The University of Southampton
University of Southampton Institutional Repository

Effect of omega-3 fatty acids in non-alcoholic fatty liver disease

Effect of omega-3 fatty acids in non-alcoholic fatty liver disease
Effect of omega-3 fatty acids in non-alcoholic fatty liver disease
The first chapter (Introduction) of the thesis summarises the pathogenesis of NAFLD and its associated risk factors such as type 2 diabetes and cardiovascular disease. Moreover, it describes: a) the potential beneficial effects of long chain omega-3 fatty acid treatment [docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA)] in NAFLD; b) the effect of genotypes patatin-like phospholipase domain-containing protein-3 (PNPLA3 I148M) and the transmembrane 6 superfamily member 2 protein (TM6SF2 E167K), on the level of DHA and EPA enrichment and end of study liver fat percentage after DHA+EPA treatment; and c) the effect of fatty acid desaturase (FADS) and Elongase (ELOVL) polymorphisms influencing omega-3 fatty acid metabolism. The second chapter describes the overall aim of this thesis. The aim of my research was to investigate in patients with NAFLD: a) the effect of long-chain omega-3 fatty acid treatment on liver fat percentage and liver fibrosis biomarkers; b) the effect of genotypes influencing NAFLD severity on treatment with DHA+EPA; and c) the effect of genotypes influencing omega-3 fatty acid metabolism in NAFLD. The third chapter describes in details the design and methods used in my research. Chapter four highlights my novel results from the WELCOME study. This chapter describes the baseline and end of study characteristics of the WELCOME study participants and shows the results of the DHA+EPA treatment on liver fat percentage and liver fibrosis biomarkers. This chapter also describes the association between DHA erythrocyte enrichment and decrease in liver fat percentage after DHA+EPA treatment. Chapter five illustrates the association between PNPLA3 I148M and DHA erythrocyte enrichment percentage and end of study liver fat percentage after DHA+EPA treatment. The chapter shows that PNPLA3 I148M was associated with higher end of study liver fat percentage and lower DHA tissue enrichment. Chapter six shows the negative association between FADS polymorphisms and omega-3 fatty acid metabolism in NAFLD. The chapter also shows that there was a gene-DHA+EPA interaction between the minor allele of the FADS1 rs174556 and Δ-5 desaturase activity after treatment with DHA+EPA. Finally, chapter seven, summarises my results in the context of current evidence and knowledge about the subject matter.
University of Southampton
Scorletti, Eleonora
42bb0659-ac67-4a73-bf36-a881fe6c1563
Scorletti, Eleonora
42bb0659-ac67-4a73-bf36-a881fe6c1563
Byrne, Christopher
1370b997-cead-4229-83a7-53301ed2a43c
Calder, Philip
1797e54f-378e-4dcb-80a4-3e30018f07a6

Scorletti, Eleonora (2017) Effect of omega-3 fatty acids in non-alcoholic fatty liver disease. University of Southampton, Doctoral Thesis, 155pp.

Record type: Thesis (Doctoral)

Abstract

The first chapter (Introduction) of the thesis summarises the pathogenesis of NAFLD and its associated risk factors such as type 2 diabetes and cardiovascular disease. Moreover, it describes: a) the potential beneficial effects of long chain omega-3 fatty acid treatment [docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA)] in NAFLD; b) the effect of genotypes patatin-like phospholipase domain-containing protein-3 (PNPLA3 I148M) and the transmembrane 6 superfamily member 2 protein (TM6SF2 E167K), on the level of DHA and EPA enrichment and end of study liver fat percentage after DHA+EPA treatment; and c) the effect of fatty acid desaturase (FADS) and Elongase (ELOVL) polymorphisms influencing omega-3 fatty acid metabolism. The second chapter describes the overall aim of this thesis. The aim of my research was to investigate in patients with NAFLD: a) the effect of long-chain omega-3 fatty acid treatment on liver fat percentage and liver fibrosis biomarkers; b) the effect of genotypes influencing NAFLD severity on treatment with DHA+EPA; and c) the effect of genotypes influencing omega-3 fatty acid metabolism in NAFLD. The third chapter describes in details the design and methods used in my research. Chapter four highlights my novel results from the WELCOME study. This chapter describes the baseline and end of study characteristics of the WELCOME study participants and shows the results of the DHA+EPA treatment on liver fat percentage and liver fibrosis biomarkers. This chapter also describes the association between DHA erythrocyte enrichment and decrease in liver fat percentage after DHA+EPA treatment. Chapter five illustrates the association between PNPLA3 I148M and DHA erythrocyte enrichment percentage and end of study liver fat percentage after DHA+EPA treatment. The chapter shows that PNPLA3 I148M was associated with higher end of study liver fat percentage and lower DHA tissue enrichment. Chapter six shows the negative association between FADS polymorphisms and omega-3 fatty acid metabolism in NAFLD. The chapter also shows that there was a gene-DHA+EPA interaction between the minor allele of the FADS1 rs174556 and Δ-5 desaturase activity after treatment with DHA+EPA. Finally, chapter seven, summarises my results in the context of current evidence and knowledge about the subject matter.

Text
ELEONORA Scorletti - PhD THESIS FINAL - Version of Record
Available under License University of Southampton Thesis Licence.
Download (2MB)

More information

Published date: June 2017

Identifiers

Local EPrints ID: 422265
URI: http://eprints.soton.ac.uk/id/eprint/422265
PURE UUID: 6fc74a84-cace-4d5d-9bf8-4d4cbc0f2995
ORCID for Christopher Byrne: ORCID iD orcid.org/0000-0001-6322-7753
ORCID for Philip Calder: ORCID iD orcid.org/0000-0002-6038-710X

Catalogue record

Date deposited: 20 Jul 2018 16:30
Last modified: 16 Mar 2024 03:08

Export record

Contributors

Author: Eleonora Scorletti
Thesis advisor: Christopher Byrne ORCID iD
Thesis advisor: Philip Calder ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×