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Abstract. Formal systems modelling offers a rigorous system-level anal-
ysis resulting in a precise and reliable specification. However, some issues
remain: Modellers need to understand the requirements in order to for-
mulate the models, formal verification may focus on safety properties
rather than temporal behaviour, domain experts need to validate the
final models to ensure they fit the needs of stakeholders. In this paper
we discuss how the principles of Behaviour-Driven Development (BDD)
can be applied to formal systems modelling and validation. We propose a
process where manually authored scenarios are used initially to support
the requirements and help the modeller. The same scenarios are used to
verify behavioural properties of the model. The model is then mutated
to automatically generate scenarios that have a more complete coverage
than the manual ones. These automatically generated scenarios are used
to animate the model in a final acceptance stage. For this acceptance
stage, it is important that a domain expert decides whether or not the
behaviour is useful.
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1 Introduction

For highly dependable systems, formal modelling offers a rigorous system-level
analysis to ensure that the specification is consistent with important properties

All data supporting this study are openly available from the University of Southamp-
ton repository at http://doi.org/10.5258/SOTON/D0604.
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such as safety and security. Using theorem provers, such properties can be proven
to hold generically without instantiation and testing. However, modellers need
to understand the requirements in order to formulate correct and useful models.
The human centric processes of understanding a natural language or semi-formal
requirements document and representing it in mathematical abstraction is sub-
jective and intellectual, leading to misinterpretation. Formal verification may
then focus on safety properties rather than desired behaviour which is more
difficult to verify as a proof obligation. Even if these difficulties are averted,
the requirements may not represent the customer’s needs. Domain experts need
to validate the final models to show that they capture the informally specified
customer requirements and ensure they fit the needs of stakeholders.

A widely-used and reliable validation method is acceptance testing, which
with adequate coverage, provides assurance that a system, in our case embodied
by a formal model, represents the informal customer requirements. Acceptance
tests describe a sequence of simulation steps involving concrete data examples
to exhibit the functional responses of the system. However, acceptance tests
can also be viewed as a collection of scenarios providing a useful and definitive
specification of the behavioural requirements of the system. The high level nature
of acceptance tests, which are both human-readable and executable, guarantees
that they reflect the current state of the product and do not become outdated.
They are also necessarily precise and concise to ensure that the acceptance tests
are repeatable. As such, the acceptance test may be seen as the single reference
or source of truth.

Behaviour-Driven Development (BDD) [13,16] is a software development pro-
cess based on writing precise semi-formal scenarios as a behavioural specification
and using them as acceptance tests. In this paper we discuss how the principles
of BDD can be applied to formal systems modelling and validation. We pro-
pose a process where manually authored scenarios are used initially to support
the requirements and help the modeller. The same scenarios are used to verify
behavioural properties of the model. However, the manually written tests may
have limited coverage. To address this, the model is mutated to automatically
generate further scenarios that have a more complete coverage than the manual
ones. The additional scenarios should be accepted or rejected by domain experts
to ensure they, and hence the model, represent the desired behaviour. These
automatically generated scenarios are used to animate the model in a final ac-
ceptance stage. For this acceptance stage, it is important that a domain expert
decides whether or not the behaviour is desirable.

Customer requirements are typically based on a domain model, which is often
expressed in terms of entities with attributes and relationships. State-machines
and activity diagrams can be used to describe the behaviour. On the other hand,
a formal model (such as Event-B) is based on set theory and predicate logic [1].
In a creative process, the modelling engineer uses ingenuity to translate the
domain model into appropriate formal structures. The mismatch between the
semi-formal models understood by the domain experts and the mathematical
notations used for formal modelling leads to a conflict. The acceptance tests need
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to be expressed in terms of the formal model, but they also need to be understood
by the domain experts who are not familiar with the formal notations. It would
be more desirable to express the acceptance tests in terms of the domain model
so that domain experts can easily create and validate them.

iUML-B [14,17,18] provides a UML-like diagrammatic modelling notation, in-
cluding class diagrams and state-machines, with automatic generation of Event-
B formal models. Hence, iUML-B is a formal notation which is intuitive to write
and understand and is much closer to the domain model.

Gherkin [20, Chapter 3] is a structured language for describing scenarios and
expected behaviour in a readable but executable form. In this paper we show how
Gherkin supported by the Cucumber tool, can be used to encode and execute
acceptance tests for validating Event-B and iUML-B formal models. This helps
domain experts by allowing them to define acceptance tests without requiring
expertise in formal modelling. It also helps the formal experts by providing means
to systematically validate formal models via input from domain experts.

The remainder of the paper is structured as follows. In Section 2 we intro-
duce the “Lift” examples used throughout the paper. In Section 3 we provide an
overview of the Cucumber framework and Gherkin notation for executing sce-
narios, the formal methods Event-B and iUML-B that we use and MoMuT which
we use as a scenario generation tool. In Section 4 we introduce our approach to
behaviour-driven formal model development and then, in Section 5, demonstrate
how to use Gherkin and Cucumber for testing formal models written in Event-B
and iUML-B. Section 6 describes related work and section 7 concludes.

2 Running Examples

This section gives a brief overview of our running examples. The main running
example in this paper is a single-shaft lift controller. In Section 5.2 , we extend
this example to a multi-shaft lift controller to illustrate our contribution on
linking Gherkin/Cucumber with iUML-B.

A Single-Shaft Lift. First we consider a single shaft lift operating between several
floors, Fig. 1. The cabin has request buttons for each floor and each floor has an
up and down request button. The cabin is moved up and down by winding, resp.
unwinding, a motor. The cabin door may only open when the lift is not moving.
The full requirements of the single-shaft lift are given in [4]. The cabin should
only move to respond to requests and should only change direction when there
are no requests ahead in its direction of travel. Any requests associated with the
current floor are cleared when the door begins to open.

A Multi-Shaft Lift. This system manages multiple lifts with a single cabin in
each shaft. The behaviour of the cabin motor and door is similar to the single-
shaft lift. Similarly, the cabin floor requests are dealt with internally by each lift.
The main difference is in the up/down requests at the floor levels. The up/down
floor requests are assigned by a central controller to the nearest serving cabin.
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The nearest cabin is determined by calculating the ‘figure of suitability’ of each
lift, which depends on the direction of the lift, the direction of the call and the
distance to the calling floor. Once a request is assigned to a lift, the cabin will
serve the request similar to the single shaft example. The full requirements of
the multi-shaft lift are given in [4].

3 Background and Technologies
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Fig. 1. A Lift System

In this section, we first review the Gherkin/Cu-
cumber approach to BDD, followed by a short de-
scription of the Event-B method and its iUML-B
diagrammatic notation.

3.1 Behaviour-Driven Development with
Gherkin/Cucumber

The BDD principle aims for pure domain oriented
feature description without any technical knowl-
edge. In particular, BDD aims for understandable
tests which can be executed on the specifications
of a system. BDD is important for communication
between the business stakeholders and the soft-
ware developers. Gherkin/Cucumber [20] is one
of the various frameworks supporting BDD [19].

Gherkin. Gherkin [20, Chapter 3] is a language
that defines lightweight structures for describing
the expected behaviour in a plain text, readable
by both stakeholders and developers, which is still
automatically executable. Each Gherkin feature
starts with some description, followed by a list of
scenarios. The feature is often written as a story, e.g.,

“As a �role�I want �feature�so that �business value�”.

Scenario. Each scenario represents one use case. There are no technical restric-
tions about the number of scenarios in a feature; yet they all should be related
to the feature being described.

In the simplest case the scenario also contains the test data and thus repre-
sents an individual test case. It is however advantageous to separate the general
requirement description from the concrete test cases and to describe a group of
similar use cases at once. For this purpose, a scenario outline with a placeholder
for the particular test data specified separately as a list of examples can be used.
In the following, we focus on different scenario steps.
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Steps. Every scenario consists of steps starting with one of the keywords: Given,
When, Then, And or But.

– Keyword Given is used for writing test preconditions that describe how to
put the system under test in a known state. This should happen without any
user interaction. It is good practice to check whether the system reached the
specified state.

– Keyword When is used to describe the tested interaction including the pro-
vided input. This is the stimulus triggering the execution.

– Keyword Then is used to test postconditions that describe the expected
output. Only the observable outcome should be compared, not the internal
system state. The test fails if the real observation differs from the expected
results.

– Keywords And and But can be used for additional test constructs.

Cucumber. Cucumber is a framework for executing acceptance tests written in
Gherkin language and provides Gherkin language parser, test automation as well
as report generation. In order to make such test cases automatically executable,
the user must supply the actual step definitions providing the gluing code, which
implements the interaction with the System Under Test (SUT). The steps shall
be written in a generic way, i.e. serving multiple features. This keeps the number
of step definitions much smaller than the number of tests. It is an antipattern to
supply feature-coupled step definitions which cannot be re-used across features
or scenarios.

Compound steps may encapsulate complex interaction with a system caused
by a single domain activity, thus decoupling the features from the technical inter-
faces of the SUT. This defines a new domain-related testing language, which may
simplify the feature description. The description of the business functionality is,
however, still contained in the features.

An example of a scenario for the single-shaft lift system is shown in Listing 1.

3.2 Event-B

Event-B [1] is a formal method for system development. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets s, constants
c, and axioms A(c) that constrain the carrier sets and constants. Note that the
model may be underspecified, e.g., the value of the sets and constants can be
any value satisfying the axioms. Machines contain variables v, invariants I(v)
that constrain the variables, and events. An event comprises a guard denoting
its enabling-condition and an action describing how the variables are modified
when the event is executed. In general, an event e has the following form, where
t are the event parameters, G(t, v) is the guard of the event, and v := E(t, v) is
the action of the event.

any t where G(t,v) then v := E(t,v) end
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Scenario: Press a DOWN button

Given can press DOWN button at floor ”2”
When press DOWN button at floor ”2”
Then DOWN button at floor ”2” is lit
And can wind the lift motor
And cannot open door

When motor starts winding
Then lift can move up
And cannot open door

When lift moves up
Then floor is ”1”
And lift can move up

Listing 1. A test scenario for single-shaft lift

Actions in Event-B are, in the most general cases, non-deterministic [7], e.g., of
the form v :∈ E(v) (v is assigned any element from the set E(v)) or v :| P(v,v’)
(v is assigned any value satisfying the before-after predicate P(v,v’)). A special
event called INITIALISATION without parameters and guards is used to put the
system into the initial state.

A machine in Event-B corresponds to a transition system where variables
represent the state and events specify the transitions. Event-B uses a mathe-
matical language that is based on set theory and predicate logic.

Contexts can be extended by adding new carrier sets, constants, axioms, and
theorems. Machines can be refined by adding and modifying variables, invari-
ants, events. In this paper, we do not focus on context extension and machine
refinement.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

3.3 MoMuT

MoMuT is a test case generation tool able to derive tests from behaviour models.
The behaviour model represents a system specification, the generated tests can
be used as black box tests on an implementation. They help to ensure that every
behaviour that is specified, is also implemented correctly.

In contrast to other model based testing tools, the generated test cases do not
target structural coverage of the model, but target exposing artificial faults sys-
tematically injected into the model. These faults are representatives of potential
faults in the implementation; a test finding them in the model can be assumed
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to find its direct counterpart as well as similar, not only identical problems in
the implementation [6].

As input models, MoMuT accepts Object Oriented Action Systems (OOAS) [9],
an object oriented extension of Back’s Action systems [3]. The underlying con-
cepts of Action systems and Event-B are both closely related to Dijkstra’s
guarded command language [5]. For a subset of UML, for some Domain Specific
Languages (DSLs) and for a subset of Event-B, transformations into OOAS are
available.

MoMuT strives to produce effective tests, i.e. tests exposing faults, as well
as efficient tests i.e. keeping the test suite’s size close to the necessary minimum.
Thereby, the tests are also suitable as manually reviewed acceptance tests.

3.4 iUML-B

iUML-B [14,17,18], an extension of the Rodin Platform, provides a ‘UML like’
diagrammatic modelling notation for Event-B in the form of class-diagrams and
state-machines. The diagrammatic elements are contained within an Event-B
model and generate or contribute to parts of it. The iUML-B makes the formal
models more visual and thus easier to comprehend. We omit the description of
state-machines and focus on class-diagrams, which are used in the example in
Section 5.2.

Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements. Methods
elaborate Event-B events and contribute additional parameter representing the
class instance.

4 Behaviour-Driven Formal Model Development

In this section, we present our approach for behaviour-driven formal model de-
velopment. We assume that a natural language description of the requirements
is available and this is supported by a number of manually written scenarios.
The process, shown in Figure 2, consists of the following steps.

1. In the modelling step, the model is produced from the requirements and
the manually written scenarios. The output of the modelling step is a safe
model, in the sense that it is fully proven to be consistent with respect
to its invariants. (We use ‘safe’ in a wide sense to include any important
properties). In this paper, we use Event-B/iUML-B as our modelling method.

2. The safe model is behaviourally verified against the manually written sce-
narios. The purpose is to verify that the safe model exhibits the behaviour
specified in the requirements which cannot be expressed via invariants. The
output of this step is a (safe and) behaviourally verified model. In this pa-
per, we use Cucumber for Event-B/iUML-B (see Section 5) for verifying the
behaviour of our model written in Event-B/iUMLB.
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Manual
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Safe
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3. Scenario
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scenarios
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Testing

Fig. 2. A Behaviour-Driven Formal Model Development Method

3. The behaviourally-verified model is used as the input for a scenario gener-
ator, which automatically produces a collection of generated scenarios. In
this paper, we use an Event-B-enabled version of MoMuT (see Section 3) as
the scenario generator. The generated scenarios should be reviewed to en-
sure they represent desired behaviour. If the model still contains undesirable
behaviour, that was not detected in the previous step, this will be reflected
in the generated scenarios.

4. The generated scenarios are used for acceptance testing of the behaviourally
verified model. Acceptance testing allows stakeholders to assess the useful-
ness of the model by watching its behaviour. We again use Cucumber for
Event-B/iUML-B to automatically illustrate the generated scenarios to dif-
ferent stakeholders. The scenarios are in “natural language” and it is easy
to see the correspondence between the scenarios and the requirements.

Our hypotheses about our approach are as follows.

H1 In the modelling step, scenarios help to improve the validity of the model.
H2 Scenarios are useful for verifying temporal properties.
H3 Generated scenarios are more complete than manually written scenarios.

In the following sections, we analyse the steps of the process in more detail
with experiments to verify the above hypotheses.

4.1 Modelling

To validate Hypothesis H1, we perform an experiment using the single-shaft lift
controller introduced in Section 2. The requirements of the system are given to
two developers who are expert in Event-B modelling. To one developer, we also
gave a set of desirable scenarios of the system. The full scenarios can be seen
in [4]. The summary of the scenarios is as follows.

Scenario 1 User 1 enters the lift from Floor 0 and presses the button for Floor
2. User 2 presses the up button on Floor 1. The lift will go from Floor 0 to
Floor 2, in between stop at Floor 1 to serve User 2’s request.
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Scenario 2 User 1 enters the lift from Floor 0 and presses the button for Floor
2. User 2 presses the down button on Floor 1. The lift will first go from Floor
0 to Floor 2, before changing the direction to go down to Floor 1 to serve
User 2’s request.

Scenario 3 User 1 enters the lift from Floor 0 and presses the button for Floor
2. User 2 presses the down button on Floor 1. The lift will first go from Floor
0 to Floor 2, before changing the direction to go down (still at Floor 2) to
serve User 2’s request.

Afterwards, we compare the models produced by the two developers in terms of
their validity with respect to the requirements and the scenarios. The comparison
is done by executing the scenarios on the models and reviewing their behaviour.

We did not find much difference in terms of valid behaviour between the
two models. This may be due to tacit knowledge of the lift example. However,
we found that the scenarios have some effect on the form of the models. The
model developed with scenarios aligns more closely with the details presented
in the scenario: The lift responses directly to the buttons pressed by the users.
In the model developed without scenarios, an abstract notion of “requests” is
introduced, which are eventually linked with the buttons. Having such a strong
example of actual behaviour seems to reduce the inclination to make abstractions.
On the one hand, the model without abstraction has less refinement steps and is
more obviously valid since it directly correlates with the acceptance criteria. On
the other hand, the model with abstraction has principles that can be adapted to
different concrete implementations and hence may be more reusable. Scenarios
help with validation of the models but may reduce their reusability. A possible
mitigation is to develop “abstract” scenarios from the original concrete scenarios.
We consider this as a direction for our future work.

4.2 Behaviour Verification

In this section, we describe our experiment to validate Hypothesis H2. The
purpose of the behaviour verification step is to ensure that our safe model also
satisfies behaviours which are specified using the scenarios. We use versions of
the single-shaft lift model that has been seeded with several faults as follows.

1. (Fault 1) The lift is prevented from moving to the top floor. Event MovesUp’s
guard is changed from floor < TOP FLOOR to floor < TOP FLOOR− 1.

2. (Fault 2) The up requests are not cleared after the door is open. Here the ac-
tion to clear the up button for floor f, i.e., up buttons := up buttons \ {floor},
is omitted in the faulty version of event UpButtonCleared.

3. (Fault 3) The down requests are ignored by the door, i.e., the door will
not open if there is only a down request at a floor. Here, a guard of event
DoorClosed2Half is changed from

direction = DOWN⇒ floor∈ floor buttons ∪ down buttons

to
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direction = DOWN⇒ floor ∈ floor buttons

These type of faults are typical in developing system models using Event-B
and are not detected by verification using invariant proofs. In other words, the
models with temporal faults are still fully proved to be consistent with their
safety invariants.

In these experiments the manual scenarios found two of the seeded faults.
Fault 2 is found by all scenarios, while Fault 3 is found by Scenario 2 and
Scenario 3. Since none of the manual scenarios get the lift cabin to the top
floor, Fault 1 is not discovered. Nevertheless, our experiment confirms that the
scenarios are useful for verifying behaviours of the system, which cannot be
directly expressed and verified using invariants. In general, scenarios must also
be verified and validated to ensure that they represent desirable behaviours of
the system.

4.3 Scenario Generator

In this section, we verify Hypothesis H3 by comparing the scenarios generated
automatically by MoMuT with the manually written scenarios. We use MoMuT
as our scenario generator on the model of the lift example. The generator explores
a subset of the model’s state space and checks where mutations, like exchanged
operators or conditions set to a fixed value, cause the externally visible behaviour
to differ from the original model. This information is used to build test scenarios
that succeed on the original model, but fail on a model containing the mutation.

For the exploration, we tried three strategies: (a) random exploration, (b)
exploration using rapidly expanding random trees (RRT) and (c) full exploration
up to depth 12 (BFS12). The exploration depth for BFS12 was limited by the
memory of the computer we used.

Table 1. Comparison of Scenario Sets

Scenario Set Fault 1 Fault 2 Fault 3 Coverage Steps

Manual No Yes Yes 72 % 87

Random Yes Yes Yes 63 % 305

RRT Yes Yes Yes 67 % 204

BFS12 No Yes Yes 79 % 82

Table 1 shows, for each generation strategy, which of the manually seeded
faults was detected, what percentage of the automatically generated model mu-
tation faults were detected and the length in steps of the generated scenarios. A
mutant is found when, during the exploration of the model, the modelling ele-
ment (here the Event-B event) containing the mutant is executed. As a result,
the (mutant) coverage criteria is a property of the scenario sets with respect to
the formal model.
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As can be seen in Table 1, the manual set already achieves a high mutation
coverage of 72% of the 616 inserted mutations, and is only outperformed by
the BFS12 scenarios, achieving higher coverage (79%) with even fewer steps.
Nonetheless, both the manual set and BFS12 fail to catch our first seeded fault,
because both do not try to go to the third floor. The scenarios from the two
other strategies catch the first seeded fault, but perform less well regarding
overall coverage number and coverage achieved in relation to steps needed.

Analysis of the generated scenarios shows that the different groups of scenar-
ios do not subsume each other. Thus, putting all automatically generated sce-
narios together, an even higher mutation coverage score of 83% can be reached.
Although the gap is smaller than expected, the experimental results support
Hypothesis H3.

Since the overall size of the scenario sets is not too much bigger than the man-
ual scenarios, manual review of the generated scenarios is feasible. Automated
reduction of the tests or more optimised generation techniques would improve
that even more. Longer random scenarios could increase the fault-finding capac-
ity, but at the cost of review feasibility. The problem with random tests is not
only the length of the scenarios. The more random a generated scenario is, the
more tiresome it is to work through during acceptance testing, because there is
no intention recognisable.

5 Scenario Automation for Event-B/iUML-B

In this section, we present our Cucumber step definitions for Event-B and iUML-
B. Cucumber for Event-B/iUML-B allows us to execute the Gherkin scenario
directly on the Event-B/iUML-B models.

5.1 Automation: Cucumber for Event-B

‘Cucumber for Event-B’ allows Cucumber to execute Gherkin scenarios on an
Event-B model. It is a collection of step definitions which defines a traversal of
the Event-B state space. Below we intersperse the Gherkin step definitions with
comments to explain how to interpret them.

Given machine with ”�formula�”
// Setup constants with the given constraints and initialize the machine.

When fire event ”�name�”with ”�formula�”
// Fire the given event with the given parameter constraints.

Then event ”�name�”with ”�formula�”is enabled
// Check if the given event with the given parameter constraints is enabled.

Then event ”�name�”with ”�formula�”is disabled
// Check if the given event with the given parameter constraints is disabled.

Then formula ”�formula�”is TRUE
// Check if the given formula evaluates to TRUE.

Then formula ”�formula�”is FALSE
// Check if the given formula evaluates to FALSE.
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An essential property of acceptance tests is reproducibility. Therefore all
step definitions check whether the specified event can be unambiguously chosen
(using given parameters constraints). The user should make sure that the tested
machine is deterministic and, if not, refine it further. Also abstract constants
may lead to non-reproducible tests; however, they do not need to be specified
by the model refinement, but can also be provided by the test case as test data.

The scenario to test the functionality of a single-shaft lift system in Listing 1
can be rewritten for the Event-B model as shown in Listing 2.

Scenario: Press the DOWN button

Given machine with ”TopFloor = 3”
When fire event ”DownButtonPresses” with ”f = 2”
Then formula ”2 : down buttons” is TRUE
And event ”MotorWinds” is enabled
And event ”DoorClosed2Half” is disabled

When fire event ”MotorWinds”
Then formula ”motor = WINDING” is TRUE
And event ”MovesUp” is enabled
And event ”DoorClosed2Half” is disabled

When fire event ”MovesUp”
Then formula ”floor = 1” is TRUE
And event ”MovesUp” is enabled

Listing 2. Test scenario using plain step definitions

Such an acceptance test is fairly straightforward in terms of syntax but is
couched in terms of the relatively low-level formalism of Event-B. Domain engi-
neers are often more used to higher-level modelling representations such as UML.
In Section 5.2 we go further towards meeting the BDD approach which advocates
minimising the language barriers between domain and system engineers.

5.2 Cucumber for iUML-B

Cucumber for iUML-B provides a Gherkin syntax based on the iUML-B diagram-
matic modelling notation. iUML-B class diagrams and state-machines resemble
the equivalent notations of UML and should feel more familiar for domain engi-
neers. For the multi-shaft lift example, we have used iUML-B class diagrams to
illustrate scenario testing of behaviour ‘lifted’ to a set of instances (i.e. a class).
Although not shown here, Cucumber for iUML-B also supports scenario testing
of state-machines including state-machines that are owned (i.e. contained) by a
class in a class diagram.

Cucumber for iUML-B consists of iUML-B based step definitions which are
translated into the corresponding underlying Event-B model elements for exe-
cution. Clearly, the translation of Cucumber for iUML-B scenarios must match
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the corresponding translation of the actual target model under test. Therefore
Cucumber for iUML-B must access attributes of the iUML-B model in order
to infer the proper Event-B events and variables and to derive implicit event
parameters (e.g. ‘self name’ representing the class instance).

Cucumber for Class Diagrams. The following Gherkin syntax is be defined
for validating class diagrams.

Given class ”�name�:�inst�”
// Preset the given class with the given instance.

When call method ”�name�”with ”�formula�”
// Call the given class instance method.

Then method ”�name�”with ”�formula�”is enabled
// Check if the given class instance method is enabled.

Then method ”�name�”with ”�formula�”is disabled
// Check if the given class instance method is disabled.

Then attribute ”�attr�”is ”�value�”
// Check if the given class instance attribute is equal to the given value.

Then association ”�assoc�”is ”�value�”

// Check if the given class instance association is equal to the given value.

In general, class attributes and associations can be any binary relation (i.e.,
not necessarily functional), hence further checks can be defined accordingly.

Multi-shaft lift system in iUML-B class diagrams. Figure 3 represents the class
diagram of the lift requests, before introducing the motor and door behaviour.
Class Bldg Lift is a constant representing the lift cabins in a building. Each
lift has two attributes lift status and lift direction to indicate whether the lift is
moving or not and the lift direction (up/down). Floors is a constant representing
the different floors in a building.

Fig. 3. iUML-B class diagram of the multi shaft lift: Requests

The associations upRequests and downRequests between the Bldg Lift and
Floors are variables that represent the floors to be served by the lift, and whether
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they are above or below the current position of the lift, while curr floor represents
the current floor position of the lift. floorUp and floorDown are variable sets of
type Floors, that respectively represent floor up and down requests, these requests
are generated by the events press up button and press down button. At this stage
the floor requests are not assigned to a specific lift, once the controller finds the
nearest serving lift (find nearest cabin up,find nearest cabin down), these requests
will be assigned to the nearest lift in the Bldg Lift events assign floor up request
and assign floor down request. The Bldg Lift has other local events e.g. cabin up request,
lift move up etc.

The Scenario of Listing 3 tests the action of requesting a floor from within
a cabin of the multi-shaft lift system modelled in Figure 3. Note that we use
with ”�formula�” to instantiate the additional parameter f to specify the re-
quested floor for the given building lift L1.

Scenario: Request cabin floor

Given class ”Bldg Lift:L1”
Then method ”cabin up request” with ”f = 1” is enabled
And method ”cabin down request” with ”f = 1” is disabled
And attribute ”lift status” is ”STATIONARY”
And attribute ”lift direction” is ”UP”

When call method ”cabin up request” with ”f = 1”
Then association ”upRequests” is ”{1}”
And method ”lift start moving” is enabled

When call method ”lift start moving”
Then attribute ”lift status” is ”MOVING”

Listing 3. Test scenario for iUML-B class diagram

6 Related Work

Our approach is inspired by the behaviour-driven development methods [13,16]
of agile methods. Siqueira, deSousa and Silva [15] also propose using BDD with
Event-B. However, they use Event-B to support the BDD process by provid-
ing it with better analyses whereas we retain focus on formal modelling using
‘BDD-like’ techniques to improve our model development process. The concept
of acceptance testing of a formal model is perhaps unusual, however it builds
on the idea of model validation via animation which has been supported for
some time particularly in Event-B, with tools such as ProB [11] and BMotion
Studio [10,12]. Acceptance testing is a more specific use of such validation tools
where the goal is not only to validate the model but to allow the end-user or
similar stakeholder to assess and accept the model as suitable for their needs.
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7 Conclusion

We have developed an approach to formal modelling based on ideas from Be-
haviour Driven Development. We use scenarios to drive the formal model con-
struction, verification and acceptance. We have shown how to enhance Cucumber
in order to apply the acceptance tests written in the Gherkin language to the
Event-B formal model and also to a model formulated using iUML-B notation.
For efficient coverage we use a model-mutation based test case generator to gen-
erate scenarios for acceptance testing. Our experiments support the ideas but
were somewhat neutral in the case of H1: ‘scenarios help to improve the validity
of the model’. Further experiments will be carried out in this area on larger
and less familiar applications where tacit knowledge is less likely to confound
results. For example a different modeller could develop a new feature to assess
whether scenarios help to identify the scope of impact of the change in a situ-
ation where the style of the overall model is already fixed. We would also like
to explore the relationship between scenario testing and verification of temporal
properties such as ‘does the lift eventually reach a requested floor’. This could
be explored in relation to ‘lifted’ behaviours such as found in the multi-shaft lift
where we might want to examine local liveness properties of classes. The test case
generation, while having greater coverage than the manually written scenarios,
did miss part of the seeded bugs depending on the selected search strategy. We
believe this can be addressed by tuning the MoMuT tools and will carry out fur-
ther work and experiments in this area. Our prototype tool can be found under
https://github.com/tofische/cucumber-event-b. Further work is needed to
develop the methods and tools to support the use of Cucumber for iUML-B. Our
next applications will be in the railway domain on the Hybrid ERTMS/ETCS
Level 3 [8] and in the avionics domain on an aircraft turn-around security au-
thentication system, which are real industrial applications.

Acknowledgements

This work has been conducted within the ENABLE-S3 project that has received fund-
ing from the ECSEL Joint Undertaking under Grant Agreement no. 692455. This
Joint Undertaking receives support from the European Union’s HORIZON 2020 re-
search and innovation programme and Austria, Denmark, Germany, Finland, Czech
Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France, Netherlands, United
Kingdom, Slovakia, Norway.

ENABLE-S3 is funded by the Austrian Federal Ministry of Transport, Innovation
and Technology (BMVIT) under the program “ICT of the Future” between May 2016
and April 2019. More information is at https://iktderzukunft.at/en/.

We also thank Thorsten Tarrach (Austrian Institute of Technology, Vienna, Aus-

tria) for his assistance with MoMuT.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

https://github.com/tofische/cucumber-event-b
https://iktderzukunft.at/en/


16 C.Snook, T.S. Hoang, D.Dghaym et al.

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Software Tools for Tech-
nology Transfer 12(6), 447–466 (Nov 2010)

3. Back, R., Sere, K.: Stepwise refinement of action systems. In: International Con-
ference on Mathematics of Program Construction. pp. 115–138. Springer (1989)

4. Dghyam, D., Hoang, T.S., Snook, C.: Requirements document, scenarios, and mod-
els for lift examples (May 2018), http://doi.org/10.5258/SOTON/D0604

5. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

6. Fellner, A., Krenn, W., Schlick, R., Tarrach, T., Weissenbacher, G.: Model-based,
mutation-driven test case generation via heuristic-guided branching search. In:
Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design. pp. 56–66. ACM (2017)

7. Hoang, T.S.: An introduction to the Event-B modelling method. In: Industrial
Deployment of System Engineering Methods, pp. 211–236. Springer-Verlag (2013)

8. Hoang, T., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study.
In: Butler, M., Raschke, A., Hoang, T., Reichl, K. (eds.) Abstract State Machines,
Alloy, B, TLA, VDM, and Z. pp. 251–261. Springer International Publishing (2018)

9. Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition sys-
tems for test-case generation. In: Formal Methods for Components and Objects.
pp. 186–207. Springer (2010)

10. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with
B-Motion Studio. In: Proceedings of FMICS 2009. Lecture Notes in Computer
Science, vol. 5825, pp. 202–204. Springer (2009)

11. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method.
Software Tools for Technology Transfer (STTT) 10(2), 185–203 (2008)

12. Lukas Ladenberger: BMotion Studio for ProB project website.
http://stups.hhu.de/ProB/w/BMotion Studio (Jan 2016)

13. North, D.: Introducing BDD. Better Software Magazine (Mar 2006)
14. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B.

Softw. Syst. Model. 14(4), 1557–1580 (Oct 2015), http://dx.doi.org/10.1007/
s10270-013-0391-z

15. Siqueira, F.L., de Sousa, T.C., Silva, P.S.M.: Using BDD and SBVR to refine
business goals into an Event-B model: A research idea. In: 2017 IEEE/ACM 5th
International FME Workshop on Formal Methods in Software Engineering (For-
maliSE). pp. 31–36 (May 2017)

16. Smart, J.F.: BDD in Action: Behavior-Driven Development for the Whole Software
Life cycle. Manning Publications Company (2014)

17. Snook, C.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014.
pp. 29–30. Toulouse, France (2014), http://eprints.soton.ac.uk/365301/

18. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (Jan 2006), http://doi.acm.org/10.
1145/1125808.1125811

19. Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. pp. 383–387 (Aug 2011)

20. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. Pragmatic Programmers, LLC (2012)

http://doi.org/10.5258/SOTON/D0604
http://dx.doi.org/10.1007/s10270-013-0391-z
http://dx.doi.org/10.1007/s10270-013-0391-z
http://eprints.soton.ac.uk/365301/
http://doi.acm.org/10.1145/1125808.1125811
http://doi.acm.org/10.1145/1125808.1125811

	Behaviour-driven formal model development

