
ANICK SPACES AND KAC-MOODY GROUPS

S. THERIAULT AND J. WU∗

Abstract. For primes p ≥ 5 we prove an approximation to Cohen, Moore and Neisendorfer’s

conjecture that the loops on an Anick space retracts off the double loops on a mod-p Moore space.

The approximation is then used to answer a question posed by Kitchloo regarding the topology

of Kac-Moody groups. We show that, for certain rank two Kac-Moody groups K, the based loops

on K is p-locally homotopy equivalent to the product of the loops on a 3-sphere and the loops on

an Anick space.

1. Introduction

This paper has two purposes. The first is to address an important conjecture in homotopy theory

regarding the homotopy type of the double loops on an odd primary Moore space. The second is to

establish a connection between rank two Kac-Moody groups and Anick spaces.

Let p be an odd prime and r ≥ 1. Take homology with mod-p coefficients. For m ≥ 1 the Moore

space Pm+1(pr) is the cofibre of the degree pr map on Sm. Its homotopy theory was investigated

in depth by Cohen, Moore and Neisendorfer [CMN1, CMN2, CMN3] and additional properties were

proved by Neisendorfer [N2, N3]. In the case of an odd dimensional Moore space P 2n+1(pr), a

related space was constructed by Anick [A2] for p ≥ 5, and reconstructed in a much simpler way

in [GT] for p ≥ 3. For each n, r ≥ 1 there is a space T 2n+1(pr) which fits in a homotopy fibration

(1) S2n−1 −→ T 2n+1(pr) −→ ΩS2n+1

and has the property that there is a coalgebra isomorphism

H∗(T
2n+1(pr)) ∼= Λ(u2n−1)⊗ Z/pZ[v2n]

with βr(v2n) = u2n−1, where βr is the rth-Bockstein. It was conjectured by Cohen, Moore and

Neisendorfer that ΩT 2n+1(pr) retracts off Ω2P 2n+1(pr). This was proved by Neisendorfer [N3]

for p ≥ 3 and r ≥ 2, but the critical case of r = 1 remains open.

Our first result is to prove an approximation to this remaining open case, although we state the

result for all r ≥ 1. Define C2n+1(pr) by the homotopy cofibration

P 4n(pr)
[ν,µ]−→ P 2n+1(pr) −→ C2n+1(pr)
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where [ν, µ] is the mod-pr Whitehead product of the identity map ν on P 2n+1(pr) and the Bockstein

map µ.

Theorem 1.1. Let p ≥ 5, r ≥ 1 and n > 1. Then ΩT 2n+1(pr) is a retract of Ω2C2n+1(pr).

Philosophically, Theorem 1.1 says that if one gets rid of mod-pr Whitehead products on P 2n+1(pr)

(by coning them out in C2n+1(pr)) then all obstructions to a splitting involving ΩT 2n+1(pr) vanish.

This may or may not be helpful in trying to show that ΩT 2n+1(pr) retracts off Ω2P 2n+1(pr). How-

ever, it is interesting to note that if T 2n+1
0 (pr) is the bottom indecomposable factor of ΩP 2n+1(pr),

then Anick [A1] showed that T 2n+1
0 (pr) retracts off ΩL, where L is the 4n-skeleton of C2n+1(pr). So

the obstruction to retracting ΩT 2n+1(pr) off Ω2P 2n+1(pr) is encoded in the attaching map of the

top dimensional cell of C2n+1(pr).

Theorem 1.1 has practical applications, which leads to the second purpose of the paper. Fix a

prime p. Let k ∈ {p, 2p} or let k be a divisor of p − 1 or p + 1. In [K1, K2], Kitchloo showed that

for each such k there is a nonempty set Vk of positive integers with the property that if r ∈ Vk then

there is a rank-2 Kac-Moody group K such that

(2) H∗(K) ∼= Λ(z3, y2k−1)⊗ Z/pZ[x2k]

and βr(x2k) = y2k−1, where βr is the rth-Bockstein. Further, K has an S3 subgroup whose inclusion

induces an isomorphism onto the subalgebra Λ(z3) in homology. Taking classifying spaces, this

results in a homotopy fibration sequence

S3 −→ K
δ−→ X −→ BS3 −→ BK

where

H∗(X) ∼= Λ(y2k−1)⊗ Z/pZ[x2k]

and δ∗ is the projection. Observe that X has the same homology as the Anick space T 2k+1(pr).

Kitchloo conjectured that there is a p-local homotopy fibration S2k−1 −→ X −→ ΩS2k+1 that is

equivalent to Anick’s fibration. A weaker conjecture is that there is a p-local homotopy equivalence

X ' T 2k+1(pr). We prove that the weaker conjecture holds after looping if 1 < k < p−1. Moreover,

the method results in a homotopy decomposition for ΩK.

Theorem 1.2. Let p ≥ 5 and let K be a rank two Kac-Moody group satisfying (2). If 1 < k < p− 1

and r ∈ Vk then there are p-local homotopy equivalences

ΩX ' ΩT 2k+1(pr) and ΩK ' ΩS3 × ΩT 2k+1(pr).

The approach to proving Theorem 1.2 involves four steps. First, we lift the inclusion of the bottom

Moore space P 2k(pr) −→ X to K. Second, we show that its adjoint P 2k+1(pr) −→ BK extends to

a map C2k+1(pr) −→ BK. Third, Theorem 1.1 is applied to produce a map ΩT 2k+1(pr) −→ ΩK.
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Finally, an atomicity style argument is used to show that the composite ΩT 2k+1(pr) −→ ΩK −→ ΩX

is a p-local homotopy equivalence, from which Theorem 1.2 follows.

The decomposition of ΩK in Theorem 1.2 implies exponent information about K. The p-primary

homotopy exponent of a space Y is the least power of p that annihilates the p-torsion in the homotopy

groups of Y . If this power is r, write expp(Y ) = pr. Selick [S] showed that for p ≥ 3, expp(S
3) = p,

and Gray [Gr, Corollary 7.28] showed that for p ≥ 5, expp(T
2n+1(pr)) = pr. Since looping simply

shifts homotopy groups down one dimension, Theorem 1.2 immediately implies the following.

Corollary 1.3. If K is a Kac-Moody group as in Theorem 1.2 then expp(K) = pr. �

In particular, if r = 1 then one obtains the remarkable outcome that expp(K) = p.

The authors would like to thank the referee for pointing out an error in an earlier version of the

paper, and for several comments that have improved the exposition.

2. Background information on the homotopy theory of Moore spaces

In this section we record some of the material from [CMN1] and [N3] that will be needed for later.

From here on it will be assumed that all spaces and maps have been localized at an odd prime p.

If A is a co-H-space, let pr : A −→ A be the map of degree pr and if B is an H-space, let

pr : B −→ B be the pr-power map. For m ≥ 1, the Moore space Pm+1(pr) is defined by the

homotopy cofibration

Sm
pr

−→ Sm −→ Pm+1(pr).

The sphere S2n+1 is an H-space localized at an odd prime p and its pr-power map is homotopic to

the map of degree pr. Define the space S2n+1{pr} by the homotopy fibration

S2n+1{pr} −→ S2n+1 pr−→ S2n+1.

One key result in [CMN1] is that there is a map

S2n+1{pr} −→ ΩP 2n+2(pr)

which has a left homotopy inverse.

It will be necessary to relate Moore spaces of different torsion orders. For r, s ≥ 1, there is a

homotopy pushout diagram

Sm
pr

// Sm //

ps

��

Pm+1(pr)

ωr+s
r

��
Sm

pr+s

// Sm //

��

Pm+1(pr+s)

ρsr+s

��
Pm+1(ps) Pm(ps)
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that defines the maps ωr+sr and ρsr+s. For fibres of degree maps there is an analogous homotopy

pullback diagram

S2n+1{pr}
$r+s

r // S2n+1{pr+s}
%sr+s //

��

S2n+1{ps}

��
S2n+1{pr} // S2n+1

pr

//

pr+s

��

S2n+1

ps

��
S2n+1 S2n+1

that defines the maps $r+s
r and %sr+s. As in [N3, Diagram 1.10], the map S2n+1{pr} −→ ΩP 2n+2(pr)

with a left homotopy inverse may be chosen so that it is natural with respect to changes in torsion

order. That is, there is a homotopy commutative diagram

(3)

S2n+1{pr}
$r+s

r //

��

S2n+1{pr+s}
%sr+s //

��

S2n+1{ps}

��
ΩP 2n+2(pr)

Ωωr+s
r // ΩP 2n+2(pr+s)

Ωρrr+s // ΩP 2n+2(ps)

For odd dimensional Moore spaces, consider the homotopy fibration sequence

ΩS2n+1 ∂r−→ F 2n+1(pr) −→ P 2n+1(pr)
q−→ S2n+1

where q is the pinch map to the top cell, and the fibration sequence defines the space F 2n+1(pr) and

the map ∂r. In [CMN1] it was shown that there is a homotopy equivalence

(4) κ : S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr) −→ ΩF 2n+1(pr).

There may be choices of the homotopy equivalence κ, and in Lemma 3.3 a lift of κ will be produced

that depends on making a specific choice. To this end, κ will now be described in more detail.

Let f : ΣP s(pr) −→ Pm(pr) and g : ΣP t(pr) −→ Pm(pr) be maps. Let

w(f, g) : ΣP s(pr) ∧ P t(pr) −→ Pm(pr)

be the Whitehead product of f and g. By [N1], as p is odd there is a homotopy equivalence

P s(pr) ∧ P t(pr) ' P s+t(pr) ∨ P s+t−1(pr). The mod-pr Whitehead product of f and g is the

composite

[f, g] : P s+t+1(pr) ↪→ P s+t+1(pr) ∨ P s+t(pr) ' ΣP s(pr) ∧ P t(pr) w(f,g)−→ Pm(pr).

Mod-pr Whitehead products play an important role, and certain ones are distinguished. Let

ν : P 2n+1(pr) −→ P 2n+1(pr) be the identity map and let µ : P 2n(pr) −→ P 2n+1(pr) be the com-

posite P 2n(pr)
q−→ S2n −→ P 2n+1(pr), where the right map is the inclusion of the bottom cell.
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Let ad1(ν)(µ) = [ν, µ] and, for k > 1, recursively define adk(ν)(µ) by adk(ν, µ) = [ν, adk−1(ν)(µ)].

In [CMN1] it was shown that there is an extension

(5)

P 2npj (pr)
ωr+1

r //

adp
j−1(ν)(µ)

��

P 2npj (pr+1)

ejxxqqqqqqqqqqq

P 2n+1(pr)

for some map ej .

We now describe the spaces and maps appearing in (4). First, there is the inclusion i : S2n−1 −→

ΩF 2n+1(pr) of the bottom cell. Second, the space R2n+1(pr) is a wedge of mod-pr Moore spaces

and there is a map R2n+1(pr) −→ P 2n+1(pr) which is a wedge sum of iterated mod-pr Whitehead

products. Each mod-pr Whitehead product composes trivially with the pinch map P 2n+1(pr)
q−→

S2n+1 because S2n+1 is an H-space and any Whitehead product on an H-space is null homotopic.

Thus there is a lift ψ : R2n+1(pr) −→ F 2n+1(pr). Looping gives a map ΩR2n+1(pr)
Ωψ−→ ΩF 2n+1(pr).

Third, as above, the mod-pr Whitehead product adp
j−1(ν)(µ) lifts to a map `j : P 2npj (pr) −→

F 2n+1(pr) and in [CMN1] it is shown that the extension property in (5) occurs at the lifted level as

well. That is, there is a homotopy commutative diagram

(6)

P 2npj (pr)
ωr+1

r //

`j

��

P 2npj (pr+1)

e′jxxqqqqqqqqqqq

F 2n+1(pr)

for some map e′j . Thus for each j ≥ 1 there is a composite S2npj−1{pr+1} −→ ΩP 2npj (pr)
Ωe′j−→

ΩF 2n+1(pr). Letting V 2n+1(pr+1) =
∏∞
j=1 S

2npj−1{pr+1} and using the loop space structure on

ΩF 2n+1(pr) to multiply we obtain map ε : V 2n+1(pr+1) −→ ΩF 2n+1(pr). The map κ in (4) is the

result of multplying together the maps i, ε and Ωψ.

Remark 2.1. There may have been choices of the lifts ψ and `j . Any choice of ψ and any choice

of `j that satisfied (6) would do to produce a choice of the homotopy equivalence κ.

Let br be the composite

br : Ω2S2n+1 Ω∂r−→ ΩF 2n+1(pr)
κ−1

−→ S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr).

Then there is a homotopy fibration sequence

Ω2S2n+1 br−→ S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr) −→ ΩP 2n+1(pr)
Ωq−→ ΩS2n+1.

There is a factorization of br proved by Neisendorfer. Changes in torsion order will play a role. For

any t ≥ 1, let V 2n+1(pt) =
∏∞
j=1 S

2npj−1{pt}. Abusing notation, let

$r+s
r : V 2n+1(pr) −→ V 2n+1(pr+s) %sr+s : V 2n+1(pr+s) −→ V 2n+1(ps)
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also denote the product of the maps S2npj−1{pr} $r+s
r−→ S2npj−1{pr+s} and S2npj−1{pr+s}

$s
r+s−→

S2npj−1{ps} respectively. In [N4], Neisendorfer proved the following.

Lemma 2.2. There is a homotopy commutative diagram

V 2n+1(pr+1) //

%rr+1

��

ΩP 2n+1(pr)

ζwwooooooooooo

V 2n+1(pr)

for some map ζ. �

From the homotopy fibration S2n+1{pr} $
r+s
r−→ S2n+1{pr+s}

%sr+s−→ S2n+1{ps} we obtain a product

homotopy fibration V 2n+1(pr)
$r+s

r−→ V 2n+1(pr+s)
%sr+s−→ V 2n+1(ps). Therefore, Lemma 2.2 implies that

there is a lift

S2n−1 × V 2n+1(p)× ΩR2n+1(pr)

1×$r+1
1 ×1

��
Ω2S2n+1

br //

33gggggggggggggggggggggg
S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr).

In what follows, we only require a weaker lift. The map $r+1
1 factors as the composite $r+1

r ◦$r
1.

Therefore we obtain the following.

Lemma 2.3. There is a homotopy commutative diagram

S2n−1 × V 2n+1(pr)× ΩR2n+1(pr)

1×$r+1
r ×1

��
Ω2S2n+1

br //

33gggggggggggggggggggggg
S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr). �

3. A retraction of ΩT 2n+1(pr) off Ω2C2n+1(pr)

In this section we prove Theorem 1.1 by constructing maps a : ΩT 2n+1(pr) −→ Ω2C2n+1(pr) and

b : Ω2C2n+1(pr) −→ ΩT 2n+1(pr) with the property that b ◦ a is a homotopy equivalence. We begin

with a description of the properties of Anick spaces that will be needed.

3.1. Properties of Anick spaces. As in the Introduction, for each odd prime p and n, r ≥ 1 there

is a homotopy fibration

(7) S2n−1 −→ T 2n+1(pr) −→ ΩS2n+1

and a coalgebra isomorphism

H∗(T
2n+1(pr)) ∼= Λ(u2n−1)⊗ Z/pZ[v2n]

with βr(v2n) = u2n−1, where βr is the rth-Bockstein.
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A simply-connected space X is atomic if any self-map f : X −→ X which induces an isomorphism

in the least nonvanishing degree in homology is a homotopy equivalence. Atomicity is used to detect

indecomposable spaces, those for which no nontrivial product decompositions exist.

Theorem 3.1. The space T 2n+1(pr) and the homotopy fibration (7) have the following properties:

(a) there is a factorization

ΩP 2n+1(pr)
Ωq
//

t

��

ΩS2n+1

T 2n+1(pr) // ΩS2n+1

for some map t;

(b) the fibration connecting map for (7) is homotopic to Ω2S2n+1 ϕr−→ S2n−1;

(c) if r ≥ 2 then the map Ω2P 2n+1(pr)
Ωt−→ ΩT 2n+1(pr) has a right homotopy inverse;

(d) if p ≥ 5 then T 2n+1(pr) is a homotopy associative, homotopy commutative H-

space and t is an H-map;

(e) ΩT 2n+1(pr) is atomic.

Proof. Part (a) is proved in [A2] for p ≥ 5 and in [GT] for p ≥ 3, and part (b) - also established in

both papers - is a consequence of part (a). Part (c) is proved in [N3], part (d) in [Gr], and part (e)

in [Th]. �

3.2. Constructing a map ΩT 2n+1(pr) −→ Ω2C2n+1(pr). In general, if X is a path-connected

space, let J2(ΣX) be the second stage of the James construction on ΣX. There is a homotopy

cofibration

ΣX ∧X [1,1]−→ ΣX
j−→ J2(ΣX)

where [1, 1] is the Whitehead product of the identity map on ΣX with itself and j can be regarded as

the inclusion of J1(ΣX) = ΣX into J2(ΣX). In our case take X = P 2n(pr). Let T : X∧X −→ X∧X

be the map that swaps factors. As we are localized at an odd prime, the self-map

1

2
(1− T ) : ΣP 2n(pr) ∧ P 2n(pr) −→ ΣP 2n(pr) ∧ P 2n(pr)

exists, and as in [CW], it is an idempotent because P 2n(pr) is a suspension since n ≥ 1 Moreover, as

in [CW], the Whitehead product ΣP 2n(pr) ∧ P 2n(pr)
[1,1]−→ P 2n+1(pr) factors through the telescope

of 1
2 (1−T ), which is P 4n(pr), giving a factorization of [1, 1] as a composite ΣP 2n(pr)∧P 2n(pr)

t−→

P 4n(pr)
[ν,µ]−→ P 2n+1(pr) where t is the map to the telescope and has a right homotopy inverse.
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Consequently, there is a homotopy pushout diagram

(8)

ΣP 2n(pr) ∧ P 2n(pr)
t // P 4n(pr)

∗ //

[ν,µ]

��

P 4n+2(pr)

��
ΣP 2n(pr) ∧ P 2n(pr)

[1,1]
// P 2n+1(pr)

j
//

c

��

J2(P 2n(pr))

%

��
C2n+1(pr) C2n+1(pr)

that defines the map %.

In general, if Y and Z are simply-connected spaces, let ev1 and ev2 be the composites

ev1 : ΣΩY
ev−→ Y

i1−→ Y ∨ Z

ev2 : ΣΩZ
ev−→ Z

i2−→ Y ∨ Z,

where i1 and i2 are the inclusions of the left and right wedge summands respectively. By [Ga], there

is a homotopy fibration

ΣΩY ∧ ΩZ
[ev1,ev2]−−−−→ Y ∨ Z −−−−→ Y × Z

where the right map is the inclusion of the wedge into the product. When Y = Z there is a fold

map ∇ : Y ∨ Y −→ Y . The universal Whitehead product on Y is the composite

Ψ: ΣΩY ∧ ΩY
[ev1,ev2]−−−−→ Y ∨ Y ∇−−−−→ Y.

It is universal because any Whitehead product on Y factors through Ψ. In [TW] it was shown that

if Y = ΣX then the composite ΣΩΣX ∧ ΩΣX
Ψ−→ ΣX

j−→ J2(ΣX) is null homotopic. In our case,

taking X = P 2n(pr), the factorization of c through j in (8) immediately implies the following.

Lemma 3.2. The composite ΣΩP 2n+1(pr) ∧ ΩP 2n+1(pr)
Ψ−→ P 2n+1(pr)

c−→ C2n+1(pr) is null

homotopic. �

Next, since S2n+1 is an H-space when localized at a prime p ≥ 3, the composite P 4n(pr)
[ν,µ]−→

P 2n+1(pr)
q−→ S2n+1 is null homotopic. Thus q extends to a map q′ : C2n+1(pr) −→ S2n+1. From

this extension we obtain a homotopy fibration diagram

(9)

M2n+1(pr)

��

M2n+1(pr)

��
ΩS2n+1

∂r // F 2n+1(pr) //

d

��

P 2n+1(pr)
q
//

c

��

S2n+1

ΩS2n+1
∂r // D2n+1(pr) // C2n+1(pr)

q′

// S2n+1

that defines the spaces D2n+1(pr) and M2n+1(pr) and the maps d and ∂r.
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Lemma 3.3. There is a choice of the homotopy equivalence S2n−1×V 2n+1(pr+1)×ΩR2n+1(pr)
κ−→

ΩF 2n+1(pr) with the property that there is a homotopy commutative diagram

V 2n+1(pr)× ΩR2n+1(pr)
ξ

//

∗×$r+1
r ×1

��

ΩM2n+1(pr)

��
S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr)

κ // ΩF 2n+1(pr)

for some map ξ.

Proof. Start with the homotopy cofibration P 4n(pr)
[ν,µ]−→ P 2n+1(pr)

c−→ C2n+1(pr). By definition,

[ν, µ] = ad1 so c ◦ ad1 is null homotopic. Since adk = [ν, adk−1] for k > 1, the naturality of the

mod-pr Whitehead product implies that c ◦ adk is null homotopic for all k ≥ 1. Thus each adk lifts

to the homotopy fibre M2n+1(pr) of c. Moreover, any iterated mod-pr Whitehead product in which

[ν, µ] appears has the property that it composes trivially with c and so lifts to M2n+1(pr).

Recall the construction of κ in Section 2. The map R2n+1(pr) −→ P 2n+1(pr) was a wedge sum of

mod-pr Whitehead products. Each such Whitehead product factors through the universal Whitehead

product on P 2n+1(pr), so Lemma 3.2 implies that the composite R2n+1(pr) −→ P 2n+1(pr)
c−→

C2n+1(pr) is null homotopic. Thus the map R2n+1(pr) −→ P 2n+1(pr) lifts to M2n+1(pr), and the

lift R2n+1(pr)
ψ−→ F 2n+1(pr) used in forming κ may be chosen to be the composite R2n+1(pr) −→

M2n+1(pr) −→ F 2n+1(pr). Therefore we obtain a homotopy commutative diagram

(10)

ΩM2n+1(pr)

��
ΩR2n+1(pr)

Ωψ
//

77ooooooooooo
ΩF 2n+1(pr).

Similarly, each adp
j−1 has [ν, µ] appearing in it and so can be chosen to lift to F 2n+1(pr) through

M2n+1(pr). The extension through ωr+1
r may not exist as a map to M2n+1(pr), but we do not

require this. We obtain, for each j ≥ 1, a homotopy commutative diagram

P 2npj (pr) //

ωr+1
r

��

M2n+1(pr)

��
P 2npj (pr+1)

e′j
// F 2n+1(pr).

Looping to take products and using (3) we obtain a homotopy commutative diagram

(11)

V 2n+1(pr) //

$r+1
r

��

∏∞
j=1 ΩP 2npj (pr) //

∏∞
j=1 Ωωr+1

r

��

ΩM2n+1(pr)

��
V 2n+1(pr+1) // ∏∞

j=1 ΩP 2npj (pr+1) // ΩF 2n+1(pr).
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By Remark 2.1, we may choose κ to be the product of the inclusion i of the bottom cell S2n−1 into

ΩF 2n+1(pr), the map Ωψ in (10), and take ε to be the bottom row of (11). Then κ is a homotopy

equivalence and from (10) and (11) we obtain the homotopy commutative diagram asserted in the

statement of the lemma. �

Consider the map ΩS2n+1 ∂r−→ D2n+1(pr) appearing in (9). We give a factorization of Ω∂r. Let ϕr

be the composite

ϕr : Ω2S2n+1 br−→ S2n−1 × V 2n+1(pr+1)× ΩR2n+1(pr)
proj−→ S2n−1

where the right map is the projection.

Proposition 3.4. There is a homotopy commutative diagram

Ω2S2n+1
ϕr // S2n−1

��
Ω2S2n+1

Ω∂r // ΩD2n+1(pr).

Proof. Let κ′ be the composite

κ′ : S2n−1×V 2n+1(pr)×ΩR2n+1(pr)
1×$r+1

r ×1−−−−−−→ S2n−1×V 2n+1(pr+1)×ΩR2n+1(pr)
κ−→ ΩF 2n+1(pr).

Consider the homotopy fibration ΩM2n+1(pr) −→ ΩF 2n+1(pr)
Ωd−→ ΩD2n+1(pr) from (9). Since Ωd

is an H-map and κ is defined by using the loop multiplication on ΩF 2n+1(pr) to multiply the factors

together, the composite Ωd◦κ is determined by the restriction to each of the factors. By Lemma 3.3,

the restriction to V 2n+1(pr)×ΩR2n+1(pr) is null homotopic. Thus there is a homotopy commutative

diagram

(12)

S2n−1 × V 2n+1(pr)× ΩR2n+1(pr)
κ′ //

π1

��

ΩF 2n+1(pr)

Ωd

��
S2n−1 // ΩD2n+1(pr)

where π1 is the projection onto the first factor.

Now consider the diagram

Ω2S2n+1 // S2n−1 × V 2n+1(pr)× ΩR2n+1(pr)

κ′

��

π1

))SSSSSSSSSSSSSSSSS

Ω2S2n+1
Ω∂r // ΩF 2n+1(pr)

Ωd

��

S2n−1

ιuukkkkkkkkkkkkkkkk

Ω2S2n+1
Ω∂r // ΩD2n+1(pr)

where ι is the inclusion of the bottom cell. By Lemma 2.3 and the definition of κ′, the upper

square left homotopy commutes. The lower left square homotopy commutes by (9) and the right
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triangle homotopy commutes by (12). The diagram as a whole therefore states that Ω∂r factors

through S2n−1. It remains to identify the map ϕ′r : Ω2S2n+1 −→ S2n−1 along the upper direction of

the diagram as ϕr. But, by definition, κ′ is the identity on the S2n−1 factor so ϕ′r can be identified

as the composite Ω2S2n+1 Ω∂r−→ ΩF 2n+1(pr)
proj−→ S2n−1, which is the definition of ϕr. �

By Theorem 3.1 (b) there is a homotopy fibration ΩT 2n+1(pr) −→ Ω2S2n+1 ϕr−→ S2n−1. Propo-

sition 3.4 therefore implies that the map ΩT 2n+1(pr) −→ Ω2S2n+1 lifts to the homotopy fibre of

Ω2S2n+1 Ω∂r−→ ΩD2n+1(pr), which by (9) is Ω2C2n+1(pr). Hence we have shown the following, where

we explicitly remember that everthing done so far holds for all odd primes.

Corollary 3.5. If p ≥ 3 then there is a lift

ΩT 2n+1(pr)

��

λ

wwooooooooooo

Ω2C2n+1(pr) // Ω2S2n+1

for some map λ. �

3.3. Constructing a map Ω2C2n+1(pr) −→ ΩT 2n+1(pr). This will be done for p ≥ 5, and the map

will in fact be a loop map. Recall that there is a homotopy cofibration P 4n(pr)
[ν,µ]−→ P 2n+1(pr)

c−→

C2n+1(pr). As [ν, µ] factors through the Whitehead product ΣP 2n(pr) ∧ P 2n(pr)
[1,1]−→ P 2n+1(pr),

there is a homotopy pushout diagram

(13)

P 4n(pr) // ΣP 2n(pr) ∧ P 2n(pr) //

[1,1]

��

P 4n+1(pr)

��
P 4n(pr)

[ν,µ]
// P 2n+1(pr)

c //

j

��

C2n+1(pr)

j′

��
J2(P 2n+1(pr)) J2(P 2n+1(pr)).

that defines the map j′.

By Theorem 3.1 (a), the loops on the pinch map ΩP 2n+1(pr)
Ωq−→ ΩS2n+1 factors as a composite

ΩP 2n+1(pr)
t−→ T 2n+1(pr) −→ ΩS2n+1 for some map t.

Lemma 3.6. If p ≥ 5 then there is a homotopy commutative diagram

ΩP 2n+1(pr)
t //

Ωc

��

T 2n+1(pr)

ΩC2n+1(pr)

t̃

88ppppppppppp

for some map t̃.
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Proof. In [TW, Lemma 2.6] it was shown that if Z is a homotopy associative and homotopy com-

mutative H-space and f : ΩP 2n+1(pr) −→ Z is an H-map then there is a homotopy commutative

diagram

ΩP 2n+1(pr)
f
//

Ωj

��

Z

ΩJ2(P 2n+1(pr))

f

99ssssssssssss

for some map f . By (13), the map Ωj factors as the composite ΩP 2n+1(pr)
Ωc−→ ΩC2n+1(pr)

Ωj′−→

ΩJ2(P 2n+1(pr)). Thus if we take f̃ = f ◦ Ωj′ then there is a homotopy commutative diagram

(14)

ΩP 2n+1(pr)
f
//

Ωc

��

Z

ΩC2n+1(pr).

f̃

::uuuuuuuuuu

By Theorem 3.1 (d), if p ≥ 5 then T 2n+1(pr) is homotopy associative and homotopy commutative,

and the map t is an H-map. Thus the assertion of the lemma follows by applying (14) to t. �

3.4. The proof of Theorem 1.1 and an application. First, we put the pieces together to obtain

a retraction of ΩT 2n+1(pr) off Ω2C2n+1(pr), proving Theorem 1.1.

Proof of Theorem 1.1. We will show that if p ≥ 5 and n > 1 then the composite ΩT 2n+1(pr)
λ−→

Ω2C2n+1(pr)
Ωt̃−→ ΩT 2n+1(pr) is a homotopy equivalence. The homotopy commutativity of the

diagrams in Corollary 3.5 and Lemma 3.6 imply that both λ and Ωt̃ induce an isomorphism in mod-p

homology in degree 2n− 2, the least nonvanishing degree. Thus Ωt̃ ◦ λ is a self-map of ΩT 2n+1(pr)

which induces an isomorphism in the least nonvanishing degree in homology. By Theorem 3.1 (e),

ΩT 2n+1(pr) is atomic if p ≥ 5 and n > 1, so Ωt̃ ◦ λ is a homotopy equivalence. �

Next, Theorem 1.1 is applied to produce maps from ΩT 2n+1(pr) into certain spaces by checking

that minimal requirements hold.

Theorem 3.7. Let p ≥ 5 and r ≥ 1. Suppose that there is a map f : P 2n+1(pr) −→ Z for some

space Z. If the composite P 4n(pr)
[ν,µ]−→ P 2n+1(pr)

f−→ Z is null homotopic then there is a map

ΩT 2n+1(pr) −→ Ω2Z whose restriction to the bottom Moore space is the double adjoint of f .

Proof. The hypothesis that f ◦ [ν, µ] is null homotopic is equivalent to saying that the map f

extends to a map C2n+1(pr) −→ Z. Theorem 1.1 therefore implies that there is a composite

ΩT 2n+1(pr) −→ Ω2C2n+1(pr) −→ Ω2Z whose restriction to the bottom Moore space is the double

adjoint of f . �

By Theorem 3.1 (c), if r ≥ 2 then ΩT 2n+1(pr) retracts off Ω2P 2n+1(pr), so in this case, given

a map P 2n+1(pr)
f−→ Z, one automatically obtains a map ΩT 2n+1(pr) −→ Ω2Z whose restriction
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to the bottom Moore space is the double adjoint of f . The additional hypothesis in Theorem 3.7

regarding f ◦ [ν, µ] being null homotopic is not necessary.

However, the r = 1 case is often the vital one, and it is an open conjecture as to whether

ΩT 2n+1(p) retracts off Ω2P 2n+1(p). So Theorem 3.7 can be thought of as a way of producing a

consequence of the conjecture without having to prove it first. Moreover, it is practical in the sense

that one can hope to check that a given map P 2n+1(pr)
f−→ Z has f ◦ [ν, µ] null homotopic. In fact,

this criterion will be used in the next section in the context of Kac-Moody groups.

4. Kac-Moody groups

As in [K1, K2], Kac-Moody groups of rank two correspond to generalized Cartan matrices of the

form

A =

 2 −a

−b 2

 .

Given such a matrix A, the Kac-Moody group K is the semisimple factor inside the corresponding

unitary form. If ab < 4 then K is a compact Lie group. We are interested in the case when ab ≥ 4.

Define integers ci and di recursively by:

c0 = d0 = 1; c1 = d1 = 1; cj+1 = adj − cj−1; dj+1 = bcj − dj−1.

Let gi = (ci, di) be the greatest common divisor of ci and di. Fix an odd prime p and take homology

with mod-p coefficients. Let k be the smallest positive integer such that p divides gk. Then there is

an isomorphism of Hopf algebras

(15) H∗(K) ∼= Λ(z3, y2k−1)⊗ Z/pZ[x2k]

where the generators are primitive, and if r is the exponent of p in gk, then βr(x2k) = y2k−1. Further,

it is known that if k exists then either is it p, 2p or a nontrivial divisor of p+ 1 or p− 1, and in each

case there are choices of a and b which produce such a k.

Given such a k, let Vk be the collection of all possible integers r that arise as the exponent of p

in gk for some choice of integers a and b. In general it is known that Vk is nonempty but no precise

description is known. However, to give some examples, we show that if p ≥ 5 and k ∈ {2, 3, 4} then

Vk = N. Note that each of 2, 3 and 4 is a proper divisor of either p + 1 or p − 1, and so is a valid

value of k. Observe that

c2 = a, d2 = b, c3 = d3 = ab− 1, c4 = a(ab− 2), d4 = b(ab− 2).

If k = 2 then taking a = b = pr gives g2 = (c2, d2) = pr. If k = 3 then taking a = 1 and b = pr + 1

gives g2 = (c2, d2) = 1 and g3 = (c3, d3) = pr. If k = 4 then taking a = 1 and b = pr + 2 gives

g2 = (c2, d2) = 1, g3 = (c3, d3) = pr + 1, and g4 = (c4, d4) = pr. Thus, in all cases, any r ≥ 1 will do

so Vk = N.
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Recall from the introduction that K has an S3 subgroup whose inclusion induces an isomorphism

onto the sub-Hopf-algebra Λ(z3) in homology, resulting in a homotopy fibration sequence

(16) S3 −→ K
δ−→ X −→ BS3 −→ BK

where

H∗(X) ∼= Λ(y2k−1)⊗ Z/pZ[x2k]

and δ∗ is the projection. In particular, this is an isomorphism of coalgebras (as X may not be an

H-space).

Now localize all spaces and maps at p. We aim to show that for p ≥ 5 and 1 < k < p−1 there is a

p-local homotopy equivalence ΩX ' ΩT 2n+1(pr). Any approach to the problem is limited by the fact

that almost nothing is known about the homotopy theory, or homotopy groups, of K. The method

is to first produce a map P 2k+1(pr) −→ BK whose adjoint induces an isomorphism in homology

onto the generators x2k and y2k−1, and then to extend it to a map C2k+1(pr) −→ BK. At both

stages certain values of k have to be eliminated in order to ensure that potential obstructions vanish.

This will require some information about the homotopy groups of spheres proved by Toda [To].

Remark 4.1. It is worth pointing out beforehand that the only properties of Kac-Moody groups

used in showing ΩT 2n+1(pr) ' ΩX are the existence of the homotopy fibration sequence (16) and

the description of H∗(X). The rest of the argument is based on the homotopy theory of spheres,

Moore spaces and Anick spaces.

Lemma 4.2. Let p ≥ 5. If 3 < m ≤ 4p then πm(S3) ∼= 0 unless m ∈ {2p, 4p− 2}. �

Lemma 4.3. Let p ≥ 5. If k ≤ p and r ∈ Vk then there is a map P 2k+1(pr) −→ BK whose adjoint

induces an isomorphism onto the generators x2k and y2k−1 in H∗(K).

Proof. Let P 2k(pr) −→ X be the inclusion of the bottom Moore space. We aim to show that there

is a lift

P 2k(pr)

��{{x
x

x
x

x

K // X // BS3.

The adjoint of this lift is the map asserted in the Lemma. The lift will certainly exist when

[P 2k(pr), BS3] ∼= 0.

The homotopy cofibration S2k−1 −→ P 2k(pr) −→ S2k induces an exact sequence [S2k, BS3] −→

[P 2k(pr), BS3] −→ [S2k−1, BS3]. By Lemma 4.2, the first nontrivial torsion homotopy group of BS3

occurs in dimension 2p+1. So if k ≤ p then π2k(BS3) and π2k−1(BS3) are trivial groups. Therefore,

by exactness, [P 2k+1(pr), BS3] ∼= 0, and the asserted lift exists. (Note that when k = p + 1 the

map α1 generating π2k−1(BS3) is a potential obstruction to a lift, and when k = 2p the map α2

generating π2k−1(BS3) is a potential obstruction.) �
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Lemma 4.4. Let p ≥ 5. Suppose that k is a proper divisor of p− 1 or p+ 1, but k 6= p+1
2 . If r ∈ Vk

then the composite P 4k(pr)
[ν,µ]−→ P 2k+1(pr) −→ BK is null homotopic.

Proof. Let ξ : P 2k+1(pr) −→ BK be the map in Lemma 4.3. Consider ΩP 2k+1(pr)
Ωξ−→ K. Since

P 2n+1(pr) is a suspension, the Bott-Samelson theorem implies that H∗(ΩP
2k+1(pr)) ∼= T (u2k−1, v2k)

where βr(v2k) = u2k−1. The homology statement in Lemma 4.3 implies that (Ωξ)∗ sends u2k−1, v2k

to y2k−1, x2k respectively in H∗(K) ∼= Λ(z3, y2k−1)⊗Z/pZ[x2k]. Since (Ωξ)∗ is an algebra map, this

implies that the image of (Ωξ)∗ is the subalgebra of H∗(K) generated by y2k−1 and x2k. Recall that

the map K
δ−→ X in (16) induces a projection in homology onto H∗(X) ∼= Λ(y2k−1) ⊗ Z/pZ[x2k].

Therefore the composite θ : ΩP 2n+1(pr)
Ωξ−→ K

δ−→ X has the property that θ∗ is the abelianization

of the tensor algebra.

Let N be the homotopy fibre of θ. Since θ∗ is the abelianization of the tensor algebra, the Serre

exact sequence implies that in degrees ≤ 4k− 1, H∗(N) is the kernel of θ∗. Therefore, in this degree

range, H∗(N) consists of the brackets 〈u2n−1, u2n−1〉 and 〈v2n, u2n−1〉, which are connected by a

Bockstein βr. Thus there is an inclusion of a bottom Moore space into N which gives a composite

(17) γ : P 4k−1(pr) −→ N −→ ΩP 2k+1(pr).

Now we compare γ to known elements in the group [P 4k−1(pr),ΩP 2k+1(pr)]. Consider the ho-

motopy fibration

ΩF 2k+1(pr) −→ ΩP 2k+1(pr)
Ωq−→ ΩS2k+1.

Applying the functor [P 4k−1(pr), ] to this fibration we obtain an exact sequence

(18) [P 4k−1(pr),ΩF 2k+1(pr)] −→ [P 4k−1(pr),ΩP 2k+1(pr)] −→ [P 4k−1(pr),ΩS2k+1].

By Lemma 4.2, the hypothesis that k 6= p − 1 implies that [P 4k−1(pr),ΩS2k+1] ∼= 0. On the other

hand, by (4) there is a homotopy equvalence

ΩF 2k+1(pr) ' S2k−1 × ΩR2k+1(pr)×
∞∏
j=1

S2kpj−1{pr+1}.

Recall that R2k+1(pr) is a wedge of mod-pr Moore spaces mapping to P 2k+1(pr) by a wedge sum

of mod-pr Whitehead products. In particular, by [CMN1], the least dimensional Moore space in

R2k+1(pr) is P 4k(pr), which maps to P 2k+1(pr) by [ν, µ], and for p ≥ 5 the second least dimensional

Moore space in R2k+1(pr) is P 6k(pr). This, together with the fact that each factor S2kpj−1{pr+1}

is more than (4k − 1)-connected, implies that

[P 4k−1(pr),ΩF 2k+1(pr)] ∼= [P 4k−1(pr), S2k−1 × ΩP 4k(pr)].

Lemma 4.2 and the hypotheses that k 6= p ensures that [P 4k−1(pr), S2k−1] ∼= 0. Since the suspension

map P 4k−1(pr)
E−→ ΩP 4k(pr) is (8k−6)-connected, which is greater than the dimension of P 4k−1(pr),
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it induces an isomorphism [P 4k−1(pr), P 4k−1(pr)] ∼= [P 4k−1(pr),ΩP 4k(pr)]. Therefore

[P 4k−1(pr),ΩF 2k+1(pr)] ∼= [P 4k−1(pr), P 4k−1(pr)] ∼= Z/prZ

where the generator of the group [P 4k−1(pr), P 4k−1(pr)] is the identity map. Thus the exact se-

quence (18) simplifies to an exact sequence

(19) Z/prZ ∼= [P 4k−1(pr), P 4k−1(pr)] −→ [P 4k−1(pr),ΩP 2k+1(pr)] −→ 0.

By [CMN2], the factor ΩR2k+1(pr) of ΩF 2k+1(pr) also retracts off ΩP 2k+1(pr). Therefore there is a

retraction of [P 4k−1(pr), P 4k−1(pr)] off [P 4k−1(pr),ΩP 2k+1(pr)], implying that there is an isomor-

phism

[P 4k−1(pr),ΩP 2k+1(pr)] ∼= [P 4k−1(pr), P 4k−1(pr)] ∼= Z/prZ.

Hence if k /∈ {p − 1, p} then [P 4k−1(pr),ΩP 2k+1(pr)] is isomorphic to Z/prZ, and is generated by

the adjoint of the mod-pr Whitehead product [ν, µ].

The adjoint of [ν, µ] is equivalently described as the mod-pr Samelson product 〈ν̃, µ̃〉, where ν̃, µ̃

are the adjoints of ν, µ respectively. Thus 〈ν̃, µ̃〉 generates [P 4k−1(pr),ΩP 2k+1(pr)] ∼= Z/prZ. In

particular, the map γ in (17) must be some multiple of 〈ν̃, µ̃〉. To see which multiple, we look at

homology. In degree 4k − 1 in mod-p homology, the mod-pr Samelson product 〈ν̃, µ̃〉 has image

〈v2k, u2k−1〉. Recall that the composite γ : P 4k−1(pr) −→M −→ ΩP 2k+1(pr) has the same image in

homology. Thus, as γ is a multiple of 〈ν̃, µ̃〉, we must have γ ' u · 〈ν̃, µ̃〉 for some unit u in Z/prZ.

Consequently, as γ factors through the homotopy fibre of θ, the map 〈ν̃, µ̃〉 also factors through

the homotopy fibre of θ. Therefore the composite P 4k−1(pr)
〈ν̃,µ̃〉−→ ΩP 2k+1(pr)

Ωξ−→ K
δ−→ X is

null homotopic. Hence Ωξ ◦ 〈ν̃, µ̃〉 lifts to the homotopy fibre of δ, which is S3. By Lemma 4.2, if

k /∈ {p+1
2 , p} then [P 4k−1(pr), S3] ∼= 0, implying that Ωξ ◦ 〈ν̃, µ̃〉 is null homotopic. Taking adjoints,

this is equivalent to saying that ξ ◦ [ν, µ] is null homotopic. Summarizing, we have shown that if

k /∈ {p+1
2 , p− 1, p} then ξ ◦ [ν, µ] is null homotopic, as asserted. �

The case when k = p+1
2 can be recovered using a special argument.

Lemma 4.5. Let p ≥ 5. If k = p+1
2 and r ∈ Vk then the composite P 4k(pr)

[ν,µ]−→ P 2k+1(pr) −→ BK

is null homotopic.

Proof. The potential obstruction in the case when k = p+1
2 in the proof of Lemma 4.4 came about

from the composite P 2p+1(pr)
〈ν̃,µ̃〉−→ ΩP 2k+1(pr)

Ωξ−→ K lifting to a map P 2p+1(pr) −→ S3 which

could be an extension of the homotopy class α1 : S2p −→ S3 that generates π2p(S
3) ∼= Z/pZ. Assume
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that this occurs. Taking adjoints, we obtain a homotopy commutative diagram

(20)

P 2p+2(pr)

[ν,µ]

��
α1

�������������������

P 2k+1(pr)

ξ

��
BS3 // BK

where α1 is an extension of the adjoint of α1. Observe that Σ[ν, µ] is null homotopic since the

suspension of any mod-pr Whitehead product is null homotopic. Therefore if we restrict (20) to S2p+1

and suspend we obtain an extension

S2p+2
α1 // S5 //

��

A

���
�
�

ζ

ΣBS3 // ΣBK

for some map ζ, where A is the homotopy cofibre of α1. The class α1 is detected in mod-p cohomology

by the Steenrod operation P1, so the two-cell complex A has its bottom cell attached to its top cell

by P1. The homotopy commutativity of the square in the preceding diagram implies that ζ∗ is

an isomorphism in degree 5. Therefore, as P1 is nonzero on H5(A), it must also be nonzero on

H5(ΣBK). By stability, this implies that it is nontrivial in H4(BK). As the generator of H4(BK)

is the transgression of the generator in H3(K) in the cohomology Serre spectral sequence for the

path-loop fibration K −→ ∗ −→ BK, and as Steenrod operations commute with the transgression,

we obtain that P1 is nontrivial on H3(K).

On the other hand, as k = p+1
2 , we have H∗(K) ∼= Λ(z3, yp)⊗Z/pZ[xp+1], and as this coalgebra is

primitively generated, we can dualize to obtain an algebra isomorphism H∗(K) ∼= Λ(z̄3, ȳp)⊗Γ[x̄p+1]

where z̄3, ȳp, x̄p+1 are dual to z3, yp, xp+1 and Γ[ ] is the divided power algebra. The only element

in degree 2p + 1 in this algebra is yp ∪ x2p+1. The nontriviality of P1 on H3(K) therefore implies

that P1(z3) = u · (yp ∪ xp+1) for some unit u ∈ Z/pZ. But P1 sends primitives to primitives, giving

a contradiction. Thus it cannot have been the case that Ωξ ◦ 〈ν̃, µ̃〉 lifted nontrivially to S3. Thus

Ωξ ◦ 〈ν̃, µ̃〉 is null homotopic, as required. �

Let k < p − 1. Start with the map f : P 2k+1(pr) −→ BK in Lemma 4.3. By Lemmas 4.4

and 4.5, the hypotheses of Proposition 3.7 are satisfied. So there is a map ΩT 2k+1(pr) −→ ΩK

whose restriction to the bottom Moore space is the double adjoint of f . The composite

g : ΩT 2k+1(pr) −→ ΩK −→ ΩX
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therefore induces an isomorphism in the least nonvanishing degree in homology. We claim that this

is enough to show that g induces an isomorphism in homology in all degrees, and so is a homotopy

equivalence. This is an atomicity style argument, and requires a preliminary lemma.

Lemma 4.6. There is an abstract isomorphism of vector spaces H∗(ΩT
2k+1(pr)) ∼= H∗(ΩX).

Proof. Since H∗(T
2k+1(pr)) ∼= H∗(X) as coalgebras, there is an induced isomorphism between cobar

constructions. This implies that there is an isomorphism between the outputs of the homology

Eilenberg-Moore spectral sequences for the path-loop fibrations ΩA −→ ∗ −→ A and ΩB −→ ∗ −→

B which converge to H∗(ΩA) and H∗(ΩB). That is, there are coalgebra isomorphisms between

the associated graded modules E0(H∗(ΩT
2k+1(pr))) and E0(H∗(ΩX)). As we are taking homology

with coefficients in a field, this implies that there is a vector space isomorphism H∗(ΩT
2k+1(pr)) ∼=

H∗(ΩX). (A coalgebra isomorphism would require resolving potential extension problems, which we

do not address.) �

Proposition 4.7. If k ≥ 2 then the composite g : ΩT 2k+1(pr) −→ ΩK −→ ΩX is a homotopy

equivalence.

Proof. In general, suppose that Y is a simply-connected space and there is a self-map e : Y −→ Y .

In [Th, Lemma 2.2] it is shown that if x is an element of least nontrivial degree the kernel of e∗

then x is: (i) primitive, (ii) annihilated by all dual Steenrod operations and higher Bocksteins,

and (iii) in the image of the Hurewicz homomorphism or the mod-p Hurewicz homomorphism.

Let HMH(Y ) be the submodule of H∗(Y ) that consists of elements satisfying (i), (ii) and (iii).

The argument in [Th, Lemma 2.2] did not really require a self-map of spaces, but only a map

e′ : Y −→ Z where H∗(Y ) is known as a coalgebra over the Steenrod algebra, and H∗(Z) is abstractly

isomorphic to H∗(Y ) as vector spaces (in order to show at the appropriate moment that an injection

Hm(Y ) −→ Hm(Z) is an isomorphism). This fits our case as we have a map ΩT 2k+1(pr)
g−→ ΩX

and, by Lemma 4.6, there is an abstract isomorphism of vector spaces H∗(ΩT
2k+1(pr)) ∼= H∗(ΩX).

Let k > 2. Instead of determining HMH(ΩT 2k+1(pr)) directly, we follow [Th] by making use of

the calculation

HMH(Ω2T 2k+1(pr)) = {a2k−3}

for k > 2, where a2k−3 is a generator of H2k−3(Ω2T 2k+1(pr)) ∼= Z/pZ, the least dimensional non-

trivial homology group. Let x ∈ HMH(ΩT 2k+1(pr)) and suppose x is of degree m. As x is in the

image of the Hurewicz homomorphism there is a map h : Sm −→ ΩT 2k+1(pr) such that h∗(ιm) = x,

where ιm ∈ Hm(Sm) represents a generator. Let h̃ : Sm−1 −→ Ω2T 2k+1(pr) be the adjoint of h. We

claim that h̃(ιm−1) ∈ HMH(Ω2T 2k+1(pr)). By definition, h̃∗(ιm−1) is in the image of the Hurewicz

homomorphism (although we have not yet checked if it is nonzero), and as it is a Hurewicz image, it

is also primitive and is annihilated by all dual Steenrod operations. It remains to show that h̃(ιm−1)
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is nonzero. Consider the composite Sm
Σh̃−→ ΣΩ2T 2k+1(pr)

ev−→ ΩT 2k+1(pr), where ev is the canoni-

cal evaluation map. This composite is the adjoint of h̃, which is the map h. Therefore, as h∗(ιm) is

nonzero so is (Σh̃)∗(ιm), and hence so is h̃∗(ιm−1). The calculation HMH(Ω2T 2k+1(pr)) = {a2k−3}

therefore implies that HMH(ΩT 2k+1(pr)) = {ā2k−2}, where ā2k−2 transgresses to a2k−3 in the Serre

spectral sequence for the path-loop fibration.

Thus, for the map ΩT 2k+1(pr)
g−→ ΩX, if x ∈ Ker (g∗) is a nontrivial element of least degree

it must be a multiple of ā2k−2. But we have shown that g∗ is an isomorphism in degree 2k − 2.

Therefore Ker (g∗) = 0 and so g∗ is an injection. Since H∗(ΩX) is isomorphic to H∗(ΩT
2k+1(pr))

as vector spaces, they have identical Euler-Poincaré series, so g∗ being an injection implies that it

is an isomorphism. Hence g is a homotopy equivalence by Whitehead’s Theorem.

The k = 2 case is different in that HMH(Ω2T 5(pr)) may not be just {a1}. This was dealt with

separately in [Th, Proof of Theorem 1.1], where it was noted that HMH(ΩT 5(pr)) = {ā2}. The

rest of the argument in the present proof now goes through as before. �

Finally, we prove the second main statement in the paper.

Proof of Theorem 1.2. The p-local homotopy equivalence for ΩX is given by Proposition 4.7. The

p-local homotopy decomposition for ΩK now follows since g factors through ΩK
Ωδ−→ ΩX. �
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