The University of Southampton
University of Southampton Institutional Repository

Biological molecules for the formation and assembly of metal-organic frameworks

Biological molecules for the formation and assembly of metal-organic frameworks
Biological molecules for the formation and assembly of metal-organic frameworks
Metal-organic frameworks (MOFs) are a class of highly porous hybrid materials – consisting of metal ion based nodes and bridging organic linkers, connecting in two or three-dimensional periodic structures. By combining different inorganic and organic building units a variety of structures and properties can be tailored to a range of applications – gas storage and separation, catalysis and biotechnology. Some of these applications require benign building blocks that are biologically compatible or require specific morphology and crystal size.

The first part of the thesis focuses on using biomolecules as the organic constituents in MOFs. Biomolecules attract particular attention because of their diverse metal binding sites, increased biocompatibility along with developing structural and chemical diversity of the material, for example affording chiral frameworks. Three groups of molecules were investigated: nucleotides, nucleic acids and peptides. Various experimental conditions were employed in the quest to establish conditions under which a porous network comprising of one of these biomolecules were formed. One-dimensional crystal morphology of zinc and copper with nucleotides were identified along with a spherical zinc-peptide structure. However, no porous material was discerned in this investigation.

The final part of the thesis explores biomimetic mineralisation of MOFs; utilising biomolecules as organic matrix for the assembly of inorganic materials. Peptides were explored due to their selfassembly and substrate recognition properties that could potential provide high levels of control during the synthesis. Specific peptide sequences that bound to the desired material were highlighted using the phage display technique, a combinatorial biology protocol used to identify binding peptides via a rapid directed-evolution approach. Millions of phages bearing different peptides are exposed to a target material to select the best binding sequence(s) from the genetically engineered library. This thesis demonstrates a successful application of phage display identifying sequence-specific peptides for MOFs and the peptides subsequent successful use in synthesising a crystalline material; experimental conditions were established where a crystalline framework does not form in the absence of the peptide. Additional outcomes emphasised the effect of framework functionality on the identified peptide sequence(s).
University of Southampton
Willimott, India Jane
ff1e774d-dd3b-44f1-ad8c-3edd290433b8
Willimott, India Jane
ff1e774d-dd3b-44f1-ad8c-3edd290433b8
Bradshaw, Darren
7677b11e-1961-447e-b9ba-4847a74bd4dd

Willimott, India Jane (2018) Biological molecules for the formation and assembly of metal-organic frameworks. University of Southampton, Doctoral Thesis, 294pp.

Record type: Thesis (Doctoral)

Abstract

Metal-organic frameworks (MOFs) are a class of highly porous hybrid materials – consisting of metal ion based nodes and bridging organic linkers, connecting in two or three-dimensional periodic structures. By combining different inorganic and organic building units a variety of structures and properties can be tailored to a range of applications – gas storage and separation, catalysis and biotechnology. Some of these applications require benign building blocks that are biologically compatible or require specific morphology and crystal size.

The first part of the thesis focuses on using biomolecules as the organic constituents in MOFs. Biomolecules attract particular attention because of their diverse metal binding sites, increased biocompatibility along with developing structural and chemical diversity of the material, for example affording chiral frameworks. Three groups of molecules were investigated: nucleotides, nucleic acids and peptides. Various experimental conditions were employed in the quest to establish conditions under which a porous network comprising of one of these biomolecules were formed. One-dimensional crystal morphology of zinc and copper with nucleotides were identified along with a spherical zinc-peptide structure. However, no porous material was discerned in this investigation.

The final part of the thesis explores biomimetic mineralisation of MOFs; utilising biomolecules as organic matrix for the assembly of inorganic materials. Peptides were explored due to their selfassembly and substrate recognition properties that could potential provide high levels of control during the synthesis. Specific peptide sequences that bound to the desired material were highlighted using the phage display technique, a combinatorial biology protocol used to identify binding peptides via a rapid directed-evolution approach. Millions of phages bearing different peptides are exposed to a target material to select the best binding sequence(s) from the genetically engineered library. This thesis demonstrates a successful application of phage display identifying sequence-specific peptides for MOFs and the peptides subsequent successful use in synthesising a crystalline material; experimental conditions were established where a crystalline framework does not form in the absence of the peptide. Additional outcomes emphasised the effect of framework functionality on the identified peptide sequence(s).

Text
India Willimott Thesis Chemistry 24071587 - Version of Record
Available under License University of Southampton Thesis Licence.
Download (33MB)

More information

Published date: April 2018

Identifiers

Local EPrints ID: 422223
URI: http://eprints.soton.ac.uk/id/eprint/422223
PURE UUID: d83287f6-8c38-4b29-ae6b-bc28939a8a8e
ORCID for Darren Bradshaw: ORCID iD orcid.org/0000-0001-5258-6224

Catalogue record

Date deposited: 19 Jul 2018 16:30
Last modified: 16 Mar 2024 06:52

Export record

Contributors

Author: India Jane Willimott
Thesis advisor: Darren Bradshaw ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×