Integratable spintronic devices are key elements for the implementation of spintronic circuits and spin based quantum processors [1]. An important component of this architecture is a coherent spin beam splitter that can separate particles having different spins [2]. Since the first experimental demonstration of stimulated amplification and Bose-Einstein Condensation (BEC) in semiconductor microcavities (MCs), polaritons have emerged as a promising platform for spintronic devices. They feature robust spin readout, long range spin transport [3], electrical control of the condensate energy and spin [4–6] and room temperature operation [7]. Recent state of the art MCs exhibit polariton lifetimes of hundreds of picoseconds and close to millimetre ballistic propagation lengths [8], while electrical creation of a polariton condensate has also been achieved [9]. Moreover, polaritonic systems have been shown to feature a wide range of resonant spin switching and multi-stability regimes [10, 11], while latest advances have also demonstrated spin switching and bistability in the non-resonant optical pumping configuration [12–14]. These advantages have lead to extensive theoretical suggestions of polariton based spin circuits [15, 16] as well as the realization of polariton optical spin filters [17]. However, a configuration that would allow for the directional and spatial separation of the spin components of a polariton condensate is yet to be demonstrated.

In this work we study the first excited state of a polariton condensate in an optical trap by means of polarisation resolved spectroscopy. The interplay between the repulsive polariton interactions and the gain saturation results in a non-trivial spontaneous switching between the two quasi-degenerate spatial modes of the polariton condensate. As a result the polarisation pattern of the emitted light dramatically changes. Successful harnessing of this effect can lead to a spin-demultiplexing device for polariton based optical integrated circuits.

We investigate the spin behaviour of the first excited state of a polariton condensate in an optical trap by means of polarisation resolved spectroscopy. The interplay between the repulsive polariton interactions and the gain saturation results in a non-trivial spontaneous switching between the two quasi-degenerate spatial modes of the polariton condensate. As a result the polarisation pattern of the emitted light dramatically changes. Successful harnessing of this effect can lead to a spin-demultiplexing device for polariton based optical integrated circuits.
The sample is held in a cold finger continuous flow cryo-optical system of two lenses and a high numerical Fourier space and project the laser onto the sample with a spot with the use of a phase spatial light modulator in the sample. We shape the spatial form of the excitation of CW optical excitation to avoid heating effects on the sample. We use an acousto-optic modulator (AOM) with a frequency of 5 KHz and a duty cycle of 1% to periodically switch the CW Ti:Sapphire source that is tuned to 9 meV. We estimate the photonic stop band at 754 nm. We continuously hold the trap based on their spin (Fig. 1(b)). These results demonstrate that polariton condensates in optical traps offer unique possibilities for implementing spin logic and spin-demultiplexing operations in a solid state platform.

Figure 1. Schematic representation of: (a) the potential landscape of the system, detailing the four fold degeneracy and (b) spinor polariton condensate wavefunctions and tunnelling amplitudes in the trap.

The structure we study here is a high quality (>16000) 5λ/2 GaAs microcavity with four triplets of 10 nm GaAs quantum wells and a Rabi splitting of ∼ 9 meV. The sample is held in a cold finger continuous flow cryostat at ∼ 6 K and is excited with a single mode, continuous wave (CW) Ti:Sapphire source that is tuned to the minimum of the photonic stop band at 754 nm. We use an acousto-optic modulator (AOM) with a frequency of 5 KHz and a duty cycle of 1% to periodically switch off the CW optical excitation to avoid heating effects on the sample. We shape the spatial form of the excitation spot with the use of a phase spatial light modulator in Fourier space and project the laser onto the sample with an optical system of two lenses and a high numerical aperture (NA=0.4) objective. The sample was excited at a negative detuning of ∆ = −5 meV were the lower polariton mode has a calculated exciton Hopfield coefficient of X_e = 0.25, while the heavy hole exciton emission at 6K is at 1.456 eV. Photoluminescence emission from the sample is collected through the same objective, while a dichroic mirror filters out the optical excitation and with the use of a λ/4 wave-plate and a Wollaston prism we simultaneously project both spin components of the signal to our imaging apparatus.

We shape the non-resonant excitation into an annulus with radius r_max = 10.8 µm and a very small ellipticity (c ~ 0.155), while the full width at half maximum (FWHM) of the laser profile is ~ 2.5 µm. The annular excitation creates a nearly parabolic potential in the polariton energy landscape, effectively trapping polaritons and allowing condensation in the centre of the potential for a given excitation density threshold (P_th ≈ 10.4 ± 0.2 mW). For these conditions we observe that the dominant spinor state just above threshold (P = 1.2P_th) has a p-orbital symmetry that is oriented along the main axis of the ellipse as shown in Fig. 2(a). Surprisingly, as we raise the excitation power slightly further (P = 1.4P_th) we observe a switching of the orientation of the p-orbital as shown in Fig. 2(b) by π/2. Here, the switching occurs between modes of the same order (Ψ_{01}, Ψ_{10}) with an energy splitting of the order of ~ 10 µeV depending on the trap asymmetry, in contrast to switching between modes of different order where the energy spacing is significantly higher (∆E_n ~ 50 µeV) [31] and where the competition between modal gain and loss is enough to describe the transition [32, 33]. Considering that the finite po-

Figure 2. Orientation switching of single spin component. Normalized intensity maps of (a), (b) S+, spinor component for P = 1.2P_th and P = 1.4P_th and (c), (d) S− spinor wavefunction. The white annulus in (a) outlines the excitation with the main axis of the ellipse along the vertical direction. (e-f) GPE simulation of a single component BEC for two densities above threshold reproducing the switching operation. The scale bar of (e) and (f) is in dimensionless units of √2β/αΓ.
potentially allows for polaritons to tunnel through the trap, this effect can in principle be used to seed and switch-on sub-threshold, optically or electrically created polariton states outside the optical trap and thus perform routing operations. [19, 23].

Polariton condensates confined in parabolic optical traps demonstrate remarkable spin effects such as spin switching [12, 13], spin bistability [14] and ferromagnetic phase transitions [12]. Polaritons have +1 and -1 spin projections to the growth axis of the MC that lead to right- and left-circular polarised photoluminescence. Resolving also the second spin component of the condensate, we note that at the onset of condensation both are in the same configuration, though one component is populated more strongly (∼×11), yielding a very high circular polarization of the emission of more than 80% Fig.2(a),(c). As we increase the density in order to reach the switching threshold, we observe that when the dominant component switches its orientation (Fig.2(b)), the low intensity spinor retains its initial configuration Fig.2(d). Nevertheless, as the two states are now primarily populated from different regions of the annular reservoir the relative density ratio is reduced to only ∼2.2.

From the two spin images we construct the real space map of the third Stokes parameter \(S_z = (S_+ - S_-)/(S_+ + S_-) \), as well as the total intensity of the emission. In Figure 3(a),(b) \(S_z \) and the total intensity are depicted for excitation power \(P_1 = 1.2P_{th} \), showing the familiar spatial features of the \(\Psi_{01} \) trapped state. For \(P_2 = 1.4P_{th} \) the spatial profile of \(S_z \) shows a spin precession around the core of the two orthogonally oriented components, whereas the total real space intensity distribution for this power resembles a doughnut or vortex state as expected from the linear superposition of the individual components 3(c),(d). In Figure 3(e) the angular profile of the polarization map for the two excitation powers across the yellow circle of Fig.3a,c is plotted, showing how the polarization profile of the collective mode changes from a nearly uniform angular distribution to an oscillating one.

Two-mode model. In the following we neglect the coupling between the two polariton spin components, assuming weak effective spin-orbit interaction and weak interaction of polaritons with opposite spins. We also assume slow spin relaxation in the exciton reservoir on the time-scale of its lifetime[34]. This allows us to treat each of the two decoupled spin components as an independent spin-less condensate. In the mean field approximation the latter is described by the wavefunction \(\Psi(r, t) \) which obeys the open-dissipative Gross-Pitaevskii equation (GPE) [35]:

\[
\frac{1}{2m} \frac{\partial^2 \Psi}{\partial t^2} + \frac{n}{2} (\alpha + i\beta) + \frac{\alpha_1}{2} |\Psi|^2 - \frac{\Gamma}{2} \Psi = 0.
\]

Here \(m \) is the effective mass, \(\Gamma \) is the inverse polariton lifetime, and \(\hbar = 1 \). The effective complex potential for polaritons depends linearly on the exciton reservoir density \(n(r, t) \). Its real part stems from the polariton repulsion by the reservoir, the strength of which is given by \(\alpha \). The imaginary part in turn describes stimulated scattering from the reservoir into the condensate, and is given by \(\beta \). Finally, the repulsion strength of polaritons with the same spins is given by \(\alpha_1 \approx X^2 \alpha \) with \(X \) being the exciton Hopfield coefficient.

The GPE (1) is supplemented with the semi-classical equation on the exciton reservoir density:

\[
\frac{\partial n}{\partial t} = P(r) - (\beta |\Psi|^2 + \gamma) n,
\]

where the gain term \(P(r) \) is due to the inhomogeneous non-resonant optical pump and \(\gamma \) is the reservoir decay rate, while we neglect exciton mobility in the reservoir.

To describe the polariton eigenstates confined in the elliptic optical trap, we assume a paraboloidal form of the reservoir density \(n(r, \varphi) = n(\varphi)r^2/R^2 \), where \(R \) sets the size scale of the trap, and the angular density part

\[
n(\varphi) = N_0 + n_0 + n_1 \cos(2\varphi) + n_2 \sin(2\varphi),
\]
where \(N_0 \) is the reservoir density at the polariton lasing threshold, which is derived below, \(n_0, n_1, \) and \(n_2 \) are the angular harmonics of the reservoir density variation from \(N_0. \) Alternatively, the angular dependent part of the exciton reservoir density may be introduced as

\[
\delta n \cos (2(\varphi - \theta) = n_1 \cos (2\varphi) + n_2 \sin (2\varphi),
\]

with \(\theta \) being the angle of the elliptical trap main axis.

In the linear regime the polaritons are thus confined in a complex harmonic potential

\[
U(r, \varphi) = \frac{m\omega^2}{2} r^2 \cos(\varphi - \theta)^2 + \frac{m\omega^2}{2} r^2 \sin(\varphi - \theta)^2,
\]

characterized with complex frequencies

\[
\omega_{\pm} = \sqrt{\frac{N_0 \alpha}{mR^2}} \left[1 + \frac{i \beta}{2 \alpha} \right] \left(1 + \frac{n_0 \pm \delta n}{2N_0} \right),
\]

(6)

corresponding to the size quantisation along the two main axes of the ellipse. Here we assumed the realistic case \(\alpha \gg \beta \) for simplicity. The eigenstate energies

\[
E_{i,j} = \sqrt{\frac{N_0 \alpha}{mR^2}} \left[1 + \frac{i \beta}{2 \alpha} \right] \left(1 + \frac{n_0}{2N_0} \right) \left(1 + i + j \right) \left(1 + \frac{n_0}{2N_0} \right) (i - j),
\]

(7)

are set by the two quantum numbers \(i, j \), corresponding to size quantization along the elliptical axes. The wavefunctions, characterising the coherent polariton emission spatial profile, read:

\[
\Psi_{i,j} = \exp \left(-\frac{\xi^2_+ + \xi^2_-}{2} \right) H_i(\xi_+) H_j(\xi_-),
\]

(8)

where \(\xi_+ = \sqrt{mR \{ \omega_+ \} r \cos(\varphi - \theta)} \) and \(\xi_- =\sqrt{mR \{ \omega_- \} r \sin(\varphi - \theta)} \) and \(H_i(x) \) are the Hermite polynomials.

To account for polariton tunnelling out of the trap potential one may add the following terms into the harmonic trap:

\[
\Psi_{\pm}(r, \varphi) = A r \exp \left(\pm i\varphi - m\Gamma \frac{\alpha r^2}{2} \right),
\]

(10)

where \(A \) is the normalization constant. Low ellipticity of the trap allows us to neglect both ground and the higher excited states and treat it as a small perturbation, coupling the two basis states, in the vicinity of the polariton lasing threshold. We thus project the GPE (1) onto the basis (10), putting \(\Psi = \Psi_+ \Psi_+ + \Psi_- \Psi_- \). Excluding the optical frequency we have in the rotating frame:

\[
\frac{d\Psi_{\pm}}{dt} = \Gamma \frac{\alpha}{2} \left[n_0 \Psi_{\pm} + \frac{\delta n}{2} \right] \Psi_{\pm},
\]

(11)

where \(\Gamma_1 = \alpha \int |\Psi_{\pm}|^4 d^2 r \). From Eq. (11) we derive the evolution of the condensate angular momentum \(s = \psi^d \sigma \psi \), where \(\psi = (\psi_+; \psi_-) \) and \(\sigma \) is the Pauli vector:

\[
\frac{ds}{dt} = \Gamma \frac{\alpha}{2N_0} \left[n_0 s + \frac{1}{2} n \sigma \psi \times s \right] + \tilde{\alpha} s_z [e_z \times s].
\]

(12)

Here \(n = n_1 e_x + n_2 e_y \) with \(n_1 = \delta n \cos (2\varphi), n_2 = \delta n \sin (2\varphi) \), and \(e_x, e_y, e_z \) are the unitary vectors along the principal axes of the system.

As the typical reservoir decay rate \(\gamma \) is much faster than the dynamics of the condensate, reservoir densities in Eq. (12) may be replaced with their equilibrium values, obtained from Eq. (2) and linearized in \(s \):

\[
n_0 = (P - 2\beta s) / \gamma, n_1 = (\delta P - 2\beta s_x) / \gamma, n_2 = -2\beta s_y / \gamma.
\]

Here \(P \) is the angular independent part of the pumping power variation from the threshold \(P_0 = \gamma N_0 \), \(\delta P \) is its first angular harmonic and \(\beta = \beta N_0 \int |\Psi_{\pm}|^4 d^2 r \). Eq. (12) may be non-dimensionalized by scaling energies in \(\gamma \) and densities in \(N_0 \). Defining for convenience \(S = 2\beta s \), \(\tau = \Gamma t / 2 \), \(\alpha = \alpha / \beta \), and \(\xi = \alpha / (\beta \Gamma) \) we arrive at:

\[
\frac{dS}{d\tau} = n_0 S + \frac{1}{2} n S + [(n \xi + \xi S e_x) \times S],
\]

\[
n_0 = P - S, n_1 = \delta P - S_x, n_2 = -S_y.
\]

(13)

The first two terms in the right-hand part of Eq. (13) are the gain-loss part of the angular momentum evolution, while the third term describes its precession around an effective field, stemming from polariton repulsion from the reservoir and internal repulsion in the condensate.

We solve Eq. (13) with the following parameters:

\[
\eta = 10, \xi = 20, \delta P = 0.1.
\]

There are two trivial stationary points of Eq. (13), characterized with condensate populations \(S^\pm(P) = \pm S^0_s (P) = (2P \pm \delta P) / 3 \). While the lower populated branch \(S^- \) is unstable, the other one is destabilized by the non-linearities of Eq. (13) above the critical pumping power \(P_c = 0.2 \) (corresponding to \(1.2P_{th} \)). At \(P > P_c \) the only pair of stable stationary solutions \(S(P) \) is symmetry breaking. Vorticity \((S_x) \) sign
in this phase is spontaneously chosen along with the sign of $S_y = -n_0 S_z / (\eta \delta P)$. The sign of S_z switches at the critical point, corresponding to the abrupt rotation of the condensate spatial density profile by $\pi/2$ at the switching power P_c. We also consider for comparison the purely photonic case $\xi = 0$ with no polariton repulsion. In the latter case the switching occurs at $P = 0.1$ (corresponding to $1.1P_{th}$), the S_z component holds its value above the critical pumping and the condensate occupation $S^0 = P$ coincides with the asymptote of $S(P)$. The condensate population $S(P)$ is plotted in Fig. 4(a) along with the trivial branches $S^\pm(P)$ and the vectorial components of $\mathbf{S}(P)$ are shown in Fig. 4(b).

The spin patterns emerge in the case of elliptical pumping, where the pumping in two spin polarisations P^\pm are different. In the range of pumping powers where the predominantly pumped spin component of the condensate is in the broken symmetry phase $P^+ > P_c$, while $P^- < P_c$, the two spin components are spatially separated, resulting in the butterfly spin pattern. Spin patterns corresponding to different pumping power ranges are shown in Fig. 4c. Note that artificial spatial noise is added in the regions where the condensate density is close to zero.

In conclusion, we have experimentally demonstrated and theoretically described a mode switching process in a polariton optical trap, where the condensate wavefunction spontaneously changes its orientation with an adiabatic pump power increase. The effect is described by the non-homogeneous depletion of the reservoir from different spatial modes coupled with the nonlinear interactions of the system. This configuration can in principle be exploited for the design and implementation of on-chip polaritonic routers and transistors. By means of polarization resolved experiments, we have shown that the two spin components of a polariton condensate can switch their orientation independently. Further examination of this system can lead to the development of an integrable all-optical spin beam splitter or spin demultiplexer. Furthermore, as polariton condensate lattices have now been proposed as an architecture for implementing quantum simulators [36] also in the trap configuration [37], these p-orbital states can be used for unidirectional coupling between neighbouring nodes increasing the complexity of the systems that can be studied.

This work was carried out in the framework of the joint Russian-Greek project supported by Ministry of Education and Science of The Russian Federation (project RFMEFI61617X0085). A.N. acknowledges support from the Russian Foundation for Basic Research (Project No. 18-32-00434). The data from this paper can be obtained from the University of Southampton e-Prints research repository.

* correspondence address: Alexis.Askitopoulos@soton.ac.uk
† correspondence address: A.Nalitov@soton.ac.uk
