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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MEDICINE

Human Genetics

Doctor of Philosophy

ADVANCED MODELLING OF GENOMIC DATA

IN INFLAMMATORY BOWEL DISEASE

by Enrico Mossotto

Advances in next generation sequencing technologies allow the collection of enor-

mous volumes of genomic data on large patient cohorts. Concurrently, machine

learning algorithms are rapidly evolving and, together, these technologies repre-

sent the new frontier of research and clinical management on a path leading toward

personalised medicine.

The aims of this thesis are two. Firstly, to develop a mathematical framework

for the analysis and integration of next generation sequencing data. Secondly, to

model data from patients affected by inflammatory bowel disease (IBD), a common

complex autoimmune condition with increasing incidence worldwide, by applying

machine learning methodologies to clinical and transformed genomic data.

The analyses presented in this thesis are largely based on a cohort of paediatric

IBD patients for which clinical data, immunology and whole exome sequencing

data were available.

This research illustrates a supervised and unsupervised machine learning approach

modelling histology and endoscopy data for assigning IBD patients with the correct

CD/UC subtypes with superior accuracy.

Stratification and classification of IBD patients can be improved by layering ge-

nomic data on top of clinical evidence. This thesis also describes the development

of GenePy, a mathematical model for transforming patients genomic data into

a per-individual per-gene deleteriousness scoring system. GenePy is capable of
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modelling and implementing important biological information from whole exome

sequencing data from patient DNA. GenePy eases the analysis and interpretation

of genomic data on an individual basis and concomitantly allows the comparison

of genetic profiles across patients. GenePy gene scores can be further combined

according to molecular processes or pathways.

This work describes eight novel immuno-genomic IBD sybtypes observed on a

small cohort for which immune cytokine signalling and response cascades have

been specifically profiled and GenePy scores obtained.

In addition, the GenePy algorithm is applied using both supervised and unsuper-

vised approaches to classify IBD subtypes and to explore alternative disease clas-

sifications that discriminate molecular clinical subtypes that are clinically relevant

for treatment and prognosis. This thesis reports the current highest performance

in discriminating IBD subtypes using exome sequencing data and five novel ge-

nomic patient strata defined by different mutational burden of adaptive immune

system genes.

This work demonstrates the power of integrating 21st century high throughput

digital data in machine learning frameworks and the potential to obtain clinically

relevant strata for bench to bedside improvements in patient quality of life.
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Chapter 1

Introduction

In this chapter I will cover the current state of the art useful to ease the inter-

pretation of this thesis. The first section discusses functioning and features of

next-generation sequencing technologies, then a second brief section introduces

basic concepts of machine learning and their applications to genomics. The last

section introduces inflammatory bowel disease, its forms, classification and genet-

ics.

1.1 The post-genomic era

Genome sequencing has became trivial and is increasingly replacing many classical

genetic approaches, defining a new epoch known as post-genomic era. More than

10 years have passed since the introduction of the first next-generation sequencing

(NGS) techniques and the ability to sequence life forms constantly increased. NGS

is one of the last achievements in sequencing technology commenced by Sanger

[161] in 1977. With the advent of NGS the amount of collectable data by sequenc-

ing [13] quickly jumped from hundreds of mega bases to over one thousand billion

bases (>1 tera bases) (Figure 1.1). Unfortunately the interpretation of these data

did not experienced the same growth leaving a substantial gap between available

data and our understanding of it. A similar escalation was also observed in other
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Figure 1.1: Historical trends in storage prices versus DNA sequencing costs and year. Image adapted
from Stein et al. [178]

research branches generating a group of molecular data called ”omics”. Genomics,

transcriptomics, proteomics, metabolomics, microbiomics, pharmacogenomics and

so on, are the new frontiers of medicine and biology. Sensitive integration of all

these data will provide a more accurate view of the mechanisms behind human

traits and diseases. The application of such combined and extensive knowledge to

medicine, known as precision medicine [60], aims to deliver targeted treatments

which will results in a better and more efficient patient management.

1.1.1 Next generation sequencing

The advent of whole genome sequencing and whole exome sequencing made us

aware that even the smallest and most subtle variation in our deoxyribonucleic

acid sequence (DNA) may result in an adverse clinical manifestation. The main

reason for investigating the human genome resides in the belief that it might

hold most of the answers to almost every personal normal or pathogenic trait.

As a consequence of NGS high-throughput we are now able to detect mutations

within the human genome allowing more accurate investigations. Unfortunately,
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Figure 1.2: Gene structure. Coloured barrels represent gene exons.

the interpretation of these biological data is challenging and requires advanced

analytical tools.

The human genome

The human genome is a long sequence (3.2 · 109) of repeated nitrogenous bases

(nucleotides): adenine (A), guanine (G), thymine (T) and cytosine (C). This se-

quence is organised in 23 pairs of chromosomes and presents regions with a very

specific roles and importance. One of the possible ways to organise the human

genome is by the function of specific genomic region. DNA sequences used to

generate proteins are defined as genes. Genes are as well divided in coding and

non-coding regions that are respectively called exons and introns (Figure 1.2). The

collection of all coding parts of the human genome is known as exome. When the

cell triggers the production of a particular protein, the relative gene is transcribed

in order to synthesise a messenger RNA (ribonucleic acid) sequence. RNA is a

polymeric molecule similar to DNA that directs the synthesis of a specific protein.

After the transcription, introns (non coding parts within a gene) are removed from

the mRNA sequence using a mechanism called splicing. Once introns are removed,

the protein synthesis begins and dedicated machineries (ribosomes) translate the

mRNA sequence into an amino acid sequence. This process is known as translation

whereby triplets of nucleotides are translated into amino acids, the fundamental

elements of a protein.

Only 2 percent of the human genome codes for proteins while the remaining 98

percent is involved in regulatory or spacing functions (e.g. telomers) [21]. In the

late seventies, the attention was focused on coding regions and the remaining DNA

3



was labelled as ”junk DNA” since it was apparently not involved in any function

[58]. With the advent of sequencing technologies, regulatory regions, non-coding

RNAs and other functional sequences were discovered in this non-coding part of

the genome renouncing this previous label.

The availability of next generation sequencing techniques revealed the complexity

of the human genome and made possible to generate a map of the human reference

genome. The reference genome is not representative of a single individual but is

made by collecting consensus sequences from hundreds of people. The better

the NGS technique, higher the number of sequenced individuals, more accurate

the reference genome [130]. Comparing any human genome to the reference [71],

about 4 million discordant nucleotidic bases [91] can be detected using whole

genome sequencing and around 25,000 [36] with whole exome sequencing. While

whole exome sequencing uses some specific tools to capture only exonic sequences,

whole genome sequencing can also map mutations within non-coding regions of

the genome. Different types of mutations can be found in a genome and are

classified into small and large scale variations. While large-scale mutations can

change the structure of entire chromosomes, small-scale mutations involve a small

number of nucleotides. Single nucleotide variation (SNV) is the term used to refer

to mutations that afflict only one nucleotide and depending on the effect on the

coding region it is possible to define the following types:

• Synonymous single nucleotide variation (SNV): a single base in the genome

is mutated but does not affect the protein translation;

• Non-synonymous SNV: a different amino acid is coded and the protein se-

quence is altered;

• Stop gain SNV: the mutated base results in a premature stop of the amino

acid sequence synthesis;

• Stop loss SNV: the mutated base results in a missing termination of the

protein synthesis;
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• Frameshift indel: the open reading frame (the way bases are read in triplets)

is shifted due to new base(s) insertion or deletion;

• Non-frameshift indel: the insertion or deletion of bases does not change the

open reading frame;

• Splicing-affecting SNV: the mutation falls within a region important for a

correct splicing of introns and exons.

A specific nomenclature is also used to describe the frequency of a mutation in

the human population. A mutation with a frequency greater than 1% among the

population is called single nucleotide polymophism (SNP). Rare variant, instead,

are defined as mutations that occur in less than 5% of a population. The Interna-

tional HapMap Project [57], is the reference consortium responsible for mapping

human genetic variation.

As a consequence of the multitude of sequencing projects, it is now known that

some regions of the genome are formed by a precise repetition of nucleotides (mo-

tifs). The alteration of the number of these repetitions represent a particular type

of mutation called copy number variation (CNV). Unfortunately, the identification

of copy number variations (CNVs) through exome sequencing is still a challenging

task [81]. The limitation of exome sequencing in detecting CNVs resides in the

insufficient length of the DNA fragments that are sequenced, conversely, whole

genome sequencing is typically based on longer fragments allowing a precise de-

tection of CNVs.

Humans are diploid organisms which means that every individual carry two copies

of the same chromosome, paternal and maternal, and variants may be observed in

one or both copies. If the mutation is observed in both chromosomes, the genotype

is homozygous, while if the mutation is only in one chromosome, the genotype is

heterozygous.
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Figure 1.3: Whole exome sequencing workflow. Image adapted from Bamshad et al. [15].

Whole Exome Sequencing

Whole exome sequencing (WES) is a next-generation sequencing technique that

combines a powerful high-throughput approach and enrichment for selected coding

regions of the genome. Steps required in a whole exome sequencing approach

(Figure 1.3) are similar to ones performed during whole genome sequencing which

consist of:

1. Library preparation;

2. Amplification and Enrichment;

3. Sequencing;

4. Data Analysis.

In the library preparation step, genomic DNA is fragmented to dimensions deter-

mined by the sequencing platform and also by the type of readings that is willing to

produce. After the DNA fragmentation, linker sequences are bound to fragments

with two possible approaches: single or paired end (Figure 1.4). With single-end

6



Figure 1.4: Single and paired end configuration. Image adapted from Zhernakova et al.[205]

linkers, only one end of the fragment is linked to a tag sequence and therefore

sequenced along only one direction. With a paired-end approach, following the

DNA shearing process, fragments with particular known length are selected and

then linked to tags at both ends. With paired end tags both ends of a fragment

are sequenced and, knowing the distance between tags increases the efficiency in

mapping fragments on the correct genomic location of the reference genome. An

accurate selection and shearing of fragments to the correct size is crucial for op-

timal mapping. Whole genome sequencing and whole exome sequencing usually

requires different fragment sizes that are respectively 400 and 200 bases in length

(Figure 1.5). If the distribution of insert sizes deviates too much from a normal

distribution it will likely introduce bias in the alignment process. Observing figure

1.4 it is quite evident that in both cases (single or paired ends) the overlap of

reads makes the sequencing process redundant. Indeed, the redundant alignment

of multiple reads to the same genomic location increases the confidence and the

quality of sequencing. The number of overlapping reads across the genome gen-

erates a measure that is known as coverage. In order to ensure that sequencing

data reflect the true genomic sequence, the coverage must range between 10 to 30

reads per locus, with the latter representing the minimal requirement for clinical

applications [182].

Following tags ligation, other adapters are linked to fragments providing the start-

ing points for the amplification step. In the amplification step a polymerase chain

reaction (PCR) is performed in order to increase the number of fragments that

will be then sequenced, resulting in an increased signal strength.
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Figure 1.5: Comparison of insert size distribution between WGS and WES.

Following the PCR, the sequencing step begins. There are several methods for

sequencing the DNA, however it is possible to group them in three classes: (a) se-

quencing by synthesis; (b) sequencing by ligation; (c) other minor methods (py-

rosequencing, nanopore, ect...) In a sequencing by synthesis approach each DNA

fragment is read by synthesising a complementary fragment using fluorescent modi-

fied nucleotides and a polymerase enzyme. Each fluorescent nucleotide corresponds

to a different colour, by observing the colour sequence it is possible to determine

the nucleotide sequence. Instead of synthesising nucleotides, the sequencing by

ligation approach uses custom small nucleotidic (oligonucleotides) sequences and

a ligase enzyme. Each oligonucleotide has a fluorescent element which is read after

the ligation to the fragment.

Regardless of the method used, the functioning mechanism of the most common

sequencing platforms consist of reading a different light signal (wave length) when-

ever a particular base is observed. However, some new platforms (e.g. Ion Torrent

and Ion Proton) escape this canonical detection method by instead observing the

ions released during the sequencing by synthesis process.

After completing the sequencing step, a file containing all the observed bases

and the relative per base quality (the confidence of the reading), is obtained and

ready to be analysed with bioinformatics tools. Depending on the sequencing
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technology, files containing sequencing data may have different format. However,

the most common FASTQ format [40] is becoming the standard output chosen by

most companies. This format is made of 4 lines per each sequenced read:

1. read sequence ID preceded by a “@” character;

2. raw sequence in letters;

3. “+” as spacing character for optional notes;

4. quality values for sequence in line 2;

Figure 1.6: Example of a 4 line FASTQ format.

The quality values are expressed through ASCII characters, each of which indicate

a specific probability that the corresponding base call is incorrect. This score is

also known as Phred quality score and the encoding character/score depends on

the sequencing technology.

The aim of exome sequencing is to target and sequence specific regions coding for

proteins [16], reducing both the volume of output data and analytical costs. In

order to collect all the coding parts of the genome, several methods have been

proposed [117]. The most common method applied to preferentially select exons

is the in-solution enrichment. This approach uses a pool of custom probes that

are hybridised in solution to the fragmented genomic DNA. Then, using capturing

beads that recognise a specific element on the probes, exonic region are retained

while non coding regions are washed out. Once the beads have been removed,

coding fragments can be sequenced with the process just described (Figure 1.3).

1.2 Machine learning algorithms

When dealing with complexity, some problems cannot be solved only through clas-

sical experimental approaches. Thus, we need to appeal to other technologies such
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as artificial intelligence (AI), software capable of analysing extensive datasets and

to adapt their behaviour in order to keep performing properly as the data changes.

AI, like sequencing, moved its first steps more than 80 years ago and was founded

as an academic discipline in 1956 at the Dartmouth Summer Research Project on

Artificial Intelligence [120]. Machine learning evolved from this field providing a

new set of statistical and analytical tools for the analysis of complex data. Early

machine learning algorithms date back to the early sixties when giant steps in

artificial intelligence and computing were made. The aim of these algorithms is

to find patterns within data and once found use those rules to predict or classify

new data. Machine learning algorithms belong to data mining and computational

statistics, fields where classic statistical methods meet the complex problem of

extracting information from oversized dataset, also known as ”Big Data”. These

algorithms were proved to be incredibly powerful when dealing with complex data,

where hundreds of thousands variables have to be analysed simultaneously. Basic

statistical tests could be still applied, however they have been overtaken in terms

of speed and complexity. Due to their ability to work with complex dataset, made

of multiple levels of information, machine learning algorithms were widely applied

in biology and more generally in scientific research to extract patterns and to pre-

dict outcomes. Thanks to this polyhedric behaviour, many different algorithms

have been developed, each of them with specific strengths and weaknesses. So

far, the ultimate model that could be successfully applied in any scenario and on

any type of data does not exist. For this reason, when approaching a machine

learning problem it is recommended to test different models, acknowledging that

it is impossible to predict which algorithm will perform optimally. Coupling this

technologies with NGS can lead to new powerful ways to analyse complex data

extracting more intelligible information.

The role of machine learning algorithms and, more in general, statistical learning

is to find patterns in observed data and infer or predict new data. Considering

a dataset made of hundreds of samples, represented by a multitude of variables,

statistical learning tries to understand and predict mechanisms that correlate all

those variables with the observed outcomes. The correlation, can be calculated
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with different approaches whereby the first historical method formulated was de-

fined by C.F. Gauss in 1795 as the method of least squares and then published by

A.E. Legendre [180]. This approach was the first modern method for observing

trends in big dataset. This revolutionary concept was based on the idea of search-

ing for a function capable of describing the observed data and therefore used to

predict future events (Figure 1.7). This is still today one of the pillars of machine

learning algorithms. However, finding the perfect function that fits perfectly the

observed data without any error, is impossible as infinite number of equations

should be tested. The limits occurring when fitting a function to real data can be

described by two types of errors: reducible error and irreducible error. While the

function can be adjusted to decrease the reducible error choosing better parame-

ters, it is impossible to lower the irreducible error. This limit is the reflection of

the lack of knowledge about the dataset represented by unmeasured variables or

variables that can not be physically measured. Suppose to observe a an output

Y and a set of variables X1, X2, ..., Xn for each observation in a database. The

aim of machine learning is to describe the relationship between Y and X using a

function f . This can be generally written as:

Y = f(X) + ε (1.1)

Here ε denotes the error that separates the function f from the perfect represen-

tation of the outcomes Y . A function with the mean of all the errors equal to zero

has a perfect fitness.

The reasons of the interest in estimating a correct function are two: prediction and

inference. In both cases the search space for functions capable of describing data

is infinitely large. This concept can be expressed as the search of f̂ that produces

a set of predicted outcomes Ŷ as close as possible to the set of true outcomes Y .

Ŷ = f̂(X) with Ŷ ≈ Y (1.2)

The difference between prediction and inference is in the knowledge that we are

trying to obtain from the model. When predicting an outcome, there is more
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Figure 1.7: Function fitting. Example of fitting the correct function to the observed data. The red dots are
observed incomes with respect to the years of education. The dataset was simulated, thus the best function (blue
line) was known. Black lines represent the error ε. Figure adapted from James et al.[76].

interest in obtaining the right prediction rather than understanding the mechanism

that allowed the result. Conversely, the objective of inference approaches consist

of achieving a higher understanding of the role of variables and their relationship

to the outcome. In the first case, f̂ can be treated as a black box while in the

latter case, it is important to understand the functioning of it.

These concepts only describe the statistical side of a machine learning approach

to data, whereas the rules for improving the fitness (learning) represent the core

aspect of ML. By definition, a learning process is an automatic or semi automatic

procedure in which the algorithm corrects its outputs, without external supervision

or knowledge. Learning does not only refer to a memorizing process but it also

involves plasticity, the ability to adapt to different inputs and then giving the best

possible answer. As stated by I. H. Witten and E. Frank [200]:

‘Things learn when they change their behaviour in a way that makes them

perform better in the future’

A learning process is a set of rules that the algorithm continuously updates as

it receives more data, the more training data the better the algorithm will be at

learning.
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1.2.1 Types of learning

The large variety of machine learning algorithms is a direct reflection of the broad

applicability of such algorithms. ML algorithms can be divided in two broad

classes: supervised learning, when the data we would like to model is labelled;

and unsupervised learning when no labels are given and the model has to find an

optimal clustering system.

Supervised learning Most of the background so far discussed refers to super-

vised algorithms which have a simpler interpretation and better understanding of

the tasks that these algorithms try to accomplish. Supervised learning algorithms

are principally devoted to prediction and their learning process is based on the

comparison of the predicted labels to the provided one. This imply that input

data come with a parallel information about true output of each element. Many

algorithms have been developed to solve prediction and inference problems ranging

from the classical linear regression to more modern methods like support vector

machines, decisional trees and artificial neural networks. Supervised learning al-

gorithms have been broadly applied to many fields including biology [171] and

health care [114] [129]. The interest of these fields in machine learning approaches

is recent and quickly scaled with the discovery of new high-throughput technolo-

gies delivering enormous amount of complex data. Correct predictions in biology

and in healthcare could help scientists to treat patients better and quicker.

Unsupervised learning Unsupervised learning approaches are more challeng-

ing and harder to interpret. Since the real correct output of samples in the dataset

is not known, the algorithm tries to represent and reduce the complexity of data

by observing relationships between samples and variables. This process is known

as cluster analysis, or clustering. Different unsupervised algorithms explore differ-

ent mathematical approaches to the same problem. Using unsupervised learning

algorithms made possible observing clusters in complex data like genome-wide

polymorphism data. Figure 1.8 provides an example of the power of these mod-
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Figure 1.8: PCA clusters ethnic groups.Clustering of eight European populations using all autosomal SNPs.
Figure adapted from Li et al.[107]

els in the identification of different ethnic groups using frequent single nucleotide

variants (SNPs) [107]. In this model, the position of an individual is determined

by the scores calculated by a principal component analysis (PCA) algorithm using

more then 650,000 common SNPs. Clusters correlates with the ethnicity of the

individuals and are highlighted with different colours.

1.2.2 Data sets and model validation

Learning and testing Data are the central elements of a machine learning anal-

ysis and the efficiency in extracting information might depends on data quality.

”Garbage in, garbage out” is a common notion in machine learning to encourage

people avoiding the analysis of faulty or not refined data in order to prevent ob-

taining results that are not reflecting the truth. Dataset preparation is therefore a

fundamental step of any analysis. Depending on the selected method (supervised

or unsupervised) the whole dataset bay be split in smaller partitions that will be
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used during different steps of the machine learning approach. Learning and test-

ing subsets are two fundamental partitions for a supervised approach. Using the

learning subset, supervised methods fit data to identify a function optimally rep-

resenting the input (fitting or learning). The algorithm ends the learning process

after reaching the highest possible accuracy or after an arbitrary number of test-

and-error corrections. Subsequently, the accuracy obtained during the learning

process directly reflects algorithm’s performance on fitting that specific dataset.

In order to assess whether the model is capable to generalise its prediction over

new data, a second step of validation is needed. Such validation is performed over

the testing subset of the original dataset that was not used for training the model.

If the starting database was too small to be divided into smaller subsets, the model

can be still verified using a additional unseen data or validation techniques that

involve different ways of testing during the learning step. On the other hand, un-

supervised methods do not require labelled data and there is no prior knowledge

to be used to verify the predicted output.

Resampling methods Fitting a machine learning model is usually the key step

that determines whether the model will produce useful predictions or not. Among

the large number of variables that may influence the model performance, vari-

ability of input data is the most important. In order to train a model that will

correctly generalise on new data, many resampling methods have been proposed.

Resampling methods consist of iterative fitting and testing on subsets of the orig-

inal dataset. This approach is solid from a statistical point of view, however it

is also computationally expensive since it entails fitting the model several times.

Considering the advantages in terms of performance obtained by investing time

and computational power, resampling methods are essential tools for any machine

learning approach. Two of the most used methods are cross-validation and boot-

strap. These cross-validation approaches will be better covered in the following

chapter.
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1.2.3 Feature selection

In ML approaches features are variables that can be used by an algorithm to make

predictions or inference. Features can differ depending on the dataset used or on

the algorithm applied. For example, when applying machine learning to clinical

datasets, features are usually binary (0/1) variables that tells whether an individ-

ual have been treated with a particular drug or not. In some other cases, features

can be continuous or discrete values. Not having limitations on the input data

format, variables such blood test results, clinical history, genomic traits and many

others, can be simultaneously implemented in ML models. This powerful adap-

tation to various inputs made machine learning algorithms perfect for biological

problems, where multiple and different features have to be modelled at the same

time. However, even if the variety of features offers a precise and detailed descrip-

tion of data, machine learning algorithms have been proved to perform better when

provided with a pruned and selected number of features. The improvement in per-

formance is a direct consequence of removing those features that were bringing no

information other than noise. This noise can be attributed to multiple factors such

as batch effect, human errors and random noise. This pruning process removes

sources of meaningless variation from raw data and unmasks potential underlining

biological patterns.

In ML approaches, features are usually implemented as dimensions although not

all algorithms scales well to high-dimensional data, leading to exponential increase

in computational time and biased data distribution over the space. This limit is

called curse of dimensionality [20] and depends mainly on the algorithm used.

The most important effect of curse dimensionality on data is the over spreading

of data into many different space dimensions, nullifying any chance of observing

patterns or cluster of similar objects. This problem does not only affect machine

learning approaches but is also observed in any data analysis approach including

database organisation, artificial intelligence and combinatorics. In machine learn-

ing approaches the effect of this problem, called the Hughes effect [141], results in

the need of an enormous amount of training data to observe meaningful patterns.
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With a fixed number of training examples the prediction power declines as the

number of features increases. Whilst this limitation is not of particular concern

for classification and regression problems, it represent a major issue in density

prediction approaches. Several algorithms were developed in order to overcome

the curse of dimensionality. A reduction/pruning of high-dimensional data can

be performed through principal component analysis, multidimensional scaling or

other algorithms that reduce the number of features by applying statistical tests.

In machine learning, the ideal ratio between training examples and feature has

been empirically derived and is usually around 5 examples per feature [176], infor-

mally named “5 to 1 rule”. However, due to the nature of biological ’omics data,

it is rare to observe applications following this empirical rule.

1.3 Machine learning applications to genomics

With the increased volume of biological data, machine learning (ML) is increas-

ingly applied as a powerful tool for the analysis and interpretation of ”Big Data”.

Its application ranges across different areas of biology such as cancer research [193]

[31], drug discovery [109] [105] and genomics [125] [24] [118]. One of the first ap-

plication of machine learning to biology dates back to 1986 with the work from

Klein on predicting the secondary structure of proteins [89].

The ability of machine learning algorithms to look simultaneously at several in-

terdependent variables make them appropriate for the description of biological

systems, complex diseases and patient stratification. In order to better describe

these aspects of research, it is important to collect longitudinal data using differ-

ent techniques. Thanks to better technologies for collecting ’omics data (genomics,

transcriptomics, proteomics, metabolomics, etc...), large longitudinal datasets rep-

resenting different aspects of a disease, a patient’s condition or a biological sample

are becoming more accessible.

17



Prediction of genomic elements Machine learning algorithms have been ex-

tensively applied in genomics, in particular with the scope of predict and identify

of protein coding regions in the human genome. Salzberg et al. [160] trained a

tree classifier for the identification of new genes. This algorithm was trained and

tested on known coding regions from the GenBank database and used 21 coding

measures as features, some of which were nested. The overall accuracy in detecting

coding and noncoding regions was 83.7% on DNA sequences 108bp long.

Machine learning algorithms have also been applied to detect splicing regions [33]

and to predict splicing products [203]. A Bayesian deep learning model was trained

to score the impact of mutations on splicing events. The resulting model was able

to determine the deleteriousness of SNVs and to predict unexpected aberrant splic-

ing leading to clinical conditions with a 94% accuracy (tested on causal splicing

variants in spinal muscular atrophy and colorectal cancer genes).

RNA structure [24] [87] and expression quantitative trait loci (eQTL) have been

also investigated using machine learning algorithms. Ackermann [2] proposed a

model for a quicker identification of eQTL regions that can link genotypes and

traits. In this supervised approach, random forest and LASSO machine learning

algorithms were coupled performing better not only than their standalone version

but also compared with other existing models.

Since 2010 the Critical Assessment of Genome Interpretation (CAGI) associa-

tion has organised competitions for interpreting genomic data [28]. Whole exome

sequencing data from several clinical conditions were collected and provided to

competitors. The aim of CAGI competitions ranges from the discrimination of

healthy and affected individuals to the identification of disease subtypes using

WES data or novel genomic elements. While the identification of causal variants

in individuals affected by rare diseases using WES is well established in clinics,

the interpretation of large scale WES data in complex diseases (although less com-

putational demanding than whole genome data) is still challenging. Using WES

from hundreds of individuals, new computational and methodological limitations

arise. For this reason, only few examples of WES data modelling using machine

18



learning models are available.

Merging clinical and genomic data Although machine learning approaches

to genomic or clinical data are increasing in number, few studies apply ML using

both type data. This approach requires complete and well curated clinical data,

where for each individual, both clinical and genomic data are available. A recent

study by Sio-Wee Chang et al. [34] provided a prognostic tool for oral cancer using

both clinicopathological and genomic markers. The algorithm was challenged to

predict the survival chances over three years for affected patients. Since the num-

ber of features did not fit the ideal 5:1 ratio, different machine learning algorithms

were coupled with a range of feature selection algorithms. The starting dataset

was composed of 31 oral cancer patients with almost complete clinicopathological

description including social demographic data, clinical data and pathological data.

Alongside this kind of information, immunohistochemistry was used to assess the

activity of two genomic features, respectively TP53 and TP63 genes. The choice

of this type of genomic data was made following literature search for the most

commonly correlated genes with the oral cancer phenotype. The TP53 and TP63

genes are two of the most studied genes in cancer science since their role in the

cell is to regulate the cell cycle and proliferation. They both fall into the category

of tumour suppressor gene and negatively regulate the cell division by controlling

a set of genes required for this process. Firstly, all the variables were converted

to numeric values allowing an easier computation. In this study five feature selec-

tion methods were used: (a) Pearson’s correlation coefficient (CC); (b) Relief-F;

(c) genetic algorithm (GA); (d) CC combined with GA and (e) Relief-F combined

with GA as hybrid approach. Using feature subsets selected by each of these ap-

proaches, 4 machine learning algorithms were taught: ANFIS [78], artificial neural

network (ANN), SVM and logistic regression. Results indicated an overall im-

provement in the prediction accuracy when genetic variables are included in the

feature subset regardless of the ML algorithm used. These results are just some

few examples of the improvement that genomic data can provide in a classification

problems.
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1.4 Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is an umbrella term for the common gastroin-

testinal auto-immune diseases ulcerative colitis (UC) and Crohn’s disease (CD).

In 2013 the annual incidence of IBD in the United Kingdom was calculated as ap-

proximately 400 new cases for every 100,000 individuals [135]. As a consequence,

the cost of IBD on health-care is expected to grow exponentially leading to in-

creasing managing problems [85]. For these reasons it is important to understand

the underlying mechanisms of this disease, in order to deliver a more targeted and

effective treatment on a per-patient per-episode basis. Here, personalised medicine

will not only be beneficial to patients but will also produce a positive economic

impact on health-care systems.

Diagnosing IBD is difficult, the aetiology is not fully understood and the process

for selecting the most correct treatment is protocol led but controversial partic-

ularly for complex cases . The main attribute of an inflammatory bowel disease

phenotype is the chronic inflammation of the gastrointestinal (GI) trait, with lo-

calisation and severity being major factors in disease clinical presentation, disease

classification and treatment decisions. Symptoms of IBD include diarrhoea, fever,

abdominal pain, blood in the stools and weight loss [149]. Besides their medical

relevance, symptoms of IBD have alters the normal social and working life of af-

fected individuals, leading to a considerably lower the quality of life, higher health

care, psychological and educational impact.

IBD subtypes, Crohn’s disease (CD) and ulcerative colitis (UC), are distinguished

though endoscopic and histology examinations. Endoscopic investigation consist

in a macroscopic observation of the GI trait without requiring the collection of

specimens and represents the standard examination for diagnosing a suspected

IBD case. Unfortunately, it is not always possible to assign a diagnosis solely

on endoscopic evidence and, therefore, a further histological exam is required.

Opposite to endoscopy, histology requires the collection of multiple specimens from

the patient intestine since it consist in a microscopic investigation of those tissue.

Samples are stained and analysed, requiring more time and consumables compared
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to an endoscopy exam. Thanks the higher resolution, histology can resolve the

diagnosis for most of those patients where endoscopy results were inconclusive.

Crohn’s disease is characterised by a non-localised inflammation of the gastroin-

testinal system, while the inflammation pattern in ulcerative colitis is more often

continuous and restricted to the colorectal trait of the intestine (Figure 1.9) [194].

Alongside the inflammation localisation, other minor and sometimes subtle traits

differentially characterise the two forms (Table 1.1). Despite these differences, clin-

ical traits does overlap and increase the uncertainty of the diagnostic process. As

mentioned before, endoscopy and histology offer two level of details, respectively

macroscopic and microscopic.

Table 1.1: Characteristic traits for UC and CD [194].

Ulcerative colitis Crohn’s disease

Endoscopy Ulcers Ulcers
Erythema Cobblestoning

Loss of vascular pattern Skip lesions
Granularity Strictures

Spontaneous bleeding Fistulas
Continuous distribution Segmental distribution

Histology Mucosal involvement Submucosal or transmural involvement
Crypt distortion Crypt distortion
Crypt abscess Crypt abscess

Goblet cell depletion Granulomas
Mucin granulomas Focal changes

Continuous distribution Discontinuous distribution

Currently there is no cure for IBD, but it is possible to treat the disease symp-

tomatically. Treatments are decided depending on the symptoms and localisation

of the disease according to the National Institute for Health and Care Excellence

guidelines. These procedures can be ordered on a invasiveness scale. The nutri-

tional approach is the least invasive and consist in changing to liquid diets based on

specific formulae. These formulae force a controlled nutrition with low-complexity

components. The nutritional approach is a valid alternative to steroid treatments

which might lead to adverse effects. If the controlled nutrition is not sufficient

to treat IBD symptoms, then a pharmacological approach is needed. Drugs used

to treat IBD target the patient’s immune system by reducing its response and,
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depending on the severity of the condition, it is possible to choose between anti-

inflammatory, antibiotics, steroids and antibody-based drugs. When drugs can

not control IBD symptoms, a surgical intervention is needed. Usually, only the

worst IBD cases undergoes surgery where the rectum and part of the colon are re-

moved. Due to the scattered inflammation pattern of CD, surgery is less effective

compared to the results obtained on UC patients.

1.4.1 Disease classification

Many classifications have been proposed in order to address clinicians to the most

correct treatment, adapting the criteria according to new scientific breakthroughs.

The first worldwide recognised criteria for classification for IBD was made in 1991

in Rome by the International Working Party and aimed to distinguish IBD sub-

types. Crohn’s disease (CD) and ulcerative colitis (UC) were the chosen classes

and were discriminated depending on the anatomical distribution of the inflamma-

tion, clinical behaviour and operative history presented by the patient. However,

the Rome classification presented different issues and was then revised in 1998 in

Vienna[56] and then in 2003 in Montreal introducing age of onset as important

variable alongside disease location and behaviour [163]. This classification was

widely adopted but still not capturing the dynamic evolution of paediatric IBD.

In order to overcome this problem, a new revision was proposed in Paris in 2011,

distinguishing early-onset (less than 18 years old at diagnosis), very-early-onset

(less than 6 years old) and infantile-onset (less than 1 years old) cases [99]. Un-

fortunately, it is not possible to take into account histological evidence due to the

time required to perform those tests and invasiveness. Therefore, the Paris clas-

sification, like the previous classification, does not rely on histological evidence,

which are frequently the key for an accurate diagnosis.

Although the classification system is continuously revised, the distinction between

the two subtypes (Crohn’s disease and ulcerative colitis) is often unclear and it is

not always possible to assign a definitive diagnosis. Such cases are often referred

as inflammatory bowel disease undetermined (IBDU). This uncertainty is mostly
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Figure 1.9: IBD inflammation patterns.Different inflammation patterns in ulcerative colitis (left) and Crohn’s
disease (right). Red highlighted areas represent possible localisation of the inflammation.

driven by the overlapping symptoms between subtypes and it is also not unusual

to observe different subtypes within the same family pedigree.

IBD is a complex disorder and multiple factors are responsible for the overall phe-

notype. Thus, the pathogenesis of IBD can not be explained only by genetics and

environmental factors may also alter the predisposition to disease in susceptible

individuals [12]. Amongst these non-genetic elements we can include diet, smok-

ing and the composition of the gastrointestinal microbiome (the bacteria naturally

present in the human intestine). Assessing the effect of environment on IBD pa-

tients is challenging and the genetic component is still the main factor for disease

characterisation. Thanks to the advent of new sequencing technologies, it was

possible to identify IBD susceptibility loci explaining the positive familial history

in 8% of IBD patients [25].
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The need of considering the age of onset in the IBD classification is explained by

the complex nature of the disease. Despite inflammatory bowel disease arises as

a consequence of both genetic and environmental factors, individuals with rare

and deleterious mutations are more likely to develop IBD in the first years of

their life. In adults, instead, the IBD phenotype may be explained by multiple

mild mutations and environmental factors. Moreover, this difference can also be

explained by the different time that adult and young individuals are exposed to

environmental hazards and unhealthy lifestyle. While adult forms of IBD is a

concerto of genetic and epigenetic causes, paediatric IBD (PIBD) is mostly driven

by genetics [194].

1.4.2 Genetics of IBD

In the last decades many disease revealed to be caused by multiple concurrent

genetic mutations and environmental factors [72] being then labelled as complex

diseases. These disorders do not have a clear inheritance pattern and escape

classical Mendelian rules of inheritance. Unlike monogenic disorders where single

genes are responsible for causing the phenotype, complex diseases are caused by

multiple genetic factors. IBD is a complex polygenic disorder where the genetic

component is accompanied by other risk factors such as immune dysregulation,

altered microbial flora and a variety of environmental variables. Since all this

elements play a role in defining the IBD phenotype, isolating the genetic variable

and identifying causative or associated elements has been historically challenging.

Despite the lack of a clear understanding of the IBD aetiology, recent studies

proved the genetic contribution to IBD being highly variable and having a direct

impact on the disease onset [139]. The most accredited model depict the IBD

phenotype as the interplay of genetics and the environment in respect to the age

of a subject. This translates to a direct correlation between disease onset and

genetics with very-early onset IBD showing the largest genetic component and the

smallest environmental factor. Conversely, with adult onset IBD presentations,

the genetic component has a minor role compared to the impact of environmental
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Figure 1.10: Genetics and environmental contribution to IBD onset. Very-early onset IBD presents
more often as a monogenic condition whilst late onset IBD can be explained by a concurrence of mutations and
environmental factors.

risk factors. Through this model is therefore possible to motivate both monogenic

and polygenic IBD presentations (Figure 1.10).

Very-early onset cases of IBD deviate from the polygenic model by presenting a

genetic profile much closer to a monogenic/oligogenic form. Here, highly delete-

rious mutations in one or few genes can trigger the IBD phenotype with stronger

symptoms. However, treating the monogenic and oligogenic forms of IBD can

be easier than treating its polygenic form thanks to its more predictable genetic

behaviour. One of the most successful results in treating a monogenic and pae-

diatric form of IBD was achieved by Worthey et al. [202] where a rare mutation

in the X-Linked Inhibitor Of Apoptosis (XIAP) was first identified through the

application of whole exome sequencing and then corrected with gene therapy.

Despite more than 50 genes were so far identified as causative of monogenic forms

of IBD [192] (Supplementary table 7.1), the majority of IBD presentations cannot

be explained by mutation(s) in a single gene. In order to detect genes with a more

subtle contribution to the IBD phenotype, a range of approaches were developed

in the last 20 years. Before the advent of NGS, linkage studies, consisting in the

study of familial inheritance of specific genomic regions, were the standard analyses

for the detection of susceptibility loci (Figure 1.11). Whenever a region was found
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Figure 1.11: Timeline of loci discovered to be associated with IBD phenotype. Image adapted from
Petersen et al.[146]

linked to a phenotype and recurring within the same pedigree, it was then possible

to estimate the likelihood of that recurrence against a normal scenario. Though

this method the Nucleotide-binding oligomerization domain-containing protein 2

(NOD2 ) gene was identified as the first susceptibility gene for Crohn’s disease [70]

[138].

With the introduction of SNP arrays, genotyping thousands of loci in large cohorts

became affordable and started the so called ”GWAS era”. Instead of focusing on

small pedigrees, GWAS involve large groups of unrelated individuals in order to

observe mutations that are statistically more frequent in affected individuals and

less in controls. Through Genome-wide association studies many new loci were

associated to IBD [121][157][5][79][18]. Although more than 200 SNPs were iden-

tified so far[110], GWAS results can only explain 30% of IBD genetic component

[79]. As mentioned before, association studies are based on SNP arrays and there-

fore are covering only a very limited percentage of the whole human variome (the

whole set of human variations). This is motivated by the requirement of SNPs to

have a moderate or high frequency in the population in order to be included in a

SNP array, therefore ignoring all the rare (minor allele frequency <1%) and novel
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variants.

Thanks to the advent of whole-exome sequencing and its drop in price, many

new studies were then able to cover that part of rare human variation that were

previously set aside. Mutations in the interleukin 10 gene (IL10 ) [90] and in

the Baculoviral IAP Repeat Containing 2 and 3 (BIRC2, BIRC3 ) [6] are some

successful examples of WES extrapolating new knowledge on IBD genetics. Fig-

ure 1.11 recapitulates the advances in discovering associated loci to IBD and the

contribution of each technological breakthrough [146].

Associated pathways

Due to autoimmune nature of IBD, many studies were focused on the analysis of

immunological pathways in order to understand the mechanisms triggered in its

pathogenesis. Particularly, the first extensively studied pathway was the cascade

of events regulating the innate immune response. Since NOD2 was the first gene

associated to IBD, there was great interest in understanding how NOD-like (NLRs)

and Toll-like (TLRs) receptors were regulating the inflammatory and apoptotic

response and which elements were responsible of the dysregulation observed in

IBD patients.

The NOD pathway (Figure 1.12), through the activation of NLRs is devoted to

the detection of specific bacterial components (bacterial peptidoglycans from both

Gram + and Gram - bacteria), triggering the innate immune response and main-

taining the homoeostasis of intestinal microbiota [26]. The activation of such

receptors causes the expression of pro-inflammatory cytokines and apoptosis re-

spectively mediated by the nuclear factor kappa B (NF-κB) and the mitogen

activated protein kinase (MAPK ) signalling pathways [73] [54]. Both signalling

pathways have a well described role in inflammation, activation of stress responses,

B-cell development, and lymphoid organogenesis [65].

Besides this cascade, other NLRs (NLRP1, NLRP3, NLRP6, NLRP7, NLRP12,

IPAF and NAIP) have the ability to oligomerise forming a multiprotein known
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as inflammasome. The inflammasome can activate the Caspase-1 (CASP1 ) which

induces the production of other pro-inflammatory interleukins (IL-1β and IL-18 )

and pyroptosis leading to cell lysis and swelling.

Figure 1.12: NOD-like receptor signalling pathway. The cascade on the left hand side reflects is the result of
the activation of NOD1 and NOD2 genes. The cascade on the left hand side shows the inflammasome activation
via NLRs. Image adapted from R&D systems repository[153]

By interrogating KEGG pathway (KEGG entry: hsa04621) [84], an on-line repos-
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Figure 1.13: IBD pathways. Pathways and genes reported to be involved in IBD characterization by interro-
gating KEGG pathway (KEGG entry: hsa05321). Relevant signalling pathways are highlighted by a red box.

itory for multi-organism pathways, 170 genes are involved in the NOD-like sig-

nalling pathway but only 56 of them can be considered as forming the core NOD

cascade.

Despite the distinctive autoimmune nature of IBD described by Targan et al.
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[123] [168], there are many other pathways that are potentially involved in the

IBD pathogenesis (Figure 1.13). Studies performed on murine models have shown

the importance of G protein-coupled receptors (GPCRs), the regulation of innate

and adaptive immunity (IL-10 signalling, Th17 differentiation programme, T and

B cell signalling pathways) and the epithelial barrier function in the induction of

IBD [86]. Moreover, a possible involvement of the interferon gamma (IFN-γ) and

TNF signalling pathway was also postulated [10].

1.4.3 Machine learning applications to IBD genetics

Machine learning algorithms could be exploited to improve the diagnostic process

in IBD. So far only few attempts were made, mostly because of the shortage of

NGS database with matched clinical information.

Zhi Wei et al. [197] made use of thousands of single nucleotide polymorphisms

(SNPs) to develop a model aimed at distinguishing Crohn’s disease from ulcerative

colitis. The original dataset was generated by the IBD Genetics Consortium’s

Immnunochip project and the initial 196,524 variants were filtered accordingly

to standard association thresholds (p-value < 10−4 and minor allele frequency

< 0.01). To avoid overfitting the model with too many variables and few samples,

and other previously illustrated modelling issues, more than 22 thousand control

individuals were included in this study alongside 30 thousand IBD cases (17,000

CD and 13,000 UC). Subsequently, a supervised model based on a penalized logistic

regression was trained with a 10-fold cross validation approach to ensure good

data fitness and generalisation. The study was structured in order to obtain two

different predictors, one for Crohn’s disease and one for the ulcerative colitis.

After the training, predictors performances were approximately ∼ 85% accuracy

in predicting CD and UC.

In terms of application of machine learning algorithms to IBD genomic data, the

2013 CAGI competition [28] challenged participants to identify Crohn’s disease af-

fected individuals amongst healthy ones using only whole exome sequencing data.
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This challenge was based on the analysis of whole exome sequencing data, which

includes more information respect to immunochip data presented by Wei et al..

The CAGI challenge provided whole exome sequencing data from 66 individuals,

51 with Crohn’s disease and 15 without, including related individuals and two

affected twins. Every submission was independently tested by the CAGI com-

mittee and the two best submissions (Tosatto and Radivojac) reached an area

under the ROC curve of ∼ 87% [28]. As first step in both methods variants

were filtered depending on the sequencing quality (higher than 30) and the mi-

nor allele frequency (MAF less than 2 percent). Both methods used an additive

model, weighting SNVs according to their genotype: 1 for homozygous alternative

SNVs, 0.5 for heterozygous SNVs, and 0 for homozygous reference SNVs. The

submission from Tosatto was based on hierarchical clustering of variants found in

genes potentially relevant to IBD. On a opposite path, the Radivojac submission

exploited the MutPred score and the PhenoPred score to add additional weights

respectively to variants and genes. Then, expecting a binary classification, they

performed a k-means analysis scoring each sample depending on the distance from

the two centroids. Both methods confirmed the additive model as the best choice

for interpretation of SNVs and the need for a strong filtration on the input SNVs

in order to remove the background noise. However, none of these models were

validated on additional data.
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1.5 Thesis outline, aims and contribution

The intention of the introduction chapter was to provide a brief background on the

recent sequencing technologies and machine learning methodologies that will help

the reader to contextualise what will be discussed in the following chapters. Since

most of the results will be focused on the analysis of data describing inflammatory

bowel disease, it was necessary describing the state of the art from a clinical and

research perspective.

Following the introduction chapter, I provide more details on the bioinformatics

tools and machine learning algorithms that will be extensively applied and cited

across all result chapters. This method section is essential in order to ease the

understanding of more complex mechanism which would move the focus of the

reader if covered individually in each result chapter.

Aim 1 - Machine learning classification of IBD patients using histopathol-

ogy data Chapter 3 shows the application of supervised and unsupervised ma-

chine learning methodologies to clinical data that is routinely collected and used

on a daily basis to assign a diagnosis of either Crohn’s disease or ulcerative colitis.

My contribution was to develop supervised machine learning models, analyse the

histopathology data with unsupervised methods, investigate possible clustering

strategies, performing statistical test and interpret results. The work was super-

vised by Prof Sarah Ennis and Dr Ben MacArthur from a research perspective and

by Prof Mark Beattie from a clinical point of view.

Aim 2 - Gene score development: GenePy Chapter 4 shows the develop-

ment and testing of a mathematical model capable of transforming NGS data in

order to produce per-gene per-patient scores.

The work conducted in this chapter was conducted only by myself under the su-

pervision of Prof Sarah Ennis and Dr Ben MacArthur. My contribution consisted

in every step described in the chapter, including curation of the research database,
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data quality control, data processing, pipeline and models development and ap-

plication.

Aim 3 - Stratification of paediatric patients using immunogenomic data

Chapter 5 investigates the opportunity of using immunological markers and GenePy-

modelled whole exome data to stratify patients according to their immunological

response.

Regarding immunological data, I was responsible of controlling data quality, nor-

malisation and finally the application of clustering strategies. Concerning genomic

data I was in charge of data processing, quality control and pipeline development.

This work was conducted in collaboration with Dr. Tracy Coelho and supervised

by Prof. Sarah Ennis and Prof Mark Beattie.

Aim 4 - Classification of IBD using supervised machine learning and

genomics data Chapter 6 covers the application of supervised and unsuper-

vised machine learning methodologies using uniquely genomic data to classify and

stratify IBD patients.

My contribution consisted in every step described in the chapter, including cu-

ration of the research database, data quality control, data processing, pipeline

and models development and their application. This work was supervised by Prof

Sarah Ennis and Dr Ben MacArthur.

Finally, Chapter 7 summarises thesis findings and discusses future work.
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Chapter 2

Methods

2.1 Programming tools

2.1.1 Iridis 4

Most of the work presented in this thesis was made using the computational power

of Iridis 4. Iridis 4 is the computing cluster of the University of Southampton.

In November 2015 was in the TOP500 list [47] of the most powerful computer

around the world and is still one of the largest computational facilities in the

United Kingdom. The cluster is made of:

• 750 computing nodes each with 16 CPUs and 64GB of memory;

• 4 high-memory nodes with two 32 cores and 256GB of RAM;

• 12,320 processors providing 250 TFlops peak.

Iridis 4 does not have a graphical user interface (GUI) and each operation or

software has to be executed using the bash command line. Iridis 4 command line

is based on the UNIX architecture.
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2.1.2 Python

Python is a freely available programming language that in these recent years has

become one of the most broadly used [112]. From games development to data

analysis, its flexibility is the main reason why many people are choosing it as

tool for developing software and pipelines. As many other languages, Python is

structured with a set of standard functions that can be expanded with various

packages. The version used in this dissertation is the 2.7.

Packages

SciPy SciPy is a library of programs for mathematics, science and engineering

[140]. It includes fundamental tools like NumPy for array (matrix) calculations

and Matplotlib for graphs and 2-3D plotting.

Scikit-learn Scikit-learn is the main package for statistical learning in python

[144]. It includes algorithms for supervised and unsupervised machine learning

nonetheless tools for choosing and validating parameters and models.

2.2 Bioinformatic tools

Next-generation sequencing data represents an important component of ”big data”

within the medical information field that requires advanced analytical tools. After

data generation with NGS chemistries, a bioinformatic pipeline is required to

detect and characterise variants. (Figure 2.1).

Firstly, raw NGS data has to be quality controlled, checking for errors generated

by the sequencer or by a low quality sample. These QC checks usually consist in

obtaining metrics about read number and mean coverage of regions targeted by

capture kits.
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Figure 2.1: Bioinformatic workflow for NGS data analysis. The analysis consist in three major steps: read
alignment (blue), variant calling (orange) and variant annotation (green). Parallelograms represent data (file
format in parentheses) and rectangles denote processes (software used in parentheses).

Then, if the quality controls (QCs) are successfully passed, sequenced paired reads

are aligned against a reference genome. The reference genome is a continuously

updated reference sequence obtained by sequencing samples from several individ-

uals. The version used in our analyses is the GRCh38 (hg38) released by the

Genome Reference Consortium in 2013. Since chromosome coordinates and con-

texts change depending on the completeness of the sequence, in case of samples

comparison it is important to consistently select the appropriate release. Our

bioinformatic pipeline uses the Burrows-Wheeler Aligner (BWA) for the align-

ment step, set with a mean fragment length of 200 bp, a gap opening penalty of

65 and extension penalty of 7 as recommended by BWA guidelines .

Following the alignment, which generates a SAM file per individual that is con-

verted into the BAM format, duplicate reads are marked using Picard. This tool

identifies and tags duplicate reads originating from the same DNA fragment. An

elevated percentage of duplicate reads is usually index of poor data quality. Once

duplicate reads are removed, the BAM file is ordered by genomic coordinates and

indexed. The resulting BAM file is then scanned by Picard for wrong mate-pair

matched and fixed accordingly.

37



Prior to variant calling, base qualities have to be recalibrated in order to detect

and correct for systematic errors. Variant calling efficiency is highly dependent

on the quality scores assigned to each base pair reported in the BAM file. Due to

systematic error by sequencing machines, it is important to correct avoiding over

or under estimating sequencing quality. This step is performed using GATK’s

BQSR recalibrator which employs a machine learning algorithm to detect and

adjust such discrepancies leading to more accurate variant calls.

Once the recalibration is complete, variants are called using GATK’s Haplotype-

Caller tool. This allows the simultaneous call of SNVs and indels and reports them

in the so called gVCF format further described.

Following variant calling, gVCFs from multiple samples can be merged in a single

VCF file containing the combined call set and specific genotype information. This

step is performed with GATK’s GenotypeGVCF tool.

Called variants are then annotated in order to obtain information regarding the

observed frequency in the population (1000 Genomes Project, ExAc) and the in-

duced protein alteration (GERP++, PolyPhen-2, ...). This step is performed using

the ANNOVAR software which integrates and interrogates multiple repositories

to produce a final report file (.var).

All the tools so far mentioned were utilised according to distributors guidelines

when not stated differently. Figure 2.1 shows the steps of the bioinformatic pipeline

just described.

2.2.1 BWA

BWA is an alignment tool for mapping sequence reads against a reference genome.

This algorithm implement the theory of Burrows-Wheeler Transformation (BWT)

to efficiently align short sequences allowing both mismatches and gaps.

Originally developed for compression purposes, the BWT algorithm is a fast al-

gorithm for compressing data maintaining the reversibility without the need of
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additional metadata. In the case of genomic data, characterised by a large volume

of fragmented ”text strings” BWA (thanks to BWT) can provide a reliable and

quick alignment.

Despite being the second best aligner on the market in terms of number of mapped

reads, its speed makes it the best tool for the analysis of large genomic data. As

consequence of the constantly increasing throughput of sequencing technologies,

trade-off between accuracy and computational time is continuously moving to-

wards models that requires less running time rather than a complete alignment of

input reads set.

By comparing the most recent aligners (Figure 2.2), Novoalign results being the

most accurate in terms of mapping but also the most computational demand-

ing. Implementing a modified version of the classic Smith-Waterman algorithm

[174] used by BLAST, known as Needleman-Wunsh algorithm [132] despite the

CPU vectorization to speed up the alignment process [104] Novoalign requires

eight times more time to align paired-end data from a single sample. Moreover,

Novoalign performance are strongly limited by the large memory required for the

reference genome hashing, the first step of its algorithm. So far, BWA repre-

sent the best compromise for detecting structural variations (insertions, deletions,

CNVs...) when using a long reference genome and short reads.

2.2.2 GATK

GATK, genome analysis toolkit (version 3.7), is an alternative library for reads

alignment and variant calling developed by th Broad Institute [122]. This soft-

ware is everyday becoming more popular thanks to is good scaling capability in

both statistics calculation and variant calling. This makes GATK time-wise more

efficient. The main tool in GATK for variant calling is the HaplotypeCaller.

HaplotypeCaller calls germline SNVs and indels re-assembling the reads whenever

a mismatch is found. This approach increases the accuracy in calling variants close

to each other and long indels. HaplotypeCaller was designed to analyse data with
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Figure 2.2: Aligner accuracies. Accuracy benchmark among the most known alignment tools. Image adapted
from Li et al.[102]

a sample-by-sample approach, thanks to the gVCF format (figure 2.3) and can

handle sample multicalling extracting information about homozygous reference

calls. Due to its highly sensible algorithm for calculating the variant likelihood,

HaplotypeCaller is not suited to the extreme allele frequencies observed in cancer

samples. MuTect2 [39] is a modified version of HaplotypeCaller for calling somatic

SNVs and indels.

2.2.3 ANNOVAR

ANNOVAR is a software for the annotation of variants [196]. This program has

been specifically developed for the annotation of SNVs and insertions/deletions

examining their functional consequences and frequency in general populations. As

consequence of it simple architecture, ANNOVAR only requires flat files from any

available annotation database and a VCF file to annotate. Amongst the large

variety of annotations, this software can integrate the dbsnfp dataset, containing

most of the known SVN deleteriousness metrics, and allele frequencies from the
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Figure 2.3: Comparison of the gVCF format against the classic VCF. Non-var blocks are regions known
where sample’s genotypes are homozygous as reference. These regions are not annotated in the normal VCF and
makes therefore impossible a correct multicalling approach. Adapted from [122]

1000 Genomes Project [1] the OMIM dataset [63], the COSMIC repository [14],

ExAc [96] and many others. Amongst the may deleteriousness metrics available

trough ANNOVAR the following had been largely employed:

• Sift, sorting tolerant from intolerant, predicts whether a single amino acid

substitution affects the protein function or not considering the degree of

conservation for that site [173](0-1);

• Polyphen2, predicts the possible impact of a mutation on the structure and

function of the encoded protein [3] (0-1);

• LRT, likelihood ratio test for deleteriousness using 32 vertebrates as reference

[38] (0-1);

• MutationTaster, composite score that uses multiple statistics and a Bayes

classifier for deleteriousness at the mRNA level [165] (0-1);
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• MutationAssessor, asses the functional impact of a variant using conservation

patterns and entropy formalisms [154] (0-1);

• FATHMM, functional analysis through Hidden Markov Models fitted for

human variants [170] (− inf −+ inf);

• VEST3, supervised machine learning classifier trained on 45,000 disease mu-

tations annotated in the Human Gene Mutation Database (HGMD,[179]),

[32] (0-1);

• PROVEAN, protein variation effect analyzer, specifically suited for filtering

nonsynonymous variants and indels [37] (-14-+14);

• CADD, combined annotation dependent depletion,is a composite score of

the deleteriousness of SNVs and indels [88] (0−+ inf);

• DANN, is a composite score using the same training data as CADD but

implemented in a deep neural network classifier[151] (0-1);

• GERP++, genomic evolutionary rate profiling, calculates the strength with

which the genome rejects the variants due to the functional constraint [43]

(0−+ inf);

• phastCons7way, conservation score based on 7 vertebrates (0-1);

• SiPhy 29way, conservation score based on 29 mammals genomes [55] (0-

37.97).

2.2.4 CADD

Combined Annotation Dependent Depletion (CADD) [88] is a composite score

for both SNVs and indels. This combined annotation dependent depletion algo-

rithm exploits a support vector machine (supervised machine learning algorithm)

to differentiate about 15 million real human variants from other 15 million sim-

ulated variants. Moreover, scores were also calculated for all 8.6 billion possible
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human SNVs and short indels. The aim of CADD is to distinguish between vari-

ants that are fixed or nearly fixed in the human genome and those simulated.

Natural selection and more in general evolution should avoid the fixation of dele-

terious variants, therefore the closer a genotype is to a simulated scenario and far

from being fixated, the higher the deleteriousness. To date, CADD is one of the

most popular deleteriousness metrics and detain the highest AUC in classifying

pathogenic variants in the ClinVar dataset.

2.2.5 MaxEnt

MaxEnt is a tool developed by the Massachusetts Institute of Technology for the

evaluation of splicing motifs [204]. The original aim of this software was the

identification of splicing sites (5’ donor and 3’ acceptor) in the human genome.

The algorithm out-performed all the previous probabilistic models and become

the best tool for assessing the presence of splicing motifs. The model was so good

in this identification that was exploited to observe the impact of SNVs and indels

on the splicing sequence. Worst the mutation higher the divergence, calculated as

entropy, and therefore its effect on the phenotype.

2.3 Machine learning algorithms

Statistical learning, or machine learning, become popular a science when people

started collecting data on a large scale. With massive datasets, classic statistical

approaches did show limitations concerning result validation and the integration

of multiple variables. Machine learning approaches can be divided in two large

groups: supervised learning algorithms and unsupervised learning algorithms
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2.3.1 Supervised learning algorithms

Support vector machine

Support vector machine (SVM) is a supervised algorithm for data prediction and

regression analyses. Thanks to is almost ready-to-use approach and its good per-

formance in a variety of scenarios, this model is currently one of the most applied.

However, the easy application of this model should not be confused with simplicity,

SMVs are elaborate algorithms developed starting from a simpler classifier called

maximal margin classifier. This classifier applies the idea of using a hyperplane

(that in 2 dimensions is a line) to separate data (Figure 2.4). It is important to

define the concept of hyperplane as a subspace of dimension p− 1. Considering a

2 dimensional space, any hyperplane of that space can be defined as:

β0 + β1X1 + β2X2 = 0 (2.1)

where generalising to p dimensions is easy as introducing more addends:

β0 + β1X1 + β2X2 + ...+ βpXp = 0 (2.2)

From equation 2.1 defining parameters β it is possible to plot a line that divides

in half the 2D space (Figure 2.1). If a point X does not satisfy the equation,

that point can either fall above or below the hyperplane. Now, considering an

imaginary dataset where each labelled sample is defined by 2 features that in the

previous equation are represented by X parameters, each point will be localised

above, below or on the hyperplane. The idea of the maximal margin classifier

is to use this mathematical concept to separate labelled data by correcting β

parameters. The logic used by this algorithm is to maximise the perpendicular

distance between the closest points with opposite labels to the hyperplane. This

set of points, given a hyperplane, defines the margin of the model. The classifier

starts learning with a random set of β values and, during the training, adjusts

them according to the margin (Figure 2.5). The hyperplane margin does depend

only on points close to it and not on other observations.
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Figure 2.4: Example of an hyperplane.Hyperplane defined for β0 = 1, β1 = 2, β2 = 3. Blue region made by
points for which 1 + 2X1 + 3X2 > 0, while purple region by points for which 1 + 2X1 + 3X2 < 0. Image adapted
from James et al.[76].

Once the model is trained with the training data and the coefficients are set, new

data can be classified. Generally, the maximal margin classifiers as well as sup-

port vector classifiers and support vector machines, are extremely powerful when

classifying data in two classes, but extensions to these approaches are available

for the multi-class classification. Unfortunately, not every classification problem

can be solved with the maximal margin classifier. Indeed, the linear separating

hyperplane does not always exist. However, it is possible to generalise this model

to overcome such limitation with support vector classifier.

Support vector classifiers and machines Since the solution obtained with

the maximal margin hyperplane perfectly classify training data, it is extremely
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Figure 2.5: Margin maximisation.Example of an hyperplane maximising the margin for the classification of
two different classes of observations. The two blue points and the purple one are the support vectors that define
the margin. Figure from [76].

sensible to small changes in the input data, making overfitting a property of this

model. In this case, support vector classifiers leave some imperfection during the

model fitting, making it more robust to new individual observations and better

in the classification of most of the training set. Support vector classifier intro-

duces the concept of soft margin, where small misclassification are allowed. This

allowance solves the problem where a linear hyperplane can not separate perfectly

all the data.

If we state M as a the solid margin that the maximal margin classifier aims to

maximise, the new margin formulation for the support vector classifier is M(1 −

εi) with εi > 0 representing the error allowed in the classification of training
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observations. If a point is located within the wrong margin εi is between 0 and

1 (violated margin), while if it is grater than 1, the point is in the wrong side

of the hyperplane. The sum of all these errors have an upper boundary known

as tuning parameter C. This variable has to be set before the training starts

and reflects the tolerance of the model. A very low tolerance pushes the model

towards a maximal-margin-like model with all the consequences. For C > 0 the

maximum number of misclassified point can be no more than C: if the point is on

the wrong side of the hyperplane εi > 1. As C increases, the margin does. The

real key elements are then not the correctly classified observations but those that

are within the margins or misclassified, those are the support vectors.

Support vector machines are an extension of support vector classifiers that includes

kernels, non-linear representations of hyperplanes. SVMs, still use the same idea

of soft margins but, instead of a linear relationship between β terms and M , a

non linear is used, allowing more complex separations. The two most used kernels

are the polynomial, where the parameter d defines the degree of the equation,

and the radial (RBF, radial basis function) where the main parameter to be set is

the positive constant γ. A direct consequence is the increased number of features

that can be included in the model. To recap, to model data with SVMs it is

important to select the correct tolerance C and the shape of the kernel (d or γ).

This approach is known as grid search and is done testing for the best fitting

several ranges of C’s given some kernels.

2.3.2 Unsupervised learning algorithms

Unsupervised learning algorithms are models used when the observations labelling

is not available and the aim of the analysis is to understand the relationship

between variables and samples. Most of the algorithms of this group are also

known as class discovery approaches since they are powerful tools for clustering

data. Moreover, it is also possible to apply these algorithms as methods for data

visualisation or data pre-processing before applying other supervised techniques.

47



Principal components analysis

Principal components analysis (PCA), is a linear class discovery and dimension-

ality reduction algorithm. PCA reduces the number of features to a fewer set of

most representative variables. In a scenario where some data are represented by

5 variables, without using a dimensionality reduction algorithm like PCA would

mean drawing 10 different 2D plots to represent all the information within that

particular dataset. The principle of PCA is to find the lowest dimensional space

to represent as much as possible of the original variation. This algorithm uses

a linear combination of the original feature set to obtain a smaller number of

dimensions, also known as components. The first principal component of the fea-

ture set X1, X2, ..., Xp is their normalised linear combination [76] that maximise

the variance

Z1 = φ11X1 + φ21X2 + ...+ φ11Xp (2.3)

with p the number of observations and φ known as loadings of the first principal

component, meaning the weight that each feature is associated within the cluster-

ing process. With the normalisation, the sum of the loadings is equal to 1, avoiding

bias in the variance comparison. Since the algorithm measures the variance of ob-

servations using a set of features, it is important to normalise all the values to the

same scale. This avoids unrealistic results that are only dependent on the way a

feature is reported. When fitting the model, the PCA algorithm starts assuming

that all features are centred to have mean zero. Then, adjusting the loadings, it

tries to maximise the linear combination 2.3 respecting the normalisation criteria

where
∑p

j=1 φ
2
j1 = 1. Using the same principle, the second and further compo-

nents are calculated bearing in mind to avoid using linear correlations correlated

to the one already used in previous components. Each resulting component will

carry ( or explain) a percentage original variance and each observation will be

associated with a coordinate (Xp = (z1, z2, ..., zn), with n as number of principal

components). Since every additional component must be uncorrelated to the al-

ready computed, the explained variance will decrease after an empirically derived

number of components. Then it will be possible to visualise data by plotting each

48



computed component against each other.

PCA has been demonstrated to be an efficient method for the analysis of genomic

data [136]. Figure 2.6 shows the result of modelling more than half million DNA

variable sites in more than 1,000 European individuals. PC1 and PC2 can recap

both the ethnic and regional differences in Europeans. This result shows the

potential of unsupervised machine learning algorithms in inference problems but

also highlights the caution needed when mapping the genetics of a complex disease

using samples with different origins.

Figure 2.6: PCA of Europe. Principal component analysis of genomic data from European individuals. Image
adapted from Novembre et al. [136].

Multidimensional scaling

Like principal component analysis, multidimensional scaling (MDS) is a unsu-

pervised learning algorithm for dimensionality reduction and data visualisation.
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MDS, similarly to PCA, seeks to find a lower-dimensional representation of the

data preserving, not the variance but, the pairwise distance between observations.

Considering a set of observation x1, x2, ..., xN is possible to calculate the distance

dij between each couple of points. As distance, there are hundreds of possible

choices but the more conventional is still the Euclidean distance dij =‖ xi − xj ‖.

Moreover, there are many versions of MDS or methods that uses evolutions of

the same algorithm. This led to MDS models that can explore solutions in the

non linear space (local MDS) or that use graphs and geodesic distances (isometric

feature mapping, ISOMAP) to reduce the dimensionality.

t-distributed SNE

The t-distributed stochastic neighbour embedding (t-SNE) [113] is a nonlinear

dimensionality reduction algorithm. t-SNE converts a euclidean distance matrix

into a probability distribution in a way where similar observations have a high

probability, vice versa for dissimilar observations. A second probability distribu-

tion is also calculated over the original observations, not converted to euclidean

distances. Then the Kullback-Leibler divergence is calculated between the two

distributions. Once the divergence is minimised, the probability distribution done

on the original observation (high dimensionality) can be approximated with the

probability distribution converted to a lower dimensionality. The divergence is

corrected step by step by changing the shapes of the t-distribution used to model

the data. As any other unsupervised learning approach the performance of an

algorithm depend only partially from the algorithm itself. Indeed, some datasets

are better represented with some algorithm then others.

Hierarchical Clustering

Hierarchical clustering (HC) is an unsupervised clustering method that, using a

matrix of distances can identify similarities between samples. Depending on the

chosen criteria, HC can be labelled as bottom-up (or agglomerative) or top-down
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Figure 2.7: t-SNE applied on the hand writing digit recognition database. Each digit has been mapped
with a different colour. Adapted from [113].

(or divisive) approach. With bottom-up, each sample start isolated and at each

iteration pairs of clusters are then joined; vice versa, the in the top-down approach

all samples initially belong to the same cluster and at each iteration are split.

The functioning of HC depends on two main parameters: the metric used to define

how similar samples are, and the linkage criteria which defines the rule for merging

(or splitting) clusters.

The distance metric determines the similarity of two samples where larger values

represent a higher difference between the two. HC can implement any distance

measure as long as it respect the rules defining a metric. Such conditions are the

non-negativity (d(a, b) ≥ 0), the identity (if d(a, b) = 0 then a = b), the symmetry

(d(a, b) is the same as d(b, a)) and the triangle inequality (d(a, c)+d(b, c) ≥ d(a, b)).

Depending on the selected metric, different clustering can be obtained, however

such choice is not regulated and is highly dependent on the data that is analysed.
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Some of the most applied metrics for HC are the Euclidean and its squared version,

Manhattan, Maximum, Hamming and Levenshtein. Usually, Euclidean distances

are the most applied in biology.

The linkage criteria is a set of rules for merging or splitting samples according to

their distances. As per distance metrics, there is a wide range of linkage criteria

available (complete linkage, single linkage, average linkage, entropy based linkage,

Ward linkage) and the choice of the optimal is purely data-driven.

Once these two parameters are set, the HC can produce a dendrogram, a tree

representation, of the similarities and clusters observed in the data. Similarly

to a family tree, greater the distance between two clusters the the oldest is the

common ancestor. Given such representation, it is possible to identify a variable

number of clusters depending on the depth (distance) at which the dendrogram

is interpreted. Usually, the number of clusters observed increase as the distance

between samples reduces.

Choosing the right depth at which interpreting the result of HC frequently depends

on the user intuition or some biological prior knowledge. However, as it is going

to be discussed in following sections, there are methods to randomise the initial

data up to a certain number of time in order to observe the rarity and therefore

statistical validity of selected clusters. Such methods are known as resampling

techniques.

2.3.3 Resampling methods

Resampling methods are tools becoming essential as data volume increase. They

provide and efficient way to test the model fitness and obtain statistics on the

model performance. Generally these approaches could be computationally expen-

sive and time consuming, however the information obtained is essential.
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Permutation, bootstrapping and jackknife

Permutation, bootstrapping and jackknifes are three commonly used resampling

methods used to test the validity of a null-hypothesis. Especially in clustering

approaches, this null-hypothesis is the hypothesis that the detected clusters (or

some classification accuracies) were obtained purely by chance.

In a permutation approach, the labels assigned to individual samples following

clustering or classification, are randomised the same number of times as the de-

sired level of significance. For example, if four clusters were identified by hierar-

chical clustering at a specific distance, this approach tests how many times in the

permutation process we observe the same number of clusters.

The bootstrap approach is instead based on the idea of resampling as selection

of subsets from the original dataset. This methodology test how close the results

observed within the subset are to the one obtained when using the complete data.

The subsampling performed by a bootstrap approach is a random sampling with

replacement.

The bootstrap methodology was inspired by the jackknife approach. The jackknife

consist in calculating statistics (or observing clusters) repeatedly by leaving one

or more samples out during the iterations. As per other resampling methods, the

numbers of iterations define the level of confidence of a measure.

Cross-validation

Cross-validation is a method to assess the test error rate, the error that a model is

producing after the learning step. This check is done by saving part of the dataset

for testing and not using for fitting the model. Depending on the size and the

number of test sets different cross-validation are performed.

Validation set With this method the dataset is divided randomly in half cre-

ating the validation (test) set. Ideally, while the model is fitted on the training
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set, if not overfitted it will perform with similar accuracy and sensitivity also on

the testing set. If this does not happen, the model has to be refitted. The error

observed when modelling testing set is usually assessed through the mean stan-

dard error (MSE). The heterogeneity of both sets is essential, otherwise the model

will learn a pattern that is present only in the training set. Since there is not

possible to select a perfect heterogeneity, this is one major drawback of using a

single validation set. Another issue that might rise is due to the limited number

of observations that the model will use to train and is well known that fewer the

examples worst the performance.

Leave-one-out cross-validation Leave-one-out cross-validation (LOOCV) ap-

proach is similar to the validation set technique but is aimed to solve those pre-

viously explained issues. The LOOCV logic consists in train and test the model

multiple times where the test set is made of a different single observation for each

iteration. Thus for each iteration the training is performed on the n − 1 set and

the remaining observation (x1, y1) is tested. This will return a MSE relative to

that particular observation. To estimate the overall performance of the model, the

MSE is the average of all the standard errors:

CV(n) =
1

n

n∑
i=1

MSEi (2.4)

This method will solve both issues observed in the normal validation, moreover

since the whole dataset is used to train the model, there will not be any sampling

problem returning always the same result.

k-Fold cross-validation Similarly to the LOOCV, the k-fold cross-validation

involves multiple iterations of training and testing. Here, instead of holding out

a single observation, the whole dataset is split in k groups where one group is

alternatively left out (Figure 2.8). Like in the LOOCV, the MSE will be calculated
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Figure 2.8: Example of a 5-fold cross-validation. After partitioning the original dataset in 5 subsets
(A,B,C,D,E), 4 subsets are used as training set while the remaining one is used as testing set. This process
is iterated until each subset has been used as testing set.

as the average MSE over the number of k iterations:

CV(k) =
1

k

k∑
i=1

MSEi (2.5)

The k-fold cross-validation adds to the LOOCV the advantage of speed in the val-

idation process. Indeed, this method requires a limited number of iterations. This

might led to the similar error rate overestimation observed in the standard valida-

tion where part of the dataset was not represented during the training, making the

LOOCV the preferred method. However, considering the number of iteration done

with a LOOCV logic, the variance observed in n MSE is much higher than the

one observed in k MSE with a k-fol logic. The trade-off between bias and variance

is then associated with the choice of k and it has empirically demonstrated that a

5 to 10 fold cross-validation is the optimal choice for both variance and bias.
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2.4 Feature selection algorithms

The big data term does not only refer to datasets with a great number of obser-

vations but also to those datasets where each element is observed from multiple

points of view. The increasing number of features pushed the statistical learning

experts to develop new methodologies to select features to be included in the anal-

ysis. The need of shortening the list of features is mainly aimed to avoid the curse

of dimensionality and overfitting the model. From simple scoring systems to more

complex selection criteria, many algorithms are available performing differently

and promoting different aspects of data.

2.4.1 Univariate feature selection

Univariate feature selection is the most direct approach to reduce the number

of dimensions without requiring fitting tortuous models and optimising complex

functions (Figure 2.9). The univariate selection consist in exploiting univariate

statistical test to rank and then select features.

χ2 and F regression tests represent the most common models for testing the con-

tribution of each feature. While χ2 and ANOVA F tests are appropriate for

classification problems (e.g. cases vs controls), the univariate linear regression

test is better suited to solve regression problems.

In both approaches, the statistical test associate a p-value to each feature and

subsequently ranks according to significance. When the number of tested features

is much grater than the number of samples, a Bonferroni correction can be applied

in order to correct for false positives. Bonferroni correction consist in multiplying

each p-value for the number of tested features.

These methods are the fastest option for performing a feature selection. Although

these good performance in terms of computational time, univariate feature se-

lection models test one feature at time and do not take into consideration the

combined effect of multiple variants. The effect of this limitation on the regression
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Figure 2.9: Univariate feature selection performance. Simulation of a feature selection problem where the
first four feature are the only one significant. Blue bars show the feature weights assigned by a SVM before
and after the feature selection. By applying such filtering approach SVM does not select uninformative features
compared to the same model without selection. Features are shown on the x-axis. Adapted from [144]

or classification can not be predicted. Therefore, if the interaction of features is

an important aspect in the approach, it is better to focus the attention on more

elaborate feature selection models.

2.4.2 Linear regression and lasso

Linear regression considers the combined effect of multiple variants. In this case,

the linear regression is called multiple linear regression in order to distinguish from

its univariate form.

Multiple linear regression models the relationship between the supervised labelling

and the feature set and is described by a function that minimise the fitting error,

usually calculated with the least squares approach. This cost function can be

substituted with other norms that penalise the common least square method as
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the lasso and the ridge regression.

The most applied regularisation is the lasso L1-penalty, developed by Robert Tib-

shirani in order to increase the accuracy of regression models [187]. The aim of

lasso is to reduce the overfitting of a model by forcing the regression coefficients

(the weight of each feature) to be less than a threshold value. This regularisation

induces certain feature coefficients to be shrunk to zero and therefore excluded

during the selection process. An important limitation of this method is its sen-

sitivity to the size of the input dataset. With a limited number of sample to be

fitted on, lasso can not select the best features and performs at random.

min
w

1

2nsamples
‖Xw − y‖2

2 + α ‖w‖1 (2.6)

Equation 2.6 shows the objective function minimised by the model.The only pa-

rameter to be tuned in the lasso model is alpha, the penalising factor responsible

for the regression coefficient shrinkage. When alpha is equal to zero, then the

model performs like a classical linear regression model, while increasing alpha the

model forces more coefficients to take values closer to zero. The tuning of alpha is

usually an empirical process and for best results is performed via cross-validation

tests.
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Chapter 3

Machine learning classification of

inflammatory bowel disease

patients using histopathology

data

3.1 Summary

In this chapter I describe the application of machine learning approaches to classify

IBD patients using endoscopic and histological data. Unsupervised approaches,

such as PCA and MDS, revealed a substantial overlap of CD and UC with broad

clustering but no clear subtype delineation reflecting clinical complexity in dis-

tinguishing IBD subtypes. Hierarchical clustering of endoscopic and histological

data identified four novel patient subgroups characterised by differing colonic in-

volvement. Three supervised machine learning classifiers were developed utilising

endoscopic only, histological only and combining endoscopic/histological data to

yield classification accuracy of 71.0%, 76.9% and 82.7% respectively. The optimal

combined model was tested on a statistically independent cohort of 48 additional

PIBD patients and accurately classified 83.3% of patients. IBDU patients were
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then reclassified by the combined model and for seventeen of them it was possible

to assign a subtype diagnosis with a posterior probability greater than 80%.

Whilst Dr. James Ashton was responsible for the collection of endoscopy and

histological data trough clinical notes, I was responsible for all analyses presented

in this chapter.

3.2 Introduction

The incidence of paediatric inflammatory bowel disease, comprising Crohn’s dis-

ease, Ulcerative Colitis and Inflammatory bowel disease unclassified (IBDU), has

increased significantly over the last 30 years with a 46.6% increase only in Eng-

land [67, 8, 68]. IBD is diagnosed through endoscopic and histological examination

which inform the location and extent of the inflammation of the gastrointestinal

system. As described in Chapter 1.4.1 CD and UC are distinct forms of IBD

despite a substantial overlap of symptoms. Endoscopic investigation of disease is

macroscopic and typically determines initial treatment and provisional diagnosis.

However, the endoscopic assessment of the gastrointestinal system is not always

sufficient for diagnosis and histological (microscopic) examination of biopsies from

the upper and lower GI tracts is vital to determine disease extent and confirm

diagnosis.

There is a well-established discordance between endoscopic and histological disease

extent [51, 9, 191] with mucosal healing are frequently cited as the best marker

of disease remission. Despite this, the Paris classification of PIBD (Section 1.4.1)

is based exclusively on endoscopic and radiological disease extent [162, 127, 98].

Previous data has already indicated histological disease extent to be significantly

greater than endoscopic disease extent, at both diagnosis and follow-up [51, 9].

This raises the possibility of a modification to the current classification to account

for histological evidence as an additional measure of disease extent. However, the

current endoscopic Paris classification remains a validated tool to guide diagnosis

and treatment [191, 22].
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The accuracy of diagnosis in PIBD is key to prompt and effective treatment. Un-

certainty in the classification or the severity and extent of disease can lead to

delays or inappropriate treatment [98]. Tools to assist clinicians in making a more

accurate diagnosis are therefore attractive and might provide a better categori-

sation of disease into novel specific phenotypes with implications for how best

to treat. Plevy et al. previously developed a multi-component machine learning

model, based on serological and genetic markers, in adult IBD to discriminate

current CD and UC subtypes [148]. However, genetic markers are expensive, slow

and not routinely available in most hospitals. To date there are no mathematical

models based solely on routinely collected clinical data to assist with diagnosis

and classification.

Machine learning is a branch of artificial intelligence particularly well suited for

analysis of complex data. As described in Section 1.2 machine learning algorithms

aim to find patterns within data and use them to make predictions and classifica-

tions or infer new knowledge.

In this chapter we are going to utilise unsupervised models to examine the evi-

dence for clearly distinguishable IBD strata identifiable through endoscopic and

histopathological data. Potential novel grouping are then examined and regressed

against main clinical features. Following this approach, we then investigate super-

vised support vector machine (SVM) as model for classify patient samples with

established diagnoses of either CD or UC. The resulting model is tested for accu-

racy and its validity assessed on an unseen validation cohort. Such methodology

has been used successfully in medicine and biology for cancer subtype classification,

novel drug discovery and genomics [193, 104, 109, 118]. Here we use paediatric

patient endoscopic and histological data to assess the utility of such approaches

for the diagnosis and management of this complex disease.
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3.3 Methods

3.3.1 Sample data

Patients were recruited from the Wessex Paediatric Inflammatory Bowel Disease

Clinic in the genetics of paediatric inflammatory bowel disease study at Southamp-

ton Children’s Hospital. Data were collected from prospectively entered electronic

clinical records using a standardised proforma. Fully anonymised patient data

were from endoscopy and histology reports at initial diagnosis. All patients were

diagnosed according to the revised Porto criteria [100]. The dataset comprised

manually collected data from 287 patients, 178 with Crohn’s disease, 80 with ul-

cerative colitis and 29 with inflammatory bowel disease unclassified. The ratio of

CD to UC is typical of paediatric onset disease.

Ten gastrointestinal (GI) locations were investigated for the presence of macro-

scopic and microscopic evidence of disease: mouth, oesophagus, stomach, duo-

denum, ileum, ascending colon, transverse colon, descending colon, rectum and

perianal. Clinical observations were converted into numerical variables [-1, 0, +1]

depending on tissue abnormalities. At each location, abnormal tissues observa-

tions were coded as +1 and normal were coded as -1. Null values (0) were assigned

for missing data such as in the case of restriction at endoscopy. Mouth and pe-

rianal locations are not typically biopsied for histology, therefore these features

were excluded in the unsupervised approach and automatically excluded in the

supervised approach.

3.3.2 Unsupervised machine learning

In order to observe whether clinical features can induce the formation of the two

clusters representing CD and UC, data were modelled using principal component

analysis (PCA) and multidimensional scaling (MDS) algorithms as unsupervised

machine learning approaches. As explained in Section 1.2, in unsupervised ma-

chine learning the diagnosis of CD, UC or IBDU is hidden from the model, leaving
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the algorithm to return the most relevant strata. Both PCA and MDS are dimen-

sionality reduction algorithms that convert a high dimensional space (here each

dimension corresponds to a measured traits), to a lower dimensional space (usu-

ally 2D or 3D). The main difference between PCA and MDS is the search space

of those two algorithms. While PCA investigates linear feature associations, MDS

can also uncover non-linear associations. However, if the associations between

features are essentially linear then multidimensional scaling will provide a similar

representation to that of PCA.

To better visualise the relationship between patients and traits, hierarchical clus-

tering with Hamming distance[62] and average linkage[175] was performed. Groups

identified by hierarchical clustering were assessed with respect to: age of onset and

C-reactive protein levels at diagnosis, using ANOVA disease subtype, gender, fam-

ily history and personal history of autoimmune disease using χ2. Statistic were

performed applying Python SciPy package[140].

3.3.3 Supervised machine learning

In order to discriminate CD and UC patients, a model was assembled utilising dif-

ferent techniques of supervised machine learning. We applied a supervised machine

learning model where the diagnosis of CD and UC was seen by the model. In order

to isolate the key histological and endoscopic features that determined diagnostic

subgrouping we tested a range of classification strategies including ensemble learn-

ers (Boosted and Bagged Trees), linear discriminant analysis and support vector

machines (SVMs) with a variety of different kernels[64, 45].

Data were split in order to construct and then validate the model, 210 patients

(CD=143) and (UC=67) patients were included in the model construction step.

Forty-eight patients (CD=35, UC=13) were set aside to validate the model on

unseen data. Data from IBDU patients (n=29) were used only for a final reclas-

sification. Figure 3.1 is a schematic representation of the model and shows the

usage of the different subsets.
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Figure 3.1: Model schematic and histopathology data processing. Schematic representation of the model
construction (blue section), validation (green section) and IBDU reclassification (red section) phases. Solid arrows
represent data stream while dashed arrows represent parameters or metrics stream. The discovery set was used
to identify the optimal penalty parameter (C) and number of features using the recursive feature elimination with
cross validation algorithm (RFE-CV). These two elements were then passed to the training and testing set which
was then modelled using a support vector machine (SVM). Three metrics were collected: area under the ROC
curve (AUC); accuracy over the 5 folds and; a permutation-generated p-value.

To create a model robust to unseen data, the 210 CD and UC samples were ran-

domly split in two subsets preserving the original disease subtype ratio. The first

data subset was used for searching the best parameters for the CD versus UC clas-

sification (discovery set). The second data subset was used for training and testing

the model according to the parameters determined during the discovery phase. Af-

ter assessing the performance of the final model, data from IBDU patients were

passed to the model in order to classify them as either CD or UC.

Construction of optimal model utilised a linear support vector machine, allowing

for regression of weights for each feature and assessment of the relative importance

of each variable. Additionally, linear SVMs require estimation of a single penalty

parameter (C) that allows for misclassification within the training set. In an
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attempt to improve model performance when optimizing the classifier we allowed

the search space for C values to range from 1 ·10−3 to 1 ·102. Large values of C are

less prone to misclassify data points, but perform suboptimally when classifying

outliers in unseen data. Small C values generate models that are more robust to

outliers by allowing more misclassified data points at the expense of the training

accuracy.

Machine learning approaches are weakened by the inclusion of features that are not

relevant to the classification problem (confounding factors or ‘noise’) and reduce

model performance. In order to minimise noise from non-informative features,

we applied a recursive feature elimination algorithm combined with a 5-fold cross

validation scheme (RFE-CV) selecting pertinent features as described by Guyon

et al. [61]. Including a 5-fold cross validation avoids overfitting the model to

the discovery set by selecting parameters and features that are specific to this set

but do not generalize well, and therefore perform poorly on the test subset. The

selection of the best feature subset and optimal C were chosen to maximise the

classification accuracy over the discovery set.

Following the identification of the optimal C and set of features, we trained a

new support vector machine and tested its efficiency (Figure 3.1). With a 5-fold

cross-validation scheme the algorithm repeatedly fitted and tested data from the

training/testing set, providing the average accuracy in the CD vs. UC classifica-

tion. The area under the receiver operating characteristic curve (AUC) was used

to assess model efficiency. Statistical significance of the observed accuracy was

determined through permutation testing of 1,000,000 randomly generated models

in which sample labels were shuffled. The p-value was then determined by calcu-

lating the frequency at which the observed accuracy was replicated by the random

models. Finally, the overall performance of the model was verified by classifying

unlabelled data from the validation dataset of 48 patients.

Once the model had been fully trained and validated, it was used to classify IBDU

patients and posterior probabilities for membership to both the UC and CD classes

were obtained. These probabilities depend on the distance between an observation
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and the decision function that SVM uses in order to discriminate between the two

groups. The uncertainty in the classification of an individual increases as its profile

is closer to the decision boundary (which is defined by the SVM decision function).

Data manipulation and modelling was performed using Matlab24 (R2016b), Python

(2.7) and the Scikit-Learn27 (0.17.1) package.

3.4 Results

Endoscopic and histological data were collected for 287 patients; 178 patients

with Crohn’s disease, 80 with ulcerative colitis and 29 patients with inflammatory

bowel disease unclassified. Machine learning was applied to 239 patients (CD=143,

UC=97, IBDU=29). Females account for 37% (107) of the individuals in the

dataset. Average age of onset was 11.5 years (range 1.6 to 17.6 years). Twenty-six

(9%) of patients were diagnosed below 6 years of age (very-early onset IBD). The

remaining 48 patients (CD=35, UC=13, average age of onset 13.2 years) were used

to validate the model.

3.4.1 Unsupervised clustering of CD and UC phenotypes

Endoscopic and histological data underwent principal component analysis with

the first three components being representative of 52.2% of the total variance of

data. According to both PCA and multidimensional scaling, there was no clear

separation of Crohn’s disease and ulcerative colitis (Figure 3.2 A, B).

Despite the lack of distinct clusters, CD and UC individuals are differently dis-

tributed across the 3D space with regions predominantly populated by one or the

other class. As anticipated, IBDU patients were distributed uniformly throughout

the CD and UC data. The same clustering pattern was observed with MDS (Fig-

ure 3.2 B) strongly suggesting linear relationships between the measured features.

The lack of clear clusters confirms the complexity in distinguishing CD and UC
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Figure 3.2: Dimensionality reduction approaches and hierarchical clustering of histopathology data.
A and B - Principal component analysis (A) and multidimensional scaling (B) of clinical data from 239 PIBD pa-
tients. The first three PCA components account for 52.2% of the total variance. Important note – UC/CD/IBDU
diagnoses were used only to retrospectively colour data points and were not included in actual modelling. C
- Heatmap of endoscopic and histological tissue abnormalities in PIBD patients. Abnormal manifestations are
shown in orange, normal in light blue and missing data in white. Asterisks indicate histology features. Ascending
colon, transverse colon and descending colon labels were shortened to A-Colon, T-Colon and D-Colon respectively.
Left hand side bar shows the referred diagnosis: CD in red, UC in blue, IBDU in yellow. Again, UC/CD/IBDU
diagnoses were not used to model data but only to retrospectively colour each element. The top bar shows the
type of investigation: histology in white, endoscopy in black. Identified colorectal groups are shown by dashed
boxes and labelled from one (i) to four (iv). D - Box and whisker plot depicting C-reactive protein (CRP) levels
recorded at diagnosis across the four identified groups. Each box represents data from the first (bottom edge)
and the third (top edge) quartile. Red bars and numbers are the median CRP level. Dashed whiskers show the
lowest and highest CRP within each group. Black circles are outlier data points.

phenotypes from microscopic and macroscopic observations.
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3.4.2 Hierarchical clustering of PIBD subtypes

In accordance with PCA and MDS analyses, hierarchical clustering did not stratify

patients according to CD, UC and IBDU diagnosis (Figure 3.2 C). However, it did

reveal the presence of distinct subgroups of patients, corresponding to complex

patterns of abnormalities. As expected, most of the macroscopic and microscopic

dysregulations were observed in the colorectal region. Considering only the colorec-

tal region, it is possible to observe four distinct groups (Figure 3.2C, i-iv). In the

first group (i) patients exhibit tissue abnormalities identified by both endoscopy

and histology. The second group (ii) shows colorectal abnormalities only after a

microscopic investigation. Patients belonging to the third group (iii) present with

inflammation of the rectum and the descending colon. Finally, the fourth group

(iv) does not show any disruption of the colorectal region. Some patients are not

placed within any of these four groups since they do not show any clear colorectal

pattern. These patients have higher numbers of disease locations with null values

(reflecting restriction at endoscopy). The ileum exhibited an inconsistent pattern

of disruption, acting as interface between mostly-abnormal and mostly-normal re-

gions (left hand side vs. right hand side of Figure 3.2C). Additionally, endoscopic

or histological abnormalities in the upper GI tract are less frequent compared to

lower GI tract abnormalities, this is equally applicable to all patients, regardless

of their diagnosis (of CD or UC).

The four groups were analysed for any difference in their composition of patients

with: a diagnosis of CD or UC; gender; positive or negative family history and

clinical diagnosis of any other personal autoimmune disease. There was no signif-

icant difference between the groups with regard to any of these variables with the

exception of diagnosis. Group iii (inflammation of the rectum and the descending

colon) was significantly enriched for patients with ulcerative colitis (p = 0.046)

and group iv (no colorectal involvement) was significantly enriched for patients

with Crohn’s disease (p = 0.007). Groups i and ii were not significantly enriched

either for CD or UC indicating presence of both disease types.

Regression analysis of the four groups identified a significant (p = 0.003) increase
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Table 3.1: Preliminary assessment of linear and non-linear models. Linear support vector machine (SVM)
was the selected model.

Method Accuracy (σ)
Simple Tree (4 splits) 78.1 (±1.3%)
Medium Tree (20 splits) 75.2 (±1.1%)
Complex Tree (100 splits) 76.7 (±2.1%)
Linear discriminant 81.0 (±0.6%)
Linear SVM 80.5 (±1.4%)
Quadratic SVM 78.1 (±1.6%)
Cubic SVM 73.8 (±0.4%)
Boosted Trees 74.8 (±1.2%)
Bagged Trees 77.6 (±1.5%)

in CRP for patients in group iii compared to the other groups (Figure 3.2 D).

There was no significant difference in age of diagnosis across groups.

3.4.3 Supervised classification of PIBD patients

Model selection was based by testing a range of different algorithms and kernels.

Table 3.1 reports classification accuracies obtained fitting and testing models on

the whole dataset excluding IBDU patients and the validation cohort. Reported

accuracies are only informative in terms of comparing different models and were

not validated on external dataset. Linear discriminant and linear support vector

machine outperformed other tested algorithms. Linear models performed better

than Tree-based model and non-linear SVMs. Although 0.5% less accurate com-

pared to a linear discriminant model, linear SVM has a larger standard deviation,

allowing potential better result. Moreover, linear SVMs represent the best choice

in terms of adaptability and interpretation. Linear discriminant models assume

data have the same covariance and a normal distribution, while SVMs does not

have such requirements and is better suited for discriminative tasks [134]. There-

fore, an SVM with a linear kernel was used as core classifier in our model.

In order to elucidate which observations are needed for optimal disease classi-

fication of patients, three supervised models were generated implementing ten

endoscopic features, ten histological features and both endoscopic and histological

features. The combined model outperforms the other two models achieving the

highest accuracy; the model correctly assigns the diagnosis of CD or UC to a pa-

tient in 82.7% of cases (Table 3.2). All metrics that assess model performance agree
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Table 3.2: Performance of the three optimised supervised models. Asterisks indicate histological features.
All metrics represent the average over the 5-folds of the cross validation.

Input Accuracy AUC Precision Recall F1-score (#) Features

Endoscopy 71.0% 0.78 0.89 0.68 0.75
(5) Duodenum, Ileum,

D-Colon, Rectum, Perianal
Histology 76.9% 0.82 0.81 0.86 0.83 (1) Ileum

Combined
(Endoscopy + Histology)

82.7% 0.87 0.91 0.83 0.87

(8) Duodenum, Ileum,
D-Colon, Rectum,

Perianal, Oesophagus.*,
Ileum*, A-Colon*

in the superior efficiency when using combined endoscopy and histology data. The

combined model shows the highest accuracy, precision and F1-score; recall is close

to that observed in the histological model. The endoscopy model performs well in

terms of precision but is poorer in recall. Conversely, the histological model has

the lowest precision but highest recall. This indicates that using endoscopy data

the model is highly precise in identifying most of individuals from both classes

(CD and UC). However, the endoscopy model is prone to produce more false neg-

atives (recall) compared to the histology model. Both the accuracy and the F1

score, which combines precision and recall metrics, indicate that histology model

is superior to the endoscopy model although having a lower precision.

Moreover, the combined model selects all the features selected by the endoscopy

and histology models plus two additional histological features (oesophagus and

ascending colon). As expected, the ileum location appears to be consistently

informative for the discrimination of CD and UC patients in every model, and

in the histological model is sufficient to diagnose CD or UC in 76.9% of cases.

Features with similar observations in both CD and UC patients are not informative

for the classification while locations with a more variable manifestation of tissue

damage were typically selected in the RFE-CV selection.

The greatest area under the curve (AUC) was observed in the combined model

(0.87) followed by the histology (0.82) model and then the endoscopic model (0.78)

(Figure 3.3 A). The endoscopic, the histological and the combined models showed

a statistical significance of p= 3 · 10−3, p = 5 · 10−6 and p = 1 · 10−6 respectively

(Figure 3.3 B).

For each training fold of the combined model, the observed accuracies (in decimals)
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Figure 3.3: Supervised classification performance and metrics using histopathology data. A - Receiver
operating characteristic of the combined (light blue), histology (purple) and endoscopy (green) models. The grey
dashed line represents the expected performance of a random model. B - Permutation tests of models: dashed
lines represent the observed accuracy of the combined (light blue), histology (purple) and endoscopy (green)
models. The endoscopic, histological and combined models have a p-value of p=3x10-3, p=5x10-6 and p=1x10-6
respectively. The grey dashed line represents the average expected performance of random model. Solid coloured
lines show the distribution of random permutations for each model. C - Classification of IBDU patients with
the combined model in Crohn’s disease (red) or ulcerative colitis (blue) subtypes. The classification posterior
probability indicates the confidence of the model in assigning UC or CD labels. D – Cumulative confidence in
IBDU reclassification represented as cumulative density function (red line) of posterior probabilities for 29 IBDU
patients. Each dot represents an IBDU patient.

were 0.86, 0.67, 0.95, 0.85 and 0.80 respectively. Overall, the mean accuracy was

0.83, the median 0.85, the standard deviation 0.09 and the standard error 0.05.

Over the 1,000,000 label permutations, none of the randomised models achieved

an accuracy equal or greater than the observed (p = 1 · 10−6). These metrics

indicate good overall performance and no overfitting of the model.
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Table 3.3: Performance of the trained combined histopathology model over the validation set.

Validation set Accuracy % Precision Recall F1-score Support
UC - 0.65 0.85 0.73 13
CD - 0.94 0.83 0.88 35
Average/Total 83.3% 0.86 0.83 0.84 48

3.4.4 Model validation in an additional cohort

In order to further validate the combined histological and endoscopic model (us-

ing the 8 features shown in Table 3.2) we applied it to classify 48 anonymised

PIBD patients (validation set, Figure 3.1). These data had not been used in the

optimisation or training of the model. The model was accurate in classifying this

additional cohort, correctly assigned the diagnosis of CD or UC in 83.3% of cases

(Table 3.3). The performance metrics calculated on the validation set confirm the

previous results in terms of accuracy and recall. However, precision, and conse-

quently the F1-score, are lower when compared to the performance calculated over

the test set. F1-score of the validation set is still higher than the histology and

endoscopy only models.

Since the validation set never took part in any phase of the model generation, and

since the model was already trained and tested avoiding overfitting, the accuracy

over the validation set did not required any additional shuffling.

3.4.5 IBDU reclassification

The combined model was used to attempt to classify the 29 IBDU patients by

assigning them to either a CD or UC subtype and computing the posterior proba-

bility of belonging to each class (Figure 3.3 C). It should be noted that the model

was not trained to classify IBDU therefore patterns restricted to this class were not

learnt by the algorithm. Instead the model aims to identify patterns learnt from

UC and CD data in these previously unseen IBDU cases. When applied to the 29

IBDU patients, 17 patients were assigned as Crohn’s disease and 12 as ulcerative

colitis. In 17 of these patients the IBD subtype classification was estimated with

a probability greater than 80% (Figure 3.3 C). Exploring the distribution of the
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posterior probabilities (Figure 33.3 D), patients are not equally distributed across

the entire probability range. The sigmoidal distribution reflects higher certainty

of the model predication where patients present with a pattern learnt during the

construction step but prediction accuracy declines rapidly for patients exhibiting

previously unseen patterns.

3.5 Discussion

In this chapter we have applied machine learning algorithms to endoscopic and

histological data in order to aid with classification of IBD diagnosis in paediatric

patients. The resulting model demonstrates high accuracy in discriminating CD

and UC patients and also provides an effective visualization of the complex overlap

of these two disease subtypes.

Interpretation of the unsupervised models confirms uncertainty in discriminating

CD and UC subtypes with overlapping and undefined clusters based only on dis-

ease location. We observed a limited separation of Crohn’s disease and ulcerative

colitis patients, with UC presenting less variance than CD cases. Based on the

endoscopic and histological disease location the unsupervised models did not clas-

sify disease into distinct CD/UC subtypes, instead four distinct groups of patients

were characterised by different colorectal involvement. The hierarchical clustering

was not able to fit some individuals in those previously described groups. There

are clear challenges in diagnostic categorisation based solely on disease location,

however this model points to further subcategorization of disease, with signifi-

cant overlap between UC and CD in groups i and ii. Whilst group iv is almost

exclusively CD all colonic involvement has some overlap between disease types

suggesting sub-classification of disease may be useful in distinguishing subtypes

of CD or UC, potentially with impacts on management decisions. This theory

has been raised previously through mathematical modelling of complex IBD data

including serological and genetic markers. Regression analysis of CRP level at

diagnosis with groups i-iv indicates a statistically significant increase in CRP in
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group iii, whilst the reason behind this are uncertain there is a need to identify pa-

tients with increased systemic inflammation in order to optimise treatment. Here

we provide potential evidence of the need for further subcategorization of disease

based on solely on clinical parameters used in standard practice.

It is well established that ileal inflammation is key to diagnosis of Crohn’s disease.

Here we found that ileal inflammation (endoscopic or histological) is the only

feature selected as important in all the models we constructed, providing evidence

that ileal disease is the single most important factor for disease classification.

Additionally, whilst colonic inflammation is important in paediatric UC, we find

that it is also frequently present in CD with significant overlap between the two

diseases.

Our machine learning models have been utilised for solving a classification prob-

lem (CD vs UC) and additionally to observe data structure and complexity with a

view to improvement of current classification. Through the application of machine

learning to these data we confirmed the higher accuracy of histological over en-

doscopic data if used in isolation. We also demonstrated that both investigations

are needed for an optimal classification, although the current Paris classification

only accounts for endoscopic disease location. Recently there has been interest in

discrepancies between endoscopic and histological disease extent, with some calls

to review the Paris classification of paediatric IBD to incorporate an additional

histological score (Section 1.4.1). This model provides further evidence to suggest

that there are significant differences between endoscopic and histological disease

extent, with notable differences seen in figure 3.2C. Additionally the classification

accuracy of the model of endoscopic disease alone is less than a combined model,

further raising the need to discuss a modification to the Paris classification. The

potential clinical utility of machine learning models such as the one we have devel-

oped are significant. By placing these basic data into the model a clinician will get

a disease probability score. The model is open to incorporating additional data

coming from independent clinics, leading to increasing accuracy over time.

IBDU presents an ongoing challenge to clinicians. There is broad guidance on
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treatment but increasingly there is uncertainty with the diagnosis and reclassifica-

tion of disease at a later stage [100]. The model described here has been developed

in an attempt to classify Crohn’s disease and Ulcerative Colitis at diagnosis, and

not to reclassify IBDU based on disease location. Despite this, IBDU patients

appear throughout the PCA/MDS plots and do not cluster, indicating a hetero-

geneous disease phenotype. We applied the model to 29 patients diagnosed with

IBDU at initial endoscopy, 17 of these patients were assigned a probability of

greater than 80% to either CD or UC based on their disease location. Posterior

probabilities obtained from the classification of IBDU patients as either CD or

UC, resulted in either high (p>0.85, n=14) or low (p<0.65, n=10) values, with

few (n=5) exceptions. This distribution suggests the presence of at least two sub-

groups within IBDU patients. The first, where the model assigns the CD/UC label

with high confidence, might represent a subset of patients with a clinical presenta-

tion similar to those already observed and learnt in CD and UC cases. The second

subgroup, labelled with low confidence, might instead reflect a distinct clinical

presentation that does not fit in the current classification criteria. Support from

ML modelling may be particularly attractive for IBDU cases.

The strengths of this study lie in the robust nature of data collection. Patients

recruited to this study were diagnosed by 4 different clinicians from Southampton

Children’s Hospital, therefore the pattern discovered by the model is not that of a

single gastroenterologist. The supervised model combines different machine learn-

ing elements, but its relative simplicity makes it quick and easily interpretable.

The feature selection step (RFE-CV) implicated the most informative GI loca-

tions for diagnosing IBD subtypes.

Through this model we report a diagnostic accuracy of 82.7% with an area under

the ROC curve of 0.87, although for clinical application this would need to be

increased to exceed 0.95 [155]. Comparing the metrics of the tested model with

the performance over the validation set we conclude that: 1) the combined model

performs better than individual histology or endoscopy models; 2) that both endo-

scopic and histological evidences are needed for an optimal classification of PIBD

and 3) performance over the validation set is similar to that observed over the
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test set, confirming the absence of overfitting and good generalisation. Moreover,

performance metrics seen in the validation set, suggest that classification of UC

patients is much more complex than for CD patients, reflecting the uncertainty

observed in clinics. In total, 94% of Crohn’s disease patients were successfully

labelled as CD while only 65% of UCs were correctly labelled in the model. In

conclusion, the missing 17% percent in accuracy can be mostly attributed to a

lower discriminability of patients affected by UC. Additionally, this work can be

seen as a blueprint for improvement of IBD categorisation in the future, through

modelling of additional data, such as variants from whole-exome sequencing, tran-

scriptome profiles and microbiome signatures it may be possible to gain further,

clinically relevant, disease groups [198]. In the future this may aid with treatment

selection, prognostication and ongoing management.

In conclusion, we presented a mathematical model of histological and endoscopic

data within IBD; it provides a model with high diagnostic accuracy on unseen

data (83.3%). We present 4 novel subgroups of disease identified by unsupervised

machine learning based on colonic disease.

The purpose of this chapter was two-fold, to better understand disease aetiol-

ogy, heterogeneity and classification and to understand the potential for machine

learning to assist with disease classification using solely clinical data. Through

further work machine learning can aid clinicians to accurately subtype disease and

personalise treatment. Additionally this may help with classification of IBDU.

Whilst existing methods for diagnosis appear robust, the opportunity to improve

and personalise therapy for patients through new and more accurate subtyping of

disease is exciting and increasingly tangible.
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Chapter 4

GenePy – a tool for estimating

gene pathogenicity in individuals

using next-generation sequencing

data

4.1 Summary

In this chapter I describe the design, development and testing of GenePy, a gene

score to transform NGS data that preserves biological information. GenePy aims

to fill the lack of approaches for annotation and interpretation of genomic se-

quencing data for complex diseases. The key aspect of GenePy is the gene-based

approach capable of assigning a score of deleteriousness on a per-patient basis over

sub-genomic regions such as genes. Implementing known deleteriousness metrics

in addition to incorporating allele frequency and zygosity information, GenePy im-

proves the modelling of biological information brought by NGS data. Scores were

generated for 15,000 genes across 508 individuals using whole exome sequencing

data.

Despite relatively modest sample sizes, typical for NGS data, when assessing
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GenePy scores for NOD2, a well established IBD associated gene, Crohn’s dis-

ease patients exhibit a higher level of deleteriousness compared to controls (p =

1.37 · 10−4). GenePy scores demonstrate increased power to significantly discrim-

inate CD patients from controls than SKAT-O, the most popular test used for

assessing the combined effects of common and rare variation. This chapter ad-

ditionally describes the potential of GenePy as per-gene/per-individual score to

facilitate downstream integration of NGS data into machine learning, network and

topological analyses.

All the work presented in this chapter, from the NGS data processing to the model

development and testing, was conducted by myself.

4.2 Introduction

As result of price reduction and increased throughput, next-generation sequencing

(NGS) has emerged as an effective tool for detecting single nucleotide variants

(SNVs) causing rare Mendelian conditions [189]. This resulted in an increased

application of whole exome sequencing in clinical framework, increasing the di-

agnostic yield of rare diseases by 25-31% [77, 167]. Through comparison against

human genome reference sequence, it is possible to identify in excess of 30,000

variants when based on whole exome data that captures all the coding regions of

the genome. As explained in Chapter 1.1.1, the number of identifiable variants

scales quickly when sequencing is performed on the entirety of human genome.

The sole identification of very rare variants in empirically implicated candidate

genes related to the phenotype of interest is not sufficient to imply causality.

Further exclusion/filtering criteria has to be applied in order to remove variants

which might not have an impact on protein amino acid sequence or that occur

more frequently than the disease of interest. These steps can reduce the search

space for causal variation by orders of magnitude to smaller sets of hundreds or

even tens of genetic alterations that are then prioritised by in silico methods [59].
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Many prediction tools have been developed in order to estimate the potential im-

pact of genetic variants on gene/protein function. Predicting pathogenicity or

deleterious impact can be achieved through a variety of algorithms that focus on

one or more specific biological aspect(s). Three broad classes of deleteriousness

prediction metrics are: (i) conservation metrics, (ii) function alteration metrics

and (iii) composite scores. Conservation metrics such as GERP++ [41], phast-

Cons [172] and phyloP [150] assign a high deleteriousness to variants where the

homologous position in other species has remained constrained over evolutionary

history. Scores focused on predicting the potential disruption of protein function-

ality, for example through alteration of resultant protein amino acid sequence,

include SIFT[173], FATHMM [170], fathmm-MKL [169], PolyPhen2 [3], Muta-

tionTaster [166], PROVEAN [37] and VEST3 [32].

To date, no single metric has proven unilateral superiority in estimating consequent

severity, despite an expanding list of metrics based on subtly different foundations

and assumptions [30]. While individual metrics have the ability to perform well in

isolation, discordant evidence when assessing the same data with multiple metrics

has led to increased uncertainty in choice of prediction tool [38]. This in turn has

led to the development of a range of composite prediction tools applying statistical

and machine learning methodologies that combine metrics assessing both conser-

vation and functionality in order to obtain higher accuracy [186]. Amongst the

most utilised composite scores there are CADD [88], MetaSVM and MetaLR [46],

M-CAP [75] and DANN [151]. CADD currently detains the highest AUC in de-

tecting pathogenic variants in the ClinVar database whilst DANN is its evolution

based on artificial neural network. Despite so, no one method emerged as optimal

[116]. For this reason, when assessing variant deleteriousness it is still necessary to

observe consensus prediction based on multiple scoring metrics rather than focus-

ing on any single score [106]. This remains the case when studying rare Mendelian

disease where single gene mutations imparting severe consequence are expected to

represent the most extreme set of deleterious variants.

In contrast to rare diseases, common genetic diseases such as ischemic heart

disease, asthma, inflammatory bowel disease (IBD) and Alzheimer’s disease are
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caused by the combined action of multiple genetic variants working in combination

with environmental factors [49]. Collectively, common diseases impose an enor-

mous economic burden and arguably have the greatest unmet need for diagnosis

and stratified treatment [164]. Despite the same clinical presentation, the set of

genes and variants inducing the phenotype varies from patient to patient. This

large heterogeneity is one of the key elements of complex diseases.

Prior to the advent of NGS, genome-wide association studies (GWAS) were the

most fruitful approaches for linking genetics to the molecular bases of complex

diseases. These studies typically reports more than a million common single nu-

cleotide variants across the genome and identified statistically significant associa-

tions of bialleleic markers with very large cohorts of independent patients compared

to ethnically match controls. Genetic regions implicated by GWAS were assumed

to harbour common variants in genes or regulatory elements underpinning the dis-

ease of interest. However, since these genetic breakthroughs were achieved using

necessarily huge cohorts of patients and controls, they were largely uninformative

on an individual patient basis. The variants identified simply associate genomic

regions without necessarily being causal. Importantly, the relevance and value of

GWAS findings to individual patients cannot be translated to clinical practice in

terms of either diagnosis or treatment.

The application of NGS to improve our understanding of common complex diseases

has been largely limited to burden tests, consisting of combined association tests

integrating information from common and rare variation across defined genomic

regions such as genes. While this approach broadens the search space by includ-

ing rare variants, detectable by sequencing approaches but not through GWAS,

they are most often implemented through collapsing multiple variants into a sin-

gle value for univariate analysis. The modest success of these approaches may be

partly attributable to their intrinsic lack of biological information and inclusion

of both causal and benign genetic variation [101, 131]. In order to address this

limitation, Neale et al. developed the C-alpha test, correcting for both protective

and deleterious variants but at the cost of losing statistical power. Currently,

SKAT (and SKAT-O optimised for small sample size) [95] represents the most
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sensitive approach to test for association between a genomic region and a phe-

notype. SKAT jointly assesses both rare and common variants maximising the

statistical power and representing a new class of analysis lying between burden

and association tests and has been successfully applied to a large variety of com-

plex diseases [195, 158, 159, 184, 185]. While NGS is proving a revolutionary

technology for the diagnosis and treatment of rare diseases, its relatively modest

application in common diseases is limited by the lack of analytical approaches

incorporating individual profiles of genetic variation annotated with biologically

meaningful information. Instead of variant-level approaches, typical for rare dis-

ease or large cohort approaches (e.g. GWAS), contemporary analyses of complex

polygenic disorders requires the development of tools that combine both muta-

tional burden and biological impact of a personalised set of mutations into single

scores for discrete genes. This chapter, describes the development and implemen-

tation of GenePy, a novel gene-level scoring system for integration and analysis of

next-generation sequencing data on a per-individual basis. GenePy incorporates

variant pathogenicity scores, allele frequency and zygosity and sums across all vari-

ants within a gene for each patient. As consequence of a standardised approach for

collecting GenePy scores, single gene values can be compared between individuals.

Following correction for gene size, all gene scores or subsets reflecting pathways,

can be implemented in downstream network analyses or used as input for machine

learning to stratify or classify disease subtypes. We validate GenePy performance

by comparing the genes scores for a cohort of paediatric IBD patients against a

non-IBD cohort for the NOD2 gene – a widely, accepted ‘positive control’ gene

for causality in complex IBD (Section 1.4.2).

4.3 Methods

4.3.1 Sample data

Whole exome sequencing (WES) data were derived from two sources. This first

group comprised 309 patients diagnosed in childhood with IBD. This cohort (fur-
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ther described in chapter 3) includes unrelated, Caucasian patients ascertained

and recruited through Southampton Children’s Hospital who were diagnosed un-

der the age of 18 years according to the modified Porto criteria [97]. Additional

WES data from a cohort of 199 anonymised individuals diagnosed with an infec-

tious disease but unselected for any form of autoimmune disease were also used to

give a total cohort size of 508 individuals with WES data.

Genomic DNA was extracted from peripheral venous blood using the salting out

method [124]. DNA concentration was estimated using the Qubit 2.0 Fluorometer

and the 260:280 ratio calculated using a nanodrop spectrophometer. Fragmented

DNA was subjected to adaptor ligation and exome library enrichment using the

Agilent SureSelect All Exon capture kit versions 4, 5 and 6. Enriched libraries

were sequenced on Illumina HiSeq systems.

4.3.2 WES data processing

WES data from the IBD and control cohorts were processed with the Southampton

custom pipeline (Section 2.2). VerifyBamID [80] was utilised to check the presence

of DNA contamination across our cohort of 508 individuals.

Alignment was performed against the human reference genome (GRCh38/hg38

Dec. 2013 assembly) using BWA[103] (version 0.7.12). Aligned BAM files were

sorted and duplicate reads were marked using Picard[147] (version 1.97). Fol-

lowing GATK recommendations [44], base qualities were recalibrated in order to

correct for systematic errors produced during sequencing. Finally, variants were

called using GATK[122] (version 3.7) HaplotypeCaller producing a gVCF file for

each sample. Samples were processed on IRIDIS4, the University of Southampton

computing cluster, and required on average 4 hours of running time on a 16 pro-

cessors node per sample. The bioinformatic pipeline is further detailed in Section

2.2.

While the standard VCF format reports only alternative calls, the gVCF format

records also regions where variants were not observed, also known as non-variant
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blocks. This difference enables calling of homozygous reference loci when com-

bining the call sets from IBD and controls cohorts. The multi-sample variant

calling was performed by calling separately each sample and then merging all

gVCFs using GATK GenotypeGVCFs. This procedure ensures the accurate call-

ing of homozygous reference genotypes which are otherwise ignored and reported

as missing genotypes (./.). Since directly genotyping 508 samples would result

in weeks of computational time, samples were first combined in six batches using

GATK’s CombineGVCFs (approx. 6 hours/batch on a 16 proc. node) and then

gennotyped with GenotypeGVCFs (approx 1h on a 16 proc. node).

Variant annotation was performed on the genotyped VCF files obtained from

the previous step. Using Annovar (version 2016Feb01) variants were annotated

against: refSeq gene transcripts (refGene), deleteriousness scores databases (db-

nsfp33a) and dbSNP147. Variants allele frequencies were obtained through Anno-

var (ExAc03) and the ensembl human variation API [52].

4.3.3 Quality Control

In order to reduce heterogeneity, it is necessary to control for bias encountered due

to alternative capture kit versions and variant quality. For the entire cohort of

508 samples, exon enrichment was performed using Agilent SureSelect capture kits

but at different time-points. For this reason, there is inter-capture kit variability

across the 508 cohort with kit versions 4, 5 and 6 being applied. To correct for

disparity in the regions targeted by respective versions, all downstream analyses

were restricted to the set of overlapping targeted genomic locations (as defined

by respective kit BED files) using BEDtools v2.17 [152]. Following GATK best

practice guidelines, HaplotypeCaller default settings were utilised, implying that

only variants with a minimum Phred base quality score of 20 were called.
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4.3.4 GenePy score

Individuals often have more than one variant in a gene making the interpretation

of their combined effect a challenging task. In order to quantify the contribution

of multiple variants within a gene in defining the IBD phenotype, we developed a

gene-level score that considers the genotype of observed variations, their frequen-

cies in the general population and the estimated deleteriousness assessed using a

variety of existing deleteriousness metrics.

We hypothesised that for each individual sample h within our cohortH = {h1, h2, . . . , hn}

the loss of integrity of any given gene g in the refGene database G = {g1, g2, . . . gm}

can be quantified as the sum of the effect of all (k) variants within its coding re-

gion observed in that sample, where each biallelic mutated locus (i) in a gene is

weighted according to its predicted allele deleteriousness (Di), zygosity and allelic

frequency (fi). The GenePy score Sgh for a given gene (g) in individual (h) is

Sgh = −
k∑
i=1

(Di log10(fi1 · fi2))) (4.1)

Importantly, the choice of variant deleteriousness score is user-defined, and there-

fore the GenePy score is able to take into account different definitions of pathogenic-

ity depending on context. Herein we examine the relative attributes of using any

one of sixteen of the most commonly applied scores (Table 4.1). At any one vari-

ant locus (i), we represent both parental alleles using fi1 and fi2 to embed the

population frequency of allele1 and allele2 and in doing so model observed bio-

logical information on both frequency and zygosity. Any homozygous genotype

therefore is simply the observed allele frequency squared whereas the product of

each of the observed alleles is calculated for heterozygous genotypes. The latter

can therefore accommodate variant sites with multiple alleles in addition to the

typically encountered bialleleic single nucleotide polymorphisms (SNPs). Hem-

izygotic variation from male X-chromosomes are treated as homozygotic. Where

a variant may be novel to an individual or absent from reference databases, we

impose a lower frequency limit of 0.00001. This lower limit is arbitrarily set to con-
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servatively reflect the lowest frequency that can be observed in the largest current

repositories of human variation (ExAc03). The log function is applied to upweight

the biological importance of rare variation.

Deleteriousness metrics were developed to assess damage induced by nonsynony-

mous variation, therefore structural variants such as frameshifts or stop mutations

that truncate proteins are not routinely assigned deleteriousness values. Due to

their highly detrimental impact to function we assign all protein truncating mu-

tations the maximal deleteriousness value of 1. Synonymous and splicing variants

are not routinely annotated by ANNOVAR and were not included in the current

assessment.

Sixteen of the most common deleteriousness (D) metrics were selected for imple-

mentation within the GenePy algorithm (Table 4.1). Five of these metrics (shown

in bold) are unbounded. In order to implement unbounded metrics in GenePy it

was necessary to impose lower and upper limits by applying the respective min-

imum and maximum values observed in the dbnsfp33a database of 83,422,341

known SNV mutations. These limits were used to transform observed values in

our cohort scaled to 0-1.

As a function of their size alone, larger genes have greater opportunity to ac-

cumulate higher deleterious GenePy scores through having a greater number of

variants thus inflating GenePy scores. We therefore generated GenePy scores cor-

rected for gene length (GenePycgl) by dividing the GenePy score by the targeted

length in base pairs and then multiplying by the median observed targeted gene

length in our data (1461 base pairs). A final set of 16 deleteriousness metrics, each

with a range of 0-1 where highest values were most deleterious, were individually

implemented in the model.

4.3.5 Score validation

In the absence of any comparable gene based scoring system for individuals,

GenePy performance was benchmarked by assessing its power to determine sig-
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Table 4.1: Pathogenicity scores for SNVs and their reported ranges in the dbsnfp database. § In
order to maintain uniform directionality, the complement (1 – score) of a value was taken so that across scores,
a value of 0 consistently indicated benign variation and a value of 1 inferred maximal pathogenicity.

Metric Type Implementation Actual range Imposed range for transformation

CADD Composite Score -∞ to +∞ -7.53 to 35.79

DANN Composite Score 0 to 1 -

FATHMM§ Functionality 1-Score -∞ to +∞ -16.13 to 10.64

fathmm-MKL Composite Score 0 to 1 -

GERP++ RS Conservation Score -∞ to +∞ -12.3 to 6.17

M-CAP Composite Score 0 to 1 -

MetaLR Composite Score 0 to 1 –

MetaSVM Composite Score -∞ to +∞ -2 to 3

MutationTaster§ Functionality 1-Score if N/P; Score if A/D 0 to 1 -

phastCons Conservation Score 0 to 1 -

phyloP Conservation Score -∞ to +∞ -13.28 to 1.2

Polyphen2 HDIV Functionality Score 0 to 1 -

Polyphen2 HVAR Functionality Score 0 to 1 -

PROVEAN§ Functionality 1-Score -14 to 14 -

SIFT§ Functionality 1-Score 0 to 1 -

VEST3 Functionality Score 0 to 1 -

nificantly different score distributions in disease cases compared to controls for a

known causal gene and using the same variant data, comparing GenePy results

against that of SKAT-O, the most commonly applied gene level association test.

The cohort comprised 309 individuals diagnosed with inflammatory bowel disease

(IBD) and 199 controls unselected for autoimmune conditions. The analysis fo-

cussed only on the NOD2 gene which represents the most strongly and repeatedly

associated common disease gene conferring strong association specifically with the

Crohn’s disease (CD) subtype of IBD [70, 108, 93]. NOD2 was selected as a pos-

itive control gene, whereby evidence for increased burden of deleterious mutation

encoded in CD patient DNA compared to either ulcerative colitis or control DNA

is expected.

The matrix of NOD2 GenePy scores calculated for all 508 samples was split into

controls and cases with the latter further divided into UC and CD subtypes. Sta-

tistical significance of GenePy score distribution difference between groups was

calculated using the Mann Whitney U test for unpaired data. Using the same

variant input data, the SKAT-O gene based test for association was performed

twice using default settings: firstly by considering all variants called within NOD2

and secondly including only rare variants (MAF<0.05) as per developer recom-

mendations [95].
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Association tests are highly sensitive to false positive results due to spurious as-

sociation brought about by population stratification or systematic differences in

case versus control data. By analysing data from multiple populations the vari-

ability that comes with different ethnicities can introduce noise and might mask

other possible stratifications. Since the Caucasian ethnic group is the most repre-

sented in our cohorts, we excluded non-Caucasian individuals identified through

comparison against the 1000 Genomes Project [1] using Peddy software [143] for

ethnic imputation. Due to compatibility requirement the multi-sample VCF for

our cohort was lifted-over to hg19 reference genome build from the original hg38.

Since the lift-over was necessary solely for ethnicity imputation, we did not inves-

tigated the performance of this step in terms of contigs that were not mapped to

the previous build. The power to call genetic variants is dependent on the quality

of sequencing data [4]. Ajay et al. demonstrated the efficiency of genotype calling

as a function of average depth of coverage and reported that the variant detec-

tion reaches saturation with an average coverage between 40X to 45X. An average

coverage of 50X therefore ensures the detection of 95% of variants observed at the

ideal coverage of 100X. To ensure all samples were of comparable quality, those

showing an average coverage less than 50X per each investigated gene were not

included in downstream analyses.

4.4 Results

4.4.1 QC results

All WES data (N = 508; Nibd = 309; Nctrl = 199) underwent quality control

assessment for contamination using VerifyBamID and were confirmed free of con-

tamination (free-mix statistic <0.01). Out of 508 individuals, we identified three

pairs of first degree relatives, one set of monozygotic twins and one mother-father-

child trio. In order to correct for relatedness (which would bias association tests)

for each related pair, the sample with poorest coverage data was excluded. For the

trio, the child data were excluded and unrelated parents retained. The combined
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genomic dataset (multicalling VCF) containing all the variants called across 508

individuals consisted of 381,451 unique variants.

4.4.2 GenePy score behaviour – impact of allele frequency

and zygosity

Simulated GenePy score (y-axis) were calculated using a range of deleterious met-

ric scores (0.1, 0.5, 0.75, 0.9, 0.95, 0.99) and varying minor allele frequency (x-axis)

(Figure 4.1). The resulting distributions demonstrate the impact of deleterious-

ness and frequency as well as heterozygote versus homozygote states. The plot

reveals the logarithmic nature of GenePy scores for a single variant only (whereas

for any individual, their per gene GenePy score is weighted sum of all variant

scores observed in that individual across that gene). For any single variant, the

theoretical maximum observable GenePy value of ten occurs only with highest

deleteriousness value (D), the lowest minor allele frequency ( MAF = 0.00001)

and in the homozygous state whereas the upper limit for a heterozygote with

the same deleteriousness and frequency settings is five. The logarithmic scale

implemented in GenePy algorithm confers rapidly increasing scores as the MAF

approaches novelty.

4.4.3 GenePy score behaviour – impact of deleteriousness

metric

While there are 27,238 genes annotated in RefSeq, we aimed to generate GenePy

scores only for the overlapping subset of 21,577 target genes captured by all ver-

sions of the Agilent SureSelect capture kits applied. The GenePy scoring algo-

rithm was executed for each of sixteen commonly applied metrics (Table 4.1).

There is fluctuation in the number of genes for which variants were annotated

with deleteriousness metric data using ANNOVAR ranging from 12,921 for M-

CAP (one of the most recently released scores) to 14,745 genes annotated scores

for Polyphen2 HDIV (one of the earliest developed deleteriousness scores) (Table
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Figure 4.1: Single variant GenePy score distribution under fixed deleteriousness values.

4.2). Among the 508 individuals that underwent GenePy scoring of exome data,

the majority of genes are invariant within any one individual (e.g. median 9917 for

CADD metric). This is expected for intrinsically sparse genomic data. However,

across the cohort, no single gene returns a GenePy score of zero in all individuals

indicating all genes have at least one variant observed amongst the 508 individu-

als. The vast majority of genes are scored with GenePy values of less than 0.01

and correction for gene length marginally increases the number of genes achieving

lowest scores. More than 97% of genes achieve a score of less than 0.01 when

the M-CAP metric is used whereas FATHMM scores approximately 65% of genes

in the 0 – 0.01 range. The inflated percentage of invariant genes observed when

implementing M-CAP is explained by its tendency to depress weight for benign

variants compared to other tested metrics[75].

Across the ˜14, 000 genes achieving GenePy scores, the observed score mean (uncor-

rected for length) in our cohort of 508 samples ranges from 0.02 to 0.40 depending

on the applied deleteriousness metric. There is only modest effect on the range of

the mean scores observed after correction for gene length (0.02 – 0.31). However,
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the gene length correction causes increased spread of the data reflected by an ap-

proximate two-fold increase in the coefficient of variation (CoV) for GenePy scores

generated that is consistent across all sixteen deleteriousness metrics. GenePy

scores generated with M-CAP are least impacted by gene length correction but

maintain the largest CoV despite this score demonstrating the lowest maximum

value. Moreover, following the correction, the maxima across deleteriousness met-

rics increase by approximately three to four folds.
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Figure 4.2: Median whole gene GenePy score profiles observed across the cohort of 508 patients with
WES data for all sixteen metrics of deleteriousness. Uncorrected GenePy scores (upper panel) exhibit
characteristic spikes reflecting gene scores strongly influenced by the effect of: single highly deleterious (D = 1)
common homozygous variants (red arrow) or; single highly deleterious very rare/novel variants (MAF = 0.00001)
(blue arrwiw). GenePycgl score profiles (lower panel) do not display these spikes. Invariant genes conferring a
GenePy score <0.01 are overrepresented and not shown here by commencing the x-axis with the 0.01-0.02 bin.
All sixteen versions of the GenePy score exhibit long tails in the GenePy score distribution truncated here at a
score of six. X-axis was log transformed to improve interpretation of scores <0.6.

In order to further investigate the behaviour of GenePy scores across genes, we cal-

culated the median number of genes exhibiting scores falling within non-overlapping

bins across the entire cohort. Figure 4.2 (and Supplementary Figure 7.2) shows the

profiles for the 0.01 to 6 range of GenePy scores and a bin size of 0.01. Genes with

scores <0.01 are overrepresented (Table 4.2) and not shown. Across most of the

sixteen metrics, a distinct pattern characterised by two spikes around uncorrected

GenePy scores of 0.6 and 5 represent genes strongly influenced by a single highly

deleterious common homozygous variants (D=1, MAF=0.5) or a single highly dele-

terious very rare heterozygous variant (D=1, MAF=0.00001) respectively. This

92



profile was apparent for most deleteriousness metrics (except CADD, FATHMM,

MetaSVM and VEST3, see Supplementary Figure 7.2). These two distinctive

spikes are not observable once GenePy scores are corrected for the targeted gene

length (Figure 4.2, lower panel and Supplementary Figure 7.3 ). We did not ob-

serve further spikes or other anomalies in the long right tail of the distribution of

scores greater than 6.

4.4.4 GenePy score testing

When testing for association, it is necessary to remove sources of variation that

would bias the statistical test. In this framework, bias conferred by uneven NOD2

gene coverage, related samples and non-Caucasian ethnicity was removed from all

IBD cases and non-IBD control samples respectively. Six IBD cases were omitted

from further analyses due to sufficient coverage (<50x). One sample was removed

due to a inflated number of shared alleles (>7000) indicating a first degree re-

lation to another case of the cohort. Twenty IBD samples were predicted as

non-Caucasian. Sixteen control samples shown an insufficient coverage, four were

related and thirteen were non-Caucasian. If not controlled, these three charac-

teristics are known source of bias when testing for association, in particular, false

positives due to ethnic differences are well known and described in the current lit-

erature [92, 111]. Figure 4.3 shows the PCA obtained when modelling the genomic

variation of all 508 individuals using the known ethnic background from the 1000

Genomes Project.

There remained 282 IBD cases for analysis of which 172 were diagnosed with

Crohn’s disease (CD), 100 with ulcerative colitis (UC) and a further 10 patients

had a diagnosis of IBD undetermined (IBDU). There was a corresponding number

of 166 controls. The NOD2 GenePy scores for the 282 IBD and 166 control individ-

uals were calculated using all sixteen deleteriousness metrics. Given NOD2 gene

variant association is specific to the CD subtype of IBD, we calculated GenePy

scores for both subtypes grouped separately. By observing the distribution of such

scores between cases and controls, it is possible to observe that NOD2 GenePy
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Figure 4.3: IBD ethnicity imputation. Principal component analysis for the imputation of sample ethnicity.
Small dots represent individuals from the 1000 Genomes project used as background. Larger solid dots represent
individuals in this study coloured according to the imputation result. In order to prevent selection bias, down-
stream analyses were restricted to Caucasian individuals only. The assessment of the ethnicity was performed
modelling 2504 individuals from the 1000 Genomes Project alongside 508 individuals from this study. The multi-
sample VCF for our cohort was lifted-over to hg19 reference genome build and then analysed using the Peddy
software for ethnic imputation. Through Peddy, it was possible to calculate the identity-by-state of all possible
sample pairs to impute their ethnicity.

scores do not follow a normal distribution (Figure 4.4). This made necessary the

use of a non-parametric test for assessing statistical differences between subtypes.

The Mann-Whitney U test comparison of the distribution of NOD2 GenePy scores

between all IBD, CD and UC subtypes against controls identified statistically sig-

nificant differences (Table 4.3). Modestly significant differences were observed

for three of the implemented deleteriousness metrics (M-CAP, fathmm-mkl and

MutTaster) were observed comparing all IBD against controls in this relatively
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Figure 4.4: GenePy scores profiles for the NOD2 gene in the CD and control groups for each of the
sixteen implemented deleteriousness metrics. X-axis indicates GenePy scores grouped in bins of size 0.01
with the first bin shown 0.01-0.02. The y-axis shows the observed frequency of GenePy scores across the CD and
control cohorts.

small sample. When the cases were stratified by disease subtype, UC samples

had significantly lower GenePy scores compared to controls for two of the im-

plemented deleteriousness metrics (MetaLR, phastCons). As expected, the most

significant difference in NOD2 score distribution was observed when comparing

CD patients only against controls. Without exception, a highly significant dif-

ference was observed using every deleteriousness metric with M-CAP the most

significant (p = 1.37 · 10−4) all of which would withstand correction for the three

independent tests performed. Regardless of which deleteriousness metric is used,

the mean GenePy score is consistently higher in CD patients when compared with
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controls. Interestingly, similar results were observed for the SKAT-O gene test of

association when using all variant frequency data but not when restricting to rare

variation (MAF <0.05). Importantly, the magnitude of the SKAT-O difference

between CD patients and control groups was statistically weaker (p = 0.0346) and

less robust to correction for multiple testing. Although not the purpose of this

comparison, we confirmed GenePy whole gene comparison provided statistical ev-

idence two orders of magnitude greater than any single variant association result

(Supplementary Table 7.2).
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4.5 Discussion

Multiple metrics have been recently developed aim to annotate individual muta-

tions in order to sensitively discriminate causal versus non-causal variation. How-

ever, for common complex diseases where the action of multiple variants converge

and combines to the one brought by environmental factors, the assessment of

disease susceptibility through individual mutation profiles is necessarily. Further-

more, in order to interpret and translate genomic data into clinical management, it

is important that novel methodologies provide metrics and evidence for individual

patients and not just indications of modest genetic effects across large cohorts.

Herein, we describe the implementation of GenePy representing a novel model to

establish the genetic burden as direct measure of the combined effect of mutations

across each gene for each individual. The scoring system permits end-users freedom

of choice of appropriate/preferred variant deleteriousness metric. GenePy should

not be interpreted as one of the many new models that try to integrate multiple

deleteriousness metrics that relate to variants only but rather as a novel method for

scoring a whole gene in an individual. By summing across genes, GenePy further

integrates biological information on frequency and zygosity and when being used

to examine all genes or subsets thereof, can be corrected for gene length.

The analysis of GenePy profiles reveals the high variance necessary to distinguish

mutational burden. As a consequence of the logarithmic implementation of allelic

frequencies, GenePy up weights rare pathogenic variants making the additive score

across a gene theoretically limited only by the number of variant sites within that

gene. The majority of genes return a GenePy score of zero for any one individual

but as most coding variation is rare, the likelihood of observing variation in any

one gene is positively correlated with cohort size.

We provide proof of principle that the GenePy improves detectability of clini-

cally meaningful gene perturbations. GenePy performance compares favourably

against the most commonly applied gene based association test optimised for small

data sets (SKAT-O). Such superiority to detect the subtle effects of genes in com-
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plex disease is likely attributable to the additional modelling of innate biological

features of mutations. Power to determine significant GenePy score differences

between patient and control groups was consistent across sixteen different metrics

of variant deleteriousness. Despite differing underlying principles, all metrics per-

formed concordantly reporting a similar level of significance, with GenePy scores

generated using M-CAP metric returning the most significant difference in CD

patients compared to controls. Despite this, it is likely that no metric will prove

optimal in all situations or conditions. The GenePy scoring system can simply

implement new and improved variant deleteriousness metrics that are constantly

evolving with improved interpretation of NGS data.

As with all large-scale data, GenePy scoring is dependent upon data integrity

and elimination of systematic bias or technical artefacts. High quality individual

DNA samples must be sequenced to sufficient depth of coverage to return confi-

dent variant calls. Particularly for larger scale analyses using multiple samples,

it is essential to employ concordant capture kits, sequencing platforms and in-

formatic pipelines or correct raw data accordingly. While these pre-processing

quality control steps and generation of the multi-calling VCF file represent the

highest computational burden, GenePy score calculation is amenable to batching

and computationally trivial.

Many of the currently available deleteriousness scores implemented in GenePy fail

to annotate synonymous, splicing or protein truncating variation. While we arbi-

trarily imposed maximum deleteriousness scores to protein truncating mutations,

we standardised the set of variants examined across metrics by excluding syn-

onymous and splicing variants from this analysis. Deleteriousness metrics based

on solely on conservation could be calculated for all genomic locations and im-

plemented for the assessment of non-coding regions derived from whole genome

sequencing. Due to association testing in Caucasian samples only, we restricted

allele frequency annotation to that ethnic group. Arguably, there is merit in im-

plementation of global allele frequency estimates or those from more ancestrally

diverse populations.

99



Further versions of the GenePy scoring system might see the integration of gene

essentiality [145] (and conversely gene redundancy) or gene damage indices (GDI)

[74] to improve the amount of biological information modelled. Similarly, the

frequency of synonymous variants, so far ignored my our model, or the presence of

GpC rich regions can be exploited to calculate the mutability rate on a per-gene

basis and therefore correct GenePy scores accordingly. Since IBD is a condition

restricted to the gastrointestinal system, gene expression rates (obtained from the

GTEx database) could be integrated into GenePy to provide IBD-tailored scores

that would take into consideration tissue-specific effects. On a more challenging

level, long read NGS data enabling the discrimination of gametic phase would

substantially advantage integration of inheritance models and haploinsufficiency.

However, the technology to produce such data is still in development or not as

cost effective as short read WES.

The key advantage of GenePy is its provision of a continuous quantitative measure

of biological integrity of a gene within individuals, resulting in a score that is easily

integrated into downstream analyses. GenePy scores are not dependent on cohort

size and can be calculated and assessed on per-patient patient basis. GenePy

scores are suited to pathway analyses where scores can be summed across defined

molecular cascades. For the particular assessment of complex disease, machine

learning tools that integrate multi-omic and extensive ‘Big Data’ to determine

ambiguous patterns are increasingly applied. The ability to input biologically rich

information at the gene and individual level represents an important step change

from the more traditional methods of assessing genetic data at the variant and

cohort level.
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Chapter 5

Stratification of paediatric

patients using immunogenomic

data

5.1 Summary

In this chapter we investigate novel approaches to stratify paediatric IBD patients

based on the integrity of their innate immune response. Through the application

of unsupervised approaches cytokine response levels were modelled to identify

eight novel immuno-phenotypes. Based on this information, we applied GenePy

(Chapter 4) in order to collect gene scores from individuals for whom immunology

data was obtained. GenePy scores from specific cytokine-related genes provided

evidence of the exact molecular levels involved in characterising one of the novel

immuno-phenotypes observed in our cohort. Moreover, this work represent a fur-

ther proof of concept for modelling of WES data performed by GenePy.

Whilst the recruitment, immunoassay design and data collection was performed by

Dr. Tracy Coelho, I was responsible for normalization and modelling of cytokine

response data. I was also responsible for the collection, quality control, process-

ing, structured analysis, modelling and all the analyses involving WES data ang
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GenePy scoring.

5.2 Introduction

The principal symptom of inflammatory bowel disease is recurrent inflammation

of the gastrointestinal system, that alternates between acute phase to remission of

disease. According to the current literature, the chronic activation of the innate

immune response through various signalling pathways represent one of the main

mechanisms of inflammation involved in the pathogenesis of IBD [133]. Cytokines

have been identified as key players in regulating such activity through anti- and

pro- inflammatory effects. Subsequent to a plethora of upstream signals, cytokines

are produced by a wide range of immune cells. Cytokines represent a broad class

of small proteins divided in chemokines, interferons and tumour necrosis factors

(TNFs). From a molecular perspective, pathways are usually modulated by cell-

surface receptors that are triggered by specific cytokines. Figure 5.1 shows the

mechanism of cytokine production from immune cells upon bacterial invasion. In

addition to the crucial role of maintaining a correct mucosal homoeostasis, cy-

tokines are important proliferation regulators, therefore a disregulated expression

of such proteins can lead to IBD-associated intestinal cancer.

The production level of cytokines is therefore strongly regulated by multiple path-

ways all interacting through the NF-kB pathway, which represents the main hub

were stimuli are integrated and modulated. Together with mitogen-activated pro-

tein kinases (MAPK ) pathway, the NF-kB pathway controls the inflammatory re-

sponse in IBD by promoting the expression of pro-inflammatory genes [10]. Due to

the hub role of NF-kB, a large variety of genes are differentially regulated between

different cell types. Despite this complexity, an increased expression of NF-kB in

macrophages was observed IBD patients with the subsequent augmented secretion

of TNF-α, IL-1 and IL-6 cytokines. The increased production of these cytokines

directly reflects the mucosal tissue damage observed in IBD [133].

Due to the powerful role of cytokine as molecular modulators, many drugs has
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Figure 5.1: Cytokine production in IBD. Cytokines and transcription factors are produced by immune cells
to control homoeostasis and inflammation. An unbalanced production of such proteins can lead to both ulcerative
colitis and Crohn’s disease. Image from [133].

been developed either mimicking or inhibiting their activity. Drugs that interfere

with cytokine activity have become of common use in the treatment of paediatric

and adult IBD cases with the TNF-α blocker one of the most employed [86].

The aim of this study was to identify novel IBD patient strata through the analysis

and modelling of cytokines levels. Due to the high impact of canonical treatments

on cytokine levels, data must be collected uniquely from treatment näıve patients

which would have an unbiased expression level [48, 201].

Of the many pathways involved in IBD pathogenesis, the NOD2, TLR1-2 and

TLR4 pathways are the most closely related to the cytokine regulations [133]. In

order to trigger these pathways and therefore evaluate the integrity of the NF-kB

hub in terms of cytokine production, peripheral blood mononuclear cells isolated

from paediatric IBD patients were induced using three specific ligands.

Whilst simple statistical approaches are the gold standard for evaluating differ-

ence between samples, unsupervised machine learning algorithms (Section 6) can

provide accurate patient stratification. Methods such as principal component anal-

ysis, t-SNE or more standard clustering algorithms can be used to identify patterns
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in complex datasets. The advantage of unsupervised approaches is their complete

blindness towards any clinical label that might bias stratification. Conversely,

this lack of a priori knowledge ensures that obtained clusters, if any, are uniquely

data-driven.

Due to the tight relationship between cytokine/regulatory pathways and genetics,

next generation sequencing data might be coupled to cytokine expression levels

leading to a better understanding of the molecular strata in paediatric IBD pa-

tients.

To summarise, this chapter focus on the identification of induced immune responses

patterns in treatment näıve paediatric patients with IBD and the coupling of

immunoassay data together with whole exome sequencing data. By merging these

two data types we expect to observe novel IBD immuno-phenotype supported by

both immune and genetic components.

5.3 Methods

5.3.1 Sample Data

Patients were recruited through the genetics of paediatric inflammatory bowel

disease study at Southampton Children’s Hospital. Patients were diagnosed under

the age of 18 years according to the modified Porto criteria [97]. The cohort

used in these analysis comprised 22 treatment näıve patients suspected to have

inflammatory bowel disease, of which 14 were subsequently diagnosed with Crohn’s

disease (CD) and 8 with ulcerative colitis (UC). Ten additional patients for which

a suspected IBD diagnosis was formulated and then not confirmed were included

in the analyses as controls.

Genomic DNA was extracted from peripheral venous blood and fragmented DNA

subjected to adaptor ligation and exome library enrichment using the Agilent

SureSelect All Exon capture kit version 6. Enriched libraries were sequenced on a
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Illumina HiSeq 2500 machine.

5.3.2 Immunological assay

Peripheral blood mononuclear cells (PBMCs) were extracted from blood samples

obtained from both IBD and control individuals. In order to trigger specific im-

mune response pathway in PMBCs, cells were activated using muramyldipeptide

(MDP, NOD2 agonist); Pam3CysSerLys4, a synthetic tri-palmitoylated lipopep-

tide (Pam3CSK4, TLR1-2 agonist); and lipopolysaccharide (LPS, TLR4 agonist).

These three stimulating ligands were specifically selected to activate innate sig-

nalling pathways known to be involved in the pathogenesis of IBD.

Immunological assay was used to simultaneously measure the concentrations of 4

cytokines including IL-10, IL-6, IL-1β and TNF-α with two technical replicates.

Due to the high variability in monocyte counts in a healthy population, cytokines

concentrations required normalisation according to each patients PBMC readouts.

Monocyte counts were obtained through flow-cytomoetry analysis.

5.3.3 WES data processing

Whole exome sequencing data was obtained for 21 out of 22 IBD patients with raw

sequencing data processed as previously described in Section 4.3.2. By applying

GenePy (Chapter 4) gene scores were calculated for all available genes for each of

the 21 IBD patients. GenePy is a per-patient gene scoring algorithm for integrat-

ing next generation sequencing data preserving important biological information

such as variant deleteriousness, zygoisity and rarity. GenePy provides continuous

scores that can be compared across individuals or genes. Since genes have dif-

ferent length, GenePy scores were normalised by dividing each gene for the size

(expressed in bases) of the region captured by the exon enrichment kit. GenePy

can produce gene scores implementing a wide range of deleteriousness metrics

ranging from conservation to composite scores. In the following analyses, GenePy
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scores were calculated implementing CADD [88], the best established compos-

ite score currently available which still detain the highest AUC in discriminating

pathogenic vs. benign variants in the ClinVar dataset.

5.3.4 Unsupervised stratification

Raw immunoassay data obtained from patients and controls were obtained in five

distinct batches including both cases and controls.

Immunoassay data normalisation In order to compare IBD patients cytokine

responses with those observed in control samples and to detect specific signatures

of individual IBD patients, cytokine levels required a normalisation within a ref-

erence range. Mean and standard deviation were calculated for the paediatric

controls (n = 10) and used to scale IBD sample readouts. This transformation

ensures that each ligand-cytokine feature is centred on a mean of zero and scaled

to unit variance. The scaling, also known as standard scaling, was applied to each

value X = {x1c, x2c, ..., xic} for i representing each individual in the IBD cohort

and c a specific ligand-cytokine combination and is defined as follows:

X ′c =
Xc − µcontrols,c
σcontrols,c

(5.1)

We herein define hypo-inflammatory or hyper-inflammatory states where IBD pa-

tient levels deviate respectively more than twice the standard deviation (2σ) below

or above that observed in controls. Cytokine responses within the ±2σ range were

considered normal. The divergence of more than two standard deviations from nor-

mality is a well established and accepted threshold in the analysis of immunologic

data [142]. Standard scaling was performed using the Python v2.7 Scikit-learn

v0.19 package.

For each patient, standardised response values were represented through a 12

spokes radial plot. Each of the spokes represents one of the 12 ligand-cytokine

combination. Individual cytokine response profiles were represented by joining
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the data points on each spoke.

Principal component analysis Principal component analysis (PCA) was used

to cluster samples using immunoassay data and to test for any batch effect. PCA,

is an unsupervised machine learning algorithm capable of deconvoluting a multi-

dimensional dataset into a selected lower number of dimensions (components)

by linearly combining the original features (Section 2.3.2). The PCA algorithm

transforms the data according to the variance observed in the original dataset with

first component expressing the largest explained variance. As requirement of the

PCA algorithm, data have to be scaled so that each feature has mean zero and

each data point scaled to unit variance. Since PCA is based on the analysis of

variance it is extremely sensitive to unit measure differences (Section 2.3.2). This

transformation was performed using the equation 5.1.

Hierarchical clustering Hierarchical clustering (HC) is an unsupervised clus-

tering algorithm that agglomerates samples according to their similarity (Section

2.3.2). In order to decide whether two samples should be linked, the algorithm uses

a distance metric and a linkage method. Whilst the distance metric is a measure

of similarity of samples, the linkage method instructs the clustering algorithm on

grouping criteria. In this analysis, euclidean distances and average linkage were

used to compute clusters. Prior to modelling data through HC, raw cytokine val-

ues were normalised using control sample readout by subtracting the median and

then scaling according to the Inter Quartile Range (IQR, range between the 1st

and the 3rd quartile). Despite not being compatible with PCA modelling, this

latter scaling is more robust against extreme outliers. Based on the clustering

provided by HC, samples where grouped into functional clusters.
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5.4 Results

The mean age at diagnosis observed in our cohort of 22 IBD patients was 11.9

years and the male to female ratio is 1.20. In order to exclude batch effect, a PCA

was performed on IBD cases and controls (Figure 5.2). The two first components

explain 48.5% and 16.7% of the original variance respectively. We do not observe

clustering of samples by batch. Moreover, there is a visibly larger spreading of

control samples compared to IBD cases indicating greater variability in the non-

affected individuals. Despite the lack of clear clustering between cases and controls,

by observing the vector loadings of the PCA it is possible to observe an opposite

directionality of IL-1β and IL-6 regardless of the used stimulating ligand. This

implies that, according to the second principal component, a sample with high

IL1β usually present low IL-6 response and vice versa.

Figure 5.2: Principal component analysis of immunoassay data. Left panel shows the PCA of cases and
controls represented as circles and squares respectively. Each batch (1-5) is represented by a unique colour. Right
panel shows the vector loadings for each of the 12 possible ligand-cytokine combination of the same PCA. Colours
match the stimulating ligand respectively: MDP in green, PAM in blue and LPS in red.

5.4.1 Cytokine responses of IBD patients

In order to detect samples with abnormal cytokine responses, IBD sample data

was normalised according to control readouts and plotted on a radar plot (Figure
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5.3). Following normalization through standard scaling, none of the IBD affected

individuals show a hyper-inflammatory response, deviating more than +2σ from

the mean. However, it is possible to observe that, regardless of the ligand-cytokine

combination, samples are predominantly distributed in between the mean of nor-

mality and −2σ suggesting a tendency to cluster towards the hypo-inflammatory

direction. Only one patient shown a hypo-inflammatory (< −2σ) IL-1β response

when stimulated with LPS. Individual radar plots from each IBD patient (Supple-

mentary Figure 7.4 and 7.5) identified recurrent patterns.

Figure 5.3: Radar plot of immunoassay data. Each spoke of the radar represents a ligand-cytokine combina-
tion with the red dashed line indicating the mean response of the control cohort. Each individual is is coloured
differently.

5.4.2 Hierarchical clustering of immune-phenotypes

Immunoarray data normalisation, euclidean distances were calculated for each IBD

case pair and used to perform hierarchical clustering. This unsupervised approach

identified eight immuno-subtypes that might represent novel strata for IBD im-

munology (Figure 5.4). Of the eight patterns identified, three are represented by
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single individuals (clusters 3, 5 and 7). The highest similarity is observed within

individual belonging to clusters 1, 2 and 4. Clusters one and six are the most

represented with five individuals each.

Figure 5.4: Hierarchical clustering of immunoassay data from IBD patients. The dendrogram was
obtained performing hierarchical clustering with euclidean distances and average linkage strategy. Each leaf
represent one of the 22 IBD patients and colours indicate the selected clusters. The vertical axis represent the
distance between each node of the tree.

In order to test for significant differences between cases and controls immune re-

sponses, a two-tailed t-test was performed for each ligand-cytokine combination

(Table 5.1). Statistical significance was observed in the levels of IL10 when stim-

ulated with LPS (p = 0.045) or Pam3CSK4 (p = 0.018); IL-1β either stimulated

with with LPS (p = 0.010) or Pam3CSK4 (p = 0.015) and TNF-α stimulated with

LPS (p = 0.018). The stimulation of the NOD2 pathway with MDP did not in-

duced any statistically significant differential response between IBD patients and

controls. Similarly, IL-6 cytokine levels were always comparable between cases

and controls regardless of the stimulus used.

The cumulative effect of all the 12 conditions, obtained by summing the cytokine

responses across stimuli, identified a trend of hypo-inflammatory response with

individuals belonging to cluster one with the most negative values (Table 5.1).

Conversely individuals from cluster six to eight exhibit the least negative, therefore

close to normality, immune response. Despite this, the overall summative effect of
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cytokine responses were significantly higher in IBD patients compared to controls

(p = 0.0025).
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In order to assess the contribution of each cluster to the hypo-immune response

of IBD patients, normalised cytokine levels from individual cluster were tested

against controls. Statistically significant differences were observed in cluster 1

and cluster 2 compared to controls. Cluster 1 shown a significant hypo-immune

response in IL-1β (stimulated with LPS (p = 0.006) or Pam3CSK4 (p = 0.004)),

TNF-α (stimulated by LPS (p = 0.002)) and IL-10 (stimulated by Pam3CSK4 (p

= 0.009)). Cluster 2 shown the same pattern of significance except for TNF-α.

All the remaining clusters were not showing significant different levels of cytokines

compared to the control group. Statistical tests were not performed on clusters

populated by a single individual.

5.4.3 Genomic interpretation of immuno-phenotypes

Through hierarchical clustering of immunological assay data, eight novel immuno-

phenotypes were identified with a specific involvement of the TLR4 and the

TLR1/TLR2 signalling pathways. In order to investigate a potential link be-

tween individuals genetics and immune responses, whole exome sequencing data

was transformed with GenePy and then compared against immuno-phenotypes.

Although GenePy scores were available for more than 14,000 genes, the analysis

was restricted to genes belonging only to the TLR4 and TLR1/TLR2 signalling

cascades. Three separate gene panels were therefore defined in order to represent

three molecular strata: i) the receptor level; ii) the downstream signal modula-

tion and; iii) the cytokine level. The receptor level gene panel was obtained by

interrogating the PathCards database for TLR4 and TLR1/TLR2 pathways (n =

127 genes), the signal modulation panel consisted of genes involved in the MAPK,

NF-κB and inflammasome pathways (n = 173 genes), and the lower cytokine level

panel consisted of the IL-10 and TNF-α pathways (n = 77 genes).

Cumulative GenePy scores for each individual were obtained by summing all the

gene scores belonging to each gene panel. Subsequently, statistical significance

was assessed for differences between cluster 1 or cluster 2 against clusters 3 to
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8. Table 5.2 reports the p-values obtained following this approach. A significant

difference (withstanding Bonferroni correction) between cluster 1 and clusters 3

to 8 was observed at the cytokine level underpinning a strong association between

the immune response of those individuals and their genetic asset.

Table 5.2: GenePy scores regression against immuno-phenotypes. Cumulative GenePy scores from three
selected gene panels were used to test significant differences between clusters. Significant p-values are highlighted
in red.

Gene panel Genes
GenePy
scores

available
t-test p-value

Bonferroni
corrected p-value

Cluster 1 vs 3-8 0.938 5.630Receptor level
(TLR1-2, TLR4)

127 74
Cluster 2 vs 3-8 0.482 2.891
Cluster 1 vs 3-8 0.283 1.699Signal modulation level

(MAPK, NF-kB, Inflam.)
173 104

Cluster 2 vs 3-8 0.629 3.773
Cluster 1 vs 3-8 0.002 0.012Cytokine level

(Il-10, TNF-a)
77 52

Cluster 2 vs 3-8 0.163 0.977

114



5.5 Discussion

Inflammatory bowel disease is common autoimmune condition driven by a chronic

activation of innate immune response leading to inflammation of the gastrointesti-

nal system. Cytokine based inflammation has been directly implicated as main

mechanism of bowel mucosa alteration, causing ulceration and manifestations of

the disease. Current literature well describes the increased production of pro-

inflammatory cytokines such as TNF-α and IL-6, by the immune cells in the bowel

mucosa of IBD patients [82, 181]. In order to reduce the inflammation level, anti-

cytokine drugs have been developed and are currently used in routine treatment

of IBD [11, 128]. This chapter was therefore focused on modelling and stratifying

paediatric IBD patients according to their cytokine response levels [137].

The design of immunoassay used in this study was aimed to test the functional

integrity of the NF-kB pathway, a critical hub for other inflammatory pathways

implicated in IBD such as the NOD2 signaling, TLR signaling and inflammasome

activation. The activation of these signalling pathways induce the production of

various proteins, in particular pro-inflammatory cytokines.

Through the comparison of cytokine production following stimulation between

paediatric IBD cases and controls, we observed an unprecedented reduction in

cytokine levels in cases. This unexpected hypo-inflammatory response of IBD

patients might be explained by a strong genetic component affecting and disrupting

the key signalling pathways controlling the innate immune response. It is therefore

expected that, upon invasion from exogenous bacteria, the inability of a correct

response and clearance might induce a persistent or chronic bowel inflammation

in IBD patients.

In order to compare IBD responses to the expected normality, normal values were

obtained from a modest cohort of paediatric controls. Since reference normal

values are not unique to IBD, we believe such information will be useful and

applicable in the investigation of other autoimmune conditions.

After determining the normal ranges of responses in the paediatric control cohort,
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IBD cases readings were normalised and analysed through hierarchical clustering

for stratification purposes. Through this approach we identified 8 novel functional

clusters, based solely on the cytokine production levels in the 12 assay condi-

tions. Hierarchical clustering also highlighted a consistent gradient from hypo- to

normal functionality with the most divergent group presenting the better charac-

terised pattern. Despite this, only one individual exhibited a significant divergence

from normality (>±2σ) with the majority of individuals presenting a statistically

significant sub hypo-immune response (p = 0.0025).

Subsequently, we identified the TLR4 and TLR1-2 as the main pathways respon-

sible for the altered immune response with clusters 1 and cluster 2 particularly

affected. In order to establish a causal link between observed abnormal immune

profiles and individuals genetic assets, we analysed exome data through GenePy,

a per-patient gene score capable of integrating most of the biological information

available through next generation sequencing data. GenePy can provide a direct

measure of gene deleteriousness by weighting and summing gene-specific single nu-

cleotide variants according to their zygosity, rarity and predicted deleteriousness.

Thanks to the robust nature of GenePy scores, it was also possible to assess the

deleteriousness of entire pathways or gene panels by simply summing the effect of

involved genes.

We therefore assessed whether patients with an altered immune response present

also a high degree of genetic disregulation. By testing gene score differences be-

tween cytokine-defined clusters and the three main gene panels dissecting the

TLR cascade, we observed statistically significant results when comparing cluster

1 against clusters from 3 to 8 using genes involved in the cytokine level part of the

cascade.

In conclusion, this study provides further insights on the role of cytokines in defin-

ing a wide range of immuno-phenotypes of IBD, which might be further investi-

gated for association to clinical traits. Unsupervised machine learning approaches

resulted fundamental for data interpretation and for patient stratification, identify-

ing novel strata with a potential clinical relevance. Moreover, we also highlighted
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the importance of collecting genomic data and their value in deciphering com-

plex immune condition. Through this study we also demonstrated the potential

of GenePy in modelling NGS data and its effortless integration with other data

types, such as immunoassay results.
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Chapter 6

Machine learning modelling of

genomic data of IBD

6.1 Summary

In this chapter we investigate supervised and unsupervised approaches to classify

and stratify paediatric IBD patients based on genomic data from selected IBD-

related genes.

We report the current highest AUC for the classification of CD and UC patients

(AUC = 91%) and the highest performance in discriminating IBD patients from

controls (AUC = 85%). Following an enrichment analysis we observe that the

FGFR3 signalling pathway is significantly contributing to the CD/UC discrimina-

tion whilst cytokine signalling discriminates IBD patients from controls. GenePy

scores proved valuable in correctly modelling complex NGS data. Through the

application of unsupervised models, we identify five novel IBD strata uniquely

driven by genomic data.

Concerning the results presented in this chapter, I was responsible for quality

control, processing, modelling and all the analyses involving genomic data.

119



6.2 Introduction

Inflammatory bowel disease (IBD) is a complex condition where genetics and en-

vironmental factors contribute to the final phenotype. Depending on age of onset,

the balance between these to components can be shifted from a predominantly

genetic-driven (very early onset IBD) to a predominantly environmental-driven

condition in late adulthood. In between these extremes sits a spectrum of IBD

manifestations where genetics and environment variably contribute (Section 1.4.2)

to determining the adverse phenotype.

Similar to other complex diseases such as asthma [23] or cancer [27], this multitude

of IBD manifestations intuitively suggest the presence of multiple disease subtypes

rather than one homogeneous phenotype. As already covered in Section 1.4.1, IBD

is currently classified in two main subtypes characterised by different localisation

and extent of inflammation, the main symptom of this autoimmune condition.

Although Crohn’s disease (CD) and ulcerative colitis (UC) forms of IBD were

described and applied in the mid twentieth century, a formal worldwide classifica-

tion was made only in 1991 [56]. Since then, this original classification underwent

several revisions in order to match new clinical and molecular discoveries.

The diagnosis of CD or UC has a direct impact on the clinical approach in treat-

ment. For example, proctocolectomy, which consist in the surgical resection of the

rectum an all or a part of the colon completely removes the disease in UC patients

where the inflammation is localised in those GI tracts [17]. However, the same

approach is not curative in CD patients where the inflammation is instead scat-

tered across the entire GI system. Specific surgical procedures and a wide range

of drugs are currently available for treating IBD symptoms, however there is still

no cure for such condition. As a consequence, a precise and prompt diagnosis is

crucial to avoid delivering ineffective treatments to patients.

Despite the great advances in diagnostic tools and procedures, assigning IBD pa-

tients with a specific CD or UC subtype remains challenging and not always suc-

cessful. This leads a substantial percentage of patients, especially in paediatric
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age, being diagnosed with the IBD undetermined (IBDU) form. The complex-

ity in assigning a specific diagnosis is mostly attributable to the high overlap of

symptoms between CD and UC. This overlap of clinical traits has been mirrored

by genetic studies where some genes were uniquely associated to either CD or UC

and a similar percentage to both forms (Section 1.4.2).

The challenging diagnostic process and lines of evidence of biological overlap be-

tween CD and UC are increasingly suggesting the need of a new classification

system that can better represent the wide range of IBD presentations. Further

investigations of endoscopic data (the main evidence used to assign a diagno-

sis through the current classification criteria), reported a high discordance with

histological and other clinical data [51, 8]. To date, several studies already inves-

tigated the application of machine learning algorithms (ML) in order to identify

novel strata within IBD patients using clinical and immunological data ([198, 126],

Chapter 5).

As a consequence of more accessible costs for routinely obtain NGS data, such

valuable information can be utilised to improve IBD patient classification and

stratification. Based on this hypothesis, several models discriminating CD from

UC and IBD from controls have been developed in recent years. Whilst first

approaches to classify IBD subtypes focused on immunochip arrays and reached a

maximal area under the ROC curve (AUC) of 85% [197], more recent supervised

machine learning models based on WES data reached marginally higher AUC

(87%) in classifying CD patients [28]. Conversely, there is a dearth of unsupervised

approaches for stratification of IBD patient by modelling NGS data.

The marginal improvement in discriminating UC from CD using high-throughput

NGS data suggests a technical limitation concerning the integration of NGS data

into machine learning models. In Chapter 4 we presented GenePy, our scoring

system for improving modelling of NGS data in machine learning frameworks. By

integrating more biological information on a gene basis compared to conventional

approaches, we demonstrated GenePy superior ability in detecting subtle biological

differences.
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For these reasons, in this chapter supervised and unsupervised machine learning

approaches are applied to WES data from our cohort of paediatric IBD patients.

Following the transformation of sequencing data into per-gene per-patient GenePy

scores, we investigate two classification scenarios. First, we assess the performance

of our model in discriminating CD from UC individuals. Secondly, we construct

a model for discriminating IBD patients from healthy controls. Genes selected

by both models are then investigated for enrichment. In the final section, we

apply unsupervised modelling through both PCA and hierarchical clustering on

paediatric IBD patients.

6.3 Methods

6.3.1 Sample data

Whole exome sequencing (WES) data were derived from two sources. This first

group comprised 285 patients diagnosed in childhood with IBD. This cohort (de-

scribed in Chapter 3) includes unrelated, Caucasian patients ascertained and re-

cruited through Southampton Children’s Hospital who were diagnosed under the

age of 18 years according to the modified Porto criteria [97]. Additional WES data

from a cohort of 180 anonymised individuals diagnosed with an infectious disease

but unselected for any form of autoimmune disease were also used to give a total

cohort size of 465 individuals with WES data.

Genomic DNA was extracted from peripheral venous blood using the salting out

method [124] and fragmented DNA subjected to adaptor ligation and exome li-

brary enrichment using the Agilent SureSelect All Exon capture kit versions 4, 5

and 6. Enriched libraries were sequenced on Illumina HiSeq systems. DNA con-

centration was estimated using the Qubit 2.0 Fluorometer and the 260:280 ratio

calculated using a nanodrop spectrophometer.

WES data was processed with our custom pipeline described in Section 2.2 and

then processed through GenePy (Chapter 4) in order to obtain per-patient gene
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scores. Sixteen deleteriousness metrics were individually implemented in GenePy

resulting in the same number of output matrices each containing approximately

14,000 gene scores per individual. Since GenePy scores are given by the sum of

weighted variants within a given gene, large genes have higher chance of presenting

mutations. Therefore, GenePy gene scores were normalised according to the size

of targeted gene region and then multiplied by the median gene size (1461 base

pairs). Due to the adoption of Caucasian allelic frequency in the calculation of

GenePy scores, non-Caucasian samples were excluded from downstream analyses.

6.3.2 Gene selection

Inflammatory bowel disease, as described in Section 1.4.2, has been associated

with a large number of genes involved in maintaining immune system homoeostasis

and gut barrier integrity. These genes act through specific signalling pathways.

According to the current literature [86, 192, 10] it is possible to identify fifteen

main pathways (Table 6.1) involved to some extent in the IBD pathogenesis. Lists

of all genes within these pathways were obtained either from the KEGG pathway

[84] repository or through PathCards [19] as reported in table 6.1.

In order to include in our analyses most of the current biological knowledge about

IBD and remove unnecessary background noise, we restricted both supervised and

unsupervised approaches to the combined non-redundant list of 989 genes derived

from the fifteen IBD associated pathways.

6.3.3 Supervised classification

Two supervised frameworks were investigated, the first aiming to classify Crohn’s

disease and ulcerative colitis patients and a second aiming to distinguish IBD

patients from unaffected controls. Despite the two different classification tasks,

the same supervised approach was applied to both frameworks and consisted of

four main steps: (i) variance univariate feature selection; (ii) ANOVA feature

selection; (iii) parameters grid search and; (iv) final model training and testing.
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Table 6.1: Pathways involved in IBD pathogenesis.

Pathway Genes Repository Search term

Autophagy 40 KEGG hsa04140

B cell receptor signaling pathway 73 KEGG hsa04662

Cytokine-cytokine receptor interaction 270 KEGG hsa04060

GPCRs 336 PathCards GPCRs

IBD 65 KEGG hsa05321

IFN-gamma pathway 72 PathCards IFN-gamma

IL-10 pathway 35 PathCards IL-10

IL-9 signalling pathway 12 PathCards IL-9

Jak-STAT signaling pathway 158 KEGG hsa04630

NOD-like receptor signaling pathway 170 KEGG hsa04621

Intrinsic NOD2 pathway 56 KEGG hsa04621

T cell receptor signalling pathway 105 KEGG hsa04660

Th17 cell differentiation 107 KEGG hsa04659

Tight Junctions 139 PathCards Tight junctions

TNF signalling pathway 67 PathCards TNF signalling

TOTAL (non-overlapping) 989

In order to introduce as much biological knowledge as possible and to remove

uninformative data represented by invariant genes, a univariate feature selection

based on variance was applied. With a threshold set to zero, genes that exhibit

the same score across the entire dataset, in both cases and controls, were removed.

This step filtered out genes without missense variants (all subject scores equal to

zero) but also genes in which only common variants were observed (all patient

scores are >0 but equal). Since the univariate feature selection is solely based

on the variance of each feature and not on the classification target, it can be

interpreted as a first unsupervised filtering approach.

There are multiple advantages in applying univariate feature selection prior to

any supervised approach in which the number of features is much greater than the

sample size. Removing invariant genes would filters out redundant data that are

non-informative for the model which, especially when employing support vector

machines (SVMs), would reduce classification performance (Section 2.4.1). A re-

duced number of genes would translate to a lower computational power and time

required to train and test the classifiers. In frameworks requiring cross-validation

this effect scales exponentially due to the multiple times a model gets fitted and

tested.
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Following the variance-based selection, a second feature selection step was imple-

mented in the model to further refine the feature set. This second step implements

a univariate feature selection based on a F statistic (ANOVA) testing the discrim-

inatory power of each gene after providing the classification target. This approach

provides a ranked list where the first gene is the most effective in separating the

two target labels. Since there is not a recommended threshold for selection, we

tested classifier performances applying an increasing 10 percent cut-off from 10%

to 100%.

All supervised models described in this chapter implemented a support vector

machine (SVM). In order to avoid overfitting and at the same time optimising

models, a grid search was performed within a 10 fold cross-validation scheme for

selecting the optimal SVM parameters. The cross-validated grid search tested two

different kernels, a linear and a radial basis function (rbf) to cover both linear

and non-linear decision functions. As explained in Section 2.3.1, the C parameter

controls the tolerance to error in the training process, here we tested three possible

levels: 0.1, 1 and 10. Whilst C is the only parameter to be tuned in linear SVM,

rbf kernels also require tuning of the shape parameter γ (kernel coefficient). Six

possible kernel coefficients were tested: 0.001,0.01, 0.1, 1, 10 and 1/(number of

features). The resulting optimal combination of kernel, tolerance and coefficient

was then used in the final classifier. Due to imbalance between the number of

patients with CD, UC and the controls classes, all SVM models were forced to

correct weights accordingly (class weight = “ balanced”).

Following the tuning step the model was fitted and tested using 10 fold cross-

validation and performance metrics such as accuracy, F1 statistic and the area

under the ROC curve (AUC) were corrected.

A total of 16 SVMs were trained and tested, each of which was implementing

GenePy data based on one of the 16 different deleteriousness metrics

Gene enrichment The list of 989 gene was ranked according to the times each

gene was recurrently selected across the 16 SVMs using different GenePy delete-
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riousness metrics. The set of genes that were selected by all 16 GenePy deleteri-

ousness scores were analysed for biological process enrichment using the Enrichr

online tool [35]. In order to visualise any gene acting as potential hub of regulation,

selected genes were analysed through STRING[183].

6.3.4 Unsupervised learning

Genomic data from paediatric IBD cases was modelled using unsupervised machine

learning algorithms. This methodology was applied to all 16 different GenePy

score matrices. The process was iterated for all 16 versions of GenePy integrating

different deleteriousness metrics.

Supervised feature selection approaches (e.g ANOVA, χ2, entropy) were not ap-

plied since it would bias clustering towards the provided target labels. Therefore,

once invariant genes were removed, data were directly modelled with unsupervised

algorithms.

Principal component analysis and hierarchical clustering approaches were applied

to IBD patient data to assess stratification into distinct patient groups that coul

be clinically informative. Prior to PCA each feature was centred on the mean and

scaled to unit variance. Whilst PCA does not require the definition of any param-

eter, HC was performed using average linkage method and euclidean distances. In

order to establish the accuracy of the HC representation the cophenetic correlation

coefficient was calculated.

6.4 Results

6.4.1 Supervised Classification of IBD subtypes

The first supervised approach aimed to classify CD and UC patients using a SVM

classifier. In order to identify the optimal percentage of ranked genes to retain
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after the ANOVA feature selection, we tested all bespoke thresholds for each of the

15 gene pathways while fixing the deleteriousness metric implemented in GenePy.

This optimisation was performed on the total number of 989 genes previously

identified and using CADD as deleteriousness metric. Table 6.2 shows accuracies,

AUCs and F1 statistics for each tested percentage of ANOVA selected genes. We

observed a curve in performance when the selection retains from 5 to 40 percent

of the genes in the ANOVA ranked gene list with the optimum peaking at twenty

percent. Table 6.2 reports statistics resulting from a 10 fold cross-validation ap-

proach. By including only 20% of the initial gene set, the SVM reaches its maximal

performance in terms of accuracy, AUC and F1. Whilst there is a small difference

between 10% and 20% in terms of accuracy and F1 metrics (one percent), the

AUC at the 20% threshold is three percent better than the one calculated at 10%.

Table 6.2: Performance of CD vs. UC classification for different ANOVA thresholds. Performance were
tested using the initial complete set of 989 genes (then variance-filtered down to 639) and CADD deleteriousness
metric.

Anova

threshold
Genes Accuracy (σ) AUC(σ) F1(σ)

0.05 31 0.77 (±0.06) 0.86 (±0.07) 0.81 (±0.06)

0.1 63 0.81 (±0.07) 0.87 (±0.07) 0.85 (±0.05)

0.2 127 0.82 (±0.08) 0.89 (±0.07) 0.86 (±0.05)

0.3 191 0.79 (±0.04) 0.84 (±0.07) 0.84 (±0.06)

0.4 255 0.77 (±0.08) 0.83 (±0.05) 0.82 (±0.04)

0.5 319 0.73 (±0.06) 0.78 (±0.07) 0.76 (±0.08)

0.6 383 0.72 (±0.06) 0.78 (±0.05) 0.78 (±0.05)

0.7 447 0.68 (±0.06) 0.70 (±0.08) 0.75 (±0.06)

0.8 511 0.66 (±0.06) 0.59 (±0.08) 0.76 (±0.04)

0.9 575 0.64 (±0.01) 0.58 (±0.11) 0.78 (±0.01)

1 639 0.64 (±0.01) 0.34 (±0.09) 0.78 (±0.01)

After determining that 20% of the initial ranked gene list represented the most

efficient threshold, we tested the efficiency of all genes within each of the fifteen

pathways previously defined. In order to test such discriminatory power, the

same SVM model, using the same ANOVA threshold and deleteriousness metric

(CADD), was applied. Table 6.3 and Figure 6.1 shows the performance of each

gene list each of which underwent the two feature selection steps. Here we observe

that the maximal score is obtained when using the combined list of all 15 pathways

resulting in a 89% AUC. We observe a strong positive correlation between SVM
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performance and the number of genes used in the classification (R2 = 0.8336, p =

6 · 10−5). Despite this effect, the NOD-like receptor signalling shows the second

best AUC (73%) despite not being the second largest gene set. This indicates an

enrichment for genes helpful in the classification of the CD/UC subtypes.

Overall, models based on larger gene sets perform better compared to those using

pathways including few genes. The highest performance observed with the set

of all genes can be imputed to a better representation and classification of the

genotypic heterogeneity within our patient cohort. However the high classification

performance of NOD-full pathway genes echoes the known strong biological role

of the NOD2 genes and its close molecular interactions.

Figure 6.1: CD vs. UC areas under the ROC curve for each IBD related pathway. Each colour indicates
a different pathway tested in a 10 fold cross validation framework following a 20% ANOVA selection. GenePy
scores based on CADD metric were used to perform these test.
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Table 6.3: Supervised classification of CD vs UC using GenePy scores and CADD metric.

Pathway Genes

GenePy

available

genes

Post

variance

selection

Post

ANOVA

selection

AUC σ

Autophagy 40 17 17 6 0.59 0.10

B cell receptor signalling 73 47 45 13 0.64 0.10

Cytokine-cytokine receptor interaction 270 154 150 30 0.69 0.13

GPCRs 336 235 229 91 0.71 0.09

IBD 65 36 36 7 0.66 0.07

IFN-gamma pathway 72 46 46 9 0.63 0.07

IL-10 signalling 35 23 22 6 0.59 0.10

IL-9 signalling 12 5 5 3 0.51 0.06

Jak-STAT signalling 158 84 81 16 0.67 0.10

NOD-like receptor signalling 170 106 105 31 0.74 0.12

Intrinsic NOD2 56 31 31 21 0.68 0.09

T cell receptor signalling 105 64 63 12 0.63 0.09

Th17 cell differentiation 107 67 66 19 0.66 0.06

Tight Junctions 139 102 96 19 0.69 0.11

TNF signalling 67 39 38 15 0.60 0.11

All genes 989 659 639 127 0.89 0.07

Given the accurate predictions obtained implementing CADD as deleteriousness

metric within the GenePy score calculation, we explored the impact of implemen-

tation of the 15 other deleteriousness metrics applying three different ANOVA

thresholds (10%, 20%, 30%). Figure 6.2 graphically display the classification per-

formance in terms of AUC across all deleteriousness metrics. Excepting the model

using GenePy scores generated with M-CAP which consistently under performs,

all other SMVs report highly similar AUCs (Table 6.4). Similar to previous ob-

servations, optimal classifications are obtained when selecting only the top 20% of

genes following ANOVA univariate ranking. The best classifier was the SMV im-

plementing DANN-based GenePy scores with an AUC of 0.91 using a 20% ANOVA

threshold.

In order to provide a more complete assessment of model performance, we repeated

this last test replacing the ANOVA univariate selection with a χ2 selection. Using

the same threshold we observed lower AUCs (0.78 (±0.07) on average at 20%

selection).

These results led to the application of a 20% ANOVA threshold and the use of all

genes rather than a subset of genes within individual biological pathways in all
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Figure 6.2: CD vs. UC areas under the ROC curve for each deleteriousness metric. Each colour
indicates a different tested metric in a 10 fold cross validation framework following a 20% ANOVA selection over
the complete set of genes (n=989).

subsequent analyses. Conversely, testing for all 16 versions of GenePy scores will

be required to model different aspects of the same cohort.

6.4.2 Supervised Classification of IBD vs Control

The same classification framework was applied in order to distinguish IBD patients

from healthy controls using solely genomic data transformed through GenePy.

Using the same feature set of 898 genes involved in IBD related pathways and a

20% ANOVA selection threshold, sixteen SVM classifiers were trained and test
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Table 6.4: CD vs. UC classification performance for each deleteriousness metric.

Metric

Post

variance

selection

Post

ANOVA

10%

AUC

10%

Post

ANOVA

20%

AUC

20%

Post

ANOVA

30%

AUC

30%

CADD 639 63 0.87 (±0.07) 127 0.89 (±0.07) 191 0.84 (±0.07)

DANN 639 63 0.88 (±0.04) 127 0.91 (±0.08) 191 0.89 (±0.04)

fathmm-MKL 639 63 0.87 (±0.08) 127 0.86 (±0.06) 191 0.82 (±0.08)

FATHMM 619 61 0.86 (±0.06) 123 0.88 (±0.05) 185 0.86 (±0.05)

GERP++ RS 645 64 0.89 (±0.05) 129 0.88 (±0.08) 193 0.90 (±0.03)

M-CAP 573 57 0.73 (±0.13) 114 0.75 (±0.07) 171 0.80 (±0.11)

MetaLR 631 63 0.85 (±0.09) 126 0.88 (±0.07) 189 0.86 (±0.05)

MetaSVM 636 63 0.85 (±0.05) 127 0.85 (±0.09) 190 0.83 (±0.08)

MutationTaster 595 59 0.81 (±0.06) 119 0.81 (±0.09) 178 0.86 (±0.06)

phastCons 645 64 0.87 (±0.07) 129 0.85 (±0.08) 193 0.87 (±0.09)

phyloP 645 64 0.88 (±0.05) 129 0.88 (±0.07) 193 0.86 (±0.05)

Polyphen2 HDIV 669 66 0.88 (±0.04) 133 0.87 (±0.08) 200 0.84 (±0.08)

Polyphen2 HVAR 672 67 0.83 (±0.07) 134 0.86 (±0.08) 201 0.87 (±0.05)

PROVEAN 624 62 0.87 (±0.05) 124 0.88 (±0.08) 187 0.88 (±0.05)

SIFT 661 66 0.89 (±0.05) 132 0.86 (±0.06) 198 0.86 (±0.06)

VEST3 638 63 0.85 (±0.11) 127 0.84 (±0.08) 191 0.87 (±0.06)

implementing different deleteriousness metrics.

Figure 6.3 shows the AUC results of all the tested models. Similarly to obser-

vations in the classification of IBD subtypes, the choice of deleteriousness metric

selection had only a very small impact on classifier performance. Whilst DANN

results are marginally optimal, M-CAP performs least well with almost 10% lower

AUC compared to other metrics. Likely due to the fact this recent metric has

most missing data for individual variants and subsequently less information for

modelling.
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Figure 6.3: IBD vs. control areas under the ROC curve for each deleteriousness metric. Each colour
indicates a different tested metric in a 10 fold cross validation framework following a 20% ANOVA selection over
the complete set of genes (n=989).

6.4.3 Gene enrichment

The similar performance observed in both classification approaches might indicate

the presence of a core gene set that provides the maximal discriminatory power

when classifying IBD subtypes or IBD from controls. In order to identify such se-

lection pattern, we extracted the list of genes employed by each SMV implementing

different deleteriousness metrics. Subsequently, we ranked such lists depending of

the times each gene was selected and analysed with Reactome the list of genes

that were selected by all models (n=16).
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This process was performed for for investigations of both CD vs. UC and IBD vs.

controls and the consensus gene set analysed for enrichment through Reactome. In

total, 40 genes were utilised by all SVMs in the classification of IBD subtypes and

these were strongly enriched for FGFR3 signalling cascade (FDR p = 6.48 · 10−5).

Figure 6.4 shows the protein-protein interaction network based on the 40 genes

selected by all models. It is notable that IL10, PLCG1, MTOR and PPP3CA

are the nodes with the highest degree (number of edges) and therefore important

hubs for maintaining the network connectivity. While IL10 and MTOR are genes

known to be associated with the IBD phenotype [94, 69], there are no records

concerning the role of PLCG1 and PPP3CA in disease characterisation.

Figure 6.4: Protein-protein interaction network based on the 40 genes selected for the CD vs. UC
classification. Each node represent a protein (gene product) and edges represent interaction between nodes.
The thickness of the edges is directly proportional to the strength of the interaction.

The same analysis identified 28 genes selected throughout the 16 SVM models

for the classification of IBD patient and controls. This gene list was significantly

enriched for the interleukin family (IL2, IL20, IL21, IL35 ) signalling (FDR p =

5.55 · 10−4). Figure 6.5 shows the interaction network obtained by analysing the
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fundamental genes for distinguishing cases from controls. Although there is lower

overall connectivity, JAK2 and FGF2 act as hubs of the network. JAK2 is a

known IBD-associated gene which mutation induces a gain of function triggering

a pro-inflammatory reaction mediated by cytokines and macrophages [66]. Con-

versely, FGF2 cooperates with interleukin 17 to repair the intestinal epithelial

damage induced by chronic inflammation [177].

Figure 6.5: Protein-protein interaction network based on the 28 genes selected for the IBD vs.
controls classification. Each node represent a protein (gene product) and edges represent interaction between
nodes. The thickness of the edges is directly proportional to the strength of the interaction.

Both networks exhibit the distinctive scale-free network topology that characterise

most of the known biological networks. Interestingly, NOD2 is the only gene that is

always selected when using any deleteriousness metric in both classification tasks.
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This observation represents a further evidence of the central role that NOD2 plays

in the IBD pathogenesis and characterisation of specific subtypes.

6.4.4 Unsupervised Stratification of IBD patients using ge-

nomic data

Unsupervised stratification can lead to the discovery of novel strata which might

better reflect molecular pathology and inform treatment choices. The true biology

of IBD is likely to be more complex than is reflected by the currently applied

subtype categories of UC and CD that are historically based uniquely on pathology

data. We therefore fist modelled genomic data from IBD patients to observe

unsupervised grouping of affected individuals.

A principal component analysis was performed on the merged and unlabelled set

of all IBD cases (CD, UC and IBDU) using all 989 genes identified in IBD related

pathways. Figure 6.6 shows the resulting PCAs for GenePy generated using 16

different deleteriousness metrics. None of the PCAs show a significant separation

of cases when plotting the first two principal components. Both components on

average are capable of explaining only ∼ 1% of the original variance. Except for

few outliers, almost all IBD patients generate a tight cluster, not showing any

stratification. This lack of separation and the low variance explained indicates

a poor performance of the PCA algorithm in stratifying such data rather the

complete absence of strata.

HC was performed on all versions of GenePy implementing each of the 16 avail-

able deleteriousness metrics. According to the cophenetic correlation coefficient

(CC), M-CAP based HC provides the closest representation of the original dis-

tances of the unmodelled data (CC = 0.88). The lowest CC was observed when

implementing the VEST3 metric (CC=0.67) whilst on average the mean CC is

0.79. HCs based on Meta-LR and SIFT GenePy scores show the second best CC

of 0.85. Using average linkage and euclidean distances, HC stratifies IBD patients

into different number of clusters depending on the metric implemented in GenePy
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Figure 6.6: Principal component analyses of IBD cases 16 different deleteriousness metrics.

scores (Figure 6.7).
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These groups are distinct from the current classification of IBD subtypes into

UC and CD. A highly similar structure can be observed in M-CAP and Meta-

LR hierachical clustering models (first and second best performing model), whilst

is absent in SIFT based HC (Figure 6.7). Clustering based on CADD, DANN,

GERP++, phyloP and VEST3 show a recurrent pattern characterised by four

equal in size clusters generating from a recent common ancestor.

The optimal model defined by CC implements M-CAP scores and identifies five

clear groups (Figure 6.8). Group V is the largest group (n=136) accounting for

48% of the total IBD cohort while group I is the smallest including only 7% of the

cohort (Table 6.5 and Figure 6.8). Five percent of the individuals (n=15) were

not assigned to any specific cluster. Cluster I is generated by the second split

of the dendrogram starting from the common ancestor. This event indicates a

strong separation and greater distance of cluster I from remaining clusters (II to

V). Clusters II to V occur five splits following the separation from cluster I.

In order to identify which genes were contributing to defining these novel groups,

we performed a Mann-Whitney test between GenePy scores of the largest cluster

V against all others. In total, GenePy scores from 54 genes were significantly

different between cluster V versus clusters I to IV (Supplementary Table 7.3).

Following the correction for multiple tests (Bonferroni correction for 898 genes),

two genes significantly influenced cluster formation: HLA-DQA1 (p=1.50 · 10−27)

and HLA-DRB5 (p=7.72 · 10−19). These two adaptive immune system genes has

been repeatedly reported as involved in IBD pathogenesis and disease markers

[119]. Examining the GenePy scores for these two HLA genes across the clusters,

cluster I is characterised by high mutation of HLA-DRB5 and moderate mutation

of HLA-DQA1 genes (Table 6.5). Clusters II and III exhibit the highest mean

mutation of HLA-DQA1 whilst cluster IV shows the minimal burden for both

genes. Finally, cluster V is characterised by a modest mean mutation of the HLA-

DRB5 gene.

Clinical markers of disease severity (surgery, AZA and steroids) were regressed

against cluster structure using a multiclass logistic regression and did not exhib-
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ited statistical significant results. Borderline statistical significance was observed

between patients that underwent surgery and those who did not in terms of mu-

tational burden of HLA-DQA1 (p = 0.052). Further investigation of the obtained

clusters with regard to their clinical data shows an age of diagnosis of individuals

largely equal across clusters with a mean age of 11.7 years old (Table 6.5). Clusters

II and III exhibit the lowest number of individuals that required surgery (9.7%

and 7.1% respectively), cluster V follows with approximately 14.7% of individuals.

Interestingly, the mutational burden of the HLA-DQA1 is negatively correlated

with surgery in that as the GenePy score for this gene decreases the number of

patients requiring surgery increases. Clusters I and IV have a markedly higher

percentage of individuals that underwent surgery (19%).

Azathioprine (AZA) treatment was equally prescribed to individuals across the

five clusters with the exception of cluster I which exhibited a higher percentage

of patients treated with such drug (81%). The same percentage ( ˜75%) of patients

were treated with steroids within each cluster. Cluster I shows the highest muta-

tional burden of HLA-DRB5 as well as the highest percentage of patients treated

with AZA.

Table 6.5: Unsupervised IBD groups regression data. Summary representation of demographic and genomic
data for disease severity markers distinguishing the five novel groups. Group zero indicates all individuals not
fitted in any cluster. Asterisks indicate elements for which the mean value is reported. Clinical features, such as
surgery, treatment with azathioprine (AZA) or steroids, are reported as the number of patients that experienced
one episode since diagnosis.

Groups 0 I II III IV V Total

N 15 21 31 56 26 136 285

Age at diagnosis* 12.41 11.86 11.79 11.90 11.39 11.42 11.64

Surgery 0 (0) 19.0% (4) 9.7% (3) 7.1% (4) 19.2% (5) 14.7% (20) 12.6% (36)

AZA 53.3% (8) 80.9% (17) 67.7% (21) 64.3% (36) 69.2% (18) 66.2% (90) 66.7% (190)

Steroids 80.0% (12) 76.1% (16) 71.0% (22) 75.0% (42) 69.2% (18) 81.6% (111) 77.5% (221)

HLA-DQA1* 4.59 3.06 7.40 8.55 0.13 0.14 3.03

HLA-DRB5* 3.39 15.30 6.93 0.00 0.00 2.75 2.75
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6.5 Discussion

Machine learning algorithms were historically developed to solve complex discrim-

inatory problems and their application in clinical and biological contexts is not

new (Section 1.3). Supervised machine learning models can be used to classify

samples, usually represented by a collection of hundreds or thousands features,

according to existing classification labellings. The main advantage of such ap-

proaches resides in the integration of large datasets that would not be possible to

analyse with conventional statistics.

In recent years, several models have being proposed for classifying IBD patients

into the two main clinical subtypes (CD and UC). The need for machine learning

approaches is driven by the complex diagnostic process of IBD. Similar to other

complex diseases, IBD presents as wide range of phenotypes with a large overlap

of symptoms between subtypes. In addition to the unclear aetiology, the pheno-

typic similarity between IBD subtypes increases the challenge of assigning specific

diagnoses. The diagnostic uncertainty is often increased in children in whom the

label of IBD unspecified is more frequently assigned than in adults [42]. Lack of

a clear diagnosis impacts clinical decision making. The genetic heterogeneity is

demonstrated when patients frequently presenting with a positive family history

of one subtype of IBD often have closely related individuals diagnosed with the

other subtype. Whilst most of these methods focussed on modelling clinical data,

only few supervised approaches were able to perform sufficiently well implement-

ing unbiased genomic data. During the 2013 CAGI challenge, 14 research groups

presented various approaches to distinguish a cohort of 51 Cronh’s disease patients

from 15 healthy individuals using solely whole exome sequencing data. As a result

of an AUC-based performance evaluation, two models reached the highest score

of 0.87[28].

We hypothesised improved classification performance would follow implementation

of genomic data. The main purpose for developing the GenePy model was to fill a

gap in systematic approaches for manipulating and transforming sequencing data

in a format that would accommodate more complex analyses while incorporating
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additional biological information.

Utilising upstream gene selection processes and support vector machines, we re-

ported the highest AUC (91%) in the discrimination of CD from UC patients. The

improved performance of our model compared to those so far reported is largely

attributable to the biological higher information content entered through GenePy.

Moreover, the accurate feature selection process, thorough pathway-oriented prun-

ing and subsequent systematic univariate selection, removed confounding factors

that could have reduced our model performance.

A common problem affecting supervised machine learning models is data overfit-

ting, leading to almost perfect classifiers that in reality would perform less well on

novel unseen data due to the lack of generalisation. In this chapter, we ensured

that each step of our methodology was approached with a 10 fold cross-validation,

protecting from overfitting and leading to more conservative results.

Despite the superior performance, our model did not reach the 95% AUC thresh-

old required for a clinical application [155]. By investigating all the current ML

models for the classification of CD and UC patients using genomic data, it is possi-

ble to observe a virtual upper bound (approximately 91% AUC) that every model

struggles to overcome. The reason for this limitation might be attributable to two

factors. First, the current CD/UC diagnosis is based on clinical observations (pre-

dominately endoscopic and histological) and imposes a historic pathology based

classification that may not be fit for the purpose of accurately reflecting the true

molecular aetiology of IBD. Secondly, due to the complexity of IBD, changes in

diagnosis are not infrequent, particularly in children. Both these features reflect

the need for revision and potential reformulation of disease classifiers. The need

of a new revised classification based on deep clinical phenotyping and modern im-

muno/genomics traits has been already extensively discussed [126, 198] and might

explain the inability of supervised model to classify accurately the totality of IBD

patients. Our supervised model for the classification of IBD samples against con-

trols reported the highest AUC of 85% but also fell short of the clinical threshold

of 95%.
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From the analysis of genes selected by each supervised classifier we observed two

distinct pathways enriched in the classification of CD versus UC and IBD versus

controls. Genes involved in the cytokine signalling pathway appear key elements

in distinguishing paediatric IBD patients from healthy individuals. In addition to

a degenerate cytokine response, changes in the FGFR3 pathway appear to drive

patients in the current CD and UC subtypes. Both cytokines and grow factors

have been associated with IBD pathogenesis [83, 133]. The absence of cytokines

enriched in the CD/UC distinction might indicate that such pathway is similarly

affected in all IBD patients. Interestingly, the only gene selected by both classifiers

is NOD2. Since NOD2 is specifically associated with CD, it is expected to play a

role in the CD versus UC discrimination. Since our IBD cohort is enriched with

CD cases, selection of NOD2 in the IBD versus controls classification is also not

unexpected.

Unsupervised approaches to stratify IBD cases using genomic data demonstrated

that whilst PCA was not effective in identifying strata, the best hierarchical clus-

tering model identified five novel clusters. These new strata, driven uniquely by

genomic data, do not follow the current classification into just two CD or UC

subtypes and is a further evidence of the possible need for improved complex sub-

typing systems in IBD. Investigating the main clinical features used as marker of

severity against novel clusters we observed interesting results indicating the pres-

ence of two clusters that have lower frequency of surgery events and one cluster

with higher azathioprine treatment rates. Similar results could be of high value

in a clinical framework aiding clinicians in choosing the appropriate intervention

based on genetic evidence.

From a genetic perspective, we observed a borderline significance between the level

of HLA-DQA1 gene damage (indicated by GenePy scoring with M-CAP) and the

need for surgery. The role of HLA genes in IBD are well established [188, 53,

119]. It has been estimated that approximately 10 to 33 percent of the total risk

of developing CD is due to mutations in HLA genes [115]. Our data indicate

the relationship between IBD and HLA might be specific to subsets of patients

harbouring risk genes. Although these patients may manifest endoscopic disease
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feature similar to other groups. Moreover, IBD patients with mutations in the

HLA-DQA1 gene tend to exhibit intolerance to AZA treatment which might lead

to pancreatitis [199]. Whilst HLA-DQA1 gene has been strongly associated with

IBD, the role of HLA-DRB5 is not fully understood[188]. Additional genomic

data and refined clinical evidence will play an important role in elucidating the

precise nature of this relationship. However, these findings are a blueprint for a

more personalised approach to treating IBD patient.

The novel identified clusters require further investigation, possibly in independent

cohorts, and (perhaps longitudinal) clinical data. A multi-class supervised ML

model could be employed to better characterise the specific genomic and clinical

attributes of each group.

Herein, both supervised and unsupervised models were based solely on genomic

data, which represent only one of the many ’omics data available to describe the

IBD phenotypes. As well as being a more intuitive than existing methods aiming to

integrate NGS data through presence or absence of variants, the continuous nature

of GenePy scores affords relatively straightforward merging of genomic data with

metabolomic, transcriptomic and clinical data will be simpler. A novel multi-level

approach may provide a more complete picture of IBD complexity, leading to more

accurate IBD strata and classifiers.

Ultimately, this will aid clinicians in making early accurate diagnoses and rapid

assignment of treatments specific to the underling molecular biology and not the

superficial appearance at endoscopy.
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Chapter 7

Conclusions and Future work

This thesis describes novel approaches to analyse next-generation sequencing data

in order to untangle the complexity of IBD genetics by using a broad range of

supervised and unsupervised machine learning methods. The preceding chapters

depicted the potential of machine learning and mathematical models for more

accurate diagnosis and patient stratification.

Machine learning can assist and accelerate the decision making process, reduce

uncertainty and provide confidence for medical decisions. The application of un-

supervised machine learning to clinical data demonstrated the complexity of clas-

sifying and stratify patients with inflammatory bowel disease as a consequence of

the substantial overlap of disease symptoms. Overlapping characteristics of IBD

subtypes are established in the current literature and represent the main source

of uncertainty when assigning a specific subtype diagnosis. Through the inte-

gration of multiple clinical features machine learning algorithms were capable of

partially solving such complexity by combining eight features between histological

and endoscopic observations. The simultaneous modelling and interpretation of

multiple traits is one of the key reasons for applying ML to health care problems.

Assignment of any given patient with the correct IBD subtype is a crucial step

that impacts specific treatment plans. Our data provided the highest accuracy

in classifying CD and UC patients using solely histological and endoscopic evi-

dence. Histopathology data is routinely collected for the majority of suspected

145



IBD patients making our model easy and cost effective to implement in other

studies. Analysis of larger paediatric cohorts could increase model performance as

machine learning methodologies have direct correlation between the size of learn-

ing dataset, prediction accuracy and generalisation. However, paediatric IBD has

a substantial genetic component and so classification of patients using uniquely

clinical features ignores informative genetic discriminants of disease. The optimal

ML models for clinical application would incorporate contemporary genomic data

where available.

We investigated the opportunity of modelling patients using their genomic data

in order to increase the performance of machine learning algorithms to classify

and stratify IBD patients. Genomic data represents rich molecular data that is

objective and less influenced by observation bias in its generation. The integra-

tion of NGS data in non-canonical analytical approaches (e.g machine learning

and network analyses) requires the transformation of substantially binary data

(mutation/no-mutation) into a format capable of both maximising the informa-

tion content and ease data interpretability. We hypothesised several strategies for

modelling genomic data through machine learning models with the aim of mag-

nifying the biological information carried by NGS data. Most of the currently

available metrics and approaches focus either on single mutations or large cohorts

of individuals making it impossible for clinicians to integrate genomic data at the

patient level. GenePy is a novel per-patient score capable of modelling genomic

data at a gene-level. While about two percent of IBD patients disease can be

explained by individual very rare mutations in single genes (monogenic disease),

most patient disease is consequent to the cumulative effect of multiple genetic

alterations (SNVs, large indels and CNVs). The gene-level approach of GenePy

can model this additive behaviour and, following correction for gene length, gene

scores can be compared between genes or combined into higher level systems such

as signalling pathways. This innovative approach to genomic data performed opti-

mally on our cohort of PIBD patients for which we obtained both immunology and

WES data. Through combining GenePy scores of genes closely interacting with

i) receptor; ii) signal modulation and; iii) cytokine production we were able to

146



discriminate genes specifically inducing the general hypo-inflammatory response

in a subset of treatment näıve patients.

Although our data demonstrated the value of GenePy in modelling NGS data,

there is clear scope for additional improvements. GenePy performance is de-

pendent on the quality of NGS data, the bioinformatic pipeline and the effi-

ciency/completeness of annotation software (e.g. ANNOVAR) deleteriousness

scores. Such annotation tools are constantly updated to provide better perfor-

mance. For example, the VEST3 deleteriousness metric was originally developed

to score insertion/deletion (indels) variants that alter protein sequence. The newer

release, VEST4 (not yet implemented in dbsnfp database or ANNOVAR) was im-

proved to score in-frame and frameshift indels. In the current version of GenePy,

frameshift indels are arbitrarily set to the maximal deleteriousness value, how-

ever, with better annotated data, the score would better model the effect of such

mutation leading to more accurate representation of the gene burden. Combined

scoring systems, such as CADD that rely on multiple third-party scores would

require a complete score rebuild to implement up to date features. Future ver-

sions of GenePy could include novel deleteriousness metrics capable of scoring

(non)frameshift and splice site altering variants. This could be done through the

implementation of refined metrics such as VEST4[32] or Gwava[156], a recent dele-

teriousness metric based on a random forest classifier trained to score coding and

non-coding variants combining existing genomic and epigenomic metrics.

GenePy scoring of genes is currently limited to genomic regions captured by whole

exon enrichment capture kits used in the IBD cohort. GenePy provided scores for

approximately 14,000 genes out of the 21,000 currently reported in the RefSeq

database. Whole exome sequencing is bound by capture kit design and a solution

to capture missing regions would be through obtaining whole genome sequencing

data. Large scale projects, such Genomics England which is collecting complete

whole genome sequencing data from thousands of patients across England, will

maximise the potential of GenePy as model for integrating and interpreting WGS

data. Due to the flexibility of GenePy, it is also possible to investigate non-coding

regions making the score suitable and ready for the analysis of whole genome se-
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quencing data (WGS). Instead of focussing on pre-defined gene regions, GenePy

could be used to assess deleteriousness across contiguous sliding windows to re-

flect the burden of pathogenic annotation across whole chromosomes. In order

to efficiently estimate the deleteriousness of non-coding regions, GenePy scores

could integrate deleteriousness metrics based either on conservation frequencies

(e.g. phastCons, GERP++, phyloP) or through methods capable of modelling

genome-wide features such as distance to transcription start sites, chromatin state,

GC-content, etc... (e.g. DANN, Eigen, Gwava).

One of the greatest opportunities that might substantially increase the power of

GenePy would be incorporation of information about allelic phase (Figure 7.1).

The allelic phase, defines on which of the two parental alleles (maternal or paternal)

a variant is observed. For example, given two heterozygous mutations (where

one allele is mutated and one is not) without information about phase it is not

possible to ascertain whether both mutations are on the paternal allele; both on

the maternal allele or one on each. Since the majority of the proteins are coded by

both alleles, having pathogenic mutations on both maternal and paternal alleles

at the same time might result in the absence of any gene product. On the other

hand, if both mutations are on the same allele, there would be still one unaffected

allele capable of producing a normally functioning protein. Phase of genomic data

is therefore biologically important to predict whether the organism is capable

of producing any normal/non-pathogenic protein. Phased data requires either

long paired-end approach sequencing or parental data. Some tools are currently

available to impute phase from WES data but are reported to perform poorly [29].

Although there is a clear scope for further refinement, the implicit benefit of

GenePy is already conferred through its ability to provide per-patient per-gene

scores that can be used for machine learning purposes. Modelling GenePy scores

from IBD patients through supervised and unsupervised machine learning method-

ologies is efficient and leads to new insights on the genetics of paediatric IBD. To

date, the performance reached through GenePy and SVMs are the highest observed

in the classification of IBD subtypes (CD/UC) using WES data. Such models were

based on support vector machines, powerful yet simple algorithms that can be used
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Figure 7.1: Schematic representation of phased data. Representation of phased sequencing data. NGS data
obtained with short-reads cannot resolve on which chromosome a heterozygous variant was observed (paternal or
maternal). With phased data, it is possible to observe the exact origin of a mutation. Given an unphased callset,
the phase can result in multiple scenarios. In phased example 1 both pathogenic heterozygous variants are on
the same paternal chromosome leaving the maternal copy unaltered. In phased example 2 deleterious mutations
are distributed on both chromosome copies which may lead to the complete absence of the coded protein.

for either classification and regression purposes. However, more computationally

intensive algorithms can be taken into consideration, such as Random Forest (RF)

and Artificial Neural Network (ANN) approaches. These two algorithms are be-

coming increasingly popular due to their flexibility across different data types and

their ability to model non-linear problems. Also, such models have less constraints

on input data with respect to their distribution. Whilst Random Forest models

are amongst the most interpretable machine learning approaches, ANNs act can

as black-box making the relationship between features and prediction hard to in-

terpret[190].

Unsupervised stratification of genomic data from patients with common complex

disease can be challenging and harder to interpret but may lead to novel insights.

In this work it was possible to link ML-defined genomic subgroups of paediatric

IBD patients with different frequency of surgery or treatment with azathioprine

indicating an important role of genetics in predicting disease course and optimal

clinical management. In order to further improve the understanding of natural

strata characterising paediatric IBD, more complex and advanced models can be
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applied. Network based approaches could be employed to detect clusters of pa-

tients with specific genomic signatures. This has already proved effective in the

analysis of patients diagnosed with asthma [23], a common complex autoimmune

condition not dissimilar to IBD. This novel approach is based on topological data

analysis (TDA) theories, particularly well suited for the analysis of high dimen-

sional and noise data [50]. GenePy scores are applicable to define the backbone

network generated through TDA and then, hypothetically identified clusters can

be regressed against clinical, metabolomic, transcriptomic and microbiome data.

The framework presented in this thesis represents a blueprint applicable to any

common complex disease where genetics plays a central role. This work presents

new models for more accurate representation of IBD subtypes and the complexity

of their genetic component. The current categorisation of IBD by CD and UC

subtypes is more frequently showing its limitations and evidence of novel strata

based solely on clinical observations have been already reported[7]. An efficient

integration and modelling of genomic data, alongside other ’omics, will pave the

way towards a personalised approach to treatment where clinical management

will depend on medical history, genetic predisposition and objectively reported

phenotypical traits (e.g. HPO terms).

The work presented in this thesis is and the GenePy algorithm in particular were

developed using data from a cohort of paediatric IBD patients which represent a

subset with a higher genetic component of the more broad IBD phenotype. Find-

ings discussed following the supervised/unsupervised modelling of PIBD genomics

data are therefore valid for this specific subset of paediatric patients and would

require additional validation before generalising to the adult form of IBD. More-

over, the investigations herein reported were based on an homogeneous Caucasian

group for which mutation frequencies may largely differ from the mean frequency

of the admixed population. GenePy and subsequent approaches can be tailored

to better model the available genomic data.

The collection of accurate longitudinal digital data from health care organisations

will provide a solid base on which detailed genomic, proteomic, transcriptomic and
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other types of biological ”Big Data” will layer. At the same time, Artificial Intelli-

gence approaches will have to evolve with a similar pace. Currently, many machine

learning industries are investing in the analysis of health care and biological data

with the promise of early detection and precise diagnosis.

We are still at the early stages of a healthcare revolution where the human expertise

of clinicians is coupled to the extraordinary power of machine learning to solve

the complexity behind many human conditions. Machine learning models will

represent the main set of tools for enhancing diagnosis, drug discovery and clinical

management.
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Supplementary Material

Table 7.1: Monogenic IBD genes.

Genes
ADA HPS4 NCF2
ADAM17 HPS6 NCF4
AICDA ICOS PIK3R1
BACH2 IKBKG PLCG2
BTK IL10 RAG2
CD40LG IL10RA RTEL1
COL7A1 IL10RB SH2D1A
CYBA IL21 SKIV2L
CYBB IL2RA SLC37A4
DCLRE1C IL2RG STAT1
DKC1 ITGB2 STXBP2
DOCK8 LIG4 TRIM22
FERMT1 LRBA TTC37
FOXP3 MASP2 TTC7A
G6PC3 MEFV WAS
GUCY2C MVK XIAP
HPS1 NCF1 ZAP70
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Table 7.2: All single nucleotide variants in the NOD2 gene used in GenePy validation. Statistical
significance was assessed through a Cochran-Armitage trend test using Plink v1.9 only for common variants (MAF
>0.05). Significant associations smaller than 1x10−2 or smaller than 5x10−2 are highlighted by two (**) or one
(*) asterisks respectively. p-values are not corrected for multiple testing.

Chr POS Ref. allele Alt. allele MAF Function† Nucleotide change Amino acid change Controls vs IBD Controls vs UC Controls vs CD
chr16 50699512 C A 1.18E-03 NS c.C17A p.A6D . . .
chr16 50699554 C T 2.30E-03 NS c.C59T p.S20L . . .
chr16 50699710 C T 1.15E-03 NS c.C215T p.A72V . . .
chr16 50699948 C G 0.356 SYN c.C453G p.S151S 0.236 0.551 0.209
chr16 50707880 C T 3.66E-03 NS c.C485T p.T162M . . .
chr16 50710654 T G 2.74E-03 NS c.T662G p.L221R . . .
chr16 50710713 C T 0.316 NS c.C721T p.P241S 0.030* 0.422 0.007**
chr16 50710777 A G 4.70E-03 NS c.A785G p.N262S . . .
chr16 50710842 C T 1.17E-03 NS c.C850T p.R284W . . .
chr16 50711028 C T 1.17E-03 NS c.C1036T p.R346C . . .
chr16 50711101 C T 1.17E-03 NS c.C1109T p.P370L . . .
chr16 50711203 C T 4.68E-03 NS c.C1211T p.S404L . . .
chr16 50711204 G T 1.17E-03 SYN c.G1212T p.S404S . . .
chr16 50711231 C T 1.17E-03 SYN c.C1239T p.T413T . . .
chr16 50711288 C T 0.316 SYN c.C1296T p.R432R 0.053 0.599 0.012*
chr16 50711492 C G 1.17E-03 SYN c.C1500G p.P500P . . .
chr16 50711514 C T 1.17E-03 SYN c.C1522T p.L508L . . .
chr16 50711600 C T 1.17E-03 SYN c.C1608T p.Y536Y . . .
chr16 50711672 T G 0.355 SYN c.T1680G p.R560R 0.300 0.799 0.169
chr16 50711699 G A 1.13E-03 SYN c.G1707A p.T569T . . .
chr16 50711744 C T 0.018 SYN c.C1752T p.A584A . . .
chr16 50711811 A G 1.13E-03 NS c.A1819G p.R607G . . .
chr16 50711867 G A 1.13E-03 SYN c.G1875A p.S625S . . .
chr16 50712015 C T 0.06 NS c.C2023T p.R675W 0.408 . 0.037*
chr16 50712018 C T 9.05E-03 NS c.C2026T p.R676C . . .
chr16 50712034 G A 1.13E-03 NS c.G2042A p.R681H . . .
chr16 50712049 G A 4.53E-03 NS c.G2057A p.R686H . . .
chr16 50712058 G A 1.13E-03 NS c.G2066A p.R689H . . .
chr16 50712085 C G 1.13E-03 NS c.C2093G p.A698G . . .
chr16 50712141 C T 1.13E-03 NS c.C2149T p.R717W . . .
chr16 50712175 C T 4.53E-03 NS c.C2183T p.A728V . . .
chr16 50712243 G A 1.13E-03 NS c.G2251A p.E751K . . .
chr16 50712288 G A 4.53E-03 NS c.G2296A p.V766M . . .
chr16 50712317 G T 2.26E-03 SYN c.G2325T p.V775V . . .
chr16 50716594 G A 1.12E-03 NS c.G2389A p.D797N . . .
chr16 50716899 A G 1.16E-03 NS c.A2474G p.N825S . . .
chr16 50722629 G C 0.015 NS c.G2641C p.G881R . . .
chr16 50722660 C A 1.13E-03 NS c.C2672A p.A891D . . .
chr16 50723365 G A 0.085 NS c.G2782A p.V928I 0.079 0.159 0.123
chr16 50723375 A G 1.12E-03 NS c.A2792G p.E931G . . .
chr16 50725494 A G 1.14E-03 NS c.A2807G p.E936G . . .
chr16 50729867 G GC 0.039 FSI c.2936dupC p.A979fs . . .

Table 7.3: Genes driving the unsupervised clustering of IBD patients. List of the genes that resulted
significant in discriminating cluster V from clusters I to IV. Statistical significance was assessed using a Mann-
Withney U test and p-values were corrected using Bonferroni correction for 898 tested genes (p-corr).

Gene U p-value p-corr

HLA-DQA1 3053.5 2.48 · 10−30 1.50 · 10−27

HLA-DRB5 4757 1.28 · 10−21 7.72 · 10−19

NOD1 9588 0.003 1.894

MFN2 9522 0.004 2.594

EPB41L2 9685 0.005 2.952

MYH3 9685 0.005 2.952

CSNK2A3 9656 0.005 3.235

SOS2 9473 0.006 3.440

CCL26 9724 0.009 5.546

ARHGEF12 9676 0.011 6.636

RAPGEF1 9682 0.012 7.183

NLRP12 9792 0.016 9.572

BMP1 9834 0.018 10.765

MAVS 9834 0.018 10.765

TRPM7 9728.5 0.021 12.892

ARHGEF11 9734 0.023 13.772

SEMA4B 9671 0.024 14.219

PIK3R5 9674 0.024 14.659

IFNA5 9860 0.028 16.668
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P2RX7 9860 0.028 16.668

CTTN 9860 0.028 16.668

EPHA3 9860 0.028 16.668

MAP3K1 9860 0.028 16.669

ZAK 9860 0.028 16.669

MYL5 9908.5 0.035 20.983

PIAS4 9908.5 0.035 20.984

TANK 9908.5 0.035 20.984

ARHGEF4 9908.5 0.035 20.984

BMP10 9908.5 0.035 20.984

IL12RB2 9908.5 0.035 20.984

IRF1 9908.5 0.035 20.984

TGFBR2 9908.5 0.035 20.984

NFATC4 9796 0.036 21.676

CD28 9798.5 0.037 22.322

NRG2 9800.5 0.038 22.852

NFAT5 9801.5 0.038 23.120

CTNNA2 9825.5 0.038 23.137

IL20RA 9827 0.039 23.577

GNA13 9827.5 0.039 23.723

TNFSF18 9928 0.049 29.478

DNM1L 9928 0.049 29.479

FOS 9928 0.049 29.479

MYL2 9928 0.049 29.479

BMPR1B 9928 0.049 29.480

CCR4 9928 0.049 29.480

CD79A 9928 0.049 29.480

F11R 9928 0.049 29.480

GFAP 9928 0.049 29.480

IRAK4 9928 0.049 29.480

MYH13 9928 0.049 29.480

NUDT6 9928 0.049 29.480

PIK3R1 9928 0.049 29.480

PPP2R1B 9928 0.049 29.480

TRAF3 9928 0.049 29.480

155



Figure 7.2: Median whole gene GenePyuncorrected score profiles observed across the cohort of 508
patients with WES data depicted separately for each of the sixteen deleteriousness metrics. For ease
of comparison, x-axes are truncated at scores of 10. Bin size was set to 0.01 with the first bin shown 0.0.1-0.02.
Grey dashed lines represent the standard deviation of each bin.
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Figure 7.3: Median whole gene GenePycgl score profiles observed across the cohort of 508 patients
with WES data depicted separately for each of the sixteen deleteriousness metrics. For ease of
comparison, x-axes are truncated at scores of 10. Bin size was set to 0.01 with the first bin shown 0.0.1-0.02.
Grey dashed lines represent the standard deviation of each bin.
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Figure 7.4: Individual radar plots of cytokine responses per patient. Each spoke of the radar represents
a ligand-cytokine combination with the red dashed line indicating the mean response of the control cohort. Each
plot is coloured according to the eight different immuno-types identified by hierarchical clustering.
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Figure 7.5: Individual radar plots of cytokine responses per patient (2). Each spoke of the radar
represents a ligand-cytokine combination with the red dashed line indicating the mean response of the control
cohort. Each plot is coloured according to the eight different immuno-types identified by hierarchical clustering.
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Classification of Paediatric 
Inflammatory Bowel Disease using 
Machine Learning
E. Mossotto   1,2, J. J. Ashton1,3, T. Coelho1,3, R. M. Beattie3, B. D. MacArthur   2 & S. Ennis1

Paediatric inflammatory bowel disease (PIBD), comprising Crohn’s disease (CD), ulcerative colitis (UC) 
and inflammatory bowel disease unclassified (IBDU) is a complex and multifactorial condition with 
increasing incidence. An accurate diagnosis of PIBD is necessary for a prompt and effective treatment. 
This study utilises machine learning (ML) to classify disease using endoscopic and histological data for 
287 children diagnosed with PIBD. Data were used to develop, train, test and validate a ML model to 
classify disease subtype. Unsupervised models revealed overlap of CD/UC with broad clustering but no 
clear subtype delineation, whereas hierarchical clustering identified four novel subgroups characterised 
by differing colonic involvement. Three supervised ML models were developed utilising endoscopic 
data only, histological only and combined endoscopic/histological data yielding classification accuracy 
of 71.0%, 76.9% and 82.7% respectively. The optimal combined model was tested on a statistically 
independent cohort of 48 PIBD patients from the same clinic, accurately classifying 83.3% of patients. 
This study employs mathematical modelling of endoscopic and histological data to aid diagnostic 
accuracy. While unsupervised modelling categorises patients into four subgroups, supervised 
approaches confirm the need of both endoscopic and histological evidence for an accurate diagnosis. 
Overall, this paper provides a blueprint for ML use with clinical data.

Paediatric inflammatory bowel disease (PIBD), comprising Crohn’s disease (CD), ulcerative colitis (UC) and 
inflammatory bowel disease unclassified (IBDU) are a group of autoimmune inflammatory conditions affecting 
children, the incidence of which is increasing1, 2. The major feature of inflammatory bowel disease is chronic 
inflammation of the gastrointestinal (GI) tract. Symptoms of PIBD include diarrhoea, abdominal pain, blood in 
the stool and weight loss3. Although both Crohn’s disease and ulcerative colitis are considered to fall within the 
same disease group, there are often differences in disease location within the bowel, observable through endo-
scopic and histological assessment. Endoscopic investigation of disease is macroscopic and typically determines 
initial treatment and provisional diagnosis, however the endoscopic assessment of the gastrointestinal system is 
not always sufficient for diagnosis and histological (microscopic) examination of biopsies from the upper and 
lower GI tracts is vital to determine disease extent and confirm diagnosis. Typically, Crohn’s disease is charac-
terised by a non-continuous inflammation of the entire gastrointestinal system, while the inflammation pattern 
of ulcerative colitis is continuous and restricted to the colon and rectum. There is a well-established discordance 
between endoscopic (macroscopic) and histological (microscopic) disease extent4–6. Mucosal healing (histologi-
cal) is frequently cited as a ‘true’ measure of remission. Despite this, the major clinical classification tool for PIBD, 
the Paris classification, is based exclusively on endoscopic and radiological disease extent7–9. Previous data has 
indicated histological disease extent to be significantly greater than endoscopic disease extent, at both diagnosis 
and follow-up4, 5. This raises the possibility of a modification of classification to account for histological disease as 
an additional measure of disease extent. However, the current endoscopic Paris classification remains a validated 
tool to guide treatment6, 10.

Diagnosis of PIBD is challenging, the aetiology is not fully understood and deciding on management and 
prognostication is complex. The accuracy of diagnosis in PIBD is key to prompt and effective treatment11. The 
treatment for PIBD is highly dependent on disease location and disease extent, as well as accurately classifying as 
CD, UC and IBDU. Surgical intervention may be necessary for pancolitis in UC but would not provide a cure for 
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pancolitis in CD. Additional decisions about escalation of therapy, including use of monoclonals, rely on precise 
understanding of an individual patient’s disease. The use of these therapies is not without drawbacks and accurate 
diagnosis is vital to achieve remission without putting the patient at risk of harm.

Uncertainty in the classification or the severity/extent of disease can lead to delays or inappropriate treat-
ment12. Tools to assist clinicians in making a more accurate diagnosis are attractive and may assist in the better 
categorisation of disease into a number of specific phenotypes with implications for how best to treat. Plevy et al. 
previously developed a multi-component machine learning model (including serological and genetic markers) in 
adult IBD to assist with diagnosis achieving good CD/UC discrimination13. However, these markers are expen-
sive, time consuming to generate and not routinely available in most hospitals; to date there are no mathematical 
models based solely on simple clinical data such disease location to assist with diagnosis and classification.

Machine learning is a contemporary branch of statistics particularly well suited for analysis of complex data. 
Machine learning algorithms aim to find patterns within data and use them to make predictions and classifica-
tions or infer new knowledge14. These methods are broadly grouped in two categories: (1) unsupervised machine 
learning algorithms do not need a priori knowledge of classes, instead they aim to infer classes on the basis of 
presenting features; (2) supervised algorithms are better suited to solve classification problems where the class of 
each sample/patient is known a priori – these samples are then used to train a model to classify subsequent sam-
ples of unknown class. This study utilises unsupervised models to examine the evidence for clearly distinguishable 
strata identifiable through endoscopic and histopathological data and examines the properties of any inferred 
groups. The study then applies a supervised support vector machine (SVM) and patient samples with established 
diagnoses of either CD or UC to construct a classification model. The resultant model is tested for accuracy and 
implemented on an unseen validation cohort. Such methodology has been used successfully in medicine and 
biology for cancer subtype classification, novel drug discovery and genomics15–19. Here we use paediatric patient 
endoscopic and histological data to assess the utility of such approaches for the diagnosis and management of this 
complex disease.

Materials and Methods
Patients were recruited from the Genetics of Paediatric Inflammatory Bowel Disease study at Southampton 
Children’s Hospital. Data were collected from prospectively entered electronic clinical records using a standard-
ised proforma5. Fully anonymised patient data were obtained from endoscopy and histology at initial diagnosis, 
all patients were diagnosed in line with Porto criteria20. Disease type was confirmed by two investigators (RMB, 
JJA). The dataset comprised manually collected data from 287 patients, 178 with Crohn’s disease, 80 with ulcer-
ative colitis and 29 with inflammatory bowel disease unclassified (Supplementary dataset 1). The ratio of CD to 
UC is typical of paediatric onset disease2.

Informed consent was obtained for all participants. The study has full ethical approval from Southampton & 
South West Hampshire Research Ethics Committee (09/H0504/125). All methods were performed in accordance 
with the relevant guidelines and regulations.

Ten gastrointestinal (GI) locations were investigated for the presence of macroscopic and microscopic abnor-
malities: mouth, oesophagus, stomach, duodenum, ileum, ascending colon, transverse colon, descending colon, 
rectum and perianal. Clinical observations were converted into numerical variables [−1, 0, +1] depending on 
tissue abnormalities. At each location, abnormal tissues observations were coded as +1 and normal were coded 
as −1. Null values (0) were assigned for missing data such as in the case of restriction at endoscopy. Mouth and 
perianal locations are not typically biopsied for histology, therefore these feature were excluded in the unsuper-
vised approach and automatically excluded in the supervised approach.

Unsupervised machine learning.  In order to observe whether clinical features can induce the formation 
of two clusters representing CD and UC, data were modelled using principal component analysis (PCA) and 
multidimensional scaling (MDS) algorithms as unsupervised machine learning approaches. In unsupervised 
machine learning the diagnosis of CD, UC or IBDU is hidden from the model, leaving the algorithm to impose 
the most relevant strata. Both PCA and MDS are dimensionality reduction algorithms that convert a high dimen-
sional space (here each dimension corresponds to a measured traits), to a lower dimensional space (usually 2D or 
3D). The main difference between PCA and MDS is the search space of those two algorithms. While PCA inves-
tigates linear feature associations, MDS can also uncover non-linear associations. However, if the associations 
between the features are essentially linear then multidimensional scaling will provide a similar representation to 
that of PCA.

To better visualise the relationship between patients and traits, hierarchical clustering with Hamming dis-
tance21 and average linkage22 was performed.

Groups identified by hierarchical clustering were assessed with respect to: age of onset and C-reactive protein 
levels at diagnosis, using ANOVA; disease subtype, gender, family history and personal history of autoimmune 
disease using χ2. Statistical analyses were performed applying Python SciPy package23.

Supervised machine learning.  In order to discriminate CD and UC patients, a model was assembled uti-
lising different techniques of supervised machine learning. We applied a supervised machine learning model 
where the diagnosis of CD and UC was seen by the model.

In order to isolate the key histological and endoscopic features that determined diagnostic subgrouping, we 
tested a range of classification strategies including ensemble learners (Boosted and Bagged Trees), linear discri-
minant analysis and support vector machines (SVMs) with a variety of different kernels14, 24.

Data were split in order to construct and then validate the model, 210 patients (nCD = 143; nUC = 67) patients 
were included in the model construction step. Forty-eight patients (nCD = 35; nUC = 13) were set aside to validate 
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the model on unseen data. Data from IBDU patients (n = 29) were used only for a final reclassification. Figure 1 
is a schematic representation of the model and shows the usage of the different subsets.

To create a model which is applicable to unseen data, the 210 CD and UC samples were randomly split in two 
subsets preserving the original disease subtype ratio. The first data subset was used for searching the best param-
eters for the CD versus UC classification (discovery set). The second data subset was used for training and testing 
the model according to the parameters determined during the discovery phase. After assessing the performance 
of the final model, data from IBDU patients were passed to the model in order to classify them as either CD or 
UC.

Construction of optimal model utilised a linear support vector machine, allowing for regression of weights 
for each feature and assessment of the relative importance of each variable. Additionally, linear SVMs require 
estimation of a single penalty parameter (C) that allows for misclassification within the training set. In an attempt 
to improve model performance when optimizing the classifier we allowed the search space for C values to range 
from 1 × 10−3 to 1 × 102. Large values of C are less prone to misclassify data points, but perform suboptimally 
when classifying outliers in unseen data. Small C values generate models that are more robust to outliers by allow-
ing more misclassified data points at the expense of the training accuracy.

Machine learning approaches are weakened by the inclusion of features that are not relevant to the classifica-
tion problem (confounding factors or ‘noise’) and reduce model performance. In order to minimise noise from 
non-informative features, we applied a recursive feature elimination algorithm combined with a 5-fold cross 
validation scheme (RFE-CV) selecting pertinent features as described by Guyon et al.25. Including a 5-fold cross 
validation avoids overfitting the model to the discovery set by selecting parameters and features that are specific 
to this set but do not generalize well, and therefore perform poorly on the test subset. The selection of the best 
feature subset and optimal C were chosen to maximise the classification accuracy over the discovery set.

Following the identification of the optimal C and set of features, we trained a new support vector machine 
and tested its efficiency (Fig. 1). With a 5-fold cross-validation scheme the algorithm repeatedly fitted and tested 
data from the training/testing set, providing the average accuracy in the CD vs. UC classification. The area under 
the receiver operating characteristic curve (AUC) was used to assess model efficiency. Statistical significance of 
the observed accuracy was determined through permutation testing of 1,000,000 randomly generated models in 

Figure 1.  Model and data processing. Schematic representation of the model construction (blue section), 
validation (green section) and IBDU reclassification (red section) phases. Solid arrows represent data stream 
while dashed arrows represent parameters or metrics stream. The discovery set was used to identify the optimal 
penalty parameter (C) and number of features using the recursive feature elimination with cross validation 
algorithm (RFE-CV). These two elements were then passed to the training and testing set which was then 
modelled using a support vector machine (SVM). Three metrics were collected: area under the ROC curve 
(AUC); accuracy over the 5 folds and; a permutation-generated p-value.



www.nature.com/scientificreports/

4Scientific Reports | 7: 2427  | DOI:10.1038/s41598-017-02606-2

which sample labels were shuffled. The p-value was then determined by calculating the frequency at which the 
observed accuracy was replicated by the random models. Finally, the overall performance of the model was veri-
fied by classifying unlabelled data from the validation dataset of 48 patients.

Once the model had been fully trained and validated, it was used to classify IBDU patients and posterior 
probabilities for membership to both the UC and CD classes were obtained. These probabilities depend on the 
distance between an observation and the decision function that SVM uses in order to discriminate between the 
two groups. The uncertainty in the classification of an individual increases as its profile is closer to the decision 
boundary (which is defined by the SVM decision function).

Data manipulation and modelling was performed using Matlab24 (R2016b), Python26 (2.7) and the 
Scikit-Learn27 (0.17.1) package.

Results
Endoscopic and histological data were collected for 287 patients; 178 patients with Crohn’s disease, 80 with 
ulcerative colitis and 29 patients with inflammatory bowel disease unclassified. Machine learning was applied to 
239 patients (CD = 143, UC = 97, IBDU = 29). Females account for 37% (107) of the individuals in the dataset. 
Average age of onset was 11.5 years (range 1.6 to 17.6 years). Twenty-six (9%) of patients were diagnosed below 6 
years of age (very-early onset IBD). The remaining 48 patients (CD = 35, UC = 13, average age of onset 13.2 years) 
were used to validate the model.

Unsupervised clustering shows the overlap of CD and UC phenotypes.  Endoscopic and histolog-
ical data underwent principal component analysis with the first three components being representative of 52.2% 
of the total variance of data. According to both PCA and multidimensional scaling, there was no clear separation 
of Crohn’s disease and ulcerative colitis (Fig. 2A,B).

Despite the lack of distinct clusters, CD and UC individuals are differently distributed across the 3D space 
with regions predominantly populated by one or the other class. As anticipated, IBDU patients were distrib-
uted uniformly throughout the CD and UC data. The same clustering pattern was observed with MDS (Fig. 2B) 
strongly suggesting linear relationships between the measured features. The lack of clear clusters confirms the 
complexity in distinguishing CD and UC phenotypes from microscopic and macroscopic observations.

Hierarchical clustering identifies four PIBD subtypes.  In accordance with PCA and MDS analyses, 
hierarchical clustering did not stratify patients according to CD, UC and IBDU diagnosis (Fig. 2C). However, it 
did reveal the presence of distinct subgroups of patients, corresponding to complex patterns of abnormalities. 
As expected, most of the macroscopic and microscopic dysregulations were observed in the colorectal region. 
Considering only the colorectal region, it is possible to observe four distinct groups (Fig. 2C,i–iv). In the first 
group (i) patients exhibit tissue abnormalities identified by both endoscopy and histology. The second group (ii) 
shows colorectal abnormalities only after a microscopic investigation. Patients belonging to the third group (iii) 
present with inflammation of the rectum and the descending colon. Finally, the fourth group (iv) does not show 
any disruption of the colorectal region. Some patients are not placed within any of these four groups since they 
do not show any clear colorectal pattern. These patients have higher numbers of disease locations with null values 
(reflecting restriction at endoscopy).

The ileum exhibited an inconsistent pattern of disruption, acting as interface between mostly-abnormal and 
mostly-normal regions (left hand side vs. right hand side of Fig. 2C). Additionally, endoscopic or histological 
abnormalities in the upper GI tract are less frequent compared to lower GI tract abnormalities, this is equally 
applicable to all patients, regardless of their diagnosis (of CD or UC).

The four groups were analysed for any difference in their composition of patients with: a diagnosis of CD or 
UC; gender; positive or negative family history and clinical diagnosis of any other personal autoimmune disease. 
There was no significant difference between the groups with regard to any of these variables with the exception 
of diagnosis. Group iii (inflammation of the rectum and the descending colon) was significantly enriched for 
patients with ulcerative colitis patients (p = 0.046) and group iv (no colorectal involvement) was significantly 
enriched for patients with Crohn’s disease (p = 0.007). Groups i and ii were not significantly enriched either for 
CD or UC indicating presence of both disease types.

Regression analysis of the four groups identified a significant (p = 0.003) increase in CRP for patients in group 
iii compared to the other groups (Fig. 2D). There was no significant difference in age of diagnosis across groups.

A combined model distinguishes Crohn’s disease from ulcerative colitis with the greatest accu-
racy.  Model selection was based by testing a range of different algorithms and kernels. Table 1 reports clas-
sification accuracies obtained fitting and testing models on the whole dataset excluding IBDU patients and the 
validation cohort. Reported accuracies are only informative in terms of comparing different models and were not 
validated on external dataset. Linear discriminant and linear support vector machine outperformed other tested 
algorithms. Linear models performed better than Tree-based model and non-linear SVMs. Although 0.5% less 
accurate compared to a linear discriminant model, linear SVM represented the best choice in terms of adaptabil-
ity and interpretation. Linear discriminant models assume data have the same covariance and a normal distribu-
tion, while SVMs does not have such requirements and is better suited for discriminative tasks28. Therefore, an 
SVM14 with a modified linear kernel was used as core classifier in our model.

In order to elucidate which observations are needed for optimal disease classification of patients, three super-
vised models were generated implementing endoscopic features, histological features and both endoscopic and 
histological features.

The combined model outperforms the other two models achieving the highest accuracy; the model cor-
rectly assigns the diagnosis of CD or UC to a patient in 82.7% of cases (Table 2). All metrics that assess model 
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performance agree in the superior efficiency when using combined endoscopy and histology data. The combined 
model shows the highest accuracy, precision and F1-score; recall is close to that observed in the histological 
model. The endoscopy model performs well in terms of precision but is poorer in recall. Conversely, the histo-
logical model has the lowest precision but highest recall. This indicates that using endoscopy data the model is 
highly precise in identifying most of individuals from both classes (CD and UC). However, the endoscopy model 
is prone to produce more false negatives (recall) compared to the histology model. Both the accuracy and the F1 
score, which combines precision and recall metrics, indicate that histology model is superior to the endoscopy 
model although having a lower precision. Moreover, the combined model selects all the features selected by the 
endoscopy and histology models plus two additional histological features (oesophagus and ascending colon). As 
expected, the ileum location appears to be consistently informative for the discrimination of CD and UC patients 
in every model, and in the histological model is sufficient to diagnose CD or UC in 76.9% of cases. Features with 

Figure 2.  Dimensionality reduction approaches and hierarchical clustering of PIBD data. (A,B) Principal 
component analysis (A) and multidimensional scaling (B) of clinical data from 239 PIBD patients. The first 
three PCA components account for 52.2% of the total variance. Important note – UC/CD/IBDU diagnoses 
were used only to retrospectively colour data points and were not included in actual modelling. (C) Heatmap 
of endoscopic and histological tissue abnormalities in PIBD patients. Abnormal manifestations are shown in 
orange, normal in light blue and missing data in white. Asterisks indicate histology features. Ascending colon, 
transverse colon and descending colon labels were shortened to A-Colon, T-Colon and D-Colon respectively. 
Left hand side bar shows the referred diagnosis: CD in red, UC in blue, IBDU in yellow. Again, UC/CD/IBDU 
diagnoses were not used to model data but only to retrospectively colour each element. The top bar shows the 
type of investigation: histology in white, endoscopy in black. Identified colorectal groups are shown by dashed 
boxes and labelled from one (i) to four (iv). (D) Box and whisker plot depicting C-reactive protein (CRP) levels 
recorded at diagnosis across the four identified groups. Each box represents data from the first (bottom edge) 
and the third (top edge) quartile. Red bars and numbers are the median CRP level. Dashed whiskers show the 
lowest and highest CRP within each group. Black circles are outlier data points.
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similar observations in both CD and UC patients are not informative for the classification while locations with a 
more variable manifestation of tissue damage were typically selected in the RFE-CV selection.

The greatest area under the curve (AUC) was observed in the combined model (0.87) followed by the histol-
ogy (0.82) model and then the endoscopic model (0.78) (Fig. 3A). The endoscopic, the histological and the com-
bined models showed a statistical significance of p = 3 × 10−3, p = 5 × 10−6 and p = 1 × 10−6 respectively (Fig. 3B).

For each training fold of the combined model, the observed accuracies (in decimals) were 0.86, 0.67, 0.95, 
0.85 and 0.80 respectively. Overall, the mean accuracy was 0.83, the median 0.85, the standard deviation 0.09 and 
the standard error 0.05. Over the 1,000,000 permutations, none of the randomised models achieved an accuracy 
equal or greater than the observed (p-value = 1 × 10−6). These metrics indicate good overall performance and no 
overfitting of the model.

Assessment of the combined model in an additional cohort.  In order to further validate the com-
bined histological and endoscopic model we applied it to classify 48 anonymised PIBD patients (validation set, 
Fig. 1). These data had not been used in the optimisation or training of the model. The model was accurate in 
classifying this additional cohort, correctly assigned the diagnosis of CD or UC in 83.3% of cases (Table 3). The 
performance metrics calculated on the validation set confirm the previous results in terms of accuracy and recall. 
However, precision, and consequently the F1-score, are lower when compared to the performance calculated over 
the test set. F1-score of the validation set is still higher than the histology and endoscopy only models.

Since the validation set never took part in any phase of the model generation, and since the model was already 
trained and tested avoiding overfitting, the accuracy over the validation set did not required any additional 
shuffling.

IBDU patients can be categorised by the combined model.  The combined model was used to 
attempt to classify the 29 IBDU patients by assigning them to either a CD or UC subtype and computing the 
posterior probability of belonging to each class (Fig. 3C). It should be noted that the model was not trained to 
classify IBDU therefore patterns restricted to this class were not learnt by the algorithm. Instead the model aims 
to identify patterns learnt from UC and CD data in these previously unseen IBDU cases.

When applied to the 29 IBDU patients, 17 patients were assigned as Crohn’s disease and 12 as ulcerative colitis. 
In 17 of these patients the IBD subtype classification was estimated with a probability greater than 80% (Fig. 3D). 
Exploring the distribution of the posterior probabilities (Fig. 3D), patients are not equally distributed across 
the entire probability range. The sigmoidal distribution reflects higher certainty of the model predication where 
patients present with a pattern learnt during the construction step but prediction accuracy declines rapidly for 
patients exhibiting previously unseen patterns.

Discussion
In this study we have mathematically modelled endoscopic and histological data to aid with classification of IBD 
diagnosis in paediatric patients. The resulting model demonstrates high accuracy in discriminating CD and UC 
patients and also provides an effective visualization of the complex overlap of these two disease subtypes.

Method Accuracy

Simple Tree (4 splits) 78.1%

Medium Tree (20 splits) 75.2%

Complex Tree (100 splits) 76.7%

Linear discriminant 81.0%

Linear SVM 80.5%

Quadratic SVM 78.1%

Cubic SVM 73.8%

Boosted Trees 74.8%

Bagged Trees 77.6%

Table 1.  Preliminary assessment of linear and non-linear models. Linear support vector machine (SVM) was 
the selected model.

Input Accuracy % (AUC) Precision Recall F1-score (#) Features

Endoscopy 71.0% (0.78) 0.89 0.68 0.75 (5) Duodenum, Ileum, D-Colon, Rectum, 
Perianal

Histology 76.9% (0. 82) 0.81 0.86 0.83 (1) Ileum

Combined (E + H) 82.7% (0.87) 0.91 0.83 0.87 (8) Duodenum, Ileum, D-Colon, Rectum, 
Perianal, Oesophagus*, Ileum*, A-Colon*

Table 2.  Performance of the three optimised supervised models, asterisks indicate histological features. All 
metrics represent the average over the 5-folds of the cross validation.
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Interpretation of the unsupervised models confirms uncertainty in discriminating CD and UC subtypes with 
overlapping and undefined clusters based only on disease location. We observed a limited separation of Crohn’s 
disease and ulcerative colitis patients, with UC presenting less variance than CD cases.

Based on the endoscopic and histological disease location the unsupervised models did not classify disease 
into distinct CD/UC subtypes, instead four distinct groups of patients were characterised by different colorectal 

Figure 3.  Supervised classification performance and metrics. (A) Receiver operating characteristic of the 
combined (light blue), histology (purple) and endoscopy (green) models. The grey dashed line represents the 
expected performance of a random model. (B) Permutation tests of models: dashed lines represent the observed 
accuracy of the combined (light blue), histology (purple) and endoscopy (green) models. The endoscopic, 
histological and combined models have a p-value of p = 3 × 10−3, p = 5 × 10−6 and p = 1 × 10−6 respectively. The 
grey dashed line represents the average expected performance of random model. Solid coloured lines show the 
distribution of random permutations for each model. (C) Classification of IBDU patients with the combined 
model in Crohn’s disease (red) or ulcerative colitis (blue) subtypes. The classification posterior probability 
indicates the confidence of the model in assigning UC or CD labels. (D) Cumulative confidence in IBDU 
reclassification represented as cumulative density function (red line) of posterior probabilities for 29 IBDU 
patients. Each dot represents an IBDU patient.

Validation set Accuracy % Precision Recall F1-score Support

UC — 0.65 0.85 0.73 13

CD — 0.94 0.83 0.88 35

Average/Total 83.3% 0.86 0.83 0.84 48

Table 3.  Performance of the trained combined model over the validation set.
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involvement. The hierarchical clustering was not able to fit some individuals in those previously described groups. 
There are clear challenges in diagnostic categorisation based solely on disease location, however this model points 
to further subcategorization of disease, with significant overlap between UC and CD in groups i and ii. Whilst 
group iv is almost exclusively CD all colonic involvement has some overlap between disease types suggesting 
sub-classification of disease may be useful in distinguishing subtypes of CD or UC, potentially with impacts on 
management decisions. This theory has been raised previously through mathematical modelling of complex IBD 
data including serological and genetic markers13, 29. Regression analysis of CRP level at diagnosis with groups i-iv 
indicates a statistically significant increase in CRP in group iii, whilst the reason behind this are uncertain there is 
a need to identify patients with increased systemic inflammation in order to optimise treatment. Here we provide 
potential evidence of the need for further subcategorization of disease based on solely on clinical parameters used 
in standard practice.

It is well established that ileal inflammation is key to diagnosis of Crohn’s disease. Here we found that ileal 
inflammation (endoscopic or histological) is the only feature selected as important in all the models we con-
structed, providing evidence that ileal disease is the single most important factor for disease classification. 
Additionally, whilst colonic inflammation is important in paediatric UC, we find that it is also frequently present 
in CD with significant overlap between the 2 diseases.

There is significant interest in application of machine learning to clinical problems to aid with diagnosis, dis-
ease classification and personalising treatment. Nevertheless, the main focus of machine learning should not be 
to replace the human decision-making but to provide help in uncertain situations. There will always be an innate 
limitation of mathematical models to replicate the human intuition built with experience. However, some exam-
ples of machine learning applied to clinical data have been proved successful in situations to such as providing 
risk scoring systems30, imaging interpretation31, new patient stratification models32 and diagnostic tools33.

Our machine learning models have been utilised for solving a classification problem (CD vs UC) and addi-
tionally to observe data structure and complexity with a view to improvement of current classification. Through 
the application of machine learning to these data we confirmed the higher accuracy of histological over endo-
scopic data if used in isolation. We also demonstrated that both investigations are needed for an optimal classifi-
cation, although the current Paris classification only accounts for endoscopic disease location.

Recently there has been interest in discrepancies between endoscopic and histological disease extent, with 
some calls to review the Paris classification of paediatric IBD to incorporate an additional histological score4–6. 
This model provides further evidence to suggest that there are significant differences between endoscopic and 
histological disease extent, with notable differences seen in Fig. 2C. Additionally the classification accuracy of the 
model of endoscopic disease alone is less than a combined model, further raising the need to discuss a modifica-
tion to the Paris classification.

The potential clinical utility of machine learning models such as the one we have developed are significant, by 
placing these basic data into the model a clinician will get a disease probability score at this, the model is open to 
incorporating additional data coming from independent clinics, leading to increasing accuracy over time.

IBDU presents an ongoing challenge to clinicians. There is broad guidance on treatment but increasingly 
there is uncertainty with diagnosis and reclassification of disease at a later stage20. The model described here has 
been developed in an attempt to classify Crohn’s disease and Ulcerative Colitis at diagnosis, and not to reclassify 
IBDU based on disease location. Despite this, IBDU patients appear throughout the PCA/MDS plots and do not 
cluster, indicating a heterogeneous disease phenotype. We applied the model to 29 patients diagnosed with IBDU 
at initial endoscopy, 17 of these patients were assigned a probability of greater than 80% to either CD or UC based 
on their disease location. Posterior probabilities obtained from the classification of IBDU patients as either CD 
or UC, resulted in either high (p > 0.85, n = 14) or low (p < 0.65, n = 10) values, with few (n = 5) exceptions. This 
distribution suggests the presence of at least two subgroups within IBDU patients. The first, where the model 
assigns the CD/UC label with high confidence, might represent a subset of patients with a clinical presentation 
similar to those already observed and learnt in CD and UC cases. The second subgroup, labelled with low confi-
dence, might instead reflect a distinct clinical presentation that does not fit in the current classification criteria. 
Support from ML modelling may be particularly attractive for IBDU cases.

The strengths of this study lie in the robust nature of data collection. Patients recruited to this study were 
diagnosed by 4 different clinicians from Southampton Children’s Hospital, therefore the pattern discovered by 
the model is not that of a single gastroenterologist. The supervised model combines different machine learning 
elements, but its relative simplicity makes it quick and easily interpretable. The feature selection step (RFE-CV) 
implicated the most informative GI locations for diagnosing IBD subtypes.

Through this model we report a diagnostic accuracy of 82.7% with an area under the ROC curve of 0.87, 
although for clinical application this would need to be increased to exceed 0.95. This may be possible with the 
addition of more patients or more data (e.g. blood data, granulomata). Comparing the metrics of the trained 
model with the performance over the validation set we conclude that: (1) the combined model performs better 
than individual histology or endoscopy models; (2) that both endoscopic and histological evidences are needed 
for an optimal classification of PIBD and (3) performance over the validation set is similar to that observed over 
the test set, confirming the absence of overfitting and good generalisation. Moreover, performance metrics seen 
in the validation set, suggest that classification of UC patients is much more complex than for CD patients, reflect-
ing the uncertainty observed in clinics. In total, 94% of Crohn’s disease patients were successfully labelled as CD 
while only 65% of UCs were correctly labelled. In conclusion, the missing 17% percent in accuracy can be mostly 
attributed to a lower discriminability of patients affected by UC. Additionally, this work can be seen as a blueprint 
for improvement of IBD categorisation in the future, through modelling of additional data, such as variants from 
whole-exome sequencing, transcriptome profiles and microbiome signatures it may be possible to gain further, 
clinically relevant, disease groups34. In the future this may aid with treatment selection, prognostication and 
ongoing management.
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This study employs a mathematical model of histological and endoscopic data within IBD; it provides a model 
with high diagnostic accuracy on unseen data (83.3%). We present 4 novel subgroups of disease identified by 
unsupervised machine learning based on colonic disease.

The purpose of this study was two-fold, to better understand disease aetiology, heterogeneity and classification 
and to understand the potential for machine learning to assist with disease classification. Through further work 
machine learning can aid clinicians to accurately subtype disease and personalise treatment. Additionally this 
may help with classification of IBDU. Whilst existing methods for diagnosis appear robust, the opportunity to 
improve and personalise therapy for patients through new and more accurate subtyping of disease is exciting and 
increasingly tangible.
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