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Doctor of Philosophy

Conformational sampling of intrinsically disordered peptides by

enhanced sampling methods

by Marija Miljak

The aim of this study was to explore the conformational equilibrium of four

cyclic hormone peptides in order to investigate to what extent the bound confor-

mational state can be observed from the solution phase simulations. The studied

cyclic peptides share the same structural motif of a six membered ring closed by

disulphide bridge between the cysteine residues. They also belong to the class

of intrinsically disordered peptides known to exist in an equilibrium of different

conformations. Elucidating their conformational ensemble using traditional ex-

perimental techniques has proven hard due to the fast interconversion between

conformational states, and thus molecular dynamics simulation may help in pro-

viding a detailed picture of the peptide’s conformational ensemble.

However, conventional molecular dynamics simulation are limited by the long

time scale required to observe many conformational motions. Therefore in this

work Replica Exchange techniques were applied to test the rate of convergence

in conformational sampling. Moreover, to predict the conformational equilibrium

of the peptides, a combination of results from enhanced sampling methods, DFT

calculations and NMR experiments was used. It was found that calculated chemi-

cal shifts weighted by the ensemble populations of each conformational state were

better able to reproduce the experimental chemical shift data, over and above

any single peptide conformation. This result supports the use of enhanced sam-

pling molecular dynamics computer simulations to study intrinsically disordered

peptides.

The knowledge of the conformational equilibrium and the relative populations

of the unbound states of the peptides obtained using this approach may help in

predicting the structural and functional roles of the bound state peptide. Another

purpose of this work was also to check the extent to which a difference in peptide

sequence may contribute to their functional diversity. Finally, the performance of



the Replica Exchange simulations was compared, indicating that Solute Tempering

is to be preferred over temperature Replica Exchange for reasons of computational

efficiency.
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Chapter 1

Introduction - The structure and

biological function of peptides

1.1 The structure of peptides

Peptides are short chains of amino acids linked by peptide bond. They are com-

posed of up to 50 amino acids, in comparison to proteins whose chain length can

exceed 100 residues [1]. A peptide bond is defined as a bond between the carbonyl

carbon and the amide nitrogen. It is of partial double bond character due to the

delocalisation of the lone electron pair from nitrogen, which restrains the peptide

bond rotation and makes it planar. This causes peptide bond to be in either cis

or trans configuration [2]. In nature, the trans conformation of the peptide bond

is favoured over cis conformation due to steric effect arising between two alpha

carbons being on the same side [3]. The cis/trans configuration of the peptide

bond is described by ω torsion angle defined between CAi − Ci − Ni+1 − CAi+1

atoms. A cis conformation takes values of ω close to 0 deg, and around ± 180 deg

for trans configuration of the peptide bond.

A special case is a peptide bond next to proline, usually referred to as Xaa-Pro

where Xaa is any amino acid. Due to the tertiary nature of the amide nitrogen in

proline, cis/trans isomerisation is almost equally energetically favoured [4, 5].

Peptide backbone flexibility is described by extra two angles, φ and ψ. The

φ is describing the rotation around C-N-CA-C bond, and ψ around N-CA-C-N

bond (Figure 1.4). The φ and ψ torsion angles are usually used to describe sec-

ondary structure motifs in peptides. All values of the φψ angles are possible in
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the −180◦ to 180◦ angle range, but due to the steric constraints between atoms in

the polypeptide backbone and amino acid side chains, not all values are allowed.

The φψ angles distribution is usually given by the Ramachandran plot [6], which

provides an easy view of the energetically allowed regions of the φψ angles in pro-

teins (Figure 1.1).

Figure 1.1: A Ramachandran plot showing the allowed regions of φψ angles in green for the

given molecule. The structure on the right is disfavoured due to the steric clashes between the

atoms surrounded by red semicircles [7].

A sequence of amino acids building a particular protein is known as the primary

protein structure. Other structural levels of organisation distinguished in pro-

teins include secondary structure which describes particular structural segments,

tertiary structure which defines three dimensional (3D) structure of protein, and

quaternary which refers to the interactions between domains belonging to the same

protein chain, and interactions formed by distinct protein chains [8].

1.2 Secondary structure elements

In the context of this work, secondary structure motifs are particularly relevant.

There are several types of secondary structures found in proteins, such as alpha

helices, beta sheets, turns and coils [9].

A coil is usually referred to as a sequence of amino acids that are neither helix,

beta sheet or turn.

An alpha helix is secondary structure type often found in larger proteins

(Figure 1.2 (b)). It is defined between four consecutive residues forming a 3.6 turn
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connected with hydrogen bond between amine at residue i and carboxyl group at

residue i+4 [10]. This ideal helix is also referred to as 3.613 helix, where 3.6 is the

number of residues per turn, and 13 is the number of atoms in one turn. Another

type of helix occurring in proteins is 310 helix with turn made of three residues,

and a hydrogen bond between residues i and i+3, instead of i+4 for ideal alpha

helix.

Another secondary structure type often found in proteins is beta sheet (Figure

1.2 (a)), where several protein beta strands are joined edge to edge in the opposite

direction (antiparallel) or in the same direction (parallel) to form a sheet where

the CO group of each amino acid beta strand is bound by hydrogen bonds with

the NH group of the other strand [11].

Figure 1.2: (a) A protein rich in beta sheets (blue arrows), (b) An alpha helical protein [7].

While alpha helices and beta sheets are characterised with repetitive motifs

stabilised by hydrogen bonds, another type of secondary structure element, called

turn, is characterised by a particular range of φψ torsion angles. There are two

types of turns, β-turn and γ-turn. More detailed description of the turn types is

given in the next section.

1.2.1 β-turns

A β-turn was first recognised as a secondary structure motif by Venkatachalam

[12] who was looking for conformational pattern occurring in a system linked by

three consecutive peptide bonds that could be stabilised by the hydrogen bonds
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between residues i, i+3.

He discovered three different β-turn types depending on the value of φ and ψ

torsion angles of the residues i+1 and i+2 (I,II,III). Type III is simply 310 helix,

already described in the previous section. Types I and III β-turns differ only by

30◦ for the values of angles φ(i+ 2) and ψ(i+ 2) (Table 1.1).

However, not all β-turns posses a hydrogen bond, so Lewis et al. [13] suggested

a new criterion for β-turn definition imposing the requirement that the distance

between the Cα (i) and the Cα (i+3 ) was < 7 Å and the residues involved were

not helical. If a hydrogen bond is not present and φψ torsion angles are varying

+/- 30◦ from the ideal turn values, then turn type is referred to as open [14].

In addition to types I, II and III, each of these three turns types also has a

backbone mirror-image conformation I’, II’, and III’.

Other turn types include type VI β-turns which differ from other turn types

because they involve cis-proline peptide bond at i+2 position, additionally divided

into subtypes VIa and VIb [9] (Table 1.1).

The list of the most common β-turn types is given in Table 1.1 [9], while the

difference between some of them is visually shown in Figure 1.3.

Type φ (i+1) ψ (i+1) φ (i+2) ψ (i+2)

I -60 -30 -90 0

II -60 120 80 0

III -60 -30 -60 -30

I’ 60 30 90 0

II’ 60 -120 -80 0

VIII -60 -30 -120 120

VIa -60 120 -90 0

VIb -135 135 -75 160

Table 1.1: Type of β-turns and their ideal φ and ψ angles. The values of the φ and ψ angles

are allowed to vary +/- 30◦ from the ideal turn values.

1.2.2 γ-turn

A γ-turn is defined between three consecutive residues and contains hydrogen bond

between carbonyl oxygen CO of residue i and backbone amide NH of residue i+2

[16]. There are two types of γ-turns, inverse and classic, depending on the torsion

angle values of the residue at position i+1 [17]. The φψ torsion values defining
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Figure 1.3: A different types of β-turns (I, I’, II, II’) depending on the value of φ and ψ torsion

angles of the residues i+1 and i+2 [15].

the γ-turn are given in the Table 1.2. It shows that γ-turns are related like mirror

images, just like β-turn types I and I’, or types II and II’.

Type φ (i+1) ψ (i+1)

γclassical +75 -65

γinverse -75 +65

Table 1.2: Type of γ-turns and their ideal φ and ψ angles. The values of the φ and ψ angles are

allowed to vary +/- 30◦ from the ideal turn values.

Classic γ-turns are less common in proteins, but they are responsible for 180◦

flip of the polypeptide chain. On the other hand, inverse γ-turns are more common,

and they tend to introduce a kink in the polypeptide chain [18].

1.2.3 Hydrogen bonds

Besides the peptide bond rigidifying the peptide structure (see Section 1.1), the

secondary and tertiary structural elements are also stabilised by forming hydrogen

bonds between the residues.

A hydrogen bond is formed when a hydrogen atom is shared between two strong

electronegative atoms, usually referred to as atom donor (D) and atom acceptor

(A), and binds them together. The hydrogen bond is defined by the distance d

between acceptor and donor atoms, d = D −H...A which is typically in range 1.6

- 2.5 Å and the angle enclosed by acceptor and donor atoms θ = D−H...A, which

value is between 90◦ and 180◦ [19]. The example of the hydrogen bond formed

between two alanine dipeptides is shown in Figure 1.4.
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Figure 1.4: The hydrogen bond formed between two alanine dipeptides. d is the distance between

donor D and acceptor A atoms, and θ is the angle between them. The φ and ψ are torsion angles

used to describe peptide backbone conformation.

1.3 Cyclic peptides

Several factors affecting peptide conformational flexibility, such as the peptide

bond, secondary structure elements and hydrogen bonds have already been de-

scribed. Another feature that restricts peptide conformational flexibility is cycli-

sation [20].

Cyclic peptide is defined as a polypeptide chain in which two parts are cova-

lently linked to make a cyclic motif. The classification covers both natural and

synthetically synthesized cyclic peptides. Based on the bond type between the

amino acids in the cyclic part of the structure, cyclic peptides can be classified

as either homodetic (only peptide bond is present) or heterodetic (other functional

groups but peptide bond are used to connect amino acids) [21]. There are different

ways in which cyclic peptide can be formed:

• head-to-tail (homodetic): cyclic part is formed between the N-terminal amino

group and C-terminal carboxyl group making peptide bond [22]

• side chain to side chain (homodetic or heterodetic): the bond is formed by

the side chains of different amino acids [23]

• head to side chain or side chain to tail (heterodetic): a cyclic part is formed

by the N- or C- terminal connected to the side chain functional group [24]

Naturally occurring cyclic peptides are most often formed by head-to-



CHAPTER 1. INTRODUCTION 33

Figure 1.5: The examples of cyclic peptides: (a) Cyclosporin A (PDB ID: 1IKF), (b) Sunflower

trypsin inhibitor (STF-1) (PDB ID: 1SFI), (c) Theta defensin 1 (RTD-1) (PDB ID: 2LYF)

tail cyclisation [25], with the well known example cyclosporin A [26] (Figure 1.5

(a)). This category also includes peptides connected by disulfide bond between

cysteine residues [27]. The examples are sunflower trypsin inhibitor (STF-1) from

sunflower seeds connected by one disulfide bond [28] (Figure 1.5 (b)) or theta

defensin connected by three disulfide bonds expressed only in macaques and Old

World monkeys [29] (Figure 1.5 (c)). This category also involves plant peptides

cyclotides in which cyclic part is formed via head-to-tail cyclisation, additionally

strengthened by three disulfide bonds [30].

Although there exist biologically active cyclic dipeptides - known as dike-

topiperazines [31], particularly interesting are small cyclic peptides with three

to six ring residues [32]. Despite being small in size, they can show a variety of

conformational flexibility, including the occurrence of cis peptide bond [33]. While

in linear peptides, cis isomerisation is present mostly in peptide bond involving

Proline residue [34], in cyclic peptides, the cis/trans ratio was shown to be depen-

dent on the ring size with smaller ring size correlated with the higher occupation

of the cis peptide bond [35]. This is probably due to the high cis/trans energy

barrier (approx 20 kcal/mol), while it is lowered (approx 15 kcal/mol) in Xaa-Pro

amide bond (Xaa - any amino acid) [36].

Other factors limiting the conformational diversity of cyclic peptide involve

the formation of intramolecular hydrogen bonds, or they become conformational

restrained by forming beta turns [4]. Moreover, it was found that cyclisation

promotes secondary structure β-turn formation in peptides [37], while internal
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hydrogen bonding promotes passive membrane permeation [38].

Thus, the prediction of the cyclic peptide structure remains challenging task

because of the different factors affecting the conformational flexibility [41], and

computational methods have emerged as a promising tool to elucidate their de-

tailed conformational diversity [39, 40]. For example, using enhanced sampling

computational method short cyclic tetrapeptides were found to adopt several in-

terchanging conformations [36].

1.3.1 Peptide hormones

A special class of cyclic peptides are those which act as peptide hormones [33].

There are a few cyclic peptide hormones expressed in humans - all creating a

cyclic part by disulfide bond between two cysteine residues, which differ by the

length of the ring part:

• 6-membered ring: Arginine-Vasopressin, Oxytocin, Urotensin II, Urotensin

Related Peptide

• 10-membered ring: Melanin-concentrating hormone

• 12-membered ring: Somatostatin-14

Cyclic peptide hormones are secreted by multiple endocrine organs, such as

hypothalamus, pituitary gland, as well as different tissues such as heart, pancreas,

kidney etc. After being released into blood stream, hormones bind to the specific

plasma membrane receptors, initiating signal transduction via secondary messen-

ger system connected to receptors, and subsequently generate specific metabolic

responses [42].

1.3.2 Receptor binding mechanism

The traditional lock-and-key hypothesis assumes that biomolecules adopt a single

conformation which is also their bioactive conformation [43]. This mechanism,

introduced by Fischer in 1894, was then extended to the induced fit mechanism

which suggests that an enzyme changes its shape upon ligand binding to receptor

[44]. This model is also known as gloves fitting the hand model. Therefore, unlike

the lock-and-key mechanism which describes receptor and ligand as rigid molecules
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that need to fit perfectly to trigger reactions, induced fit mechanism describes that

the enzyme active site adjusts its shape to fit substrate.

However, especially relevant to this work are cyclic peptides binding to G-

protein coupled receptors (GPCRs), and the associated binding mechanism. GPCR

receptors are the largest family of the cell surface receptors in our body. They are

made of 7 transmembrane (TM) helices embedded in a membrane connected with

intracellular and extracellular loops. When a ligand binds, it causes conformational

change in GPCR resulting in cascade reactions leading to different biological re-

sponses [45].

It was long thought that GPCRs act like switches; agonist binding activates

GPCR signalling while antagonist binding prevents GPCR activation. The pro-

posed mechanism for agonist/antagonist activity includes interaction with the cell

surface [46] or the extracellular loops first [47], and then insertion of the peptide

ligand into the receptor binding pocket.

However, experimental evidence emerged revealing that distinct GPCR confor-

mational subsets are activated when different ligands bind, and based on that, each

triggers different cascade pathways [48]. This mode of action has been referred to

as biased agonism, and has also been observed for other receptors too, such as the

CCR7 receptor [49].

For example, biased agonism is suggested as a mode of action for two cyclic

hormone peptides, Urotensin II and Urotensin Related Peptide which bind to the

same receptor, but exert different actions [50]. However, the detailed description

of the receptor activation via the biased agonism mechanism remains unclear [51].

1.3.3 Biological activity

Finally, the peptide structure is only relevant in terms of their biological activity.

A peptide is considered bioactive if it shows an effect on bodily functions. Peptides

are involved in many biological processes - they can act like hormones or drugs, and

their activity ranges from antimicrobial, anticancer to diuretic, anti-inflammatory,

cytotoxic etc. [52]. The cyclic peptides also show a range of biological activity,

with Table 1.3 giving some of the examples of the cyclic peptides with associated

biological activity.

Of particular interest in this study are cyclic hormone peptides, Vasopressin

and Oxytocin (Table 1.3), which function by binding to the G-protein coupled
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Cyclic Peptide Function Reference

Cyclosporine A antifungal, anti-inflammatory [53]

Cyclomarine A anti-tubercolosis, anti-malaria [54]

Oxytocin uterus contractions during labour [55]

Theta Defensin antimicrobial [56]

Valinomicyn cytotoxic [57]

Vasopressin signal transduction, antidiuretic activity [58]

Table 1.3: A few examples of the functional diversity of bioactive cyclic peptides.

receptors.

1.3.4 Cyclic peptides in drug discovery

Cyclic peptides are particularly interesting in terms of drug design because it was

found that they are modulators of protein-protein interactions [59]. The main ad-

vantage for the use of these peptides as drug molecules is that they are less toxic

and have good binding affinity compared to small molecules [60]. However, there

are some disadvantages compared to small molecules. Peptides are poorly orally

absorbed and are prone to enzymatic degradation in the gastrointestinal tract [61].

However, their degradation products are less toxic to our organism compared to

small molecules because the peptides are made of amino acids which are essential

for body function. Moreover, N-methylation was found to improve intestinal per-

meability for some cyclic hexapeptides [62]. Furthermore, it is assumed for cyclic

peptides, due to their ability to form intramolecular hydrogen bonds (leading to

a reduction of the hydrophilic surface), that this structural characteristic may

facilitate membrane crossing. The Cyclosporin A is an example of a membrane

permeable cyclic peptide that crosses the membrane by hiding its hydrogen bonds

by forming intramolecular hydrogen bonds [38].

Another advantage of cyclic peptides as drug molecules includes high specificity

to their targets and high potency which makes them attractive in terms of peptide-

based drug research [63]. Special interest is seen for GPCR-targeted drugs which

make 30-50 % of the global market [64]. Many of these drugs belong to the class of

peptide hormones, and of these, cyclic peptides are the most interesting because of

their low degradation and high bioavailability. There are a few synthetic peptides

derived from the cyclic hormone peptides studied in this work. Some of the Vaso-

pressin peptide derivatives include argipressin, desmopressin acetate, lypressin, all
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acting as therapeutics for diabetes insipidus [65]. Oxytocin derivatives on the drug

market are carbetocin and atosiban acetate used to stop after Caeserean bleeding

and premature contractions, respectively [65].
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1.4 Motivation for the study

As it was shown, the peptides are dynamic molecules with versatile biological

activity. Although they are small in size, they are rather flexible which helps

them perform different functions. In the focus of this thesis was elucidating the

conformational space of the four small cyclic peptides known to be involved in

multiple physiological functions in our body. The studied peptides are known to

act as ligands to GPCR receptors, which makes them attractive target for the drug

design.

Since structure and function are closely related to each other, knowing their

structural dynamics may contribute to understand their bioactivity. The char-

acterisation of their conformational space was explored using a combination of

methods. Results obtained using enhanced sampling methods, DFT chemical shift

calculations and NMR chemical shifts were used to gain knowledge of their confor-

mational equilibrium in solution. The aim of the thesis was therefore to understand

the conformational ensemble of the four cyclic peptides in solution in order to ex-

plore to what extent their unbound conformational dynamics is predictive of their

bound crystallographic conformational state.

The small cyclic hormone peptides studied in this work can also be considered

as belonging to the class of intrinsically disordered peptides, whose structure is

commonly determined using NMR experiment. The overview of the NMR tech-

nique is given in Chapter 2. Next, the literature review, simulation setup and

results are given separately for each of the four peptides in the subsequent four

chapters. Finally, the comparison between the conformational ensembles of all

studied peptides, together with the comparison between the performance of the

enhanced sampling methods used to explore their conformational flexibility is given

in the last chapter.



Chapter 2

Intrinsically disordered peptides

It was long thought that protein structure is well defined from its amino acid

composition. However, more recently proteins with rather flexible yet biologically

active structures were discovered, but were given different names, such as natively

denatured, intrinsically unstructured, intrinsically unfolded etc. so the classical

paradigm was hard to break [66].

Furthermore, it was recognised that this sequence - structure - function paradigm

is not true for all the proteins encoded in the genome, and that there are naturally

flexible proteins with more than 30 % presence in the eukaryotic proteome [67].

Therefore, the term “intrinsically disordered ”protein (IDP) has emerged [67], re-

ferring to a corresponding protein (or protein region) that is biologically active yet

exists in an ensemble of flexible conformations.

Sequence signature. Since protein function is related to sequence, the se-

quence composition of the intrinsically disordered proteins was analysed in the

same way. It was revealed that IDPs sequence is enriched in the hydrophobic

(Trp, Phe, Tyr, Leu) and charged residues (Lys, Arg, His, Asp, Glu) [68]. This

sequence composition was recognised to be correlated with the low protein com-

pactness promoting flexible secondary structures, such as coils or turns, rather

than the compact, globular protein conformation [69].

However, there is a considerable interest in revealing how these unstructured

proteins perform their biological functions. The first step in discovering this is

knowing the mechanism of the binding to receptor.

Receptor binding. An IDP binding to the target receptor has been described

as either gaining the structural compactness known as “folding upon binding” or

39
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maintaining its solution structure known as “folding before binding” [70].

In the context of IDPs, folding upon binding means that the conformational

rearrangement is occurring in such a way that an unfolded IDP becomes structured

once bound to the complex [70]. This mechanism is also known as “coupled folding

and binding” or “induced fit [70, 71].

However, an IDP can also preserve the structure already pre-existing in so-

lution in a binding mechanism known as “conformational selection” or “folding

before binding” [72]. Conformational selection implies that the bound conforma-

tion was already formed in solution, and that IDP preserves this conformation

upon binding. Experimental evidence for this mechanism was found for the nu-

clear coactivator binding domain [73] and redox switch CP12 protein [74], and

came from combined NMR and X-ray analyses. However, it should be emphasised

that ligand recognition is not exclusive to one of these two mechanisms but can

also be a combination [75].

Another proposed mechanism of action is the so called fly-casting mechanism

where the unfolded state binds weakly at a relatively large distance followed by

folding as the peptide approaches the binding site [76]. Another interesting inter-

action mechanism includes IDPs binding to the same receptor in so called many-

to-one mode, or an IDP binding to different receptors (one-to-many mechanism)

[70].

To summarise, IDPs are a new subclass of biomolecules which have only

recently been recognised. The classification includes both peptides or proteins as

a whole, or only specific protein regions. IDPs are widely expressed in the human

genome, and have a variety of functions, from transcription and post translational

regulation to signalling [77], and involvement in neurodegenerative diseases [78].

However, in order to perform their function, they need to bind to a particular

receptor to start the signalling pathway. A few binding mechanisms were reviewed

in this section, indicating that IDPs have no single preferred binding mode, which

could be due to their inherent structural diversity. Therefore, the knowledge of

their structural ensemble may help in understanding the molecular mechanisms

responsible for their function.
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2.1 Conformational ensemble of IDPs

The knowledge of the molecule 3D structure gives an insight into its biological

functions. In a cell, molecules are constantly on the move, and consequently may

change their structure as a result of their dynamics to match their function. Par-

ticularly challenging is the characterisation of IDP structural ensemble because

they are believed to adopt a range of structural substates.

The most common experimental technique for determining IDP structure is

NMR spectroscopy [79]. Compared to X-ray diffraction where only a single struc-

ture is obtained, NMR captures peptide dynamics. Moreover, the advantage of

NMR over other experimental methods is that it gives the information about the

peptide dynamics in a solution state, which is close to the natural physiological

environment. NMR can also provide the peptide ensemble conformation in contact

with SDS micelles which mimic the cell membrane environment.

However, structural complexity can sometimes prove hard to experimentally

characterise with NMR due to time and ensemble averaged signals being trans-

lated into structural features. Ensemble average means that the obtained ensem-

ble is averaged over many microstates, and time ensemble means that measured

parameters are averaged over a certain period of time [80]. For example, in NMR

the motion of typically 1014 − 1017 molecules in the test tube is fitted to averaged

experimental data.

Despite that, NMR can still provide valuable information about peptide struc-

tural diversity. The information gathered from NMR is contained in the different

measured observables: chemical shifts provide with secondary structure content

of the molecule,; spin-spin or J couplings report on backbone dihedral angles; the

nuclear Overhauser effect (NOE) specifically provides distance information, and

residual dipolar couplings (RDC) report on the orientation of the spatially distant

parts of the protein [81].

In the following sections, more detailed descriptions of each of the NMR ob-

servables is given and how each is transferred into the peptide 3D structure infor-

mation.
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2.1.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is an experimental technique commonly used

to determine structure of biomolecules. The experimental instrument consists of a

magnet which produces uniform, intense magnetic field, a signal amplifier, detec-

tor and receiver. A typical NMR superconducting magnet is producing a magnetic

field of 10 T or more [82]. The reason of using such strong magnetic fields is two

fold; stronger magnetic field intensifies the transitions between the energy levels,

and simplifies the appearance of certain spectra lines. The sample is kept in be-

tween the magnet and is exposed to the flashes of the radio frequency (RF) short

impulses which causes certain nuclei to excite and the signal is measured.

The measured phenomena arises from the fact that electrons and nuclei possess

the intrinsic property called spin. When a magnetic field is applied to the electron,

it can adopt two spin orientations, ms = ±1/2. On the other hand, nuclear spin

can adopt 2I + 1 orientations, where I is nuclear spin quantum number, which

depends on the particular nuclear under consideration.

Each electron spin state has its associated energy given by

EmS = −geγh̄BmS (2.1)

where ge is a g-value for the electron which has a value of 2.0023 for the free

electron, B is magnetic field, h̄ = h/2π is reduced Planck constant, and γ is the

magnetogyric ratio.

γ = − e

2me

(2.2)

where me is the electron mass, and e is the magnitude of electron charge. It is

common to express energy in terms of Bohr magneton which is defined as

μB =
eh̄

2me

(2.3)

Substituting this into the energy term (Equation 2.1), a new expression for the

energy of the spin state is obtained

EmS = geμBBmS. (2.4)

The electron spin states are usually denoted as mS = 1/2 = α and mS =

−1/2 = β. The α state is at higher energy than the β state.
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The energy difference between two spin states in then given as

ΔE = Eα − Eβ =
1

2
geμBB − (−1

2
)geμBB = geμBB (2.5)

The same set of equations may be applied to the nuclear spin system. However,

in the magnetic field B, the nuclear spin can have 2I + 1 orientations. The energy

of each level is given as

EmI = γN h̄BmI (2.6)

where γN is the nuclear magnetogyric ration, mI is the nuclear spin angular

moment taking values mI = I, I−1, I−2....−I, h̄ reduced Planck constant and B

is magnetic field. The energy term is usually written in terms of nuclear megneton

μN

μN =
eh̄

2mP

(2.7)

where mP is the proton mass and e is the magnitude of proton charge. In that

case, the energy of the nucleus is expressed as

EmI = −gIμNBmI (2.8)

For the nuclear spin system I=1/2, the energy level mI = −1/2 = β is at higher

energy level than mI = 1/2 = α.

If we look at the electron and nuclear spin systems with classical analogy, then

they can be considered as tiny magnets. In the presence of magnetic field B, they

are not perfectly aligned along the B axis, but they orbit around it with angular

frequency known as Larmor frequency given by

ω = γB (2.9)

which only depends on the magnetogyric ratio γ, and magnetic field B.

When a radio frequency (RF) pulse is applied with appropriate energy (equal

to the difference in energies of the two levels), transitions between the two energy

levels will be induced. This suggests that the resonance absorption happens when

the precession frequency matches that of the applied radio frequency field, and as

a result the intensity on the spectrum is recorded.

2.1.1.1 Chemical shifts

The chemical shifts phenomenon comes from the nuclear spin coming into contact

with the surrounding magnetic field. The magnetic field felt on the nucleus comes
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from both the externally applied magnetic field and from the magnetic field pro-

duced by the surrounding electrons. The magnetic field experienced from the local

environment is expressed as

Badd = σB (2.10)

where σ is the shielding constant which can have positive or negative value depend-

ing on whether the induced field adds or subtracts from the applied field. This

local electron magnetic field ”shields” the nucleus from the full force of external

magnetic field. In that case, the total magnetic field experienced by the nucleus

becomes

Bloc = B +Badd = (1 − σ)B (2.11)

and the resonance condition equals

ν =
γNBloc

2π
=
γN
2π

(1 − σ)B (2.12)

Having introduced the shielding constant, the chemical shift of the nucleus is

defined as the difference between its resonance frequency and that of a reference

standard. The common reference standard in proton resonance is TMS or chemi-

cally known as tetramethylsilane Si(CH3)4. Shielding constants are converted into

chemical shifts using this formula

δ =
ν − ν0

ν0
× 106 (2.13)

where ν0 is a resonance frequency of the standard. The chemical shifts are mea-

sured in parts per million (ppm).

Chemical shifts are often used to assign secondary structure based on the chem-

ical shift index method [83]. Based on the set of rules, the measured chemical

shifts of the particular nuclei are then compared with the reference values, and the

protein conformational state can bes assigned as a helix, beta strand or random

coil. In addition, the tables of typical ranges for the 1H chemical shifts for certain

chemical groups exist that facilitate the assignment of the NMR spectra [82].

2.1.1.2 Spin - spin coupling

There is usually more than a single signal peak appearing for a given chemical shift

in an NMR spectrum. The signal is often split around a central chemical shift.

This phenomenon comes as a result of the neighbouring spin spin interactions in
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the system. The strength of interaction is expressed in terms of the spin-spin cou-

pling constant J and is measured in Hz. The spin spin interaction is an intrinsic

property of the molecule and does not depend on the magnitude of applied mag-

netic field.

In the case of a one proton system , a nucleus of I = 1/2 spin will have

2I + 1 = 2 orientations. These orientations are of equal energy so in the absence

of external magnetic field, there is no energy state splitting.

However, when a magnetic field is applied, the energy levels split as is observed

in Figure 2.1. The lower energy state is more populated than the higher energy

state. This is given by the Boltzmann distribution. If the system is irradiated at

the frequency that matches the energy difference between the energy states, then

we get resonant conditions and the population of the energy states equalizes. This

is observed as the appearance of the signal on the spectrum (Figure 2.1).

Figure 2.1: In the absence of the external magnetic field Boff , the spins are occupying the same

energy state. However, when the external magnetic field Bon is applied, the energy levels split

what is observed as the appearance of the signal line on the spectrum.

In case of a two nuclei AX system (letters far apart mean that the associ-

ated nuclei chemical shifts are very different), there are four energy levels possible

because each nucleus has two possible spin energy states (Figure 2.2).

If we first consider proton A, and it changes its spin state from α to β, X nu-

cleus remains in its spin state, which can be α or β. This is observed as splitting

of the signal separated by J because of the two transitions possible. The same

applies to the X nucleus, which can change its spin state from α to β, but the A

nucleus remains in one of its spin states, α or β. There are two transitions possible,
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and this is also observed as the signal splitting differing in frequency by J. The

mechanism is shown on the Figure 2.2.

Figure 2.2: Two proton system occupies four energy levels. When A nucleus changes its spin

state from α to β, the X nucleus remains in on of its spin states, α or β. This corresponds to 1-2

and 3-4 transitions. The same applies to X nucleus; it can change its spin state from α to β, with

A nucleus remaining in its spin state, which is either α or β. This transition is observed as 1-3

and 2-4 transition on the plot. The J coupling is observed as signal splitting on the spectrum,

shown on the right.

The splitting of the signal follows a simple rule where n neighbouring magnet-

ically equivalent nuclei split the signal into n+1 multiplets with intensities follow-

ing Pascal’s triangle rule (Figure 2.3). Protons that are separated by four or more

bonds do not couple.

Figure 2.3: Pascal’s triangle is used to predict the intensity of the lines in the NMR spectrum.

J-coupling constant is related to the electronic structure, geometry, and con-
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formation of a molecule. However, specially important is the dependence of the

coupling constant on the torsion angle defined by three bonds. This dependence

is explained by the Karplus equation [84]

3J(H,H) = A+Bcosφ+ Ccos2φ (2.14)

It states that if we know the coupling constant between hydrogen atoms sepa-

rated by 3 bonds, then the angle between them can be determined using the above

equation. It predicts the angle between H-x-x-H atoms, where x is any atom.

The above constants A, B, C take the values +7 Hz, -1 Hz and +5 Hz, respec-

tively in case of the H-C-C-H dihedral angle [84]. Their values are empirically or

experimentally derived and depend on the substituents involved [85].

Figure 2.4: Karplus curve shows the dependence of 3J(H,H) on the dihedral angle in H-x-x-H

system where x is any atom [82].

2.1.1.3 Nuclear Overhauser Enhancement (NOE)

The Nuclear Overhauser Enhancement (NOE) effect is defined as the transfer of

the nuclear spin polarisation from one nucleus to another via the process called

cross relaxation [86]. In the equilibrium state, the lower energy state mI = 1/2 = α

is more populated than the higher energy state mI = −1/2 = β. When a radio

frequency (RF) pulse is applied to the system, both energy levels become equally

populated what is called saturation, and after that the relaxation process occurs.

We can now consider two spin system AX interacting through dipole-dipole

interaction. A coupled two nuclei system adopts four energy states (Figure 2.5).

In the lowest energy state (denoted as 1), the spins are in α orientation while in

the highest energy state both spins are in β orientation (energy level 4).
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Figure 2.5: Energy levels of the two spin system AX interacting through dipole-dipole interac-

tion.

The normal signal intensities of the A and X resonances are determined by the

population difference between lower and higher energy states in a spin transition.

In the NOE experiment, the X nucleus is irradiated with double resonant frequency,

and the change of the signal intensity is monitored for the other nucleus A.

When the X resonance is irradiated, then the population difference between the

X energy spin states decreases in a saturation process. On the example in Figure

2.5, it means that the population of the energy levels 3 and 4 has increased, while

the population of the energy levels 1 and 2 has decreased.

A saturation of the energy levels is then followed by the relaxation process.

There are two relaxation processes possible; W2 also known as double quantum

transition, and W0 known as zero quantum transition.

If the relaxation happens from ββ to αα spin energy states, labelled as W2

in Figure 2.5, then an enhancement of the A proton signal intensity is observed,

and this is called positive NOE. Another relaxation process W0 also moves the

irradiated system back to equilibrium, but in this relaxation mechanism the A

signal intensity is decreased, what is referred to as negative NOE.

A difference between the W2 and W0 relaxation rates in comparison with all

possible relaxation rates is related to the change in signal intensity, and it is re-

ported in terms of parameter η. The effect is observed by comparing the signal

intensities I with the normal intensity I0 measured in the absence of double radi-

ation.
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η =
I − I0
I0

(2.15)

It was found that the value of the η depends on the interproton distances as

r−6. This is the most important usage of NOE because from the signal spectra,

it can be built up a picture of the molecular system conformation by identifying

nuclei that are spatially close together [82].

A typical NMR experiment consists first of identifying all the nuclear resonances

in the molecule, and then saturating them one by one measuring the enhancement

in the signal. In this way, it is possible to relate for example if two parts of

polypeptide chain came close together upon folding.

2.1.1.4 Residual Dipolar Coupling

When two nuclei are coupled together, there may be an additional effect influenced

by the applied magnetic field which gives rise to the dipolar interactions manifested

as Residual Dipolar Coupling (RDC) [87].

All other NMR methods give local information about the molecular system;

the distance between spatially close nuclei or the dihedral angle between them.

However, the long distance information was not available before the discovery of

RDC.

If the two nuclei that are coupled together are put in an external magnetic

field B0, then the vector between them can be defined relative to the orientation

of the external magnetic field. The RDC is related to interproton distance r and

the angle between the bond and magnetic field θ as

D ≈ (3cos2θ − 1)r−3 (2.16)

If the vector connecting nuclei A and X is parallel to the field B0, the coupling

is at its strongest.

The RDC is measured in an anisotropic media because in an isotropic medium

molecules tumble quickly, and 3cos2θ − 1 averages to zero. To exhibit RDC, slow

tumbling needs to be obtained, or preferential ordering along a particular direction.

Different aligning media have been used for aligning purposes, such as phospholipid

bicelles, magnetically oriented viruses or polyacrylamide gels, to name a few [88].

In the NMR experiment, RDC measurement consists of doing two experiments

in parallel, one with and one without the presence of an aligning medium. After an
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Figure 2.6: Residual Dipolar Coupling measures the relative orientation θ between two nuclei,

A and X, and the magnetic field B0.

identical NMR pulse sequence is applied to both samples,J-coupling constant and

J + D values are measured. The difference yields the dipolar coupling D which

reports on the orientation between the nuclei in the solvent [89].

2.1.1.5 Summary

NMR experiments provide with a large amount of experimental data which may be

used to obtain the protein conformational equilibrium in solution. The experiment

is usually performed at pH 6 - 7 to account for cellular physiological conditions.

Usually when doing the experiment, chemical shifts are first measured which report

on the secondary structure of the system. Then, spin - spin interactions which

strongly depend on the local magnetic field experienced by each of nuclei, can be

measured. We distinguish between spin through bond coupling which is reflected

in J-coupling values, or as a through space interaction manifested as NOEs.

NOEs measure the interaction of the spins that are at the distance less than

5 - 6 Åto each other in space. The NOE intensities are related to interproton

distances as r−6. As a result, NOE spectrum relates the chemical groups that are

close in space.

Next, J-coupling provides the value of the torsion angle between nuclear spins

connected via three bonds. These values have been widely used for the conforma-

tional analysis of the biomolecules. While J-coupling reflects the local conforma-

tion of the molecule, RDC is used to relate spatially distant parts of the protein

to each other.

The timescale of the dynamical motion accessible to NMR techniques covers a
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range between very fast (< 10μs) and very slow conformational dynamics (> 10

ns) [90]. Fast conformational isomerisation is usually observed as a single signal

with averaged chemical shift values reporting the ensemble average conformation,

while motions on the slow NMR timescale resolve separate signals for each confor-

mation [91]. The IDPs in the focus of this thesis were often reported as a single

structure or unstructured in solution phase, suggesting that their conformational

interconversion is happening on the timescale that is too fast for NMR to detect

as separate signals.





Chapter 3

Methods

Computational chemistry has increasingly been used to study biological systems.

This has primarily become possible due to increases in the available computational

power and advances in the simulation methodology. Biomolecules are dynamic

systems which can, in order to perform different functions, undergo the conforma-

tional changes due to interaction with receptor or acting as signalling molecules

etc [92].

Although X-ray crystallography provides atomic resolution for the system, it

is now widely accepted that proteins undergo structural changes to maintain their

function, which implies that the crystallographic picture of the system is not nec-

essary the only one in terms of structural arrangement [93]. On the other hand,

other experimental techniques, such as spectroscopic methods, lack the atomic

level accuracy.

An alternative approach to get detailed structural and dynamic information

about biological systems is by using computational methods, which study sys-

tem either at the atomic (Molecular Dynamics) or at subatomic level (Quantum

Chemistry).

The most accurate picture of system behaviour is provided by quantum me-

chanics (QM); however a key challenge is the amount of computer power used

due to the scaling as N4 or N3 with system size [94], which remains infeasible for

biomolecular systems. Because of that, Molecular Mechanics is used instead, which

makes use of forcefields to model interactions within the system. However, to access

long timescales in Molecular Dynamics we need advanced sampling methodologies,

for example Metadynamics or Replica Exchange Molecular Dynamics, which are

able to overcome the problem of insufficient sampling in different ways. There-

53



CHAPTER 3. METHODS

fore, this chapter provides an overview of the theoretical principles behind the

methods used in this work, which range from QM to enhanced sampling molecular

dynamics.

3.1 Introduction to Quantum Mechanics

In classical mechanics, based on the current knowledge of the system, we can pre-

dict its behaviour in the future. However, some experimental observations before

the 1900s could not be explained with classical physics. The experiments, such

as photoelectric effect and black-body radiation, could only be explained by intro-

ducing wave-particle duality and energy quantisation [95]. These concepts set the

fundamentals of QM.

First, the concept of a wave function needs to be introduced. At any instance

in time t, the physics of an electron (or nucleus) can be described with the wave

function ψ(r, t) [96]. The wave function is a completely quantum concept and

there is no classical analogy. The most intuitive interpretation of it was given by

Max Born who gave the probabilistic interpretation that states that the square

modulus of the wave function is a probability density

P (r) = ψ∗ψ = |ψ|2 (3.1)

Another quantum concept that needs to be introduced is spin. Spin is an

intrinsic property of the particles. The value of spin is defined by the quantum

number. Electrons have one half integer spin while different nuclei have different

spin values. In a classical analogy, particles with spin act like tiny magnets in

magnetic field.

Finally, we will introduce the time independent Schrödinger equation which

gives a way of calculating the energy of the system

Ĥψ = Eψ (3.2)

The equation states that Hamiltonian operator Ĥ acts on wave function ψ and

returns the energy of the system E multiplied by the wave function. The operator

is a mathematical entity that acts like a function. In QM, the Hamiltonian operator
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is defined as a sum of operators associated with kinetic and potential energy

Ĥ = − h̄2

2m
∇2 + V (r) (3.3)

where h̄ is Planck’s constant over 2π, m is the mass of the particle, ∇ is the Lapla-

cian operator ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. The Schrödinger equation can be exactly

solved only for the one-electron system of a hydrogen atom, which is composed

of one proton and one electron. Using the Born Oppenheimer approximation the

motion of the nucleus and electron can be separated. Since the mass of the atom is

localised in the nucleus, we can get its position using classical Newtonian equation.

The electron position is obtained using the Schrödinger equation

− h̄2

2m

d2ψ

dx2
+ V (x)ψ = Eψ (3.4)

which describes a particle of mass m with energy E.

However, there is no exact solution to Schrödinger equation for two electron

system, the wave function contains the electron - electron repulsion term which

is only possible to solve approximately. Different ways of solving this problem

have been introduced, and here two of them will be introduced, Hartree-Fock and

Density Functional Theory.

3.1.1 Hartree-Fock Theory

The Hartree-Fock (HF) theory [97, 98] is based on solving the many electron

problem as a series of integrals over one electron at a time. The method is also

referred to as the Hartree-Fock Self Consistent Field (SCF). It is based around the

idea that each electron is moving in the electromagnetic field of the nuclei and it

only encounters the other electrons of the system as an averaged effect.

In this method, the position of the electron is approximated by different wave

functions, which are then used to calculate the average potential felt by each

electron. These potentials are then used to calculate new orbitals (wave functions).

The process is iterated until the individual wave functions reproduce the average

potential used to calculate them.

Since HF theory takes the electron-electron interactions into account in an

averaged way, ignoring correlation, it results in HF overestimating the true ground

state energy of the system E0. The difference between E0 and EHF , the HF energy

of the system, is defined as the correlation energy of the system [99]. It accounts
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for the dynamic correlation (electron repulsion) and static correlation (a single

wave function is not always adequate to describe a molecular state).

3.1.2 Density Functional Theory

Instead of dealing with many-electron wave functions, an alternative approach is

to deal with electron charge density. The charge density n(r) is a much simpler

description of the electronic component of the system, and Hohenberg and Kohn

showed that ground state energy is defined by the electron charge density [100].

In principle, the total energy of the system can be written as the sum of energy

functionals

E[n(r)] = T [n(r)] + V [n(r)] + U [n(r)] (3.5)

where T - kinetic energy of the electrons, V - electron nucleus interaction, and

U - electron-electron term. By definition, a functional is a function that acts on a

function and returns a scalar value, in this case energy. The only known term in

the Equation 3.5 is electron nucleus interaction V, while the electron correlation

functional U and kinetic energy functional T are unknown. The most widely used

way to calculate T and U is by using Kohn-Sham formalism [101] defined as

T + U = T0 + U0 + Uxc (3.6)

where T0 is a functional that gives the total kinetic energy of a set of N in-

teracting electrons, U0 is electron-electron repulsion term which treats electrons

independently similarly to HF, and Uxc is exchange correlation functional. The

idea of the Kohn-Sham approach is to work with a system of non-interacting elec-

trons whose density is the same as the system of the interacting electrons. In the

Kohn-Sham approach the one electron Schrödinger equation is calculated for an

electron moving in an average potential derived from a fictitious system of sur-

rounding interacting electrons. Following this approach, Hamiltonian is actually a

sum of one-electron Hamiltonians for non-interacting electrons. The Kohn-Sham

Equation is solved in a self-consistent way by first guessing the electron charge den-

sity n(r), and then the wave functions (molecular orbitals) of the non-interacting

electrons are determined, leading to a better value of the density, which is then

used in the next step to calculate orbitals. The process is repeated until conver-

gence is achieved. However, the only unknown term in Kohn-Sham Equation 3.6
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remains Uxc, the exchange correlation functional. Different approximate methods

exist to calculate this term.

In this work, a hybrid functional for exchange correlation energy term was

used [102]. In particular, the B3LYP version [103]. It includes exact exchange

energy from Hartree–Fock theory with exchange and correlation from other sources

(ab initio or empirical). The exact exchange energy functional is expressed in terms

of the Kohn–Sham orbitals rather than the density, so is termed an implicit density

functional. A hybrid exchange-correlation functional is usually constructed as a

linear combination of the Hartree–Fock exact exchange functional and estimates

of correlation energy functionals.

3.1.3 Basis set

A basis set of functions is required to describe the orbitals for many quantum

mechanical methods, so here will be given a brief introduction. A basis set is

defined as a set of functions used to represent the electronic wave function. Any

function can be written as a linear combination of special basis functions, bi

f(x) =
∞∑
i

cibi(x) (3.7)

A complete basis set is a set that gives all possible forms to f(x). However, for

practical reasons in QM computations, only a limited collection of basis functions

is used. This being the case, the number of basis sets need to be limited but at the

same time provide a good description of the system. The basis set is usually taken

as a linear combination of atomic orbitals or plane waves. There are a few types

of atomic orbitals developed, such as Slater Type Orbitals (STOs) [104], Gaussian

Type Orbitals (GTOs) [105], or numerical atomic orbitals. The most commonly

used are GTOs [106].

Different GTO basis sets have been proposed over the years, differing in size.

For this reason the concept of the minimal basis set was introduced, defined as

the smallest required number of atomic orbitals to describe the system of interest.

However, a minimal basis set is usually not sufficient to achieve high-level accuracy.

This was achieved by, in particular, introducing additional wave functions for the

split-valence basis sets to account for valence electrons for a better description of

the polarisation effect.
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Another improvement of the basis set includes the addition of diffusion func-

tions to basis sets. These functions decay slowly as they move away from the

nucleus which captures dispersion and charge transfer.

Typically the notation of the basis sets follows the Pople X-YZ(VW)(+)G(*)

form [107]. X is the number of GTOs used within each core electron orbital, the

number of digits after the dash indicates whether the basis is double, triple-zeta,

etc., with each digit giving the number of GTOs of that basis function. The asterisk

denotes the inclusion of polarisation functions, while + represents the inclusion of

diffuse functions.

3.2 DFT calculations of NMR chemical shifts

Besides being experimentally measured, chemical shifts can also be calculated for

the given biomolecular geometry using empirical or QM based approaches. There

are several programs available to predict chemical shifts using empirical approaches

[108–110], however their prediction of the chemical shifts even for small organic

molecules was proven less accurate [111].

On the other hand, a QM based DFT approach of more accurately calculating

chemical shifts was found to assist in the structural assignment of measured NMR

chemical shift, facilitating characterisation of reaction intermediates or in studying

conformational motions [112]. These examples show that DFT theory can facilitate

the experimental chemical shift assignment for a variety of problems.

DFT uses electron density to calculate magnetic properties of nuclei (Section

3.1.2), such as chemical shifts of the given geometry. The electrons surrounding a

particular nucleus affect the local nuclear magnetic field, which is known as shield-

ing. Within the DFT method, the nuclear magnetic shielding can be calculated

using IGLO (Individual Gauges for Localised Orbitals) [113] or GIAO (Gauge-

Invariant Atomic Orbital) [114] techniques, but GIAOs were shown to obtain faster

convergence of calculated chemical shieldings [115]. In this work, the standard im-

plementation of GIAO in Gaussian09 [116] was used at the B3LYP/6-31G(d) level

of theory to calculate magnetic shielding constants for the given structures.

The calculated isotropic nuclear magnetic shielding constants (σH) were con-
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verted into chemical shifts (δ) using the regression equation [117]

δ(1H) = −0.9912σH + 32.05 (3.8)

The parameters used to convert shielding constants into chemical shift were

obtained by calculating the chemical shifts of small organic molecules with DFT

calculated magnetic shieldings at the same level of theory as used for the calculation

for the peptides studied in this work [117]. The error in the predicted chemical

shifts for the training set compared to the experimental data was 0.18 ppm for 1H

chemical shifts.

A QM based approach to calculate chemical shifts for a given structure is

therefore more accurate than empirical methods because the QM theory provides

a more sensitive picture of the local structural arrangement in the molecule. More-

over, this approach includes the solvation effect through the common polarizable

continuum model (PCM) representing water as an implicit solvent [118].

3.3 Molecular Dynamics Theory

Molecular Dynamics (MD) studies the time evolution of the system using New-

ton’s laws to predict the position of all the system members at any point in time.

Atoms are described as particles with a defined set of parameters representing

interactions between them, and their motion is followed over a certain period of

time. As a result, an ensemble of configurations is generated providing a dynamical

picture of the system. The processes studied by MD range from conformational

changes to insertion of peptides into a membrane.

Given the initial coordinates of the studied system, the motion of the system

can be followed by solving Newton’s equations of motion

F = ma. (3.9)

where F is a force, a is acceleration and m is mass of the particle. Knowing the

position of the particles in the system, it is possible to calculate the force acting

on them. The forces are calculated from the gradient of potential energy

F = −∇U (3.10)
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and then positions of atoms are calculated using Newton’s second law. Since the

forces acting on each atom depend on the position of all other atoms in the system,

complex differential equations are generated which cannot be solved analytically. A

standard method for solving differential equations is the finite difference technique

where positions of atoms are approximated using the Taylor expansion in the small

time increment (time step) δt

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) (3.11)

Several algorithms have been developed to calculate these expansions including

the velocity Verlet [119] and leapfrog algorithms [120]. For example, the leapfrog

algorithm calculates new position of particles like this

r(t+ δt) = r(t) +
1

2
δtv(t+

1

2
δt) (3.12)

Where r is the position of a particle, v is the velocity of the particle, which is

calculated at t+
1

2
δt as follows

v(t+ δt) = v(t− 1

2
δt) + δta(t) (3.13)

where a is the acceleration of the particle. The time evolution of the system is

obtained by calculating new positions using the velocity calculated half a time step

ahead of the position. The initial velocities are generated randomly to correspond

to the desired temperature of the system.

The stability of the integrator depends on the time step length. If the time step

is too small, then the method is insufficient due to the high computational cost. If it

is too high, the forces will not maintain constant which will result in the loss of en-

ergy conservation. Typical time step used is 2 fs which is sufficient to conserve the

energy and account for the the fastest motions in the system (hydrogen-containing

bond vibrations) which are constrained using SHAKE algorithm [121].

3.3.1 Force field

However, without something to model interactions and calculate the total energy,

there is no dynamics. This central part of molecular dynamics is known as the

force field. Many families of bimolecular force fields exist today including OPLS

[122], GROMOS [123], CHARMM [124] and AMBER [125], the last of which is
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used in this work. The general form of the total potential energy in the AMBER

force field looks like this

Epotential = Ebonds + Eangles + Edihedrals + Ecoulomb + ELJ (3.14)

Bonds and angles contributions are represented as balls-on-springs according to

Hooke’s law

Ebonds =
∑
bonds

ki
2

(li − li,0)
2 (3.15)

Eangles =
∑
angles

ki
2

(Θi − Θi,0)
2 (3.16)

where li,0 and Θi,0 are bond and angle reference values, respectively. The values of

these parameters are obtained from vibrational spectroscopy experiments or QM

calculations. The third term in equation 3.14 models rotation around bonds

Etorsions =
∑

torsions

Vn
2

(1 + cos(nφ− γ)). (3.17)

This term is parametrised by a Fourier series with Fourier coefficients Vn, dihe-

dral angle φ and phase difference γ. The other two terms in the equation represent

non-bonded interactions. These are electrostatic and van der Waals interactions.

The interaction potential between two charged atoms is given by Coulomb’s law

Ecoulomb =
qiqj

4πε0rij
. (3.18)

where qi and qj are atom partial charges and rij is the distance between them. ε0

is electric permittivity. The last term in the potential energy expression is van der

Waals term

ELJ =
N−1∑
i=1

N∑
j=i+1

(
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
])

(3.19)

represented by a Lennard-Jones (LJ) potential which accounts for the interactions

due to overlap of the electron clouds between two atoms (repulsion) and attrac-

tion between induced dipoles which varies as r−6. The LJ potential describes

1-4 interactions (i.e. those between atoms separated by three bonds), but also

intermolecular interactions.

In contrast to the Coulomb interactions, LJ interactions decay quickly, therefore

the long-range LJ interactions can be treated with cutoff, mostly in the interval of

10-12 Å.
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3.3.2 Periodic boundary conditions

Force fields are optimised for treating protein systems in a bulk of solvent. How-

ever, molecules at the box surface will experience different kind of forces compared

to molecules in the bulk. To overcome this problem, periodic boundary conditions

are imposed where a system box is infinitely replicated in all directions. During

a simulation, if an atom moves outside the box, its images in the neighbouring

boxes are moved in the same direction. Thus, its image atom will move again to

the same central box but from the opposite side. However, each atom is allowed to

interact only with the closest image of other atoms, and this requirement is called

the minimum image convention. To avoid an atom interacting with its image,

restrictions in term of box size length are imposed which suggest that box size

should be at least twice the cutoff value. Typical cutoff value is 12 Å so the box

length must be greater than twice the cutoff plus the protein length.

3.3.3 Long range interactions

The interactions in the system are calculated within the cutoff value. However,

that causes a discontinuity in the energy term for non-bonded interactions. This

is especially problematic for the Coulombic interactions which decay slowly with

distance dependence of 1/r, compared to vdW interactions which decay much

faster (Equation 3.19). To overcome this issue, the Ewald summation method was

introduced which accounts for the electrostatic energy of the system with periodic

boundary conditions, where potential coming from the replicated cells is also taken

into account [126]. Since it is possible to write any function as a sum of two terms,

the same thing was done for the electrostatic energy here. The interaction potential

is decomposed into short-range and long-range components.

The idea is that point charges are mapped with Gaussian distributions of the

opposite charge. By doing this, the system becomes neutralised and the short

range converged contribution to the electrostatic potential is calculated in real

space.

The second modification is to superimpose a second set of gaussian charges,

this time with the same charge sign as the original point charges and also centred

on the point charges. This is done to recover the original system, and this term

accounts for the long range interactions. It is calculated in reciprocal space. The

last term is the self energy correction. Following this approach, a total electrostatic
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contribution to the potential energy becomes

Eel =
∑
|n|=0

qiqj
4πε0

erfc(α|rij + n|)
|rij + n| +

4π

L3

∑
k �=0

qiqj
4πε0

exp(
−k2
4α2

)cos(k · rij)− α√
π

N∑
k=1

q2k
4πε0

(3.20)

where α is Ewald convergence parameter, erfc(x) = 1−erf(x) =
2√
π

∫∞
x
exp(−t2)dt

is the error function and k =
2πn

L2
where n is cell coordinate vector and L is cell

dimension. The α parameter is chosen in a way to optimize the convergence to 0

of the error function erfc(x).

However, the calculation of the long range interactions is computationally ex-

pensive using Ewald summation as it scales with the square of the number of

particles (N). In this work, the particle mesh Ewald (PME) method was employed

[126]. It calculates long range interactions by distributing the charges in the sim-

ulation onto a grid which in turn reduces the number of interactions that needs to

be calculated. As a result, computational efficiency increases and scales as NlogN ,

as opposed to N2.

3.3.4 Thermodynamic conditions

The idea of molecular dynamics is to simulate the system at the conditions that

are as close as possible to the natural environment. The temperature and pressure,

together with volume and number of particles in the system, are controlled using

thermodynamic ensembles implemented by various MD integrators.

We can keep the temperature in the system constant by constraining it to a

desired value. This is achieved by canonical ensemble (NVT), in which the number

of particles (N) and volume of the system (V) are also kept constant. There is also

microcanonical ensemble (NVE) in which the energy of the system (E) is fixed,

while in isothermal-isobaric ensemble (NPT) pressure (P) is controlled.

There are several methods to regulate temperature in the system [127–129].

In this work, the Langevin thermostat was used. It introduces random force

than puts energy into system and an additional friction force which depends on

the particle velocity v and friction coefficient ξ

F = −ξv (3.21)

The system is behaving as if it is immersed in the heat bath of smaller particles

that produce friction on the system. A friction coefficient tunes how quickly the
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system equilibrates to the desired temperature.

Pressure was regulated using the Barendsen barostat [130] which keeps the

pressure constant by changing the dimensions of the simulation box. This is

achieved through the scaling parameter λ

λ = (1 +
δP

τP
(P (t) − Pbath))

1/3 (3.22)

which depends on relaxation constant τP , P(t) pressure at time t, and Pbath the

pressure of the bath. The pressure is calculated through the position of the parti-

cles and forces acting on them, by scaling each of the the atomic directions together

(isotropic scaling) or independently (anisotropic scaling).

3.4 Enhanced Sampling Methods

Sampling phase space is a key challenge of molecular dynamics. Phase space

is defined as a 6N dimensional space of all positions and momenta in the system.

MD studies the time evolution of the system which can be seen as a displacement

from one point in phase space to another. However, points in the phase space can

be separated by high energy barriers which can be hard to cross with classical MD

simulation [131, 132].

Moreover, classical molecular dynamics simulations are performed at physio-

logical temperature and in an explicit solvent model to approximate the natural

environment as closely as possible. Under these conditions, the system is sampling

phase space for a chosen simulation time, usually in ns - ms range. However, most

biological processes happen on a time scale rarely accessible to classical simula-

tions (μs - s) despite the progress in computational power [93]. This has led to

the development of different methods that accelerate the sampling in the system

we want to study [133].

For example, MD simulations have been used to study conformational changes

of biomolecules. However, these processes are characterised by a rugged energy

surface where the jumps from one local minima to another are rare on the simula-

tion time scale. This has been referred to as trapping and it leaves the large part

of the biomolecule phase space unexplored because of the high energy barriers that

are hard to cross.
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To overcome this issue, many enhanced sampling methods have been developed

[132, 134]. Here, a review of several enhanced sampling methods will be given. The

list of the reviewed methods has been chosen based on the different approaches

used to address sampling issues:

• knowledge of the end state: Umbrella Sampling, Metadynamics

• introduction of the bias potential: Accelerated Molecular Dynamics

• using hybrid MD/Monte Carlo scheme: Replica Exchange

The way the methods are classified is not the only one since there is an overlap

between them. For example, Metadynamics requires the knowledge of end state,

and the bias potential is constructed during the simulation.

Each of the methods have advantages and disadvantages, and a detailed dis-

cussion of these methods is given below.

3.4.1 Umbrella Sampling

The free energy between the states A and B can be obtained by calculating the

probability distribution along the reaction coordinate

ΔF = FB − FA = kBT ln
PA
PB

(3.23)

where PA and PB are the probabilities of finding the system at state A and B,

respectively. These probabilities are directly proportional to the time the system

spends in each state during an ergodic MD simulation. However, if the two states

are separated by a high barrier, a simulation starting in state A is likely to sample

only the configuration space around A while sampling of state B is unlikely. Um-

brella sampling tries to overcome this issue by introducing a bias potential which

is added to the Hamiltonian of the system

H = H0 + ω(ξ) (3.24)

where H0 is true Hamiltonian and ω(ξ) is a bias potential along reaction co-

ordinate ξ [135]. By properly choosing the bias potential, the system is forced to

sample particular regions of configuration space. The most common choice is a

harmonic potential

ω(ξ) =
k

2
(ξ − ξ0)

2 (3.25)
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which is, in practice, used to restrain the reaction coordinate to various values.

However, free energy along the reaction coordinate, which is called the Potential

of Mean Force (PMF), is now computed not for the system we want, but for the

biased system.

Umbrella sampling is able to overcome this issue by reweghting the biased data

where the PMF is defined as

F (u)(ξ) = F (b)(ξ) − ω(ξ) + ΔF (3.26)

where ΔF is the free energy of introducing the bias, F (b)(ξ) is the biased and

F (u)(ξ) is the unbiased free energy of the system.

To recover unbiased simulation from the biased, the Weighted Histogram Anal-

ysis Method (WHAM) [136] is used where the free energy ΔF is calculated by

e−βΔF =

∫
e−βω(ξ)P (ξ)dξ (3.27)

In Umbrella sampling several independent simulations are run with different

biases. The reaction coordinate is divided into several windows and the bias is

calculated for each window. Then, by using WHAM, a histogram is created by

calculating a relative probability of observing the states of interest and the free

energy ΔF is obtained by using Equation 3.27.

3.4.2 Metadynamics

Another method which requires the knowledge of the end state is called Meta-

dynamics [137]. Here, a history dependent potential fills the free energy minima

and the system explores the configurational space. Unlike Umbrella Sampling, it

explores the low energy regions first. In Metadynamics the bias potential acts

on the chosen collective variables (CV) and is constructed on-the-fly during the

simulation. Let ξ be the set of d functions of the microscopic coordinates of the

system:

ξ(R) = (ξ1(R), ξ2(R), ..., ξd(R)) (3.28)

The Hamiltonian has a form

H(q, p; t) = H(q, p) + V (t, ξ) (3.29)
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where H(q,p) is a Hamiltonian of unbiased system and V(t,ξ) is a bias potential

which is in the form of Gaussian function and is added every τp steps to flatten

the free energy surface (Figure 3.1). The bias potential depends on the parameters

defining the height of the added hills and the rate at which they are added - the

deposition rate. These parameters define the accuracy and the rate of reconstruct-

ing the free energy profile. In the long time limit, Metadynamics assumes that the

bias potential converges to the free energy as

lim
t→∞

V (ξ, t) = −F (ξ) + C (3.30)

The reconstructed Metadynamics free energy profile compared to the true free

energy was proven to have error [138]

ε ∼
√

ω

Dβ
(3.31)

where D is diffusion coefficient in the CV space, β = 1/kBT and ω is deposition

rate.

Figure 3.1: Two energy basins A and B are separated by a high energy barrier. a) In normal

MD the system is usually stuck in energy minima, while in Metadynamics (b) small Gaussians

are constructed on the fly and the system is able to escape the energy minimum from A to B.

As can be seen in the Equation 3.31, error in free energy surface (FES) depends

on the deposition rate ω, the ratio of height and frequency at which Gaussians

are added, which defines how fast the energy minima are filled with the biasing

potential. The problem with this parameter is that we simultaneously want to

fill minima quickly (big ω) and decrease the final error (small ω) [139]. This

problem was overcomed by introducing another version of Metadynamics called

Well-Tempered Metadynamics where the deposition rate decreases over simulation

time, ω ∼ 1/t [140]. Moreover, the form of the bias potential was also changed, and
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it does not converge directly to free energy but with dependence on the temperature

lim
t→∞

V (ξ, t) = − ΔT

T + ΔT
F (ξ) + C (3.32)

where ΔT is the input parameter with temperature dimensions. Therefore in the

limit ΔT → 0 normal MD is recovered while in case ΔT → ∞ standard Metady-

namics is recovered.

To summarise, the efficiency of Metadynamics depends on a good choice of

collective variables. If we chose those CVs that do not include the slow motion

of the system then the system will not explore the CVs as efficiently as it should

[141]. It is non trivial to choose good CVs, and it is based more in experience,

chemical intuition or experimentation. Moreover, the error in the reconstructed

free energy profile in Metadynamics depends on the number of CV variables used

because it scales exponentially with the number of CVs included, so only a small

number of dimensions can accurately reproduce the free energy surface.

3.4.3 Accelerated Molecular Dynamics

Compared to other methods, Accelerated Molecular Dynamics (AMD) [142] does

not require the knowledge of the underlying free energy surface nor does it require

prior choice of a set of reaction coordinates. The idea is to add a bias potential

ΔV (r) to the true potential energy of the system V(r) (Figure 3.2). The extent to

which the potential energy surface is modified depends on the difference between

the bias potential and true potential. The modified potential V ∗(r) is of the form

V ∗(r) =

⎧⎪⎨
⎪⎩
V (r), V (r) ≥ E

V (r) + ΔV (r), V (r) < E.
(3.33)

where V(r) is potential energy of the system, ΔV (r) is bias potential, and E

is energy threshold. They are schematically shown on the Figure 3.2, and further

explained below. AMD allows the boosting of either the whole potential energy of

just the dihedral part with equation

ΔV (r) =
(E − V (r))2

α + (E − V (r))
(3.34)

To define the bias potential, a threshold energy E and acceleration parameter

α need to be defined (Equation 3.34). In order to do this, a short MD simulation
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Figure 3.2: Schematic representation of the normal potential V(r) of the system, bias potential

ΔV(r) and the threshold energy E.

should be run. From this, the average potential energy V (r) is obtained which is

then summed with the approximate energy contribution per degree of freedom. For

example, if the system is comprised of 64 residues and 3.5 kcal/mol/residue is the

energy contribution per residue, then the energy contribution from all the residues

equals 224 kcal/mol. This value is then summed up with the average dihedral or

total potential energy of the system obtained from the short MD simulation, and

that is the recipe to calculate the threshold energy E while α equals one fifth of

this value [143].

For each enhanced sampling method it is important to yield the correct canon-

ical averages of thermodynamic value A(r). In this case, reweighting the biased

potential data to extract the underlying unbiased results from the biased trajec-

tory is achieved by multiplying the modified potential by the Boltzmann factor of

the bias potential eβΔV (r).

〈AC〉 =

∫
drA(r)e−βV (r)−βΔV (r)eβΔV (r)∫
dre−βV (r)−βΔV (r)eβΔV (r)

(3.35)

〈AC〉 =

∫
drA(r)e−βV (r)∫
dre−βV (r)

= 〈A〉 (3.36)

where the AC is correct thermodynamic value of variable A(r). The last

equation shows that AMD method converges to the canonical distribution after

reweighting of the conformational space. The method has been proven to enhance

sampling on the systems of different complexity [142, 144–146].
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3.4.4 Replica Exchange Methods

Replica Exchange (RE) methods are one of the most popular enhanced sampling

methods [134]. They accelerate sampling either by simulating the system across

a range of temperatures [147] or by modifying the underlying Hamiltonian [148].

Unlike other methods reviewed here, they do not require the knowledge of the

potential energy surface or collective variables a priori. Moreover, the result of

the simulation is a Boltzmann weighted ensemble and thus no post-processing

reweighting is required.

Here, the review of two variants of the Replica Exchange methodology will be

given, Temperature RE and Solute Tempering RE. Both are used in this work.

3.4.4.1 Temperature Replica Exchange Molecular Dynamics

The general idea of Replica Exchange Molecular Dynamics (REMD) [147] is to

simulate a series of independent replicas of the original system across a range of

different temperatures, usually between 250 K to 600 K. At high temperatures, the

system has higher kinetic energy, and therefore it is able to sample larger volume

of the phase space, while at lower temperatures the system may become trapped in

local minima. However, REMD overcomes the problem of bad sampling at lower

temperatures by allowing the systems at different temperatures to exchange their

configurations. Since we are interested in the simulation results in the range of

physiological temperatures, replicas simulated at these temperatures contain the

configurations from the whole temperature space thus ensuring that the system

has sampled more phase space than it would with normal MD [149]. However,

simulation of N replicas, compared to one in normal MD simulation, requires more

computational power. Therefore REMD is limited by computational expense as it

requires access to a highly parallelised supercomputer.

Theory. In this method, the system is comprised of N non-interacting replicas

(copies) at M different temperatures. A state in REMD is described as

X = x[i]m = (r[i],v[i])m (3.37)

where subscript m and superscript in square brackets [i] label the replica and

temperature, respectively. In the canonical ensemble, the probability of a state

existing at a given temperature, W (x), is weighted by Boltzmann factor as shown
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in Equation 3.37. A β is inverse temperature and Q is the partition function - sum

of all states.

W (x) =
e−βE(r,v)

Q
(3.38)

Similarly the probability of state X in the generalized ensemble can be expressed

as the product of the Boltzmann factors for each replica.

WREMD(X) =
e−β1E1−β2E2...βsEs

QREMD

(3.39)

In order for the exchange process to converge to equilibrium, the detailed balance

condition is imposed. It says that the chance of exchanging between two states

must be identical; the probability of making the move, times the probability of

accepting the move, must be identical in the forward and reverse directions

WREMD(X)w(X → X
′
) = WREMD(X

′
)w(X

′ → X) (3.40)

where w is the probability of accepting the move, and W is the probability of

being in the state, and the chance of attempting the move is identical in the two

directions.

Furthermore, a Monte Carlo Metropolis test is derived to swap replicas based

on their potential energies and temperatures (Equation 3.41). Since the acceptance

probability decreases exponentially with temperature difference, only neighbouring

replicas are exchanged

w(X → X
′
) =

⎧⎪⎨
⎪⎩

1 ifΔ ≤ 0;

exp(−Δ) ifΔ > 0;
(3.41)

where

Δ ≡ [βn − βm](Ep(r
[j]) − Ep(r

[i]))

Prior to a REMD simulation, each replica is equilibrated to a chosen tempera-

ture. Each replica is then run for a defined time (time between exchanges, usually

2 ps) in the NVT ensemble, and adjacent replicas are swapped if the Metropolis

criterion is satisfied. By repeating this process, movement in temperature space

is achieved and the potential energy surface is explored. If a replica approaches

an energy barrier, its potential energy will increase and it is likely to swap to a

higher temperature. Moreover if at this higher temperature the replica is able to

overcome the energy barrier it is then likely to swap back to lower temperature.
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Figure 3.3: Example of the REMD simulation. A dotted arrow indicates a failed test, while a

solid arrow indicates a successful move.

Therefore a random walk in the conformational space is induced by swapping the

replicas.

A typical REMD trajectory is shown in Figure 3.3. This testcase is composed

of four different replicas starting at four different temperatures, 298 K, 320 K,

450 K and 560 K. Each block represents a normal MD simulation which is run for

certain time after which the Monte Carlo test is attempted and replicas have either

swapped or not based on their potential energies and temperatures. For example,

a replica at T = 298 K passes two tests, moving upward in temperature each time.

On the other hand, a replica starting at T = 450 K did not pass the test in the first

instance so it continued to run at the same temperature while at the second test

it moved downward swapping places with the replica at T = 450 K. The replicas

at the minimum and maximum temperature are tested half as often as others, as

the test is applied only to adjacent replicas.

However, proper performance of REMD depends on the several points [147]:

1. Are the temperatures optimally distributed?

2. Is the number of replicas (temperatures) sufficient?

3. Is the highest temperature high enough to pass the high energy barrier?

An important factor affecting the efficiency of the REMD algorithm is the
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temperature distribution of replicas. If the temperatures are closely spaced then

replicas will exchange frequently due to the high overlaps of their potential energy

distributions, but many replicas will be required to span a given temperature

interval. If spaced far apart, then fewer replicas are required, but the acceptance

probability will be reduced. For maximum efficiency, a uniform acceptance profile

is desired. Therefore, the acceptance probability is a compromise between the

method expense and rate of convergence. A probability of acceptance 0.2 - 0.4 was

shown to be sufficient to ensure good mobility of replicas [150].

The number of replicas is also affected by the system size since the number

of required replicas scales in order of
√
D, where D is the number of degrees of

freedom in a system [151]. The system size is mostly influenced by the type of

solvent used, especially if the explicit solvent is chosen as was in our case. Then

the number of replicas ranges between 50 and 100, or even more depending how

high a temperature we want to simulate will be, which has important influence

on the simulation time necessary to get converged results. Furthermore, it is not

trivial to check if the highest temperature is high enough to pass the high energy

barrier. It mainly depends on the system of interest.

3.4.4.2 Replica Exchange with Solute Tempering

Although the temperature Replica Exchange is the most commonly used temper-

ing method because of its ease to use and implementation in all major molecular

dynamics software packages, other replica properties can also be used to enhance

the sampling of the system. In particular, to facilitate the sampling over the rugged

energy landscape, the specific interactions within the system can be softened, such

as scaling the strength of hydrogen bonds or hydrophobic interactions [151]. In

this way, sampling is performed on the smoothed energy landscape, and compared

to other enhanced sampling methods, only few system degrees of freedom are soft-

ened.

The Replica Exchange with Solute Tempering (REST) method is an example

of Hamiltonian replica exchange method where the Hamiltonian of the system

is scaled down to obtain sufficient sampling of the system [148]. In REMD the

whole system is simulated across given temperatures, and the number of replicas
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is proportional to the number of the degrees of freedom. On the other hand,

by modifying the Hamiltonian as is done in the REST method, it is possible to

enhance sampling of only parts of the system in which we are interested, keeping

the rest of the system (usually water molecules) at room temperature.

REST has approached this problem by dividing the system into two parts. It is

usually done in such a way that the molecule of interest (usually the whole solute,

although only parts of it could be used) is assigned as “hot” and is subject to the

scaling of the Hamiltonian, while the rest of the system (usually solvent) is kept

at the “cold” temperature. This can be accomplished because the Hamiltonian

is an additive property and can be decomposed into energy terms contributing to

the total energy of the system. In REST, the total potential energy of the system

is composed of the three parts; the energy of the solute or central part (Ep), the

interaction energy between the solute and the solvent (Epw), and the interaction

energy between the solvent molecules (Eww).

E0(X) = Ep(X) + Epw(X) + Eww(X) (3.42)

where X is the configuration of the whole system. The potential energy of the

system for the replica m is scaled as

E0(X) =

[
βm
β0

]
Ep(X) +

√
βm
β0
Epw(X) + Eww(X) (3.43)

where βm = 1/kBTm, β0 = 1/kBT0, T0 is the lowest temperature, while Tm is

the temperature of the m-th replica.

A scaling factor λ =
βm
β0

is used to scale the interactions in the system [152].

The Hamiltonian of the solute atoms is parametrised as following:

• The charge of the atoms is scaled by a factor
√
λ

• The Lennard Jones parameter ε is scaled with λ

• The force constants of the bonded terms are scaled by λ

In this way, the scaling is achieved by multiplying the solute intramolecular

potential energy by a lambda factor in order to lower the energy barriers [152].

The scaling factor adopts values between 0 and 1 (unscaled potential for the lowest

temperature). The first two terms in the equation 3.43 are made of only small

number of degrees of freedom and are the reason why fewer replicas are needed to
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run the system compared to REMD, where the whole system degrees of freedom

are utilised.

Just like in REMD, the replicas are obeying Metropolis criterion and detailed

balance condition. However, since only the lowest replica is not run on the modi-

fied potential energy surface, it is the only one from which the canonical ensemble

can be obtained, while others are used to facilitate the sampling.

To get a number of replicas, the geometric distribution based on a scaling factor

λ =
βm
β0

is used. The geometric distribution of the replicas is calculated as

Tm = Tmin ∗ exp
m∗
log(Tmax/Tmin)

(m− 1) (3.44)

where Tm is the temperature of the m-th replica, Tmin is the minimal temperature

used, Tmax is the maximum temperature used.

The main advantage of the REST over REMD is a lower number of replicas

required to efficiently sample the system, which makes it more attractive to study

larger system like membranes [153] or smaller challenging systems such as intrin-

sically disordered peptides [154]. Overall, smaller number of replicas thus give a

way to a shorter running time on a supercomputer which results in faster real time

to get simulations done than it is the case with REMD.

3.4.5 REMD vs. REST post processing

REMD and REST are the two enhanced sampling methods used in this work.

However, they are implemented in different MD packages, so their post processing

is different. REMD used in this work was run in Amber, while REST was run in

Gromacs with the Plumed patch [155]. In both methods, we were interested at

extracting a constant temperature trajectory from T=298 K.

The method implementation differs in such a way that at the exchange at-

tempt, an Amber exchanges temperatures while Gromacs exchanges coordinates.

Because of this, Amber simulation requires post processing using Amber module

cpptraj which is building a constant temperature trajectory from the frames be-

longing to the specified temperature contained in different replica trajectories. The

idea of the temperature exchanges is shown in Figure 3.3 where it can be seen how
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temperature replicas are travelling up and down the replica ladder, while we are

only interested to extract a constant temperature trajectory at T=298 K.

The way Amber post processes REMD simulation with the cpptraj module is

using the trajin command which takes the first replica trajectory from all simu-

lation repeats along with the command remdtrajtemp specifying the temperature,

and then extracts the trajectory from all the simulations. The example file is

shown on the Figure 3.4.

Figure 3.4: The example of the bash script used to analyse REMD Amber simulations. Here the

example is given for two simulation repeats.

Gromacs, on the other hand, exchanges coordinates instead of temperatures,

so the ensemble at the temperature of interest (T=298 K in our case), is usually

the lowest replica trajectory. In Gromacs, using the trjcat command, all the lowest

replica trajectories are concatenated to get a final temperature trajectory at T=298

K which was subsequently used for analysis.

3.5 Analysis methods

In this section, the background behind a few methods used to analyse the simula-

tion data will be given. These include the Dash software used to analyse cluster

conformations based on torsion angle values, the Dashsim program, which using

circular similarity, compares torsion values to each other, and a few statistical

metrics used to assign similarity between data sets.
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Figure 3.5: Example of the part of Dash output file where each Dash state (first column)

has associated number of frames, the total population of these frames in the trajectory, the

representative frame in the trajectory and the RMSD value.

3.5.1 Dash software

In this work, the main tool used to analyse the simulations was the Dash software

which performs torsion based clustering [156]. The torsions of interest are extracted

from the trajectory and saved in an input file as a torsion time series. The file is

then run with the Dash software, which gives as the output a file that contains:

• A list of Dash states obtained by clustering the torsion space

• Population of each Dash state in the trajectory

• The main torsion values and associated standard deviations for each state

• A representative structure for each state

• The Dash states time series

A Dash state is a torsion angle ensemble characterising a distinct conformation

occurring once or several times for a certain amount of time during the simulation.

Each Dash state is characterised by the mean and SD of the torsion values, so it

is then possible to compare the states due to their similar torsion values to get the

final list of unique Dash states. Moreover, with each Dash state is associated a

frame from the trajectory as a representative structure (Figure 3.5), which makes

it possible to visualise and double check if the states that are assigned as similar

are truly belonging to the same cluster, which was always true. Another advantage

of Dash includes a list of Dash states time series, which was used in our analysis

to see the time evolution of the different cluster states during the simulation. All

these points proved to be satisfactory for our system, so it was decided to use Dash

as the main tool in the cluster analysis of our simulation data.
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In the software, the parameter called bout length defines the minimum lifetime

of the torsion angle to make one state. It is defined as

state lifetime =
bout length (l)

time step (n)
∗ simulation time (3.45)

As Dash was initially intended for MD trajectory where the exchanges between

the states are rare due to sampling problem, the bout length was defined to that

kind of trajectory. However, the definition was later adjusted to the REMD or

REST trajectory where due to the nature of the exchanges, the lifetime of the

state between the exchanges can vary. The procedure of finding Dash states is

thus reduced to:

• Find the (micro) states for the individual torsion angles

• Combine the torsion angle states into states for the whole system

• Calculate the number of frames spent in each combined state. By including

special flag before running Dash command, the states populated less than

1% of the total time will be included in the final list of states to account for

the REMD or REST nature of exchanges.

In total, there are two versions of Dash software made to analyse MD and

REMD or REST trajectories, and both versions are freely available to be down-

loaded from the University of Portsmouth webpage.

3.5.2 Circular statistics

In general, the mathematical data can be treated as either linear or circular (di-

rectional). The need for circular statistics has arisen because of the quantities like

torsion angles or daytime where the simple arithmetic mean is not appropriate to

use. For example, the mean of the angles 0◦ and 360◦ is not 180◦ because 0◦ and

360◦ are the same angles on the unit circle.

The way the circular statistics treats such data is that it converts polar coordinates

to Cartesian and then the mean of an array of angles θi is calculated as

Circular Mean = arctan(S/C) (3.46)

where

S =
∑

sin(θi) (3.47)
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C =
∑

cos(θi) (3.48)

The standard deviation is defined as

Circular Standard Deviation =
√

−2log(R) (3.49)

where

R =
√

(S2 + C2) (3.50)

In this work, circular statistics was used to calculate the mean and SD of a set

of torsion angles.

The circular statistics is also a foundation of the program Dashsim that was

used to compare similar torsion angles. A comparison is possible if the number of

torsions is identical and the Dash output format is used. The Dashsim program

calculates the similarity matrix between two sets of Dash states. The output

contains a matrix of values that lie in [0, 1] range where 1 means that two states are

completely the same. In the cluster analysis that was performed on our simulation

data, two sets of torsions were considered to be similar and assigned to the same

cluster conformation if the circular similarity between them was ≥ 0.65. A Dashsim

script is written by David Whitley from the University of Portsmouth.

3.5.3 Statistical measures of similarity

In this work, three commonly used statistical measures of similarity were used to

test the similarity between the data sets. These are Mean Signed Error (MSE),

Mean Unsigned Error (MSE) and coefficient of determination (R2).

The similarity metrics were used to examine the differences between the exper-

imentally measured and theoretically calculated chemical shifts.

Linear regression. The simplest way to get the correspondence between two

data sets is to plot one against each other, which is mathematically expressed as

linear regression

y = kx+ b (3.51)

where k is a slope, and b intersection. The best fit line through the data points

is called regression line. If data points are very close to the regression line on
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the plot, it means that data pairs have values that are close to each other. The

parameter which describes such fit is called coefficient of determination (R2).

It takes values between 0 and 1, where 1 means that data match perfectly.

Mean Signed Error (MSE) calculates the mean of the difference between

the pairs in the entire dataset. It tells us how far up or down from the average the

data is.

If we have two data sets, one set of experimental values, and the other one com-

putational values, the difference between all the data pairs is calculated (Equation

3.52), and then averaged over entire set gives MUE value (Equation 3.53)

Δδ = δcalc − δexp (3.52)

MUE =

∑N
n=1 Δδn
N

(3.53)

where Δδ is the data pairs difference, and N total number of data pairs. We

can also get the standard error of the mean of the MUE as

SE =
SD√
(N)

(3.54)

where SD is a standard deviation of the sample, and N is total number of data

pairs as before. The standard deviation is the square root of the average of the

squared deviations from the mean

SD =

√∑N
n=1 (Δδn − Δδ)2

N − 1
(3.55)

where the Δδ is the mean of the data pairs difference.

Mean Unsigned Error (MUE) is similar to MSE, but differs only that it

calculates the absolute difference between data pairs Δδ.

MUE =

∑N
n=1 | Δδn |
N

(3.56)

The MSE is more significant than MUE in a way that it tells how far away the

data pairs are from the mean. The standard error of the mean of MSE can also

be calculated using the Equation 3.54.
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Bootstrapping [157] is a method used to estimate any property of the sample

by measuring the observables from the limited or approximate distribution.

The method is performed in such a way that a bootstrap sample is obtained by

randomly sampling n times, with replacement, the values from the original data.

Then, the bootstrap algorithm generates a large number of independent bootstrap

samples, each of size n. It is usually generated 10,000 (10k) bootstrap samples,

and for each of the bootstrap samples, the value of the statistic we are interested

into is calculated, for example the mean of the data. Then, the estimate of the

standard error is calculated for the bootstrap statistic using the standard deviation

of the bootstrapped resampling distribution.

An estimate of the 95 % confidence interval (CI) of the bootstrapped statistic

metrics is calculated as

θ ± 1.96 ∗ SE (3.57)

The SE is multiplied by 1.96 to obtain an estimate of where 95 % of the

population sample means are expected to fall in the normal distribution.

Here the general idea of the bootstrapping was described. Each statistical

method explained previously, MUE, MSE and R2 were bootstrapped with 95 %

CI to examine how well computational chemical shifts fit the experimental data.

More detailed discussion of the bootstrapping applied in this work is given in

Chapter 4.7.2.

3.6 Summary

In this chapter, a background of the computational methods was given. First the

QM theory was introduced, followed by the review of the molecular dynamics and

enhanced sampling methods. In this work, the conformational ensemble of the

cyclic peptides was explored using two enhanced sampling methods, temperature

Replica Exchange and Solute Tempering. Then, QM based DFT approach was

used to calculate chemical shifts on the representative peptide structures that

were then compared with the experimentally measured chemical shifts using the

statistical metrics described in section 3.5.3. Therefore, a combination of results

from enhanced sampling methods, DFT calculations and NMR experiments was

used to obtain the conformational ensemble of the studied peptides. In the next

few chapters, the results obtained for the each studied peptide using introduced
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methodologies will be described.



Chapter 4

8-Arg Vasopressin

8-Arg Vasopressin, usually referred to as AVP, is a 9 amino acid long cyclic peptide

composed of cyclic moiety (Cys1−Tyr2−Phe3−Gln4−Asn5−Cys6) connected

by disulphide bridge (Cys1 −Cys6), and a tail (Pro7 −Arg8 −Gly9) capped with

the NH2 group [158]. The C terminal NH2 group is a natural form of AVP, also

visible in the X-ray AVP structure [159]. The total +2 charge of AVP comes from

the N terminal cysteine together with the guanidinium group of Arg8 (Figure 4.1).

Figure 4.1: The structure of 8-Arg Vasopressin. Cyclic part is connected with disulphide bridge

between the cystein residues, and tail is circled in green.

83
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4.1 Biological background

AVP is a hormone peptide released by the posterior pituitary gland as a complex

with neurophysin (NP) and secreted into the bloodstream. Vasopressin and Oxy-

tocin are the only two hormone peptides secreted by the pituitary gland that act at

a distance. AVP is also known as an antidiuretic hormone (ADH), as it regulates

blood osmolarity by keeping the concentration of water, salts and glucose inside

the physiological boundaries [160] (Figure 4.2).

Figure 4.2: The picture shows the mechanism in which AVP acts as an antidiuretic hormone

(ADH) [161].

After it is released from the pituitary gland, it binds to the G protein-coupled

receptor (V2R) within the kidneys that promotes insertion of aquaporins into the

plasma membrane of the kidney collecting duct, where it stimulates water reab-

sorbtion. The biochemical path involves AVP binding to V2R which stimulates

the synthesis of cAMP protein that activates protein kinase A (PKA) resulting in

the opening of the aquaporins on the cell membrane. The aquaporins or ”water

channels” transport solute-free water through tubular cells back into blood, lead-

ing to a decrease in plasma osmolarity and an increase osmolarity of urine [160].

However when the kidneys cannot concentrate urine normally, a large amount of

dilute urine is excreted which is an indicator of the disease called diabetes insipidus

[162]. Hyper production of urine leads to dehydration resulting in increased thirst

and a desire to drink. The disease is controlled by using a medicine that resembles
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ADH [163]. Therefore, the water balance in our body is regulated by a combina-

tion of mechanisms that include AVP secretion, thirst and renal function.

Beside its primary role as an antidiuretic, AVP is also involved in the regula-

tion of blood pressure [164], and it is thought that it mediates social and sexual

behaviour, especially aggression, anxiety and pair-bonding [165].

4.2 Experimental studies on AVP

AVP is a well studied peptide whose conformation has been revealed by two crystal-

lographic and several NMR studies. Here an overview of the known experimental

data will be given. The focus of all experimental studies has been on revealing

the conformation of the ring part of the structure, while the tail part has been

characterised as rather flexible.

AVP was fully crystallized as a part of a trypsin complex (PDB:1YF4) [159].

The conformation of AVP in this complex was characterized by an almost planar

ring arrangement with no significant hydrogen bonds between the ring residues,

and an extended tail (Figure 4.3 (a)).

In another study, the ring part of the neuropeptide 8-Lys-AVP (PDB:1JK4)

[166] was crystallized, which shares the ring sequence with AVP but differs in the

Lys-8-Arg tail mutation. However, the tail was not crystallised in this study. Here

the ring conformation was characterized by more saddle-like structure compared

to the structure crystallised with the trypsin complex, and has β-turns centred

at residues 3,4 and 4,5 (Figure 4.3 (b)). This was an X-ray resolved structure in

complex with neurophysin (NP), the AVP carrier protein.

A few NMR studies also report on different ring arrangements. They suggest

the existence of saddle-like AVP ring conformations irrespective of the polarity of

solution. The structure in both water [167] and DMSO [168] was characterised by

2 β-turns at positions 3,4 and 4,5. No significant intramolecular hydrogen bonds

were found in water, while in DMSO only one hydrogen bond was observed between

Tyr2O − Phe5H. Studies in SDS micelles suggest that the ring conformation of

the AVP attached to the micelles appears to be similar to the ring 8-Lys-AVP-NP

complex saddle-like form with only one intramolecular hydrogen bond observed
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Figure 4.3: (a) The structure of AVP co-crystallised in a trypsin complex (PDB: 1YF4). The

ring part of the structure is characterised with almost planar atom arrangement. (b) Crystal

structure of the ring part of the 8-Lys-AVP peptide co-crystallised in a complex with neuropysin

(PDB:1JK4). The ring structure is characterised as a saddle-like conformation.

between Phe3O − Cys6H [169].

Another interesting observation in this study was the behaviour of hydrophilic

Arg8 which shows a tendency to be turned toward the polar environment, pro-

moting extended tail conformations. This observation is important because the

interaction between Arg8 and an extracellular loop of receptor is thought to be a

key to receptor recognition [170].

A more recent NMR study in DPC micelles suggested a ring conformation with

β-turns at residues 3,4 and 4,5 with a Tyr2O−Cys6H intracyclic hydrogen bond.

The tail was described as creating a 6,7 β-turn for almost 3/4 of the observed

conformations [171].

To summarise, the experimental studies suggest that AVP adopts flexible

backbone conformations which probably helps it to perform different biological

functions. Two types of ring conformations were observed - planar and saddle-like,

while the tail can be elongated or folded toward the ring. In the ring saddle-like

conformation, the presence of a few hydrogen bonds was observed, Tyr2O−Phe5H,

Tyr2O − Cys6H and Phe3O − Cys6H.
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4.3 Computational studies on AVP

Besides being studied by experimental techniques, the conformation of AVP was

also studied with computational methods [172–174]. The first of these methods

was done in 1996 [172], when a combination of Monte Carlo method and molecular

dynamics was used to check for the conformational flexibility of AVP and Oxytocin.

The simulation suggested conformations of AVP have β-turns centred at residues

3,4 and 4,5, and at residues 2,3 and 3,4 for Oxytocin.

Next study was done with reservoir REMD in ff99SB-ILDN force field and

TIP4P-Ew water model, analysed at 298 K [174]. This simulation method dif-

fers from temperature replica exchange in such a way that reservoir structures

are generated in advance through normal MD simulation at high temperature,

and then the configurations are exchanged between reservoir replicas and nor-

mal replicas [175]. Using this method, the canonical ring structure stabilised by

Tyr2O − Asn5H and Tyr2O − Cys6H hydrogen bonds was observed. Two ad-

ditional hydrogen bonds were also reported, one between ring residue and tail

Cys6O −Gly9H, and another one between tail residues Pro7O −Gly9H.

Another study is from Haensele et al., who performed an 11 μs long MD simu-

lation of AVP in explicit water at a temperature of 298 K using the Amber ff99SB

force and TIP4P-Ew water model [173]. This MD simulation, starting with the

known PDB conformation (PDB: 1YF4), which is referred to as an open confor-

mation here due to the planar ring arrangement, revealed a few apparent changes

in RMSD of the AVP which led to the identification of a four distinct ring confor-

mations followed by the fast movement of the tail region [173], Figure 4.4.

The conformations are clustered into groups depending on the structural char-

acteristics of the cyclic part of the peptide:

• The Open conformation is a crystallographic conformation (PDB: 1YF4).

The ring structure is rather planar compared to other conformations and

hence the name. It is not characterised by any intramolecular hydrogen

bond or β-turn.

• The Saddle conformation matches the resolved 8-Lys-AVP-NP ring structure

(PDB: 1JK4). This conformation is characterised by two β-turns type I

centred at 3,4 and 4,5, and is stabilised by Tyr2O - Asn5H and Tyr2O -



CHAPTER 4. VASOPRESSIN

Figure 4.4: Root mean square deviation (RMSD) of 8-Arginine-Vasopressin (AVP) during 11 μs

MD simulation in water [173].

Cys6H hydrogen bonds.

• The Clinched Open conformation was characterised with the Phe3O - Cys6H

hydrogen bond, and a turn centred at residues Gln4O and Asn5H.

• The Twisted Saddle conformation is mainly stabilised by a hydrogen bond

between Tyr2O and Asn5H, and a type II β-turn is enclosed by residues

Phe3O and Gln4H.

The simulation also showed that the tail moves independently of the ring. It

exists in two conformations - extended and folded. The extended conformation,

characterised with 7,8 β-turn II, appeared 81 % of the total simulation time [173].

Summary of the computational results. The computational studies are

in agreement with experimental studies in terms of AVP conformational diversity.

AVP is thought to form β-turns at residues 3,4 and 4,5, or not form β-turn at

all. The ring conformation is stabilised by Tyr2O− Phe5H, Tyr2O−Cys6H and

Phe3O − Cys6H hydrogen bonds. The tail part is either folded toward the ring

with a 7,8 β-turn and creating Cys6O−Gly9H hydrogen bond, or in an extended

conformation stretching away from the ring.

Haensele et al. associated AVP ring conformations with the β-turn types, and
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named the conformations as Saddle (3,4 and 4,5 β-turns), Open (no turn), Clinched

Open (4,5 β-turn) and Twisted Saddle (3,4 β-turn). They also published the mean

values with associated standard deviations of the peptide φψ torsions for the each

cluster state, which were later used in this work to compare with the values from

our simulations.

4.4 Motivation for our work

The literature review of the AVP data suggests that there are several conformations

distinguished in the ring part of the structure, with the tail moving independently

of the ring conformations. Interestingly, only one X-ray structure and unrestrained

MD simulation suggested planar ring conformation, while this conformation was

not reported in any of the NMR data. On the other hand, all the studies report

the saddle-like ring conformation.

Reviewing the computational methods used, it can be noticed that reservoir

REMD reports only saddle conformation as well. Another computational method,

long timescale MD simulation (11 μs) reported on four main AVP cluster states.

However, it was observed that the simulation was not long enough to get converged

simulation data regarding the AVP conformational dynamics. The interconversion

between the states was very slow, and as such it could not be claimed that the

population of the states equilibrated or that the entire phase space of the peptides

was explored.

Our goal was then to tackle the problem of the incomplete sampling of the

AVP conformational ensemble by using enhanced sampling methods to test for

simulation convergence. To achieve this goal, Replica Exchange MD method was

chosen, as one of the widely used enhanced sampling methods. The idea was to get

converged cluster populations, later to be used to validate against experimental

data.

4.5 REMD simulation details

Four sets of simulations were performed using the REMD method with the PMEMD

module of the AMBER 12 suite program [176]. Each simulation was started with

different starting conformation named as Open, Saddle, Clinched Open and Twisted
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Saddle. The Open structure is AVP crystal structures (PDB: 1YF4), while Sad-

dle, Clinched Open and Twisted Saddle initial pdb structures were taken from the

previously published MD simulation [173].

The REMD simulations were performed using the Amber ff99SB force field

with TIP3P water model [177]. The simulations were prepared by the tleap suite

of Amber program where the system was neutralised by adding 2 Cl− atoms. The

Particle Mesh Ewald [126] was used for the long-range interactions using a 10 Å

cutoff. Bonds involving hydrogen were constrained using the SHAKE algorithm

[121] with a tolerance of 0.00001 Å. REMD simulations were performed in the

NVT ensemble using a Langevin thermostat for the temperature coupling with a

collision frequency of 1 ps−1. 200 ps of NVT simulation was used to equilibrate

the initial state to the desired temperature for each replica. The REMD exchanges

were attempted every Δt=2 ps.

The temperature distribution was obtained using an online temperature gen-

erator http://folding.bmc.uu.se/remd/ [178]. There, the minimum and maximum

temperatures, acceptance probability and the number of atoms in system had to

be given. Input was as follows:

• Minimum temperature = 298 K

• Maximum temperature = 550 K

• Acceptance probability = 40 %

• Number of protein atoms = 142

• Number of water molecules = 2409 for Clinched Open, 2208 for Twisted

Saddle, 2351 for Open, 2268 for Saddle

4.5.1 REMD efficiency

The efficiency of a REMD simulation depends on the capability of the replicas

to exchange between lower and higher temperatures. An optimal distribution

of temperature induces a free random walk in temperature space. In this work,

80 replicas were used to perform REMD. This number of replicas, together with
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temperature values, was obtained from the temperature distribution generator to

satisfy the requested acceptance probability of 40 %.

Figure 4.5: (a) Random walk of the three temperature replica (298 K, 330.60 K and 548.65

K) from REMD Clinched Open simulation. (b) Acceptance probability between neighbouring

replicas.

The observed acceptance probability profile is presented in Figure 4.5 (b). De-

spite a mild well at around 400 K, an average acceptance probability of 30 %

was reproduced across the simulation. Another measure of simulation success is

the plot of replica mobility (Figure 4.5 (a)). The data from the REMD Clinched

Open starting conformation at three different temperatures was chosen to check

the mobility: 298 K, 330.60 K and 548.65 K. All temperature trajectories have

visited both top and bottom temperatures although there seems to be a boundary

at around 400 K where the replicas are stuck either above or under this level. It

might be that the system is in a high energy state at this point which cannot

exchange down to lower temperatures. This is in agreement with acceptance rate

plot where the unexpected minimum also appeared at around T = 400 K.

4.6 REMD simulation results

Four sets of REMD simulations were performed to test for AVP conformational

convergence. Our goal was to show that all simulations should give the same result,

irrespective of the starting conformation. The property that an identical popula-

tion pattern is obtained in simulations, independent of starting conformation, is

referred to as convergence in our case, and that is what was tested with REMD.
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The simulations were performed for 300 ns in total per replica. However, an

initial 100 ns of each simulation was taken as equilibration time and was not

included in the final analysis. The peptides were analysed in terms of β-turn

population, hydrogen bond population and cluster state diversity.

The experimental and computational review of the known AVP conformational

data revealed that distinct peptide conformations are commonly characterised in

terms of β-turn and hydrogen bond populations. On top of that, in the work

performed by Haensele et al., the torsion angle based clustering software Dash

was used to determine the populations of distinct ring states (Section 4.3). This

clustering approach seem particularly relevant in elucidating conformation of the

cyclic peptides, so the same method was used in this work too.

A β-turn with hydrogen bond populations, and a cluster state analysis with

Dash software are two independent, but complementary analysis methods in the

sense that both are looking at the torsion angle values. While β-turn analysis

checks if the chosen torsion angles are fitting the theoretical range for particular

β-turn type, Dash cluster analysis is accounting for the similarities in the torsion

values across a set of torsion angles (see Section 3.5.1). The details of each analysis

method together with the steps taken to obtain data are explained below.

4.6.1 β-turn and hydrogen bond populations

First, the β-turn and hydrogen bond populations in the trajectories were examined.

To analyse β-turn populations, specific torsion angles were extracted using

the cpptraj module of the Amber program, and their values were examined against

the β-turn angle ranges (see Section 1.2.1 for β-turn classification description).

Here, the script was made to test if the torsion angle values are within the specific

range for the particular β-turn. The results of β-turn analysis for AVP simulation

repeats are summarised in Table 4.1.

The data show that AVP is preferably adopting conformations with β-turns

centred at residues 3,4 and 4,5. The 3,4 β-turn I has population of 26 to 36 %,

while 3,4 type II is between 6 - 10 %. 4,5 β-turn II is populated 10 % across all

simulation repeats.
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Simulation 2,3 type I 2,3 type II 3,4 type I 3,4 type II 4,5 type I 4,5 type II 7,8 type I 7,8 type II

Clinched Open 0.71 0.92 35.45 9.57 10.16 1.35 2.15 5.26

Twisted Saddle 0.87 1.94 26.58 10.13 10.30 0.87 2.26 5.45

Open 1.15 1.46 29.13 6.49 10.37 1.93 1.84 6.40

Saddle 0.63 1.29 35.88 7.53 9.74 0.79 2.33 5.83

Table 4.1: β-turn type populations in the four REMD simulations

The hydrogen bond populations across the ring involving the backbone

amide bonds were also examined with the help of the cpptraj Amber module. A

hydrogen bond was defined to exist if the distance between H – O atoms was

within 1.6 to 2.4 Å range and the angle between N-H-O atoms is in the 90 - 180◦

range (see Section 1.2.3). Again, the script was made to check that the conditions

imposed were satisfied. The result of the different hydrogen bond populations are

given in the Table 4.2.

Hydrogen bond Clinched Open Twisted Saddle Saddle Open

Cys1O −Gln4H 0.87 1.54 0.71 1.16

Tyr2O −Gln4H 2.97 4.32 3.55 3.35

Tyr2O −Asn5H 53.06 43.14 49.85 41.04

Tyr2O − Cys6H 39.87 30.94 38.01 30.87

Phe3O −Asn5H 4.73 6.32 4.08 3.48

Phe3O − Cys6H 3.18 3.69 2.41 3.28

Gln4O − Cys6H 4.36 4.81 4.36 5.84

Cys6O −Gly9H 7.12 7.68 8.22 7.19

Table 4.2: Different hydrogen bond populations from the four REMD simulations.

As can be observed, Tyr2O − Phe5H and Tyr2O − Cys6H are two the most

populated hydrogen bonds in the simulations. Their values vary between 40 to

55 % for Tyr2O − Phe5H and 30 to 40 % for Tyr2O − Cys6H. This suggests

that during half of the simulation time AVP conformations were stabilised by the

Tyr2O− Phe5H hydrogen bond. Other intracyclic hydrogen bonds (residues 1-6)

are populated much less and their populations are not as significant as for these

two bonds. A hydrogen bond between the ring and tail residues Cys6O −Gly9H

was also observed with the average population of 7 %.

Summary. The analysis on the β-turns and hydrogen bonds confirmed pre-

vious experimental and computational data. There is a conformational prefer-

ence for AVP to adopt 3,4 and 4,5 β-turns stabilised with Tyr2O − Phe5H and
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Tyr2O − Cys6H hydrogen bonds. A tail was described as adopting 7,8 β-turn

in the MD simulation [173] (see Section 4.2). In our simulations, this turn was

populated 5 to 10 %, further stabilised with Cys6O − Gly9H hydrogen bond in

the same population range.

4.6.2 cis/trans proline amide bond

Since proline residue is presented in AVP sequence, the cis/trans population of

the amide bond involving proline nitrogen was also analysed. The rotation around

CAcys−Ccys−Npro−CApro bond is defined with ω angle. The cis bond was taken

as adopting range of +/- 60◦ from the mean value of 0◦. The trans configuration

of the ω angle is defined by taking the values at around +/- 180◦.

The results are given in Table 4.3, in which it can be seen that cis bond

conformation is present in two out of four simulation runs. This suggests that

maybe the highest temperature in the REMD run (550 K) was not maybe high

enough to observe cis/trans isomerisation.

In the NMR experiments, the population of the cis-proline amide bond was

approximately 5 % in one experiment [167], and approximately 9 % in the another

NMR experiment [179]. The cis-proline isomerisation was not observed in the

published MD simulation [173].

amide conformation Saddle Twisted Saddle Open Clinched Open

cis 1.93 2.29 0.0 0.0

trans 98.07 97.71 100.00 100.00

Table 4.3: The populations of the cis/trans amide bonds during the REMD simulations.

4.6.3 Cluster populations

The published MD study reported the AVP conformational ensemble in terms

of the adopted ring conformations [173]. They identified four distinct AVP con-

formational states, named as Open, Saddle, Clinched Open and Twisted Saddle,

characterised with distinct β-turn centres and hydrogen bonds (Section 4.2). Each

cluster state was also associated with the distinct φψ torsion angle values of the

ring residues.

Following this idea, we also used the same torsion based clustering approach
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implemented in the Dash software (Section 3.5.1) to assign the AVP conformational

ensemble into a number of states.

The identification of the AVP conformational states based on the conformations

adopted by the ring part of the structure is commonly used for cyclic peptides,

and the published experimental data also follow such a classification.

4.6.3.1 Definition of each cluster state

The torsion time series trajectory from the simulations was obtained extracting

the φψ torsion angles adopted by residues Tyr2 to Cys6, which were then analysed

using the Dash software which groups similar torsions into a number of Dash states

(see Section 3.5.1). Given the list of Dash states with associated mean and SD

torsion angle values, the Dash states were then compared between themselves, and

with the mean values of the states obtained from the MD simulations of Haensele

et al. [173]. This part of the analysis was done using Dashsim program (see Section

3.5.2). In total, a unique combination of ten torsion angles defines each cluster

state.

As a result, four distinct cluster states were obtained with the REMD simula-

tions (Figure 4.6). Each cluster state was defined based on the mean and standard

deviation of the angles of the ring residues (see Appendix A). The representative

cluster states cover approximately 70 % of the REMD simulations. The remaining

conformations were defined as transient states because they could not be assigned

to any of the cluster states, and showed no overlap between the REMD simulation

repeats.

The cluster states reported from the REMD simulations are the same states as

were reported in the MD simulation. The comparison between the MD and REMD

ring torsion mean and SD values is given in the next Section in Figure 4.12.

4.6.3.2 Cluster state population time evolution

The simulations were then analysed in such a way that each simulation trajectory

was divided into 100 equal parts, and for the each part it was calculated the

population of each cluster states. The idea is shown in Figure 4.7, where one of

the simulation trajectories is shown to be divided into several parts just to describe

the idea of the analysis. In each part, the population of each of the cluster states

is calculated, and colour coded to show the time evolution of the particular cluster
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Figure 4.6: The cluster states adopted by AVP with associated turn types.

state. A Dash state was identified as to belong to the particular cluster state

if the calculated similarity score was higher than 0.65. The threshold value was

obtained from RMSD analysis on the backbone atoms of the cyclic part of the

structure where the minimal RMSD similarity value between two cluster states

corresponds to 65 % similarity score (Table 4.4).

Saddle Twisted Saddle Open Clinched Open

Saddle 0.00 0.30 0.47 0.35

Twisted Saddle 0.30 0.00 0.31 0.32

Open 0.47 0.31 0.00 0.33

Clinched Open 0.35 0.32 0.33 0.00

Table 4.4: RMSD scores between different AVP cluster states

Following this approach, all the simulation repeats were analysed in terms of

the cluster state population as a function of simulation time.
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Figure 4.7: The analysis of the cluster state evolution is shown for the example of the REMD

Open trajectory, which is divided into equal parts, and in each part the population of the indi-

vidual cluster state was calculated. For example, in one of the chunks it was calculated with the

Dash that cluster state populations are following: Open 15 %, Clinched Open 20 %, Saddle 30 %

and Twisted Saddle 25 %. These are the approximative populations just to show the idea used

to get the population plot. These data are then used in the population plot, Figure 4.8

4.6.3.3 Results

The final populations of all REMD simulation repeats are shown in Figure 4.8.

Irrespective of the starting conformation, the Saddle state seems to be the most

populated. All the cluster states, but Saddle, vary their populations between

a lower value and 30 %, while Saddle cluster keeps the population 30 to 60 %

through the all simulation repeats.

Another way to show the convergence of the cluster population ratios was to

plot the cumulative averaged population of each cluster state to see the popu-

lation ratios settle down (Figure 4.9). The cumulative averaged cluster population

values match very well with the overall Dash cluster populations given in figure

legend, so these population ratios were used in further analysis.
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Figure 4.8: The population of the individual cluster states from four REMD simulations, each

run with different starting conformation: a) Open, b) Clinched Open, c) Saddle, d) Twisted

Saddle.

Figure 4.9: The population of the individual cluster states from four REMD simulations, each

run with different starting conformation: a) Open, b) Clinched Open, c) Saddle, d) Twisted

Saddle. The bold lines show the cumulative averaged population of the particular cluster state.
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4.6.4 The population of cis amide in AVP cluster states

Table 4.3 reports that in REMD simulations the cis-proline amide bond appeared

with a population of approximately 2 %. Moreover, now that the AVP cluster

ensemble is defined, the cis isomer was examined to see if it is localised in any of

the AVP cluster states (Table 4.5).

Figure 4.10, together with Table 4.5 shows that cis isomer is mostly populated

by the Saddle conformation, while less presented in other conformations. The

cis-proline isomer was also reported in NMR studies [167, 168], but they also

reported folded (Saddle) ring conformation only, so it needs to be taken with

caution that only a folded ring conformation adopts a cis isomer in C terminal

tail. Our data suggest that cis isomer is not necessary system specific, but the

highest temperature in REMD was not maybe high enough to equilibrate across

the 20.6 kcal/mol energy barrier for AVP Pro cis/trans isomerisation [179].

A detailed population of cis amide bond in each cluster state is given in Table

4.5.

Cluster state REMD Saddle REMD Twisted Saddle

Saddle 41.93 40.55

Twisted Saddle 16.41 12.82

Clinched Open 5.38 4.62

Open 3.52 1.48

Table 4.5: The population of cis-proline amide bond in each AVP cluster state in two REMD

simulations. The data were obtained from the analysis of the T=298 K trajectory.
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Figure 4.10: The population of cis-proline amide bond in the AVP a) REMD Twisted Saddle,

and b) REMD Saddle simulations.

4.6.5 Summary

The initial approach to obtain a converged AVP conformational ensemble was

achieved using the enhanced sampling REMD method (Figure 4.8), although the

cis-proline amide populations may not be converged (Table 4.3). Four simulation

repeats showed that AVP is interconverting between four cluster states (Open, Sad-

dle, Clinched Open and Twisted Saddle), with Saddle being the preferred structure.

The assigned cluster states were populated similarly in all simulation runs (Figure

4.8).

The AVP conformational ensemble members were named according to the pre-

viously published MD study, which used the same clustering software to assign

conformational states as we did. Dash was chosen as a method of choice to check
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for the conformational diversity because it assigns together the frames adopting

similar torsion values .

REMD conformational ensemble. The population plot of the AVP cluster

states during the simulation time (Figure 4.8) shows that Saddle cluster state

averages around 40 % during the simulation time in any one particular simulation

block. The second most populated structure is Twisted Saddle, between 10 and

20 %, followed by Clinched Open with the same approximate population of 10

to 20 %. In total, the three most populated structures account for 60 to 80 %

of the AVP conformations. The Open state is the lowest populated state with

population of approximately 10 %. The remaining 30 % of the total populations

were considered as transient states because they had very low populations across

simulation repeats.

Comparison between cluster state populations and β-turn/hydrogen

bond populations. The overall β-turn population of 45 to 55 % (Table 4.1) agrees

well with the total population of Saddle, Twisted Saddle and Clinched Open clus-

ter states, 60 to 80 % (Figure 4.8). Hydrogen bonds which are thought to stabilise

ring conformations of these three cluster states are also highly populated between

40 and 55 % (Table 4.2). Therefore, the overall population of adopted β-turns

and hydrogen bonds in the simulation trajectories are showing similar populations

to cluster state populations. An Open state is only possible to assign from the

torsion angle analysis since it is not stabilised by any hydrogen bond and does not

adopt any turn types, so we cannot say from the turn and hydrogen bond analysis

that anything which does not contain a turn or hydrogen bond is the open cluster

state. Because of that, its population cannot be double checked, so it is taken that

it is populated approximately 10 %.

Comparison between MD and REMD data. The published MD simula-

tions [173] reported the same cluster diversity as we did, but the population of the

states differ. The Open starting cluster conformation was populated 13 %, followed

by 40 % of the Saddle conformation and Clinched Open populated 7 %. The last

observed state in the MD simulation trajectory was Twisted Saddle with 34 %.

Other conformations were taken as variants, and they were populated 6 % during

the 11 μs MD simulation time. The results obtained in this MD study are shown
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in Figure 4.4. As can be seen from the figure, the dynamics of the interchanging

states was very slow, so the populations of the cluster states cannot be considered

as converged. In this study, the tail was characterised as extended, or folded if the

7,8 β-turn was populated in the C terminal tail. The approximative population

ratio reported for the extended vs. folded tail was 80 % : 20 %. In our simula-

tions, a 7,8 β-turn was less populated, between 5 and 10 %, further stabilised with

a hydrogen bond between the ring residue Cys6 and the tail residue Gly9 in the

same population range.

Although the AVP cluster states from our simulations and MD simulation seem

to overlap, it can be claimed that REMD produces a converged conformational

ensemble compared to MD which observed very slow interconversion between the

cluster states. The choice of the temperature range (Figure 4.5) is sufficient to

overcome energy barriers between local minima, but not high enough for consistent

cis/trans amide bond isomerisation (Table 4.3). Overall, REMD provided a good

description of the AVP conformational ensemble.
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4.7 AVP chemical shifts

Next, it was decided to validate the AVP conformational ensemble against NMR

chemical shift data [180]. In order to do so, the chemical shifts were calculated for

the AVP structures obtained from the REMD simulations.

The proton chemical shifts were calculated using Gaussian09 software [116] with

B3LYP/6-31G(d) level of DFT theory (see Section 3.2). This choice of functional

and basis set has been shown to be appropriate to calculate chemical shifts of

biomolecules [181].

4.7.0.1 The choice of the representative structures

The AVP was recognised to adopt four different ring conformations Open, Clinched

Open, Saddle and Twisted Saddle. For each cluster state, several structures were

extracted to fulfil the following conditions:

• the structures are scattered approximately in equal parts along the trajectory

• the ring torsions of the chosen structures are within 1 SD of the torsion angle

distribution for that cluster state

The first conditions was chosen to make sure that the structures are taken

from the different parts of the trajectory (Figure 4.11), while the second condition

meant that chosen structures are truly representative of the cluster state (Figure

4.12). Saddle, Twisted Saddle and Open are presented with 8 structures, while

Clinched Open with 6. All the representative structures were taken from the AVP

Clinched Open simulation.

4.7.0.2 Chemical shift calculation protocol

First, using babel the structures were converted into mol2 format, and then into

Gaussian Z-matrix (gzmat) format. Here, it was specified the level of theory de-

sired with appropriate basis set, structure specifications including charge and spin

state, inclusion of PCM water model, and some output file details. Chemical shift

calculation was performed in two steps:

1. Each structure was optimised at the specified level of theory
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Figure 4.11: The locations of the pulled out representative structures for each cluster state

a) Saddle, b) Twisted Saddle c) Clinched Open, d) Open during the simulation time. The

emphasized colour dots depicts another structure for given cluster state.

Figure 4.12: The distribution of observed torsion angles for each conformation in each confor-

mational state for a) Saddle, b) Twisted Saddle, c) Clinched Open, d) Open. The red bars are

from MD simulations [182], and REST torsion angle distributions are in green. The spots show

the dihedral angles for the structures we selected.
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2. Shielding constants for each atom in the structure were calculated, and later

converted into chemical shifts. Chemical shifts for each optimised cluster

conformation were calculated using the regression equation [117]

δ(1H) = −0.9912σH + 32.05 (4.1)

where δ is the chemical shift and σ calculated isotropic atomic magnetic

shielding constant [117, 180].

The values of the calculated chemical shifts were then compared with the ex-

perimental values obtained at pH 6.2 and temperature 298 K [180].

4.7.0.3 Comparison of the calculated and experimental chemical shift

data

Since each cluster state is represented by a few structures, and for each of them

proton chemical shifts were calculated, first the calculated chemical shifts were

analysed. In total, there are experimentally reported values for 35 proton shifts

[180]. The calculated proton shifts were extracted to match the number of exper-

imental proton shifts. The statistical analysis of the calculated and experimental

chemical shifts consisted of a few parts:

• the variance within each calculated chemical shifts type

• the goodness of fit between the calculated and experimental chemical shifts

• the intra-cluster R2 distribution of the calculated vs. experimental chemical

shifts

• the inter-cluster R2 distribution of the calculated vs. experimental chemical

shifts

The variance within each chemical shift type between the representative

structures belonging to each identified AVP cluster was calculated to check which

chemical shift types are adopting larger variance compared to others within the

same cluster and between the AVP cluster types. Figure 4.13 shows that the

chemical shift types Tyr2 HE*, Phe3 HZ, Asn5 HB*, Pro7 HD2, HD3, HG*, Arg8

HG*, HD* and Gly9 HA are adopting the tightest range in all AVP cluster states

with the variance between the representative chemical shift types less than 0.05
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ppm. The chemical shift types with the widest variance belong to Cys1 and Arg8

residues (light colours in Figure 4.13). The star next to the chemical shift type

denotes that the particular chemical shift type was identified only as the averaged

signal over two protons attached to the same heavy atom.

Figure 4.13: The chemical shift type variance within each AVP cluster.

There is a linear fit between the calculated and experimental chemi-

cal shifts for all AVP cluster states which are adopting similar distributions of the

chemical shift values against experimental data (Figure 4.14). Each theoretically

calculated proton chemical shifts type is taken as the mean with associated SD on

the error bars.

The intra-cluster variance analysis was another type of the analysis per-

formed to obtain an indication of the difference between the extracted individual

representative structures within particular AVP cluster state in terms of R2 values

(Figure 4.15).

The R2 values show that the best agreement with experimental data have

Clinched Open and Saddle cluster state structure chemical shifts. They were all

distributed in the range 0.95 to 0.97. The widest R2 distribution adopt Twisted

Saddle representative structures, from 0.925 to 0.96. However, the overall R2 range

of the individual structures is very similar across all cluster states.



CHAPTER 4. VASOPRESSIN 107

Figure 4.14: The comparison between the experimental chemical shifts and computational cal-

culated chemical shifts given as the average with the standard deviation as error bars for the a)

Open, b) Clinched Open, c) Saddle and d) Twisted Saddle representative structures.

4.7.1 Bootstrapping of the individual cluster states

Since, for computational reasons, only a few structures were chosen to represent

a particular cluster state, the chemical shift data were then bootstrapped with

95 % CI to check how each cluster state would behave irrespective of the chosen

structures. The bootstrapped R2 distribution is given in Figure 4.16. Here it is

shown that the best performing structures are associated with the Saddle, Clinched

Open and Open clusters, while Twisted Saddle has lower R2 value; the mean is

centred at 0.950. Clinched Open and Saddle take almost identical mean values,

0.959 and 0.958, respectively.

Besides bootstrapping R2 values of the chemical shifts, other statistical mea-

sures of similarity, MUE and MSE were also bootstrapped. Their values are given

in Table 4.6.

The bootstrapped values of statistical metrics used to compare computational

and experimental chemical shifts show that the best agreement is for Clinched
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Figure 4.15: The distribution of the R2 values calculated between experimentally measured

and theoretically obtained chemical shifts for each structure belonging to particular AVP cluster

state: a) Open, b) Clinched Open, c) Saddle, d) Twisted Saddle. The asterix depicts the R2

values for each representative structure, and were vertically offset to show their spread within a

bar.

MUE MSE R2

Open 0.186 < 0.239 < 0.303 -0.166 < -0.054 < 0.257 0.933 < 0.954 < 0.975

Clinched Open 0.131 < 0.189 < 0.249 -0.105 < -0.018 < 0.068 0.938 < 0.959 < 0.980

Saddle 0.164 < 0.201 < 0.289 -0.074 < 0.023 < 0.012 0.938 < 0.958 < 0.977

Twisted Saddle 0.149 < 0.221 < 0.272 -0.179 < -0.079 < 0.021 0.927 < 0.950 < 0.974

Table 4.6: The bootstrapped values of three statistical measures of similarity, MUE, MSE and

R2 (see Section 3.5.3) for four AVP cluster states.
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Figure 4.16: Distribution of the bootstrapped R2 chemical shift values for each AVP cluster

state.

Open and Saddle cluster states. This was confirmed by MUE and R2 values.

4.7.1.1 Analysis of the individual chemical shift types

To check which chemical shift types are giving more weight to the final R2 distri-

bution, the chemical shift types with the variance smaller than 0.005 ppm, 0.01

ppm, 0.02 ppm, 0.04 ppm and 0.06 ppm per shift type were extracted from the

sample data on which the statistical analysis was then performed.

By extracting chemical shift types with the lowest variance, it was possible to

identify individual chemical shift types with the highest weight to the R2 distribu-

tion when compared with the experimental data. Figure 4.17 (a) shows that lowest

weight to the R2 distribution for the Open cluster state comes from the chemical

shift types depicted in red and yellow, belonging to the residues Tyr2, Phe3, Asn5

and Pro7. All the Pro7 chemical shift types but HB2 are showing very tight range

of the values with the variance smaller than 0.01 ppm.

Figure 4.17 (b) shows different R2 distribution for different chemical shift lists

for Clinched Open cluster type. Chemical shift types with the variance lower than

0.06 ppm give smaller weight than those higher than 0.06 ppm (orange line).

In case of the Saddle cluster (Figure 4.17 (c)), there is only one chemical shift

type Phe3 HZ which has variance smaller than 0.005 ppm compared to all other
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cluster types. Here chemical shift types with the variance smaller than 0.04 ppm

(shown in green) together with three chemical shift types Tyr2 HA, Gln4 HG* and

Pro7 HB3 (shown in orange) give very similar weight to the overall R2 distribution.

Finally, the R2 distribution for the Twisted Saddle cluster type (Figure 4.17

(d)) shows similar pattern as the Saddle R2 distribution where the highest weight

to the overall distribution comes from the chemical shift types with the variance

higher than 0.04 ppm.

To summarise, chemical shift types with the variance already higher than 0.01

ppm give higher weight to the overall R2 distribution for Open cluster, while for

Clinched Open cluster state, these are the chemical shift with variance > 0.06 ppm.

For Saddle and Twisted Saddle cluster types, the highest weight comes from the

chemical shift types with the variance higher than 0.04 ppm.

Having considered the performance of each cluster in terms of reproducing the

experimental chemical shifts, and analysing the weights of the individual chemical

shift types, the performance of the simulation ensemble as a whole will be assessed.
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Figure 4.17: The R2 distributions of the theoretically calculated vs. experimental chemical

shifts with different chemical shift data sets depending on the value of their variance (on the left

plots). Distributions are plotted separately for a) Open, b) Clinched Open, c) Saddle and d)

Twisted Saddle AVP cluster state.
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4.7.2 Ensemble model

To validate simulation data against experimental, the idea of the ensemble model

was introduced in the recent paper by Haensele at al. [180]. The model is built in

such a way that the shift values from structure representative of each cluster state

are weighted by the population of the cluster state. The weighted shift values are

summed over all cluster states for a particular shift type.

The ensemble model for the AVP peptide was built following the procedure

given in the flowchart in Figure 4.18. The same procedure was taken for all peptides

studied in this work. The steps taken to obtain the ensemble model are as follows:

1. Proton chemical shifts were calculated for representative structures from each

of the AVP cluster states (Open, Clinched Open, Saddle, Twisted Saddle).

There are 8 representative structures for each of the Open, Saddle, Twisted

Saddle cluster, and 6 for Clinched Open cluster.

2. Shift values belonging to each representative structure were extracted one

at a time at random. An example is given on the flowchart where in purple

is emphasised the structure which was randomly selected from each cluster

state.

3. The selected shift values from each cluster state were then multiplied with

associated normalised cluster state population. Here is given the example

of the cluster populations from the REMD Open simulation run where the

normalised population of the cluster states were Open 14 % - Clinched Open

16 % - Saddle 53 % - Twisted Saddle 17 %. The ensemble model was tested

on the populations from all four REMD runs.

4. This procedure of randomly selecting shifts belonging to particular structure

was repeated 10 000 times. Following this procedure the R2 metrics with 95

% confidence intervals for the error was built.

The results for the ensemble model obtained following the described protocol

are given in Figure 4.19.

The bootstrapped R2 distribution for the AVP ensemble models shows that the

best agreement with experimental data is derived from the ensemble created using

REMD dervived from the Twisted Saddle starting structure followed by REMD
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Figure 4.18: The flowchart describes the approach taken to calculate ensemble chemical shifts.

The step by step explanation is given in the main text (Section 4.7.2).

ensemble from the Open structure. The approximate populations of the individual

states are listed below:

• REMD Twisted Saddle: Saddle 33 % - Clinched Open 12 % - Twisted

Saddle 18 % - Open 10 %

• REMD Open: Saddle 35 % - Clinched Open 11 % - Twisted Saddle 11 %

- Open 10 %

• REMD Clinched Open: Saddle 44 % - Clinched Open 8 % - Twisted

Saddle 16 % - Open 5 %

• REMD Saddle: Saddle 42 % - Clinched Open 5 % - Twisted Saddle 12 %

- Open 7 %

The ratio of the populations in the best performing ensemble model (REMD

Twisted Saddle) shows that the Saddle conformation is the most populated con-

formation in the ensemble, but among the four ensembles it contains the lowest

proportion of Saddle, while Twisted Saddle, Clinched Open and Open cluster states



CHAPTER 4. VASOPRESSIN

are the highest populated in this ensemble compared to the other REMD ensem-

bles. In terms of ratios of the individual cluster state population in this ensemble,

Saddle and Twisted Saddle are highest populated, while Clinched Open and Open

are lower, but these two conformers adopt almost equal populations (12 % and 10

%, respectively) (Figure 4.8). Saddle, as one of the unique cluster states, has the

highest individual R2 value of all the individual states (Figure 4.16), and it is also

the highest populated state in all the simulations, so the contribution of this state

to the model is the biggest in terms of weight. Besides Saddle, Clinched Open

state has also interesting behaviour. This state, just like Saddle, has the highest

R2 value, but on the other side, it is lower populated in the simulations (5 % to 12

%), so the contribution of this state to the model will be lower than of the Saddle

conformer.

Bootstrapping of individual cluster state vs. ensemble model. If we

compare individual cluster states bootstrapped R2 (Figure 4.16) with the ensemble

bootstrapped R2 distribution (Figure 4.19), then obviously ensembles match better

with experimental data than any separate cluster state.

The best performing ensemble simulation REMD Twisted Saddle has R2 av-

eraged at 0.981 while the best performing individual cluster state Clinched Open

has the R2 peak positioned at 0.960. The worst agreement with experimental data

from all ensembles is for the REMD Saddle and REMD Clinched Open ensembles

(R2 ≈ 0.975). If we compare these values with the best individual cluster state

Clinched Open which has a peak centred at R2 ≈ 0.959 (Table 4.6), than we see

that even the worst performing ensemble model has better agreement with experi-

mental data than any individual cluster state. This additionally supports the idea

that intrinsically disordered peptides exist in an ensemble of conformations rather

than as one structure.

Moreover, if we compare the obtained data with the experimental evidence

given in the Section 4.2, then it can be observed that the ensemble model reflects

the AVP conformational diversity. The best performing ensemble models have

high percentages of the Open and Saddle cluster state which resemble two AVP

crystal structure.
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Figure 4.19: The upper part of the picture shows the bootstrapped R2 distribution of the

ensemble model, while the plot below shows the populations of the each cluster state in each

of the four simulation repeats. Ensembles derived from each simulation starting structure are

colour coded (REMD Open, REMD Clinched Open, REMD Saddle and REMD Twisted Saddle).
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4.7.2.1 Optimal cluster population ratios

We also wanted to examine the population ratios which yield the best agreement

of the calculated with the experimentally measured chemical shifts. The ensemble

model was built in the same way as with the simulation cluster populations, but

here the cluster populations were generated randomly and only those population

ratios which gave the correlation coefficient R2 > 0.99 were kept. The results are

given in Figure 4.20.

Figure 4.20: The population ratios of the AVP cluster states which yielded correlation coefficient

R2 > 0.99 when comparing experimental chemical shift values with the ensemble model.

It shows that the sum of chemical shifts weighted by the different population

ratios between the AVP cluster states gives very good agreement with the ex-

perimental values. However, there is no preferred population ratio, and different

population values of the AVP cluster states give the same result, but the overall

population ratio matches the simulation population data with the most populated

cluster state Saddle, followed by Clinched Open, Open and Twisted Saddle. The

results also support initial idea that the ensemble model is better approximation

of the AVP conformational diversity than one global structure.
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4.8 Conclusions

AVP is a small cyclic peptide whose conformations have been probed with ex-

perimental and computational techniques reviewed in Sections 4.2 and 4.3. The

REMD simulation data contributed to already published data in such a way that

it gave a complete converged picture of the AVP conformational ensemble (Figure

4.8).

These results were then validated by comparison with experimental chemical

shift data. Chemical shifts are commonly measured NMR observables. The struc-

tures from the reported AVP cluster members were validated against experimental

chemical shift values. This analysis revealed that the closest chemical shift values

to the experimental data are for the individual cluster states Saddle and Clinched

Open.

However, as AVP is classified as IDP, it is assumed that it exists in an ensemble

of conformations. This idea was validated with the ensemble model (see Section

4.7.2). Figure 4.19 shows that the best agreement with experimental chemical

shift values is for the REMD Twisted Saddle ensemble in which the most popu-

lated structures are Saddle and Twisted Saddle, followed by Open and Clinched

Open which adopt very similar populations. However, all the computationally

derived ensembles show improved agreement between the calculated and experi-

mental chemical shifts, over and above that for any single ensemble cluster confor-

mation. This suggests that AVP adopts flexible conformational ensemble with no

single preferred structure state which is in agreement with structural data in the

literature. Moreover, the ensemble model built from optimised population ratios

also confirms that the simulation population ratios yield meaningful results.

Since AVP binds to the same receptor as Oxytocin, the conformational flexibilty

of that peptide was also examined. The simulation data and results are given in

the next chapter, after which the conformational ensembles are compared for both

peptides.





Chapter 5

Oxytocin

Oxytocin (OXT, OT) is another example of the cyclic peptide hormone with struc-

tural motif of a 6 membered ring with C terminal tail. It shares the same ring

sequence with AVP (Cys1, Tyr2, Ile3, Gln4, Asn5, Cys6) but they differ in a third

position residues; OT has Ile instead of Phe. The Oxytocin C terminal tail consists

of 3 residues Pro7, Leu8, Gly9 capped with NH2 group (Figure 5.1). A tail part

is also different from AVP in one residue, positively charged and hydrophilic Arg8

is replaced with hydrophobic Leu8. The amidated C terminal is a natural form of

OT [183], and the total charge of +1 comes from the protonated N-terminus Cys1

(NH2).

Figure 5.1: Oxytocin is a cyclic peptide made of six ring residues (Cys1, Tyr2, Ile3, Gln4,

Asn5, Cys6), and three tail residues (Pro7, Leu8, Gly9) capped with NH2 group.

119
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5.1 Experimental data

Oxytocin peptide was already known in 1953 when its sequence was determined

[183], while the 3D structure of its analog, deamino-oxytocin was determined soon

after, in 1964 to 1966 [184–186]. Deamino-oxytocin (dOT) has Mpa − Tyr2 −
Ile3 − Gln4 − Asn5 − Cys6 − Pro7 − Leu8 − Gly9 sequence, and it differs from

OT only in the N-terminal amino group, so it is often considered as an OT model

structure. The crystallographic dOT structure was refined in two studies [187,

188], resulting in two PDB structures with IDs, 1XY1 and 1XY2 (Figure 5.2 (b)).

The OT structure was crystallographically determined only in complex with its

carrier protein Neurophysin published in 1996 (PDB ID: 1NPO) [189] (Figure 5.2

(a)). X-ray structures were described as adopting following conformations:

• Two crystal dOT structures (PDB IDs: 1XY1, 1XY2) are characterized

by β-turn II centred at residues 3,4 and occupying Tyr2O − Asn5H and

Asn5O − Tyr2H hydrogen bonds in the ring. The tail is described with 7,8

β-turn III and Cys6O −Gly9H.

• Oxytocin structure bound to NP (PDB ID: 1NPO) is characterised with β-

turn centred at residues 3,4 as well, but as type III. There was no report of

hydrogen bonds. The tail is described as crystallising in two forms, folded and

extended. The folded conformation exhibits a 7,8 β-turn, while the extended

conformation is characterised by a Pro7O −Gly9HNH2 hydrogen bond.

Oxytocin was also extensively analysed with NMR. Two groups reported a

folded-like ring conformations in water. Ohno et al. [190] characterised ring con-

formation with 3,4 β-turn stabilised by the two Tyr2O − Asn5H and Asn5O −
Tyr2H ring hydrogen bonds. The tail was described with 7,8 β-turn, and the

Cys6O −Gly9H hydrogen bond between ring and tail residues.

Another experimental group (Koehbach et al. [191]) characterised OT ring

conformation with 3,4 β-turn without reporting on any hydrogen bond, or the

β-turns in the C terminal tail [191]. This experimentally averaged ensemble of 50

structures can also be found as PDB code (PDB ID:2MGO).

NMR experiments in DMSO report again a β-turn centred at residues Ile3, Gln4

with Tyr2O−Asn5H, Tyr2O−Cys6H, and/or Asn5O− Tyr2H hydrogen bonds

[192–194].
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Figure 5.2: (a) Oxytocin crystal structure bound to Neurophysin (PDB: 1NPO). The ring

structure is in the Saddle conformation. (b) Deamino-oxytocin (dOT) crystal structure (PDB:

1XY1). The ring structure resembles the Twisted Saddle conformation.

To summarise, the ring part of the OT seems to be more conformationally rigid

than AVP since almost all experimental studies describe it with a rather folded ring

conformation with 3,4 β-turn stabilised by the Tyr2O−Asn5H, Tyr2O−Cys6H

and Asn5O − Tyr2H hydrogen bonds.

5.2 Computational data

Oxytocin is often studied together with Vasopressin because of their structural

similarity and biological importance. The first of these studies explored conforma-

tional ensemble of Oxytocin using a combination of Monte Carlo and MD method

for 400 ps. Suggested conformations have β-turns centred at residues 2,3 and 3,4

[172].

The next study was with reservoir REMD in the ff99SB-ILDN force field and

TIP4P-Ew water model [174]. In this study, they were comparing the confor-

mational ensembles between AVP and OT. The suggested ring conformation was

described as canonical with Tyr2O−Asn5H and Tyr2O−Cys6H hydrogen bonds.

However, compared to AVP, Oxytocin adopted a higher percentage of the extended

tail conformation relative to the compact tail subpopulation characterized by either

Cys6O −Gly9H or Pro7O −Gly9H hydrogen bonds.

Finally, the OT conformational ensemble was also explored using normal Molec-
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ular Dynamics simulation in explicit water for 50 μs in total over four simulation

repeats [182]. The simulation detected the same two main conformational states

as in AVP, more open and folded-like conformations, with their states named the

same as for AVP, Open, Clinched Open, Saddle and Twisted Saddle. They also

reported on a few very low populated variants of the main conformational states

but these were considered as transient states. The tail was reported to be in two

conformations, folded and extended in approximately 20:80 ratio.

5.3 Motivation for our work

Oxytocin and Vasopressin are two cyclic peptides which share the same structural

motif of tail attached to ring closed by disulphide bridge. They differ only in the

third and eighth residues in the sequence. In Oxytocin, Ile3 is in place of Phe3

for Vasopressin, while Leu8 is instead of Arg8 in the tail part of the peptide.

Both peptides bind to the same GPCRs on the cell membranes [195, 196],

but with different affinities [197]. It is not clear whether it is the different ring

conformation that affects affinity or the interactions with the tail.

Moreover, the experimental data reviewed here suggests that OT adopts only

folded structures, but similar was claimed for AVP, especially from NMR experi-

ments. Here we explore the conformational ensemble of OT as was done for AVP,

and then compare the two conformational ensembles. To do so, Replica Exchange

with Solute Tempering (REST) was employed which enhances sampling by soften-

ing interactions across a number of replicas keeping the solvent as per the lowest

temperature replica (see Section 3.4.4.2 for details).

5.4 REST simulation details

The Solute Tempering simulations were run in Gromacs software using the Am-

ber14 force field. The method was implemented in Gromacs with the Plumed

patch [155]. The peptide was simulated in a TIP3P water model [177] contain-

ing 1696 and 1961 water molecules, for Saddle and Open starting conformation

simulations, respectively. Furthermore, the system was neutralised with a Cl−

counterion. Particle Mesh Ewald [126] was used for the long-range interactions

using a 10 Å cutoff. Bonds involving hydrogen were constrained using the SHAKE
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algorithm [121] with a tolerance of 0.00001 Å. REST simulations were performed

in the NVT ensemble using a Langevin thermostat for the temperature coupling

with a collision frequency of 1 ps−1.

The simulations were run for 300 ns using 12 replicas in the effective temper-

ature range 298 K - 900 K. The replicas were geometrically distributed to give

the acceptance ratio between 20 and 35 %. In the REST method compared to

REMD, the higher temperature range is possible because in REST all tempera-

tures, except the lowest, are taken as pseudo temperatures only, and used to scale

the interactions to speed up the sampling, and are not physically meaningful.

5.4.1 The efficiency of REST simulations

The efficiency of Replica Exchange simulations is usually checked by looking at the

replica random walk between highest and lowest temperatures, and calculating the

acceptance probability between the replicas which ensures that the neighbouring

replicas are overlapping enough to allow for efficient configuration exchanges.

The same was done for the REST simulations. Figure 5.3 (a) shows that the

lowest replica trajectory visited the complete temperature space, while the desired

acceptance probability of 20 - 35 % was achieved (Figure 5.3 (b)).

Figure 5.3: (a) Random walk of the lowest temperature replica from the REST Open simulation.

(b) Acceptance probability between neighbouring replicas was calculated from the REST Saddle

simulation.
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5.5 REST simulation results

Using the REST method, two simulations were run; one starting with Open, and

another one starting with the Saddle conformation. The Open conformation was

obtained from a high-temperature (800 K) short-scale MD simulation by our col-

laborators from the University of Portsmouth, and then given to us. The Saddle

conformation corresponds to the crystal structure co-crystallised in complex with

Neurophysin (Section 5.1).

The simulations were performed for 300 ns in total per replica. However, the

initial 100 ns of each simulation was taken as equilibration time and was not

included in the final analysis. The peptides were analysed in terms of β-turn

population, hydrogen bond population and cluster state diversity, just as was done

for AVP. The population of the cis amide bond next to Pro7 was also checked.

5.5.1 β-turn and hydrogen bond populations

Following the same approach as for AVP peptide, first the population of β-turns

and hydrogen bonds in the simulation trajectories were analysed. The population

of different β-turns is given in Table 5.1.

2,3 type I 2,3 type II 3,4 type I 3,4 type II 4,5 type I 4,5 type II 7,8 type I 7,8 type II

REST Open 0.01 0.95 56.48 4.33 34.69 0.66 5.28 9.67

REST Saddle 1.22 0.83 49.7 12.54 30.57 1.20 5.09 9.57

Table 5.1: β-turn type populations from the two REST simulations

As can be seen from the Table 5.1, OT adopts certain β-turns between the

ring residues, in particular 3,4 and 4,5 centred turns. The 3,4 β-turn is highly

populated, 55 to 70 %, followed by the 4,5 β-turn between 30 to 35 %.

The β-turn population was also checked for the tail residues as both crystallo-

graphic structures reported the appearance of 7,8 β-turn. In our simulations, this

turn appeared with the approximate population of 15 %.

Compared with the population of AVP β-turns (Table 4.1), then it can be

noticed that both peptides adopt the same β-turn types, but OT has higher per-

centages for both β-turns. This could imply that OT is more conformationally

constrained than AVP.
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Next, the simulations were analysed with a hydrogen bond analysis, because

it is known from experimental data that the OT structure is stabilised with certain

hydrogen bonds (see Section 5.1). Based on the hydrogen bond definition intro-

duced in Section 1.2.3, the populations of certain hydrogen bonds in the trajectory

were analysed.

O - - H REST Open REST Saddle

Cys1 −Gln4 0.81 0.69

Tyr2 −Gln4 4.56 4.24

Tyr2 −Asn5 80.75 78.43

Tyr2 − Cys6 3.29 4.31

Ile3 −Asn5 0.98 1.82

Ile3 − Cys6 1.25 2.75

Gln4 − Cys6 0.97 0.96

Asn5 − Tyr2 0.05 0.14

Cys6 −Gly9 0.66 10.88

Table 5.2: Hydrogen bond population in the two REST simulations named as Open and Saddle

due to the conformation of the starting structures.

Table 5.2 shows that the OT structure was stabilised with a Tyr2O − Asn5H

hydrogen bond between two ring residues during the largest period of the analysed

100 ns to 300 ns simulation time (almost 80 % of time). Two other hydrogen bonds

between ring residues appeared during a short period of time (5 %), Tyr2O−Gln4H

and Tyr2O − Cys6H. The hydrogen bond between the ring residue Cys6O and

the tail residue Gly9H appeared during 10 % of the simulation time. Moreover,

different hydrogen bond populations across two simulation repeats show very good

agreement (Table 5.2).

The high population of the Tyr2O − Asn5H hydrogen bond is in agreement

with β-turn populations, suggesting that OT prefers the experimentally reported

folded-like ring conformation with the Tyr2O − Asn5H intracyclic bond.

5.5.2 cis/trans proline peptide bond

Since a proline residue is present in OT sequence, the cis population of the amide

bond next to proline was also analysed. The cis-proline bond was defined as

adopting range of +/- 60◦ from the mean value of 0◦ around the Ncys − CAcys −
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Cpro −Npro bond. The results are given in Table 5.3, in which it can be seen that

cis-proline amide bond conformation is presented in both simulation ensembles.

The experimental population of this amide bond was reported to be approxi-

mately 10 % in one study [179].

amide conformation REST Open REST Saddle

cis 3.94 5.51

trans 96.06 94.49

Table 5.3: The populations of the cis/trans amide bonds during the REST simulations.

5.5.3 Cluster population

Furthermore, OT conformational ensemble diversity was also tested with the tor-

sion based clustering software Dash, following the same approach as for AVP.

The cluster population analysis was performed on the lowest replica trajectory at

T=298 K, from 100 ns to 300 ns replica time, where the first 100 ns were consid-

ered as equilibration time and were not included in the final analysis.

The first step taken to analyse trajectories included the extraction of the (φψ)

torsion angles for the ring residues Tyr2 to Cys6. The torsion angle values were

then run with the Dash software to produce the list of several OT Dash states,

then utilised to check for the OT conformational diversity with dashsim program.

The list of Dash states also contains the mean values with associated SD of

the ring torsions. A dashsim program compares these Dash state torsion values

between themselves, and reports on the similarity between them. Therefore, it

allows us to calculate the similarity of Dash states identified for two different

peptide conformations. In total, a unique combination of ten torsion angles defines

each cluster state.

5.5.3.1 Oxytocin cluster states

From the torsion angle based cluster analysis, OT was recognised to adopt four

cluster states, Open, Clinched Open, Saddle and Twisted Saddle (Figure 5.4, Ap-

pendix A). They follow the same naming as AVP because when compared to AVP

ensemble members, they have very high values of the circular similarity scores (Ta-
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ble 5.4). The overlapping between the OT and AVP cluster states is also shown

in Figure 5.5, where the structures are aligned on the ring backbone residues.

OT Saddle OT Tw. Saddle OT Cl. Open OT Open

AVP Saddle 0.97 0.60 0.51 0.53

AVP Tw. Saddle 0.62 0.97 0.55 0.41

AVP Cl. Open 0.52 0.56 0.97 0.38

AVP Open 0.53 0.41 0.38 0.97

Table 5.4: The circular similarity between AVP and OT cluster members

Figure 5.4: The cluster states adopted by Oxytocin with associated turn types.

5.5.3.2 Cluster state time evolution

Having defined the OT cluster ensemble, we also wanted to check for their time

evolution. The approach taken is the same as for AVP, described in Figure 4.7.
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Figure 5.5: The Vasopressin and Oxytocin cluster members aligned based on Cartesian su-

perimposition of backbone atoms on ring part of the structures. In blue are shown the Open

conformations, while in red Clinched Open conformation. Twisted Saddle AVP and OT cluster

states are shown orange, and Saddle is shown in green. The ring is in cartoon representation.

The residues which are different between peptides are emphasised in red boxes, and the ones

which are the same are given in black. AVP tail (Pro7−Arg8−Gly9) is given in green, and OT

tail (Pro7 − Leu8 −Gly9) is in purple.

The OT cluster state populations across the REST simulations is given in

Figure 5.6. It shows that OT prefers the Saddle conformation over other OT

cluster states. This conformation is populated between 70 and 90 % on average

during the simulation time. The second most populated conformational state is

Twisted Saddle, which is more populated in REST Saddle than in the REST Open

ensembles. Two other cluster states, Open and Clinched Open, appeared less than

5 % in both ensembles.
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Figure 5.6: The population time evolution of the individual cluster states in two REST simula-

tions of Oxytocin.

5.5.3.3 Comparison between cluster states and crystallographic struc-

tures

The obtained OT ensemble cluster states were compared against two crystallo-

graphic structures (PDB IDs: 1NPO and 1XY1) in terms of the adopted φψ ring

torsion angles. A Dashsim program was used to assign circular similarity between

the states.

Two states can be considered similar if the circular similarity between them is

higher than 0.65. This number was taken because when the cluster states were
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Cluster state 1NPO 1XY1

Saddle 0.78 0.59

Twisted Saddle 0.57 0.80

Clinched Open 0.56 0.58

Open 0.53 0.51

Table 5.5: The OT cluster states compared in terms of circular similarity with two crystallo-

graphic structures with PDB IDs: 1NPO and 1XY1.

visually aligned based on Cartesian superimposition of backbone atoms in ring

part of the structures, then the ring backbone conformation between two peptide

conformations would be similar enough to consider the structures as belonging to

the same cluster state.

Table 5.5 shows that 1NPO crystal structure is very similar to the OT Saddle

cluster state, while 1XY1 crystal structure is very similar to the Twisted Saddle OT

cluster conformation. This data suggest that the states we observed as the most

populated during the simulation times are resembling crystallographic structures.

The X-ray determined structures are visualised in Figure 5.2.

5.5.4 The population of cis-proline amide in OT cluster

states

Table 5.3 reports that in REST simulations the cis amide bond associated with

the proline residue appeared with a population of approximately 5 %. However,

now that the OT cluster ensemble is defined, the selectivity for any of the OT

cluster states was tested.

Figure 5.7 shows that cis isomer is mostly present in the Saddle conformation,

while less presented in other conformations. The detailed population of cis-proline

amide bond in each cluster state is given in Table 5.6.

The cis-proline amide population in Table 5.6 does not add up to 100 %. This

is because the cis-proline amide population is also present in unassigned states of

very low population.

The data suggest that the cis isomer is not selective for any OT cluster state.

Since Saddle conformation is the preferred OT conformational state, the cis bond

was also mostly populated in that cluster. Other cluster states show similar cis

populations, especially the Clinched Open cluster state that seems to adopt con-
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Figure 5.7: A distribution of the cis amide bond during simulation time for each OT cluster

state in a) REST Open and b) REST Saddle simulations. The colour coding is different for each

cluster state.

sistent cis populations, while for the Twisted Saddle and Open cluster states it

was more simulation specific because there is approximately 5 % difference in the

population of cis-proline amide across the simulation ensembles for these two OT

conformational states (Table 5.6).
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Cluster state REST Open REST Saddle

Saddle 75.03 78.43

Twisted Saddle 7.61 13.16

Clinched Open 4.95 5.85

Open 6.97 1.54

Table 5.6: The population of cis amide bond in each OT cluster state in the two simulation

repeats.

5.5.5 Summary

By performing enhanced sampling REST Oxytocin simulation, we sought to obtain

converged OT cluster ensembles. The literature review showed that OT prefers

folded-like ring conformational state (see Sections 5.1 and 5.2), named as Saddle

conformation in our work. This result was also confirmed by our work. Figure

5.6 clearly shows that Saddle, followed by the Twisted Saddle conformation is the

stable OT conformation in aqueous solution. The OT preference for rather folded

conformation was also confirmed by the β-turn and hydrogen bond populations

(Tables 5.1 5.2). This analysis confirmed the presence of 80 % of the Tyr2O −
Asn5H hydrogen bond thought to stabilise folded-like ring conformations (Saddle

and Twisted Saddle). The most populated conformations in the REST ensembles

resemble two OT X-ray determined structures as confirmed with circular similarity

analysis (see Section 5.5.3.3).

A tail part of the OT peptide was also analysed for the presence of the ex-

perimentally reported 7,8 β-turn thought to be responsible for the tail folded con-

formation. In our simulations, it appeared for the 15 % of the simulation time,

while hydrogen bond between ring and tail residues Cys6O−Gly9H appeared for

approximately 10 % of the simulation time. The MD simulations reported that

the folded tail conformation appeared 10-20 % of the simulation time [182].

Since the OT peptide contains a proline residue which is known to reduce

the cis/trans energy barrier, the amide bond with which the proline nitrogen is

involved was checked for the presence of cis isomer. Figure 5.7 shows the distri-

bution of the cis amide bond with simulation time. While mostly preferred by the

OT Saddle cluster state, it appeared in other OT cluster states as well (Table 5.6).

Finally, OT cluster members were identified to be the same as for AVP (Table

5.5 and Figure 5.5). For consistency, both peptides were analysed following the
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same approach, checking the conformational flexibility of the ring (φψ) torsion

values. Then, AVP and OT cluster ensembles were compared in terms of torsion

values to justify that the ring part of structures adopts the same conformations in

both peptides what is visually confirmed in Figure 5.5.

Overall, despite considering OT as an IDP, it is shown here, and in the other

papers reviewed, that it prefers more folded conformational states, named as Sad-

dle and Twisted Saddle in our work. The Open and Clinched Open cluster states

could be considered as transient states for OT.

These simulation results were further examined against the experimental chem-

ical shifts.



CHAPTER 5. OXYTOCIN

5.6 Oxytocin chemical shifts

5.6.1 Experimental chemical shifts

The experimental shifts for OT were measured by 2 groups, Ohno et al. [190] and

Koehbach et al. [191]. The Ohno group published the values for 36 proton chem-

ical shifts, while the Koehbach group for 35 proton chemical shifts. The missing

proton shift of the Koehbach group belongs to Leu9 HG atom. The chemical shift

values are visually compared in Figure 5.8.

In terms of experimental conditions, the Ohno et al. group recorded chemical

shift spectra at a solution pH 6.2 and temperature of 298 K, while Koehabach et

al. measured the signal at pH 3.5 and the same temperature of 298 K (Section

5.1).

Figure 5.8: The comparison between the values of chemical shifts measured by two groups.
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5.6.2 Computational chemical shifts

5.6.2.1 The choice of the representative structures

The representative structures were chosen to fulfil the same conditions as for AVP;

to be scattered in approximately equal intervals along the trajectory (Figure 5.10),

and to be within the 1 SD of the torsion angle distribution (Figure 5.11). There

are 9 representative structures for Saddle cluster state, and 10 for other cluster

states (Open, Clinched Open, Twisted Saddle).

Calculated chemical shifts were compared between the representative structures

to see the variance within the chemical shift types. The Tyr2 HD* and HE*, Pro7

HD2 and HD3, Leu8 HD1* and HD2* chemical shift types showed the tightest

values across all Oxytocin cluster states (Figure 5.9), while rather wide values of

chemical shifts were observed for Gly9 HA* and HB* chemical shift types, within

0.3 ppm. The Cys1 HB3 chemical shift type for Twisted Saddle representative

structures showed the largest variance, approximately 0.5 ppm.

Figure 5.9: The chemical shift type variance for the given representative structures for each

Oytocin cluster state.
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Figure 5.10: The locations of the pulled out representative structures for each cluster state

a) Saddle, b) Twisted Saddle c) Clinched Open, d) Open during the simulation time. The

emphasised colour dots depict another structure for given cluster state.

Figure 5.11: The distribution of observed torsion angles for each conformation in each confor-

mational state for a) Open, b) Clinched Open, c) Saddle, d) Twisted Saddle. The red bars are

from MD simulations [182], and REST torsion angle distributions are in green. The spots show

the dihedral angles for the structures we selected.
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5.6.2.2 Chemical shift calculation

After fulfilling the initial requirements, representative structures were optimised

and the shielding constants were converted into chemical shifts afterwards using

regression equation 4.1 (see Section 4.7.0.2 for details). All the calculations were

done with the PCM water model using Gaussian09 software [116] at the B3LYP/6-

31G(D) level of theory.

The chemical shift values from optimised structures were then compared with

experimental values, with data published from both experimental research groups,

in terms of R2 values. The comparison between each representative structure for

each cluster state with experimentally measured chemical shifts is given in Figures

5.12 and 5.13.

By comparing the R2 range adopted by each individual cluster state, it can

be observed that all cluster states adopt very similar R2 ranges; the Saddle and

Twisted Saddle cluster state conformations have R2 in the 0.92 to 0.97 range,

Open structures from 0.91 to 0.95 while Clinched Open cluster state structures

have tightest range, from 0.93 to 0.96.

Interestingly, the R2 distribution is rather wide when compared against both

sets of experimental chemical shifts, taking values between 0.91 and 0.97.

5.6.3 Bootstrapping of the individual cluster states

Since all the cluster states perform very similar when compared with experimental

values, the structures were subsequently bootstrapped to account for the fact that

only a few (9 or 10) structures were chosen as a representative of the several

hundred frames belonging to a particular cluster. The R2, MUE and MSE were

bootstrapped with 95 % CI. The result of the bootstrapped R2 distributions are

given in Figure 5.14.

The mean R2 values of the individual cluster states shown in Figure 5.14 are

also summarised in Tables 5.7 and 5.8. The values show that no two NMR mea-

surements are reporting the same mean R2 value for any cluster state but Saddle.

The biggest R2 difference was obtained for the Open and Twisted Saddle cluster

states. For the Open cluster state the R2 mean is centred at 0.927 when compared

against Ohno chemical shifts, and at 0.937 when compared against Koehbach chem-

ical shifts. A similar difference is observed for the Twisted Saddle cluster, with
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Figure 5.12: The distribution of the R2 values calculated between experimentally measured and

theoretically obtained chemical shifts for each structure belonging to particular Oxytocin cluster.

Experimental values were measured by Ohno group [190]. The asterix depicts the R2 values for

each representative structure, and were vertically offset to show their spread within a bar.

Figure 5.13: Distribution of the R2 values calculated between experimentally measured and

theoretically obtained chemical shifts for each structure belonging to particular Oxytocin cluster.

Experimental values were measured by Koehbach group [191]. The asterix depicts the R2 values

for each representative structure, and were vertically offset to show their spread within a bar.
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Figure 5.14: Distribution of the R2 values obtained after bootstrapping calculated chemical shifts

from each individual cluster state, and comparing lists with two sets of experimental values, a)

Ohno b) Koehbach.

R2 peaks positioned at 0.937 and 0.946 for Ohno and Koehbach chemical shifts,

respectively.

Interestingly, the Clinched Open conformation is showing the best agreement

with experimental data for both experimental sets, followed by Saddle at pH 6.2.

Similar MUE values are also reported for Clinched Open and Saddle cluster states

(Tables 5.7 and 5.8).

5.6.3.1 Analysis of the individual chemical shift types

Another part of the analysis of the single Oxytocin cluster states consisted of

checking the weight of the individual chemical shift types to the overall R2 dis-

tribution. The chemical shift types were removed from the final analysis in the

sequential way, depending on the calculated variance, to check how the correlation

coefficient changes with the variance of the individual chemical shift types.

For Oxytocin Open cluster state (Figure 5.15 a)) it was observed that the

chemical shift types with variance already higher than 0.01 ppm show significant

drop in the R2 value, from 0.94 for the full set of experimental data to 0.85 for

data set consisting only of the chemical shift types with variance higher than 0.01

ppm. However, for Clinched Open cluster (Figure 5.15 b)), the weight of the

chemical shift types with variance lower than 0.005 ppm is smaller than it was
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Figure 5.15: The R2 distributions of the theoretically calculated vs. experimental chemical

shifts with different chemical shift data sets depending on the value of their variance (on the left

plots). Distributions are plotted separately for a) Open, b) Clinched Open, c) Saddle and d)

Twisted Saddle AVP cluster state.
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Cluster state MUE MSE R2

Open 0.213 < 0.315 < 0.418 -0.165 < -0.018 < 0.127 0.899 < 0.927 < 0.955

Clinched Open 0.216 < 0.284 < 0.352 0.003 < 0.113 < 0.223 0.919 < 0.943 < 0.967

Saddle 0.198 < 0.284 < 0.371 -0.035 < 0.089 < 0.214 0.915 < 0.939 < 0.964

Twisted Saddle 0.217 < 0.291 < 0.363 -0.145 < -0.024 < 0.009 0.907 < 0.937 < 0.966

Table 5.7: The bootstrapped values of three statistical measures of similarity, MUE, MSE and

R2 for four OT cluster states when compared with Ohno chemical shifts.

Cluster state MUE MSE R2

Open 0.255 < 0.348 < 0.441 -0.117 < 0.032 < 0.181 0.910 < 0.937 < 0.964

Clinched Open 0.197 < 0.267 < 0.336 -0.073 < 0.039 < 0.152 0.925 < 0.948 < 0.971

Saddle 0.206 < 0.273 < 0.340 -0.033 < 0.077 < 0.188 0.917 < 0.939 < 0.960

Twisted Saddle 0.184 < 0.264 < 0.345 -0.167 < -0.048 < 0.071 0.921 < 0.946 < 0.974

Table 5.8: The bootstrapped values of three statistical measures of similarity, MUE, MSE and

R2 for four OT cluster states when compared with Koehbach chemical shift values.

for Open cluster state. Here the R2 value dropped only slightly, while for Saddle

and Twisted Saddle cluster states (Figure 5.15 c), d)), the significant decline was

observed for chemical shift types with variance higher than 0.04 ppm, which implies

that the weight of these chemical shift types is largest to the final R2 distribution.

5.6.4 Ensemble model

The final step in analysing the chemical shift data is by validating it against the

ensemble model. The idea of the ensemble model was introduced in the chapter

reporting the AVP peptide results (Figure 4.7.2). The protocol includes weighting

each representative structure for each cluster member by the associated cluster

state population and taking the weighted sum as a unique set of chemical shifts,

to be compared against experimental values.

Figure 5.16 gives the results together with the OT REST simulation popula-

tions. From the Figure, it can be seen that the REST ensemble derived by using

the Saddle as a starting structure, with a high population of Saddle cluster state

followed by that of the Twisted Saddle conformation shows better R2 with exper-

iment than the ensemble derived using the Open starting structure. This data

is in agreement with the two crystallographic OT structures (Figure 5.2) which

correspond to our Saddle and Twisted Saddle cluster states (Table 5.5).

We can also compare the ensemble R2 mean values between the two experi-
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mental sets. It shows that both sets of experimental data are giving very similar

mean R2 values, so both sets can be taken as valid to compare with computational

data.

Next, the ensemble R2 mean values were also compared against the R2 mean

values of the individual cluster states (Table 5.9). Overall, Koehbach experimen-

tal shifts are giving higher R2 values in all cases (individual cluster states and

ensembles). This could be due the experimental conditions because these data are

measured at lower solution pH.

For the Ohno chemical shifts measured at pH 6.2, the best performing sin-

gle cluster state is Clinched Open (R2=0.943), followed by Saddle (R2=0.939).

However, these values are still lower than for the ensemble models which are giv-

ing the values of 0.949 and 0.955 for REST Open and REST Saddle simulations,

respectively.

Finally, these data also suggest that the ensemble model is more appropriate

to describe the conformational cluster flexibility of cyclic hormone peptides.

Experimental group Open Saddle Cl. Open Tw. Saddle REST Open REST Saddle

Ohno 0.927 0.939 0.943 0.936 0.949 0.955

Koehbach 0.937 0.939 0.948 0.946 0.950 0.957

Table 5.9: The comparison between bootstrapped R2 values between individual cluster states

vs. ensemble model for the two REST simulations (REST Open and REST Saddle), for both

sets of experimental chemical shifts.

5.6.4.1 Optimal cluster population ratios

We also wanted to check the cluster population ratios that lead to the optimal

prediction of the experimental chemical shifts. Figure 5.17 gives results of such

calculation for Ohno (a), and Koehabach (b) experimental chemical shift data.

Population ratios given in Figure 5.17 show that different combinations of clus-

ter state populations give the same result. The simulation cluster populations show

that Saddle is the most populated conformational state followed by Twisted Saddle

which yield to the R2 value of 0.96 (Table 5.9), while population ratios given in

Figure 5.17 follow R2 value higher than 0.985. These results show that different

population ratios between the observed Oxytocin cluster states can give very good

agreement with experimental data. However, the population ratios with the best

agreement of the ensemble model with experimental data show that all identified
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Figure 5.16: The upper part of the picture shows the bootstrapped R2 distribution of the

ensemble model, while the plot below shows the populations of each cluster state in each of the

two simulation repeats.
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Figure 5.17: The optimal Oxytocin cluster states population ratios that have the best agreement

with experimental data from (a) Ohno, (b) Koehbach.

cluster states are similarly populated contrary to simulation results where Saddle

is the dominant state. This is observed for both sets of experimental data.
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5.7 Conclusions

In this chapter, the conformation and dynamics of the cyclic peptide hormone

Oxytocin in solution was explored with the combination of enhanced sampling

REST simulations and chemical shift calculation. The simulation data suggest that

OT prefers a folded-like Saddle conformational state which had a high population

during the simulation. The REST simulation also revealed that OT can be found

in three other minor populated cluster states referred to as Open, Clinched Open

and Twisted Saddle. The states were classified according to the conformation of the

ring part of the structure, following the same approach taken in already published

data and the AVP analysis given in the previous chapter.

The tail conformation was described as folded or extended depending on the

population of the secondary 7,8 β-turn motif and Cys6O−Gly9H hydrogen bond.

In our simulations, the population of this beta turn and hydrogen bond was be-

tween 10 and 15 %. The MD simulations reported a similar percentage, while

the 1NPO crystal structure was co-crystallised with the folded tail conformation.

Overall, the OT cluster state populations show converged conformational pattern.

The simulation data validation against experimental 1H chemical shifts revealed

that the OT prefers the highly populated Saddle and less populated Twisted Saddle

conformational states. The ensemble data derived from the simulation ensembles

show higher bootstrapped R2 values than the individual conformational states.

The ensemble model result is supported by crystal OT structures which were also

found to adopt these two states, although the Twisted Saddle conformation was

crystallised for dOT which is an OT model structure.

Since AVP and OT were found to adopt the same cluster states, the next

chapter discusses the conformational similarity between AVP and OT.
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Comparing AVP and OT cluster

states

Table 5.4 contains the circular similarity scores between AVP and OT cluster

states, and it shows that they adopt overlapping cluster ensemble states (Figure

5.5). Their conformational ensembles were explored using two enhanced sampling

methods, REMD and REST, which enhance sampling by taking advantage of the

high temperatures (REMD) or scaling the potential energy functions (REST). In

this chapter, the comparison between the AVP and OT conformational ensembles

will be given, together with the overview of their binding affinities to receptors,

but first the enhanced sampling methods used will be discussed in terms of com-

putational cost.

6.1 Simulation computational cost

The AVP conformational ensemble was obtained using the REMD method which

used 80 replicas to simulate the system for 300 ns per replica. This led to the

total of 24 μs of simulation for each repeat. The conformational ensemble of

Oxytocin was obtained using another Replica Exchage method in which only the

simulated peptide is at different effective temperatures keeping the waters at room

temperature; this results in fewer replicas being needed. The REST simulation

was run for 300 ns per replica, which together with the 12 replicas used gives 3.6

μs simulation time for each repeat.

Comparing these two methods, there is a clear advantage of REST over REMD.

To achieve equilibrium sampling, REMD requires a large number of replicas (80),
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while for the system of the same size, REST required far fewer (12). This makes

REMD computationally expensive because of the need for a highly parallel com-

putational resource. Beside being computationally expensive, it is also time con-

suming because the large number of replicas are required to exchange at a set

time which extends the real time running of the method. Furthermore, Figure 5.3

shows that almost the same acceptance probability is obtained with REST with

the smaller number of replicas than with REMD (Figure 4.5). The efficiency of

methods to perform a free walk in temperature space was also achieved (Figures

4.5 and 5.3).

In terms of convergence of the conformational sampling, it can be observed in

Figures 4.6 and 5.6 that both peptides achieved converged conformational ensem-

bles during the 300 ns of the simulation time per replica. The overall populations of

the AVP and OT cluster states show very good agreement across the all simulation

repeats.

6.2 Comparison between conformational ensem-

bles

After it was established that the simulations ran properly and efficiently for both

peptides, their conformational ensembles were examined.

Figure 5.5 and Table 5.4 shows that AVP and OT are adopting overlapping

conformational ensembles, but the ratio of the populations of the individual cluster

states differ. Although the folded-like Saddle state is the preferred cluster state for

both peptides, in AVP (Figure 4.8) it is populated less than in OT, approximately

40 % compared to 75 % (Figure 5.6). Moreover, AVP seems to be more confor-

mationally flexible with Twisted Saddle, Clinched Open and Open states being

similarly populated (10 - 15 % on average). The AVP Open structure resembles

one of the AVP crystal structure (PDB ID: 1YF4). In OT, the only significant

state beside Saddle is Twisted Saddle which is in agreement with experimental

data (Section 5.1). The OT Saddle had 5-fold higher population than OT Twisted

Saddle.

Next, conformational ensembles for both peptides were validated against ex-

perimental data. Chemical shifts are a commonly used NMR observables to check



CHAPTER 6. COMPARING AVP AND OT CLUSTER STATES 149

computational populations. Here, the equilibrium model which weights the shift

values according to cluster population was tested against chemical shift values of

the individual conformations. The data confirmed that the AVP and OT ensem-

ble models have better agreement with experimentally determined chemical shift

values in solution compared to the individual cluster states, confirming the idea

that OT and AVP exist in an ensemble of conformations, and that the enhanced

sampling simulations are able to reproduce these experimental ensemble popula-

tions.

6.3 Interaction with receptor

Both peptides are endogenous ligands to different GPCR receptors [195, 196].

There are three different AVP receptor subtypes known, V1aR, V1bR and V2R,

where V2R is localised on the renal collecting duct and is part of the AVP mech-

anism responsible for antidiuretic activity (see Section 4.1).

No crystal structure of vasopressin receptors has been reported to date, but the

proposed binding poses and ligand interactions are coming from various mutage-

nesis data [198]. Receptor binding data for AVP proposed that the aromatic side

chains of Tyr2 − Phe3 [199] are interacting with the V2R transmembrane (TM)

helices to activate signal transduction. The peptide tail is suggested to be oriented

outside the TM core with Arg8 interacting with the extracellular loop [200].

Oxytocin is though to interact with the OTR receptor [196] via Tyr2, Ile3 and

Leu8 residues [201].

While the AVP receptor V2R discriminates between AVP and OT, with AVP

binding with 400-fold higher affinity than OT, AVP was discovered to bind to OTR

receptor with similar affinity [197, 202], which may suggest that structural differ-

ence between OT and AVP could be associated with this selectivity. While their

ensembles show overlapping cluster states, their population ratios differ, possibly

suggesting that different ring conformations have different biological roles. An

AVP tail Arg8 residue was though to be a key factor in the receptor recognition

interacting with the extracellular loop of receptor [170].

There are several proposed mechanisms of peptide binding to GPCR receptor

reviewed in Sections 1.3.2 and 2. Most of them suggest that binding events are

probably accompanied with the conformational changes to the peptides. How-



CHAPTER 6. COMPARING AVP AND OT CLUSTER STATES

ever, there is also an evidence that the bound conformation of the IDP peptide

is found in solution [203] supporting the hypothesis that the converged IDP con-

formational ensemble contains the peptide bound conformation. Therefore, AVP

and OT conformational states can also be considered as candidates for biologically

active conformations.
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Urotensin II peptide

Urotensin II (UII) is a cyclic peptide hormone just like AVP and OT. The cyclic

part is connected by a disulphide bridge between two cysteine residue (Cys5 −
Cys10). N terminal tail is made of four residues Glu1, Thr2, P ro3, Asp4, while C

terminal tail contains only V al11. A total aggregate UII charge is -1.

Figure 7.1: Urotensin II is a cyclic peptide made of six ring residues (Cys5, Phe6,

Trp7, Lys8, Tyr9, Cys10) surrounded by two tails; the N terminal tail contains 4 residues

Glu1, Thr2, P ro3, Asp4, while C terminal contains only V al11
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7.1 Known structural data

UII was initially found in the urophysis (terminal region of the spinal cord) of

teleost fish in 1969 [204]. The human version was identified much later by the

three different groups at the same time, in 1999 [205–207]. Since the UII peptide

has only recently been identified, there is not much structural data compared to

the previously introduced AVP and OT peptides. Moreover, no crystal structure

of the UII peptide has been reported to date.

Two NMR studies in water suggest an unstructured ring conformation with

no intramolecular hydrogen bond [208], and a widened 7,8,9 γ + 8,9,10 γ ring

conformation [209] with the possibility of creating two hydrogen bonds Trp7O-

Tyr9NH and Lys8O-Cys10NH. The N terminal tail was described as flexible by

both studies.

In DMSO, the ring was described as unstructured, with a possible 3,4 β-turn I

in the N terminal tail [210].

The UII structure was also probed in SDS micelles where the ring part of the

structure showed folded conformational feature, with the β turn type II
′

centred

at residues 7,8 [211].

Overall, only a few NMR studies of the UII peptide report two main UII ring

structural features: one describes ring as unstructured, and another as in rather

folded conformation, while the N terminal tail was described as flexible.

Regarding the computational data, there is only one paper which reported

on the rather detailed UII conformational ensemble using a combination of MD

and REMD methods [212]. Since we were part of the collaboration which studied

this peptide, the REMD part of the results will be given in the results section.

On the other hand, the MD simulations, although reported the same UII cluster

members as the REMD simulations, the population of the states was dependent

on the starting conformation for each MD run. In particular, five MD simulation

repeats were performed, each starting with different UII conformational state; four

of them run for 5 μs and one MD simulation run for 10 μs. However, the observed

UII conformational states in the simulation ensemble were strongly depending on

the starting conformation. For example, in the MD simulation started with Omega

I Open or Folded I UII conformational state, only that state was observed for the

rest of the 5 μs simulation time. Because of the observed conformational trapping,
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the UII ensemble was explored using enhanced sampling method.

7.2 Motivation for our work

From Section 7.1, it is clear that conformational data for the UII peptide are rather

rare, with no crystal structure obtained yet. Therefore, computational methods

could help in getting the complete picture of the UII structural ensemble, in the

limit of converged sampling data and force field accuracy.

The UII conformational ensemble was probed with two enhanced sampling

methods, REMD and REST. The REMD ensemble data have already been pub-

lished [212], while the REST method was run afterwards to compare the perfor-

mance of the two enhanced sampling approaches.

The results for the ensemble sampling will be given separately in two sections.

7.3 REMD simulation

Using the REMD method, three simulation runs were performed with three differ-

ent starting UII conformations referred to as Omega I Open, Folded I and Lasso.

The Omega I Open and Folded I conformations were obtained from MD simula-

tion from our collaborators [212]. A Lasso conformation was observed after initial

runs of the first two REMD simulations were performed and analysed, revealing

the appearance of another highly populated structure named as Lasso, which was

then used to start another REMD simulation.

7.3.1 REMD simulation details

Three simulations were run for 500 ns each using the PMEMD module in AMBER

12 suite programs [125]. The temperature range was generated using the online

temperature generator http://folding.bmc.uu.se/remd/ [178] with an overall ex-

pected acceptance ratio among replica of 30 % and provided us 64 replicas from

298 K to 543 K. The Amber ff99SB force field was used with explicit TIP3P water

model [177]. The initial structures were solvated in a cubic box containing water

molecules with periodic boundary conditions and neutralised with 1 Na+ . The

Particle Mesh Ewald [126] was used for the long-range interactions using a 10 Å

cutoff. Bonds involving hydrogen were constrained using the SHAKE algorithm
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[121] with a tolerance of 0.00001 Å. REMD simulations were performed in the

NVT ensemble using a Langevin thermostat for the temperature coupling with a

collision frequency of 1 ps−1. 200 ps of NVT simulation was used to equilibrate the

initial state to the desired temperature for each replica, following a rescaling of the

velocities. Using these equilibrated replicas, 500 ns of REMD simulation was per-

formed on each replica, consisting of 32 μs of molecular dynamics. All exchanges

between neighbouring replicas were allowed every 2 ps in the NVT ensemble.

7.3.2 REMD simulation results

Three sets of the REMD simulations were performed to explore UII conformational

ensemble. The initial 100 ns of each simulation were taken as equilibration time

and were not included in the simulation analysis, as was done for the AVP and

OT peptides.

Already established analysis procedure, consisting of analysing β-turn and γ-

turn population, hydrogen bond population and cluster state diversity, was also

performed for the UII peptide. The following sections provide more details.

7.3.2.1 β-turn and hydrogen bond population

Experimental data (Section 7.1) reported the UII conformational flexibility in

terms of different β- and γ-turns. Here the β- and γ-turn population of the ring

residues was explored using the definitions given in Section 1.2.1. The populations

of different β-turns is given in the Table 7.1.

6,7 type I 6,7 type II 7,8 type I 7,8 type II 8,9 type I 8,9 type II 8,9 type VII

Omega Open 22.23 2.28 8.46 0.68 8.91 1.78 1.64

Folded I 24.54 4.39 5.93 0.23 3.56 1.21 3.71

Lasso 31.6 2.31 8.95 0.13 4.43 0.44 4.57

Table 7.1: β-turn type populations from the three REMD simulations (Omega Open, Folded I

and Lasso).

It shows that ring residues Phe6, Trp7, Lys8 and Tyr9 adopt a variety of β-

turns. The most populated is the 6,7 β-turn followed by similarly populated 7,8

and 8,9 β-turns.

Next, the hydrogen bond population was also analysed between different com-

binations of residues that could make a hydrogen bond. The results summarised



CHAPTER 7. UROTENSIN II PEPTIDE 155

in Table 7.2 show that the most populated are Cys5O−Lys8H, Phe6O− Tyr9H

and Trp7O − Cys10H hydrogen bonds. There is also a highly populated hydro-

gen bond between proline residue in N terminal tail and ring residue cysteine,

Pro3O − Phe6H.

O - - H Folded I Omega Open Lasso

Thr2 − Trp7 4.83 2.86 1.03

Pro3 − Phe6 32.79 21.55 25.76

Cys5 − Cys10 10.04 8.63 5.41

Cys5 − Lys8 19.25 18.75 21.00

Phe6 − Tyr9 9.08 11.67 13.05

Phe6 − Cys10 1.43 3.46 4.13

Trp7 − Tyr9 1.75 2.66 2.32

Trp7 − Cys10 5.43 10.08 6.13

Tyr9 −Asp4 1.39 2.27 1.61

Tyr9 − Cys5 1.58 2.16 1.54

Table 7.2: Different hydrogen bond populations from the three REMD simulations.

7.3.2.2 cis/trans Proline peptide bond

Since proline residue is present in the UII sequence at the third position in the N

terminal tail, the cis population of the amide bond involving the nitrogen in the

proline was also analysed. The cis bond was taken as adopting range of +/- 60

deg from the mean value of 0 deg. The results are given in Table 7.3, in which it

can be seen that cis bond conformation is present in all simulation runs with a

population between 1.5 - 3 %.

amide conformation Folded I Lasso Omega Open

cis 2.94 2.07 1.49

trans 97.06 97.93 98.51

Table 7.3: The populations of the cis/trans amide bonds during the REMD simulations.

7.3.2.3 Torsion based clustering

Finally, the simulations were also analysed with the torsion based clustering soft-

ware Dash. The ring torsion values ψ5, φψ 6-9 and φ10 were extracted, and run

through Dash software. Then, the sets of torsion values were compared between
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themselves with the dashsim program which calculates the circular similarity be-

tween the Dash states, and the final list of unique UII cluster states was obtained

(Appendix C).

In total, the cluster states were divided into two group based on the adopted

ring conformations, open or folded, giving in total 11 different UII substates. The

substates were classified in terms of β-turn and hydrogen bond populations where

the open substates were described as adopting 6,7 and 8,9 β-turns, and little or

no hydrogen bonds were populated between their residues, while folded substates

adopt 7,8 β-turns and are mostly stabilised by a number of hydrogen bonds (Figure

7.2).

The open state consists of the following substates, Omega Open, Omega Open

hbond, Omega II, Lasso, Scoop and Circle. Folded ring cluster state include Folded

I, Folded II, Folded III, Folded IVb2 and Inverted Folded substates. The list of

the dihedral angle specific for each state is given in the Appendix.

Each cluster substate is also defined by a unique set of ring torsion angles, there-

fore a circular similarity between the substates was performed using the dashsim

program. Circular similarity analysis revealed that there is a clear distinction be-

tween different cluster substates since they are showing different circular similarity

values (Table 7.4).

In the open states, the most similar substates are Omega I Open and Omega I

hbond with a circular similarity value of 0.72, and Omega I Open and Circle with

a circular similarity of 0.66 (Table 7.4 green cells).

From the folded states, the most similar substates are Folded I and Folded II

(circular similarity = 0.75), and Folded II and Folded III (circular similarity =

0.68) (Table 7.4 pinks cells).

7.3.2.4 UII ensemble substate time distribution

The population of the identified individual cluster substates adopted by the UII

peptide was plotted during the simulation time for all three simulation runs. Figure

7.3 shows that the most populated substate is Lasso (shown in yellow), which

belongs to the open cluster state. In general, all cluster substates except Lasso,

which is populated between 40 and 60 % during the simulation time, are populated
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Figure 7.2: The UII cluster substates with associated hydrogen bond and turn type. If no

hydrogen bond was characterised for a particular UII substate, then it is left blank space. A

turn type is denoted with the turn centre residues.
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Figure 7.3
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Omega I Open 1.00 0.72 0.51 0.50 0.41 0.45 0.50 0.38 0.51 0.60 0.66

Omega I hbond 0.72 1.00 0.56 0.58 0.50 0.46 0.62 0.42 0.46 0.53 0.54

Omega II 0.51 0.72 1.00 0.36 0.33 0.33 0.43 0.49 0.55 0.38 0.41

Folded I 0.50 0.58 0.36 1.00 0.75 0.56 0.61 0.43 0.45 0.49 0.53

Folded II 0.41 0.50 0.33 0.75 1.00 0.68 0.54 0.41 0.38 0.40 0.45

Folded III 0.45 0.46 0.33 0.56 0.68 1.00 0.44 0.47 0.42 0.49 0.48

Folded IVb2 0.50 0.62 0.43 0.61 0.54 0.44 1.00 0.32 0.34 0.52 0.31

Inv Folded 0.38 0.42 0.49 0.43 0.41 0.47 0.32 1.00 0.47 0.41 0.46

Lasso 0.51 0.46 0.55 0.45 0.38 0.42 0.34 0.47 1.00 0.54 0.65

Scoop 0.60 0.53 0.38 0.49 0.40 0.49 0.52 0.41 0.54 1.00 0.65

Circle 0.66 0.54 0.41 0.53 0.45 0.48 0.31 0.46 0.65 0.65 1.00

Table 7.4: The circular similarity between different UII cluster substates.

not more than 20 % over all simulation repeats. However, in REMD Omega I and

Folded I simulations there is some indication that the population of Lasso is gently

increasing which suggests that it is perhaps not quite converged.

Beside Lasso, other highly populated open substates are Omega I Open and

Omega I hbond taken together because of the high circular similarity between their

ring residues (Table 7.4). From the folded state, the most populated substate is

Inverted Folded, between 5 - 10 % .

The UII substate populations obtained with REMD cannot be compared with

MD populations because they could not report the populations of the substates due

to the very slow UII conformational dynamics on the MD timescale (see Section

7.1) [212].
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7.3.2.5 The population of cis amide in UII cluster states

Indicated in Table 7.3 cis − Pro3 amide appeared in all simulation ensembles.

Then it was examined if it is selective for any of the UII cluster substates. Table

7.5 shows that all UII substates, except Scoop, are adopting the cis−Pro3 isomer

state. It is the most populated in the Lasso substate, followed by Omega I Open,

Omega I hbond, Inverted Folded. At the same time, these are also the most pop-

ulated substates in the REMD simulations, suggesting that there is no particular

preference for the cis amide to be associated with a particular ring conformation.

Folded I Lasso Omega I Open

Omega I Open 6.75 14.46 5.15

Omega I hbond 7.67 5.02 8.41

Omega II 1.61 1.71 1.54

Folded I 0.75 0.73 3.44

Folded II 2.02 0.73 1.72

Folded III 3.40 0.0 1.03

Folded IVb2 0.0 0.24 0.86

Inv Folded 10.14 4.78 8.41

Lasso 48.27 51.71 53.95

Scoop 0.0 0.0 0.0

Circle 0.0 1.83 0.68

Table 7.5: The cis − Pro3 amide bond population in the different UII cluster substates in the

three REMD simulation repeats.
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7.4 REST simulation

In order to explore the efficiency of the REMD method, UII peptide was also run

with the REST method. As shown for the example of AVP and OT peptides

(Chapters 4, 5), the REST method produced converged conformational sampling

with far fewer number of replicas, reducing the computational cost and real time

needed to get converged sampling. Here the practical and conformational sampling

advantage of REST method over REMD method will be explored as well, but on

the same peptide.

7.4.1 REST simulation details

The same three UII cluster substates used to perform REMD simulations were also

used as initial conformations to run REST simulations. The method was run in

Gromacs with the Plumed patch [155]. The Amber ff99SB was used with explicit

TIP3P water model [177]. The system was neutralised with the Na+ counterion.

The Particle Mesh Ewald [126] was used for the long-range interactions using a 10

Å cutoff. Bonds involving hydrogen were constrained using the SHAKE algorithm

[121] with a tolerance of 0.00001 Å. REST simulations were performed in the

NVT ensemble using a Langevin thermostat for the temperature coupling with a

collision frequency of 1 ps−1.

The simulations were run for 300 ns using 12 replicas in the temperature range

298 K - 900 K. The replicas were geometrically distributed to give the acceptance

ratio between 20 and 35 %.

7.4.2 REST simulation results

7.4.2.1 β-turn and hydrogen bond population

The β-turn population analysis was done in the same way as for the REMD simu-

lations (Section7.3.2.1). The populations of different β-turns are given in the Table

7.6 showing that UII peptide prefers ring conformations with β-turns centred at

residues Phe6, Trp7, Lys8 and Tyr9.

Next, the hydrogen bond population was also analysed between different com-

binations of residues that could make a hydrogen bond. The results summarised in

Table 7.7 show that the most populated intracyclic hydrogen bonds are Cys5O −
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6,7 type I 6,7 type II 7,8 type I 7,8 type II 8,9 type I 8,9 type II 8,9 type VII

Omega Open 24.89 2.23 6.57 0.45 9.73 0.46 2.24

Folded I 22.93 2.17 10.58 0.25 8.45 1.41 1.96

Lasso 25.28 0.75 6.61 0.63 6.94 1.60 1.03

Table 7.6: β-turn type populations from the three REST simulations

Lys8H, Phe6O−Tyr9H and Trp7O−Cys10H, while also highly populated is the

bond between tail and ring residues Pro3O − Phe6H.

O – H Folded I Omega Open Lasso

Thr2 − Trp7 3.02 3.54 2.00

Pro3 − Phe6 20.45 17.57 18.24

Cys5 − Cys10 3.55 6.91 5.19

Cys5 − Lys8 15.45 17.88 15.78

Phe6 − Tyr9 8.72 10.13 9.05

Phe6 − Cys10 0.12 1.27 2.14

Trp7 − Tyr9 2.02 1.85 1.42

Trp7 − Cys10 8.63 10.13 6.77

Tyr9 −Asp4 1.12 1.01 2.74

Tyr9 − Cys5 1.44 1.97 2.04

Table 7.7: Different hydrogen bond populations from the three REST simulations.

7.4.2.2 cis/trans Proline peptide bond

Table 7.3 shows that the cis−Pro3 amide bond was populated between 1.5 to 3 %

in the REMD simulations. The cis amide population during the REST simulations

was also examined. A Table 7.8 is showing that in the REST simulation a higher

percentage of cis amide bond is observed than in REMD simulations, ranging

between 4 and 7 %. A maximum cis-Pro population of 10% was suggested by

experimental data [212].

amide conformation Folded I Lasso Folded I

cis 3.91 4.74 6.46

trans 96.09 95.26 93.54

Table 7.8: The populations of the cis/trans amide bonds during the REST simulations.
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7.4.2.3 Torsion based clustering

The population of the identified UII substates was examined in the REST simula-

tions too. Analysing the same ring torsion angles with the Dash software as was

done with REMD simulations, a final list of UII cluster states was obtained, then

plotted against simulation time. Figure 7.4 shows that the most populated con-

formational state is the Lasso substate followed by the Omega I Open substates.

A folded substates Folded I and Inverted Folded were also highly populated, up to

10 %, while other open and folded substates were less well populated.

7.4.2.4 The population of cis amide in UII cluster states

As given in the Table 7.8, cis − Pro3 amide bond appeared between 4 % to 7 %

in the REST simulation trajectories. A further analysis on the individual cluster

substates revealed that the cis amide is not selective for any UII cluster substate

(Table 7.9). It also showed that it appeared with highest population in Lasso

substate followed by Omega I Open, Omega I hbond, Omega II, Folded I and

Inverted Folded substates. The similar result was obtained with REMD simualtions

(Table 7.5), although in REMD simulations the cis − Pro3 population was lower

in Omega II and Folded I substates.

Folded I Lasso Omega Open

Omega I Open 2.27 7.65 3.94

Omega I hbond 14.57 6.92 7.25

Omega II 13.43 8.81 0.14

Folded I 6.21 4.08 7.71

Folded II 1.14 0.0 0.51

Folded III 1.13 1.94 3.28

Folded IVb2 0.0 0.52 0.67

Inv Folded 3.01 3.46 5.00

Lasso 52.21 49.68 73.86

Scoop 0.0 0.00 0.0

Circle 0.13 3.14 0.0

Table 7.9: The cis − Pro3 amide bond population in the different UII cluster substates in the

three REST simulation ensembles.



CHAPTER 7. UROTENSIN II PEPTIDE

Figure 7.4: The time distribution of individual UII cluster substates in the three REST simula-

tions.
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7.5 REMD vs. REST conformational ensemble

Finally, the REMD and REST simulation performance in terms of conformational

sampling will be compared in this Section.

The relative populations of Urotensin II peptide conformational ensemble sub-

states from REMD and REST simulation repeats are compared in Figure 7.5.

Figure 7.5: The cluster substate populations from the three simulation repeats from a) REMD

and b) REST simulations.

Both methods predict that Lasso is the most populated substate with average

population between 40 % and 50 % in all performed simulations. The second most

populated substates are Omega I Open and hbond, together with Inverted Folded.

The circular similarity of 0.72 between Omega I Open and Omega I hbond suggests

that these two substates can be considered as one substate.

Although the individual populations of these three most populated substates

differ between the simulation repeats and methods, their overall population agree

well. Omega I Open is populated 5 - 10 %, Omega I hbond 8 - 15 % and Inverted

Folded is between 5 % and 10 %.
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Next, in the REST simulations, there is a higher percentage of Omega II and

Folded I substates, compared to REMD simulations, while Folded IVb2, Scoop and

Circle are the lowest populated substates in all simulation repeats.

The strongest disagreement between the methods and intra-method simulation

repeats is shown for the Folded III substate. It is highly populated in the REMD

Folded I simulation only, while in the other simulation repeats, it was not popu-

lated more than 3 %.

Overall, enhanced sampling REMD and REST simulations show that Urotensin

II peptide is a flexible peptide, most of the simulation time preferring the open

Lasso substate. The 6,7 β-turn population, characteristic for Lasso substate, is

populated 25 % - 35% over all simulation repeats, agreeing well with the Lasso

total population 40 % - 50 %. This substate was not characterised by any hydrogen

bond. The NMR data reported only on the widened 7,8,9 γ-turn.

Other highly populated open substates are Omega I Open and Omega I hbond.

These substates are 72 % similar in terms of ring torsion angles (Table 7.4), so

their populations can be looked at together (Figure 7.5). They are populated

approximately between 15 - 25 %, and characterised with 8,9 β-turns types I and

VII. In both methods, these β-turns were populated 8 - 15 %. The hydrogen bond

specific for this substates Trp7 − Cys10 was adopted 5 - 10 %, depending on the

simulation (Tables 7.2 and 7.7).

The Omega II open substate was populated up to 5 % in all simulation re-

peats (Figure 7.5) with characteristic β-turn type VII similarly populated up to 3

% (Tables 7.1 and 7.6). This substate was not characterised by any hydrogen bond.

The two most populated folded substates were Folded I and Inverted Folded.

A Folded I substate, which mostly adopted 7,8 β-turn type I, was populated more

in REST simulations (approximately 10 %) than in REMD simulations (approxi-

mately 5 %). Another highly populated folded substate Inverted Folded was simi-

larly populated in simulations performed by both methods (up to 10 %). In both

substates the Phe6O − Tyr9H hydrogen bond, populated between 8 % - 13 %,

appeared (Tables 7.2 and 7.7).

All folded substates were described as stabilised by different hydrogen bonds

(Figure 7.2), therefore the population of Cys5O− Lys8H ranging between 15 % -
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22 % is agreeing well with overall folded substate populations of approximately 20

%. Other intra-cyclic hydrogen bonds not emphasised in this Section are minorly

populated, not more than 3 % (Tables 7.2 and 7.7).

Summary. The comparison between the torsion based UII cluster substates

and the population of hydrogen bonds and β-turns during the analysed simulation

time revealed that their populations are similar enough to consider our simulation

repeats as converged, for both methods. The most populated UII substate known

as Lasso was almost three times more populated than any other individual UII

substate. The total population of all substates in the simulation was approximately

80 %, the remaining 20 % were considered as transient substates which could not be

assigned to any of the substate representatives, and showed no similarity between

themselves.

7.5.1 The population of cis− Pro3 amide bond

Regarding the populations of the cis − Pro3 amide bond, it was more populated

in the REST (4-7 %) than in the REMD simulation ensembles (1.5-3 %). This

suggests that the energy barrier of cis/trans transition is more easily overcomed

in the REST approach of scaling the certain interactions in the system than with

REMD method, where maybe the temperature of 550 K was not high enough to

see more frequent cis/trans interconversion, or perhaps a longer simulation time

is required. The reported experimental population was around 10 % [212].

7.5.2 Comparison with experimental data

The substate description can also be compared with the known experimental data

(see Section 7.1). The NMR description of UII conformations in aqueous solution

as adopting turns centred at residues Lys8, T yr9 resembles our open ring substates,

while the NMR description of UII ring conformation in SDS micelles as folded with

turn at residues 7, 8 agrees with our description of folded substates which were

also described as all adopting turns centred at residues Trp7 and Lys8.
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7.5.3 The N-terminal tail

The N-terminal tail conformation was described as flexible by the experimental

data. A tail residue Pro3 showed a high preference to make hydrogen bond with the

carbonyl oxygen of the ring residue Phe6. The same population of this hydrogen

bond in the range of 20 % - 30 % across all simulation ensembles was observed,

suggesting that the N terminal tail was pointing towards the ring almost one

third of the simulation time. There also shortly appeared another hydrogen bond

between Thr2 − Trp7 for up to 5 %. These data suggests that a four residue N

terminal tail is flexible enough to make hydrogen bonds with the ring part of the

structure further stabilising UII conformation.
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7.6 UII chemical shifts

After the extensive analysis of the UII conformational ensemble, the data were

validated against the proton chemical shifts obtained at pH 6.0 and temperature

298 K [212].

The proton chemical shifts were calculated using Gaussian09 software [116] with

B3LYP/6-31G(d) level of DFT theory (see Section 3.2). The procedure applied

for UII cluster representatives is the same as already described in Sections 4.7.0.2

for AVP and then applied to all the peptides studied in this work.

7.6.0.1 The choice of the representative structures

The representative structures were chosen to fulfil the same conditions as for AVP

and OT; to be scattered in approximately equal intervals along the trajectory,

and to be within the 1 SD of the torsion angle distribution mean (Appendix C.1,

C.2). There are five representative structures for each UII representative structure

substate, but Scoop for which four structures were extracted from the REMD

trajectory.

First, the variance within calculated chemical shifts for all representative struc-

tures within each cluster substates was checked. Figure 7.6 shows that all cluster

substates adopt a tight range of chemical shift values, with an exception of Lys8

HA for Circle substate and HE2 for Inverted Folded.

Next, the statistical analysis was used to check the peptide intra-substate chem-

ical shift variance. Three statistical measures of similarity MUE, MSE and R2

(Section 3.5.3) were used, and were bootstrapped afterwards to account for the

fact that only a few (4 or 5) structures were chosen as a representative of the

several hundred frames belonging to a particular cluster.

The intra-cluster R2 variance was plotted for the open and folded cluster states

shown in Figure 7.7. When the R2 values are overlayed, no significant difference

between the structures belonging to a particular cluster is observed. The open

state structures (upper part of Figure 7.7) show wider R2 ranges, mostly due to

the Circle conformation which has lower R2 compared to other open states. While

for most states R2 falls within the range 0.94 to 0.97, the best agreement with

experimental data are for Lasso and Omega I Open substates of the open cluster

group, and Folded I and Folded IVb2 from folded cluster state.
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Figure 7.6: The variance within chemical shift types for all cluster substate representative

structures.

7.6.1 Bootstrapping of the individual cluster states

Since each cluster state was represented by 5 (4 for Scoop) structures, and some

states, especially the highest populated ones, have several hundreds of frames

belonging to them, to ensure that the picked frames are truly representative of the

cluster state, the shifts from structures within each cluster were bootstrapped in

such a way that values of the individual shifts from each structure for each proton

shift were selected one at a time to build 10k shift sets, and then each of these was

compared with the experimental values. The results of this analysis are shown in

Figure 7.8 and summarised in Table 7.10.

The best agreement with experimental data is shown for substates belonging

to both open and folded cluster states. A Folded I substate is the best performing,

after which follow Omega I Open, Folded IVb2 and Lasso, all three with overlap-



CHAPTER 7. UROTENSIN II PEPTIDE 171

Figure 7.7: The R2 distribution of the representative structures for the each of the UII clus-

ter state. Upper part a) shows the distribution of the Open cluster states, and b) shows the

distribution of the Folded cluster state.

Figure 7.8: The bootstrapped R2 distribution of the all UII cluster substates.
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ping R2 distributions (Figure 7.8).

On the other side, the weakest agreement with experimental data show mostly

folded substates Folded II, Folded III, Inverted Folded and an open structure, Cir-

cle.

Figure 7.8 also shows that a few substates are showing overlapping R2 distri-

bution, here given in the order from the highest substate R2 values to the smallest:

• Folded I

• Omega I Open, Folded IVb2, Lasso

• Omega I hbond, Omega II, Scoop

• Folded II, Folded III, Circle

• Inverted Folded

The exact ranges of the bootstrapped metrics are given in the Table 7.10, where

it can be seen that for the best performing states, Omega I Open has the lowest

MUE value of all states, followed by Lasso, Folded I and Folded IVb2.

MUE MSE R2

Omega I Open 0.154 < 0.189 < 0.238 -0.107 < -0.041 < 0.022 0.93 < 0.96 < 0.98

Omega I hbond 0.219 < 0.279 < 0.355 -0.154 <-0.050 < 0.049 0.93 < 0.95 < 0.97

Omega II 0.211 < 0.260 < 0.321 0.083 < -0.094 < -0.010 0.93 < 0.95 < 0.97

Folded I 0.197 < 0.230 < 0.287 -0.106 < -0.029 < 0.049 0.94 < 0.97 < 0.98

Folded II 0.250 < 0.311 < 0.394 -0.097 < 0.012 < 0.125 0.91 < 0.93 < 0.96

Folded III 0.269 < 0.341 < 0.444 -0.091 < 0.026 < 0.164 0.91 < 0.93 < 0.96

Folded IVb2 0.194 < 0.230 < 0.301 -0.029 < 0.053 < 0.140 0.93 < 0.96 < 0.98

Inv Folded 0.299 < 0.366 < 0.461 -0.134 < -0.008 < 0.126 0.89 < 0.93 < 0.96

Lasso 0.175 < 0.220 < 0.279 -0.082 < -0.003 < 0.080 0.93 < 0.96 < 0.98

Scoop 0.173 < 0.232 < 0.294 -0.132 < -0.041 < 0.040 0.92 < 0.95 < 0.97

Circle 0.213 < 0.272 < 0.350 -0.098 < -0.002 < 0.105 0.89 < 0.94 < 0.97

Table 7.10: The bootstrapped values of the three statistical measures of similarity, Mean Un-

signed Error (MUE), Mean Signed Error (MSE) and coefficient of determination (R2) for different

UII cluster members
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7.6.1.1 Analysis of the individual chemical shift types

The analysis of the individual chemical shift types was performed to monitor the

weight of the particular chemical shift types to the overall R2 distribution. It

gives the idea of the chemical shift types which upweigh or downweight the final

distribution.

The chemical shift types with variance lower than 0.005 ppm, 0.01 ppm, 0.02

ppm, 0.04 ppm, 0.06 ppm, 0.09 ppm and 0.12 ppm were extracted in the subsequent

way, and the R2 distribution was plotted with the remaining number of chemical

shift types.

Figure 7.9 a) - b) shows that Omega Open, together with Omega II cluster

substate (7.9 c)) shows very good agreement with experimental data, with R2

distribution not lower than 88 % for almost all chemical shift type combinations,

which contains analysis on the almost 2/3 of all chemical shift types. The same

pattern was also observed for Lasso cluster (Figure 7.9 d)), while Folded I cluster

substate showed wider variance (Figure 7.9 e)), where chemical shift types with

variance higher than 0.12 ppm exhibited the lowest correlation with experimental

data, which suggests that these chemical shift types down-weight R2 distribution.
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Figure 7.9: The R2 distribution of the theoretically calculated vs. experimental chemical shifts

with different chemical shift data sets (right plots) depending on the value of the chemical shift

type variance excluded from final analysis (on the left plots). Distributions are plotted separately

for a) Open Omega, b) Open Omega hbond, c) Omega II, d) Lasso, e) Folded I Urotensin II

cluster substate.

7.6.2 Ensemble model

The ensemble model was built by weighting each chemical shift with the normalised

population of the particular cluster substate, and then summing over all substates.

The model was previously introduced in the Chapter 4.7.2, and here only the results

will be given.

The conformational ensemble of the UII peptide was determined using two

enhanced sampling methods, REMD and REST, each run using three different

starting conformations (Omega I Open, Lasso and Folded I ). The comparison be-

tween the cluster member populations in more detail is explained in Section 7.5.

Thus here only the equilibrium model equation will be presented for one REMD

simulation repeat, but was applied in the same way to all method repeats.

For the example of the REMD Folded I simulation, the ensemble equilibrium

model equation 7.6.2 is showing that each chemical shift value was multiplied with

the population of the cluster substate, where numbers 1, 2... 11 are following

this order of the substate populations, Omega I Open, Omega I hbond, Omega II,

Folded I, Folded II, Folded III, Folded IVb2, Inverted Folded, Lasso, Scoop and

Circle. The time evolution of the substate populations can be examined in Figure

7.3.
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δeq = 0.088 ∗ δ1 + 0.046 ∗ δ2 + 0.013 ∗ δ3 + 0.032 ∗ δ4 + 0.055 ∗ δ5 + 0.109 ∗ δ6
+0.003 ∗ δ7 + 0.096 ∗ δ8 + 0.542 ∗ δ9 + 0.003 ∗ δ10 + 0.013 ∗ δ11

Equation 7.6.2 states that the value of the particular ensemble chemical shift

is obtained as a weighted sum of the individual shifts of each of the conformers

δ1,2...11. It assumes fast dynamics on the NMR time scale. Since each state consists

of several structures, the model was built in such a way that one structure at

the time belonging to a particular substate was extracted at random, and then

multiplied by the population of that substate. The result for the bootstrapped R2

distribution is shown in Figure 7.10.

The R2 REMD and REST ensemble histograms given on the Figure 7.10 show

that ensemble distributions have almost identical overlap with R2 values in the

range 0.975 to 0.985, with the exception of REMD Lasso simulation which shows

a bit lower R2 distribution range until 0.970.

Figure 7.10: The histogram of the bootstrapped R2 ensemble values for REMD and REST

simulation runs.

If ensemble model is compared with the values of R2 obtained from the boot-

strapping analysis of the individual UII substates, then it can be observed that
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ensemble model (Figure 7.10) is adopting higher R2 values than individual sub-

states (Figure 7.8).

Next, if we take a look at the population of the individual cluster members

(Figure 7.5), some states which are low populated in the simulations have very

good agreement with experimental data, such as Folded IVb2 and Scoop. This

would imply that the contribution of these states to the model would be down

weighted at the end, while the contribution of the states which are more popu-

lated but agree less with the experimental data, will be higher. Overall, open states

Omega I Open, Omega I hbond, Omega II together with folded states Folded I and

Lasso will contribute the most to the final model R2 distribution because they are

highly populated in all simulations, and adopt higher R2 values than other sub-

states (Figure 7.8).

Finally, the individual ensemble R2 distributions will be discussed in more

detail. From Figure 7.10 can be observed that REST simulations named as Omega

I, Folded I and Lasso have overlapping distributions with the bootstrapped R2

means centred at 0.981, which suggests very good convergence of the simulation

ensembles. The ratio of the individual substates with the highest individual R2

(Figure 7.8) in these ensembles are given below. The best agreement ensemble is

given in bold.

• REST Omega I: Omega Open - 19 % : Lasso - 44 % : Folded I - 8 %

• REST Folded I: Omega Open - 10 % : Lasso - 44 % : Folded I - 10 %

• REST Lasso: Omega Open - 14 % : Lasso - 44 % : Folded I - 8 %

Just as the REST ensembles are adopting almost the same bootstrapped mean

R2 values (Figure 7.10), the ratio between the most populated substates is also very

similar, as would be expected. However, in the best performing REST ensemble in

terms of the highest R2 value (REST Omega I), Omega Open substates (Omega I

Open and Omega I hbond) are a bit higher populated compared to other ensembles.

Next, two REMD simulations named as Folded I and Omega I also adopt over-

lapping distributions, but with bootstrapped R2 mean at 0.978. When compared,

the main substates ratio for these simulations are

• REMD Folded I: Omega Open - 10 % : Lasso - 42 % : Folded I - 3 %
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• REMD Omega I: Omega Open - 13 % : Lasso - 44 % : Folded I - 6 %

Overall comparison between all ensembles suggests that the main contribution

to the ensemble bootstrapped R2 value is the difference between populations of

Omega Open and Folded I substates. In the REST ensembles which all have

almost identical R2 peak at 0.981, there is a slightly higher population of the

Folded I substate compared to the REMD simulation ensembles.

7.6.2.1 Optimal population ratios

This analysis was performed to check the population ratios which would give the

best agreement with the experimental chemical shift data (R2 > 0.99). The ob-

tained population ratios (Figure 7.11) suggest that the simulation data give very

good approximation of the cluster populations for the given set of experimental

chemical shifts. The most observed cluster substates belong to Omega Open, Lasso

and Folded I which matches the simulation data although Lasso was populated

approximately 40 % in all simulation repeats, while in the optimal population ratio

calculations it is populated 5 - 20 %.

Figure 7.11: The cluster substate population ratios which have R2 > 0.99 when compared

against experimental chemical shift data.
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7.7 Conclusions

Two enhanced sampling methods, REMD and REST, were applied to study the

conformational ensemble of Urotensin II peptide. First, the performance of the

methods was compared, and then the obtained conformational ensembles were

validated against experimental data.

The conformational ensemble was extensively studied by running in total six

simulations, three repeats for each enhanced sampling method using the same

starting conformations. Our results suggest that converged conformational sam-

pling were obtained with both methods, but with a significant computational cost

using temperature Replica Exchange. In the Solute Tempering method, five times

fewer number of replicas was used without affecting the sampling efficiency. Fur-

thermore, the UII substate ratios between methods and simulation repeats suggests

that a rather complete picture of the UII conformational ensemble was obtained.

The experimental data, although rare, were well reproduced in terms of secondary

structure motifs. They reported on the structures with turns centred at residues

8,9 which resemble our open ring state types, while folded conformation observed

in SDS micelles resemble our folded ring substates.

Next, the ensemble validation against experimental chemical shift data revealed

that the equilibrium ensemble model, already tested on AVP and OT peptides, was

also performing better than the individual ensemble substates in the case of the UII

peptide too. The simulation ensembles, together with the bootstrapped R2 analysis

revealed that UII is a flexible peptide adopting two major ring conformations, open

and folded.





Chapter 8

Urotensin Related Peptide

Urotensin Related Peptide (URP) is a hormone peptide analogue of Urotensin II

peptide [213]. They share the same structural motif of a six membered ring closed

by disulphide bridge between two Cystein residue (Cys2 − Cys7). URP differs

from UII only in the shorter N terminal, made of single alanine residue which

contributes to the total charge of +1 at pH 4 - 8.

Figure 8.1: The structure of the Urotensin Related Peptide. The URP sequence contains eight

residues, Ala1 − Cys2 − Phe3 − Trp4 − Lys5 − Tyr6 − Cys7 − V al8.

181
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8.1 Known structural data

Just like AVP and OT are often studied together, the same is true of Urotensin

II and Urotensin Related Peptide. The experimental data relating to URP

structure are similarly as rare as for UII. The structure description varies from

unstructured ring conformation [51] to turns centred at residues Lys5 and Tyr6

described by the 4,5,6 γ
′
-turn and Trp4O − Tyr6H hydrogen bond [214].

The study performed by Brancaccio et al. [51] suggested high structural simi-

larity between UII and URP ring conformations.

The NMR study in SDS micelles of the URP-like UII(4−11) peptide reported a

7,8 (4,5) β-turn type II’ conformation, and another lesser populated more flexible

structure [211].

Regarding computational studies, URP has not been studied with other

computational methods except for the MD and temperature Replica Exchange,

which is work performed by us together with collaborators from the University

of Portsmouth [212]. In that paper, the UII and URP conformational ensemble

obtained by REMD was published. The published REMD results will be presented

in the REMD results section here.

8.2 Motivation for our work

Exploring the conformational space of the URP peptide comes as a natural con-

tinuation of the work done on UII peptide, since they only differ in the length of

the N terminal tail, but have the same ring sequence. Little experimental data is

known about the URP peptide, as was the case for UII. Both peptides are known

to trigger different biological responses by binding to the same GPCR receptor, so

knowing their conformational dynamics, even in the unbound state, may help in

understanding their functional diversity.

The URP conformational ensemble was also examined using temperature Replica

Exchange and Solute Tempering advanced sampling methods. The performance

of the methods will be compared, and then tested against NMR chemical shifts at

the end of the chapter.
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8.3 REMD simulation

Using the REMD method, three simulation runs were performed using three dif-

ferent starting URP conformations referred to as Omega I Open, Omega II and

Lasso. The starting conformations were obtained from MD simulation from our

collaborators. The REMD simulation setup and temperature range used was the

same as for the UII peptide.

8.3.1 REMD simulation details

Two simulations were run for 400 ns, while one was run for 300 ns, each using

the PMEMD module in AMBER 12 suite programs. The temperature range was

generated using the online temperature generator http://folding.bmc.uu.se/remd/

[178] with an overall expected acceptance ratio among replica of 30 % and provided

us 64 replicas from 298 K to 543 K. The Amber ff99SB force field was used with

explicit TIP3P water model [177]. The initial structures were solvated in a cubic

box containing water molecules with periodic boundary conditions and neutralised

with 1 Cl− . The Particle Mesh Ewald [126] was used for the long-range interac-

tions using a 10 Å cutoff. Bonds involving hydrogen were constrained using the

SHAKE algorithm [121] with a tolerance of 0.00001 Å. REMD simulations were

performed in the NVT ensemble using a Langevin thermostat for the temperature

coupling with a collision frequency of 1 ps−1. 200 ps of NVT simulation was used

to equilibrate the initial state to the desired temperature for each replica, following

a rescaling of the velocities. Using these equilibrated replicas, 400 ns of REMD

simulation was performed on each replica, consisting of 25.6 (19.2) μs of molecular

dynamics. All exchanges between neighbouring replicas were allowed every 2 ps in

the NVT ensemble.

8.3.2 REMD simulation results

Three sets of REMD simulations were performed to explore the URP conforma-

tional ensemble. The initial 100 ns of each simulation were taken as equilibration

and not included in the simulation analysis. Already established analysis proce-

dures, consisting of analysing β-turn population, hydrogen bond population and

cluster state diversity, were also performed for URP peptide. The following sec-

tions provide more details.



CHAPTER 8. UROTENSIN RELATED PEPTIDE

8.3.2.1 Turn and hydrogen bond populations

Experimental data (Section 8.1) reported the URP conformational flexibility in

terms of different β- and γ-turns. Here their population across the ring residues

was explored using the definitions given in Section 1.2.1. The populations are

given in Table 8.1.

3,4 type I 3,4 type VIII 4,5 type I 4,5 type II 5,6 type I 5,6 type II 5,6 type VII 4,5,6 γ turn

Omega Open 3.92 1.98 2.35 1.61 14.65 19.05 6.62 5.57

Omega II 3.01 2.11 2.05 3.41 11.86 19.27 7.19 3.67

Lasso 2.16 2.13 1.68 3.36 12.88 17.25 12.44 5.12

Table 8.1: β-turn and γ-turn populations from the three REMD simulations (Omega Open,

Omega II and Lasso).

The β-turns centred at residues 5,6 were the most populated during the sim-

ulation (Table 8.1) stabilised mostly with the highly populated Trp4O − Cys7H

hydrogen bond, and other two less populated Phe3O−Tyr6H and Trp4O−Tyr6H
intracyclic hydrogen bonds (Table 8.2).

Hydrogen bond Omega Open Omega II Lasso

Cys2O − Lys5H 5.08 4.22 3.52

Cys2O − Cys7H 3.14 3.29 1.62

Phe3O − Tyr6H 4.17 6.54 5.72

Phe3O − Cys7H 0.95 0.88 1.12

Trp4O − Tyr6H 6.77 4.92 7.21

Trp4O − Cys7H 21.85 17.12 19.23

Table 8.2: Different hydrogen bond populations from the three REMD simulations.

The NMR experiments [51, 211, 214] reported on turns centred at residues 5,6

that is in agreement with the higher population of β-turns centred at these residues

in our simulations. Only the Trp4O− Tyr6H hydrogen bond was reported in one

NMR experiment [214].

8.3.2.2 Torsion based clustering

Next, the time series of the ring torsion angles (ψ2, φψ 3-6 and φ7) was analysed

with Dash software to test for the population of the unique URP cluster states.

The torsion angles extracted were the same as for UII, to compare their conforma-

tions since they share the same six membered ring sequence. Circular similarity
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analysis of the torsion time trajectory, using the dashsim program, revealed that

the URP peptide adopts mostly the same ring conformations as UII (Tables B.1,

C.1). The URP conformational ensemble was grouped into two major states, open

and folded, further containing a number of substates. An open state contains

Omega I Open, Omega I hbond, Omega II and Lasso substates, while folded URP

cluster state contains Hybrid, Sheet, Folded I, Folded II, Folded III and Inverted

Folded substates (Figure 8.2).

Although torsion based clustering revealed that URP adopts the same ring

clustering subtypes as UII peptide, the populations of subtypes Folded II and

Folded III are minor, or not observed in all simulation repeats, so these substates

were not included in the final plots. Their population are given in Table 8.3.

Substate Omega Open Omega II Lasso

Folded II 0.0 0.38 0.14

Folded III 0.0 0.34 0.0

Table 8.3: The population of URP Folded II and Folded III substates in three simulation repeats.

Compared to UII, two new folded substates were discriminated in the URP

conformational ensemble, referred to as Hybrid and Sheet. These two states are

different in terms of the secondary structure motif, Hybrid is described as adopting

4,5,6 γ turn while Sheet adopts antiparallel β-sheet. However, the circular similar-

ity between them is 0.71 (Table 8.4), further suggesting that these two states are

easily interconverting and can be considered as one, just like Omega I Open and

Omega I hbond, because in the circular similarity analysis, torsion are consider as

belonging to the same state if the value of circular similarity is higher than 0.65.
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Figure 8.2: The URP cluster substates.

8.3.2.3 Similarity between the UII and URP cluster substates

The circular similarity scores between the UII and URP conformational subtypes

show that both peptides adopt almost the same ring subtypes. Table 8.5 gives the

circular similarity scores between UII cluster substates and URP cluster substates.
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Omega I Open 1.00 0.73 0.53 0.50 0.50 0.55 0.63 0.42

Omega I hbond 0.73 1.00 0.56 0.46 0.58 0.65 0.52 0.37

Omega II 0.53 0.56 1.00 0.54 0.38 0.40 0.41 0.50

Lasso 0.50 0.46 0.54 1.00 0.45 0.31 0.44 0.47

Folded I 0.50 0.58 0.38 0.45 1.00 0.60 0.55 0.43

Hybrid 0.55 0.65 0.40 0.31 0.60 1.00 0.71 0.29

Sheet 0.63 0.52 0.41 0.44 0.55 0.71 1.00 0.32

Inv Folded 0.42 0.37 0.50 0.47 0.43 0.29 0.32 1.00

Table 8.4: The circular similarity between different URP cluster substates.
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Omega I Open 0.92 0.95 0.53 0.51 0.50 0.54 0.62 0.38

Omega I hbond 0.95 0.98 0.53 0.46 0.58 0.65 0.52 0.42

Omega II 0.53 0.56 0.98 0.54 0.36 0.40 0.41 0.49

Folded I 0.50 0.58 0.38 0.45 0.98 0.60 0.55 0.43

Folded II 0.49 0.40 0.43 0.38 0.75 0.42 0.45 0.41

Folded III 0.46 0.42 0.41 0.42 0.56 0.42 0.34 0.47

Folded IVb2 0.62 0.49 0.43 0.34 0.61 0.89 0.66 0.62

Inv Folded 0.42 0.37 0.50 0.47 0.43 0.29 0.32 0.99

Lasso 0.46 0.50 0.54 0.98 0.45 0.31 0.44 0.47

Circle 0.66 0.65 0.42 0.65 0.53 0.36 0.51 0.46

Scoop 0.53 0.59 0.39 0.54 0.49 0.53 0.61 0.41

Table 8.5: The circular similarity between different UII (far left column) and the most populated

URP cluster substates.
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8.3.3 The time evolution of the cluster substates

Having defined the URP cluster ensemble, we also wanted to check for the URP

substates time evolution, as given in Figure 8.3. It shows that the most populated

substate is Omega II, followed by Open Omega. The only exception is the REMD

Omega II ensemble where there is a higher population of Omega II substate, but

this could be due to the incompletely converged simulation since it was also the

starting conformation in this simulation repeat. Other open and folded substates

are minorly populated, and their populations differ only in a few percentages be-

tween the REMD simulation repeats.
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Figure 8.3: The time distribution of the URP cluster substates in the three REMD ensembles.
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8.4 REST simulations

The URP conformational ensemble was also explored with the Solute Tempering

method. The efficiency of this method was shown in the example of the structurally

more complex Urotensin UII peptide, so here it was applied too. The method was

run with three different URP starting conformation, the same as for with REMD

(Open I Omega, Omega II and Lasso).

8.4.1 REST simulation details

Three URP cluster substates were used to perform REST simulations. The method

was run in Gromacs with the Plumed patch [155]. The Amber ff99SB, was used

with explicit TIP3P water model [177]. The system was neutralised with the Cl−

counterion. The Particle Mesh Ewald [126] was used for the long-range interactions

using a 10 Å cutoff. Bonds involving hydrogen were constrained using the SHAKE

algorithm [121] with a tolerance of 0.00001 Å. REST simulations were performed

in the NVT ensemble using a Langevin thermostat for the temperature coupling

with a collision frequency of 1 ps−1. The simulations were run for 300 ns using 12

replicas in the temperature range 298 K - 900 K. The replicas were geometrically

distributed to give the acceptance ratio between 20 and 35 %.

8.4.2 REST simulation results

8.4.2.1 β-turn and hydrogen bond population

The hydrogen bond and β-turn analysis was performed in accordance with the

already established procedure to test the peptide structural diversity independent

of the torsion based cluster analysis.

The populations of different intra-ring β-turns was explored, and in Table 8.6

the most populated β-turns are given, together with the population of the exper-

imentally reported γ turn. A Table 8.6 shows that the URP peptide prefers ring

conformations with β-turns centred at residues Lys5O and Tyr6H, followed by a

highly populated 4,5 β-turn.

Table 8.7 shows that β-turns are often stabilised by the Phe3O − Tyr6H, and

Trp4O with residues Tyr6H and Cys7H, hydrogen bonds.
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3,4 type I 3,4 type VIII 4,5 type I 4,5 type II 5,6 type I 5,6 type II 5,6 type VIII 4,5,6 γ turn

Omega Open 0.35 1.95 6.71 2.91 24.26 4.85 5.87 2.67

Omega II 0.63 2.19 5.72 2.38 29.12 2.86 6.61 4.57

Lasso 0.29 1.97 3.15 2.25 20.65 3.88 8.09 4.69

Table 8.6: β-turn type populations from the three REST simulations

Hydrogen bond Omega Open Omega II Lasso

Cys2O − Lys5H 2.51 3.77 2.13

Cys2O − Cys7H 1.98 3.64 4.29

Phe3O − Tyr6H 7.56 5.24 6.06

Phe3O − Cys7H 1.39 3.15 3.05

Trp4O − Tyr6H 6.09 8.29 6.72

Trp4O − Cys7H 16.41 16.82 18.84

Table 8.7: Different hydrogen bond populations from the three REST simulations.

8.4.3 The time evolution of the cluster substates

The URP cluster ensemble was determined in the same way as was done using

temperature Replica Exchange (Section 8.3.2.2). The identified URP substates

were also plotted during the simulation to check for the time evolution of the

substates, and then compared with the REMD simulation runs.

Since the folded substates Folded II and Folded III were almost not populated

in the REMD simulation repeats, and are taken as transient states, their popula-

tions are also only given in the Table 8.8 for Solute Tempering simulation repeats.

As it can be observed, they are not present or observed in only a few frames during

the REST simulations.

Substate Omega Open Omega II Lasso

Folded II 0.0 0.0 0.12

Folded III 0.90 0.0 0.00

Table 8.8: The population of URP Folded II and Folded III substates in three simulation repeats.

The final URP cluster state populations across the REST simulations are given

in Figure 8.4 showing that URP is exchanging between substates regularly.

Overall, URP prefers open clusters states characterised by β-turns centred at

residues 5,6 or 3,4. In particular, the substate Omega I Open and hbond are

populated almost one third of the simulation time. The next most populated

substate also belongs to the open cluster group, Omega II which is populated
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Figure 8.4: The time distribution of the URP cluster substates in the three Solute Tempering

ensembles.
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between 30 % and 35 % during the simulation time. The most populated folded

substate is Folded I, 5 % to 10 %. This substate is characterised by a 4,5 β-turn,

also populated approximately 5 - 8 %, further confirming the population of this

cluster substate. The URP structure found in SDS micelles was described as being

4,5 β-turn as well [211] (see Section 8.1). Finally, two URP specific substates

Hybrid and Sheet are together populated for 2 - 4 % depending on the simulation

repeat.
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8.5 URP chemical shifts

After the analysis of the URP conformational ensemble, the data were validated

against the proton chemical shifts obtained at pH 6.0 and a temperature of 298

K [212]. The proton chemical shifts were calculated using Gaussian09 software

[116] with B3LYP/6-31G(d) level of DFT theory. The procedure applied for URP

cluster representatives is the same as already described in Sections 4.7.0.2 for AVP

and then applied to all peptides studied in this work.

8.5.0.1 The choice of the representative structures

The representative structures were chosen to fulfil the same conditions as for all

already studied peptide; to be scattered in the approximately equal intervals along

the trajectory, and to be within the 1 SD of the torsion angle distribution B.1.

There are six representative structures for each URP substate, and the variance

between the chemical shift types for each cluster state is given in Figure 8.5. It

shows that URP cluster states adopt very tight chemical shift ranges with the

exception of Omega Open Lys8 HA, HB2, HB3, HG2 chemical shift types.

Figure 8.5: The variance within each chemical shift type for the given number of substate

representative structure.
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Next, the statistical analysis was used to check on the peptide substate variance.

Three statistical measures of similarity MUE, MSE and R2 were used. Figure 8.6

shows the R2 distribution of the values for individual substate members compared

against experimental data, while Figure 8.7 shows their bootstrapped R2 values.

Figure 8.6: The R2 distribution of the values for individual substate structure chemical shifts

compared against experimental data.

Figure 8.7: The bootstrapped R2 distribution of the URP cluster substates.
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Figure 8.7 shows that URP substates have bootstrapped R2 mean values in the

range 0.96 to 0.98, with the highest value for Omega I Open, followed by Folded

I substate. Bootstrapped MUE values also show the smallest value for Omega I

Open and Folded I substates (Table 8.9).

MUE MSE R2

Omega I Open 0.205 < 0.266 <0.326 0.028 < 0.118 < 0.208 0.965< 0.974 < 0.983

Omega I hbond 0.275< 0.355 < 0.436 -0.128 < 0.002 <0.128 0.954 < 0.965 < 0.975

Omega II 0.263 < 0.343 < 0.423 -0.044 < 0.078 < 0.201 0.953 < 0.965< 0.976

Lasso 0.279 < 0.364< 0.449 -0.101 < 0.031 < 0.164 0.950 < 0.965 < 0.980

Hybrid 0.262 < 0.353 < 0.444 -0.121< 0.012 < 0.147 0.950 < 0.961 < 0.972

Folded I 0.230 < 0.298< 0.367 -0.019 < 0.086 < 0.191 0.958 < 0.971 < 0.983

Inv Folded 0.255 < 0.352 <0.448 -0.116 < 0.021< 0.158 0.948 < 0.960 < 0.973

Table 8.9: The bootstrapped values of the three statistical measures of similarity, Mean Unsigned

Error (MUE), Mean Signed Error (MSE) and coefficient of determination (R2) for different URP

cluster members

8.5.0.2 Analysis of the individual chemical shift types

The idea of this analysis to check how cluster state distribution depends on the

individual chemical shift types is given in Figure 8.8.

Compared to other peptides, URP chemical shifts adopt very good R2 values for

all cluster states but Inverted Folded (Figure 8.8 e)). In this case, the correlation

coefficient drops significantly for the chemical shift types with variance higher than

0.04 ppm. Other cluster states, Omega Open, Omega II, Lasso and Folded I show

that almost all chemical shift types contribute similarly to the final R2 distribution.
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Figure 8.8: A dependence of the cluster state distribution on the chemical shift data sets. The

chemical shifts were extracted from the initial data sets depending on their variance (left figures),

and then compared with the matching experimental chemical shift data (right figures). The plots

correspond to a) Open Omega , b) Omega II, c) Lasso, d) Folded I, e) Inverted Folded cluster

substates.

8.6 Ensemble model

The concept of the ensemble model was finally applied to the URP peptide as

well. Figure 8.9 gives the bootstrapped R2 values for six different ensemble models

obtained as a weighted sum of chemical shifts with simulation populations.

Figure 8.9 shows that all simulation ensembles, except that derived from the

REMD Omega II starting structure, have very tight meanR2 values, approximately

in the range from 0.983 to 0.986. Of all the simulation repeats, the best agreement

with experimental data is for the Solute Tempering Omega I ensemble (shown in

orange in Figure 8.9). This ensemble model is closely followed by other Solute

Tempering and Replica Exchange simulations, with the exception of the REMD

Omega II simulation.

Next, a comparison between the bootstrapped R2 range for the individual clus-

ter members (Figure 8.7) and ensemble models (Figure 8.9) shows that the ensem-

ble model is outperforming any single cluster state. Table 8.10 gives the mean

bootstrapped R2 values for the easier comparison, showing that the highest R2

value of the best single state Omega I Open (0.9745) is still lower that the worst

performing ensemble REMD Omega II simulation (0.9804).

Then, we can also compare the populations of the cluster substates in the sim-

ulations, with the performance of ensemble model. The values of the populations

follow, giving the best performing ensemble model in bold:
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Figure 8.9: The bootstrapped R2 distribution of the URP simulation repeats.

Cluster

substate

R2 value Ensemble model R2 value

Omega I Open 0.9745 REMD Omega I 0.9830

Omega I hbond 0.9651 REMD Omega II 0.9804

Omega II 0.9650 REMD Lasso 0.9837

Lasso 0.9651 REST Omega I 0.9858

Hybrid 0.9617 REST Omega II 0.9842

Folded I 0.9710 REST Lasso 0.9847

Inverted Folded 0.9608

Table 8.10: A list of the mean boostrapped R2 values for the individual URP cluster substates

and ensemble models



CHAPTER 8. UROTENSIN RELATED PEPTIDE

• REST Omega I: Omega Open - 38 % : Omega II - 28 %: Lasso - 7 % :

Folded I - 10 %

• REST Lasso: Omega Open - 36 % : Omega II - 32 % : Lasso - 4 % : Folded

I - 6 %

• REST Omega II: Omega Open - 36 % : Omega II - 36 %: Lasso - 5 % :

Folded I - 8 %

The Solute Tempering Omega I ensemble model has slightly higher boot-

strapped R2 value than the other ensembles (Table 8.10). The population of the

individual substates in this ensemble is such that there is a higher percentage of

the Omega Open substate, a lower population of Omega II substate and higher

population of Folded I substate, compared to other ensembles.

However, the difference in the population between ensemble substates is very

small, no more than 5 %, suggesting that it is the overall ensemble model with the

combination of substate ratio Open Omega 35 - 40 %, Omega II 30 -35 %, Lasso

5 - 10 %, and Folded I 5 - 10 % that outperforms the individual URP substates.

8.6.0.1 Optimal population ratios

Figure 8.10 shows the URP ensemble population ratios which have the best agree-

ment with experimental chemical shift data (R2 > 0.99). As can be observed,

different population ratios may give the same result, with Omega Open and Folded

I adopting the highest populations in all obtained optimal population ratios, which

was also observed in the simulation data. These results supports the idea that the

simulation conformation ratios are converged, and have better agreement with

experimental data compared to single cluster conformations.
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Figure 8.10: The optimal population ratio between URP cluster substates which yields the best

agreement with experimental chemical shift data.

8.7 REMD vs. REST conformational ensemble

This Section gives an overview of the URP conformational ensemble obtained by

temperature Replica Exchange and Solute Tempering. The quantitative descrip-

tion of the substate population ratios is plotted in Figure 8.11.

The URP conformational ensembles was grouped into two major conforma-

tional states, open and folded. In total, the open state is more populated than

the folded state, the Omega I Open, Omega I hbond and Omega II open substates

make 60 - 70 % of the total URP conformational ensembles in both the REMD

and REST simulation ensembles.

The analysis of the individual open substates shows that the Open Omega

substates (Omega I Open and Omega I hbond) are populated between 35 - 40 %

and Omega II is between 30 and 35 % in both REMD and REST.

The next most populated substate belongs to folded group, and is referred to

as Folded I. This substate, characterised by a turn centred at residues 5,6, is more

populated in Solute Tempering than in the REMD method. The same was observed

for the UII peptide, suggesting that to see the folded state in REMD, longer

simulation time is required or the use of higher temperatures in the temperature

space.

The Folded I state is interesting because the experimental data report on the

folded-like structure with β-turn centred at residue 4,5, and on the high similarity
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Figure 8.11: The comparison between the substate populations between REMD and REST

simulation ensembles.

of URP and UII ring conformations. Moreover, the chemical shift analysis revealed

that the simulation ensembles with the best agreement with experimental data

suggest high population of Open Omega substates with higher population of Folded

I substate.

Other substates observed in the simulations are Lasso, Hybrid, Sheet and In-

verted Folded, which are all similarly populated across all simulation repeats. The

substate populations differ no more than 5 % across the method repeats. The MD

simulations performed by Haensele et al [212] did not observed all UII substates

in the URP conformational ensemble, such as Folded I, Folded II, Folded III and

Lasso. Therefore, these MD simulations can not be considered as converged.

8.8 Conclusions

In this chapter, the published results of the temperature Replica Exchange sim-

ulations were compared against the Solute Tempering simulation runs. The data

show that URP is mostly found in the open conformational substates, named as

Open Omega and Omega II, characterised by turn types centred at residues 5,6.

The populations of the overall open states is approximately 60 - 70 %. However, in

the Solute Tempering simulation runs, it was observed a bit higher population of
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Folded I substate whose structural characterisation is similar to the Brancaccio et

al. [51] structure description observed in experiment with SDS micelles. Moreover,

the bootstrapped R2 value of the Folded I representative structure chemical shifts

also show high values compared to other URP cluster substates. Other identified

substates had minor populations.





Chapter 9

Comparison between UII and

URP ensembles

The conformational ensemble of UII and URP hormone peptides was examined

using two enhanced sampling methods, temperature Replica Exchange and Solute

Tempering. The peptides conformational convergence was extensively studied by

doing three simulation repeats per method, each starting with different geometry.

A temperature Replica Exchange simulations were run for 25 μs for URP pep-

tide, and 32 μs for UII peptide per simulation. All the Solute Tempering simu-

lations were run for 300 ns per replica, giving in total 3.6 μs simulation time for

each simulation repeat.

Both peptides were revealed to adopt the same dominant classes of conforma-

tions, open and folded (Section 8.3.2.2, Table 8.5), but they differ in the popula-

tions of conformational subtypes (Tables 9.1, 9.2).

Furthermore, the NMR ensemble model was applied to test the idea of pep-

tide conformational flexibility, confirming the simulation predictions of peptides

existing in an ensemble of interchanging conformations, rather than a single con-

formation.

In terms of structural diversity, the peptides share both open and folded cluster

states. Open states observed in both peptides are Omega I Open, Omega I hbond,

Omega II and Lasso. Two UII open substates not observed in URP ensembles

are Scoop and Circle. Scoop can be considered as transient state because it is not

populated more than 1 % in any of the simulation repeats, while Circle is very

205
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Sampling method Omega Open Omega II Folded I Folded II Folded III Folded IVb2 Inv. Folded Lasso Scoop Circle

UII REMD 6.33 ± 2.71 2.63±1.17 3.13±1.71 2.79±1.17 3.68±3.5 0.33±0.11 9.71±2.94 44.95±3.19 0.13±0.09 1.45±0.31

UII REST 7.59±2.95 5.03±1.33 7.88±1.91 2.06±1.47 0.99±0.44 0.79±0.08 7.78±2.71 43.35±1.42 0.22±0.13 2.44±1.12

Table 9.1: The mean and SD of the UII cluster substates averaged over three ensembles per

enhanced sampling method.

Sampling method Omega Open Omega II Folded I Inv. Folded Lasso Circle Hybrid Sheet

URP REMD 15.84±2.21 35.64±5.46 2.48±0.85 2.16±0.96 2.62±0.79 3.07±1.61 0.23±0.24 0.00

URP REST 18.42±1.86 31.76±3.56 8.32±1.78 1.74±1.06 5.31±1.36 1.74±1.06 0.84±0.25 0.85±0.24

Table 9.2: The mean and SD of the URP cluster substates averaged over three ensembles per

enhanced sampling method. The URP conformational substates not given in the Table, Folded

II, Folded III, Scoop and Circle were very little or not populated in the all enhanced sampling

ensembles.

similar to Omega I Open state (circular similarity = 0.66).

A UII folded cluster ensemble contains five cluster substates, all shared with

URP. However, two of them Folded II and Folded III were almost not observed

in the URP simulations, and are considered as transient states. A UII Folded

IVb2 conformation is 89 % similar to URP Hybrid substate, revealed by circular

similarity analysis (Table 8.5).

The two most populated UII folded substates Folded I and Inverted Folded are

conformational substates shared with URP. A Folded I substate was observed to

be somewhat more populated in Solute Tempering simulations than in tempera-

ture Replica Exchange for both peptides (Tables 9.1, 9.2), suggesting that higher

energy is maybe needed to observe convergence of this folded state, which was

characterised to be stabilised with Phe3O − Tyr6H and Phe3O − Cys7H hydro-

gen bonds.

To summarise, from the overview of the conformational substate populations

between UII and URP, it can be seen that all UII major populated states are also

observed in the URP conformational ensemble. The UII conformational ensemble

seems to be more diverse between the substate populations, and this could be due

to the long N terminal tail missing in the URP structure.

Regarding the population of the major cluster substates, the UII and URP
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cluster substates differ. The result obtained for UII suggests that conformational

substate named Lasso was the most populated substate for UII, approximately 45

% (Table 9.1). Other highly populated substates in both simulations were Omega

Open and Folded I (Table 9.1. If compared to URP conformational ensemble,

then it can be observed that the URP preferred substate is Omega Open followed

by Omega II. The data suggest that the peptides have preferences for different

dominant ring conformers, despite the same ring sequence. Moreover, the con-

formational equilibrium is shifted towards open conformation class compared to

folded in the approximative ratio 3:1 for both peptides.

Since it is known that the UII and URP peptides by binding to the same

receptor trigger different biological responses, their structural diversity may help

in gaining an insight into receptor activation mechanisms. More about peptides

biological function is given in the next section.

9.1 Biological activity

Urotensin II and Urotensin Related Peptide are two hormone peptides that exert

a variety of physiological roles in our body. Both peptides were first discovered in

the positions encoding for the motoneurons and spinal cord in the human genome.

However, mRNAs encoding the peptides were then also found in peripheral tissues

such as heart, spleen, kidney, prostate, pituitary - just to name few [215].

Both peptides are endogenous ligands to the same GPCR receptor, initially

identified as a human analogue of the GPR14 receptor [205], but then renamed to

Urotensin II receptor (UTR) [216]. Just like UII and URP, UTR is also widely

expressed in the central nervous system, and to a lesser extent in peripheral tissues.

Together, the peptides with the receptor are referred to as urotensinergic system

which has an important cardiovascular role as well as endocrine and behavioural

effects [50]. In particular, UII has both vasoconstriction and vasodilutive roles in

our body [217, 218].



CHAPTER 9. UII VS. URP CONFORMATIONAL ENSEMBLES

9.1.1 Urotensin II receptor

9.1.1.1 Structure

The Urotensin II receptor (GPR14, UTR) belongs to a class A rhodopsin family

G protein coupled receptors. It has a 389 long amino acid sequence organized

into 7 transmembrane (TM) helices, a common structural GPCR motif, connected

by several extracellular and intracellular loops. Although the UTR receptor is

conserved across the species, in terms of sequence similarity, rat UTR which con-

tains 386 amino acids, shows only 75 % similarity with the human UTR, while the

sequence of human and monkey UTR is almost identical [219].

9.1.1.2 Signalling cascade

The urotosingeneric system is involved in the number of cascade pathways which

strongly depend on the tissue in which the UTR is expressed.

In the course of cascade events, upon binding of the ligand, UTR interacts

with the G Protein alpha subunit, Gαq11 involved in activating Protein Kinase

C (PKC). This then activates phospholipase C which increases the intracellular

amount of calcium through the activation of IP3 which is an intracellular molecule

that acts as a secondary messenger. IP3 will then release calcium which then

activates PKC. If the UTR receptor is situated on the nuclear membrane, then

calcium ions are known to be involved in the regulation of the gene transcription

[220].

9.1.1.3 Receptor expression and binding

Furthermore, UTR was also discovered to exist on nuclear membrane only recently

where, besides being responsible for the regulation of gene transcription, it is also

included in ionic homoeostasis, cellular proliferation, and remodelling. However,

the orientation of the receptor remains to be unclear. It is believed that the ligand

binding site is situated either within or outside the nucleus. The active site is at

the C terminal part of the receptor so the signal could be sent either from the

nucleus to the cytosol or the other way round [215, 220].
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Moreover, the receptor activation mechanism remains unclear. Although it

was suggested that UII and URP peptides bind to the same binding site on the

receptor [221], their signalling cascade differs [222], suggesting that the peptides

may activate the UTR receptor in a different manner.

One of the suggested receptor activation mechanisms includes the idea that

UTR can discriminate between UII and URP conformations, what is known as

biased agonism [222]. Two modes of actions were proposed, one hypothesis is that

UTR can discriminate between the cyclic parts of the peptides [222] [50], while

other suggests the idea that it is the N terminal tail of the UII makes the difference

in the receptor recognition [51].

Nevertheless, the conformational ensemble obtained using enhanced sampling

methods can contribute to the hypothesised mechanisms because it is believed

that it contains complete UII and URP conformational ensemble, and it will likely

contain the peptide’s bioactive conformation. It also revealed that UII and URP

peptides adopt the same ring conformational subtypes, suggesting that it may

not be the ring part of the UII and URP peptides that triggers the activation of

secondary messengers, but the UII N-terminal interactions with UTR receptor.

This activation mechanism was also suggested by Brancaccio et al.[51]. However,

a difference in receptor recognition could also make longer UII N terminal tail.





Chapter 10

Comparison between peptide

ensembles

Molecular dynamics simulations have been widely used to provide atomistic details

of the conformational changes in peptides. However, their accuracy is limited by

the long time scales required to see many conformational changes between the

peptide conformational states. For example, Haensele et al. [212] performed a

number of 5 μs long simulations, without observing a change in the peptide’s

conformational state from the starting structure conformation.

To address the problem of the slow sampling, different enhanced sampling

methods have been developed, some of them reviewed in the chapter 3.4. Two of

them, temperature Replica Exchange and Solute Tempering, were applied in this

work to examine the conformational dynamics of the four cyclic hormone peptides

in solution.

The use of computational methods, in particular enhanced sampling methods,

to study the conformational changes of the peptides is especially advantageous

if there is little experimental data known about their structure or if their crystal

structure is unknown, but the peptides have been found to have different important

biological functions.

However, to validate the approach, first the enhanced sampling method limita-

tions and required simulation time to see converged sampling need to be assessed

for the peptides of similar size, structural characteristics and known crystal struc-

tures.

In our work, the conformational sampling of four cyclic peptides was examined,

211
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with two of them, AVP and OT, with known crystal structures. The approach

taken with these peptides was further applied to another two cyclic peptides, UII

and URP, which have very little experimental data reported about their structural

diversity, but are widely expressed in our body and involved in multiple patho-

physiological processes [50].

Therefore, the idea was to examine the peptide conformational ensembles us-

ing advanced sampling approaches in combination with NMR chemical shifts data

in order to gain an insight into the peptide’s structural ensemble, and in turn to

connect these with their functional properties.

Vasopressin and Oxytocin are both nine amino acids long peptides differing only

in two residues, one in the ring part of the structure, and another in the tail part.

To investigate the extent to which a difference in their sequence may contribute

to their functional diversity, their conformational ensembles were explored and

compared against known experimental data.

The crystal structures of AVP (PDB:1JK4) and OT (PDB:1NPO) reported

the same folded ring conformations in two independent experiments. An additional

AVP crystal structure (PDB:1YF4) reported a more open ring conformation, while

for OT another folded -like crystal structure was determined (PDB:1XY1). The

same folded ring conformations for both peptides (PDB IDs: 1JK4, 1NPO) were

co-crystallised in the complex with the same binding partner - neurophysin, while

the open AVP conformation was co-crystallised with a different binding partner

- trypsin, suggesting that the peptides can adopt different bound conformations

depending on the binding partner.

The structural ensembles of AVP and OT obtained by running long time scale

enhanced sampling methods revealed that both peptides adopt the same ring con-

formations with the same dominant conformers, but in a different population ratio.

The most populated conformational state in both peptides obtained by running the

simulations are the folded crystal structures (PDB IDs: 1JK4, 1NPO). In addition,

OT was found as almost entirely adopting this crystal structure, observed 70 - 80

% during the simulation time, while AVP showed more conformational flexibility,

with the folded conformations observed between 30 to 40 % of the simulation time.

The next most populated conformational state in OT was another crystallo-

graphic determined OT conformation, named as Twisted Saddle and populated
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10 %, while for AVP other identified conformational substates were similarly pop-

ulated, 10 to 15 % for Open, Clinched Open and Twisted Saddle cluster states.

Therefore, these data suggest that the bound peptide conformation can be found

as a dominant conformational state in the limit of the converged simulation runs.

The population ratios between the AVP and OT conformational ensembles differs,

which could be linked to different binding affinity of the peptides to the receptors.

While AVP binds with equal affinity to the OT receptor OTR and AVP receptor

V2R, Oxytocin was not very active at AVP receptors, suggesting that the differ-

ence in their sequence could affect the preferred structural state responsible for

their biological actions.

After the AVP and OT conformational ensembles showed very good agreement

with structural experimental data, the next step in validating the simulation pre-

dictions was to examine them against NMR chemical shifts. The ensemble model

approach, consisting of weighting the chemical shifts values with the ensemble

populations, was used. Each peptide’s cluster substate was represented by a few

structures whose chemical shifts were calculated using the DFT method. The

chemical shifts were derived from the structures using the regression equation to

convert shielding constants into chemical shifts. The calculated chemical shifts

were then compared against NMR measured values. The experimental validation

of the simulation data confirmed that the peptides exist in an ensemble of different

substates rather than a single conformation. The ensemble R2 values were always

higher when compared to single conformations.

After it was established that enhanced sampling approaches can be used to

probe conformational ensembles of AVP and OT, and capture their conformational

dynamics, the same approach was applied to examine the conformational ensembles

of two Urotensin peptides. Urotensin II and Urotensin Related Peptide differ in

the total sequence size, but share the same ring residues. The URP peptide is

characterised by only a single residue long N terminal, while UII has four residues

in the N terminal tail.

The peptides have no determined crystal structures yet, and there is little other

experimental data reported on their conformational characteristics. Therefore, the

UII and URP cyclic peptides presented very good candidates to examine their
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conformational ensembles using enhanced sampling methods.

UII and URP showed more conformational flexibility than OT and AVP pep-

tides. In total, eleven structural subtypes were identified for Urotensin peptides,

with five of them highly populated for both peptides, while others were minor

populated. In both peptides the same conformations were observed but with dif-

ferent populations. The Urotensin II most populated subtype was Lasso, while

for Urotensin Related peptide it was Open Omega. However, both of the domi-

nant conformational subtypes belong to the open conformational group, suggesting

that UII and URP conformational dynamics is shifted towards more planar ring

arrangements.

The biological data reported that UII and URP peptides bind to the same

GPCR receptor but trigger different cascade reactions. In the context of our work,

this could be rationalised by different dominant conformational subtypes, just like

AVP and OT have the same dominant conformations found as their bound confor-

mations, then UII and URP different dominant subtypes could also be connected

with different receptor activation mechanisms.

Comparing the structural ensembles between all studied cyclic peptides, it can

be seen that AVP and OT peptides prefer folded ring conformations stabilised with

different hydrogen bonds. However, AVP is more conformational flexible than OT

which seems to be only exchanging between two folded subtypes. On the other

hand, UII and URP peptides are mostly found in the open ring conformations,

each of them preferring different dominant conformational subtypes.

10.1 Cyclic peptide classification

All the peptides studied in this work share the same structural motif of a six-

membered ring closed by a disulphide bridge between two cysteine residues. The

structural classification based on adopted secondary motifs and populated hydro-

gen bonds found in the ring part of the peptide is a commonly used approach to

report the structural diversity of the cyclic peptides.

Ring conformational classes. For the peptides studies in this work, two

major ring structural classes were identified, named as open and folded. An open
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Figure 10.1: Conformational classification of peptide hormones with a 6-residue ring motif.

Folded ring conformations show turns at residues i+2 and i+3, open (unfolded) ring conforma-

tions either at i+1,i+2 or i+3,i+4.

ring conformer was described as adopting β-turns centred at residues i+1, i+2 or

i+3, i+4 with little or no populated intramolecular hydrogen bonds, while folded

conformers share turns at residues i+2, i+3 stabilised with one or more intramolec-

ular hydrogen bonds. Each of the two major structural classes were then described

as adopting a number of subtypes.

The conformational subtypes of open and folded ring conformations were ob-

tained using the torsion based clustering software Dash, later characterised by the

adopted β-turn and hydrogen bonds.

For AVP and OT, there are four ring conformations identified:

• Saddle, Open, Twisted Saddle, Clinched Open

For UII and URP, there are in total eleven ring subtypes:

• Omega I Open, Omega I hbond, Omega II, Lasso, Scoop, Hybrid (Folded

IVb2), Sheet, Folded I, Folded II, Folded III, Inverted Folded

Comparing the AVP, OT, UII and URP conformational ring subtypes, there are

a few conformational similarities given in terms of the circular similarity between

the ring torsion angles. The following folded ring substates were found to be similar

between studied peptides:

• The AVP and OT Saddle ring conformation is 93 % circular similar to

UII/URP Folded I ring conformation. The states were characterised with
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turn centres at residues i+2, i+3 with high population of i+1O−(i+4H, i+5H)

hydrogen bonds

• The AVP/OT Twisted Saddle ring conformation is 91 and 90 % circular

similar to UII/URP Hybrid (Folded IVb2) and Sheet ring conformation, re-

spectively. The turn centres for this conformational state was also found at

residues i+2, i+3, mostly stabilised with i+1O − i+4H hydrogen bond

From the open ring conformational subtypes, the following subtypes were iden-

tified as similar:

• AVP/OT Clinched Open structure was 88 % similar to Omega I Open ring

subtype. This ring conformation has turn centred at residues i+3, i+4 with

no characteristic hydrogen bond

Overall, some of the identified ring conformations show very high structural

similarity across all peptides suggesting that cyclic hexapeptides conformations

can be in general described with the turns centred at particular residues irrespec-

tive of the ring sequence.

Tail conformations. The AVP, OT and UII tail conformations were described

as folded or extended. If there was found a turn in the tail with its residues making

a hydrogen bond with ring residues, then tail was described as folded. However,

this tail conformation was not found to be significantly populated. In AVP and

OT peptides the folded ring conformation was described to be populated 10 - 20

%. In UII peptide, the population of this tail conformation was higher, 20 - 30 %

but the UII tail is also longer, consisting of 4 residues compared to AVP and OT

tail made of 3 residues. Other tail conformations were described as extended, and

they seem to be more favourable.

Figure 10.2: The example of the a) extended vs. b) folded UII tail orientation.
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10.2 The efficiency of Replica Exchange methods

Finally, a comparison between the performance and efficiency of the advanced sam-

pling methods used will be made. The conformational sampling of the Urotensin

peptides was examined using both temperature Replica Exchange and Solute Tem-

pering methods. The AVP conformational ensemble was explored using only tem-

perature Replica Exchange, while the OT conformational dynamics was examined

using only the Solute Tempering method.

The temperature Replica Exchange method is a more computationally demand-

ing method than Solute Tempering. To obtain equilibrium sampling, a large num-

ber of replicas are required to cover a specified temperature range. In our case, to

simulate a small peptide of only 9 amino acids in explicit solvent, 80 replicas were

used to cover a temperature range 298 K to 550 K and to obtain 30 % acceptance

probability between adjacent replicas. To study the conformational dynamics of

the Urotensin peptides, a lower acceptance probability was obtained, 20 %, which

required 64 replicas for the same temperature range as for the AVP peptide. The

need for such a high number of replicas requires expensive parallel computing

resources.

To tackle the high computational cost of the REMD method, a Solute Tem-

pering method was applied that scales the solute - solute and solute - solvent

interactions, enhancing sampling only of the ”hot” parts of the system, the pep-

tide in our case. As a consequence, a much smaller number of replicas is required

to simulate the system across a range of temperatures, and to achieve an average

acceptance probability of 0.2 - 0.3. In our work, the Urotensin peptides simulated

with Solute Tempering were run with 12 replicas to achieve the acceptance prob-

ability between 20 - 30 %, while for the REMD run 64 replicas we used, which is

a 5-fold decrease in the need for computational resources.

Despite being computational expensive, temperature Replica Exchange was ex-

tensively run for three peptides in this work, with four simulation repeats for AVP,

and three for UII and URP peptides. The AVP simulation repeats were run for

300 ns per replica, URP for 400 ns, and UII for 500 ns per replica. In total, the

simulations were run for 24 μs, 26 μs and 32 μs per simulation repeat for AVP,

URP and OT respectively. The small cyclic peptides used in this work (8 - 11

residues, depending on the peptide), were shown to be conformationally complex
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even for the enhanced sampling method, requiring the need for the long simulation

times. Moreover, the energy barrier required to see cis/trans isomerisation of the

peptide bond involving proline residue, was not overcome in all simulation repeats

for the temperature Replica Exchange method, suggesting that higher tempera-

tures were needed to see steady cis populations across all simulation repeats.

To compare the efficiency of the enhanced sampling protocols, three repeats

per method were run for each of the Urotensin peptides. The objective was to

examine the potential advantages of the Solute Tempering method over REMD

on the conformational sampling convergence times. The results obtained for both

peptides show that a shorter simulation time is needed for Solute Tempering to get

comparable substate populations compared to REMD simulations in a fraction of

computational and real time cost, largely due to the fewer replicas needed. This

result suggests that Solute Tempering simulations can be safely applied to study

the conformational ensemble of intrinsically disordered peptides without affecting

the sampling quality.
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Conclusions

In this thesis the conformational ensemble of the peptide hormones with a com-

mon structural motif of a six membered cyclic moiety closed by disulphide bridge

was explored. A hypothesis that a combination of enhanced sampling methods

together with the computationally calculated chemical shifts, compared against

experimental chemical shifts, can be used to generate equilibrium ensemble was

investigated.

The peptides studied in this thesis belong to the class of the recently discov-

ered intrinsically disordered peptides. In Chapter 2, the review of the known

structural and functional characteristics of the IDPs was given. The insight into

their structural diversity is usually experimentally obtained using NMR, so in the

remaining part of the Chapter 2, the theoretical basis of the measured NMR phe-

nomena together with how the measured observables are translated into structural

information was given.

Besides being experimentally determined, a detailed IDP structural characteri-

sation can also be obtained using molecular dynamics methods. However, classical

molecular dynamics simulation are known to suffer from sampling issue, so differ-

ent advanced sampling methodologies have been applied to overcome the trapping

issue. A review of several enhanced sampling methods was given in Chapter 3. The

idea was to emphasise potential advantages and disadvantages of the most com-

mon enhanced sampling methods used in the literature to study the conformational

ensembles of the peptides. In addition, the approach we used to investigate the

peptide’s inherent flexibility also consisted of calculating the chemical shifts using

DFT, what was also explained in this chapter.

Finally, in the remaining chapters, the established methodological approach
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consisting of exploring peptide conformation using enhanced sampling methodol-

ogy, and then validating the obtained ensemble against the experimental chemical

shifts, was applied to all cyclic peptides. The results obtained show that the

Replica Exchange methods are able to give us access to the conformational equi-

libria for all peptides. In addition, for the example of the Urotensin peptides whose

conformational ensemble was extensively explored using two enhanced sampling

methods and three repeats per method, it was shown that Solute Tempering is

able to obtain a converged conformational ensemble faster due to the fewer repli-

cas needed to run the method.

Next, to validate the extent to which the conformational ensemble is able to

capture the IDP’s conformational dynamics, the NMR measured 1H chemical shifts

were compared with the DFT calculated 1H chemical shifts. This approach showed

that the chemical shifts can be used to explore conformational equilibrium despite

the fact that they are not very discriminating. A technique consisting of taking

the chemical shifts as the sum of the population weighted chemical shifts was

applied to all peptides studied in this thesis. The chemical shift weighted en-

sembles showed better agreement with experimental chemical shifts compared to

calculation on the single representative structures, suggesting that simulations are

yielding meaningful conformation ratios and populations.

The results obtained using the described methodology were further compared

with the known experimental and biological data about the studied peptides. For

the example of peptides with the known crystal structures, AVP and OT, it was

shown that the converged AVP and OT conformational ensembles were able to

obtain crystal structure conformations among the most populated conformational

states. Both AVP and OT had their structures co-crystallised with different bind-

ing partners, and in both cases, the major populated conformational states in

AVP and OT ensembles were their crystal structures. This suggests that when

we do not know the crystal structure of the peptide, the bound conformation can

be found from the conformational ensemble obtained in solution in the limit of

converged simulation ensembles. Therefore, it can be assumed that the converged

conformational ensemble of the Urotensin peptides also contains their bioactive

conformation.

Furthermore, the tested methodology and results obtained are relevant in terms

of development of the new therapeutics targeting GPCR receptors, as all the cyclic
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peptides studied in this work were found to exert their function through the acti-

vation of GPCR receptors. A conformational ensemble obtained using enhanced

sampling methods contains a number of different conformations which could be

relevant for drug design and serve as a template for docking calculations.





Appendix A

AVP and OT

Tyr2 Tyr2 Phe3 Phe3 Gln4 Gln4 Asn5 Asn5 Cys6 Cys6

φ ψ φ ψ φ ψ φ ψ φ ψ

Open -108.82 136.51 53.23 3.74 -138.88 151.63 -76.01 129.26 -138.317 152.33

stdev 33.20 19.44 22.40 30.34 26.74 18.98 18.32 25.64 25.05 27.11

Cl. Open -83.51 -16.03 -120.81 153.35 -70.48 -23.40 -90.77 35.47 -90.40 142.42

stdev 25.16 18.26 30.18 15.72 18.88 20.44 23.95 54.30 42.86 23.64

Saddle -87.69 145.82 -60.58 -22.91 -86.80 -7.37 -116.03 -24.21 -123.14 141.36

stdev 25.17 30.97 13.81 15.33 17.15 16.37 20.40 19.93 29.85 29.77

Tw. Saddle -80.21 168.02 -52.82 125.84 56.74 7.40 -100.39 -18.35 -100.75 147.69

stdev 35.89 14.37 15.24 15.27 10.34 25.16 25.57 25.45 31.37 21.01

Table A.1: The mean ring φψ torsion values of the representative AVP cluster states

Tyr2 Tyr2 Ile3 Ile3 Gln4 Gln4 Asn5 Asn5 Cys6 Cys6

φ ψ φ ψ φ ψ φ ψ φ ψ

Open -80.93 130.98 42.63 -29.90 -102.34 143.52 -75.31 116.63 -95.25 140.09

stdev 35.79 30.55 62.73 62.37 48.21 55.40 36.33 66.76 55.82 30.72

Cl. Open -82.91 -24.12 -83.51 142.39 -64.52 -15.78 -75.48 13.90 -70.59 128.79

stdev 30.42 72.51 65.78 54.28 33.24 65.17 65.26 50.17 59.83 36.27

Saddle -75.39 146.73 -55.53 -31.72 -72.95 -15.61 -104.08 -18.16 -125.14 115.81

stdev 25.51 23.60 26.57 32.61 35.82 40.47 45.23 33.17 46.51 53.86

Tw. Saddle -78.81 155.37 -47.81 86.01 36.95 10.23 -100.91 -11.42 -93.24 137.78

stdev 53.53 27.53 38.67 89.73 69.94 38.83 50.52 45.66 40.24 33.21

Table A.2: The mean ring φψ torsion values of the representative OXT cluster states
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Urotensin Related Peptide

Cys2 Phe3 Phe3 Trp4 Trp4 Lys5 Lys5 Tyr6 Tyr6 Cys7

ψ φ ψ φ ψ φ ψ φ ψ φ

Omega I Open 143.51 -120.46 -17.75 -117.02 174.82 -56.73 -32.26 -138.30 141.36 -136.78

stdev 13.93 29.39 , 23.69 32.52 15.52 21.34 26.82 29.70 25.89 23.54

Omega I hbond 141.00 -103.75 -4.59 -122.40 154.99 -58.17 -25.97 -85.27 1.55 -133.10

stdev 34.21 42.33 48.11 40.80 21.91 22.31 22.01 23.66 39.83 30.90

Omega II 144.97 -95.03 , 0.91 -108.65 168.83 -58.25 153.67 56.76 33.84 -86.83

stdev 25.92 24.37 32.66 39.13 23.31 26.95 24.21 19.94 23.51 40.26

Lasso 6.96 -62.75 -48.34 -131.64 -12.06 -100.99 159.94 -85.93 138.76 -129.36

stdev 24.05 24.73 29.73 25.14 39.52 34.14 29.63 26.75 23.50 30.46

Folded I 146.18 -103.37 139.05 -57.06 -27.30 -68.90 -16.63 -130.26 -9.44 -122.22

stdev 34.12 29.21 21.68 38.85 31.25 31.88 31.96 32.76 25.40 30.40

Inverted Folded -1.65 -69.72 -28.85 -61.74 -24.68 -113.54 21.05 63.67 24.37 52.04

stdev 13.18 20.12 12.40 17.18 13.50 20.57 13.97 11.54 34.77 34.67

Hybrid 135.05 -75.24 161.61 -43.67 135.11 64.06 21.59 -79.96 -23.45 -112.54

stdev 20.46 27.16 15.28 , 27.05 29.32 28.12 17.96 15.88 17.87 37.89

Sheet 150.47 -110.99 -151.64 -73.84 97.87 57.40 -8.54 -139.35 136.65 -129.53

stdev 18.30 34.75 34.03 27.82 49.50 9.06 39.46 21.60 34.64 21.67

Table B.1: The mean ring φψ torsion values of the representative URP cluster states
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Figure B.1: The distribution of observed torsion angles for each URP conformation in each

conformational state for a) Omega I Open, b) Omega I hbond, c) Omega II, d) Lasso, e) Folded

I, f) Folded IVb2, g) Inverted Folded. The red bars are from MD simulations [182], and REMD

torsion angle distributions are in green. The spots show the dihedral angles for the structures

we selected.



Appendix C

Urotensin II

Cys5 Phe6 Phe6 Trp7 Trp7 Lys8 Lys8 Tyr9 Tyr9 Cys10

ψ φ ψ φ ψ φ ψ φ ψ φ

Omega I Open 142.28 -125.19 -18.44 -105.46 170.27 -61.73 -20.31 -131.55 143.02 -125.92

stdev 19.00 33.77 15.78 40.04 11.46 17.81 29.17 20.84 16.83 29.04

Omega I hbond 138.51 -111.67 -5.01 -96.10 147.85 -59.59 -20.38 -91.18 -0.38 -128.83

stdev 26.90 26.82 23.17 35.65 39.39 22.03 23.22 26.41 20.55 40.75

Omega II 141.77 -70.84 -15.82 -108.94 152.64 -73.75 151.36 55.94 41.79 -82.98

stdev 20.33 17.73 23.90 27.51 34.45 15.36 11.07 8.01 25.21 14.26

Lasso 8.49 -79.75 -26.89 -121.15 -19.83 -105.19 155.19 -74.29 130.33 -131.85

stdev 31.28 23.33 14.47 19.88 17.53 29.66 13.24 12.47 16.71 18.32

Scoop 169.31 -58.71 -47.17 -82.21 21.33 62.23 -49.85 -133.37 132.27 -133.14

stdev 11.83 8.18 9.08 9.96 13.63 7.36 22.12 14.95 12.40 10.42

Circle 25.415 -136.77 -24.90 -134.18 -36.63 -128.81 -39.04 -142.38 147.64 -155.05

stdev 16.03 25.74 16.22 22.07 24.53 , 21.24 35.58 40.52 15.57 55.94

Folded I 117.38 -98.82 140.63 -57.06 -24.30 -76.92 -20.61 -130.26 -5.25 -135.67

stdev 56.91 28.93 20.53 8.85 13.25 18.88 13.97 12.75 30.46 36.03

Folded II -12.80 , -62.66 134.05 57.17 4.20 -103.66 -45.60 -149.38 -15.72 -104.54

stdev 15.74 20.00 15.37 15.24 24.95 27.36 20.24 11.21 25.65 25.08

Folded III 15.55 57.11 31.40 51.38 9.73 -127.15 -33.55 -104.45 15.87 -109.95

stdev 15.57 13.21 13.72 13.29 19.99 20.90 15.53 17.90 15.65 33.27

Folded IVb2 144.09 -62.59 156.80 -49.74 125.25 55.55 12.02 -80.61 -25.45 -114.40

stdev 36.35 13.53 13.06 15.41 11.44 15.98 17.25 20.10 18.93 28.80

Inverted Folded -1.65 -69.72 -28.85 -61.74 -24.68 -113.54 21.05 63.67 24.37 32.04

stdev 13.18 20.12 12.40 17.18 13.50 20.57 13.97 11.54 34.77 41.67

Table C.1: The mean ring φψ torsion values of the representative UII cluster states
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Figure C.1: The distribution of observed torsion angles for each UII conformation in each

conformational state for a) Omega I Open, b) Omega I hbond, c) Omega II, d) Lasso, e) Scoop,

f) Circle. The red bars are from MD simulations [182], and REMD torsion angle distributions

are in green. The spots show the dihedral angles for the structures we selected.
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Figure C.2: The distribution of observed torsion angles for each UII conformation in each

conformational state for a) Folded I, b) Folded II, c) Folded III, d) Folded IVb2, e) Inverted

Folded. The red bars are from MD simulations [182], and REMD torsion angle distributions are

in green. The spots show the dihedral angles for the structures we selected.





Bibliography

[1] C. M. Nelson DL, Lehninger AL, Lehninger principles of biochemistry,

Macmillan, USA, 2008.

[2] P. Andrews, Biopolymers 1971, 10, 2253–2267.

[3] G. Scherer, M. L. Kramer, M. Schutkowski, U. Reimer, G. Fischer, Journal

of the American Chemical Society 1998, 120, 5568–5574.

[4] C Ramakrishnan, P. K. Paul, K Ramnarayan, Journal of Biosciences 1985,

8, 239–251.

[5] K. Wuthrich, C. Grathwohl, FEBS letters 1974, 43, 337–340.

[6] G. N. Ramachandran, C. Ramakrishnan, V Sasisekharan, Journal of molec-

ular biology 1963, 7, 95–99.

[7] J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry. 5th, WH Freeman,

USA, 2002.

[8] D. Voet, J. G. Voet, Biochemistry, John Wiley & Sons, USA, 2004.

[9] J. S. Richardson, Advances in protein chemistry 1981, 34, 167–339.

[10] L. Pauling, R. B. Corey, H. R. Branson, Proceedings of the National Academy

of Sciences 1951, 37, 205–211.

[11] J. S. Richardson, Nature 1977, 268, 495–500.

[12] C. Venkatachalam, Biopolymers 1968, 6, 1425–1436.

[13] P. N. Lewis, F. A. Momany, H. A. Scheraga, Biochimica et Biophysica Acta

(BBA)-Protein Structure 1973, 303, 211–229.

[14] G. D. Rose, L. M. Glerasch, J. A. Smith, Advances in protein chemistry

1985, 37, 1–109.

[15] β-turn types, 2017, http://www.cryst.bbk.ac.uk/PPS2/course/

section8/ss-960531-16.html (visited on 10/22/2010).

231



BIBLIOGRAPHY

[16] B. Matthews, Macromolecules 1972, 5, 818–819.

[17] E. J. Milner-White, Journal of molecular biology 1990, 216, 385–397.

[18] E. J. Milner-White, B. M. Ross, R. Ismail, K. Belhadj-Mostefa, R. Poet,

Journal of molecular biology 1988, 204, 777–782.

[19] R. E. Hubbard, M. Kamran Haider, Hydrogen bonds in proteins: role and

strength, Wiley Online Library, USA, 2010.

[20] V. J. Hruby, Life sciences 1982, 31, 189–199.

[21] A. Tapeinou, M.-T. Matsoukas, C. Simal, T. Tselios, Peptide Science 2015,

104, 453–461.

[22] K. D. Kopple, Journal of Pharmaceutical Sciences 1972, 61, 1345–1356.

[23] A. Piserchio, G. D. Salinas, T. Li, J. Marshall, M. R. Spaller, D. F. Mierke,

Chemistry & biology 2004, 11, 469–473.

[24] K. Shibata, T. Suzawa, S. Soga, T. Mizukami, K. Yamada, N. Hanai, M.

Yamasaki, Bioorganic & medicinal chemistry letters 2003, 13, 2583–2586.

[25] T. A. Cardote, A. Ciulli, ChemMedChem 2016, 11, 787–794.

[26] C. M. Stegmann, R. Luhrmann, M. C. Wahl, PloS one 2010, 5, e10013.

[27] D. P. Fairlie, G. Abbenante, D. R. March, Current medicinal chemistry

1995, 2, 654–686.

[28] M. L. Korsinczky, H. J. Schirra, K. J. Rosengren, J. West, B. A. Condie,

L. Otvos, M. A. Anderson, D. J. Craik, Journal of molecular biology 2001,

311, 579–591.

[29] M. Trabi, H. J. Schirra, D. J. Craik, Biochemistry 2001, 40, 4211–4221.

[30] D. J. Craik, N. L. Daly, T. Bond, C. Waine, Journal of molecular biology

1999, 294, 1327–1336.

[31] M. B. Martins, I. Carvalho, Tetrahedron 2007, 63, 9923–9932.

[32] M. T. Oakley, E. Oheix, A. F. Peacock, R. L. Johnston, The journal of

physical chemistry B 2013, 117, 8122–8134.

[33] H. Kessler, Angewandte Chemie International Edition 1982, 21, 512–523.

[34] A. Jabs, M. S. Weiss, R. Hilgenfeld, Journal of molecular biology 1999,

286, 291–304.



BIBLIOGRAPHY 233

[35] Y. Che, G. R. Marshall, Journal of medicinal chemistry 2006, 49, 111–124.

[36] M. T. Oakley, R. L. Johnston, Journal of chemical theory and computation

2012, 9, 650–657.

[37] C. M. Deber, V. Madison, E. R. Blout, Accounts of Chemical Research

1976, 9, 106–113.

[38] T. Rezai, J. E. Bock, M. V. Zhou, C. Kalyanaraman, R. S. Lokey, M. P.

Jacobson, Journal of the American Chemical Society 2006, 128, 14073–

14080.

[39] S. M. McHugh, J. R. Rogers, H. Yu, Y.-S. Lin, Journal of chemical theory

and computation 2016, 12, 2480–2488.

[40] S. M. McHugh, J. R. Rogers, S. A. Solomon, H. Yu, Y.-S. Lin, Current

opinion in chemical biology 2016, 34, 95–102.

[41] A. K. Yudin, Chemical science 2015, 6, 30–49.

[42] Hormones, 2018, http://www2.highlands.edu/academics/divisions/

scipe/biology/faculty/harnden/2122/notes/endo.htm (visited on

03/18/2018).

[43] E Fischer, Berichte der Deutschen Chemischen Gesellschaft 1894, 27, 2985–

2993.

[44] D. Koshland, Proceedings of the National Academy of Sciences 1958, 44,

98–104.

[45] B. K. Kobilka, Biochimica et Biophysica Acta (BBA)-Biomembranes 2007,

1768, 794–807.

[46] R. Schwyzer, Journal of Molecular Recognition 1995, 8, 3–8.

[47] S. Moro, C. Hoffmann, K. A. Jacobson, Biochemistry 1999, 38, 3498–3507.

[48] L. M. Luttrell, S. Maudsley, L. M. Bohn, Molecular pharmacology 2015,

88, 579–588.

[49] T. A. Kohout, S. L. Nicholas, S. J. Perry, G. Reinhart, S. Junger, R. S.

Struthers, Journal of Biological Chemistry 2004, 279, 23214–23222.

[50] D. Chatenet, T. T. M. Nguyen, M. Letourneau, A. Fournier, Frontiers in

endocrinology 2013, 3, 174.



BIBLIOGRAPHY

[51] D. Brancaccio, F. Merlino, A. Limatola, A. M. Yousif, I. Gomez-Monterrey,

P. Campiglia, E. Novellino, P. Grieco, A. Carotenuto, Journal of Peptide

Science 2015, 21, 392–399.

[52] F. Shahidi, Y. Zhong, Journal of AOAC International 2008, 91, 914–931.

[53] T. Breuder, C. S. Hemenway, N. R. Movva, M. E. Cardenas, J. Heitman,

Proceedings of the National Academy of Sciences 1994, 91, 5372–5376.

[54] E. K. Schmitt, M. Riwanto, V. Sambandamurthy, S. Roggo, C. Miault, C.

Zwingelstein, P. Krastel, C. Noble, D. Beer, S. P. Rao, et al., Angewandte

Chemie International Edition 2011, 50, 5889–5891.

[55] A. M. Blanks, S. Thornton, BJOG: An International Journal of Obstetrics

& Gynaecology 2003, 110, 46–51.

[56] R. I. Lehrer, A. M. Cole, M. E. Selsted, Journal of Biological Chemistry

2012, 287, 27014–27019.

[57] I.-J. Ryoo, H.-R. Park, S.-J. Choo, J.-H. Hwang, Y.-M. Park, K.-H. Bae,

K. Shin-Ya, I.-D. Yoo, Biological and Pharmaceutical Bulletin 2006, 29,

817–820.

[58] D. T. Krieger, Science 1983, 222, 975–985.

[59] L. Nevola, E. Giralt, Chemical Communications 2015, 51, 3302–3315.

[60] A. Zorzi, K. Deyle, C. Heinis, Current Opinion in Chemical Biology 2017,

38, 24–29.

[61] J. Renukuntla, A. D. Vadlapudi, A. Patel, S. H. Boddu, A. K. Mitra, In-

ternational journal of pharmaceutics 2013, 447, 75–93.

[62] O. Ovadia, S. Greenberg, J. Chatterjee, B. Laufer, F. Opperer, H. Kessler,

C. Gilon, A. Hoffman, Molecular pharmaceutics 2011, 8, 479–487.

[63] D. J. Craik, D. P. Fairlie, S. Liras, D. Price, Chemical biology & drug design

2013, 81, 136–147.

[64] Y. Fang, T. Kenakin, C. Liu, Frontiers in pharmacology 2015, 6.

[65] P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug discovery

today 2010, 15, 40–56.

[66] V. N. Uversky, Chemical Reviews 2014, 114, 6557––6560.



BIBLIOGRAPHY 235

[67] A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero,

J. S. Oh, C. J. Oldfield, A. M. Campen, C. M. Ratliff, K. W. Hipps, et al.,

Journal of Molecular Graphics and Modelling 2001, 19, 26–59.

[68] V. N. Uversky, J. R. Gillespie, A. L. Fink, Proteins: structure function and

bioinformatics 2000, 41, 415–427.

[69] V. N. Uversky, A. K. Dunker, Biochimica et Biophysica Acta (BBA)-Proteins

and Proteomics 2010, 1804, 1231–1264.

[70] L. Mollica, L. M. Bessa, X. Hanoulle, M. R. Jensen, M. Blackledge, R.

Schneider, Frontiers in molecular biosciences 2016, 3, 52–70.

[71] H. J. Dyson, P. E. Wright, Current opinion in structural biology 2002, 12,

54–60.

[72] D. D. Boehr, R. Nussinov, P. E. Wright, Nature chemical biology 2009, 5,

789–796.

[73] M. Kjaergaard, K. Teilum, F. M. Poulsen, Proceedings of the National

Academy of Sciences 2010, 107, 12535–12540.

[74] S. Fermani, X. Trivelli, F. Sparla, A. Thumiger, M. Calvaresi, L. Marri, G.

Falini, F. Zerbetto, P. Trost, Journal of Biological Chemistry 2012, 287,

21372–21383.

[75] M. Arai, K. Sugase, H. J. Dyson, P. E. Wright, Proceedings of the National

Academy of Sciences 2015, 112, 9614–9619.

[76] B. A. Shoemaker, J. J. Portman, P. G. Wolynes, Proceedings of the National

Academy of Sciences 2000, 97, 8868–8873.

[77] H. J. Dyson, P. E. Wright, Nature reviews. Molecular cell biology 2005, 6,

197–208.

[78] N. G. Sgourakis, Y. Yan, S. A. McCallum, C. Wang, A. E. Garcia, Journal

of molecular biology 2007, 368, 1448–1457.

[79] H. J. Dyson, P. E. Wright, Methods in enzymology 2000, 339, 258–270.

[80] D. Kruschel, B. Zagrovic, Molecular Biosystems 2009, 5, 1606–1616.

[81] J. B. Lambert, E. P. Mazzola, Nuclear magnetic resonance spectroscopy: an

introduction to principles, applications, and experimental methods, Pearson

education, USA, 2004.



BIBLIOGRAPHY

[82] P. Atkins, J. De Paula, Elements of physical chemistry, Oxford University

Press, USA, 2013.

[83] D. S. Wishart, B. D. Sykes, F. M. Richards, Biochemistry 1992, 31, 1647–

1651.

[84] M. Karplus, The Journal of chemical physics 1959, 30, 11–15.

[85] M. J. Minch, Concepts in Magnetic Resonance Part A 1994, 6, 41–56.

[86] A. W. Overhauser, Physical Review 1953, 92, 411.

[87] N. Tjandra, A. Bax, Science 1997, 278, 1111–1114.

[88] E. Brunner, Concepts in Magnetic Resonance Part A 2001, 13, 238–259.

[89] K. Chen, N. Tjandra, eMagRes 2011, 4, 47–67.

[90] A. G. Palmer III, Chemical reviews 2004, 104, 3623–3640.

[91] H. Kessler, Angewandte Chemie International Edition 1970, 9, 219–235.

[92] R. O. Dror, R. M. Dirks, J. Grossman, H. Xu, D. E. Shaw, Annual review

of biophysics 2012, 41, 429–452.

[93] K. Henzler-Wildman, D. Kern, Nature 2007, 450, 964–972.

[94] R. A. Friesner, Proceedings of the National Academy of Sciences of the

United States of America 2005, 102, 6648–6653.

[95] A. Einstein, Annalen der physik 1905, 322, 132–148.

[96] D. J. Griffiths, Introduction to quantum mechanics, Cambridge University

Press, UK, 2016.

[97] V. Fock, Zeitschrift fur Physik A Hadrons and Nuclei 1930, 61, 126–148.

[98] D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical

Society 1928, 24, 89–110.

[99] P.-O. Lowdin, Physical review 1955, 97, 1509–1520.

[100] P. Hohenberg, W. Kohn, Physical review 1964, 136, B864.

[101] W. Kohn, L. J. Sham, Physical review 1965, 140, A1133.

[102] A. D. Becke, The Journal of chemical physics 1993, 98, 1372–1377.

[103] P. Stephens, F. Devlin, C. Chabalowski, M. J. Frisch, The Journal of Phys-

ical Chemistry 1994, 98, 11623–11627.



BIBLIOGRAPHY 237

[104] J. C. Slater, Physical Review 1930, 36, 57–64.

[105] S. F. Boys, Proceedings of the Royal Society of London A: Mathematical

Physical and Engineering Sciences 1950, 200, 542–554.

[106] B. Nagy, F. Jensen, Reviews in Computational Chemistry 2017, 93–149.

[107] R. Ditchfield, W. J. Hehre, J. A. Pople, The Journal of Chemical Physics

1971, 54, 724–728.

[108] B. Han, Y. Liu, S. W. Ginzinger, D. S. Wishart, Journal of biomolecular

NMR 2011, 50, 43–57.

[109] Y. Shen, A. Bax, Journal of biomolecular NMR 2010, 48, 13–22.

[110] K. J. Kohlhoff, P. Robustelli, A. Cavalli, X. Salvatella, M. Vendruscolo,

Journal of the American Chemical Society 2009, 131, 13894–13895.

[111] R. Jain, T. Bally, P. R. Rablen, The Journal of organic chemistry 2009,

74, 4017–4023.

[112] M. W. Lodewyk, M. R. Siebert, D. J. Tantillo, Chemical reviews 2011, 112,

1839–1862.

[113] W. Kutzelnigg, U. Fleischer, C. van Wullen, Encyclopedia of Nuclear Mag-

netic Resonance 1996, 7, 4284–4291.

[114] K. Wolinski, J. F. Hinton, P. Pulay, Journal of the American Chemical

Society 1990, 112, 8251–8260.

[115] J. C. Facelli, Progress in nuclear magnetic resonance spectroscopy 2011,

58, 176–201.

[116] M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman,

G Scalmani, V Barone, B Mennucci, G. Petersson, et al., Gaussian 09,

revision D. 01, 2009.

[117] N. van Eikema Hommes, T. Clark, Journal of molecular modeling 2005,

11, 175–185.

[118] J. Tomasi, B. Mennucci, R. Cammi, Chemical Reviews 2005, 105, 2999–

3094.

[119] L. Verlet, Physical review 1967, 159, 98–103.

[120] R. W. Hockney, Methods of Computational Physics 1970, 9, 136–2011.



BIBLIOGRAPHY

[121] J.-P. Ryckaert, G. Ciccotti, H. J. Berendsen, Journal of Computational

Physics 1977, 23, 327–341.

[122] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc 1996,

118, 11225–11236.

[123] C. Oostenbrink, A. Villa, A. E. Mark, W. F. Van Gunsteren, Journal of

computational chemistry 2004, 25, 1656–1676.

[124] B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella,

B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, et al., Journal of

computational chemistry 2009, 30, 1545–1614.

[125] D. A. Case, V Babin, J. Berryman, R. Betz, Q Cai, D. Cerutti, T. Cheatham

Iii, T. Darden, R. Duke, H Gohlke, et al., 2014.

[126] T. Darden, D. York, L. Pedersen, The Journal of chemical physics 1993,

98, 10089–10092.

[127] H. C. Andersen, The Journal of chemical physics 1980, 72, 2384–2393.

[128] W. G. Hoover, Physical review A 1985, 31, 1695–1697.

[129] H. Berendsen, J. Postma, W. van Gunsteren, A Dinola, J. Haak, J. Chem.

Phys, 81, 571–572.

[130] H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola, J. Haak,

The Journal of chemical physics 1984, 81, 3684–3690.

[131] S. Piana, K. Lindorff-Larsen, D. E. Shaw, Proceedings of the National Academy

of Sciences 2012, 109, 17845–17850.

[132] R. C. Bernardi, M. C. Melo, K. Schulten, Biochimica et Biophysica Acta

(BBA)-General Subjects 2015, 1850, 872–877.

[133] Y. Miao, J. A. McCammon, Molecular simulation 2016, 42, 1046–1055.

[134] K. Ostermeir, M. Zacharias, Biochimica et Biophysica Acta (BBA)-Proteins

and Proteomics 2013, 1834, 847–853.

[135] G. M. Torrie, J. P. Valleau, Journal of Computational Physics 1977, 23,

187–199.

[136] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman,

Journal of computational chemistry 1992, 13, 1011–1021.



BIBLIOGRAPHY 239

[137] A. Laio, M. Parrinello, Proceedings of the National Academy of Sciences

2002, 99, 12562–12566.

[138] C. Abrams, G. Bussi, Entropy 2013, 16, 163–199.

[139] A. Laio, F. L. Gervasio, Reports on Progress in Physics 2008, 71, 126601.

[140] A. Barducci, G. Bussi, M. Parrinello, Physical review letters 2008, 100,

020603.

[141] G. Bussi, F. L. Gervasio, A. Laio, M. Parrinello, Journal of the American

Chemical Society 2006, 128, 13435–13441.

[142] D. Hamelberg, J. Mongan, J. A. McCammon, The Journal of chemical

physics 2004, 120, 11919–11929.

[143] P. R. Markwick, J. A. McCammon, Physical Chemistry Chemical Physics

2011, 13, 20053–20065.

[144] L. C. Pierce, R. Salomon-Ferrer, C. Augusto F. de Oliveira, J. A. McCam-

mon, R. C. Walker, Journal of Chemical Theory and Computation 2012,

8, 2997–3002.

[145] K. Kappel, Y. Miao, J. A. McCammon, Quarterly reviews of biophysics

2015, 48, 479–487.

[146] S. Mukherjee, R. K. Kar, R. P. R. Nanga, K. H. Mroue, A. Ramamoorthy,

A. Bhunia, Physical Chemistry Chemical Physics 2017, 19, 19289–19299.

[147] Y. Sugita, Y. Okamoto, Chemical physics letters 1999, 314, 141–151.

[148] P. Liu, B. Kim, R. A. Friesner, B. Berne, Proceedings of the National

Academy of Sciences of the United States of America 2005, 102, 13749–

13754.

[149] W. Zhang, C. Wu, Y. Duan, The Journal of chemical physics 2005, 123,

154105.

[150] N. Rathore, M. Chopra, J. J. de Pablo, The Journal of chemical physics

2005, 122, 024111.

[151] H. Fukunishi, O. Watanabe, S. Takada, The Journal of chemical physics

2002, 116, 9058–9067.

[152] L. Wang, R. A. Friesner, B. Berne, The Journal of Physical Chemistry B

2011, 115, 9431–9438.



BIBLIOGRAPHY

[153] A. K. Smith, C. Lockhart, D. K. Klimov, Journal of Chemical Theory and

Computation 2016, 12, 5201–5214.

[154] A. H. Brown, P. M. Rodger, J. S. Evans, T. R. Walsh, Biomacromolecules

2014, 15, 4467–4479.

[155] G. Bussi, Molecular Physics 2014, 112, 379–384.

[156] D. W. Salt, B. D. Hudson, L. Banting, M. J. Ellis, M. G. Ford, Journal of

medicinal chemistry 2005, 48, 3214–3220.

[157] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press,

USA, 1994.

[158] V. du Vigneaud, D. T. Gish, P. G. Katsoyannis, Journal of the American

Chemical Society 1954, 76, 4751–4752.

[159] B. S. Ibrahim, V. Pattabhi, Journal of molecular biology 2005, 348, 1191–

1198.

[160] S. Nielsen, C.-L. Chou, D. Marples, E. I. Christensen, B. K. Kishore, M. A.

Knepper, Proceedings of the National Academy of Sciences 1995, 92, 1013–

1017.

[161] ADH, 2017, https://www.myvmc.com/diseases/syndrome-of-inappropriate-

antidiuretic-hormone-secretion-siadh/ (visited on 10/23/2010).

[162] M. Miller, T. Dalakos, A. M. Moses, H. Fellerman, D. Streeten, Annals of

Internal Medicine 1970, 73, 721–9.

[163] A. G. Robinson, New England Journal of Medicine 1976, 294, 507–511.

[164] Q. Pittman, B Bagdan, Progress in brain research 1992, 91, 69–74.

[165] D. W. Wacker, M. Ludwig, Hormones and behavior 2012, 61, 259–265.

[166] C. K. Wu, B. Hu, J. P. Rose, Z.-J. Liu, T. L. Nguyen, C. Zheng, E. Breslow,

B.-C. Wang, Protein Science 2001, 10, 1869–1880.

[167] E. Sikorska, S. Rodziewicz-Motowid�Lo, Journal of Peptide Science 2008,

14, 76–84.

[168] J. M. Scmidth, O. Ohlenschlager, H. Ruterjans, Z. Grzonka, E. Kojro, I.

Pavo, F. Fahrenholz, The FEBS Journal 1991, 201, 355–371.

[169] S. Rodziewicz-Motowidlo, E. Sikorska, M. Oleszczuk, C. Czaplewski, Jour-

nal of Peptide Science 2008, 14, 85–96.



BIBLIOGRAPHY 241

[170] C Barberis, B Mouillac, T Durroux, Journal of Endocrinology 1998, 156,

223–229.

[171] E. A. Lubecka, E. Sikorska, D. Sobolewski, A. Prahl, J. Slaninova, J. Cia-

rkowski, European Biophysics Journal 2015, 44, 727–743.

[172] A. Liwo, A. Tempczyk, S. Oldziej, M. D. Shenderovich, V. J. Hruby, S. Tal-

luri, J. Ciarkowski, F. Kasprzykowski, L. Lankiewicz, Z. Grzonka, Biopoly-

mers 1996, 38, 157–175.

[173] E. Haensele, L. Banting, D. C. Whitley, T. Clark, Journal of molecular

modeling 2014, 20, 2485.

[174] E. Yedvabny, P. S. Nerenberg, C. So, T. Head-Gordon, The Journal of

Physical Chemistry B 2014, 119, 896–905.

[175] A. Okur, D. R. Roe, G. Cui, V. Hornak, C. Simmerling, Journal of chemical

theory and computation 2007, 3, 557–568.

[176] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A.

Onufriev, C. Simmerling, B. Wang, R. J. Woods, Journal of computational

chemistry 2005, 26, 1668–1688.

[177] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L.

Klein, The Journal of chemical physics 1983, 79, 926–935.

[178] A. Patriksson, D. van der Spoel, Physical Chemistry Chemical Physics

2008, 10, 2073–2077.

[179] C. K. Larive, L. Guerra, D. L. Rabenstein, Journal of the American Chem-

ical Society 1992, 114, 7331–7337.

[180] E. Haensele, N. Saleh, C. M. Read, L. Banting, D. C. Whitley, T. Clark,

Journal of chemical information and modeling 2016, 56, 1798–1807.

[181] E. Benassi, Journal of computational chemistry 2017, 38, 87–92.

[182] E. Haensele, PhD thesis, University of Portsmouth, 2017.

[183] V. d. Vigneaud, C. Ressler, C. J. M. Swan, C. W. Roberts, P. G. Kat-

soyannis, S. Gordon, Journal of the American Chemical Society 1953, 75,

4879–4880.

[184] D. Jarvis, V. Du Vigneaud, Science 1964, 143, 545–548.



BIBLIOGRAPHY

[185] B. M. Ferrier, D. Jarvis, V. Du Vigneaud, Journal of Biological Chemistry

1965, 240, 4264–4266.

[186] B. W. Low, C. C. Chen, Science 1966, 151, 1552–1553.

[187] S. Wood, Science 1986, 232, 633–637.

[188] J Husain, T. Blundell, S Cooper, J. Pitts, I. Tickle, S. Wood, V. Hruby,

A Buku, A. Fischman, H. Wyssbrod, et al., Philosophical Transactions of

the Royal Society of London B: Biological Sciences 1990, 327, 625–654.

[189] J. P. Rose, C.-K. Wu, C.-D. Hsiao, E. Breslow, B.-C. Wang, Nature Struc-

tural & Molecular Biology 1996, 3, 163–169.

[190] A. Ohno, N. Kawasaki, K. Fukuhara, H. Okuda, T. Yamaguchi, Magnetic

Resonance in Chemistry 2010, 48, 168–172.

[191] J. Koehbach, M. O’Brien, M. Muttenthaler, M. Miazzo, M. Akcan, A. G.

Elliott, N. L. Daly, P. J. Harvey, S. Arrowsmith, S. Gunasekera, et al.,

Proceedings of the National Academy of Sciences 2013, 110, 21183–21188.

[192] M Budesinsky, U Ragnarsson, L Lankiewicz, L Grehn, J Slaninova, J Hlavacek,

Amino acids 2005, 29, 151–160.

[193] R Bhaskaran, L.-C. Chuang, C. Yu, Biopolymers 1992, 32, 1599–1608.

[194] T. Kato, S. Endo, T. Fujiwara, K. Nagayama, Journal of biomolecular NMR

1993, 3, 653–673.

[195] M. Birnbaumer, Trends in Endocrinology & Metabolism 2000, 11, 406–410.

[196] T. Kimura, O. Tanizawa, et al., Nature 1992, 356, 526–529.

[197] R. Postina, E. Kojro, F. Fahrenholz, Journal of Biological Chemistry 1996,

271, 31593–31601.

[198] N. Saleh, G. Saladino, F. L. Gervasio, E. Haensele, L. Banting, D. C.

Whitley, J. Sopkova-de Oliveira Santos, R. Bureau, T. Clark, Angewandte

Chemie 2016, 128, 8140–8144.

[199] M. J. Slusarz, A. Gieldon, R. Slusarz, J. Ciarkowski, Journal of Peptide

Science 2006, 12, 180–189.

[200] M Manning, A Misicka, A Olma, K Bankowski, S Stoev, B Chini, T Dur-

roux, B Mouillac, M Corbani, G Guillon, Journal of neuroendocrinology

2012, 24, 609–628.



BIBLIOGRAPHY 243

[201] M. J. Slusarz, R. Slusarz, J. Ciarkowski, Journal of Peptide Science 2006,

12, 171–179.

[202] C.-Y. Ku, A. Qian, Y. Wen, K. Anwer, B. M. Sanborn, Endocrinology 1995,

136, 1509–1515.

[203] J. M. Krieger, G. Fusco, M. Lewitzky, P. C. Simister, J. Marchant, C.

Camilloni, S. M. Feller, A. De Simone, Biophysical journal 2014, 106, 1771–

1779.

[204] H. Bern, K Lederis, The Journal of endocrinology 1969, 45, 341–349.

[205] M. Mori, T. Sugo, M. Abe, Y. Shimomura, M. Kurihara, C. Kitada, K.

Kikuchi, Y. Shintani, T. Kurokawa, H. Onda, et al., Biochemical and bio-

physical research communications 1999, 265, 123–129.

[206] H.-P. Nothacker, Z. Wang, A. M. McNeill, Y. Saito, S. Merten, B. O’Dowd,

S. P. Duckles, O. Civelli, Nature Cell Biology 1999, 1, 383–385.

[207] Q. Liu, S.-S. Pong, Z. Zeng, Q. Zhang, A. D. Howard, D. L. Williams, M.

Davidoff, R. Wang, C. P. Austin, T. P. McDonald, et al., Biochemical and

biophysical research communications 1999, 266, 174–178.

[208] S. Flohr, M. Kurz, E. Kostenis, A. Brkovich, A. Fournier, T. Klabunde,

Journal of medicinal chemistry 2002, 45, 1799–1805.

[209] E. Lescot, J. Sopkova-de Oliveira Santos, C. Dubessy, H. Oulyadi, A. Lesnard,

H. Vaudry, R. Bureau, S. Rault, Journal of chemical information and mod-

eling 2007, 47, 602–612.

[210] P. Grieco, A. Carotenuto, R. Patacchini, C. A. Maggi, E. Novellino, P.

Rovero, Bioorganic & medicinal chemistry 2002, 10, 3731–3739.

[211] A. Carotenuto, P. Grieco, P. Campiglia, E. Novellino, P. Rovero, Journal

of medicinal chemistry 2004, 47, 1652–1661.

[212] E. Haensele, N. Mele, M. Miljak, C. M. Read, D. C. Whitley, L. Banting,

C. Delepee, J. Sopkova-de Oliveira Santos, A. Lepailleur, R. Bureau, et al.,

Journal of Chemical Information and Modeling 2017, 57, 398–310.

[213] T. Sugo, Y. Murakami, Y. Shimomura, M. Harada, M. Abe, Y. Ishibashi,

C. Kitada, N. Miyajima, N. Suzuki, M. Mori, et al., Biochemical and bio-

physical research communications 2003, 310, 860–868.



BIBLIOGRAPHY

[214] D. Chatenet, C. Dubessy, J. Leprince, C. Boularan, L. Carlier, I. Segalas-

Milazzo, L. Guilhaudis, H. Oulyadi, D. Davoust, E. Scalbert, et al., Peptides

2004, 25, 1819–1830.

[215] H. Vaudry, J.-C. Do Rego, J.-C. Le Mevel, D. Chatenet, H. Tostivint, A.

Fournier, M.-C. Tonon, G. Pelletier, J Michael Conlon, J. Leprince, Annals

of the New York Academy of Sciences 2010, 1200, 53–66.

[216] S. M. Foord, T. I. Bonner, R. R. Neubig, E. M. Rosser, J.-P. Pin, A. P.

Davenport, M. Spedding, A. J. Harmar, Pharmacological reviews 2005, 57,

279–288.

[217] R. S. Ames, H. M. Sarau, J. K. Chambers, R. N. Willette, et al., Nature

1999, 401, 282–286.

[218] A. Stirrat, M. Gallagher, S. A. Douglas, E. H. Ohlstein, C. Berry, A Kirk,

M Richardson, M. R. MacLean, American Journal of Physiology-Heart and

Circulatory Physiology 2001, 280, 925–928.

[219] N. A. Elshourbagy, S. A. Douglas, U. Shabon, S. Harrison, G. Duddy, J. L.

Sechler, Z. Ao, B. E. Maleeff, D. Naselsky, J. Disa, et al., British journal

of pharmacology 2002, 136, 9–22.

[220] B. Boivin, G. Vaniotis, B. G. Allen, T. E. Hebert, Journal of Receptors and

Signal Transduction 2008, 28, 15–28.

[221] C. Bucharles, P. Bizet, S. Arthaud, A. Arabo, J. Leprince, B. Lefranc, D.

Cartier, Y. Anouar, I. Lihrmann, Journal of Comparative Neurology 2014,

522, 2634–2649.

[222] D Chatenet, M Letourneau, Q. Nguyen, N. Doan, J Dupuis, A Fournier,

British journal of pharmacology 2013, 168, 807–821.


