 

Once the model has been verified through the grid independence study as outlined in Section 

5.2.1, the next stage is to validate the results obtained. This is first achieved by comparison 

of the time varying leading edge position of the collapsing fluid column with experimental 

results from a study performed by Martin and Moyce (1952). The model is further verified 

by comparison of the non-dimensionalised time pressure response plots with experimental 
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data published by Kleefsman et al. (2005) obtained from their research conducted at MARIN 

Institute in the Netherlands.   

In the dambreak study conducted by Martin and Moyce (1952), five initial water column 

geometries were selected as listed on Table 5.2.2. a is a dimensional characteristic defined 

as half the base length of each water column, n is a constant. The height of the water columns 

are calculated according to   𝑛2𝑎 . The CFD simulations conducted for this study were all 

performed using an initial water column geometry corresponding to that of experiment 5. 

Figure 5.2.4 displays plots of the non-dimensional surge front displacement from the original 

water column centreline as a function of non-dimensional time for each of the five initial 

water column geometries analysed by Martin and Moyce (1952). 

 

 Width Height 

Experiment n n2 a [Inches] [mm] [Inches] [mm] 

1 1 1 2 1
4⁄  4 1

2⁄  114.3 2 1
4⁄  57.15 

2 1 1 4 1
2⁄  9 228.6 4 1

2⁄  114.3 

3 √2 2 1 1
8⁄  2 1

4⁄  57.15 2 1
4⁄  57.15 

4 √2 2 2 1
4⁄  4 1

2⁄  114.3 9 228.6 

5 2 4 1 1
8⁄  2 1

4⁄  57.15 4 1
2⁄  114.3 

Table 5.2.2 Initial water column geometries for Martin and Moyce experimental setup 
 

 

Figure 5.2.4 Martin and Moyce surge front displacement experimental results. 

Using the incompressible second order time, second order spatial discretisation scheme 

results, the surge front location was extracted from the CFD simulation and was plotted for 

each of the four levels of grid resolution. The results are shown on Figure 5.2.5. The Figure 

demonstrates that the flow front displacement shows very good agreement between the 

different CFD mesh resolution models in the early phase of the simulation (up to 3 units, 

non-dimensional time). Thereafter the solutions diverge slightly displaying a slightly higher 
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velocity for the finer grid spacing.  It is clearly evident that the 4mm grid spacing simulation 

reaches the impact interface later than the higher resolution grid simulations (indicated by a 

later levelling off on the graphs). This is supported by the data presented in Figure 5.2.1 

wherein the maximum impact impulse amplitude occurs later for the coarser grid meshes. 

Also included on Figure 5.2.5 is a plot of the fluid front leading edge position sampled during 

experiment 5 conducted by Martin and Moyce (1952). The initial geometry of the water 

column in the experiment corresponds to the initial water column geometry in the CFD 

simulation. There is a small discrepancy between the numerical and experimental flow front 

position at low values of T. This may be explained due to the dam break release mechanism 

employed in the experimental setup transmitting a drag force to the water column as it 

collapses. However in the latter stages of the comparative study there is very good agreement 

between the experimental results of Martin and Moyce and CFD simulation results.    

 

Figure 5.2.5 surge front location for four levels of mesh resolution  

obtained from CFD simulation 

 

5.2.3 Comparison with MARIN experimental results  

To further validate the CFD model a comparison of the pressure history results were made 

with experimental results from a dam-break study published by Kleefsman et al. (2005) at 

MARIN in the Netherlands. In this study an impact pressure analysis was also undertaken 

using a numerical model developed at University of Groningen, Kleefsman et al. (2005), 

however the experimental results only will be considered here. The geometrical set up of 

this experiment consisted of a 1.22 metre wide by 0.55 metre high water column which, 

when released impacted an obstacle located 1.77 metres from the nearside of the water 

column. The obstacle, shown on Figure 5.6.6 has a series of pressure sensors embedded 
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midway along its y –axis. This obstacle measured 0.16 metres wide and 0.16 meter high.  

Notwithstanding the geometry of this rectangular obstacle, if we consider a slice through the 

experiment at y = 0 the results of this study can be reduced to a 2 dimensional planar 

comparison with our simulation results.  The MARIN experimental setup is shown on Figure 

5.2.6. Thus it is clear that the geometry of the MARIN experimental setup is very different 

from the CFD model used in this numerical study.  Nevertheless by non-dimensionalising 

the time and pressure results as described in accordance with Section 5.2.1 a direct 

comparison of Kleefsman’s experimental results and our CFD numerical pressure history 

plots is possible. Figure 5.2.7 displays a plot of the experimental time pressure history results 

sampled at P1 on Figure 5.2.6 versus both the incompressible and the compressible 

numerical simulation results obtained using a second order time and second order spatial 

discretisation scheme with a 0.5 mm X 0.5 mm grid resolution modelled in OpenFOAM. 

    

Figure 5.2.6 MARIN experimental setup and location of pressure sensors  

embedded into impact obstacle, (Kleefsman et al., 2005). 
 

 

Figure 5.2.7 Comparison of numerical results with experimental results 

It can be observed that there is good general agreement in the recorded pressure trend. 

However the impulse pressure from the compressible simulation is notably higher. This may 

be due to a small air bubble entrained at the leading edge of the surging wave in the numerical 

model or, alternatively, the sensors employed in the experimental set up may have a surface 
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contact area large enough which acts to cushions the impact. There is also an obvious 

discrepancy between the numerical CFD and experimental results from approximately 17.5 

units non-dimensional time to 23.2 units non-dimensional time which is explained in the 

following paragraphs.  

The flow front leading edge in our CFD numerical models impacts the side of the numerical 

tank wall which has a height greater than the initial height of the water column (262.5% 

higher), a jet is formed which rises vertically along the wall before collapsing back upon 

itself as shown in Figure 5.3.3 (a) and (b). This collapse of the jet yields the second pressure 

peak which can be observed at around 20 units non-dimensional time (see Figure 5.3.3(b) 

for the free surface profile development at the equivalent 20 units non dimensional time). 

In contrast, the free surface flow evolution during the experimental investigation at MARIN 

has a different profile. The flow front impacts the rectangular obstacle which is centred at x 

= 0.75 and forms a jet. In the experiment the rectangular obstacle’s height relative to the 

initial water column height is quite small (29%) thus the jet rises above the obstacle. At 

impact with this obstacle the fluid retains a proportion of its horizontal momentum causing 

the formed jet to lean forward and collapse onto the top of the rectangular obstacle. Thus in 

this experimental case a second pressure peak is not observed in the results at P1 on Figure 

5.2.6 and Figure 5.2.7, (Kleefsman et al., 2005) as the jet does not collapse back onto the 

fluid as occurs in Figure 5.3.3 (b). See Figure 5.2.8 for the free surface flow evolution for 

both the numerical and experimental studies conducted at MARIN. 

 

Figure 5.2.8 numerical and experimental free surface flow  

evolution from studies at MARIN, (Kleefsman et al., 2005). 
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Another feature which can be observed on the compressible simulation numerical results 

plot (Figure 5.2.7) is the high frequency damped oscillatory pressure fluctuation recorded 

just after the second impact peak. These oscillatory fluctuations are a consequence of air 

bubble(s) being entrained within the flow. Because the air is compressible these bubbles will 

contract and dilate rapidly thus applying a high frequency pressure wave to the wall. This 

pressure wave is transmitted through the incompressible liquid phase. As these bubbles 

migrate away from the impact interface and also escape through the free surface the 

amplitude of the pressure wave is damped in the current numerical simulation study. The 

oscillatory pressure fluctuations are discussed further in Section 5.3. The incompressible 

simulation results exhibit a much larger impact pressure than the compressible simulation 

when the fluid jet collapses at about 19 units non dimensional time. This could be attributable 

to the entrapped air bubble compressing in the compressible simulation (see Figure 5.3.3), 

thereby having a cushioning effect for the collapsing jet. In contrast the air phase cannot 

have this cushioning effect in the incompressible simulation thus yielding a higher impact 

pressure.    

 

5.3 Numerical simulation results analysis 

As previously discussed in Section 5.2 a total of 128 data sets have been obtained. This study 

will concentrate on two of these sets of data for further analysis. The first data set is from 

the 1mm X 1mm mesh resolution using the first order in time, first order in space equation 

discretisation scheme sampled a position P1 (Figure 4.2.1) The second data set is from the 

0.5mm X 0.5mm mesh resolution using the second order in time, second order in space 

equation discretisation scheme again sampled at P1. We use a similar geometrical setup for 

our model as that used by Martin and Moyce, (1952). 

 

5.3.1 First order in time, first order in space equation discretisation scheme 

results  

The pressure variation as a function of time for both the incompressible air phase simulation 

and the compressible air phase simulation are shown on Figure 5.3.1. As discussed in 

Sections 4.2 and 4.6 atmospheric pressure is applied to both phases in the compressible 

simulation. Thus in order to facilitate a direct comparison between the compressible and 

incompressible pressure histories the value of atmospheric pressure is subtracted from the 

compressible simulation pressure record during post processing.   
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It can be observed that in general there is good agreement in the pressure trend results 

between the two simulations. However Figure 5.3.2 shows that between t = 0.5145 and t = 

0.5895 a high amplitude oscillation is recorded in the pressure results for the compressible 

simulation. This is due to the entrapment of a large air pocket which occurs when the jet 

collapses as shown of Figure 5.3.3 (b). This air bubble has a cross sectional area of 

approximately 306 mm2 which results in an equivalent spherical bubble of approximate 

radius 9.87 mm. Figure 5.3.3 shows the free surface evolution and corresponding pressure 

distributions. Figure 5.3.3 (a) and 5.3.3 (d) display the F function and pressure results 

respectively as the wave front impacts the wall at t = 0.207. This produces the first pressure 

peak on Figure 5.3.1. As the jet collapses and converges with the fluid below, a bubble is 

entrapped in the flow. This occurs at t = 0.5145 and yields the second pressure peak on Figure 

5.3.1. The free surface geometry is shown on Figure 5.3.3 (b) with the associated pressure 

distribution displayed on Figure 5.3.3(e) The pressure gradient from the centre of the bubble 

across its boundary wall does not exhibit a large variation as the air cavity is just in the 

instant of being formed at this time step. The amplitude of the oscillating pressure signal is 

reduced in an underdamped manner until the oscillations are eliminated at approximately t 

= 0.5895 as shown on Figure 5.3.2.  Figure 5.3.3(c) and 5.2.3(f) show the F function and 

pressure distribution at time t = 0.5895 respectively.   

     

 

Figure 5.3.1 Pressure Vs Time for compressible and  

incompressible simulation recorded at P1  
  

See Figure 5.3.2 (b) 
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Figure 5.3.2 High amplitude pressure oscillation in compressible 

 air phase model recorded at P1  

  

                                       

a. Free surface profile at t = 0.207 sec            d. Pressure distribution at t = 0.207 sec 

                

b. Free surface profile at t = 0.5145 sec             e. Pressure distribution at t = 0.5145 sec 

               

c. Free surface profile at t = 0.5895 sec   f. Pressure distribution at t = 0.5895 sec 

Figure 5.3.3 Free surface evolution and associated pressure contour  

distributions for compressible simulation 
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The simulation time between 0.5145 < t < 0.5895 for the compressible model is of significant 

interest to this study as the oscillatory pressures which occur within this time frame may be 

responsible for inflicting much damage on coastal protective structures. If these oscillations 

can be damped in a more effective manner fewer pressure impulses will be applied to the 

impact interface thereby reducing the damaging effect on the protective structure and 

increasing its design life duration. The behaviour of the entrapped air bubble must first be 

analysed to assess its influence on the observed pressure oscillation. 

 

5.3.1.1 Frequency domain analysis 

Firstly it must be ascertained that the oscillations are a direct consequence of the entrapped 

air pocket. To do this the pressure value within the entrapped air pocket is measured. This 

pressure should oscillate in a manner identical to the pressure oscillation recorded at P1. In 

a larger model a small time lag may be present as the resonant pressure within the bubble is 

transmitted through the liquid medium to point P1. The speed of a pressure wave in water is 

1482 m/s. However this is a small scale model and the pressure wave induced by the bubble 

oscillation is transmitted through the water and registered at P1 almost instantaneously. The 

bubble edge radius is approximately 40mm from P1. Thus the pressure wave travels from 

the bubble to P1 in approximately 2.70 × 10−5 s. The time step sampling rate for this phase 

of the simulation is set to 0.0001s, which is not a high enough sampling rate to observe the 

time lag, therefore the pressure oscillations within the bubble and at P1 are in phase as shown 

on Figure 5.3.4. The amplitude of the oscillating signal from the pressure within the bubble 

is consistently larger than the pressure recorded at P1. This would also imply that the 

resonant contraction and expansion action of the entrapped bubble is the source of the 

pressure oscillation. The reduced amplitude of the pressure signal at P1 may be due to energy 

loss through the free surface, energy loss due to viscous effects within the liquid phase or 

energy loss due to surface tension effects at the bubble wall. The pressure oscillation within 

the bubble also persists for some time after the oscillations at P1 are damped, further 

supporting the argument that the oscillations emanate from the bubble.   

From Figure 5.3.4 the pressure in the bubble can be seen to oscillate with a very regular 

frequency. The positive amplitude portion of the waveform measured inside the bubble 

represents contraction of the bubble whilst the negative amplitude of the waveform 

represents expansion of the bubble.  This frequency of pressure oscillation can be compared 

with the adiabatic Minnaert (1933) resonant frequency  given by 

 

𝜐 =  
1 

2𝜋𝑎𝑏
(

3𝛾𝑃0

𝜌
)

0.5

 (5.3.1) 
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where 𝛾 is the ratio of specific heat of a gas at constant pressure to that at constant volume, 

P0 is taken to be the hydrostatic liquid pressure outside the bubble (assumed to be 

atmospheric pressure in this case) and 𝜌 is the density of the fluid, and ab is the radius of the 

entrapped bubble, (Leighton, 1994). It is assumed that the bubble is entrapped in an infinite 

domain of water. Whilst the analytic Equation (5.3.1) is applicable to spherical bubbles it 

has been argued that the oscillating frequency of non-spherical bubbles varies only slightly 

from the oscillating frequency of spherical bubbles (Strasberg, 1953). 

. 

Figure 5.3.4 Pressure oscillations at the entrapped air bubble vs pressure oscillations at P1 

 

The frequency is highly dependent on the volume of the bubble rather than its shape, 

(Strasberg, 1953). From their experimental research Hattori et al. (1994) developed the 

following alternative experimentally derived relationship between bubble size and 

oscillation frequency  

 𝑓𝑎𝑝 =  180𝑙−0.5 (5.3.2) 

Where fap is the frequency of pressure oscillation and l is the bubble thickness or diameter 

in this case.  

 

By applying a Fast Fourier Transform (FFT) to the simulation pressure signal recorded at 

point P1 in Figure 5.3.4 a dominant oscillating frequency of approximately 170 Hz was 

recorded as shown on Figure 5.3.5. 
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Figure 5.3.5 FFT of pressure oscillation 

 

Table 5.3.1 summarises the oscillation frequencies computed by the various methods for a 

bubble having an equivalent diameter of 19.7 mm. Both the Minnaert resonance envelope 

and Hattori et al envelope for computing bubble oscillation are shown on Figure 5.3.6 along 

with the FFT computed oscillation frequency for this numerical simulation. Whilst the 

Minnaert analytic equation for oscillation resonance and the Hattori et. experimental results 

show good agreement at larger bubble diameters there is a large discrepancy when 

comparing the frequency of oscillation for smaller bubbles. This is shown on Figure 5.3.6. 

This may be due to small scale effects of bubble oscillation which the Hattori et al 

experiment setup could not capture. Nevertheless the results from our simulation agree well 

with both approaches.  

 

Method 
Resonant Oscillating Frequency 

[Hz] 

Minnaert analytic equation 330 

Hattori et al. experimental relationship 128 

FFT 170 

Table 5.3.1 Oscillation frequency values for 19.7mm diameter bubble 
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Figure 5.3.6 Frequency envelopes and computed FFT frequency 

 

The pressure signals in Figure 5.3.4 are attenuated in an underdamped manner, i.e. the 

damping ratio is 0 ≤ 𝜁 ≤ 1. The damping ratio can be calculated by applying a logarithmic 

decrement method to the amplitude of waves on the pressure plot. The logarithmic decrement 

is given by 

 
𝛿 =  

1

𝑛
𝑙𝑛

𝑥(𝑡)

𝑥(𝑡 + 𝑛𝑇)
 (5.3.3) 

 

Where n is any integer number, 𝑥(𝑡) is the signal amplitude at time t and 𝑥(𝑡 + 𝑛𝑇) is the 

peak signal amplitude of the wave at n periods away. This equation yields a logarithmic 

decrement value of 0.093 for the pressure signal measured at P1 on Figure 5.3.2. This value 

can then be used to calculate the damping ratio according to  

 
𝜁 =  

1

√1 + (
2𝜋
𝛿

)
2
 

(5.3.4) 

 

From Equation (5.3.4) a damping ratio of 0.015 is computed. The main sources of energy 

attenuation in a bubble oscillation pressure signal are due to thermal damping, radiation 

damping (through the emission of spherical sound waves) and viscous damping (Devin, 

1959). Because the thermal effects due to phase compression in this simulation are negligible, 

thermal damping can be excluded as a main source of energy attenuation.  Both the pressure 

signal measured at P1 and the pressure signal recorded inside the bubble are damped at 

approximately the same rate. However as the simulation proceeds the bubble migrates away 
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from the RHS wall. This would indicate that the position of the bubble relative to P1 is not 

a strongly influencing factor on the rate of damping. It is therefore likely that the reduction 

in the amplitude of the pressure wave both in the bubble and at P1 is due to viscous damping 

of the bubble wall membrane.  

 

5.3.2 Second order in time, second order in space equation discretisation 

scheme results  

The procedure outlined in Section 5.3.1 was repeated for the pressure response obtained 

from the 0.5 mm X 0.5 mm mesh resolution models (both incompressible and compressible) 

with second order temporal and second order spatial equation discretisation schemes. Figure 

5.3.7 shows a comparison between the simulation pressure records for each model.  
 

 

Figure 5.3.7 Pressure records for the second order time and  

space equation discretisation simulations 

 

In this case there is some high frequency oscillations evident in the incompressible 

simulation pressure response both immediately before and just after first impact. Also of 

note is the much reduced impact impulse at approximately 0.205 seconds elapsed simulation 

time  recorded for the incompressible model. These features require further discussion as 

outlined below. 

Figure 5.3.8 (a) and (b) show the free surface profile for the incompressible model and the 

compressible model respecitvely at approximate wave imact time of t = 0.205, (c) and (d) 

See Figure 5.3.9 
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show the associated pressure distributions. In this case the pressure is monitored at P1 which 

is at 8mm above the bed of the numerical tank as in Section 5.3.1. 

 

              

a. Incompressible model free surface                   b. Compressible model free surface         

profile at t = 0.205 sec                         profile at t = 0.205 sec   

               

c. Incompressible model pressure                         d. Compressible model pressure          

distribution at t =  0.205 sec                     distribution at t = 0.205 sec 

 

Figure 5.3.8 Free surface profile and pressure contour distribution comparison for  

incompressible and compressible simulations 

 

In Figure 5.3.8 (a) the leading edge of the wave has already broken prior to impacting the 

wall. This results in some air entrainment at the wave front and an irregular profile. 

Consequently some of the wave impact energy is transferred to the wall through the impact 

of many smaller water droplets. In effect the leading edge of the wave splashes against the 

wall. Each droplet will result in a pressure impulse, thus giving rise to the oscillating pressure 

response observed for the incompressible simulation at impact as shown on Figure 5.3.7. 

Also the highest pressure recorded in the incompressible model occurs about 10mm above 

P1. In contrast the profile at the leading edge of the flow in the compressible simulation 

remains intact. This results in the pressure response exhibiting a single impact pulse with a 

higher energy concentration focussed on P1.   

As noted in section 4.2 the atmospheric pressure value in the incompressible simulation is 

neglected. However in the compressible simulation this value is set to 100kPa. This isobaric 

pressure may have an influence on the wave leading edge stopping it from breaking before 

impact in the compressible simulation.   
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From Figure 5.3.7 there is a good general agreement in pressure trends between the 

incompressible and compressible simulations. High amplitude oscillations are again 

recorded in the compressible simulation, most obviously when the jet collapses.  However 

in this case there are two further distinctive time periods in which these oscillations occur, 

the time period from 0.6-0.7 sec, and 0.75 -0.9 sec. Only the oscillations registered when the 

jet collapses between 0.475-0.6 seconds will be investigated here. Figure 5.3.9 shows a 

magnified view of pressure response measured at P1 for this time period.   

 

Figure 5.3.9 Pressure response for compressible simulation,                                      

temporal range 0.475 sec-0.6sec 

 

Once again these pressure oscillations exhibit a reasonably regular frequency and their onset 

coincides with the entrainment of air within the liquid phase. Figure 5.3.10(a) shows the free 

surface profile at 0.492 sec elapsed simulation time for the compressible model. It can be 

seen that a large, irregularly shaped air void is at the instance of being entrapped. The 

corresponding pressure distribution (Figure 5.3.10(d)) shows this area to be experiencing 

low pressure relative to the majority of the region occupied by the water phase, this can be 

correlated to the low pressure observed at point P1 on Figure 5.3.9.     
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a. Free surface profile at t = 0.492 sec   d. Pressure distribution at t = 0.492 sec 

                

b. Free surface profile at t = 0.5105 sec          e. Pressure distribution at t = 0.5105 sec 

                     

 c. Free surface profile at t = 0.5895 sec   f. Pressure distribution at t = 0.5895 sec 

Figure 5.3.10 Free surface evolution and associated pressure contour                  

distributions as the water jet collapses 

 

The entrainment of this large bubble coincides with the onset of the pressure oscillations. 

Because the temporal and spatial equation discretisation schemes are second order and also 

a higher mesh resolution is applied to the model the flow profile is more accurately 

represented than the model in Section 5.3.1. Then as the water jet collapses the free surface 

evolution is more chaotic than in the case of the first order spatial and temporal equation 

discretisation scheme with 1 mm mesh resolution as was described previously, this is clear 

if one compares Figure 5.3.3(c) with Figure 5.3.10(c).  It can also be noticed that the pressure 

signal in Figure 5.3.9 is more irregular than that displayed in Figure 5.3.2. This signal 

irregularity may arise due to the fact that the frequency of oscillation and amplitude of 

pressure oscillation of each of the smaller entrained bubble is dependent on the individual 

bubble’s size. Figure 5.3.10 (b) shows the free surface profile at 0.5105 seconds, it can be 

seen that the large bubble in figure 5.3.10 (a) has collapsed to form two main air pockets and 

some additional smaller bubbles. If one compares this free surface profile with the pressure 

response shown in Figure 5.3.9 additional higher frequency oscillations are recorded at this 

time instance. Therefore smaller entrained bubbles exhibit higher pressure frequency 

oscillations and lower amplitude of pressure oscillation. As the simulation proceeds there is 

some damping of the pressure signal (Figure 5.3.9) most noticeably from about 0.59-0.6 sec. 
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This damping is not as pronounced as that which occurred in the first order temporal and 

spatial discretisation model investigation. This may be explained through the more 

chaotically evolving flow profile with the constant formation of new bubbles and escape of 

pre-existing bubbles through the fluid free surface. 

 

5.3.2.1 Frequency domain analysis 

Figure 5.3.11 shows the FFT of the pressure signal for the time period 0.5 to 0.6 seconds. 

When compared to Figure 5.3.5 it can be seen that there are many additional constituent 

frequency peaks with varying levels of amplitude.  

 

Figure 5.3.11 FFT of pressure oscillation for compressible second order 

temporal and spatial equation discretisation scheme 

 

The study will concentrate on those frequencies with the largest amplitude which compose 

the FFT as shown on Figure 5.3.12. There are 5 main frequencies comprising the signal, 

these occur between 100 and 300 Hz. Table 5.3.2 shows these frequencies and their 

associated amplitudes. These 5 frequencies should correspond to the resonant frequency of 

oscillation of the 5 largest bubbles formed between 0.5-0.6 seconds simulation time (larger 

bubbles oscillate at a low frequency but with a large amplitude). The flow during this time 

period is very chaotic and the entrained bubbles are constant coalescing, separating and 

escaping through the free surface, however the five largest bubble sizes measured during the 

simulation time period 0.5-0.6 seconds are shown in Table 5.3.3. Bubble 2 and 3 form mainly 

through the separation of bubble 1. Bubble 4 forms through the fragmentation of bubble 2 

and bubble 5 forms as bubble 3 merges with some smaller bubbles and is also fragmented. 

This sequence of free surface flow development is shown on Figure 5.3.13 a-d. 
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Peak 
Frequency 

[Hz] 

Amplitude 

[Pa] 

1 150 348 

2 180 203 

3 200 148 

4 219 157 

5 252 148 

Table 5.3.2 Main frequencies of interest in pressure signal at P1 

 

Figure 5.3.12 Main frequencies of interest. 

Bubble 
Area 

[mm]2 

Equivalent 

radius 

[mm] 

Time which 

bubble forms 

[sec] 

Time which bubble 

size is modified 

[sec] 

Lifetime duration 

of bubble 

[sec] 

1 1324.5 20 0.492 0.5045 0.0125 
2 787 15.8 0.5045 0.5131 0.0086 

3 474 12.3 0.5045 0.5231 0.0126 

4 483 12.4 0.5131 0.5341 0.0210 

5 489 12.5 0.5231 0.5431 0.0260 

Table 5.3.3 Bubble formation observed in simulation  

       

a. Formation of bubble 1                         b. Formation of bubbles 2 & 3 
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c. Formation of bubble 4            d. Formation of bubble 5 

Figure 5.3.13 Fragmentation of entrapped air pockets and  

formation of smaller bubbles within the flow 

 

Using the five highest amplitude frequencies extracted from the FFT as shown in Table 5.3.2, 

the analytically predicted entrained bubble sizes calculated using the Minnaert resonance 

Equation (5.3.1) and the Equation (5.3.2) formulated by Hattori et al. (1994), are shown in 

Table 5.3.4.     

By comparing the values in Table 5.3.3 with those in Table 5.3.4 it can be seen that there is 

very good agreement with observed frequency of oscillation for peak 1 and peak 5 on the 

FFT (150Hz and 252Hz) and the observed equivalent radius of bubble 1 (20 mm) and bubble 

5 (12.5 mm) when compared to the Minnaert analytic equation values of 21.7mm and 12.9 

respectively. The equation developed by Hattori et al. (1994), consistently underestimates 

the bubble size.  Figure 5.3.14 compares the Minnaert envelope, the Hattori envelope and 

the observed entrained bubble diameters and the associated resonant frequencies.   

Peak 

Minnaert Equation Hattori et al equation 

Radius of 

bubble 

[mm] 

Area of 

bubble 

[mm]2 

Radius of 

bubble 

[mm] 

Area of 

bubble 

[mm]2 

1 21.7 1479 5.5 95 

2 18.1 1029 5.0 79 

3 16.3 835 4.7 69 

4 14.9 697 4.5 64 

5 12.9 522 4.2 55 

Table 5.3.4 Predicted bubble size according to Minnaert and Hattori equations 

 

Bubble 4 

Bubble 5 
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.  

Figure 5.3.14 Analytic frequency curve, experimental bubble frequency curve                                             

and simulated bubble oscillatory frequencies 

5.3.2.2 Pressure oscillation frequencies recorded within air void 

The next stage of the analysis consists of recording the time varying pressures observed 

within entrapped air pockets during the simulation. For this part of the study two locations, 

a and b were selected as shown on Figure 5.3.15. These points are located such that a bubble 

transits across each position during the simulation. It was anticipated that the observed 

frequency of oscillation and the amplitude of the pressure signal should alter during the time 

period which the point was located within an air bubble. Figures 5.3.16 (a) and 5.3.16 (b) 

show the pressure signals measured at each of the points for the time period 0.5-0.6 seconds, 

also recorded on these graphs is the pressure signal measured at P1. Figure 5.3.16 (c) and 

5.3.16 (d) show the FFT of the pressure signal recorded at a and b respectively along with 

the FFT of the pressure signal measured at point P1 for comparison. Again it is anticipated 

that those points which are transited by progressively smaller air pockets should exhibit 

higher constituent frequencies which make up the pressure signal.  

 

Figure 5.3.15 Flow profile at 0.492 sec. with pressure monitor locations a and b indicated 
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a. Pressure response at a (red)  

 

b. Pressure response at b (red) 

 

                  c. FFT of pressure signal at a          d. FFT of pressure signal at b 

Figure 5.3.16 Pressure signal at locations a and b and FFT of pressure signal at a and b 

 

Initially point a is located such that it is positioned within bubble 1 which is formed when 

the jet collapses and point b is located within the water phase. Comparing Figures 5.3.16 (a) 

and 5.3.16 (b) it is shown that the pressure signal measured at point b matches the pressure 
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signal measured at P1 better. As point a is contained within the formed bubble there may be 

some loss of energy as the pressure wave transmits through the air phase which is 

compressible. In contrast, the incompressible water phase may conserve the energy of the 

pressure wave more effectively and the pressure measurement at point b may reflect this.  As 

the simulation progresses bubble 1 bifurcates and point a lies within bubble 2. This happens 

at approximately 0.5045 sec. There is a slight alteration to the pressure signal at this time. 

From 0.5095 to 0.5111 seconds bubble 2 loses some of its volume as some smaller bubbles 

break away. This is reflected as a higher frequency, small amplitude oscillation on figure a 

around 0.51 sec. Point a is located within the liquid phase from about 0.5181 to 0.5261 and 

a smooth pressure oscillation results. From 0.5261 to 0.5371 seconds point a is located within 

bubble 5, the amplitude of oscillation reduces slightly and the oscillation frequency 

approximately doubles. This supports the data presented in Table 5.3.3 in which the volume 

of bubble 5 is approximately 63% of bubble 2.  Point a is again within the liquid phase from 

0.5371 to about 0.5411. From 0.5411 a is situated in a smaller bubble until 0.5481. During 

this time period when the oscillating frequency increases noticeably. From 0.5481 until about 

0.5630 point a is located in the liquid phase on the radial edge of a bubble. Finally point a is 

located within a thin jet of the liquid phase from 0.5630 until 0.5961 seconds at which time 

the free surface crosses point a and the pressure drops to zero (neglecting the effects of 

atmospheric pressure). Also during this time period the amplitude of the pressure oscillations 

decreases in an under-damped manner. 

Point b is located within the liquid phase from 0.5 sec until 0.5451 sec. During this time 

period the pressure response at b closely resembles the pressure record at point P1, however 

the amplitude of the signal at b is slightly reduced. From approximately 0.5460 to 0.5550 an 

air void crosses point b. The pressure signal frequency increases during this time. After 

0.5550 point b is located the within the fluid phase and the pressure signal once again closely 

resembles the pressure response recorded at P1. This supports the suggestion that the 

presence of air voids are the predominant influence on the frequency of oscillations observed 

in the pressure signal.  

From examination of the FFT of the pressure signal at point a, the five dominant frequencies 

are shown on Table 5.3.5. Peaks 3, 4 and 5 correspond with the three largest amplitude 

frequencies observed in the pressure signal at point P1. The component frequencies at 20 Hz 

and 60 Hz are also the most dominant signals within the pressure response measured at a. 

Component signals with frequencies greater than about 280 Hz do not feature strongly in the 

pressure response signal measured at a.  
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Peak 
Frequency 

[Hz] 

Amplitude 

[Pa] 

1 20 116 

2 60 127 

3 150 304 

4 180 145 

5 200 112 

Table 5.3.5 Dominant frequency components in pressure signal at point a 

 

The five frequency peaks with the largest amplitudes (obtained from the FFT) occurring in 

the signal recorded at point b are shown in in Table 5.3.6. It can be seen that higher 

frequency oscillations (most notably between 640 Hz and 700 Hz) feature strongly in the 

pressure signal recorded at point b. This can be explained by the small entrained air pocket 

transiting across point b between 0.5460 and 0.5550 seconds simulation time. 

  

Peak 
Frequency 

[Hz] 

Amplitude 

[Pa] 

1 150 302 

2 180 168 

3 230 144 

4 260 174 

5 670 143 

Table 5.3.6 Dominant frequency components in pressure signal at point b 

 

It should be noted that as the simulation progresses, the flow field for both phases transitions 

into an increasingly chaotic system with some coalescence, but mainly fragmentation of the 

entrapped air pocket. These smaller bubbles contribute high frequency, low amplitude 

components to the oscillatory pressure signal.  
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Chapter 6 

Porous structure characterisation and 

hydraulic conductance  

It has long been known that fluid flow in porous media depends on a number of 

characteristics including porosity, tortuosity, interstitial surface area, solid phase distribution, 

flow Reynolds number, permeability etc. (Matyka et al., 2008). Many of these parameters 

are interdependent and by modifying the morphology of the solid material phase one or all 

of these characteristics may change. In this chapter some of these features of porous media 

are examined and previous studies which attempt to quantify them and investigate their 

correlation are reviewed.    

 

6.1 Porous media classification and description 

A porous sample in its loosest definition is a material composed of a certain solid volume 

which contains a proportion of distributed void space. Thus porosity is defined as the fraction 

of the bulk volume of the sample which is occupied by pore or void space (Dullien, 1992). 

Porosity can be used as 3 dimensional parameterisation measure for the morphology of the 

porous structure. Civan (2011) defines porosity mathematically as: 

 

Φ =
∑ ∆𝑉𝑗𝑗≠𝑠

∆𝑉𝑏
 (6.1) 

where ∆𝑉𝑏is the bulk volume of the sample or the total volume occupied by all phases, ∆𝑉𝑗 

is the volume occupied by the j’th phase and s denotes the sum of the solid phases forming 

the porous matrix.  

In macroscopic terms according to the classification system of Brewer (1964), this is the 

fractional volume of a sample which can be occupied by a fluid, either wetting or non-

wetting.  
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Bear (1988) provides a more onerous characterisation of a porous media which suggests that 

the multiphase matrix must satisfy certain conditions such as level of void space 

interconnectedness, lower bound limits on interstitial surface areas and uniformity in phase 

distribution as discussed earlier in Section 2.5. In this study the porous topologies 

incorporated into the CFD model satisfy the stringent definition as outlined by Bear (1988). 

Nevertheless other researchers may subscribe to varying definitions of a porous medium and 

it is a term which is still couched in ambiguity as there is no complete consensus on limits 

for any of the above conditions.  

The study of porosity encompasses many fields of research and each has its own limiting 

definition on the length scales of porous assembles. It is therefore important at this early 

point to clearly define the scales at which this porous media analysis is undertaken. For 

example the International Union of Pure and Applied Chemistry (IUPAC) imposes limits for 

microscopic, mesoscopic and macroscopic ranges when analysing porous materials. A 

mesoporous material is one which contains pores with diameters of between 2 and 50 nm 

and microporous and macroporous materials lie outside these respective ranges. However, 

the porous samples used in this study all contain voids much larger than 50nm. Therefore 

using guidelines according to stringent unit measurement limits is not applicable in this 

investigation. The limit scales must then be established with direct reference to the materials 

under scrutiny. We use a unit independent method to establish that our sample is in the 

macroporous scale as presented by Dullien (1992). In his study the lower limiting scale of a 

macroscopic porous medium sample is that which “may be defined by a smooth porosity 

variation as a function of the sample volume”, (see Figure 6.1.1 below). 

 
Figure 6.1.1. Illustration of the definition of macroscopic porous medium, (Dullien, 1992) 

 

In Figure 6.1.1, 𝑘(𝐷) represents the permeability and 𝑉 is a volumetric measure of a sample. 

As the volumetric sample size reduces the permeability is measured over a smaller number 

of pores and eventually the permeability is no longer statistically independent of the 

volumetric sample size, either converging on a single pore or on a single solid phase element. 

At this point we have transitioned into the microscopic scale range. This manner of defining 
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the limiting macroscopic scale closely resembles the definition of a representative 

elementary volume (REV) proposed by Bear (1988). The concept of an REV is discussed 

further in Section 6.5.1.   

Porous media may be classified as random or ordered depending on the layout of the voids 

or the distribution of constituent particles forming the solid matrix within the sample. 

Random porous materials such as limestone, wood, sandstone etc. occur most frequently in 

nature. These materials are usually more topologically complex than ordered materials. 

Ordered porous materials are increasingly finding applications in areas ranging from 

microelectronics to medical science (Davis, 2002). These materials are usually synthetically 

manufactured and include zeolites, carbon nanotube and other such material in which the 

material microstructure is modified or designed, often at the nanoscale.   

The morphology of a sample may also be further spatially classified as isotropic or 

anisotropic, homogenous or heterogeneous, or combinations thereof (see Figure 6.1.2 below). 

In this study a series of ordered, homogenous, isotropic and also homogenous anisotropic 

porous structures generated from spheres on varying lattice layout are investigated followed 

by an examination of a series of highly complex stochastically generated disordered fibrous 

porous structures. 

          Isotropic                   Anisotropic 

   

 

 

        Homogeneous 

 

         

   

      a                  b         

                         

    

 

       Heterogeneous                                                                                        x 

                                                                                                convention 

          ■ void phase 

          □ solid phase 

             c                            d      

Figure 6.1.2. Types of porous media 

 

Figure 6.1.2 displays various porous media morphologies for an ordered two dimensional 

porous sample. Figure 6.1.2(a) is both homogeneous and isotropic; the properties of the 

sample are the same in both the x and y directions, also the distribution of the solid phase is 

uniform. In 6.1.2(b) the distribution is again uniform, however the sample will have a higher 

permeability in the x direction as flow streamlines will be less tortuous in this direction, and 

y 
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thus it is anisotropic. Figure 6.1.2(c) exhibits a heterogeneous isotropic sample. The material 

is heterogeneous because the distribution of the solid phase is not uniform and contains 

higher density isolated pockets of solid particles. Heterogeneities in porous media may be 

defined as a local variation in the pore structure. If these local variations are sufficiently 

randomly distributed within the sample the material may still behave in an isotropic manner. 

Figure 6.1.2(d) displays a sample which is both heterogeneous and anisotropic.  The above 

Figure 6.1.2 demonstrates the effects of homogeneity, and isotropy for an ordered material. 

However the same principals can be applied to a random porous material if the phases are 

sufficiently stochastically distributed.   

The pores within a structure can be classified into effective pore space or isolated pore space. 

Effective or interconnected pore spaces are those voids which can conduct fluids from one 

surface of the sample to another surface. Isolated pore spaces are those pores which are either 

dead end pores of closed pores which do not have a surface opening and therefore cannot 

contribute to the transport of fluid through the porous sample. A void chamber within a 

porous structure which is connected to void channels is termed a vugg. The void regions 

which connect these vuggs are termed pore throats. Figure 6.1.3 shows a flow path thorough 

a vuggy porous media (Asquith, 1985).  Figure 6.1.4 taken from the Recommendations for 

the characterization of porous solids (Rouquerol et al., 1994) describes the various types of 

voids within a porous sample. 

 

 

Figure 6.1.3. Flow through vuggy porous media (Asquith, 1985). 

 

 
Figure 6.1.4. Cross section through a porous sample showing  

various types of voids (Rouquerol et al., 1994). 
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In Figure 6.1.4 above the voids a, b, and f are isolated pores. These cannot contribute to the 

transport of fluid through the structure. Void paths c to e to c, c to e to d and d to e to c are 

effective pore spaces as they are continuous through the sample. However there is also a 

pore space emanating from the vugg at location e which is a dead end. Thus even for this 

trivial example there are a number of flow paths available.   

Whilst the porosity expresses the fractional volume of void space and solid matter contained 

within a sample, the distribution of both the isolated and the interconnected pores sizes 

remains a more obscure problem. Additional characteristics of the porous sample must be 

investigated to determine and categorise the structural morphology of the void space. 

Tortuosity, surface area and permeability are further parameters which can be used to 

describe the distribution of the pores or solid phase matrix. 

 

6.2 Tortuosity 

Tortuosity is an inherent characteristic of a porous media morphology which in general terms 

can be described as a ratio of the distance traversed by a fluid element between two fixed 

points to the straight line distance joining those two points as shown in Figure 6.2.1 (Brus et 

al., 2014). Tortuosity can be calculated according to: 

 

𝜏 =
𝐿𝑒

𝐿𝑠
 (6.2.1) 

 

Where Le and Ls are shown on Figure 6.2.1.  

Whilst there has been a large body of academic research presented on the subject of tortuosity, 

there is no consensus for a single precise definition of tortuosity. To date a number of 

different measurements of tortuosity have been advanced for different applications. For 

example Ghanbarian et al. (2013) in their review paper describe geometric tortuosity, 

hydraulic tortuosity, electrical tortuosity and diffusive tortuosity.  

 

 
Figure 6.2.1 Tortuosity (Brus et al., 2014) 
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This difficulty in achieving a unanimous characterisation for tortuosity may be twofold; With 

the exception of very few materials, e.g. metals, dense rocks and some plastics (Dullien, 

1992), most material exhibit porous behaviour to varying degrees at multiscale levels from 

microscopic through to macroscopic scale. The parameters which govern the tortuosity may 

vary dramatically within a single material at different scale lengths thus effecting the 

observed tortuous transport path length. For example a hydrologist may be interested in the 

transmissive porosity of an aquifer stratum at microscopic levels but a petroleum engineer 

may be more concerned with developing a network of macroscopic underground porous 

fissures to allow hydrocarbon accumulations to flow into a drilled well system. In the former 

case multiphase interfacial parameters such as capillary pressures, surface tension effects 

and wall friction coefficients may all contribute an important role in the flow rate through 

the stratum and in the latter case these effects may not warrant consideration due to the bulk 

of the flow being conveyed through larger fissures where wall friction, capillary and free 

surface effects are not the limiting constraints on the flow rate. Then, in the case of the 

hydrologist the hydraulic or streamline tortuosity may be important whereas the geometric 

tortuosity will be of concern to the petroleum engineer. See Figure 6.2.2 for a comparison 

between hydraulic and geometric tortuosity.   

Secondly the structure of these porous materials can take many forms, and the tortuous paths 

can vary from being comparatively simple to being highly complicated and sinuous. For 

instance the porous structure of natural materials such as wood can be somewhat 

homogenous and anisotropic and in this case the tortuosity can be relatively simply described 

by reducing it to a model consisting of a bundle of unidirectional capillary tubes. In contrast 

a material may be much more complex and disordered having multidirectional interweaving 

fibrous filaments as evidenced within some natural filter material or in paper products for 

example. Then, the material topology is much more difficult to define and the parameters 

which can be used to describe the tortuous nature of interconnecting porous voids can be 

very difficult to determine from the physical sample. In the current study the void throats 

between the solid particles are relatively narrow such that the flow streamlines are seen to 

be influenced by the surface of solid phase material in the CFD model. 

However, even with the tortuosity scheme specified there may still be some ambiguity in its 

measurement. Take for example the case of fluid flow through a porous medium consisting 

of sphere packing on a regular cubic lattice as shown of Figure 6.2.3 (Clennell, 1997) and 

further analysed in Section 7.1.1. Some of the streamlines will follow a straight line vector 

path whereby they pass through the centroid of the void spaces having a value of 𝜏𝑚𝑖𝑛 = 1 
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(Figure 6.2.3 streamline at a), whilst others will closely follow the contours of the solid phase 

exhibiting a more tortuous flow path with an approximate value of 𝜏𝑚𝑎𝑥 = 1 .57 (Figure 

6.2.3 streamline at b). For any porous morphology the value of 𝜏𝑚𝑖𝑛 can be determined either 

through numerical simulations or through experimental means if enough 3D information is 

available (Bernabe, 1991). It is however much more difficult to determine a value for 𝜏𝑚𝑎𝑥 

especially where there are diverging and converging flow path networks or where dead end 

pores may cause the streamlines to form into eddies in which case the tortuosity may be 

indeterminate (Clennell, 1997).  In this study the minimum tortuosity value is extracted from 

the numerical simulations.  

 
                      a. Hydraulic tortuous path           b. Geometric tortuous path 

Figure 6.2.2 Comparison between hydraulic tortuosity  

and geometric tortuosity (Ghanbarian et al., 2013) 

  

 
Figure 6.2.3 Hydraulic tortuosity flow streamlines (Clennell, 1997) 

 

Fluid flow through a porous medium is influenced by both the amount and  the morphology 

of the void (pore) space (Vallabh et al., 2010). While the amount of void space is easily 

quantified by measurement of porosity, the characterisation of the void space structure is 

often very difficult due to its complex nature (Vallabh et al., 2010). The limiting case of a 

bundle of parallel, non-interconnected tubes longitudinally orientated in the direction of 

macroscopic flow, traversing the full thickness, L, of the sample presents little resistance to 

the flow (neglecting frictional effects at the tube wall). In this case a flow streamline tracing 
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the path of the fluid Le will have a length similar to the thickness of the sample, i.e. the 

tortuosity factor following the commonly used engineering definition is: 

 
𝜏 =

𝐿𝑒

𝐿
= 1 (6.2.2) 

 

In the case whereby the pore structure is more complex with many converging and diverging 

channels the streamline path may not follow the liner shortest distance between the bounding 

surfaces of the sample. Rather, the streamline will follow a sinuous, winding path determined 

by the morphology of the solid (or void) phase. Then the tortuosity factor must be: 

 
𝜏 =

𝐿𝑒

𝐿
> 1 (6.2.3) 

 

Therefore as the tortuosity factor increases above unity the flow streamlines are generally 

forced to follow a longer path to traverse the sample. This increase in the time taken for the 

fluid to permeate through the porous media can be manifested in a higher resistance to the 

flow. Also as the value of tortuosity approaches infinity this represents an internal pore 

structure (and geometric topology) of increasing complexity.  Furthermore, a thorough 

analysis and understanding of tortuous paths within a sample presents one with a means to 

quantify the permeability of the sample using the Kozeny-Carman law (Equation 6.4.4)  

which can be used to calculate the permeability tensor used in Darcy’s law (Equation 6.4.1) 

(Koponen et al., 2017).Tortuosity is usually considered exclusively as a geometrical property 

of a material, however in this study it is found that there is a temporal aspect to tortuosity 

which cannot be ignored. This spatio temporal dependent tortuosity is termed kinematic 

tortuosity.  Further discussion on this parameter is contained within Section 8.1.6. 

 

6.3 Specific surface area   

The specific surface area of a porous sample is defined as the interstitial void surface area 

per unit bulk volume having a reciprocal length dimension. In molecular science, specific 

surface area greatly influences adsorption rates and reactivity processes. However on a 

macroscale scale it can also be used to characterise the morphology of the porous structure. 

A higher specific surface area for the same degree of porosity implies a topologically more 

complex porous medium. Additionally a higher specific surface area will also have the effect 

of decelerating the flow of fluid through the porous structure as the wall shear stress will 

have a more pronounced effect with a higher liquid-solid phase interfacial area. 

 

 



 

84 

 

6.4 Permeability and flow regimes 

The transport of fluid through porous media is a ubiquitous phenomenon occurring in many 

natural and engineering processes (Shi et al., 2011). One of the aims of this study is to 

provide a rigorous numerical analysis which yields data on the permeability of porous 

breakwater systems.  

Common applications and examples of such permeability processes which have been 

previously investigated include oil reservoir analyses, hydrostratigraphy, food and beverage 

production and pharmaceutical industries. These applications all rely on the understanding 

of filtration processes and the manner of conveyance of fluid(s) through a porous structure 

or membrane. The passage of a Newtonian fluid through the interstices formed within solid 

skeletal matrix is termed permeation and the ease by which the matrix conveys the fluid is 

measured by its permeability. Much research has been conducted on the permeability of 

porous structures, however, due to the highly complex nature of the tortuous, intertwining 

flow paths within many such materials these studies have mainly been restricted to 

experimental or theoretical methods. Currently numerical models are being employed more 

commonly for the study of fluid transport in porous media. Furthermore with recent 

advances in computational processing power, investigations employing spatially higher 

resolution numerical simulations are appearing more regularly (Mattila et al., 2016). These 

numerical approaches allow one to macroscopically simulate the true behaviour of the flow 

within the voids and interstices of the porous assembly at the pore scale. In contrast, 

theoretical analyses often employ macroscale continuum approaches which require much 

model simplification. The continuum approach may require volume averaging smoothing 

techniques and the use of a representative elementary volume (REV) approach. The REV is 

defined as the smallest volume which statistically describes the macroscopically averaged 

properties of the structure based on a sample volume of the material. In his book on porous 

media Bear (1988) gives an excellent detailed description of the theoretical procedure which 

is followed in order to define a statistically accurate REV. Experimental studies can often be 

used to determine coefficients for use in the theoretical approaches. This study takes a 

macroscale discontinuum approach (Baca et al., 1984) wherein the pore-space transport and 

interactions between each fluid phase is discretely modelled.  

It is important to also identify the different flow regimes which govern the transport of fluid 

through a porous structure. Flows which are dominated by viscous forces are typically 

described by the Darcy equation. Inertial flow regimes wherein a boundary layer exists with 

an inertial flow core within the interstices of the porous structure are described by the 

Forcheimer equation. There is an additional flow regime in which fully turbulent flow occurs 
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within the porous structure, however in this study the effects of turbulence within the fluid 

flow regimes is not considered. Additionally transitional flow regimes exist as boundary 

layer formation is a gradual process as flow within porous media is a highly complex 

phenomenon. Fand et al. (1987) provide an in-depth description of these flow regimes and 

summarised them by Figure 6.4.1. 

 

 

Figure 6.4.1 Porous fluid flow regimes, Fand et al. (1987) 

 

In Figure 6.4.1 the abscissa represents the Reynolds number, the subscripts D, F and T denote 

the Darcy, Forcheimer and fully turbulent regimes whilst the L and H subscripts represent 

the lower and higher boundaries of these flows respectively. The ordinate axis has units of 

length per permeability represented by Cd. P′ is the pressure gradient, 𝜇 is the fluid viscosity, 

ν is the velocity, C is the reciprocal of permeability and d is a characteristic dimension of 

the porous matrix. The horizontal solid line region labelled Eq. (1) represents Darcy flow. 

The portion of the line labelled Eq. (9) represents Forcheimer and turbulent flow systems. 

These different flow models are discussed further in the following sections. 

  

6.4.1 Darcy’s Law of flow through porous material 

The hydraulic permeability of a porous medium is a measure of the ability of that medium 

to transport a fluid of a given viscosity through a specific linear distance irrespective of the 

flow regime. Darcy’s law (Darcy, 1856) (Equitation 6.4.1) has been used to describe the flow 

of fluid through a porous structure at low Reynolds number in a laminar creeping or seepage 

flow regime:  
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𝑄 =  −

𝜅𝐴(𝑃𝑏 − 𝑃𝑎)

𝜇𝐿
 (6.4.1) 

 

where 𝑄 is the flow rate, 𝜅 is a coefficient representing the intrinsic permeability (i.e. it is 

independent of the fluid characteristics passing through the porous media and is determined 

only by the structure of the solid matter forming the skeleton of the sample), A is the cross 

sectional area through which the fluid flows,  (𝑝𝑏 − 𝑝𝑎)  is the pressure drop across the 

sample, 𝜇 is the fluid viscosity and 𝐿 is the length over which the pressure drop occurs. 

By dividing both sides by the cross sectional area Equation 6.4.1 reduces to: 

 
〈𝑞〉 =  −

𝜅

𝜇
∇𝑃 (6.4.2) 

 

where 〈𝑞〉 is the superficial fluid velocity through the porous media and ∇𝑝 is the pressure 

gradient.  

Equation 6.4.2 demonstrates that the pressure gradient across the sample is proportional to 

the seepage velocity. In the above expression there is no explicit term which takes account 

of the structure of the solid matter within the porous sample. The structure could consist of 

a bundle of parallel hollow capillary tubes or it may be formed from a more random 

assemblage of consolidated particles such as occurs within disorganised sphere packing or 

in most naturally occurring porous media. Various studies have been undertaken to develop 

a correlation between the permeability and the various parameters describing the 

morphology of the solid skeleton, however a general equation is still lacking (Koponen et 

al., 1998). The coefficient 𝜅 describing the permeability of a substance in Equation 6.4.2 

above is a measure of the fluid conductivity thorough the sample. (Dullien, 1992) has shown 

through dimensional analysis that the permeability 𝜅 of a porous medium can be expressed 

as: 

 
 𝜅 =  

𝑓(𝜙, 𝜏)

𝑆𝑣
2

 (6.4.3) 

 

where 𝜙 is the porosity, 𝜏 is the tortuosity and 𝑆𝑣 is the specific surface area. Various other 

models have been suggested for the permeability coefficient. The Kozeny capillary model 

(Kozeny, 1927) based on a porous sample simplification to an assembly of parallel tubes of 

fixed cross sectional area orientated in the direction of the macroscopic fluid flow expresses 

the permeability as: 

 

𝜅 =  
𝜙3

𝐶𝑆2
  (6.4.4) 
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here 𝐶 is the Kozeny coefficient which for a series of parallel capillary tubes has a value of 

2 (Kozeny, 1927). 𝑆 is the relative surface area given by 𝑆 =  𝑆𝑣(1 − 𝜙) where 𝑆𝑣 is the 

specific surface area.  It may be noted that the tortuosity does not appear explicitly in 

Equation 6.4.4 above however if the tubes are orientated in the direction of flow the 

tortuosity may be assumed to be 𝜏 =
𝐿𝑒

𝐿
= 1.   Equation 6.4.4 was adapted by Carman (1997) 

to yield 

 
𝜅 =

1

𝑐𝑆0
2

𝜙3

𝜏2(1 − 𝜙)2
 (6.4.5) 

Where 𝑐 is the Kozeny-Carman coefficient. Various other equations have been suggested to 

the compute the permeability coefficient, but it is outside the scope of this study to analyse 

them all.   

 

6.4.2 Darcy Forcheimer Flow 

Whilst Darcy’s Law has been shown to accurately predict fluid flow rates through granular 

porous material of low permeability, typically with flow velocities yielding Reynolds 

numbers less than 10, it is unsuitable for situations where inertial flow effects should be 

considered. At these higher flow velocities it has been shown that the linear relationship 

between flow rate and pressure gradient is no longer applicable (Fourar et al., 2004, Kundu 

et al., 2016).  

Thus the Reynolds number for flow through the porous structure should first be established 

to characterise the flow regime. This is not an elementary process and there have been a 

number of different expressions suggested to calculate Reynolds number for flow through a 

packed fixed bed of contacting spheres, the simplest being:     

 
𝑅𝑒 =  

𝜌𝑈𝑑𝑝

𝜇
 (6.4.6) 

where 𝜌 is the fluid density, 𝑈 is the superficial fluid velocity 𝑑𝑝 is the characteristic scaling 

length, which for a packed bed of spheres is often taken as the sphere diameter and 𝜇 is the 

fluid dynamic viscosity. In Equation 6.4.6 there is no attempt to account for different 

morphologies of the porous structure. For example the spheres may be loosely packed on a 

homogeneous cubic lattice (simple cubic packing) with a porosity of 0.48 and unobstructed 

channels through the solid phase. Alternatively the spheres may be more densely packed in 

a heterogeneous body centred or face centred close cubic packing system with lower 

porosities and more tortuous paths. Then to account for the varying porosity the Reynolds 

number can be improved according to:  
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𝑅𝑒 =  

𝜌𝑈𝑑𝑝

𝜇(1 − 𝜀)
 (6.4.7) 

where 𝜀 is the porosity. 

In some regions of the structure the flow velocity will be accelerated or slowed due to 

constrictions, or cavities, or abrupt changes the flow vectors etc. Thus in determining the 

Reynolds number for flow through a porous structure it should be acknowledged that the 

computed value is an averaged quantity over a certain volume (Baker, 2011). Furthermore, 

unlike flow through a pipe or channel in which a critical Reynolds number defines the 

transition from laminar to turbulent flow the process has been shown to occur more gradually 

in porous media (Andrade Jr et al., 1999).In those cases where it has been determined that 

the flow is influenced by inertial effects the Forcheimer equation is employed. This equation 

is an extension of the Darcy equation and consists of a liner term for the viscous component 

of flow and a quadratic term for the inertial component of flow (Rong et al., 2007): 

 

−
∆𝑃

𝐿
= 𝛼𝜇〈𝑞〉 + 𝛽𝜌〈𝑞〉2 (6.4.8) 

where 𝛼 is the viscous coefficient and 𝛽 is the inertial coefficient.  

The Forcheimer equation can be correlated to the Reynolds number for flow through a 

porous media by the introduction of a friction factor (Andrade Jr et al., 1999) rearranging 

Equation 6.4.8 in the form, 

 

𝑓 =
1

𝑅𝑒′
+ 1 (6.4.9) 

where   𝑓 ≡  −
∆𝑃

𝐿𝛽𝜌〈𝑞〉2  and 𝑅𝑒′ ≡  
𝛽𝜌〈𝑞〉

𝛼𝜇
 

 

It should be noted that in the above equations there is no consideration for the tortuosity of 

the porous structure through which the fluid flows. 

 

6.5 Approaches to modelling transport in porous media 

There are two main approaches to modelling fluid transport in porous media. The first 

approach is the macroscopic continuum method wherein the flow is modelled according to 

the Navier-Stokes equations with an additional Darcy (or Darcy-Forcheimer) term 

incorporated into the momentum equation (Higuera et al., 2014), in the region where the 

porous structure is located. In this method the physics of the flow through the porous medium 

is governed by phase quantities averaged over control volumes or REV’s. The second 

approach to modelling fluid flow through porous media is a direct modelling approach 

wherein each phase is explicitly represented and the flow through the porous interstices is 

modelled by the Navier-Stokes equations. Other methods for modelling flow in porous 
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media include the smoothed particle hydrodynamic (SPH) method (Vakilha and Manzari, 

2008) and lattice Boltzmann methods (Boek and Venturoli, 2010).  

6.5.1  Macroscopic volume averaging approach (continuum modelling) 

In the continuum modelling method the void space and solid matrix of the porous sample 

are not explicitly represented (Soulaine, [unpublished]). Instead averaged values of 

parameters describing the structure, such as the void fraction for a determined volume, are 

applied to the region in which the porous media is located.  Central to the continuum 

approach of modelling flow through porous media is the characterisation of this control 

volume which is statistically representative of the porous structure as a whole. This control 

volume is termed the representative elementary volume or REV. Dullien (1992) provides a 

definition for the REV as follows “the REV is a prescribed characteristic volume size over 

which microscopic properties and transport equations can be averaged for consistent 

description of the macroscopic properties and transport equations in multiphase systems”. 

Much research has been undertaken to determine the REV for a particular porous sample. 

Bear (1988) provides a concise approach to defining REV (see Figure 6.5.1) for a porous 

medium. If the size of the REV is too small the sampled volume will be representative of 

either the void phase or of the solid phase (represented by either 0 or 1 on the ordinate axis). 

As the REV is enlarged the sampled volume will be representative of both phases but will 

still be dominated by the phase in which the smaller original REV was first located. The 

REV will only be representative of the dual phase porous material once its size has exceeded 

the Domain of macroscopic effects.   However whilst the continuum approach is effective 

for modelling fluid flow through homogenous media (either isotropic or anisotropic) studies 

have shown that the definition of an REV for a heterogeneous porous sample is a complex 

process and the size of the REV may not be suitable for all transport characteristics within 

the same porous sample (Brown et al., 2000). The  main benefits of employing this method 

for flow simulations through porous media include the associated simulation speed up time 

and reduced storage requirements, both due to the fact that an intricate meshing procedure 

is not required to represent the complex model void space. However detailed analysis and 

visualisations of the flow path streamlines within the pore structure are not accessible and 

the study is restricted to modelling the global flow behaviour within the porous media.  
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Figure 6.5.1 Definition of REV for porous media, (Bear, 1988), (Ghanbarian et al., 2013) 

 

6.5.2 Direct Numerical Simulation at pore level 

In situations where the flow velocities and the flow path vector distribution within the porous 

medium is required to be determined, direct numerical simulations (DNS) are performed. 

The solid phase skeleton is accurately represented in the domain and the Navier-Stokes 

equations(or Stokes equations for capillary flow) are discretised and solved directly using a 

particular numerical scheme on a mesh representing the pore space (Siena et al., 2015). Then, 

using this technique the Darcy or Darcy-Forcheimer laws do not need to be incorporated into 

the governing fluid flow equations.  

One of the primary difficulties with this technique is the accurate representation of the solid 

skeleton. Recently high resolution imaging methods such as X-ray computed micro-

tomography and other non-destructive imaging methods have been used to develop 

computational models of the porous structure which can then be incorporated into the 

numerical CFD models (Soulaine, [unpublished]).Additionally there are some challenges 

associated with representing geometries at varying length scales (multiscale analysis), for 

example the detailed representation of the voids between individual concrete Tetrapod units 

may not be possible if modelling an extended stretch of coast line. Therefore DNS methods 

are typically restricted to monoscale numerical simulations. With increasing computational 

power and storage capacity DNS methods are being employed more frequently.  In this study 

the DNS method is employed.  

Additionally, because the void spaces are relatively large within the porous structures 

adopted in this study, and the flow of fluid through the interstices is dominated by the force 

of the impact of the wave on the porous structure, the effects of capillarity are negligible in 

comparison to the gravity dominated flow forces. Nevertheless, air-water and water-solid 

REV growth 
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contact angles specifications are incorporated into the model in the boundary conditions for 

each phase but these effects are not influential when compared to the effects of advective 

flow. The effects of surface tension is important in these models as the oscillatory behaviour 

of the pulsating air void bubble is central to this study. Thus the surface tension value is 

specified within the theromphysicalProperties in the file contained within the 

project constant directory. The value of the air-water surface tension is set to 0.07 Nm-1.             
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Chapter 7 

3 Dimensional porous model simulation setup 

For this phase of the study a number of porous geometries were generated and incorporated 

into the OpenFOAM CFD model. The structures are defined within the simulation domain 

such that they are located in path of the collapsing water column. The different porous 

morphologies and the algorithmic methods employed to generate them are first described. 

The constituent elements effecting the porous geometries allow the porous structures to be 

broadly classified as spherical or fibrous in composition. Furthermore these porous 

structures are modified to assess the influence of constituent element scale and global 

structural porosity on the flow field. The process of incorporating the porous structures into 

the CFD simulation software is then explained. The technique by how the computational 

grid is locally refined to in order that the porous structure can be accurately represented is 

discussed. A description of the OpenFOAM native mesh generating utility snappyHexMesh 

which is used for the creation of 3D meshes around irregular topologies is presented.  Finally 

some statistics for the various porous morphologies are tabulated.  

 

7.1 Sphere packing models 

In order to isolate and establish the exclusive influence of the various porous morphology 

characteristics; surface area, porosity, tortuosity, permeability, etc. on the wave impact 

pressure signal a range of porous structures for which the elemental unit component was a 

sphere has been created. The porous structures were generated using a short LISP file run in 

the CAD software package AutoCAD Mechanical. The geometries were then converted, 

exported and saved as stereolithographic (.stl) files. Each of these porous structures have 

mono-sized spheres arranged on distinct regular geometric lattices. For each lattice layout 

the influence of a range of sphere size is examined for both the initial fluid surging wave 

impact and the subsequent oscillating pressure wave signal observed as a plunging jet is 

formed. This study is restricted to three different regular lattice layouts; simple cubic packing 
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having a theoretical porosity of 0.476, simple hexagonal packing with a porosity of 0.395 

and rhombohedral packing with a porosity of 0.26. These packing systems encompass the 

range of minimum to maximum porosities for non-random packing systems on regular lattice 

layouts. The following subsections describe these packing systems.   

 

7.1.1 Simple cubic packing  

This spherical based structure consists of a mono-sized, close packed sphere-swarm arranged 

on a cubic lattice layout. With the exception of the outermost spheres on the boundary of the 

lattice (and assuming that there is a minimum of 27 spheres composing the structure), each 

sphere is in direct contact with its 6 neighbours. This sphere packing arrangement is known 

as simple cubic packing (see Figure 7.1.1). The porosity of this geometrical arrangement is 

0.476, where porosity is defined in Section 6.1. Assuming the bounding box enclosing the 

lattice structure maintains a fixed volume and the spheres are tightly packed, then the poros-

ity of the assembly is constant for any range of component sphere size. Thus, due to the 

regular composition of the structure the porosity is maintained with a value of 0.476 for all 

simulations with the elemental spheres in a simple cubic packing system. This is obvious 

from Figure 7.1.1. This allows one to investigate the influence of grain size on the flow field 

while maintaining the structure’s overall porosity at a constant value. Furthermore, the tor-

tuosity of the structure which is an inherent characteristic of the porous media and deter-

mined by its geometrical composition also retains a constant value irrespective of the defi-

nition of tortuosity adopted. If geometric tortuosity is assumed the value of tortuosity is 

simply 𝜏 =
𝐿𝑒

𝐿
= 1. If hydraulic tortuosity is employed then it can be easily shown mathe-

matically that the tortuosity varies from a minimum value of 𝜏 = 1.0 to a maximum value 

of tortuosity  𝜏 = 1.57 (irrespective of the elemental sphere diameter), assuming the flow 

streamline remains within the x-y plane of the fluid flow direction and  is coincident with 

the sphere surfaces (see Figure 7.1.2). 

 

    (a)                     (b)          (c)                      (d) 

Figure 7.1.1 Simple cubic packing arrangement 

x 

y 

z 

Flow 

direction 
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However, as the size of the constituent spheres which composes the overall structure is var-

ied, then the specific surface area is also altered. For example; for a given bounding volume 

the specific surface area of spheres fitting into that volume will double if the radii of the 

spheres are halved (assuming cubic packing). The recursive volumetric subdivision of the 

spheres in this manner results in an octant style decomposition of the cubic lattice grid, See 

for example Figure 7.1.1. Thus one can derive some inferences relating the specific surface 

area of the structure to the wave impact pressure signal attenuation by modifying the com-

ponent sphere size. 

In Figure 7.1.1(a) above the radius of the sphere is 50 mm and is enclosed in a cuboid of side 

100 mm. In Figure 7.1.1 (b) the cuboid volume is subdivided into 8 sub-volumes with each 

sub-volume enclosing a sphere.  The 8 spheres each have a radius of 25mm. Their combined 

total surface area of the 8 spheres is twice that of the single sphere enclosed within the same 

volumetric space. Thus the surface area doubles for each halving of the diameter of the com-

ponent spheres. This process of recursive volume subdivision and sphere generation with 

progressive radius halving can be repeated to create the specific surface area values in Table 

7.1.1. Geometries consisting of additional, intermediate sphere diameters were also gener-

ated to ensure a representative data set of sphere geometries and their influence on the flow 

field was analysed. Specific surface area is defined in Section 6.3.  

                    

            (a)             (b) 

Figure 7.1.2 Simple cubic packing void structure (a) Pore structure for fluid flow path traversing                   

simple cubic packing porous media. (b) Pore structure of single vugg within porous media 
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Simple cubic packing structure characteristics* 

Sphere 

diameter 
25mm 18.75mm** 12.5 mm 9.375 mm** 6.25 mm 3.125 mm 

Porosity 47.64 % 47.67% 47.64 % 47.64 % 47.64 % 47.64 % 

# of spheres 64 ~145 512 ~1288 4,096 32,768 

Surface area 

[mm2] 
125,662 194,471  251,279 355,553 502,558 1,005,116 

Specific 

surface area 

[mm-1] 

0.1257  0.1945 0.2513 0.3556 0.5026 1.0051 

Coordination 

number 
6 6 6 6 6 6 

In-plane 

(analytic) 

Tortuosity 

min max min max min max min max min max min max 

1 1.57 1 1.57 1 1.57 1 1.57 1 1.57 1 1.57 

* Values calculated assuming spheres packed into cube of side 100mm 

**Number of spheres approximate as fractional proportion of spheres considered 

Table 7.1.1 Simple cubic packed spheres porous structure characteristics 

 

7.1.2 Orthorhombic packing (simple hexagonal packing) 

The next sphere packing system which was generated was the orthorhombic packing system. 

The porosity of this topology is 0.395. This packing system is slightly more complex than 

the simple cubic packing assembly. Each alternate layer of spheres is displaced by one radial 

length in one orthogonal spatial direction only. Thus from Figure 7.1.3(a) we can see that 

layer B is displaced by a distance r in direction y, however the spheres are not displaced in 

direction x. This allows the spheres to settle into the void space created by the spheres below, 

i.e. there is also displacement of layer B in the z direction. This is a more stable packing 

system than the simple cubic packing as each sphere has two support points beneath its centre 

of mass position. Furthermore, in this packing system each component sphere is in contact 

with 8 surrounding spheres, the structure has a coordination number of 8. When this porous 

morphology is incorporated into the CFD model the impact pressure signal will vary 

depending on whether the flow front impacts in direction x or in direction y as the interfacial 

surface impact area is has a distinct value for each direction. Furthermore, the permeability 

of this structure is also influenced by the orientation of the porous assembly as the void 

structure is direction dependent as shown on Figure 7.1.3(c) and Figure 7.3.1(d). In this case 

the total surface area of the porous structure does not double as the sphere diameter is halved. 

This is because each alternate layer (layer B in Figure 7.1.3) packet into the 100mm cubic 

bounding box now contributes additional surface area from the face of the truncated spheres. 
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An excellent analysis of sphere packing systems with emphasis on the topological 

characterisations is given by Graton and Fraser (1935). 

                                           
               (a) Sphere packing system  (b) Geometry of single vuggular void  

       
(c) Void structure in orientation x                 (d) void structure in orientation y 

Figure 7.1.3 Orthorhombic packing arrangement and void geometry 

 

Orthorhombic packing structure characteristics 

Sphere  

Diameter 
25mm 18.75mm 12.5 mm 9.375 mm 6.25 mm 

Porosity 39.5 % 39.5 % 39.5 % 39.5 % 39.5 % 

# of spheres  

(equivalent) 
~74 ~197 ~595 ~1519 ~4,758 

Surface area 
[mm2] 

163,644 216,685 306,056 419,332 592,884 

Specific  

surface area 
[mm-1] 

0.1636  0.2167 0.3061  0.4193 0.5929  

Coordination  

number 
8 8 8 8 8 

In-plane  

(analytic) 
Tortuosity 

min max min max min max min max min max 

1 1.57 1 1.57 1 1.57 1 1.57 1 1.57 

 

Table 7.1.2 Orthorhombic packed spheres porous structure characteristics 

 

Direction x Direction z 
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7.1.3 Rhombohedral packing (close hexagonal packing) 

The final sphere packing porous morphology assembly considered is that of a rhombohedral 

packing system. This is the densest packing system available for spheres on a regular lattice 

layout. The porosity of this structure is 0.26, i.e. 74% of the bulk volume is occupied by the 

solid phase. This is the most stable packing system considered. To create this morphology 

each alternate layer in the z direction is displace by a distance of r in both the x and y planes. 

This allows the spheres in every other layer to nestle between 4 spheres in the layer below, 

i.e. each sphere has 4 support point beneath its centre of mass thus making it the most stable 

packing system. Additionally each internal sphere is in contact with 4 spheres within its own 

layer and 4 in the layer above, in total each sphere contacts with 12 other spheres, yielding 

a coordination number of 12 for this packing system. Unlike the previous orthorhombic 

packing system the void geometry is not direction dependent in the rhombohedral system, 

therefore wave impact on either the 0,y,z plane or the x,0,z plane will yield the same pressure 

signal results. 

 

                   
Figure 7.1.4 Rhombohedral packing arrangement and void geometry 
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Rhombohedral Packing 

Sphere 

diameter 
25mm 18.75 mm 12.5 mm 9.375 mm 6.25 mm 

Porosity 26.0 % 26.0 % 26.0 % 26.0 % 26.0 % 

# of spheres 

(equivalent) 
~90 ~257 ~724 ~1908 ~5789 

Surface area 

[mm2] 
215,599 283,826 374,12 526,779 750,624 

Specific  

surface area 

[mm-1] 

0.2156  0.2839 0.3741 0.5268 0.7506 

Coordination 

number 
12 12 12 12 12 

In-plane  

(analytic) 
Tortuosity 

 

min max min max min max min max min max 

1 1.57 1 1.57 1 1.57 1 1.57 1 1.57 

Table 7.1.3 Rhombohedral packed spheres porous structure characteristics 

 

7.2 Stochastic fibrous morphology 

The fibrous porous structure is generated from a Voronoi tessellation diagram. This is a 

method of partitioning a plane into a subset of polygonal cells wherein each cell has a seed 

point. The lines bounding each cell are equidistant between the points of neighbouring cells. 

Figure 7.2.3 shows a Voronoi diagram. The seed points used to define the vuggular voids are 

generated randomly in three dimensional space. Then a three dimensional Voronoi diagram 

is constructed through the implementation of Fortune’s Algorithm. This generates the tubular 

elements which define the fibrous structure. Section 7.2.1 describe the procedural stages of 

Fortune’s Algorithm. The method is first described in a simplified two dimensional domain 

and then the algorithmic method is extrapolated to three dimensional space is explained. 

 

7.2.1 Fortune’s Algorithm 

Fortune’s Algorithm employs a sweep line approach wherein a straight line (often called the 

sweep line) advances through a two dimensional bounded domain containing a number of 

random points or sites. The algorithm generates parabolic locus curves with each site as the 

focal position and the sweep line acting as the directrix.  This is shown in Figure 7.2.1. As 

the sweep line traverses the domain, the algorithm processes the random sites and a series of 

parabolas are constructed behind the sweep line (Figure 7.2.2(a)). The portions of these in-



 

99 

 

tersecting parabolic curves which are closest to the sweep line form the beach line. The in-

tersection point of two parabolas is termed a break point as shown on Figure 7.2.2(b). These 

dynamic break points follow the parabola intersections as the sweep line traverses the do-

main. As the parabolas grow due to the sweep line moving through the domain then the 

position of the break points also change and they traces out lines which are equidistant be-

tween two focal points (the original stochastically generated sites). This delineates the edges 

of a tessellated pattern. Where three edges or more intersect a tile vertex is formed. The 

distribution edges and vertices define the individual tessellations which taken together com-

pose the overall Voronoi network. An example is shown in Figure 7.2.3.  

 

Figure 7.2.1 Parabola construction 

 

                               

(a) Sweep line and parabolic arcs      (b) Beach line and break points 

                             

(c) Formation of Voronoi Tessellation edges              (d) Formation of tessellation vertices 

Figure 7.2.2 Voronoi Diagram construction 

 

Directrix (sweep line) 

 

Locus line 

forming 

parabolic curve 

 

Focal 
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Figure 7.2.3 Voronoi tessellation diagram (Feick and Boots, 2005)  

 

A similar approach can be employed to create tessellated volumetric surfaces in three di-

mensional space. In this case the sites are stochastically distributed within a three dimen-

sional bounding box. The sites form the focal points for paraboloid surfaces. The directrix 

is now defined by a planar surface which sweeps through the bounding box. The intersec-

tions of the paraboloid surfaces trace out lines which in turn describe planar facets as the 

directrix moves through the domain and the paraboloid surfaces grow, this is shown on Fig-

ure 7.2.4. The edges of these planar facet surfaces can be now be specified as the longitudinal 

axes for the filaments which form the fibrous porous structure.  

This approach can also be used to generate a fragmented, granular porous media with some 

additional steps incorporated into the algorithm.  Each planar surface generated by the inter-

secting paraboloid surface is common to two component granule fragments, i.e. the structure 

as a whole is comparable to a fully consolidated conglomerate assembly with zero porosity. 

By creating 2 new planes offset each side of the original plane and extending (or truncating) 

these new planes as required, the surface facets of polyhedral non-contacting individual 

granules are created with interstitial planer spaces around each grain. By varying the number 

of sites or by varying the offset distance the porosity of the medium can be controlled.   
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Figure 7.2.4 generation of 3 dimensional Voronoi structure 

 

7.2.2 Fibrous media geometries 

An initial tubular solid model composed of 0.82 mm diameter filaments with high porosity 

of 0.975 (see Figure 7.2.5) was developed from a 3 dimensional Voronoi based structure as 

described in Section 7.2.1. The structure was imported into a CAD software package 

(SOLIDWORKS) for processing. Within the CAD software the model was first copied. The 

copy was then rotated through 90, 180 or 270 degrees about either the x, y or z axis. The 

copied structure was then superimposed upon the original. A Boolean union operation was 

then carried out in the CAD software which created a single assembly from the original and 

the copied structure with slightly less than twice the original density. This process could be 

recursively repeated to achieve an approximate porosity halving operation. Alternatively if 

a full density doubling operation was not required the original low density structure could 

be incorporated into the model to yield a slight decrease in porosity. Using this method a 

range of porous fibrous structures were constructed with a range of densities. Some of these 

structures are shown in Figure 7.2.5 and the properties are tabulated on Table 7.2.1. It was 

found that using the density doubling method outlined above the maximum density (or in-

versely, the minimum porosity) achievable was a 15.692% solid fibrous structure due to 

computational limitations on the file size and the practicalities of working with extremely 

large complex geometric data files. 

Focal points 

Directrix 

Plane 

Paraboloid 

surfaces 

Surface facet 
Bounding 

volumetric box 

Facet edge 
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          97.527 % porous                       95.197 % porous                94.442 % porous 

         

92.154 % porous    84.308 % porous 

    Figure 7.2.5 Fibrous geometries of varying porosity 

 

Because of the stochastic nature of the fibrous structure the parameterisation of the 

morphology is not as straightforward as the regular sphere-lattice structures. For example 

the coordination number and the number of component filament elements comprising the 

assembly are extremely complex parameters to ascertain, especially as the density of the 

structure increases (see 84.308 % porous structure in Figure 7.2.5). Instead, we use the 

number of edges, vertices and faces comprising the .stl file mesh from which the fibrous 

structure is generated. This process is described in Section 7.4.1. Also, the total length of the 

edges and the average length of the edges can be extracted from the .stl file using the mesh 

editing and rendering software MeshLab. It should be noted that the total and the average 

length of the edges extracted from MeshLab is not the same value as the total and average 

length the filaments comprising the fibrous structure. In Figure 7.2.6 the triangulated .stl 

mesh is shown and this contrast is highlighted. The topological .stl file is further discussed 

in Section 7.4.1 As the density of the fibrous structures increases the number of filament 

intersections will correspondingly increase thus reducing the individual filament lengths and 

the corollary .stl file edge lengths. This allows us to use the average edge length in 

conjunction with the number of edges as a parameter to describe the complexity of the 

fibrous media.   
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Figure 7.2.6 Filament length and .stl file mesh edge lengths 

 

Table 7.2.1 Fibrous structure characteristics 

 

 

 

Fibrous Geometries 

Filament 

Radius 
0.41 mm 0.41 mm 0.41 mm 0.41 mm 0.41 mm 

Porosity 97.527 % 95.197 94.442 % 92.154% 84.308% 

Surface area 115,656mm2 218,969mm2 246,597mm2 329,511mm2 659,022 mm2 

Specific surface 

area 
0.1157  

mm-1 
0.2180   
mm-1 

0.2466 
mm-1 

0.3295 
mm-1 

0.6590 
mm-1 

# vertices 163,618 441,539 1,591,788 2,570,355 5,140,712 

# edges 511,026 1,381,305 4,842,503 7,813,266 15,626,539 

#faces 340,684 920,870 3,225,334 5,208,790 10,417,584 

Total .stl file 

edge length 

2,393,515 

mm 

4,745,531 

mm 

15,911,406   

mm 

21,681,842 

mm 

43,364,336  

mm 

Average edge 

length 

4.684      

mm 

3.436      

mm 

3.286           

mm  

2.775 

mm 

2.775       

mm 

Geometric 

Tortuosity 
1 1 1 1 1 

Triangulated mesh 

edge lengths 
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7.3 Simulation Geometry 

The simulation set-up follows a similar procedure as detailed in Chapter 4 and also as pre-

sented in (Mayon et al., 2016). The main modification to the earlier studies is that the domain 

has been extended to three dimensions. The extension to three dimensions is necessary to 

account for the variation in the porous structure in the z direction (i.e. in the depth of the 

simulation domain). The simulation geometry is in the configuration of a dam break flow 

test case as shown on Figure 7.3.1 below. The numerical wave tank length is increased to 

0.4m long and maintained at 0.2m high. The depth of the domain in the third dimension (z 

direction) is set to 0.1m. The tank contains a water column at the left hand side with the 

earlier simulation dimensions of width 0.05715m, height 0.0114m maintained. For this three 

dimensional study the depth of the water column (z direction) is set to 0.1m. A no-slip bound-

ary condition is prescribed at the tank base and at vertical walls at x = 0, z = 0 and z = 0.1. 

As the top of the tank is considered to be open to the atmosphere, the inflow and outflow of 

fluid is permitted across this boundary. Thus, at this surface a combination of boundary con-

ditions are specified for the pressure and velocity terms of the fluid flow governing equations 

to model inflow and outflow behaviour whilst maintaining the PIMPLE algorithm stability. 

The numerical value of the fixedValue boundary condition is set to atmospheric pres-

sure conditions (101 kPa) across the surface which represents the top of the numerical tank. 

The porous morphologies were incorporated into the model at the right hand side of the 

domain. There is a 1 mm gap between the bed of the tank and the base of the porous struc-

tures, was to facilitate the meshing operation as discussed later in this chapter. Additionally 

at the right hand side surface (at x = 0.4) the boundary condition applied permits the outflow 

of fluid from the domain. This allows both fluid phases to pass freely through the porous 

structure. The pressure signals are sampled at mid height the face of the bottom sphere form-

ing the porous matrix indicated by point P1 on Figure 7.3.1, and also at a point on the face 

of the fibrous structures close to the bed of the numerical tank.  It should be noted that as the 

constituent sphere sizes reduce, the height of point P1 above the base of the numerical tank 

will reduce correspondingly.  
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Figure 7.3.1 Section through simulation setup (sphere diameter 12.5mm) 

 

7.4 Incorporation of Porous models into simulation domain 

Studies conducted in the early phase of this research established that the OpenFOAM mesh 

grid discretisation size of 1 millimetre square was sufficiently high resolution to accurately 

represent the free surface flow, to capture the initial fluid flow impact pressures and also to 

capture the subsequent high frequency oscillatory pressures. Therefore this 1 mm grid 

resolution was adopted for the 3 dimensional simulations with fluid flow impact at the 

porous structure.  The   

 

7.4.1 .stl file generation 

The porous structures generated using the CAD software are saved in a text based 

stereolithographic (.stl) file format. This .stl file type contains the minimum amount of 

information necessary to describe the three dimensional morphology of the structure. All 

geometrical metadata such as material properties, texture, colour etc. are omitted from the 

.stl file. A high resolution is necessary to represent the surface curvature of the porous 

structure. In order to generate an accurate model of the high density fibrous media extremely 

large .stl files were required (>20 GB). The .stl conversion proceeds by generating an 

unstructured triangulated mesh to represent the surface of the object. The resolution of this 

mesh determines how accurately the .stl file captures the surface curvature. The .stl file saves 

the coordinates of each of the three vertices of each triangular tessellation. In addition, a unit 

facet normal is also saved for each tessellation. The normal, together with the vertex 

coordinates allows the orientation and location of each facet to be determined. An excerpt 

from a .stl file is shown on Figure 7.4.1. 

P1 
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Figure 7.4.1 Sample excerpt from .stl file 

 

7.4.2 Computational domain meshing procedure 

The meshing technique initially proceeds in the same manner as described in Chapter 4. The 

OpenFOAM blockMesh utility is first invoked to generate a uniform hexahedral 1 

millimetre grid in three dimensions throughout the domain (dimensions 400mm X 300mm 

X 100mm) at this point there are 12,000,000 grid cells. Thereafter a localised mesh 

refinement is performed in the region which is to be occupied by the porous media as shown 

on Figure 7.4.2. By creating this localised higher resolution region, the final stage of meshing 

the void space in the porous geometry is less computationally demanding. The OpenFOAM 

surfaceFeatureExtract tool is run to detect and extract the tessellation triangle edges 

from the .stl file. An .emesh file consisting a set of points which are the coordinates of the 

ends of the tessellated edges and which are on the surface of the porous geometry is created. 

This data stored in this file allows the snappyHexMesh utility to snap to points on the 

surface of the porous structure. 

 

 

 

solid fibrous 

facet normal 0.268828 0.607833 0.747175 

outer loop 

vertex 0.31491 0.0288832 0.000819512 

vertex 0.314884 0.0288985 0.000816383 

vertex 0.314804 0.0288599 0.000876717 

endloop 

endfacet 

 

facet normal -0.308322 -0.649325 -0.695208 

outer loop 

vertex 0.314758 0.028235 0.00033889 

vertex 0.314718 0.0283192 0.00027813 

vertex 0.315273 0.028065 0.000269249 

endloop 

endfacet 

 

facet normal 0.125861 0.256593 -0.958289 

outer loop 

vertex 0.314763 0.0288403 0.000196822 

vertex 0.314797 0.0288565 0.000205644 

vertex 0.31507 0.0285419 0.000157304 

endloop 

endfacet 

endsolid fibrous  
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7.4.3 Local grid refinement 

Because the 1 millimetre grid discretisation scheme was too coarse to accurately represent 

the curvature of either the small diameter sphere’s surface or the surface of the fibrous 

filaments when the .stl file was imported into the simulation domain, a localised grid 

refinement was performed in the region which the porous morphologies were to be located 

as show on Figure 7.4.2. A comparison between the CAD file geometry statistics and the .stl 

file statistics is presented on Table 7.4.1. 

 

 

Figure 7.4.2 Localised grid refinement 

 

The local refinement was performed by first employing the topoSet tool to generate a cell 

set topology for the region where the cell splitting procedure was to be performed. Thereafter 

the refineMesh utility was called. By default this utility splits the cells in half in each 

direction; then in two dimensions each cell is quartered and in 3 dimensions each cell is 

divided into eight. Then, in the region wherein the porous structure is to be located the 

hexahedral mesh is reduced from a 1mm grid to a 0.5mm grid. As adaptive time stepping 

has been has been specified in the controlDict file then the CFL condition is enforced 

through the programme controlled reduction in time step length. Then, the flow of fluid from 

grid cell to grid cell in this locally refined region will regulate the time step duration for the 

entire simulation domain.   

At this stage of the meshing process the grid cell count was 19,000,000 with no 

representation of the porous morphology yet defined in the simulation domain. However, by 

employing the OpenFOAM snappyHexMesh utility the porous structure could now be 

imported from the .stl file and by specifying additional levels of mesh castellation in the 

snappyHexMesh the surface curvature is more accurately represented as shown in Figure 

7.4.3. This process is described in Section 7.4.4.  

Refined mesh 

region of porous 

media 

Water 

column 
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A comparison between the surface areas and porosities for the cubic packed sphere 

geometries derived from CAD file geometries with the surface areas and porosities for the 

same structures after they have been converted to .stl files is displayed on Table 7.4.1. It is 

shown that there is little discrepancy in these attributes before and after conversion to .stl 

format. By specifying a high level of resolution conversion at all stages of the mesh pre-

processing we ensure the accuracy of the mesh geometry.   In some cases the surface area 

differences are positive and in others the areas differences are negative; those porous 

geometries which fitted exactly into the 100mm domain width (i.e. the 25mm, 12.5mm, 

6.25mm and 3.125mm diameter sphere structures) all exhibit an increase in surface area after 

conversion to .stl format. The outermost layer in those other sphere structures (18.75 and 

9.375mm diameter spheres) were required to be truncated to fit within the 100mm domain. 

Thus the surface area in those geometries was slightly less after the truncation of the 

outermost spheres to fit within the 100mm domain depth. This is reflected in the reduced 

surface areas for these .stl files.  

 

 

     

(a) Before local refinement                                   (b) After refinement                                  

Figure 7.4.3 Spheres representation (a) before and (b) after localised 

 grid refinement and specification of mesh castellation 

 

Sphere packing 

system 

Geometric results  

from CAD file   

Results from                  

.stl file structure 

% difference 

Surface area porosity Surface area porosity Surface area porosity 

Cubic 25 mm 125,662 47.67% 123,855 49.1% -1.44 % +3.00% 

Cubic 18.75 mm 194,471 47.67% 195,011 47.8% +0.3% +0.27% 

Cubic 12.5 mm 251,279 47.67% 247,746 49.1% -1.41 % +3.00% 

Cubic 9.375 mm 355,553 47.67% 357,418 46.2%  +0.52 % -3.1% 

Cubic 6.25 mm 502,558 47.67% 500,481 49.1% -0.41% +3.00% 

Cubic 3.125 mm 1,005,116 47.67% 1,001,052 49.1 % -0.4% +3.00% 

Table 7.4.1 Comparison between geometric cubic packed sphere statistics and .stl file cu-

bic packed sphere structures   
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7.4.4 OpenFOAM SnappyHexMesh utility 

The final stage in generating the mesh which represents the interstitial void space between 

the solid phase of the porous media and consequently the surfaces of the elemental solids 

forming the structure is implemented by invoking the snappyHexMesh utility. There are 

a number of distinct steps which are completed in a procedural manner when running the 

snappyHexMesh utility. Firstly, a cell splitting or castellation process is performed on 

those cells which cross an edge of the porous structure as defined in the .emesh file. The user 

can define the number recursive cell splitting operations. A higher level of castellation will 

represent the surface of the solid more smoothly but at an additional computational cost, 

both in terms of algorithm runtime and storage requirements. The next step in the procedure 

removes all those cells with 50% or more of their volume falling within the solid phase 

region of the porous morphology. Finally the vertices of castellated cells which remain are 

snapped to the points representing the surface geometry in the .emesh file.  Additional tasks 

can also be performed such as adding high resolution mesh layers to resolve turbulent 

boundary layers etc., however these steps were not employed for this study. It should also 

be noted that due to the high computational cost the meshing procedure was parallelised to 

run on the Iridis High performance computing (HPC) facility employing 64 cores on duel 

2.6GHz Intel Xeon E5-2607 Sandybridge processors.  

 

7.4.5 Volumetric accuracy check for generated porous structures 

Subsequent to the mesh generation, the OpenFOAM checkMesh utility was invoked to 

determine the accuracy of the mesh in terms of the representation of the porous structure. 

The output from the checkMesh command is shown below in Figure 7.4.4 for the 25 mm 

diameter spheres in cubic packing configuration. There are 11,696,299 grid cells with a total 

volume of 7.537267×10-3 m3. The majority of these cells are hexahedral with a small few 

polyhedral cells. From the checkMesh output we can determine that the bounding mesh 

box is 0.401m×0.201m×0.1m. This gives a total volume of 8.0601×10-3 m3. By subtracting 

the grid cells total volume from this figure we can determine the volume of the solid spheres.  

In this case the solid porous volume is computed to be 5.228×10-4 m3. According to the 

theoretical porosity value this figure should be 5.24 × 10-4 m3. Then, in the course of 

generating these structures, converting them to a .stl file, importing and meshing in 

OpenFOAM the porosity has been increased from 47.6% to 47.7%. Therefore the procedure 

of generating the porous structures is very accurate. 
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/*-------------------------------------------------------------------

--------*\ 

| =========                 |                                                 

| 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           

| 

|  \\    /   O peration     | Version:  2.3.0                                 

| 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      

| 

|    \\/     M anipulation  |                                                 

| 

\*-------------------------------------------------------------------

--------*/ 

Build  : 2.3.0-f5222ca19ce6 

Exec   : checkMesh 

Date   : Oct 05 2017 

Time   : 12:07:32 

Host   : "robbie-HP-ENVY-17-Notebook-PC" 

PID    : 14319 

Case   : /media/robbie/new_8_tera_byte/cubic/diam_25 

nProcs : 1 

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE). 

fileModificationChecking : Monitoring run-time modified files using 

timeStampMaster 

allowSystemOperations : Disallowing user-supplied system call opera-

tions 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * // 

Create time 

 

Create polyMesh for time = 0 

 

Time = 0 

 

Mesh stats 

    points:           12292916 

    faces:            35690500 

    internal faces:   34550594 

    cells:            11696299 

    faces per cell:   6.005412 

    boundary patches: 6 

    point zones:      0 

    face zones:       0 

    cell zones:       0 

 

Overall number of cells of each type: 

    hexahedra:     11675099 

    prisms:        0 

    wedges:        0 

    pyramids:      0 

    tet wedges:    0 

    tetrahedra:    0 

    polyhedra:     21200 

    Breakdown of polyhedra by number of faces: 

        faces   number of cells 

            6   100 

            9   21100 
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Checking topology... 

    Boundary definition OK. 

    Cell to face addressing OK. 

    Point usage OK. 

    Upper triangular ordering OK. 

    Face vertices OK. 

    Number of regions: 1 (OK). 

 

Checking patch topology for multiply connected surfaces... 

                   Patch    Faces   Points                  Surface 

topology 

                leftWall    20100    20402  ok (non-closed singly 

connected) 

               rightWall    51600    52107  ok (non-closed singly 

connected) 

               lowerWall    70876    71872  ok (non-closed singly 

connected) 

        frontandbackWall   225838   228026  ok (non-closed singly 

connected) 

              atmosphere    40100    40602  ok (non-closed singly 

connected) 

                  sphere   731392   732080  ok (non-closed singly 

connected) 

 

Checking geometry... 

    Overall domain bounding box (0 0 0) (0.401 0.201 0.1) 

    Mesh (non-empty, non-wedge) directions (1 1 1) 

    Mesh (non-empty) directions (1 1 1) 

    Boundary openness (6.036057e-16 1.950649e-14 -7.807386e-17) OK. 

    Max cell openness = 3.182515e-16 OK. 

    Max aspect ratio = 2.636031 OK. 

    Minimum face area = 7.52608e-08. Maximum face area = 1.00035e-06.  

Face area magnitudes OK. 

    Min volume = 3.335611e-11. Max volume = 1.00036e-09.  Total vol-

ume = 0.007537267.  Cell volumes OK. 

    Mesh non-orthogonality Max: 26.54876 average: 2.316205 

    Non-orthogonality check OK. 

    Face pyramids OK. 

    Max skewness = 1.515656 OK. 

    Coupled point location match (average 0) OK. 

 

Mesh OK. 

 

End 

 

Figure 7.4.4 OpenFOAM checkMesh utility output 
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Chapter 8 

3 Dimensional simulation wave impact at 

porous structure results  

The results from the 3 dimensional wave impact simulations at the porous structures are 

presented. To begin with the sphere based porous structure simulation results are examined 

followed by the results from the fibrous porous structure analysis. Extensive commentary is 

given on the cubic packing sphere structure results. The simulation results for the 

orthorhombic packed spheres, rhombohedral packed spheres and the fibrous porous structure 

is presented in tabular and in graphical format.    

 

8.1 Simple cubic packing sphere lattice  

The results from the simple cubic packing sphere lattice simulations will be investigated in 

detail in Section 8.1. The results from the orthorhombic and rhombohedral sphere packed 

structures will be presented and the main simulation results tabulated in Sections 8.2 and 8.3 

respectively.   The results from the simple cubic packed sphere simulations are summarised 

in Table 8.1.1 below. The main simulation outputs considered for analysis are the flow profile 

and free surface evolution, the initial impact impulse values resulting from the surging flow 

front impinging on the porous structure, the physiognomies of the entrapped air bubble, the 

characteristics of the oscillatory phase of the pressure signal, the permeability of the structure 

and the tortuous nature of the flow path through the porous structure. These simulation 

output parameters are all examined in more detail in the following subsections.  

 

8.1.1 Flow profile and free surface evolution 

 

As the flow simulation progresses, the water column collapses and the flow front advances 

towards the right hand side (RHS) of the numerical tank where it impacts the porous structure 
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(Figure 8.1.1 (a)) and is forced vertically upwards through the formation of a thin jet, Figure 

8.1.1(b). This initial impact produces the first peak on the pressure history signal (see Figure 

8.1.4). The initial impact pressure peaks for each of the component sphere diameter 

simulations are shown in detail on Figure 8.1.5 (a). As the vertically formed jet collapses 

(Figure 8.1.1 (c)) it produces a plunging breaker type wave which converges with the fluid 

below, at this time instant an air bubble is entrapped by the flow. For the 3.125mm diameter 

cubic packed sphere structure this occurs at t = 0.515 seconds (Figure 8.1.1(d)) and yields 

the first oscillatory cycle local maximum pressure for each respective simulation as shown 

on Figure 8.1.6. 
 

     

     (a) simulation time = 0.208 sec              (b) simulation time = 0.276 sec  

           

           (c) Simulation time = 0.450 sec              (d) Simulation time = 0.515 sec 

Figure 8.1.1 F function (phase volume) representation at porous structure  

(component sphere diameter 3.125mm) 

 

Figure 8.1.2 (a-f) displays slices through each of the cubic packed sphere structures showing 

the free surface flow profile at simulation time t = 0.5 sec within the porous assemblies. The 

slices are sampled at mid depth through the model domain (i.e. z = 0.05 m). 

 As the constituent spheres comprising the porous structure are progressively reduced in size 

it is found that the liquid phase experiences higher resistance to permeate through the void 

spaces. This is evidenced by the variations in gradient of the free surface when measured 

from the outflow face to the point of maximum quasi-hydrostatic pressure within the porous 

structure as also shown for 4 of the simulations on Figure 8.1.3. The higher specific surface 
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of the 3 mm diameter spheres also causes a higher vertical jet to form subsequent to the 

initial surging flow front impact. The jet rises above the porous structure and some of the 

liquid volume from the formed jet collapses on to the upper surface of the 3mm diameter 

sphere structure as shown in Figure 8.1.2 (f) and permeates downwards under the influence 

of gravity.  

        

    (a) 25 mm diameter sphere structure                 (b) 18.75 mm diameter sphere structure 

       

    (c) 12.5 mm diameter sphere structure              (d) 9.375 mm diameter sphere structure         

       

  (e) 6.25 mm diameter sphere structure          (f) 3.125 mm diameter sphere structure 

Figure 8.1.2 Free surface profiles and collapsing jet thickness  

at cubic packed porous sphere structures 

 

The effect of the sphere diameter on the free surface profile of the generated plunging breaker 

wave is also highlighted in Figure 8.1.2. The two largest diameter sphere based structures 

tend to yield plunging breaker waves with much narrower leading edges (z). Additionally, 

z

z

z
z

z

z
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the entrapped bubble which is formed subsequently to impact with these larger diameter 

sphere structures has an increased asymmetrical shape due to the rougher impact interface. 

These bubbles have a varying cross section in the z axis direction. In contrast the higher 

specific surface area of the smaller sphere structures effect a smoother surface roughness at 

the face of the porous morphology and thus a reduced frictional coefficient at the impact 

interface will result (this allows the formed jet to achieve a larger vertical amplitude for the 

progressively smaller diameter sphere structures). The plunging breaker which develops as 

the jet collapses at these small sphere porous models is more uniform through the depth of 

the domain and this leads to the creation of a more regular, cylindrical tubular shaped air 

bubble with relatively constant cross section along the z axis. 

This cylindrical bubble is bounded at each end in the z direction by the vertical simulation 

domain faces at z =0 and at z = 0.1. Section 8.1.4 discusses this effect in more detail.  The 

thickness of this plunging jet (z) as shown on Figure 8.1.2 may also influence the oscillation 

frequency and amplitude of the entrapped air bubble. This is discussed further in Section 

8.1.3. 

 
Figure 8.1.3 Quasi-hydrostatic pressure at simulation end time  

(including atmospheric pressure value) 

 

 

 

 

 

Progressively 

steeper pressure 

gradient due to 

the various free 

surface profiles 
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reducing 

structure 

permeability 
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Simple Cubic Packing Simulation Results 

Structure component  

sphere diameter 
25 mm 18.75 mm 12.5 mm 9.375 mm 6.25 mm 3.125 mm 

Impact impulse  

pressure 
1390 Pa 1660 Pa 1990 Pa 1980 Pa 2420 Pa 2840 Pa 

Max oscillatory 

pressure 
650 Pa 830 Pa 1370 Pa 2030 Pa 2180 Pa 2440 Pa 

Water outflow flow 

rate                           

(end of simulation) 

8.341e-3 

m3/sec 

5.380e-3 

m3/sec 

7.032e-3 

m3/sec 

4.397e-3 

m3/sec 

3.143e-3 

m3/sec 

2.598e-3 

mm3/sec 

Bubble Oscillation 

Frequency 
298.5 Hz 202 Hz 224Hz 175 Hz 199Hz 174Hz 

Bubble Oscillation 

Amplitude 
51 Pa 146 Pa 300 Pa 571.8 Pa 557.6 Pa 580 Pa 

Entrapped bubble  

radius  (analytic  

prediction) 

10.9 mm 16.2mm 14.6mm 18.7mm 16.4mm 18.8mm 

Simulation Bubble 

Volume 

12,284 

mm3 

48,000 

mm3 

12,190 

mm3 

40,914 

mm3 

16,423 

mm3 

16,396 

mm3 

Bubble Surface Area 
3,930 

mm2 

10,939 

mm2 

3,800 

mm2 

9,100 

mm2 

4,294 

mm2 

2,275 

mm2 

Bubble (Cylindrical) 

Length 
52 mm 100 mm 52 mm 100 mm 53 mm 54 mm 

Bubble Sphericity* 0.6551 0.8552 0.6741 0.9241 0.7227 0.8642 

Equivalent en-

trapped bubble ra-

dius  

(simulation) (c/s) 

8.67/14.3 

[mm] 

22/12.4 

[mm] 

8.64/14.2 

[mm] 

21.4/11.4 

[mm] 

9.93/15.8 

[mm] 

9.83/15.8 

[mm] 

Kinematic tortuosity  0.944 0.952 0.952 1.00 1.011 1.003 

 *using Hakon-Wadell equation (see Section 8.1.4) 

Table 8.1.1 Simple cubic packing simulation results 

 

8.1.2 Pressure response at impact interface 

Figure 8.1.4 below shows the pressure signal for each of the simulations at the various 

component sphere diameter porous structures. Also included on the figure is the pressure 

signal for a wave impact with a solid wall computed in the earlier phase of this study using 

a geometrically similar simulation setup. The solid wall impact results are also further 

discussed in Mayon et al. (2016). 

Figure 8.1.5 (a) shows the pressure response recorded as the surging flow front impacts the 

solid and porous walls. There is a slight delay in the impact time for larger spheres as the 

wave front initially hits these spheres at a level below the position of P1 (see Figure 7.3.1) 

before flowing vertically up the surface of the sphere thereby inducing a pressure increase 

at the sampling point P1. This is due to the height of P1 above the numerical tank base being 
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relative to the sphere diameter; i.e. P1 is located at the 12.5 mm above the tank base of the 

for the 25 mm diameter spheres and at 6.25 mm above the tank base for the 12.5mm diameter 

spheres. 

 

Figure 8.1.4 Cubic packed spheres pressure signal 

(atmospheric pressure has been subtracted) 

 

The porous structures composed of the larger spheres also exhibit extended impact durations, 

termed the rise time as discussed in Section 5.2.1, also see e.g. (Peregrine, 2003), (Mayon et 

al., 2016). Whilst the porosity of all the cubic packed sphere structures is identical, the void 

channels between the larger spheres are less numerous but have larger surface area openings 

in the plane  perpendicular to the direction of flow, this allows the fluid to penetrate these 

void spaces more easily than the structure with more numerous but smaller surface area 

openings. Additionally, the porous structure assemblages comprising of smaller spheres have 

an overall larger magnitude wall friction value due to their greater specific surface area. This 

higher drag force decelerates the flow more rapidly producing a sharper impulse pressure 

impact force and also reduces the permeability of the porous structure.  The result of the 

longer rise time is a softer, less impulsive impact for the larger sphere structure as shown on 

Figure 8.1.5(a). The higher flow rate through the larger sphere porous network also supports 

this assertion of reduced total drag force effect due to smaller specific surface area.   

See Figure 8.1.5(a) 

See Figure 8.1.6  
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(a) Impulse pressures 

 

(b) Max Impact Impulse Pressure Vs Sphere diameter 

Figure 8.1.5 Initial impact impulse pressure characteristics 

 

Figure 8.1.5 (b) shows the relationship between the sphere diameter and the magnitude of 

the impulse force. The magnitude of the impulse decreases monotonically as the component 

sphere diameter increases. The magnitude of the impulse pressures are presented on Table 

8.1.2. 
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Figure 8.1.6 displays a plot of the pressure signals for the various simulations as the formed 

vertical jet collapses and converges with the fluid in the bed of the domain. As the jet 

collapses a plunging breaker is formed as shown in Figure 8.1.2 for each of the porous 

simulations and a large air bubble is entrapped which compresses and dilates in a resonant 

oscillatory manner yielding the cyclic pressure response shown on Figure 8.1.4 and in detail 

on Figure 8.1.6. 

As air within a bubble is compressible, a larger bubble will resonate with a lower frequency 

as the radial distance by which it can compress and dilate is volume dependent. Additionally, 

as these larger bubbles can compress to a greater extent relative to smaller bubbles, the 

amplitude of the oscillatory signal will be greater for the larger bubbles. 

Figure 8.1.7 shows the oscillatory pressure signal for the simulation incorporating the porous 

structure composed of the 6.25 mm diameter spheres in cubic packing arrangement measured 

at point P1 in the simulation domain. The local maxima and local minima are indicated on 

the plot for oscillation cycle. Figure 8.1.8 shows the CFD simulation pressure contours at 

the corresponding times when these local maxima and minima values occur. By observing 

the time varying signal trend in Figure 8.1.8 in conjunction with Figure 8.1.7 it is clearly 

obvious that the entrapped air bubble is the source of oscillatory pressure signal. The 

contours emanating radially from the centre of the entrapped bubble exhibit increasing and 

decreasing pressure pulse behaviour in synchronicity with the cyclic pressure signal 

measured at point P1. 

A comparison of the magnitude of the pressures peaks during the initial flow front impact 

with the maximum magnitude during the first cycle of the oscillatory phase for each 

respective simulation yields some interesting observations.  These comparisons are shown 

on Table 8.1.2 below. As the porous medium component sphere size reduces the percentage 

difference between the pressure magnitude at the initial impact impulse and the pressure 

magnitude of first cycle during the pressure oscillation phase exhibits a generally 

corresponding reduction. During wave impact at a solid wall, the discrepancy is only 8%, 

however the reduction in recorded pressure is in excess of 50% with the larger component 

spheres. This shows that the detrimental effect of air entrainment and associated oscillatory 

pressures during wave impact can be controlled by modifying the morphology of the porous 

structure. By reducing the specific surface area of the porous structure (i.e. by constructing 

it from larger elemental units) a comparatively larger reduction in magnitude of the ensuing 

oscillatory pressures is obtained however this is at the expense of a higher structure 

permeability.  
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Cubic packed spheres pressure analysis 

Structure component  

sphere diameter 

25  

mm 

18.75 

mm 

12.5 

mm 

9.375 

mm 

6.25 

mm* 

3.125 

mm 

Solid  

wall 

Initial impact 

 impulse pressure 

1390  

Pa 

1660 

Pa 

1990 

Pa 

2030 

Pa 

2420 

Pa 

2840 

Pa 

4300 

Pa 

Max oscillatory 

pressure 

650 

Pa 

830 

Pa 

1370 

Pa 

1980 

Pa 

2180 

Pa 

2440 

Pa 

3950 

Pa 

% increase or  

reduction 
-53 -50 -31 -2 -10 -14 -8 

       *see Figure 8.1.7 for oscillatory pressure in-depth analysis 

 

Table 8.1.2 Comparison of initial impact pressure with maximum oscillatory pressures 

 

 

 
Figure 8.1.6 Oscillatory phase pressure signal for all  

cubic packed sphere simulations 
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              Figure 8.1.7 Oscillatory pressure signal for 6.25mm diameter spheres  

 

 

 
time t = 0.5244                    time t = 0.5270 

    
time t = 0.5294      time t = 0.5322 
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  time t = 0.5348      time t = 0.5374 

 
time t = 0.540 

Figure 8.1.8 Time varying pressure contours at bubble entrainment for  

6.25 mm diameter sphere simulation   

 

8.1.3 Pressure response frequency domain analysis 

The pressure signal data is converted from the time domain to the frequency domain by 

preforming a Fast Fourier Transform (FFT). Figure 8.1.9 shows the results of the transform 

and each of the dominant simulation signal frequencies and amplitudes are recorded in Table 

8.1.1 above. The signal frequencies are plotted against the porous structure component 

sphere diameters on Figure 8.1.10(a) and the signal amplitudes versus the sphere diameters 

on Figure 8.1.10(b).  

As discussed in Chapter 5 the pressure oscillation frequencies and amplitudes are related to 

the entrapped bubble size. As shown on Figure 8.1.10 the frequency of oscillation shows a 

generally increasing trend as the sphere diameter increases. Additionally the amplitude of 

the oscillation exhibits a decreasing trend. However, as shown in Table 8.1.1 the observed 

simulated bubble radii does not vary in a corresponding manner when compared to the 

component sphere diameter comprising the porous structure. This may be explained by a 

number of possibilities. As previously mentioned the smaller sphere based structure allows 

less fluid to penetrate. The effect of this is that more fluid will be rejected from passing 

through the face of the porous structure for these smaller sphere simulations. This in turn 

will cause a thicker jet to form where the thickness of the jet (z) is shown on Figure 8.1.2. 
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When this jet collapses it falls further away from the wall entraining a larger bubble. This 

larger bubble will have a lower pressure oscillation frequency and higher amplitude of 

pressure oscillation. Additionally, as shown on Figure 8.1.2(d) the small sphere structures 

may generate a jet which rises higher (due to a lower surface friction coefficient at the impact 

wall) and some of the fluid may overtop the structure and collapse on the top, permeating 

down through the voids thus supplying less fluid to the plunging jet. This may also result in 

a reduced thickness of the collapsing jet. The quantification of this surface friction is outside 

the scope of this study, nevertheless it is sufficient to say that that as the sphere sizes reduces, 

the surface of the porous structure which the incident wave impacts will be smoother. 

As discussed in Section 5.3.1.1 the analytic relationship between oscillation frequency of a 

bubble and its radius derived based on the axiom that the bubble is surrounded by a very 

great water volume (Minnaert, 1933). In Figure 8.1.2 it is shown that the collapsing jet 

profiles vary greatly with the thickest entraining jets forming during the simulations 

incorporating the 12.5 mm and 6.25mm diameter component sphere structures. A thicker 

entraining jet will result in a stiffer bubble wall. Consequently these bubble should resonate 

with a higher frequency and lower amplitude.   

 
Figure 8.1.9 Oscillatory pressure signal frequency domain results 
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(a) Signal frequency Vs sphere diameter           (b) Signal amplitude Vs sphere diameter 

Figure 8.1.10 Sphere diameters Vs FFT results 

 

 

8.1.4 Entrapped air bubble analysis 

The discrepancy between the observed bubble volumes, their oscillating frequency and 

amplitude and the predicted values from the Minnaert equation may be further accounted for 

by the bubbles’ shape.  Previous researchers have put forward contrasting opinions on the 

influence of sphericity on the oscillation frequency of a bubble. Strasberg (1953) states that 

the oscillation frequency of non-spherical bubbles varies only slightly from the oscillation 

frequency of spherical bubbles, however both Weston (1966) and Feuillade and Werby (1994) 

in their  studies on non-spherical bubbles (focussing on oblate and prolate spheroid shapes) 

have shown the frequency of oscillation may increase by up to 40% depending on the degree 

of non-sphericity. Thus for similar volume bubbles their shape may have a large influence 

on the observed results. Figure 8.1.11 shows that there is a large variation in the shape of the 

bubbles generated in the different simulations. Table 8.1.1 records the bubble sphericity for 

each of the simulations. This is presented as an index originally devised by Wadell (1935). 

A value of unity indicates a perfect sphere and as the value reduces from 1 the considered 

shape deviates further from sphericity. An ideal cylinder has an index value of 0.874. The 

index is calculated according to Equation 8.1 Wadell (1935) : 

 

Ψ =  
𝜋

1
3(6𝑉𝑣)

2
3

𝐴𝑣
 (8.1) 

Where Vv and  Av are the volume of the bubble and the surface area of the bubble respectively. 

The bubble shape tends towards a more uniform cross section (cylindrical) in the plane of 

the x-y axis as the component sphere size forming the porous structure reduces as shown on 

Figure 8.1.11 for the final simulation time step. In Table 8.1.1 an entry has been recorded for 

equivalent entrapped bubble radius (c/s). These values are the calculated radii of perfect 
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cylinders and spheres computed using the recorded simulation bubble volume. In the cases 

where the sphericity index calculated using equation 8.1 approaches the ideal cylinder value 

the analytic bubble radius prediction value (calculated using the Minnaert equation) in Table 

8.1.1 agrees quite well with computed equivalent cylinder radius. 

                            
(a) Entrapped Bubble geometry from                 (b) Entrapped Bubble geometry from          

25mm sphere diameter simulation                                18.75mm sphere diameter simulation 

 

                         
(a) Entrapped Bubble geometry from                (b) Entrapped Bubble geometry from 

12.5mm sphere diameter simulation                             9.375mm sphere diameter simulation 

 

 

 

               
(c) Entrapped Bubble geometry from                 (d) Bubble geometry from 

 6.25mm sphere diameter simulation                      3.125mm sphere diameter simulation 

Figure 8.1.11 Entrapped Bubble Geometries 

 

8.1.5 Pressures attenuation at impact surface and within porous sphere 

structure 

Figure 8.1.12 shows the attenuation trends for the oscillatory pressures measured at point P1 

computed from the respective simulations for the different component sphere sizes. Also 

shown on the figure is the 0% porous simulation oscillatory pressure signal (i.e. wave impact 

with the solid wall). It is clear that the pressure attenuation rate is lower for the larger 

component spheres porous geometries, indicating that a low amplitude oscillatory pressure 
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signal is temporally more persistent. The attenuation rates have been mathematically 

determined for the simulations as single term exponential decays. In order to achieve a good 

fit, a normalisation and scaling process had to be applied to the exponential decay rate input 

predictor data.  The procedure to normalise the input data required that the vector of time 

data points were centred at zero mean and scaled to unit standard deviation as shown in 

Equation 8.2 and described in MATLAB documentation (MathWorks, 2015). Example data 

for the time normalisation process to determine the exponential decay rate for the 0% porous 

simulation is shown on Table 8.1.3. By applying this normalisation technique to the input 

data, an improved accuracy exponential decay rate expression could be obtained for each of 

the oscillatory signals. This data is presented in Table 8.1.4. 

 
𝑡𝑛𝑒𝑤 =

(𝑡 − mean(t))

𝑠𝑡𝑑(𝑡)
 (8.2) 

 

 

Figure 8.1.12 oscillation decay rates for cubic sphere packed simulations 
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Normalisation process for 0% porous simulation 

 0% porous time data points (t) 0.5145 0.5201 0.5259 0.5319 0.5379 0.5439 0.55 

mean (t) 0.532 

Standard deviation (t) 0.01282 

 0% porous normalised time data 

points (tnew) 
-1.3651 -0.9282 -0.4758 -0.0078 0.4602 0.9282 1.4041 

Table 8.1.3 normalised inputs for 0% porous simulation 

 

Simple Cubic Packing oscillatory pressure attenuation rates 

Solid wall attenuation     (0% porous) 1938𝑒−0.4113𝑡𝑛𝑒𝑤 

3.125mm diameter spheres 1242𝑒−0.4107𝑡𝑛𝑒𝑤 

6.25mm diameter spheres 1373𝑒−0.3169𝑡𝑛𝑒𝑤 

9.375mm diameter spheres 1314𝑒−0.2935𝑡𝑛𝑒𝑤 

12.5mm diameter spheres 946𝑒−0.2382𝑡𝑛𝑒𝑤 

18.75 mm diameter spheres 626𝑒−0.1703𝑡𝑛𝑒𝑤 

25mm diameter spheres 393𝑒−0.2388𝑡𝑛𝑒𝑤 

Table 8.1.4 Exponential oscillatory decay rates for cubic packed sphere simulations 

 

The oscillatory pressure signal was also sampled at varying locations within the porous 

structure. It was observed that in addition to a temporal decay in the amplitude of the pressure 

signal there was also a spatial reduction in the pressure amplitude as sample point locations 

receded further away from the impact interface and deeper into the porous matrix. Figure 

8.1.13(a-d) shows spatio-temporal pressure signal attenuations within the porous media for 

four of the cubic sphere packed porous structures. As noted earlier in this section the 

oscillatory pressures attenuate more rapidly in the temporal dimension within the structures 

comprised the smaller component sphere sizes. However, as the porous structures composed 

of the smaller component spheres exhibit a higher specific surface area, a larger volume of 

fluid is trapped within the void space and this transfers the oscillatory pressures through 

these porous structure more readily and deeper into the structure. This effect is particularly 

evident in the 3.125 mm diameter component sphere structure where there is there is very 

little damping of the pressure signal within the first 30 mm (from the impact interface) of 

the porous structure.  
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(a) Spatio-temporal pressure attenuation for 25 mm diameter sphere structure 

 

(b) Spatio-temporal pressure attenuation for 12.5 mm diameter sphere structure 
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 (c) Spatio-temporal pressure attenuation for 6.25 mm diameter sphere structure 

  

 

 (d) Spatio-temporal pressure attenuation for 3.125mm diameter sphere structure 

Figure 8.1.13 Spatio-temporal pressure attenuation 

for each cubic sphere packed porous structure simulation 

 

 

8.1.6  Tortuosity 

Earlier experimental investigations on tortuosity using porous sample conductivity 

measurements  by Chen (1973) and later by Wyllie and Rose (1950) in which they focussed 

on simple cubic packed spheres have suggested tortuosity values of  1.2 and 1.6 respectively 
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for this morphology. Figure 8.1.14 shows a sampled section through the domain displaying 

the F-function at the simulation time-step when the liquid phase reaches the outflow 

boundary for three of the larger component sphere simulations. It should be noted that there 

is a 1 mm gap between the bed of the tank and the base of the spheres. This is to allow the 

porous structure to be accurately meshed. Without this gap the meshing algorithm connects 

the base of the sphere with the numerical tank base causing preferential flow channels to be 

created at bed of the tank underneath the porous structure. The flow pattern observed at the 

bed of the tank is shown to follow preferential pathways between the spheres, this 

phenomenon has been described in earlier studies and is termed unstable infiltration or 

fingering instability (Gomez et al., 2013). Stable infiltration describes the flow profile 

wherein the advancing fluid leading edge moves forward with a uniform front. The observed 

instability patterns in Figure 8.1.14 may be due to drag effects at the base of the spheres. It 

is also revealed that as the component sphere size reduces, the flow infiltration regime is 

transitioning from an unstable process to a stable process.  

  

(a) 25mm diameter spheres                          (a) 12.5mm diameter spheres   

 

               (b) 9.375mm diameter spheres 

Figure 8.1.14 unstable infiltration into porous structures 
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In this numerical study the shortest flow streamline extracted from the simulation results 

demonstrate that the flow vectors do not deviate significantly from the shortest straight line 

path when permeating through the porous sphere structure, thus yielding a hydraulic 

tortuosity value slightly greater than 1. This value is in contrast to the experimental values 

promulgated by Chen (1973) Wyllie and Rose (1950) of 1.2 and 1.6 respectively. Figure 

8.1.15 displays the shortest flow path streamline followed by a fluid element in the 25mm 

diameter component sphere porous structure simulation.  Figure 8.1.15(a) shows the section 

through the domain perpendicular to the x axis (i.e. perpendicular to the main direction of 

flow) and Figure 8.1.15 (b) shows a plan view of this streamline. It is obvious from Figure 

8.1.15 that the flow streamline does not deviate significantly in the y and z plane thus 

supporting an approximate unit value for kinematic tortuosity.  

  

 

(a) Section perpendicular to x axis showing            (b) Plan view showing the                    

the streamline (grey line)               streamline (red line) 
 

Figure 8.1.15 Flow path streamline through 25mm  

diameter cubic packed sphere structure 

 

In the absence of any obstacle impeding the flow, the surging wave front is projected to reach 

the outflow boundary at a time of 0.270 seconds. This time is obtained by extrapolating the 

data from Figure 5.2.5. However as shown on Figure 8.1.16 the water phase reaches the right 

hand side boundary at reduced times of 0.243 and 0.258 seconds for the 25 mm diameter 

spheres and the 12.5 mm diameter sphere structures respectively. The 6.25 mm and the 3.125 

mm sphere structures have slightly increased the projected time taken for the water to reach 

the outflow boundary to 0.273 and 0.271 seconds respectively. Therefore, although the 

shortest flow streamline is longer than the shortest straight line path, the fluid traverses this 

streamline distance in a shorter time (in the larger sphere structures). The constricting inter-

particle void throats in the larger diameter sphere structures may act to accelerate the flow 

within the porous media through the formation of jets in a similar manner as observed during 

constricted flow through nozzles. This phenomena may account for the reduced time for the 

Streamline 



 

132 

 

liquid phase to pass through the larger diameter sphere structure.  In contrast, the higher 

surface area of the smaller sphere structures may decelerate the flow due to higher wall 

friction and consequently increased drag force, thus the water phase will take longer to reach 

the outflow boundary.  These effects have been previously observed  by Bernabe (1991) 

during experimental studies and he termed it kinematic tortuosity. However he only 

considered the retarding effects of constrictions on the flow velocity. Clennell (1997) in his 

review paper on tortuosity also addressed the subject of kinematic tortuosity, again only the 

decelerating effect of constrictions on the flow were considered. He suggests that kinematic 

tortuosity is a misnomer and ‘local flow divergence’ is a better term. This term ‘local flow 

divergence’ would seem to suggest that constrictions will always retard the flow velocity 

which is not the case as demonstrated in this study. Additional analysis is warranted to 

establish the threshold orifice size which acts to either accelerate or to slow down the flow 

velocity through the porous geometry. 

The minimum theoretical value of hydraulic tortuosity for each these structures is 𝜏 = 1 and 

as previously shown the shortest flow path through the porous assembly follows an 

approximately linear streamline. Nevertheless using the time taken from the flow to pass 

from the impact interface to the outflow boundary it has been demonstrated that the geometry 

acts to accelerate the conductance of fluid in the larger component sphere structures. Then, 

the value for tortuosity obtained from the numerical simulations is not only spatially 

dependent but also temporally influenced as a consequence of the acceleration or 

deceleration of flow through the geometry. In this regard the term kinematic tortuosity, 𝜏𝑘, 

is reintroduced for this analysis and its value permitted to possess a value less than unity 

according to Equation 8.3.   

 

                 Figure 8.1.16 water phase flow volume at outflow boundary 



 

133 

 

 

 

 𝜏𝑘 =
𝑇𝑙𝑒

 𝑇𝑙 
 (8.3) 

Where Tle is the time taken for a fluid element to flow through a porous sample in which the 

inflow and outflow faces are separated by the distance x and Tl is the time taken for a fluid 

element to flow through a similar unobstructed distance x. 

 

8.1.7 Permeability 

The final topological property which was investigated was the porous structure’s 

permeability. The rate of conveyance of each fluid phase (air and water) through the right 

hand side boundary for each of the porous structures was determined; this data is shown on 

Figures 8.1.17a – d. The first plot shows the flow rate for all phases combined. 

The second plot shows the flow rate thorough the boundary for the air phase only. The 

boundary conditions were programmed such that the outflow and inflow of air was permitted 

across this surface, however, for the water phase only outflow behaviour was permitted. A 

negative flow rate represents the flow of air into the simulation domain across this boundary. 

The air flow rate outwards through the boundary increases until approximately the time when 

the water phase starts to flow out of the domain. At this point outward air flow rate starts to 

decrease. All but the 3.125 mm diameter sphere simulation exhibit inflow of air into the 

domain across this boundary. The air flow rate across this boundary also exhibits oscillatory 

behaviour. These oscillations can be correlated to the cyclic volumetric fluctuations of the 

entrapped air pocket. As the entrapped air bubble expands air is forced outwards through the 

boundary and as the bubble contracts air is drawn into the domain.  

Figure 8.1.17c shows the outflow rate for the water phase for each of the cubic sphere packed 

simulations. Although all the structures have identical porosities, those assemblies composed 

of larger spheres exhibit a higher permeability. The flow rate through these larger diameter 

sphere structures is relatively irregular in comparison to the smaller diameter sphere 

component structures. The oscillatory trend in the flow rate for the 25mm diameter sphere 

simulations indicate that the structure has a large influence on the rate of flow through it. 

The flow rate is shown to escalate and diminish cyclically as the liquid volume flowing over, 

under and around the spheres increases and decreases. It is observed that the simulation 

runtime is not sufficient for the flow to exhibit quasi-steady state behaviour with the 

observed fluctuations due to the highly vuggy nature of the void space between the spheres 

controlling the rate of flow through the structure.  The 18.75 and 12.5 mm diameter spheres 
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structures follow a similar trend to the 25 mm spheres structure but they transitions to a 

quasi-steady state at an earlier time within the simulation. There are some fluctuations in the 

flow rate record but with much lower amplitudes.  The 9.375mm sphere simulation exhibits 

a reasonably steady state flow rate from 0.375 to 0.45 seconds simulation time, there after 

there is a large increase in the flow rate. This increase can be correlated to the jet collapsing 

and forcing a larger volume of water out through the RHS domain boundary.  

The 6.25 mm diameter and the 3.125 mm diameter spheres structures exhibit a very similar 

trend in permeability. The flow rates are more uniform indicating that the vuggy nature of 

the porous structure is less influential on the permeability and the rate of flow is controlled 

more effectively by the pore throats. The 3.125 mm diameter spheres structure reaches a 

relatively constant steady state flow rate at about 0.355 seconds simulation time. However 

the 6.25 mm diameter sphere simulation takes longer to reach a steady state flow rate and 

the rate of flow is slightly greater   

It is also interesting to note that as the sphere size increases (for the three smallest diameter 

spheres structures), the quasi-steady flowrates increase correspondingly with a 

proportionality constant of approximately 2.385. There are no oscillations in the water phase 

flow rate to correspond to the volumetric fluctuation of the entrapped bubble as the 

simulation initial conditions did not allow for the inflow of water across this boundary. The 

final plot on Figure 8.1.17 shows the cumulative volume of water flowing through the 

outflow boundary. 

 

      
     (a) Outflow through RHS boundary      (b) Outflow through RHS boundary  

                 (all phases)              (air phase) 
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         (c) Outflow through RHS boundary                     (d) Cumulative Outflow through  

          (water phase)                       RHS boundary (water phase) 

Figure 8.1.17 Cubic packed spheres structures permeability plots 
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8.2 Orthorhombic packing sphere lattice  

 

In this section the results from the orthorhombic packing simulations are presented. Similar 

analysis and arguments can be made as was discussed in the previous section wherein the 

cubic packed simulations were analysed. Therefore the commentary on the results in this 

section is restricted to those cases wherein an interesting finding is observed   

 

Orthorhombic packing simulation results 

Structure  

component  

sphere diameter 

25 mm 18.75 mm 12.5 mm 9.375 mm 6.25 mm 

Impact impulse  

pressure 
1290 Pa 1690 Pa 2000 Pa 2450 Pa 2560 Pa 

Max oscillatory  

pressure 
2060 Pa 2060 Pa 2320 Pa 2640 Pa 1700 Pa 

Water outflow 

 flow rate                           

(end of simulation) 

3.813e-3 

m3/sec 

2.901e-3 

m3/sec 

2.140e-3 

m3/sec 

2.296e-3 

m3/sec 

1.717e-3 

m3/sec 

Bubble Oscillation  

Frequency 
174 Hz 174 Hz 175 Hz 174 Hz 202 Hz 

Bubble Oscillation  

Amplitude 
582 Pa 634 Pa 749 Pa  759 Pa 461 Pa 

Entrapped bubble  

radius     

 (analytic predic-

tion) 

18.8 mm 18.8 mm 18.7 mm 18.8 mm 16.2 mm 

Simulation Bubble 

Volume 
36,092mm3 40,192 mm3 30,836 mm3 34,809 mm3 10,503mm3 

Bubble Surface 

Area 
7,847 mm2 8,484 mm2 6,907 mm2 7,319 mm2 3,391mm2 

Bubble Length 

(Cylindrical)  
100 mm 100 mm 88mm 79 mm 46 mm 

Bubble Sphericity 0.67 0.67 0.69 0.70 0.68 

Equivalent en-

trapped bubble ra-

dius  

(simulation) (c/s) 

20.5/10.72 

[mm] 

21.25/11.31 

[mm] 

19.45/10.56 

[mm] 

20.26/11.84 

[mm] 

13.59/8.53 

[mm] 

Kinematic tortuosity  0.941 0.922 0.963 0.996 0.981 

 

Table 8.2.1 Orthorhombic packing simulation results 
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8.2.1 Flow profile and free surface evolution 

        

    (a) 25 mm diameter sphere structure                 (b) 18.75 mm diameter sphere structure 

        

    (c) 12.5 mm diameter sphere structure                (d) 9.375 mm diameter sphere structure 

 

(e) 6.25 mm diameter sphere structure 

Figure 8.2.1 Free surface profiles  

at orthorhombic packed porous sphere structures 
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8.2.2 Pressure response at impact interface 

 

Figure 8.2.2 Orthorhombic packed spheres pressure signal 

(atmospheric pressure has been subtracted) 

 

 

      (a)Impulse pressures       (b) Max Impact Impulse Pressure Vs Sphere diameter                                                                                     

Figure 8.2.3 Initial impact impulse pressure characteristics 
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Orthorhombic packed spheres pressure analysis 

Structure component  

sphere diameter 

25  

mm 

18.75 

mm 

12.5 

mm 

9.375 

mm 

6.25 

mm 

Solid  

wall 

Initial impact 

 impulse pressure 

1290 

Pa 

1690 

Pa 

2000 

Pa 

2450 

Pa 

2560 

Pa 

4300 

Pa 

Max oscillatory 

pressure 

2060 

Pa 

2060 

Pa 

2320 

Pa 

2640 

Pa 

1700 

Pa 

3950 

Pa 

% increase or 

reduction 
60 22 16 8 -34 -8 

Table 8.2.2 Comparison of initial impact pressure 

with maximum oscillatory pressures 

 

   

 

Figure 8.2.4 Oscillatory phase pressure signal for all  

orthorhombic packed sphere simulations 

 

8.2.3 Pressure response frequency domain analysis 

 

Figure 8.2.5 Oscillatory pressure signal frequency domain results 
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(a) Signal frequency Vs sphere diameter             (b) Signal amplitude Vs sphere diameter 

Figure 8.2.6 Sphere diameters Vs FFT results 

 

Due to computational limitations significant difficulties were encountered when trying to 

mesh the interstitial pore space in the 6.25 mm sphere diameter porous structure. Therefore 

the results from this simulation may not reflect accurately the true behaviour of the pressure 

oscillations for this model 

 

8.2.4 Pressures attenuation at impact surface 

 

Figure 8.2.7 Oscillation decay rates for orthorhombic sphere packed simulations 
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Orthorhombic Packing oscillatory pressure attenuation rates 

Solid wall attenuation     (0% porous) 1938𝑒−0.4113𝑡𝑛𝑒𝑤 

6.25mm diameter spheres 1119𝑒−0.2436𝑡𝑛𝑒𝑤 

9.375mm diameter spheres 1469𝑒−0.3634𝑡𝑛𝑒𝑤 

12.5mm diameter spheres 1426𝑒−0.3168𝑡𝑛𝑒𝑤 

18.75 mm diameter spheres 1281𝑒−0.2929𝑡𝑛𝑒𝑤  

25mm diameter spheres 1125𝑒−0.2535𝑡𝑛𝑒𝑤 

Table 8.2.3 Exponential oscillatory decay rates for  

orthorhombic packed sphere simulations 

 

8.2.5 Permeability 

 

    (a) Outflow through RHS boundary              (b) Outflow through RHS boundary 

   (all phases)                                                        (air phase) 

 

  (c) Outflow through RHS boundary              (d) Cumulative Outflow through 

                   (water phase)                                      RHS boundary (water phase) 

Figure 8.2.8 Orthorhombic packed spheres structures permeability plots 
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8.3 Rhombohedral packing sphere lattice  

Rhombohedral packing simulation results 

Structure component  

sphere diameter 
25 mm 18.75 mm 12.5 mm 9.375 mm 

Impact impulse  

pressure 
1290 Pa 1680 Pa 2080 Pa 2570 Pa 

Max oscillatory  

pressure 
2480 Pa 2750 Pa 2880 Pa 3060 Pa 

Water outflow 

 flow rate                           

(end of simulation) 

3.57e-3 

m3/sec 

2.36 e-3 

m3/sec 

1.73 e-3 

m3/sec 

1.10 e-3 

m3/sec 

Bubble Oscillation  

Frequency 
174 Hz 174 Hz 174 Hz 175 Hz 

Bubble Oscillation  

Amplitude 
722 Pa 782 Pa 822 Pa 920 Pa 

Entrapped bubble  

radius     (analytic  

prediction) 

18.8 mm 18.8 mm 18.8 mm 18.7 mm 

Simulation Bubble  

Volume 

38,177 

mm3 
39,615 mm3 

38,415 

mm3 
22,005 mm3 

Bubble Surface Area 
8,294 

mm2 
8,436 mm2 8,337 mm2 5,133 mm2 

Bubble Length  

(Cylindrical)  
100 mm 99 mm 100 mm 60 mm 

Bubble Sphericity 0.66 0.67 0.66 0.74 

Equivalent entrapped 

bubble radius  

(simulation) (c/s) 

20.89/11.02 

[mm] 

21.15/11.29 

[mm] 

20.93/11.06 

[mm] 

17.38/10.80 

[mm] 

Kinematic tortuosity  0.996 0.974 0.989 1.000 

Table 8.3.1 Rhombohedral packing simulation results 
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8.3.1 Flow profile and free surface evolution 

      

(a) 25 mm diameter sphere structure                 (b) 18.75 mm diameter sphere structure 

       

    (c) 12.5 mm diameter sphere structure                (d) 9.375 mm diameter sphere structure 

Figure 8.3.1 Free surface profiles and collapsing jet thickness  

at rhombohedral packed porous sphere structures 

 

8.3.2 Pressure response at impact interface 

 

Figure 8.3.2 Rhombohedral packed spheres pressure signal 

(atmospheric pressure has been subtracted) 
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(a) Impulse pressures 

 

 

(b) Max Impact Impulse Pressure Vs Sphere diameter  

Figure 8.3.3 Initial impact impulse pressure characteristics 

 

Rhombohedral packed spheres pressure analysis 

Structure component 

sphere diameter 

25 

mm 

18.75 

mm 

12.5 

mm 

9.375 

mm 

Solid 

wall 

Initial impact 

impulse pressure 

1290 

Pa 

1680 

Pa 

2080 

Pa 

2560 

Pa 

4300 

Pa 

Max oscillatory 

 pressure 

2480 

Pa 

2750 

Pa 

2880 

Pa 

3060 

Pa 

3950 

Pa 

% increase or  reduction 92 64 38 20 -8 

Table 8.3.2 Comparison of initial impact pressure 

with maximum oscillatory pressures 
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Figure 8.3.4 Oscillatory phase pressure signal for all 

rhombohedral packed sphere simulations 

 

8.3.3 Pressure response frequency domain analysis 

 

Figure 8.3.5 Oscillatory pressure signal frequency domain results 
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(a) Signal frequency Vs sphere diameter            (b) Signal amplitude Vs sphere diameter  

Figure 8.3.6 Sphere diameters Vs FFT results 

 

8.3.4 Pressures attenuation at impact surface  

 

Figure 8.3.7 oscillation decay rates for rhombohedral sphere packed simulations 

 

Rhombohedral Packing oscillatory pressure attenuation rates 

Solid wall attenuation     (0% porous) 1938𝑒−0.4113𝑡𝑛𝑒𝑤 

9.375mm diameter spheres 1714𝑒−0.3604𝑡𝑛𝑒𝑤 

12.5mm diameter spheres 1574𝑒−0.3761𝑡𝑛𝑒𝑤 

18.75 mm diameter spheres 1533𝑒−0.3644𝑡𝑛𝑒𝑤 

25mm diameter spheres 1419𝑒−0.3487𝑡𝑛𝑒𝑤 

Table 8.3.3 Exponential oscillatory decay rates for  

rhombohedral packed sphere simulations 

 



 

147 

 

8.3.5 Permeability 

 

             (a) Outflow through RHS boundary              (b) Outflow through RHS boundary 

(all phases)                                                             (air phase) 

 

(c) Outflow through RHS boundary               (d) Cumulative Outflow through 

                (water phase)                                    RHS boundary (water phase) 

Figure 8.3.8 Rhombohedral packed spheres structures permeability plots 

 

8.4 Comparison of spherical structure morphology results 

Figure 8.4.1 shows the impulse pressures measured at point P1 during the initial wave 

impact for each of the sphere packing systems and varying sphere diameters. It is 

shown that both the component sphere diameter size and the packing density 

influence the magnitude of the observed impact impulse. Larger spheres in a looser 

packing formation (cubic packing) yield the lowest impact pressures, however this is 

at the expense of an increased structural permeability. 
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Figure 8.4.1 Impulse pressure at first impact from surging wave  

for spherical structure morphologies 

 

 

Figure 8.4.2 Oscillation frequencies computed for each of the various  

spherical structure porous morphologies  
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Figure 8.4.3 Oscillation amplitudes computed for each of the various  

spherical structure porous morphologies  

 

Figures 8.2 and 8.3 present plots of the results obtained from the Fourier Transforms 

for each of the sphere structure porous morphologies. As discussed in Section 8.2.3 

the results from the orthorhombic packed 6.25 mm diameter spheres yielded some 

spurious results, these results are therefore omitted from these plots. In Figure 8.2 it 

is shown that the frequency of oscillation is very similar for the orthorhombic and 

rhombohedral packed sphere and the values do not vary significantly with changing 

component sphere diameter. In contrast the frequency of pressure oscillation 

increases significantly with increasing component sphere size for the cubic packed 

spheres. This suggests that there is a threshold porosity below which the frequency 

of oscillation is not sensitive to the elemental component size which constitutes the 

porous structure. 

Figure 8.3 demonstrates the influence of changing the porosity and component sphere 

size on the oscillatory amplitude. Here it is clearly obvious that the low porosity 

structures with high specific surface yield the highest oscillatory amplitude Thus by 

using low porosity structures with low specific surface areas a reduction in the 

oscillation amplitude is observed. However these structures have a high permeability.  
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Figure 8.4.4 Oscillatory pressure attenuation rates for each of the 

spherical structure morphologies 

 

Figure 8.4.4 presents a plot of the absolute value of the oscillatory attenuation rates 

for the various simulations with different sphere packing formations and different 

component sphere sizes. From the linear best fits to the data set we clearly show that 

there is a relationship between the porosity, element sphere size and the attenuation 

rates. Smaller spheres packed in a tighter formation yield a higher oscillatory pressure 

attenuation rate. These finding are significant for the design of structures to resist the 

destructive effects from wave impacts and oscillatory pressures which occur during 

wave overturning with air entrapment. Based on these findings we can design a 

bespoke porous topology to resist wave impact forces and oscillatory pressures for 

coastal regions which are subject to a predominant wave spectrum.   

Table 8.4.1 summarises the influence of the sphere packing topology and constituent 

sphere size on the simulation forces and pressures experienced by the porous 

structure.  

Sphere packing 

system 

porosity 
Initial impact 

impulse 

Oscillatory 

frequencies 

Oscillatory 

amplitude 

Rate of 

oscillatory 

attenuation 

Large 

spheres 

Small 

spheres 

Large 

spheres 

Small 

spheres 

Large 

spheres 

Small 

spheres 

Large 

spheres 

Small 

spheres 

Sphere size 

influence 

Cubic High High Low High High Low Low Medium High influence 

Orthorhombic Medium Medium Low High Low Low Medium Medium High influence 

Rhombohedral Low Low Medium High Low Low Medium High Low influence 

Table 8.4.1 Summarised sphere packing geometry simulation results  
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8.5 Fibrous media morphology 

Fibrous geometry simulation results 

Simulation Title 2 3 3a 4 5 

Porosity  %` 97.527 95.197 94.442 92.154 84.308 

Impact impulse  

pressure 
760 Pa 760 Pa 760 Pa 1850 Pa 1900 Pa 

Max oscillatory  

pressure 

no bubble  

entrainment 
230 Pa 850 Pa 1630 Pa 1850 Pa 

Water outflow 

 flow rate                           

(end of  

simulation) 

4.577e-3 

m3/sec 

5.0988e-3 

m3/sec 

3.509e-3 

m3/sec 

4.710e-3 

m3/sec 

3.250e-3 

m3/sec 

Bubble  

Oscillation  

Frequency 

- 259 Hz 199 Hz 224 Hz 202 Hz 

Bubble Oscilla-

tion  

Amplitude 

- 6 Pa 257 Pa 366 Pa 518 Pa 

Entrapped bub-

ble  

radius    

  (analytic  

prediction) 

- 12.6 mm 16.4 mm 14.6 mm 16.2 mm 

Simulation 

 Bubble  

Volume 

- 4,109 mm3 18,767 mm3 21,458 mm3 
18,212 

mm3 

Bubble Surface 

Area 
- 1,551 mm2 4,337 mm2 4,888 mm2 4,218 mm2 

Bubble (Cylin-

drical) Length 
- 32 mm 52 mm 52 mm 52 mm 

Bubble  

Sphericity 
- 0.80 0.787 0.764 0.794 

Equivalent 

 Entrapped 

 bubble radius  

(simulation) (c/s) 

- 
9.94/6.39 

[mm] 

16.49/10.71 

[mm] 

17.24/11.46 

[mm] 

16.32/10.56 

[mm] 

Computed  

kinematic  

tortuosity  

1.07 1.19 1.30 1.39 1.63 

Table 8.5.1 Fibrous structure simulation results 
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8.5.1 Pressure response at impact interface 

 

Figure 8.5.1 Fibrous structure pressure signal 

(atmospheric pressure has been subtracted) 

  

                  (a) Impulse pressures                (b) Max Impact Impulse Pressure Vs Porosity 

Figure 8.5.2 Initial impact impulse pressure characteristics 

 

Fibrous porous structure pressure analysis 

Porosity  %` 97.527 95.197 94.442 92.154 84.308 

Initial impact 

 impulse pressure 
760 Pa 760 Pa 760 Pa 1850 Pa 1900 Pa 

Max oscillatory 

pressure 

no bubble  

entrainment 
230 Pa 850 Pa 1630 Pa 1850 Pa 

% increase or 

reduction 
- -70 -12 -12 -2 

Table 8.5.2 Comparison of initial impact pressure 

with maximum oscillatory pressures 
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8.5.2 Pressure response frequency domain analysis 

 

Figure 8.5.3 Oscillatory pressure signal frequency domain results 

 

     

        a) Signal frequency Vs structure porosity           (b) Signal amplitude Vs structure porosity  

                                              Figure 8.5.4 Porosity Vs FFT results 
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8.5.3 Pressures attenuation at impact surface 

 

Figure 8.5.5 Oscillation decay rates for fibrous simulations 

 

Fibrous structure oscillatory pressure attenuation rates 

Solid wall attenuation (0% porous) 1938𝑒−0.4113𝑡𝑛𝑒𝑤 

84.308 % porous 1049𝑒−0.3575𝑡𝑛𝑒𝑤 

92.154 % porous 961𝑒−0.3254𝑡𝑛𝑒𝑤 

94.442 % porous 496𝑒−0.3449𝑡𝑛𝑒𝑤 

95.197 % porous 220𝑒−0.0493𝑡𝑛𝑒𝑤 

Table 8.5.3 Exponential oscillatory decay rates for  

fibrous structure simulations 
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Figure 8.5.6 Fibrous porosity Vs attenuation coefficients 

 

8.5.4  Tortuosity 

The tortuosity for the fibrous media has been determined in different manner from the 

approach described for the sphere lattice morphology. As most of the fluid passes through a 

localised region at the base of the fibrous structure the analysis to determine the tortuosity 

of the complete assembly as reported in Section 8.1.6 would not yield a statistically 

representative value for the fibrous structure as a whole. Therefore an additional set of 

simulations were performed to determine the tortuosity of the fibrous structures. These 

simulations and the results obtained are described in the following subsections. These 

simulation results were then compared with an analytically calculated value to yield a 

tortuosity value for the fibrous structure. The setup for this additional simulation is shown 

on Figure 8.5.7. 

The time taken for a block of liquid to fall uninhibited through 100mm under gravitational 

force starting from a stationary position was determined using the equation of motion given 

in 8.4 below. This time was used as a reference time. It was then compared to the time taken 

for a similar block of liquid to fall through a 100mm width of the porous structure. Then, by 

comparing this time to the reference time, the impeding influence of the fibrous structure on 

fall of the fluid could be determined. Consequently the tortuosity could be inferred for the 

porous structure. 

 
𝑠 = 𝑢𝑡 +  

1

2
𝑎𝑡2 (8.4) 
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Where s is total displacement, u is the initial velocity of the water block, t is time and a is 

acceleration due to gravity. Using Equation 8.4 the time taken for the water block to fall 

through 100mm is 0.143 seconds. Because a time component is considered in this method 

of tortuosity calculation we can still refer to this parameter as a kinematic tortuosity. In order 

to validate this suggested method for determining the kinematic tortuosity for the fibrous 

porous structure a bench marking test simulation was conducted with 25mm diameter 

spheres and 6.25 mm diameter spheres in cubic packed arrangement. This simulation and 

the results are described in section 8.5.4.2. 

   

8.5.4.1 Simulation geometry for determination of tortuosity of fibrous 

porous media 

Figure 8.5.8 below show the simulation setup to determine the tortuosity for the fibrous 

porous structures. The structure shown is 84.31% porous. In this case the  dimensions of the 

numerical tank are 0.1m X 0.05m X 0.165m. The water column measures 0.10m X 0.05715m 

X 0.05715m and the fibrous structure measures 0.1m X 0.05m X 0.1 m.  A zeroGradient 

boundary condition with a no slip condition is applied at the vertical walls at x = 0, x = 0.1 

and at y = 0, y = 0.05, an inflowOutflow boundary condition is prescribed for the air 

phase at the top of the domain at z = 0 which allows air flow into the domain, and a 

zeroGradient boundary condition applied on the liquid phase. The boundary condition 

at z = -0.165 allows both the air and water phases to flow out of the domain. The water 

column displaces vertically downwards under the action of gravitational acceleration. 

  

Figure 8.5.7 Simulation setup for fibrous structure tortuosity determination 
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Figure 8.5.8 below shows the simulation at time t = 0.2. The Figure 8.5.8 (a) shows the both 

the air and water phases, together with the porous structure, Figure 8.5.8 (b) is a snapshot of 

the simulation at the same time step with the air-water interface highlighted and finally 

8.5.8(c) shows the air-water interface with the fibrous media omitted. Previous studies have 

shown that areas close to the confining walls of a porous assembly often exhibit higher 

porosities, and this effect has been studied analytically for sphere swarms in random packing 

see e.g. (Martin, 1978), (Benenati and Brosilow, 1962). These areas which exhibit a higher 

permeability are referred to as the wall regions and those areas in which the flow is 

unaffected by the confining walls are regarded as the core region (Baker, 2011). Because the 

impervious vertical walls at the perimeter of the domain impede the liquid velocity vectors 

in the horizontal direction, the water phase percolates downwards through this fibrous porous 

medium faster adjacent to the walls and in the corners. Additionally the wall and corner 

regions are locally more porous due to the manner in which the fibrous assembly was created 

where the bulk of the fibrous are located within the core region. The effect of the more 

permeable wall regions are obvious from figure 8.5.8(c). In this study a representative value 

of tortuosity for the porous media it to be determined. Then, those regions where the flow 

profile is influenced by the boundary walls are not considered and we determine the 

tortuosity for the core region within the porous structure. Figure 8.5.8(e) shows flow 

streamlines for fluid elements which have not been constrained in their direction of flow by 

the tank walls. These streamlines reach the base of the porous structure at 0.299 seconds 

simulation time. A similar procedure was carried out to determine the tortuosity for each of 

the fibrous structures. The results for the tortuosities for the fibrous media are recorded in 

Table 8.5.1     

        
   (a)          (b)        (c) 

Figure 8.5.8 Tortuosity determination for the fibrous simulations                                                                
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   (d)            (e) 

Figure 8.5.8 Tortuosity determination for the fibrous simulations 

8.5.4.2 Simulation geometry for determination of tortuosity of cubic 

packed spheres porous assembly 

Figure 8.5.9 below show the simulation setup to determine the tortuosity for the fibrous 

porous structures. The structure is assembled from 25mm diameter spheres arranged in a 

cubic packing system. The setup is similar to that for determining the tortuosity of the fibrous 

structure. The dimensions of the numerical tank are 0.1m X 0.1m X 0.165m. The water 

column measures 0.10m X 0.10m X 0.05715m and the porous structure measures 0.1m X 

0.1m X 0.1 m.  A zeroGradient boundary condition with a no slip condition is applied 

at the vertical walls at x = 0, x = 0.1 and at y = 0, y = 0.1, an inflowOutflow boundary 

condition is prescribed for the air phase at the top of the domain at z = 0 which allows air 

flow into the domain, and a zeroGradient boundary condition applied on the liquid 

phase. The boundary condition at z = -0.165 allows both the air and water phases to flow out 

of the domain. The water column displaces vertically downwards under the action of 

gravitational acceleration.  

 

Figure 8.5.9 Simulation setup for sphere structure tortuosity determination 
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Figure 8.5.10 below shows the simulation at time t = 0.127. The Figure 8.5.10 (a) shows the 

both the air and water phases, together with the porous structure, Figure 8.5.10 (b) is a 

snapshot of the simulation at the same time step with the air-water interface highlighted and  

8.5.10 (c) shows the air-water interface with the sphere based porous structure omitted. 

Figure 8.5.10(e) shows flow streamlines for fluid elements which have not been constrained 

in their direction of flow by the tank walls. These streamlines reach the base of the porous 

structure at 0.127 seconds simulation time. This time is slightly shorter than the predicted 

time of 0.143 seconds. However due to the narrow channels between the spheres there may 

be a pressure increase which may cause a jetting effect as was previously discussed in 

Section 8.1.6.  

A similar procedure was carried out to determine the kinematic tortuosity for the 6.25mm 

diameter component sphere cubic packed porous structure. The results for the tortuosities 

for this simulation are recorded on Figure 5.5.11. Although both cubic packed sphere 

structures have the same porosity, in this case the flow of fluid through is much imped and 

the fluid takes 0.287 seconds to pass through the fibrous structure.  

 

                 

(a)          (b)        (c)                                                                    

             

         (d)                           (e) 

Figure 8.5.10 Tortuosity determination for the 25 mm diameter                                                                 

cubic packed sphere simulations at time 0.127 seconds 
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(a)          (b)        (c)                                                                    

             

         (d)                           (e) 

Figure 8.5.11 Tortuosity determination for the 6.25 mm diameter                                                                 

cubic packed sphere simulations at time 0.287 seconds 

 

8.5.5 Permeability 

 

 (a) Outflow through RHS boundary   (b) Outflow through RHS boundary 

        (all phases)                      (air phase) 
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 (c) Outflow through RHS boundary   (d) Cumulative Outflow through  

       (water phase)        RHS boundary (water phase)  

   Figure 8.5.12 Fibrous structures permeability plots 
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Chapter 9 

Conclusion and future work  

9.1 Conclusions 

A model was developed to simulate the effects of air compressibility during a wave breaking 

event. The model was verified through a grid independence study and validated through 

comparison with 2 sets of experimental results. In the verification process it was found that 

a mesh sizing of 0.5mm X 0.5mm was of a sufficiently high resolution to capture the 

transient pressure effects during wave impact at the wall. 

The first set of results used for validation compared the simulation flow front position with 

data from an experiment conducted by Martin and Moyce (1952). A second validation of the 

numerical model was performed by comparing the recorded pressure history a point on the 

domain wall with results from an experiments conducted at MARIN, (Kleefsman et al., 

2005). In both validation cases satisfactory comparisons were observed.        

The next stage of the study focussed on verifying the existence of a high frequency pressure 

oscillation that occurs as a plunging breaker develops. For this phase of the study 

compressible and incompressible simulation results from the 1mm X 1mm mesh first order 

spatial, first order temporal equation discretisation schemes,- and the 0.5 mm X 0.5mm 

second order spatial, second order temporal discretisation schemes were selected for further 

investigation. 

The compressible and incompressible simulation pressure response results for the first order 

spatial and temporal equation discretisation schemes were first compared. In general, both 

sets of results showed good agreement. Visually, the free surface flow profile compared well 

for each of the simulations. However at the point of entrainment of a single large air bubble 

within the liquid phase the pressure response from the compressible simulation exhibited 

large amplitude oscillations. These oscillations were absent from the incompressible model 

simulation. This confirmed that this high frequency oscillation is a direct consequence of air 

pocket entrapment. This phase of the study was significant as there has been very little 
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evidence provided in previous literature to attribute the existence of high frequency 

oscillatory pressures to air entrapment.  

A comparison of our simulation results to the Minnaert Analytic Equation (Minnaert, 1933) 

and results from Hattori et al. (1994) to confirm the existence of a relationship between an 

entrapped bubble volume and its frequency of oscillation was the performed. Again, the 

results from our numerical model compared favourably to the analytically and 

experimentally derived results. Additional analysis was performed in the frequency domain 

to investigate the effects of air pocket fragmentation and coalescence on the observed 

pressure signal at the domain wall.  

The model was next extended to a three dimensional study. A range of porous structures with 

varying topologies were developed and incorporated into the simulation domain. An 

extensive commentary on the parameters to characterise these porous structures was 

delivered. A number of simulations were performed (24 in total) using the 

compressibleInterFoam solver to model wave impact with air entrainment effects 

against these structures. A range of results were presented for each model. An extensive 

analysis of these results was performed. We focussed mainly on the porous structures 

composed of spheres in three varying packing structures. We clearly demonstrate that there 

exists relationships between the parameters used to characterise these porous structures and 

the impact pressures which they are subject to and the frequency and amplitude of  pressure 

oscillation which the structure experiences. Furthermore we confirm that different structures 

can control and attenuate the frequency and amplitude of the oscillatory signals more 

effectively. 

The main findings from the analysis of the wave impact with the porous structure were; 

1. The impulse pressure resulting from a impacting wave varies reasonably linearly 

with the size of the sphere composing the porous structure irrespective of the 

packing system used 

2. More tightly packed spheres will always yield a higher wave impact impulse 

pressure 

3. There exists a porosity threshold, above which, the frequency of pressure oscillation 

(due to air entrapment) varies in accordance to the size of the spheres which 

constitute the porous structure. Below this threshold the size of the spheres 

constituting the porous structure do not influence the frequency of oscillation. 

4. The pressure oscillation amplitude varies reasonably linearly with the size of the 

sphere composing the porous structure irrespective of the packing system used. 
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5. However, once again more tightly packed spheres will always yield higher 

oscillatory pressure wave amplitudes 

6. The rate of attenuation of the oscillatory pressure signals resulting from wave 

impact with air entrainment is most sensitive to sphere size in a loose packed 

configuration. In the cubic packed spheres it was observed that the rate of 

attenuation varied significantly as the component sphere size was varied, however 

the component sphere size had less influence in the more tightly packed 

orthorhombic or rhombohedral configurations. 

 

It has therefore been shown that by selecting a suitable porous topology for a breakwater 

structure we can control the forces and pressures of wave impact. Furthermore, the 

oscillatory pressure energy spectra which results from air entrapment during wave breaking 

can be efficiently damped by selecting the correct topology for breakwater structures in a 

given coastal region. 

    

9.2 Future work                     

Further 3 dimensional wave impacts at sphere based porous structures should be conducted 

and analysed in order to generate additional datasets which reveal the effects of higher 

porosities on the impacting wave energy dissipation mechanisms. These simulations can also 

be used to further analyse the influence of porosity on the oscillatory pressure attenuation.  

It may be beneficial to perform additional full scale simulations. Nevertheless we have 

already shown that by performing a non-dimensional analysis of our results, good agreement 

is obtained with previously conducted experimental research on wave impact with a solid 

wall. 

Further simulations with additional fibrous porous media should be conducted. However 

during this study computational limitations dictated that 84% porosity was the lowest level 

of fibrous porous media which could be reliably meshed. By increasing the fibre radii 

effecting this porous media a lower level of porosity can be achieved.  

Studies incorporating irregularly shaped elemental blocks which more accurately reflect the 

construction of rubble mound breakwaters should also be performed.   

Analyses conduced whilst varying the model domain geometry (inclined tank bed, sloping 

impact interface etc.) can be undertaken in order to simulate the profiles of existing 

breakwaters. The results from the numerical models can then be validated against existing 

case study constructions.  
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This area of research would also benefit from experimental investigation, both at a laboratory 

and full scale level in order to provide additional validation cases for the wave impacting 

simulations. 

In the future it will be useful to generate a large database of information to provide a robust, 

reliable design for breakwater structures. Once this is complete, the development of a web-

enabled, integrated, inference based software system for the investigation and prediction of 

coastal defence structural response would be extremely useful to the coastal engineering 

community.     

The energy dissipation mechanism in the porous medium should also be studied in further 

detail. In this manner a deeper understanding of the relationship can be developed between 

the wave impact energy attenuation and level of porosity at the impact interface. Additional 

simulations to generate a range of wave geometries should also be undertaken. This study 

focussed only on a single wave geometry impacting the porous structure. By performing 

analyses with a range of varying geometry waves, additional information will be provided 

which can be used to design bespoke regional breakwaters for areas which experience a 

prevailing wave spectrum.       
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ABSTRACT 
 

Hydrodynamic wave loading at structures is a complex phenomenon to quantify. The design of 

structures to resist wave loading has been historically and predominantly achieved through empirical 

and experimental observations. This is due to the challenging understanding and quantification of 

wave impact energy transfer processes with air entrainment at solid structures. This paper 

investigates wave loading on such structures with effects of air entrapment. Specifically, it focuses 

on predicting the multi-modal oscillatory wave impact pressure signals which result from transient 

waves impinging upon a solid wall. A large dataset of compressible (and incompressible) numerical 

modelling scenarios have been generated to investigate these processes. The modelling simulation 

data are verified through a grid scaling analysis and validated against previous studies. Air bubble 

entrapment oscillatory pressure response trends are observed in the compressible simulation during 

wave impact. A frequency domain analysis of the impact pressure response is undertaken. The 

numerical modelling results are found in good agreement with theoretical and experimental 

observation data. These findings provide good confidence on the robustness of our numerical model 

foundations particularly for investigating the air bubbles formation, their mechanics and adjusted 

resonance frequency modes at impact with solid walls. 

1. INTRODUCTION 
 

Severe damage can be inflicted on coastal defence structures as a result of high intensity wave forces. 

Many laboratory experiments have been performed to gain an understanding of the physical 

processes which occur at the wave impact interface, see e.g. (Topliss et al., 1993),  (Bullock et al., 

2006), (Bullock et al., 2007), (Bredmose et al., 2009). The damage sustained by coastal defences is 

often caused by their continuous exposure to transient wave impact pressures which at the present 

time are not fully understood, e.g. (Oumeraci et al., 1993), (Wemmenhove et al., 2015), (Alagan 

Chella et al., 2015). Additionally, pulse-like oscillatory pressure signals have been observed in many 

experimental studies, (Bagnold, 1939), (Hattori et al., 1994), (Peregrine, 2003), (Stagonas et al., 

2016). These oscillations manifest themselves subsequent to the initial wave impact with solid walls 

and may be a source of much serious damage and deterioration to the structural integrity of coastal 

defences. Experimental studies for the validation of these oscillatory impact pressure response results 

has proven to be very difficult because of the highly nonlinear, transient nature of the wave breaking 

process, (Chan and Melville, 1988). This has led researchers to speculate as to the source of the 

observed oscillations within the pressure response signal. In this study we analyse the impact of a 

solitary wave with a solid interface while employing a CFD approach.  
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Experimental work has shown that incident waves on vertical structures can produce impulse 

pressures which greatly exceed magnitudes of the typical pressures that are expected when 

employing shallow water wave theory methods  for analysis, (Peregrine, 2003). The magnitude of 

these impulse pressures can commonly exceed:    

 10𝜌𝑔(ℎ + 𝐻) (1) 

H is the wave height, h is the water depth, 𝜌 the water density and g the acceleration due to gravity.  

These higher magnitude impulse pressures have been attributed to a phenomenon often termed as the 

wave ‘flip-through’ effect, (Peregrine, 2003). However, additional highly destructive oscillatory 

pressure effects have been observed in experimental studies. These usually occur when air bubbles 

are entrained at impact. In this instance, the entrapped air bubbles will compress and dilate with a 

range of specific oscillatory frequencies. Further, and according to past theoretical, (Minnaert, 1933) 

and experimental studies, (Hattori et al., 1994), the frequency range with which these bubbles 

oscillate will be dependent on the size of the entrained air void during their formation.    

In this paper, we briefly introduce the theory of free surface fluid flow; and the numerical methods 

to simulate wave impact at solid structures. We also introduce theories and experiments from the 

literature which show the relationships between formed sizes of air bubbles in fluid flows and their 

typical resonance frequencies of oscillation. We investigate numerical dam-break flow simulations 

with impact at a solid vertical wall and air entrapment. Specifically, the collapsing water column 

propagates across the model domain and impacts a solid interface. The initial simulation case of a 

two-phase incompressible flow is described. Our model is then modified to simulate compressible 

flow case. A large data set of test cases was generated by employing first and second order equation 

discretisation schemes for both the temporal and spatial terms in the fluid flow governing equations. 

A range of grid resolutions were also applied to the model to ensure veracity of results.  

     

2. FREE SURFACE FLOW AND BUBBLE OSCILLATION THEORIES 

 

2.1 Numerical Methods 

The numerical simulations were preformed using the finite volume technique based open source CFD 

code OpenFOAM, (The openFOAM Foundation, 2013). This software is compiled as a collection of 

C++ libraries with dedicated pre-programmed solvers which can be used to model various fluid flow 

simulation scenarios. In this study, the incompressible two-phase solver InterFoam was first used 

to analyse the flow field development. Subsequently, the compressibleInterFoam solver was 

used to examine the effects of air entrapment in the fluid phase during wave breaking. Both of these 

solvers use the phase fraction based Volume of Fluid method (VOF), (Hirt and Nichols, 1981), to 

capture and represent the interface between the two fluids. 

 

2.1.1 Volume of fluid method 

The interaction of the individual fluid phase constituents in the model is important as the pressure 

transfer across the free surface boundary which defines an entrained air bubble is central to this study. 

In the volume of fluid method a function 𝛼(𝑥, 𝑦, 𝑡), is introduced at each grid cell in the model do-

main. The value of this function is defined as unity at any cell which is fully occupied by the fluid; 

and zero at any cell completely devoid of fluid. Cells with intermediate values may contain a droplet, 

a bubble or are located such that the interface between the two fluids intersects that cell. In the VOF 

method, the temporal evolution of the phase fraction function and thus the advection of the flow in 

two dimensional space is governed by the following transport equation: 

 
𝜕𝛼

𝜕𝑡
+  𝑢

𝜕𝛼

𝜕𝑥
+  𝑣

𝜕𝛼

𝜕𝑦
= 0  (2) 

Where the phase volume fraction 𝛼 ∈  [0,1] , and u and v are the fluid velocities in the x and y 

direction respectively.  By calculating the derivatives of the 𝛼 function at each cell boundary the free 

surface normal can be established, (Sabeur et al., 1995). The normal direction to the free surface is 

then the direction in which the 𝛼  function varies most rapidly (i.e.𝛻𝛼 ). From the value of the 𝛼 

function and the direction of the normal to the fluid interface, a line cutting the cell can be drawn 

which represents the free surface boundary.  

 

2.1.2 Incompressible model governing equations 
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The conservation of mass equation for an incompressible fluid is defined as follows: 

 ∇ ∙ 𝑼 = 0 (3) 

And the conservation of mass equation for the volume fraction 𝛼 ∈  [0,1] can be represented as: 

 
𝜕𝛼

𝜕𝑡
+  ∇ ∙ 𝑼𝛼 +  ∇ ∙ 𝑼𝑐𝛼(1 − 𝛼)  = 0 (4) 

Where U is the fluid velocity vector, and Uc is the artificial compression velocity vector given by        

𝑼𝑐 = min[𝑼, max(𝑼)]. The final term on the left hand side ensures a sharp interface is maintained 

between the fluid phases. The momentum conservation equation is formulated by summing the 

averaged fluid properties according to their constituent proportion in the boundary cell. For a two 

phase flow, density 𝜌 in the cells is given by: 

 𝜌 = ∑ 𝑟𝛼𝜌𝛼

2

𝛼=1

 (5) 

Where 𝑟𝛼 is the volumetric fraction of each constituent fluid in the free surface boundary cell. 

A single momentum conservation equation for an incompressible fluid can then be defined for the 

homogeneous mixture as: 
 

 
𝜕(𝜌𝑼)

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑼) = −∇𝑝ℎ + ∇ ∙ 𝜇(∇𝑼 + ∇𝑼𝑇) + 𝑭𝑠  +  𝜌𝒇𝑖 (6) 

Where 𝜌 is given in Equation (5), 𝑝ℎ is the hydrostatic pressure, 𝜇 is the fluid viscosity and fi is the 

gravitational force. The term Fs represents the surface tension force and is calculated from 𝑭𝑠 =
 𝜎𝜅∇𝛼, where 𝜎 is the interfacial tension and the interface curvature is given by 𝜅 =  ∇ ∙ (∇𝛼/|∇𝛼|).  

 

2.1.3 Compressible model equations 

To include the effects of compressibility within the model an Equation of State (EOS) must be 

defined for each phase. For the air phase, the ideal gas EOS is specified as follows: 
 

 𝜌𝑎 = 𝑝
1

𝑅𝑎𝑇
 (7) 

Where 𝜌𝑎 is the air density,  𝑅𝑎  is the specific gas constant for air, T is the air temperature and p is 

the pressure. For the water phase the perfect fluid EOS is defined as: 
 

 𝜌𝑊 = 𝑝
1

𝑅𝑊𝑇
+ 𝜌𝑊0 (8) 

Where 𝜌𝑊0 represents the density of water at atmospheric pressure conditions. An additional term 

must be incorporated into equation (4) in order to allow for air to be modelled as a compressible 

medium in the interfacial cells.  

 
𝜕𝛼

𝜕𝑡
+ ∇ ∙ 𝑼𝛼 + ∇ ∙ 𝑼𝑐𝛼(1 − 𝛼) = −

𝛼

𝜌𝑊

D𝜌𝑊

D𝑡
 (9) 

The Euler compressible mass conservation equation is defined as: 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑼) = 0 (10) 

The transport equation for the temperature term is derived from the energy conservation equation, 

(Martínez Ferrer et al., 2016) and is calculated accordingly using equation (11) below: 
 

 
𝜕𝜌𝑇

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑇) −  ∆(μT)  = − (

𝛼

𝐶𝑤
+  

1 − 𝛼

𝐶𝑎
) (

𝜕𝜌𝑘

𝜕𝑡
+ ∇ ∙ (ρ𝑼𝑘) +  ∇ ∙ (𝑼𝑝)) (11) 

𝐶𝑤 and 𝐶𝑎 are the specific heat capacities for water and air respectively, while k is the specific kinetic 

energy. A flow field solution can be obtained by applying the PIMPLE algorithm which is a pressure-

velocity coupling approach derived through combining the PISO and SIMPLE algorithms.   

 

2.2 Resonant Oscillation Frequency of a Single Bubble 
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2.2.1 Analytical method  

The behaviour of a single air bubble which is entrained within an infinite water domain has 

previously been studied by Minnaert (1933). An analytic expression describing the resonant 

frequency of a bubble which is subjected to an impulse force is given by:  

 𝑓 =  
1

2𝜋𝑟
(

3𝛾𝑝

𝜌
)

0.5

 (12) 

Where r is the bubble radius and, 𝛾 is the polytrophic coefficient of the fluid, and r is the bubble 

radius. 

 

2.2.2 Laboratory Experimentations 

Hattori et al. (1994), have conducted experiments to investigate the influence of air entrainment on 

impact pressures from a wave impinging on a vertical solid wall. By varying the wall location relative 

to the breaking wave they were able to capture and analyse the effects of 4 distinct geometries of the 

breaking wave. High speed video recording at the impact interface was captured, from which still 

images were provided. The first generated wave broke against the wall while exhibiting flip-through 

behaviour without the entrainment of bubbles and thus no oscillatory effects in the time-pressure 

history plot were observed.  

The second wave impacted the wall while having developed a vertically flat wave front. This type of 

breaker yielded a very high impact pressure 𝑝𝑚𝑎𝑥/𝜌𝑔𝐻𝑏 =  109.6 followed by a series of high 

frequency (1 kHz) oscillations which decayed rapidly.  

The third type of breaking wave geometry analysed was that of a plunging breaker with a thin lens 

of air trapped at the interface. Again, high amplitude impulse pressures were recorded,  𝑝𝑚𝑎𝑥/
𝜌𝑔𝐻𝑏  = 51.9 with oscillating frequency 250 Hz.  

The final wave profile investigated was that of a plunging breaker with a large trapped air bubble. It 

was found that the increase in the diameter l, of the entrained bubble resulted in a decrease in both 

the peak impulse pressure and an associated decrease in the oscillating pressure frequencies recorded. 

The relationship between the bubble diameter and peak pressure, and also the bubble diameter and 

pressure oscillation frequency was found to vary inversely. Hattori et al. (1994) noted that the 

expression for the oscillating pressure frequency is approximated by: 

 𝑓𝑎𝑝 = 180 (2𝑟)−0.5 (13) 

 

3. NUMERICAL MODEL 

 
3.1 Geometry and Boundary Conditions  

The simulation set-up is in the configuration of a dam break flow test case as shown on Figure 1 

below. The numerical wave tank is 0.3m long and 0.2m high. The tank contains a column of water 

of width      0.05715m and height 0.01143m. A no-slip boundary condition is prescribed at the tank 

base and at the vertical walls. As the top of the tank is considered to be open to the atmosphere, the 

inflow and outflow of fluid is permitted across this boundary. Thus, at this edge a combination of 

boundary conditions are specified for the pressure and velocity terms of the fluid flow governing 

equations to model inflow and outflow behaviour whilst maintaining the PIMPLE algorithm stability. 

In the case of the incompressible model a fixedValue boundary condition with a value of zero is 

specified for the pressure term whilst a pressureInletOutletVelocity boundary condition 

is applied to the velocity term at the top edge boundary of the tank. In the case of the compressible 

simulation, the numerical value of the fixedValue boundary condition is set to atmospheric 

pressure conditions (101 kPa) across the edge which represents the top of the numerical tank. The 

velocity boundary condition is unchanged from the incompressible case. Pressure is sampled at point 

P1 on the impact interface where the right hand side wall meets the tank base, (see Figure 1).  
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Figure 1: Initial CFD OpenFOAM model setup with  

4mm mesh resolution and sampling point P1 indicated. 
 

3.2 Flow Profile and Pressure Field Evolution 
As the flow simulation progresses, the water column collapses and the flow front advances towards 

the right hand side (RHS) of the tank. The flow front impacts the solid RHS wall and is forced 

vertically upwards through the formation of a thin jet. Figure 2(a) and 2(d) present the 𝛼 function 

and pressure distribution respectively as the flow front impacts the wall. This initial impact produces 

the first pressure peak shown on Figure 6(a) in Section 4.3.1 at time t = 0.205. As the jet collapses 

and converges with the fluid below, a bubble is entrained in the flow. This occurs at t = 0.492 seconds 

and yields the first oscillatory cycle local minimum pressure shown on Figure 6(b). The free surface 

geometry at bubble entrainment is displayed on Figure 2(b) with the associated pressure distribution 

shown on Figure 2(e). 

 

   
a. Free surface profile at t = 0.205 sec              d. Pressure distribution at t = 0.205 sec 

   
b. Free surface profile at t = 0.492 sec              e. Pressure distribution at t = 0.492 sec 

   
 c. Free surface profile at t = 0.610 sec               f. Pressure distribution at t = 0.610 sec 

Figure 2: Free surface evolution and associated pressure contour distributions from second 

order spatial and second order temporal equation discretisation scheme simulation  

The amplitude of the oscillating pressure signal decays in an under-damped manner until the 

oscillations become negligible at approximately t = 0.610 seconds as presented on Figure 6(b). Figure 

2(c) and 2(f) above, display the 𝛼  function and pressure distribution at time t = 0.610 seconds 

respectively. 

  

3.3 Spatial and Temporal Domain Discretisation 

The spatial domain was initially discretised using a structured 4mm square hexahedral mesh. The 

P1 
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mesh resolution was refined three times as part of the grid independence study. Table 1 records the 

grid resolutions and associated model properties for this section of the study. 

Initial simulations were conducted using a specified maximum Courant number of 1.0 and time-step 

length of 0.00001 sec. For the first order time and spatial discretisation schemes with low level grid 

resolution this time-step duration was sufficiently short to allow the Courant value to be maintained 

below 1.0, thus ensuring stability. However as the grid was progressively refined and higher order 

temporal and spatial equation discretisation schemes were applied to the model, an adaptive time-

step control command reduced the time-step duration to ensure convergence of the solution. 

 

Table 1: Grid resolutions 

Grid 
∆x 

[mm] 

∆y 

[mm] 

No. of 

nodes 

No. of nodes 

x direction 

No. of nodes 

y direction 

No. of 

elements 

No. of 

elements in 

x direction 

No. of 

elements in 

y direction 

1 4 4 7752 152 102 3750 75 50 

2 2 2 30502 302 202 15000 150 100 

3 1 1 121002 602 402 60000 300 200 

4 0.5 0.5 482002 1202 802 240000 600 400 

 

4. NUMERICAL SIMULATION RESULTS 
 

4.1 Modelling Scalability Criteria 

The grid independence study was established using the grid resolution data from Table 1. The spatial 

discretisation analysis was performed by calculating the impulse force I, at initial wave impact for 

each level of refinement. The impulse force was obtained for each grid resolution by integrating the 

maximum impact pressure peak over the rise time (Peregrine, 2003): 

 

 𝐼(𝑥) =  ∫ 𝑝(𝑥, 𝑡)𝑑𝑡
𝑅𝑡

 (14) 

 

The duration of impact, which for this study is recorded as the peak rise time measured from a 

baseline time of 0.19 seconds was determined for each of the four levels of mesh discretisation as 

shown on Figure 3(a). The impulse force results were then compared to verify that progressive mesh 

refinement produced a solution trending towards convergence as shown in Figure 3(b). Table 2 

records the results from the grid independence study. 

                 
(a) Pressure peak rise time                     (b) Grid  convergence 

Figure 3: Model verification (a) pressure peak rise time, (b) grid convergence.   
 

Table 2: Grid independence criteria 

Grid Rise time 

[Rt] 

[s] 

Non-Dim. Rise 

time [Rtnd] 

Peak pressure 

[pmax] 

[pa] 

Non-Dim. Peak 

pressure [pmaxnd] 

Non-Dim. impact 

pressure impulse [pipnd] 

1 0.0233 0.8634 2484.8 2.2160 0.3276 

2 0.0170 0.6300 3105.9 2.7700 0.1283 

3 0.0169 0.6263 4259.7 3.7990 0.0852 

4 0.0163 0.6040 6402.7 5.7102 0.0717 
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4.2 Model Validation 

4.2.1 Collapsing fluid column leading edge position 

Numerical model validation was achieved through comparison of the time varying leading edge 

position of the collapsing fluid column with experimental results from a study performed by Martin 

and Moyce (1952). The surge front location for the numerical simulation was plotted for each of the 

four levels of grid resolution. The results are shown on Figure 4. The flow front position shows good 

agreement between the different mesh resolution models. The 4mm grid spacing simulation reaches 

the impact interface later than the higher resolution grid simulations (indicated by a sharp change in 

derivative of the graphs). This is supported by the rise time data presented in Table 2. Also included 

on Figure 4 is a plot of the flow front leading edge position sampled during experiment 5 conducted 

by Martin and Moyce (1952). The numerical simulation shows good agreement with the 

experimental results. 

 

 
Figure 4: Model validation, flow front position 

 

4.2.2 Transient pressure response comparison  

The CFD model is further validated through comparison of the simulation pressure signal results 

with data from an experimental dam-break study published by Kleefsman et al. (2005). 

  

 
Figure 5: Model validation, transient pressure comparison with experimental results 

 

The geometrical set up for the experiment consisted of a 1.22 metre wide by 0.55 metre high water 

column which, when released, impacted an obstacle located 1.77 metres from the nearside of the 

water column. This obstacle measured 0.16 metres wide and 0.16 meter high. By non-

dimensionalising the time and pressure response values from the numerical study a direct comparison 

with the experimental pressure history plots could be made. Figure 5 above, displays a plot of the 

experimental time pressure history results from the study published by Kleefsman et al. (2005), 

versus both the incompressible and the compressible numerical simulation results. The pressure 

signal trend shows good agreement between the experimental and numerical results. 
 

4.3 Simulation Pressure Response Results 

The series of simulations performed can be classified according to those in which air compressibility 

effects were neglected and those in which air was considered as a compressible fluid and also 

according to the temporal and spatial equation discretisation schemes employed. The second order 

temporal and spatial scheme results are discussed in Section 4.3.1. Some further discussion on the 

first order temporal and spatial discretisation results for the 1 mm square grid size resolution for both 

incompressible and compressible simulations follows in Section 4.3.2.    
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4.3.1 Second order temporal second order spatial equation discretisation scheme 

Figure 2 (Section 3.2) displays the 𝛼 function and pressure distribution as the flow develops during 

the simulation. The pressure variation as a function of time for both the incompressible air phase 

simulation and the compressible air phase simulation is shown on Figure 6 below.  
  

   
(a) Full pressure response signal            (b) Bubble formation phase 

Figure 6: Pressure response signal at P1: (a) Full simulation,  

(b) Oscillation due to air entrainment 
  

It can be observed that between t = 0.492 and t = 0.610 a high amplitude, high frequency, resonant 

oscillation is recorded in the compressible simulation pressure response at point P1. This is due to 

the entrapment of a large air bubble which occurs as the vertical jet collapses. The initial entrained 

air bubble has a cross sectional area of approximately 1324.5 mm2 which results in an equivalent 

spherical bubble of approximate radius 20 mm. As the simulation progresses this bubble fragments 

several times to form smaller bubbles. From Figure 6(b) the pressure signal recorded at P1 can be 

seen to oscillate with a regular frequency.  By applying a Fast Fourier Transform (FFT) to the signal, 

five principal oscillating frequencies of 150, 180, 200, 219 and 252 Hz were computed. Table 3 

summarises the formation of the first 5 bubbles observed during the simulation together with the 

main oscillatory frequencies. 

Table 3: Entrained bubble evolvement and associated frequencies 

Bubble Area 

[mm]2 

Equivalent 

radius 

[mm] 

Time which 

bubble forms 

[sec] 

Time which bubble 

size is modified 

[sec] 

Lifespan 

of bubble 

[sec] 

Oscillation 

frequency 

[Hz] 

1 1324.5 20 0.492 0.5045 0.0125 150 

2 787 15.8 0.5045 0.5131 0.0086 180 

3 474 12.3 0.5045 0.5231 0.0126 200 

4 483 12.4 0.5131 0.5341 0.0210 219 

5 489 12.5 0.5231 0.5431 0.0260 252 

 

These frequencies can be compared with the adiabatic Minnaert resonant frequency given by 

Equation (12) and also with the experimentally derived relationship observed by Hattori et al. (1994) 

(Equation (13)). These results are presented on Figure 8. 

 
(a) Pressure signal FFT                  (b) Principal Frequencies 

Figure 7:  FFT Analysis of pressure oscillation. 
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Figure 8: Analytic & Experimental bubble oscillatory frequencies  

versus numerical model frequency predictions 
 

4.3.2 First order temporal, first order spatial equation discretisation scheme 

To further ascertain that the resonant pressure signal oscillations observed at P1 originate from the 

pulsation of the entrained bubble, analysis was performed on the pressures sampled at a point within 

the entrapped air bubble.  

 
Figure 9: Pressure oscillations at the entrained air bubble vs pressure oscillations at P1 

 

Figure 9 shows the pressure signal inside the air bubble and at position P1 obtained employing the 

first order temporal and spatial equation discretisation schemes on a 1mm square grid resolution from 

0.5 to 0.6 seconds elapsed simulation time. The amplitude of the oscillating pressure signal sampled 

within the bubble is consistently larger than the pressure recorded at P1. This would imply that the 

resonant contraction and expansion action of the entrapped bubble is the source of the pressure 

oscillation. The reduced amplitude of the pressure signal at P1 may be due to energy loss through the 

free surface and energy loss due to viscous effects within the liquid phase. The pressure oscillation 

within the bubble also persists for some time after the oscillations at P1 are damped, further 

supporting the argument that the oscillations emanate from the entrained bubble.   

 

5. CONCLUSIONS AND FUTURE DEVEOPMENTS 
 

The origins of the oscillatory nature of impact pressures at solid walls have been investigated. There 

is- 

clear evidence that the oscillation of the impact pressure at a solid wall is generated from entrapped 

oscillating air bubbles within the flow. A good size range of entrapped bubbles at the interface with 

the solid is numerically revealed together with their respective resonant frequencies. The evidenced 

bubbles respective life spans are found to be finite. One therefore expects the range of bubbles 

oscillatory frequencies to vary in time as the overall energy of the flow and impact pressures at the 

wall recede.  Further studies of these effects are currently in progress while being applied to complex 

porous structures. The aim is to quantify the response of the flow at impact at such porous structures 

together with the manifested oscillatory frequencies of entrapped bubbles as a result.   
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ANALYSIS OF FLUID FLOW IMPACT OSCILLATORY PRESSURES WITH AIR ENTRAPMENT 
AT STRUCTURES 

Robert Mayon1* Zoheir Sabeur2 Mingyi Tan3 and Kamal Djidjeli4 

Hydrodynamic wave loading at coastal structures is a complex phenomenon to experiment, simulate and quantify. The nature 

of the fluid flow field as waves break against such structures has presented many challenges to scientists and engineers for the 

design of sustainable coastal defences. The provision of installations such as breakwaters to resist wave loading and protect 

coastal zones has evolved predominantly through empirical and experimental observations. This is due to the challenging un-

derstanding and precise quantification of wave impact energy transfer processes with air entrainment at structures. This paper 

presents a numerical investigation on wave loading at porous formations including the effects of air entrapment. Porous mor-

phologies generated from cubic packed spheres with varying characteristics representing a breakwater structure are incorpo-

rated into the numerical model at the impact interface and the effect on the pressure field is investigated as the wave breaks. 

We specifically focus on analysing the impulse impact pressure as a surging flow front impacts a porous wall. Thereafter we 

investigate the multi-modal oscillatory impact pressure signals which result from a transient plunging breaker wave impinging 

upon a modelled porous coastal structure. The high frequency oscillatory pressure effects resulting from air entrapment are 

clearly observed in the simulations. A frequency domain analysis of the impact pressure responses is consequently undertaken. 

We show that the structural morphology of the porous assembly influences the pressure response signal recorded during the 

impact event.  Our findings provide good confidence on the robustness of our numerical model particularly for investigating 

the air bubbles formation and their mechanics at impact with porous walls. 

Keywords: Porous structures; fluid structure interaction; compressible flow; OpenFOAM, computational fluid dynamics 

INTRODUCTION  

Severe damage can be inflicted on coastal defence structures as a result of high intensity wave forces. 

Laboratory experiments have previously been performed to gain an understanding of the physical processes 

which occur at the wave impact interface e.g. (Topliss et al., 1993),  (Bullock et al., 2006), (Bullock et al., 

2007), (Bredmose et al., 2009). However the validation of these wave impact pressure response results has 

proven to be very difficult because of the highly nonlinear, transient nature of the wave breaking process  (Chan 

and Melville, 1988).  

The progressive damage sustained by coastal defences may be attributed to their continuous exposure to 

transient and highly oscillatory wave impact pressures. At the present time these forces are not fully understood 

and the long term durability of coastal defences is difficult to assess (Oumeraci et al., 1993), (Wemmenhove 

et al., 2015), (Alagan Chella et al., 2015). In addition to these short duration impulse impact pressures, resonant 

oscillatory pressure signals have been observed in many experimental studies (Bagnold, 1939), (Hattori et al., 

1994), (Sabeur et al., 1998), (Peregrine, 2003), (Stagonas et al., 2016). These oscillations manifest themselves 

subsequent to the initial wave impact with solid or porous walls and may be the main source of deep damage 

to the structural integrity of coastal defences.  Researchers have speculated as to the source of the observed 

oscillations within the impact pressure response signal (Peregrine, 2003).  

Experimental work has shown that incident waves on vertical structures can produce impulse pressures 

which greatly exceed magnitudes of the typical pressures that are expected when employing shallow water 

wave theory methods for analysis (Peregrine, 2003). The magnitude of these impulse pressures can commonly 

exceed: 

10𝜌𝑔(ℎ + 𝐻) (1) 

 Where H is the wave height, h is the water depth, 𝜌 the water density and 𝒈 the acceleration due to gravity. 

These higher magnitude impulse pressures have been attributed to a phenomenon often termed as the wave 

‘flip-through’ effect, (Peregrine, 2003). However, additional highly destructive oscillatory pressure effects 

have been observed in experimental studies, most noticeably when air bubbles are entrained at impact. In this 

instance, the entrapped air bubbles will compress and dilate with a range of specific oscillatory frequencies. 

Further, and according to earlier theoretical (Minnaert, 1933), and experimental studies (Hattori et al., 1994), 

the frequency range with which these bubbles oscillate will be dependent on the size of the entrained air void 

during their formation. The authors of this study have also observed these effects in previous numerical simu-

lations, see e.g. (Mayon et al., 2016).   

In this work we analyse the impact of a solitary wave with a porous interface while employing a CFD 

approach for numerical simulations. First we briefly introduce the theory for modelling free surface fluid flow; 
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and the numerical methods to simulate wave impact at porous structures. We also introduce theories and ex-

periments from the literature which show the relationships between formed sizes of air bubbles in fluid flows 

and their typical resonance frequencies of oscillation. We investigate 3 dimensional numerical dam-break flow 

simulations with impact at varying morphology porous vertical wall interfaces. The numerical model is stable 

and capable of capturing the compressible effects of the air phase during bubble formation.   

FREE SURFACE FLOW AND BUBBLE OSCILLATION THEORIES  

Numerical Methods 

The numerical simulations were preformed using the finite volume technique based open source CFD 

code OpenFOAM (The openFOAM Foundation, 2013). The code is compiled as a collection of C++ libraries 

with dedicated pre-programmed solvers which can be used to model various fluid flow simulation scenarios. 

In this study, the compressibleInterFoam solver was used to examine the effects of air entrapment in the fluid 

phase during wave breaking. This solver uses the phase fraction based Volume of Fluid method (VOF) (Hirt 

and Nichols, 1981), to capture and represent the interface between the two fluids. 

Volume of fluid method 

The interaction of the individual fluid phase constituents in the model is important as the pressure transfer 

across the free surface boundary which defines an entrained air bubble is central to this study. In the volume 

of fluid method a function, 𝛼(𝑥, 𝑦, 𝑡), is introduced at each grid cell in the model domain. The value of this 

function is defined as unity at any cell which is fully occupied by the fluid; and zero at any cell completely 

devoid of fluid. Cells with intermediate values may contain a droplet, a bubble or are located such that the 

interface between the two fluids intersects that cell. In the VOF method, the temporal evolution of the phase 

fraction function and thus the advection of the flow in two dimensional space is governed by the following 

transport equation: 

𝜕𝛼

𝜕𝑡
+ 𝑢

𝜕𝛼

𝜕𝑥
+ 𝑣

𝜕𝛼

𝜕𝑦
= 0 (2) 

Where the phase volume fraction 𝛼 ∈ [0, 1], and u and 𝑣 are the fluid velocities in the x and y direction 

respectively. By calculating the derivatives of the 𝛼 function at each cell boundary the free surface normal can 

be established, (Sabeur et al., 1995). The normal direction to the free surface is then the direction in which the 

𝛼 function varies most rapidly (i.e.𝛻𝛼). From the value of the 𝛼 function and the direction of the normal to the 

fluid interface, a line cutting the cell can be drawn which represents the free surface boundary. 

Compressible model governing equations 

The conservation of mass equation for an incompressible fluid is defined as follows: 

∇ ∙ 𝑼 =  0 (3) 

Using Equation (3) the two phase conservation of mass equation for the volume fraction 𝛼 ∈ [0, 1] can then be 

represented as: 

𝜕𝛼

𝜕𝑡
+ ∇ ∙ 𝑼𝛼 + ∇ ∙ [𝑼𝑐𝛼(1 − 𝛼)] = 0 (4) 

Where U is the fluid velocity vector, and Uc is the artificial compression velocity vector given by     𝑼𝑐 =
𝑼𝛼1 − 𝑼𝛼2 , where 𝑼𝛼1  and 𝑼𝛼2  are the velocity vectors for the liquid and gas phases respectively 

(Berberović et al., 2009). The final term on the left hand side ensures a sharp interface is maintained between 

the fluid phases (Berberović et al., 2009). The momentum conservation equation is formulated by summing 

the averaged fluid properties according to their constituent proportion in the boundary cell. For a two phase 

flow, density 𝜌 in the cells is given by:  

𝜌 = ∑ 𝑟𝛼

2

𝛼=1

𝜌𝛼 (5) 

Where 𝑟𝛼 is the volumetric fraction of each constituent fluid in the free surface boundary cell. A single 

momentum conservation equation for an incompressible fluid can then be defined for the homogeneous mixture 

as: 

𝜕(𝜌𝑼)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑼𝑼) = −𝛻𝑝ℎ + 𝛻 ∙ 𝜇(𝛻𝑼 + 𝛻𝑼𝑇) + 𝑭𝑠 + 𝜌𝒇𝒊 (6) 

Where 𝜌 is given in Equation (5), 𝑝ℎ is the hydrostatic pressure, 𝜇 is the fluid viscosity and fi is the 

gravitational force. The term Fs represents the surface tension force and is calculated from 𝑭𝑠 = 𝜎𝜅∇𝛼, where 

𝜎 is the interfacial tension and the interface curvature is given by 𝜅= ∇∙(∇𝛼/|∇𝛼|). 

 To include the effects of compressibility within the model an Equation of State (EOS) must be defined for 

each phase. For the air phase, the ideal gas EOS is specified as follows: 
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𝜌𝑎 = 𝑝
1

𝑅𝑎𝑇
 (7) 

Where 𝜌𝑎 is the air density, 𝑅𝑎 is the specific gas constant for air, T is the air temperature and p is the 

pressure. For the water phase the perfect fluid EOS is defined as: 

𝜌𝑤 = 𝑝
1

𝑅𝑊𝑇
+ 𝜌𝑊0 (8) 

Where 𝜌𝑊0 represents the density of water at atmospheric pressure conditions. To allow for air to be 

modelled as a compressible medium an additional term must be incorporated into Equation (4):  

𝜕𝛼

𝜕𝑡
+ ∇ ∙ 𝑼𝛼 + ∇ ∙ 𝑼𝑐𝛼(1 − 𝛼) = −

𝛼

𝜌𝑊

𝐷𝜌𝑊

𝐷𝑡
 (9) 

Equation 3 is modified to yield the Euler compressible mass conservation equation defined as: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑼) = 0 (10) 

The transport equation for the temperature term is derived from the energy conservation equation, 

(Martínez Ferrer et al., 2016), and is calculated accordingly using equation (11) below: 

𝜕𝜌𝑇

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑇) − ∆(𝜇𝑇) = − (

𝛼

𝐶𝑊

+
1 − 𝛼

𝐶𝑎

) (
𝜕𝜌𝑘

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑘) + ∇. (𝑼𝑝)) (11) 

𝐶W and 𝐶𝑎 are the specific heat capacities for water and air respectively, while 𝑘 is the specific kinetic 

energy. A flow field solution can be obtained by applying the PIMPLE algorithm which is a pressure-velocity 

coupling approach derived through combining the PISO and SIMPLE algorithms. 

Resonant oscillation Frequency of a single entrained air bubble 

The behaviour of a single air bubble which is entrained within an infinite water domain has previously 

been studied by Minnaert (1933). An analytic expression describing the resonant frequency of a spherical bub-

ble which is subjected to an external impulse force is given by: 

𝑓 =  
1

2𝜋𝑟
√(

3𝛾𝑝

𝜌
) (12) 

Where r is the bubble radius, 𝛾 is the polytrophic coefficient of the fluid, p is the hydrostatic pressure at 

the depth which the bubble is located in the liquid and 𝜌 is the liquid density. 

Hattori et al. (1994), have conducted experiments to investigate the influence of air entrainment on impact 

pressures from a wave impinging on a vertical solid wall. By varying the wall location relative to the breaking 

wave they were able to capture and analyse the effects of 4 distinct geometries of the breaking wave. High 

speed video recording at the impact interface was captured, from which still images were provided. From their 

experimental analysis the oscillating frequency of an entrained bubble is given by: 

𝑓𝑎𝑝  =  180(2𝑟)−0.5 (13) 

3 DIMENSIONAL POROUS IMPACT INTERFACE SIMULATION 

There are two main approaches to modelling fluid transport in porous media. The first approach is the 

macroscopic continuum method wherein the flow is modelled according to the Navier-Stokes equations with 

an additional Darcy (or Darcy-Forcheimer) term. This term is incorporated into the momentum equation in the 

region where the porous structure is located (Higuera et al., 2014). With this method the physics of the flow 

through the porous medium is governed by phase quantities which are averaged over control volumes across 

the flow (also known as Representative Elementary Volumes).  

The second approach for modelling fluid flow through porous media is a direct modelling approach 

wherein each phases is explicitly represented and the flow through the porous interstices is modelled explicitly 

using the Navier-Stokes equations. Other methods for modelling flow in porous media include the Smoothed 

Particle Hydrodynamic (SPH) method and Lattice Boltzmann methods. In our study the direct modelling ap-

proach is employed. 
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For this investigation a number of porous geometries were generated and incorporated into the 

OpenFOAM CFD model. Various parameters were used to classify the porous structure according to its 

morphology. These parameters include porosity, specific surface area, tortuosity and permeability. 

Porous structure classification 

Porosity 

A porous sample in its most basic definition is a material composed of a certain solid volume which 

contains a proportion of distributed void space. These voids can be occupied by one or more fluids in either a 

liquid phase, a gaseous phase or both. Thus porosity for the purpose of this investigation is defined as the 

fraction of the bulk volume of the sample which is occupied by pore or void space. Civan (2011) provides a 

mathematical definition of porosity as: 

Φ =
∑ ∆𝑉𝑗𝑗≠𝑠

∆𝑉𝑏

 (14) 

Where ∆𝑉𝑏is the bulk volume of the porous sample or the total volume occupied by all phases, ∆𝑉𝑗 is the 

volume occupied by the jth phase and s denotes the sum of the solid phases forming the porous matrix.  

Bear (1988) provides a more onerous characterisation of a porous media which suggests that the multi-

phase matrix must satisfy certain conditions such as level of void space interconnectedness, lower bound limits 

on interstitial surface areas and uniformity in phase distribution. However the definition of a porous medium 

is still couched in ambiguity as there is no complete consensus on limits for any of the above conditions.   

Specific surface area 

The specific surface area of a porous sample is defined as the interstitial void (or solid) surface area per 

unit bulk volume having a reciprocal length dimension. In molecular science specific surface area greatly in-

fluences adsorption rates and reactivity processes. However on a macroscale scale it can also be used to char-

acterise the morphology of the porous structure. A higher specific surface implies a more complex porous 

media. Additionally a high specific surface area may also decelerate the flow of fluid through the porous struc-

ture as the wall shear stress will have a more pronounced effect due to a higher phase interfacial area. 

Tortuosity 

Tortuosity is an inherent characteristic of a porous media morphology which in general terms can be 

described as a ratio of the distance traversed by a fluid element between two fixed points to the straight line 

distance between those two points as shown in Figure 1(Brus et al., 2014). Tortuosity can be calculated from: 

𝜏 =
𝐿𝑒

𝐿𝑠

≥ 1 (15) 

Where Le and Ls are shown on Figure 1. 

Whilst there has been a large body of academic research presented on the subject of tortuosity, there is no 

general agreement for a single precise definition of tortuosity and to date a number of different measurements 

of tortuosity have been advanced for different applications. For example Ghanbarian et al. (2013) in their 

review paper describe geometric tortuosity, hydraulic tortuosity, electrical tortuosity and diffusive tortuosity.  

The difficulty in achieving a unanimous characterisation for tortuosity may be twofold; with the exception 

of very few materials, e.g. metals, dense rocks and some plastics (Dullien, 1992), most materials exhibit porous 

behaviour to varying degrees at multiscale levels from microscopic through to macroscopic scale. The 

parameters which govern tortuosity may vary dramatically within a single material at different scale lengths 

thus effecting the observed tortuous transport path length. Therefore depending on which scale of analysis is 

being considered, different fluid behavioural effects may dominate the calculated tortuosity ratio. 

When analysing the flow of fluid through porous media either the geometric or hydraulic tortuosity is 

usually considered. Figure 2, Ghanbarian et al. (2013) presents a comparison of a hydraulic tortuous flow path 

and a geometric tortuous flow path. At the microscale multiphase interfacial parameters such as capillary 

pressures, surface tension effects and wall friction may all significantly influence the flow rate through a porous 

structure, however at larger scale lengths these effects may not warrant consideration due to the bulk of the 

flow being conveyed through larger fissures where wall friction, capillary and free surface effects are not the 

limiting constraints on the flow rate. Then, it may be more appropriate to use hydraulic tortuosity for microscale 

analyses and geometrical tortuosity at larger scales.   

 
Figure 1 Tortuosity (Brus et al., 2014) 



 

187 

 

The structure of porous materials can take many forms, and the tortuous paths can vary from being 

comparatively simple to being highly complicated. For instance the porous structure of a natural material such 

as wood can be somewhat homogenous and anisotropic and thus the tortuosity can be relatively simply 

described by reducing the material to a model consisting of a bundle of unidirectional capillary tubes. This 

limiting case of a bundle of parallel, non-interconnected tubes longitudinally orientated in the direction of 

macroscopic flow, traversing the full thickness, Ls, of the sample presents little resistance to the flow 

(neglecting frictional effects at the tube wall). Then, a flow streamline, Le, tracing the path of the fluid will 

have a length similar to the thickness of the sample, i.e. the tortuosity factor can be calculated for Equation 15 

and will have a value of unity.  

In contrast, a material may be much more complex and disordered having multidirectional interweaving 

fibrous filaments as evidenced within some filter materials or in paper products. Then, the structural 

morphology is much more difficult to define and the parameters which can be used to describe the tortuous 

nature of interconnecting porous voids can be very challenging to determine from the physical sample. In this 

study the void throats between the solid particles are relatively narrow such that the flow streamlines are seen 

to be influenced by the surface of the solid phase material in the CFD model. The hydraulic tortuosity is 

therefore adopted in this investigation. 

 
 a. Hydraulic tortuous path         b. Geometric tortuous path 

Figure 2 Comparison between hydraulic tortuosity and geometric tortuosity, 
 Ghanbarian et al. (2013)   

Fluid flow through a porous medium is influenced by both the amount and morphology of the void (pore) 

space (Vallabh et al., 2010). While the amount of void space is easily quantified by measurement of porosity, 

the characterisation of the distribution of the void space structure is often very difficult, especially in complex, 

irregular porous media (Vallabh et al., 2010). In the case wherein the pore structure is more intricate with many 

converging and diverging channels the streamline path may not follow the liner shortest distance between the 

bounding surfaces of the sample. Rather, the streamlines may be forced to follow a sinuous winding path 

determined by the morphology of the solid (or void) phase. Then the tortuosity factor must be greater than 

unity. This increases the time taken for the fluid to permeate through the porous media and results in an 

associated higher resistance to the flow. Thus the tortuosity of a complex sample can be computed as a time 

dependent variable. Additionally, the higher resistance to flow is manifest in a lower permeability value for the 

sample. As the value of tortuosity approaches infinity this represents an internal pore structure (and geometric 

morphology) of increasing complexity. Furthermore, a thorough analysis and understanding of tortuous paths 

within a sample presents one with a means to quantify the complexity and also the permeability of the sample. 

Simulated porous structure morphology 

In an earlier study a comprehensive analysis of wave impacts with a solid interface were performed. A 

range of equation discretisation schemes were employed and the oscillatory behaviour of the resultant bubble(s) 

were analysed in depth, (Mayon et al., 2016).   

In this study wave impact at a single porous morphology with varying component sphere sizes are inves-

tigated. The geometry consists of a number of spheres on a regular cubic lattice layout. The porous structures 

were generated using a short LISP file and the CAD software package AutoCAD Mechanical. The geometries 

were then exported as stereolithographic files. The OpenFOAM mesh generation utility snappyHexMesh was 

then used to construct an accurate 3-dimensional split-hex mesh which defined the void geometry within the 

porous structure.  

In order to establish the exclusive influence of the various porous morphology characteristics; surface 

area, porosity, tortuosity, permeability, etc. on the wave impact pressure signal a range of simulations were 

conducted whilst varying the component sphere size. Each of these porous structures have mono-sized spheres 

arranged on a distinct regular geometric lattice. The work presented in this study will be restricted a single 

regular lattice layout; simple cubic packing. The following subsections describe the porous structure and how 

it is generated. 

Simple cubic packing 

This spherical based structure consists of a mono-sized, close packed sphere-swarm arranged on a cubic 

lattice layout. With the exception of the outermost spheres on the boundary of the lattice (and assuming that 
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there is a minimum of 27 spheres composing the structure), each sphere is in direct contact with its 6 neigh-

bours, this is also termed the coordination number.  This sphere packing arrangement is known as simple cubic 

packing (see Figure 3).  

Assuming the bounding box enclosing the lattice structure maintains a fixed volume and the spheres are 

tightly packed, then the porosity of the assembly is constant for any range of component sphere size. Thus due 

to the regular composition of the structure the porosity is maintained with a value of 0.476 for all simulations 

with the elemental spheres in a simple cubic packing system. The constant porosity is obvious from Figure 3. 

This allows one to investigate the influence of porous matrix component grain size on the flow field while 

maintaining the structure’s overall density at a constant value. In this study a bounding cube of 100mm length 

was defined and 4 geometries based on packed sphere sizes of 25mm diameter, 12.5mm diameter, 6.25mm 

diameter and 3.125mm diameter were investigated.  

Furthermore, the theoretical geometric tortuosity of the matrix which is an inherent characteristic of the 

porous structure and is determined by its geometrical composition also retains a constant value and is calculated 

according to Equation 15. 

However if hydraulic tortuosity is employed then it can be easily shown mathematically that the tortuosity 

parallel to the flow direction varies from a minimum value of 𝜏 = 1.0 to a maximum value of tortuosity 𝜏 = 

1.57 (irrespective of the elemental sphere diameter), assuming the flow streamline remains within the x-y plane 

of the fluid flow direction and is coincident with the sphere surfaces. The value of 𝜏 = 1.0 is obtained if one 

considers a streamline which is located at maximum distance from the surface of the spheres, and 𝜏 = 1.57 is 

obtained for a streamline which follows the contour of the spheres surface and assuming the streamline stays 

in the x-y plane (see Figure 3). 

 
 

Figure 3: Simple cubic packing arrangement for varying sphere sizes 
 

Table 1. Simple cubic packing structure characteristics* 

Sphere diameter 25mm 12.5 mm 6.25 mm 3.125 mm 

Porosity 47.64 % 47.64 % 47.64 % 47.64 % 

# of spheres 64 512 4,096 32,768 

Surface area 125,662mm2 251,279mm2 502,558mm2 1,005,116mm2 

Specific surface area 0.1257 mm-1 0.2513 mm-1 0.5026 mm-1 1.0051 mm-1 

Coordination number 6 6 6 6 

In-plane (analytic) 
Tortuosity 

min max min max min max min max 

1 1.57 1 1.57 1 1.57 1 1.57 

*values calculated assuming spheres packed into cube of side 100mm  

SIMULATION SETUP 

The simulation set-up follows an earlier study presented in Mayon et al. (2016). Model verification and 

validation data may also be found in Mayon et al. (2016). The geometry is in the configuration of a dam break 

flow test case as shown on Figure 4 below. The numerical wave tank is 0.4m long and 0.2m high and 0.1m 

deep. The tank contains a column of water of width 0.05715m, height 0.01143m and depth 0.1m at the left 

hand side. A no-slip boundary condition is prescribed at the tank base and at vertical walls at x = 0, z = 0 and 

z = 0.1. As the top of the tank is considered to be open to the atmosphere, the inflow and outflow of fluid is 

permitted across this boundary. Thus, at this surface a combination of boundary conditions are specified for 

the pressure and velocity terms of the fluid flow governing equations to model inflow and outflow behaviour 

whilst maintaining the PIMPLE algorithm stability. The numerical value of the fixedValue boundary con-

dition is set to atmospheric pressure conditions (101 kPa) across the surface which represents the top of the 

numerical tank. The porous morphologies were incorporated into the model at the right hand side of the domain. 

Additionally at the right hand side surface (at x = 0.4) the boundary condition applied permits the outflow of 

fluid from the domain. The pressure signals are sampled at mid height the face of the bottom sphere forming 

the porous matrix indicated by point P1 on Figure 4 below.  

 

Flow 

directio

z 

y 
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Figure 4: Section through simulation setup (sphere diameter 12.5mm) 

As the flow simulation progresses, the water column collapses and the flow front advances towards the 

right hand side (RHS) of the numerical tank. The surging flow front impacts the porous (Figure 5 (a)) structure 

and is forced vertically upwards through the formation of a thin jet, Figure 5 (b). Figure 5 (a) presents the 𝛼 

function as the flow front impacts the wall. This initial impact produces the first pressure peak shown on Figure 

7 at time t = 0.208. As the vertical jet collapses (Figure 5(c)) it forms a plunging breaker type wave and con-

verges with the fluid below, at this time a bubble is entrained in the flow. For the 3.125mm diameter cubic 

packed sphere structure this occurs at t = 0.515 seconds (Figure 5(d)) and yields the first oscillatory cycle local 

maximum pressure shown on Figure 8.  

SIMULATION RESULTS 

Simulation free surface profile 

      
(a) Time = 0.208 sec                           

            

            

            

            

            

                   (b) 

     Time = 0.276 sec        

             
(c) Time = 0.450 sec                                    

            

            

            

P1 
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   (d)   Time = 0.515 sec        

Figure 5: Free surface flow profile section (sphere diameter 3.125mm) 
 

Table 2. Simple cubic packing simulation results 

Spheres Diameter 25mm 12.5 mm 6.25 mm 3.125 mm 

Outflow flow rate  
(end time of simulation) 

506,960 
mm3/sec 

365,680 
mm3/sec 

163,450 
mm3/sec 

70,100 
mm3/sec 

Bubble Oscillation Frequency 298.5 Hz 224Hz 199Hz 174Hz 

Bubble Oscillation Amplitude 51 300 557.6 580 

Entrained bubble radius     (ana-
lytic prediction) 

10.9 mm 14.6mm 16.4mm 18.8mm 

Observed Simulation  
Bubble Volume 

12,284 mm3 12,190 mm3 16,423 mm3 16,396 mm3 

Bubble Surface Area 3,930 mm2 3,800 mm2 4,294 mm2 3,612 mm2 

Bubble (Cylindrical) Length 50 mm 50 mm 50 mm 50 mm 

Bubble Sphericity* 0.6551 0.6741 0.7227 0.8642 

Equivalent entrained bubble ra-
dius (simulation)  

14.31 14.27 15.77 12.51 

*calculated following Wadell (1935) 

Pressure signal analyses 

Figure 6 below shows the pressure signal for each of the simulations with the varying component sphere 

diameter porous structures. Also included on the figure is the pressure signal for a wave impact with a solid 

wall computed using a similar simulation setup. The solid wall impact results are taken from the analysis of  

Mayon et al. (2016).  

 
Figure 6: Pressure signals recorded at the interface of the porous structures 

 

Figure 7(a) show the pressure response recorded as the surging flow front impacts the solid and porous 

walls. There is a slight delay in the impact time for larger spheres as the wave front initially hits the these 

spheres at a position below P1 (see Figure 4) before flowing vertically up the face of the sphere thereby induc-

ing a pressure increase. The porous structures composed of the larger spheres also exhibit extended impact 

durations, also termed the rise time, see e.g. (Peregrine, 2003), (Mayon et al., 2016). Whilst the porosity of all 

the structures is identical the void channels between the larger spheres have a larger surface area opening, this 

allows the fluid to penetrate these porous structures more easily than the structure with more numerous but 

smaller surface area openings. This may be explained through the higher wall friction due to the greater specific 

surface area for the porous assemblages comprising of smaller spheres. The result of this longer rise time is a 

softer, less impulsive impact for the larger sphere structure. The higher flow rate through the larger sphere 

porous network supports this assertion.   
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Figure 7(b) shows the relationship between the sphere diameter and the magnitude of the impulse force. 

The magnitude of the impulse decreases monotonically as the component sphere diameter increases. 

 
(a) Impact pressure impulse                        (b)  

 Sphere diameter Vs impulse impact  

                                      pressure magnitude 
Figure 7: Initial impulse impact pressure 

Figure 8(a) displays a plot of the pressure signal for the various simulations as the formed vertical jet 

collapses and converges with the fluid in the bed of the domain. As the jet collapses a plunging breaker is 

formed as shown in Figure 5(d) and a bubble is entrained which compresses and dilates in a resonant oscillatory 

manner yielding the cyclic pressure response. As air entrained within a bubble is compressible, a larger bubble 

will resonate with a lower frequency as the amount by which it can compress and dilate is dependent upon its 

volume. The larger bubbles can compress to a greater extent relative to smaller bubbles, thus the amplitude of 

the oscillatory signal will be greater for these larger bubbles.  

T he pressure data is converted from the time domain to the frequency domain by preforming a Fourier 

Transform. Figure 8(b) shows the results of transform and each of the dominant simulation frequencies and 

amplitudes are recorded in Table 2. The signal frequencies are plotted against the sphere diameters on Figure 

9(a) and the signal amplitudes versus the sphere diameters on Figure 9(b).  

 The frequency of oscillation increases monotonically as the component sphere diameter increases. 

Additionally the amplitude of oscillation decreases monotonically. The pressure oscillation frequencies and 

amplitudes are directly related to the entrained bubble size. Nevertheless, as shown in Table 2 the observed 

simulation bubble volumes do not follow a trend whereby they increase as the sphere diameter decreases. This 

may be explained by a number of possibilities. As previously mentioned the smaller sphere based structure 

allows less fluid to penetrate. This means that more fluid will be rejected from the face of the porous structure 

for these smaller sphere simulations. This in turn will cause a the thicker jet to form. When this jet collapses it 

falls further away from the wall entraining a larger bubble. This larger bubble will have a lower pressure os-

cillation frequency and higher amplitude of pressure oscillation. However as shown on Figure 5(c) some of the 

fluid may collapse on the top of the porous structure and permeate down through the voids.    

Another reason for the discrepancy in oscillating frequency and amplitude may be due to the bubble 

shape.  Previous researchers have put forward contrasting opinions on the influence of sphericity on the oscil-

lation frequency of a bubble. Strasberg (1953) states that the oscillation frequency of non-spherical bubbles 

varies only slightly from the oscillation frequency of spherical bubbles, however both Weston (1966)1966)  

and Feuillade and Werby (1994) in their  studies on non-spherical bubbles (oblate and prolate spheroid shapes) 

have shown the frequency of oscillation may increase by up to 40% depending on the degree of non-sphericity. 

Thus for similar volume bubbles their shape may have a large influence on the observed results. Figure 10 

shows that there is a large variation in the shape of the bubbles generated in the different simulations. Table 2 

records the bubble sphericity for each of the simulations. this is calculated from Equation 16 Wadell (1935): 

Ψ =  
𝜋

1
3(6𝑉𝑣)

2
3

𝐴𝑣

 (16) 

Where Vv and  Av are the volume of the bubble and the surface area of the bubble respectively. 
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     (a) Time domain results        

            

            

            

            

            

            

            

            

            

            (b) 

  Frequency domain results  
Figure 8:CFD Simulation oscillatory impact pressure responses 

 

Finally Figure 11(a-d) shows spatial and temporal pressure signal attenuations within the porous media for 

each of the porous structures.  The oscillatory pressures attenuate more rapidly within the porous structures 

with the larger component sphere sizes. As the porous structures composed of the smaller component spheres 

exhibit a higher specific surface the larger volume of fluid trapped within transfers the oscillatory pressures 

through these porous structure more readily and deeper into the sturucture.  

           
(a) Time domain results        

            

            

            

            

            

            

            

            

            

                 (b) 

  Frequency domain results  
Figure 9: Sphere diameters Vs FFT results 
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    (a)   Entrained Bubble geometry from                                 (b)   Entrained Bubble 

geometry from 

         25mm sphere diameter simulation,                                    12.5mm sphere diameter simulation,  

          at time  t = 0.55 sec                                                             at time t = 0.55 sec 

 
    (c)   Entrained Bubble geometry from                                 (d)   Entrained Bubble 

geometry from 

          6.25mm sphere diameter simulation                                 3.125mm sphere diameter simulation 

            at time t = 0.55 sec                                                             at time  t = 0.55 sec 
 
 

Figure 10: Entrained Bubble Geometries 
 
 
 
 
 
 

 
Figure 11(a): Spatio-temporal pressure attenuation for 25mm diameter spheres 
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Figure 11(b): Spatio-temporal pressure attenuation for 12.5mm diameter spheres 

 

 
Figure 11(c): Spatio-temporal pressure attenuation for 6.25mm diameter spheres 

 

 
Figure 11(d) Spatio-temporal pressure attenuation for 3.125mm diameter spheres 

Figure 11: Spatio-temporal pressure attenuation for each porous structure simulations 
 

CONCLUSIONS AND FUTURE DEVELOPMENTS 

Wave impact pressures at a range of varying morphologies of porous structures have been investigated. 

A thorough parameterisation of the porous media has also been introduced. The influence of the porous struc-

ture on the pressure signal resulting from a surging flow front impact has first been analysed. We clearly show 

that a porous geometry consisting of larger elemental components reduces the magnitude of the impact pressure 

impulse but results in a longer pressure rise time. We next investigated the effect of varying porous morphology 
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structures on the pressure signal resulting from a plunging breaker wave impact. Again we demonstrated that 

a structure with higher specific surface area yielded higher frequency pressure oscillation signals although with 

lower magnitudes. We also demonstrated that the component sphere size in the porous structure influences the 

shape, volume and dynamics of the entrained air bubbles. The outflow rate (directly related to permeability) 

has also been shown to be influenced by the specific surface area of the porous geometry. Finally we have 

shown that the oscillatory pressure signal persists further into the porous structure comprised of the smaller 

sphere sizes. As a consequence of this early investigation, we have now successfully demonstrated we could 

control the impact pressure signals, their respective strengths and persistence in time by accordingly tuning the 

morphology of the receiving porous structure. Our ongoing and future work currently entails the synthesis of 

the relationship between such signals characteristics and the receiving impact media representative parameter-

isations. Specifically, ongoing research is for the discovery of the control of various sphere packing systems 

and different, more complex porous morphologies (fibrous, granular etc.) on bubble entrapment during wave 

impact and the resultant oscillatory pressure signals.  These are the specific oscillatory forces which inflict the 

most damage on structures in the long term. 
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