
Effects of market dynamics on the time-evolving price
of second-life electric vehicle batteries

Susan I. Suna,∗, Andrew J. Chipperfielda, Mahdi Kiaeea, Richard G. A. Willsa

aUniversity of Southampton, UK, SO17 1BJ

Abstract

Second-life batteries are defined as those removed from electric vehicles (EVs)

when their energy density and power density has degraded below the level re-

quired for motive applications but are still performant enough for less demand-

ing stationary applications. They could one day be a plentiful, environmentally

benign source of low-cost energy storage. Their price evolution is important to

know for designers of and investors in such systems.

A methodology is developed for predicting second-life battery price and sales

quantities up to 2050. Although existing data is too scant to draw reliable

quantitative conclusions, sensitivity analyses are run to investigate the effects of

different EV uptake scenarios, new battery costs, refurbishment costs, recycling

net credit, elasticity of supply, and size of demand. No previous work has

incorporated all these driving factors in such a transparent way. The second-life

price is found to be insensitive to most of these factors, while the quantity sold

is sensitive to nearly all of them.

Much work remains to be done in parameterizing the model more accurately.

However, this work already elucidates a novel quantitative mode of thinking

about what factors influence the long-term price and market size of second-life

batteries.
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1. Introduction

The electric vehicle (EV) industry is growing rapidly, driven by falling bat-

tery costs [1] and increasing awareness of the harmful impacts of air pollution

[2, 3]. Even despite the lagging development of charging infrastructure and the

range anxiety of potential customers, current projections of EV uptake indicate5

that globally, several GWh’s of used batteries are likely to be removed from

EVs annually by 2030 [4, 5, 6]. The challenge this poses to recycling facilities

is immense.

However, this challenge also represents an opportunity. Used batteries are

removed from the vehicle when their maximum capacity has degraded to 70-80 %10

of the original capacity when new [7, 6]. Second-life batteries, as these are called,

may still work well in a stationary application which is less restrictive in terms

of space and weight than motive applications. Indeed, many demonstration

projects and a few commercial ventures exist. Concepts range from off-vehicle

storage to buffer EV charging from the grid [8, 9], to modelling studies of home15

batteries that can save on electricity bills by increasing onsite usage of rooftop

PV [10, 6].

A great benefit of using second-life batteries is that they would displace

some of the manufacture of new batteries for stationary applications, with their

associated environmental impacts [11]. However, the claim that second-life us-20

age postpones the point at which an EV battery must be recycled, while true

for an individual battery pack [7], may not be significant for the EV fleet as

a whole, as we show later. The theory is that postponing recycling gives time

to increase material recovery rates and profitability in future, whether through

innovation or simply as a result of increasing scarcity of cobalt and nickel over25

time [12, 13]. Nonetheless, the environmental benefit of second-life usage, ‘reuse

before recycle’, may in itself be a goal worth pursuing.

The benefits of second-life usage can only be realized once certain drawbacks

are addressed: the cost to refurbish a used EV battery (involving testing and
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voltage-matching the packs [14]); shorter lifetime and decreased efficiency re-30

sulting from degradation during the first life [7]; warranty issues and social and

regulatory barriers to adoption of second-life batteries [15, 13].

It is clear that second-life batteries will be cheaper than their new counter-

parts. This presents an opportunity to stakeholders in the stationary applica-

tions market [16], to cut costs by using second-life batteries rather than new. At35

the design stage, it is important to know the price range of the batteries. The

usage of cheap second-life batteries could significantly affect design decisions,

and expected profits.

Neubauer and Pesaran [17] have attempted to predict the evolution of second-

life battery costs by assuming the cost of the battery as new is reduced according40

to its degraded state of health, reduced again by a ‘second-hand discount factor’,

and with the refurbishment cost subtracted. The second-hand discount factor

is arbitrary: they analyzed scenarios 50 % and 75 %. Even after accounting for

state of health and refurbishment cost, there is no reason to believe that the

second-life price would vary proportionally to the new battery price.45

Foster et al. [18] have conducted cost-benefit analyses comparing EV battery

refurbishment and recycling. They found that for research and development

costs of $50/kWh, refurbishment is profitable if the second-life price exceeds

$114/kWh, the difference being mainly transportation costs. Similarly, Casals

et al. [14] calculated refurbishment costs under various scenarios to find the50

minimum viable second-life price. Neither examine whether a second-life market

can exist at these prices, or indeed support prices above their calculated minima.

An alternative for potential second-life users is to design the system under a

range of different battery cost scenarios, and pick an option passively in response

to the market [10, 19]. This may be adequate for a one-off investment, but55

not if batteries must be replaced over the system lifetime (wind turbines and

solar panels may last over 25 years, compared to 15 years or less, even for new

batteries).

Here we present a methodology to rationalize the estimation of time-evolving

second-life battery price. Principles of microeconomics are used to account for60
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changing supply of and demand for second-life batteries, factoring in the cost

of or income available from immediate recycling (without second-life usage),

and both niche and mass-market stationary applications. Where Neubauer and

Pesaran [17] assume a fixed second-life market and find it would rapidly be

saturated by used EV batteries, our methodology attempts to model a more65

realistic situation, where a larger supply of second-life batteries would reduce

the price and thus expand the market for them.

The model setup is explained in Section 2. The model is developed further

and parameterized in Section 3. Results are presented in Section 4, followed by

discussion in Section 5. The conclusions are in Section 6.70

Nomenclature

t Time (years). t = 0 in year 2010.

E0 Original capacity of EV battery (kWh).

Eb Capacity when removed from EV (kWh).75

Peqm(t) Average equilibrium second-life battery price ($/kWh).

Qeqm(t) Quantity of second-life batteries sold in year t (kWh).

Ps(Q, t) Price-supply curve ($/kWh).

Pd(Q, t) Price-demand curve ($/kWh).

gEV (t) Annual first-time EV battery sales (kWh).80

fEV (t) Annual supply of used EV batteries (kWh).

A All-time total first-time EV battery sales (kWh).

p Coefficient of innovation (y−1).

q Coefficient of imitation (y−1).
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Ra(τ) Rayleigh-distributed failure probability of EV battery of age τ years.85

i Generation of EV battery replacement purchase.

µ(i) Mean first lifetime of EV battery (years).

ri(t) EV battery ith-generation replacement purchases in year t (kWh).

Cbatt(t) Cost of new stationary battery ($/kWh).

Crecyc(t) Net credit from recycling an EV battery, i.e. minus any fee charged90

($/kWh).

Crefurb(t) Refurbishment cost to prepare used EV battery for second-life use

($/kWh).

ne Elasticity coefficient, to vary shape of price-supply curve.

C0 Cost of new stationary battery at t = 0 ($/kWh).95

C∞ Eventual minimum cost of new stationary battery ($/kWh).

β Rate of decline of new battery cost (per annum).

Pd(niche)(Q, t) Niche-market part of price-demand curve ($/kWh).

Pd(mass)(Q, t) Mass-market part of price-demand curve ($/kWh).

(Q∗(t), P ∗d (t)) Price-quantity point where niche-market and mass-market seg-100

ments of price-demand curve meet (kWh,$/kWh).

Nbatt(t) Global maximum annual demand for second-life batteries (kWh).

AN Asymptotic value of Nbatt(t) (kWh).

2. Model Setup

The modeled system and its constituent parts are defined here, with a brief105

overview of the calculation methodology. This is followed by the assumptions

used, with some justification of their validity.
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2.1. System Definition

2.1.1. System Boundary

In this work, calculations are done on a global basis. Since battery recycling110

is a global business, with used batteries being transported to plants in only a

few countries, and recycled materials being exported worldwide [14], it stands

to reason that battery refurbishment (as the process of preparing a used EV

battery for the second-life market will be referred to) would be similarly global.

2.1.2. Sellers115

The sellers of second-life batteries would include EV owners but predomi-

nantly EV manufacturers, given the trend for battery leasing, where the EV

owner does not own the battery outright but pays a monthly fee to rent it from

the manufacturer [9, 20]. The results presented in this work are independent of

who the sellers are. The competing alternative to selling onto the second-life120

market is to send the battery to recycling straight away.

2.1.3. Buyers

The buyers of second-life batteries are suppliers of batteries for stationary

applications. The competing alternative to buying second-life is to buy new

stationary batteries. The supplier may further re-package, market, distribute125

and install the batteries (new or second-life), with a markup to the end customer.

It should be noted that companies specializing in battery refurbishment may be

created in future [21]. These companies would act as middlemen between sellers

and buyers. This complication is avoided here by attributing the refurbishment

costs solely to sellers (as if the refurbishment companies are subsidiaries of the130

EV manufacturers, for example).

2.1.4. Calculation Methodology

The higher the price of second-life batteries, the greater the incentive to

sell. The lower the price, the greater the incentive to buy. These tendencies

are quantified respectively in the price-supply and price-demand curves, which135
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change from year to year in response to the changing supply of used EV batter-

ies, developments in battery recycling, etc. Quasi-static equilibrium is assumed,

whereby the price-quantity equilibrium is converged upon each year. Equilib-

rium is the crossing point of the price-supply and price-demand curves: an

above-equilibrium price would be lowered by sellers competing to attract more140

buyers, and a below-equilibrium price would be bid upwards by competing buy-

ers [22]. Price-quantity equilibria are found for every year from 2017 to 2050,

giving the time evolution of second-life price and total quantity sold, under given

scenarios. These are explored in the Results and Discussion sections.

2.2. Assumptions145

2.2.1. No Stockpiling

The stockpiling of used batteries is neglected. However, this assumption

may not hold under some circumstances: for example, if the batteries’ value as

material for recycling increases faster than the annual warehouse costs. Such

analysis is outside the scope of this work. We assume the only two choices150

available to the owner of a used EV battery are to recycle immediately, or sell

into second-life. Illegal dumping is ruled out [23, 24].

2.2.2. Frictionless International Trade

Import/export tariff barriers are neglected, as are subsidies and taxes which

may vary between countries unless an international agreement can be reached.155

The current political climate would suggest that this cannot be taken for granted,

but detailed analysis is outside the scope of this work.

2.2.3. Perfect Competition

The assumption of quasi-static equilibrium is valid under perfect competi-

tion: large numbers of buyers and sellers (no monopoly) with perfect knowledge160

of the market, operating rationally and freely with no collusion to fix prices

[22]. While there are many EV manufacturers and potential second-life battery

users, today’s situation is far from perfect competition. However, new electronic
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trading platforms and future regulations may improve knowledge availability to

buyers and sellers [21].165

As long as changes in new battery price, recycling income, supply of used

EV batteries, etc., are slow compared to the timescale on which second-life

prices converge to equilibrium, quasi-static equilibrium may be reasonably as-

sumed. However, with a yearly time step, some features will not be captured

in this work: sub-yearly dynamics such as new product launches and seasonal170

variations, economic boom-and-bust cycles, sudden leaps and step changes in

technology.

2.2.4. EV Sales unaffected by Second-life Market

Some pose the question of whether the second-life sale of used EV batteries

can allow a discount on new EV batteries, thus driving EV sales. The conclusion175

is most commonly that the second-life price would be insufficient to bring this

about [17]. Therefore, the feedback is not modelled here, but nonetheless a

number of different EV uptake scenarios are investigated.

2.2.5. Sufficient Battery Refurbishing Capacity

It is assumed that the processing capacity of battery refurbishing plants will180

be sufficient at every time step. Good market research and forecasting should

ensure that adequate investment is made in refurbishing capacity. In such a

case, second-life sales quantities are driven by market dynamics rather than

ignorance, poor analysis, or poor decision-making.

2.2.6. Second-Life Price Variance185

The same price per kWh is unlikely to be paid for every second-life battery.

Even if all EV batteries are removed once they degrade to 80 % of their original

capacity, there may still be variations in performance and remaining life. These

could be due to differences in battery chemistry and first-life usage patterns

[25], while the second-life application will affect the remaining second lifetime190

[7]. It is beyond the scope of this work to account for the variance in second-life

price likely to come about due to all these differences.

8



The degraded capacity relative to the original capacity (Eb/E0) is approxi-

mated here as uniformly 75 % for all batteries entering the second-life market.

All prices will be quoted in $/kWh. While Eb/E0 = 80 % is more common in195

the literature [7, 21, 26], there is some evidence that EV performance is still

good when the battery is used beyond this point [27]. As the cost per mile to

run an EV decreases with mileage [17], it is likely the industry standard would

converge to below 80 %, which is why Eb/E0 = 75 % is taken here. Thus the

price found, Peqm(t), would be not the equilibrium second-life price, but the200

average equilibrium second-life price.

3. Model Development

The aim is to find the equilibrium second-life price Peqm(t) for each year from

2017 to 2050. To do this, the price-supply curve Ps(Q, t) and price-demand curve

Pd(Q, t) for each year must be found, (Qeqm(t), Peqm(t)) being their crossing205

point. This section explains how the price-supply and price-demand curves are

constructed and parameterized. The price-supply curve depends on the rate at

which used batteries are removed from EVs, and so the problem of determining

this rate is addressed first.

3.1. Determining Supply of Used EV Batteries210

The rate at which used batteries are removed from EVs is denoted here by

fEV (t) (in kWh). An adaptation of the Bass model of innovation diffusion [28]

is used to estimate fEV (t). EV sales data are used to parameterize the model.

3.1.1. Bass Model

The original Bass model considers the rate of uptake of a new technology,215

Ḟ (t), relative to the population yet to adopt it, 1− F (t), to vary linearly with

the fraction of the population that has already adopted it, F (t) (the integral of

Ḟ (t)):

Ḟ (t)

1− F (t)
= p+ qF (t). (1)
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The parameters p and q have natural interpretations as the spontaneous

uptake of the technology by early adopters (the ‘coefficient of innovation’), and220

the influence of those who have already become users of the technology on those

who have not yet (‘coefficient of imitation’), respectively [28].

Solving (1), the adoption rate Ḟ (t) follows the form given in (2), growing

as the technology gains popularity, then peaking and declining as the market

saturates [28]. Though conceived to model populations adopting a technology,225

the Bass model was found to be valid for sales figures for numerous products.

Olson and Choi [29] adapted the Bass model to include replacement pur-

chases of durable goods with finite lifetimes, finding their version predicted sales

figures for televisions and fridges with better accuracy than the Bass model

alone. Their methods should be applicable to EV battery replacement pur-230

chases: EVs may soon go from novelty to essential commodity, where nearly all

purchases now are first-time purchases, but in future nearly all may be replace-

ment purchases.

First we define gEV (t), the annual first-time sales of EVs (specifically their

batteries, in kWh):235

gEV (t) = A
(p+ q)2 exp (−(p+ q)t)

p(1 + q
p exp (−(p+ q)t))2

(2)

where A is the all-time total of first-time EV sales (in kWh), and p and q

are as in (1). Equation (2) is the solution to (1), but multiplied by A to give

gEV (t) in kWh.

Next, the parameter values A, p, q must be chosen. Then the replacement

purchases are calculated, taking account of variation in the battery first-lifetime.240

Since removal of a used EV battery must be quickly followed by a replacement

(of the battery or the entire vehicle, but in either case a new battery replaces a

used one), the quantity of used batteries (kWh) removed in a given year equals

the sum of all replacement purchases in that year.
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3.1.2. Choosing Parameters A, p, q245

The International Energy Agency has published statistics [30] on the cumu-

lative global fleet of battery electric vehicles (BEV - that is, with no internal

combustion engine, or ICE) and plug-in hybrid electric vehicles (PHEV - typi-

cally diesel vehicles with an onboard battery to power most driving except long

stretches of cruising). Battery capacity varies between different makes of BEVs250

and PHEVs. Therefore, sales data from EV Volumes [31, 32, 33] were used to

estimate their average capacities from 2013-2016, and a linear extrapolation was

assumed for previous years to 2010, the first year for which complete unit sales

data are available [30].

Total annual EV battery sales are given as BEV annual sales multiplied by255

the respective average battery capacity for that year, added to the same for

PHEVs. Finding the battery sales in kWh obviates the need to extrapolate

separately the sales figures for BEV and PHEV units and average battery ca-

pacities (see Supplementary Table S3). Thus only the total kWh data need be

extrapolated.260

The Bass model curve gEV (t) (2) was fit to the total annual (kWh) sales data

by a least-squares regression. As there are so few data points, the coefficient of

determination R2 can exceed 0.999 for extremely different outcomes depending

on the initial parameters given to the fitting procedure. This indicates an under-

constrained problem. Due to heteroskedasticity in the system, it is not well265

suited to least-squares regression in the first place [29]. We stress that the

impossible task of making accurate predictions 40 years into the future is not

the aim of this work; rather, plausible scenarios are sought in order to explore the

dependence of second-life price on different driving factors such as EV uptake.

The fit parameters are given in Table 1 along with R2, and long-term out-270

comes, for ‘Low’, ‘Medium’ and ‘High’ EV uptake scenarios. ‘Low’ is defined as

the set of parameters that maximizes R2. The result is eventual EV penetration

of around 0.75 %. This is even less than the current EV penetration of 2 %,

assuming all-time average battery capacity 40 kWh (the trend is for increasing
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EV Uptake A (kWh) p q R2 Total EV fleet

Low 6.05× 108 0.0112 0.6039 0.99921 15 million

Medium 3.60× 1010 2.11× 10−5 0.5645 0.99899 900 million

High 8.00× 1010 9.50× 10−6 0.5641 0.99899 2 billion

Table 1: Best-fit parameters, and R2 and resultant total sales implied (integrat-

ing the curve, and assuming all-time average EV capacity 40 kWh), for Low,

Medium and High EV uptake scenarios.

capacity). For reference, the global car fleet today is roughly 1 billion, and275

is expected to double by 2040 [34]. ‘Medium’ corresponds to an eventual EV

penetration of 45 %, guided by the projections of Wills [35]. It is taken as the

most likely future scenario. ‘High’ is defined as resulting in all 2 billion cars

being electric, each with a 40 kWh battery. The first-time annual sales gEV (t)

for the ‘Low’ scenario is shown in Fig. 1.280

2010 2015 2020 2025 2030 2035 2040 2045 2050
0

2

4

6

8

10
107

fit - Low

R2 = 0.99921

annual sales

Figure 1: Total EV annual sales and extrapolated Low scenario. It peaks in 2020 at 91 GWh.

The Medium and High scenarios (not shown) peak respectively in 2028 and 2029, at 5 TWh

and 11 TWh.

EV uptake will depend on many factors: battery costs, charging infrastruc-

ture and electricity network development, oil prices, government policy, con-

sumer preferences [3]. The ‘Low’ and ‘High’ scenarios define the range over

which EV uptake may vary.

285
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3.1.3. Calculating Removal Rate of Used EV Batteries

Following Olson and Choi, a Rayleigh distribution Ra(τ) is used for the

distribution of product lifetime, as it requires only one parameter (the mean

lifetime, µ): [29]

Ra(τ) =
π

2µ2
τ exp

(
−πτ

2

4µ2

)
. (3)

They found distribution choice to have little influence on results [29]. The290

lifetime before removal and replacement of an EV battery is influenced by

mileage, ambient temperature, driver aggression, usage in vehicle-to-grid, amongst

other factors [25]. Thus it is reasonable to expect a spread around the mean

lifetime, as shown in Fig. 2.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

 = 5y

 = 10y

 = 15y

Figure 2: Rayleigh distributions of battery failure probability in year τ , for various mean

lifetimes µ.

Neubauer and Pesaran [17] use 8 years (no spread) as the EV battery’s first295

lifetime, while Foster et al. [18] use a uniform distribution between 3 to 10

years. With improvements in understanding of battery chemistry and battery

management systems, further increases in lifetime may be achieved.

The removal rate of used EV batteries, fEV (t), is given by the sum of all

replacement purchases. Let us call the replacement of the first-time sales the300

‘first-generation replacement’. The eventual replacement of these replacement

purchases is the ‘second-generation replacement’, and so on ad infinitum. Re-

placement of EVs themselves occurs too, but the focus is on their batteries.

The amount (kWh) of batteries removed and replaced in year t of generation i

is given by the sum from the beginning of the time series up to year t, of the305
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previous generation’s sales in year τ multiplied by the failure probability of a

battery of that age, (t− τ) years: [29]

ri(t) =

t∑
τ=0

ri−1(τ) ·Ra(t− τ). (4)

The generation previous to the first-generation replacement is the first-time

sales, r0(t) = gEV (t). As ri(t) cannot be summed to i → ∞, the sum is

truncated at i = 14. The reason for this is that even for a mean lifetime310

as low as µ = 5 years, the sum of replacement purchases up to i = 14 is

indistinguishable from the sum to i = 13 over the time period considered, 2017

to 2050, as increasingly few units reach their ith replacement before 2050 as

i is increased. Specifically, the root-mean-square difference between the sums

to i = 13 and to i = 14 is 107 kWh, less than 0.1 % of the sum’s plateau,315

around 150 GWh. For longer mean lifetime, even fewer generations would need

to be summed to achieve an adequate approximation of the sum to infinity. As

computational run-time was so short as to not be an issue, no further work was

done to decide where to truncate the sum:

fEV (t) = 0.75

14∑
i=1

ri(t). (5)

The factor 0.75 is to account for the average remaining capacity of a used320

EV battery being 75 % of its capacity when new. An increasing mean lifetime

can be approximated by using a different µ in the term Ra(t− τ) in (4) for each

generation. Illustrative examples are shown in Fig. 3. A longer mean lifetime

results in lower rate of battery removal, simply because they last longer. For

mean lifetime increasing linearly from µ = 8 y in generation i = 1 to µ = 20 y325

in generation i = 14, the battery removal rate declines slightly after an initial

rise. The choice of 8 to 20 years is guided by past and current trends in battery

development, and the fact that 20 years may be close to the average lifetime

before scrappage of a vehicle in 2050 (in the USA, it has increased from 12.2 to

15.6 years in the period 1969 to 2014 [36]).330
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Figure 3: Rate of removal from EVs of used batteries under the Low uptake scenario and

mean lifetimes 10 and 20 years, and increasing linearly from µ = 8 y to µ = 20 y.

There is a tendency for existing estimates of used EV battery supply [4,

5, 6, 18, 35] not to plateau like in this work, with the exception of Foster et

al.’s ‘pessimistic’ scenario [18]. It may be that a plateau will occur later than

the timeframes examined (most often up to 2030). It is also possible that these

publications only extrapolate exponential growth, which clearly cannot continue335

indefinitely. Furthermore, the tendency is to predict what is probable, rather

than what is necessary to tackle urban air pollution [3]. This might explain

why the predictions in the literature tend to fall between the Low and Mediun

scenarios in this work. The Medium and High scenarios are not outside the

realm of possibility, and will be examined hypothetically. This is deemed useful340

because the aim of this work is not to make accurate predictions, but to explore

the dynamics of the market, including in extreme and unlikely scenarios.

3.2. Constructing Price-Supply Curves

The price-supply curve Ps(Q) at each year t is constrained thus:

• Price can never exceed Cbatt(t), the cost of a new stationary battery in345

year t, as there is no reason to buy a second-life battery for more than a

new one,

• Quantity can never exceed fEV (t), the quantity of used EV batteries pro-

duced in year t,
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• Price must always be above (Crecyc(t) + Crefurb(t)), as sale on to the350

second-life market is only done if the profit (price minus refurbishment

cost) exceeds the income Crecyc(t) possible from the competing alterna-

tive, immediate recycling.

These constraints are illustrated in Fig. 4 for an example year. The equation is

(8) in Supplementary Section S2. As Cbatt(t), Crecyc(t), Crefurb(t), and fEV (t)355

all vary with time, the constraints shift from year to year. An example of this

is shown in Fig. 6.

0 0.5 1 1.5 2

106

0

100

200

300

400

500

Figure 4: Two out of an infinite number of possible price-supply curves, both satisfying the

constraints: 0 ≤ Q ≤ fEV (t); (Crecyc + Crefurb) ≤ Ps(Q) ≤ Cbatt for all Q. Elasticity

coefficient ne is defined in the text.

The supply is expected to be more elastic at low sales quantities than high.

More elastic means a more sensitive response to price changes, and so a shallower

gradient to the price-supply curve [22]. The lack of data to constrain the price-360

supply curve for second-life batteries is addressed by approximating the curve

as an exponential (see Supplementary Section S2) with an ‘elasticity coefficient’

ne, which can be varied to make the curve more linear (ne small) or less so (ne

large), while satisfying the above constraints.

The new stationary battery cost is taken to decrease exponentially from C0

in 2010 (when t = 0) to a minimum of C∞, at rate β: [17]

Cbatt(t) = C∞ + (C0 − C∞)e−βt, (6)

To pinpoint C0, C∞ and β: due to the lack of analysis into price trends of365

stationary battery cells (that is, excluding inverter and installation costs), the
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cost of new EV battery cells is used as a proxy. Nykvist and Nilsson [1] surveyed

the cost of EV batteries since 2006, finding 2010 costs to be around $700/kWh

on average, with a range $200-$1200/kWh. The cost decline was 14±6% overall.

Berckmans et al. analyzed the factors contributing to the costs of lithium-ion370

batteries [37]. From these sources, a reasonable approximation to the trends

they have found is obtained by setting C0 = $700/kWh, C∞ = $50/kWh and

β = 0.14. The cost of new stationary battery cells in 2016 was given by Reid

and Julve as e500/kWh ($568/kWh) [26], higher than the $330/kWh of EV

batteries that year. As there is such a spread in battery costs due to the different375

chemistries, one default and one high scenario for new stationary battery cost

are tested in the Results section 4.3.

For Crefurb : Casals et al. [14] calculated the refurbishment cost of EV bat-

teries to be e87-360/kWh ($104-409/kWh). Neubauer and Pesaran [17] quoted

values of $250-1000 per pack, meaning $10-40/kWh, assuming capacity 25 kWh,380

as was common at the time [31]. This is quite a disparity. We take a central

estimate of the refurbishment cost starting from $400/kWh in 2010, a minimum

eventual cost of $20/kWh and a 14 % rate of decline, the same as for battery

costs themselves. It is reasonable to suppose that the economies of scale and

organizational efficiencies that are reducing battery costs may also be applicable385

to refurbishment processing. The present-day refurbishment cost is widely cited

to be around e50/kWh ($57/kWh) [26].

As for Crecyc , the Commission for Environmental Cooperation [12] reported

that many battery recycling plants charge for their service (that is, Crecyc(t) <

0), but return a credit according to the value of the material recovered. Busi-390

nesses were reluctant to reveal their exact charges and credits. Toyota offered

bounties of $100-500 for the return of used batteries, suggesting Crecyc(t) in the

region $3-50/kWh, assuming batteries of capacity 10-30 kWh. The net credit

from recycling may rise with increasing efficiency of recycling processes and

scarcity of raw materials, or indeed decrease over time if new battery chemistries395

are invented using lower-cost materials [12]. In the absence of more information,

we explore scenarios centred around a linearly increasing recycling net credit,
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from -$5/kWh in 2010 (i.e. a net charge) to $25/kWh in 2050.

The price-supply curve must be monotonically increasing. This is not possi-

ble if the new battery cost falls below the sum of refurbishment cost and recy-400

cling net credit (Cbatt < Crecyc + Crefurb). In such a case, immediate recycling

would always be a more attractive option to a potential seller of a second-life

battery, and the buyer would have to buy a new battery for their stationary ap-

plication. There would then be no second-life sales in that year (Qeqm(t) = 0)

and the second-life price for that year will be over-written with the cost of a new405

battery (Peqm(t) = Cbatt(t)). This way, a designer of a stationary application

will have information on the battery cost they need to factor in, whether the

battery is second-life or new. Example price-supply curves are shown in Fig. 6.

3.3. Constructing Price-Demand Curves

We propose a division into a lucrative but limited niche applications market,410

and a larger but cheaper mass market. The niche market includes: [16]

• Area regulation (battery net present value $1050-2650/kWh for potential

USA market size of 700 MWh),

• Power quality and reliability ($700-1800/kWh for 10 GWh in USA),

• Transmission and distribution upgrade deferral ($400-500/kWh for 6 GWh415

in USA),

as analysed by Eyer and Corey [16] and used by Neubauer and Pesaran to

constitute their fixed market for second-life applications [17].

The mass market would likely consist mainly of home batteries. While home

batteries today are still a luxury product, a drastic decrease in their price, as420

may be achieved by using second-life batteries, could change that. Madlener et

al. calculated e73/kWh ($87/kWh) to be a conservative estimate of the price

at which a home battery recoups its own costs by increasing onsite consumption

of rooftop PV energy, thus making savings on a German homeowner’s electricity

bills, for 10 years [10]. The retail cost of electricity is relatively high in Germany,425

so the breakeven price may be lower in other parts of the world [38].
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In the absence of a global survey of all possible stationary applications and

their corresponding net present values and market sizes, from which to form

price-demand curves, the curve for each year is approximated as two linear

segments. The linear coefficients are set to follow these constraints:430

• Pd(Q, t) can never exceed Cbatt(t), as there is no reason to buy a second-life

battery for more than a new one,

• Pd(mass)(Nbatt(t), t) = 0, that is, the highest possible annual demand

Nbatt(t) (in kWh) can only be reached when price goes to zero,

• Pd(niche)(Q, t) and Pd(mass)(Q, t) join at the point (Q∗, P ∗d ):435

The two linear segments are joined by a quadratic polynomial to smooth the

joint (more details in Supplementary Section S3).

The point (Q∗, P ∗d ) is set by the size of the niche market and the maxi-

mum price that would be paid in the mass market. The mass-market segment

decreases linearly from this point until (Q,Pd) = (Nbatt, 0), to account for di-440

versity in mass-market uses and household incomes around the world. Even if a

home battery recoups its own costs over its lifetime, the initial investment may

still be too much for lower-income households, even if paying by instalments.

Home battery suppliers could not then sell their product to these households,

and would not buy so many second-life batteries to keep in stock. Note that the445

suppliers are potential second-life buyers, not homeowners, as the latter would

likely buy a value-added product including power electronics and installation

service.

The function Nbatt(t) may be expected to follow a similar form as fEV (t),

since second-life batteries in a stationary application are durable goods with450

finite lifetime, like EV batteries in their first lifetime. The function is approxi-

mated by the same form as the solution F (t) of (1):

Nbatt(t) = AN

(
1− e−(pN+qN )t

1 + qN
pN
e−(pN+qN )t

)
(7)
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Figure 5: Maximum possible demand Nbatt(t) (kWh worldwide, annually), shown with its

cumulative sum, and Wills’s projection [35] for global battery fleet.

where AN = 3 × 109 kWh, pN = 0.0013 y−1, qN = 0.35 y−1. Though this

form is usually used for the cumulative sales of a product, here it is being used

to approximate the annual demand including replacements - see Fig. 5. The455

parameters were chosen to make Nbatt(t) plateau at a plausible maximum level

for all the home batteries in the world, AN = 3 TWh being equivalent to 2 billion

households replacing a 15 kWh battery every 10 years. Another consideration

was to make the cumulative sum of Nbatt(t) roughly follow Wills’s projection

for global battery fleet up to 2025 [35] (Fig. 5). Logically
∑t

Nbatt(t) should460

exceed these values, as demand must always exceed actual sales, since not all

demand can be satisfied.

It is possible that new mass-market uses for batteries will be developed in

future, leading to even larger Nbatt(t). Furthermore, the point (Q∗, P ∗d ) may not

be static over time. For simplicity, we take them as static atQ∗ = 16.7 GWh and465

P ∗d = $87/kWh. Although Eyer and Corey calculated market size for stationary

battery applications in the USA [16] rather than the world, suggesting 16.7 GWh

is an under-estimate, it was for a potential total market rather than on an annual

basis, so in fact 16.7 GWh would be a reasonable order-of-magnitude estimate.

$87/kWh was Madlener et al.’s estimate for the price at which a second-life470

home battery breaks even in Germany [10], and given the comparatively high

retail cost of electricity there, it is a reasonable estimate for P ∗d . Some example

price-demand curves are shown in Fig. 6.
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4. Results

After defining a default scenario as a baseline for comparison, the effects475

of various driving factors on the average second-life price Peqm(t) and quantity

sold Qeqm(t) are analyzed. The factors examined are:

• used EV battery supply rate

• cost of new batteries

• refurbishment cost480

• recycling net credit

• elasticity of supply

• demand in both niche and mass markets

Through this, the strongest influences on the second-life price and quantity

sold are inferred. The Matlab code used to generate the results is available to485

download as a research data file. Each run takes on the order of 2 s on a PC

with 8 GB RAM running Matlab R2017b.

4.1. Default Scenario

Efforts were made to ensure the default scenario represents the most likely

future outcome. Given the lack of available information, ‘most likely’ occupies490

a very wide parameter space. Although the predictions for average second-

life price and quantity sold under the default scenario cannot be made with

confidence, an understanding can still be gained of the impacts of the driving

factors on these outcomes relative to the default scenario as defined in Table 2.
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Figure 6: Price-supply and price-demand curves for 2017, 2019, 2021 under default scenario,

showing how second-life price Peqm(t) and quantity sold Qeqm(t) are found from the curves’

crossing points each year.

Parameter Default Value(s) Section

A, p, q Medium uptake 3.1.2

µ(i) (8 + 12
14 i) years 3.1.3

C0 $700/kWh 3.2

β 14 % 3.2

C∞ $50/kWh 3.2

Crecyc(t) (−5 + 0.75t) $/kWh 3.2

Crefurb(t) (380e−0.05t + 20) $/kWh 3.2

ne 10 3.2

(Q∗, P ∗d ) (16.7 GWh, $87/kWh) 3.3

Nbatt(t) AN = 3 TWh 3.3

Table 2: Parameter values for default scenario. Refer back to corresponding

sections for more details.

495

Some example price-supply and price-demand curves under the default sce-

nario are ahown in Fig. 6. The average second-life price Peqm(t) and quantity

sold Qeqm(t) under the default scenario are shown in subsequent figures.
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4.2. Effects of Used EV Battery Supply

The supply of used EV batteries, fEV (t) is determined by the EV uptake500

and the mean lifetime of EV batteries. Fig. 7 shows the evolution of second-life

price for five EV uptake scenarios, for mean lifetime at the default of 8 to 20 y.

The scenarios L1, L2, L3, M, H, correspond to eventual EV penetration rates

of roughly 0.75 %, 5 %, 12.5 %, 45 % and 100 %, respectively. Parameters to

generate fEV (t) for each scenario are given in Supplementary Section S4.505
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Figure 7: Average second-life price for different EV uptake scenarios, shown in comparison to

the new battery cost, refurbishment cost and recycling net credit.

In all scenarios, the price falls rapidly until the supply of used EV batteries

becomes significant, around 2025. Then there is a plateau in price until 2030

as the mass market for second-life batteries becomes significant. The plateau

is more pronounced for lower EV uptake scenarios, where the supply does not

increase quickly enough to offset the expanding pool of buyers bidding against510

each other and impeding the price decline.

Fig. 8 shows that while the absolute quantity sold is greater in higher uptake

scenarios, the fraction of supply that gets sold is less. The quantity sold shows a

decline towards the end of the time period, when immediate recycling becomes

an increasingly attractive option (the dashed line in Fig. 7). This shows that the515

methodology here captures much richer market dynamics than previous work

in the field.

As seen in Fig. 8, even modest penetration of EVs could overwhelm the

second-life market such that second-life usage does not postpone the need for
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Figure 8: Quantity sold into second-life applications, shown in comparison to the total used

EV batteries produced under different EV uptake scenarios.

recycling by much. To illustrate this, the cumulative amount of used EV bat-520

teries is plotted in Fig. 9 for the default (Medium) EV uptake scenario, without

and with second-life usage.
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Figure 9: Cumulative amount of used EV batteries produced, and cumulative amount sub-

tracting amount sold into second-life.

If EV battery recyling is not well-developed enough, then storing the batter-

ies to a later date may be an option. But with a limit to storage space, this limit

would be breached not much later with second-life usage compared to without.525

The delay varies depending on what the storage space limit is, but the delay

is seen in Fig. 9 to be on the order of a year. Thus while second-life usage

can delay the need to recycle an individual battery by 3-15 years [7], it delays

recycling by not much more than one year when considered on the global fleet

level.530
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4.3. Effects of New Battery Cost

It is found that around 2025, when EV usage becomes significant, the second-

life price is subsequently almost unaffected by the cost of new batteries (see Fig.

10). In spite of the slightly higher second-life price when the new battery cost is

higher, a greater quantity is sold (see Fig. 11). Logically, this is because buying535

second-life is more attractive than buying new when the price differential is

greater.
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Figure 10: Average second-life price, shown in comparison to the new battery cost.
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Figure 11: Quantity sold into second-life applications under different new battery cost evolu-

tion scenarios, shown in comparison to the total used EV batteries produced.

The lack of sensitivity of the second-life price to new battery cost nor to used

EV battery supply (except when low) raises the question, what does influence

the second-life price?540
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4.4. Effects of Refurbishment Cost and Recycling Net Credit

From observing Fig. 7 and 10, it is hypothesized that at Medium EV uptake

or higher, the second-life price rapidly declines until around 2025 and subse-

quently closely follows the sum of refurbishment cost and recycling net credit.

To test this hypothesis, some different scenarios for the evolution of recycling545

net credit were run. In Fig. 12, different (Crecyc(t)+Crefurb(t)) series are plotted

with dashed lines (the values for Crecyc(t) in $/kWh are given in Fig. 13). The

corresponding second-life prices lie slightly above these lines, supporting the

hypothesis, but less well the lower (Crecyc(t) + Crefurb(t)) is. This is especially

clear for the red line, Crecyc(t) = −$25/kWh.550
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Figure 12: Average second-life price, shown in comparison to the new battery cost, and sum

of refurbishment cost and recycling net credit, under different recycling net credit scenarios.
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Figure 13: Quantity sold into second-life applications under different recycling net credit

scenarios, shown in comparison to the total used EV batteries produced.
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As expected, the less lucrative the option of immediate recycling is com-

pared to refurbishment followed by second-life sale, the lower the price at which

sellers are willing to conduct the transaction, and the more such transactions

are made (see Fig. 13). In fact, the magenta line represents Crecyc(t) increasing

to $45/kWh in 2050, against which second-life sale cannot compete, when refur-555

bishment costs around $20/kWh and the refurbished battery must be sold for

less than the new battery cost of $50/kWh in that year. The result is no second-

life sales are made after 2041 under this scenario. The same is true whether it

is refurbishment cost Crefurb(t) or recycling net credit Crecyc(t) that is high.

4.5. Effects of Supply Elasticity560

Under the default scenario, the sum (Crecyc(t) + Crefurb(t)) comes so close

to the new battery cost Cbatt(t) that the second-life price is very insensitive to

supply elasticity, as varied via the elasticity coefficient ne. (See Fig. 4 for an

illustration of lower and higher ne.) To see more clearly the effect of varying

ne, we set Crecyc(t) = −$25/kWh.565
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Figure 14: Average second-life price, shown in comparison to the new battery cost, and sum

of refurbishment cost and recycling net credit, for different elasticity coefficients.

Even so, the difference ne makes to the second-life price is small, bringing

it closer to (Crecyc(t) + Crefurb(t)) when ne is higher, as shown in Fig. 14.

The effect on quantity sold is more noticeable: larger ne corresponding to more

elastic supply at low quantities (and more inelastic at high quantities) means
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Figure 15: Quantity sold into second-life applications, shown in comparison to the total used

EV batteries produced, for different elasticity coefficients.

more willingness to sell even at modestly higher price, and therefore more sales570

at higher ne, as shown in Fig. 15.

4.6. Effects of Demand Size

The parameter AN in (7), which signifies the eventual maximum annual

global demand for second-life batteries, is varied from 1 TWh to 30 TWh. The

figure of 30 TWh would imply 2 billion households replacing a 15 kWh home575

battery every year, which seems an unrealistically frequent disruption, or some

as yet unthought-of mass-market use being developed. Nonetheless, extreme

values are run to show their effect. Again we set Crecyc(t) = −$25/kWh to

show the effect more clearly in Fig. 16.
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Figure 16: Average second-life price, shown in comparison to the new battery cost, and sum

of refurbishment cost and recycling net credit, for different eventual annual global demand

sizes.
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Figure 17: Quantity sold into second-life applications, shown in comparison to the total used

EV batteries produced, for different eventual annual global demand sizes.

The higher the eventual demand, the higher the second-life price, much like580

the effect of lower EV uptake. A higher demand results in a greater proportion

of the used battery supply being sold, even at Medium EV uptake (Fig. 17).

The effects of a different niche market size Q∗ and maximum mass market price

P ∗d were also investigated, with results shown in Supplementary Section S5.

5. Discussion585

From the results one can infer the driving factors that most strongly influence

the price of second-life batteries and the quantities sold. The strongest influence

appears to be the refurbishment cost and recycling net credit, for if the second-

life price were to drop below their sum, immediate recycling would become the

more attractive option. But the lower the sum (Crecyc(t) +Crefurb(t)), the more590

influence is exerted by other driving factors. Next is the supply of used EV

batteries relative to demand: a low supply or high demand forces the second-

life price upwards. The elasticity of supply, and the cost of new batteries, exert

much smaller influence on the second-life price. The exception is for the years

up to 2025, a higher new battery cost results in a much higher second-life price,595

whereas subsequently the much increased supply brings the size of this effect

down to almost nothing.

In spite of all these different driving factors, the second-life price always
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follows a similar pattern: a rapid decrease until around 2025, followed by a few

years of almost unchanging price, followed by a close adherence to (Crecyc(t) +600

Crefurb(t)). The stability of the second-life price from 2025 onwards can be

understood by considering the price-supply curve. It is constrained between

(Crecyc(t)+Crefurb(t)) from below and Cbatt(t) from above, and these two points

are separated by $50/kWh or less after 2025 in the default scenario. Thus there

is little room for variation in the price, regardless of other influences.605

Unlike the second-life price, the quantity sold is sensitive to all factors con-

sidered. The supply of used EV batteries has the greatest influence on absolute

quantity sold, though the sales as a fraction of supply decreases the greater

the supply. The refurbishment cost and recycling net credit strongly influence

second-life sales according to how lucrative immediate recycling is compared to610

second-life sale. The size of the mass market strongly influences what propor-

tion of the supply can be sold into second-life applications, whereas the niche

market size has no such amplifying effect, only an additive one. The high-end

mass-market price P ∗d only influences how quickly the second-life sales increase,

and not the long-term shape of Qeqm(t). A higher new battery cost induces615

more sales, and to a lesser extent, so too does elasticity of supply.

The fact that second-life price is insensitive to most influences is fortunate

for potential buyers of second-life batteries. This helps buyers and designers of

systems using second-life batteries to calculate expected replacement costs, and

to decide when to begin investing. Around 2025 would appear to be the best620

time, in order to reduce costs, but this depends on the system objectives and its

other components. For potential sellers, the sensitivity of expected second-life

sales quantity to nearly everything is problematic, as their target market is then

difficult to estimate. For the same reason it is difficult for governments to know

how much to budget for if deciding to subsidize second-life battery purchases.625

As well as developing more accurate estimates of refurbishment cost, re-

cycling net credit, shape of price-supply and price-demand curves, and other

driving factors, it would be useful for future work on this topic to address the

assumption of frictionless global free trade. This may be done by drawing the
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boundary around a single country, or dividing the world into economic areas630

each with their own second-life battery price. In either case, the option of im-

porting batteries (new or second-life) would compete with the options of buying

new or second-life batteries internally, and the option of exporting used EV

batteries would be an alternative to refurbishing and selling into the internal

second-life market or recycling immediately. The solution of such a system must635

find the flows of used battery imports and exports, as well as internal second-life

price and quantity sold within each economic area.

The impacts of government subsidies to buyers and/or sellers of second-life

batteries and/or for recycling can be investigated by suitable modifications of the

price-demand and price-supply curves [22]. But for the results of such analysis640

to be reliable, the different driving factors must be pinpointed more accurately

than here. The shape of the price-supply and price-demand curves (specifically

their elasticity) require special attention, as by definition they determine the

response of sales quantities to small changes in price brought about, for example,

by government subsidies.645

Future work should also address the option of stockpiling used batteries,

for example if their recycling value is increasing faster than warehousing costs.

Another important feature that has been neglected throughout this work is the

variation in battery chemistries and degradation states. Given the constraints

on second-life battery price, it may be insufficient simply to adjust the average650

second-life price by some factor to account for degradation significantly different

from average. Such adjustment may take the price below (Crecyc(t)+Crefurb(t))

or above Cbatt(t), in which cases the transaction will not happen. The modelling

framework developed here may need to be applied separately to sub-markets for

different battery chemistries and/or second-life applications. Possible interac-655

tions between the sub-markets would complicate matters.

While the methodology developed here can be adapted to address some of the

assumptions described in Section 2.2, others are less straightforward to address.

These include the assumption of rational actors in perfect competition, and the

absence of feedbacks with other sectors of the economy. There is no accounting660
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for improbable disruptive events, such as the widespread adoption of hydrogen

vehicles.

6. Conclusions

A methodology has been presented for calculating the evolution of second-

life EV battery price. Unlike previous work on this topic, our methodology665

uses concepts from microeconomics to incorporate the effects of supply and

demand, and how they are affected by the competing options of immediate

recycling (rather than selling into second-life) and buying new (rather than

buying second-life).

Though there is too much disagreement over the input data to make pre-670

dictions with any accuracy, a methodological framework has been elucidated,

which can be populated with data and revised over time. In the meantime, some

analyses have been conducted to investigate the sensitivity of the price to vari-

ous driving factors. The price is insensitive to most factors except the battery

refurbishment cost and recycling net credit. On the other hand, the quantities675

sold are very sensitive to nearly everything. The direction of response of price

and quantity to each driving factor can be logically explained, which should give

some confidence to using the methodological framework.

Even without sufficient data to accurately parameterize the model, some

interesting qualitative observations may be made:680

• The second-life price does not generally vary in proportion to the new

battery price, as Neubauer and Pesaran assumed [17].

• Though the second-life market can expand in response to low second-

life price, its ability to do so diminishes with greater supply, somewhat

vindicating their approximation of a fixed second-life market [17].685

• The need for recycling is not much diminished by second-life usage, firstly

because the supply of used batteries will likely be too large to all be sold
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into second-life, and secondly because second-life batteries still need to be

recycled at the end of their second life.

• The viability of the second-life market is questionable: if the price is690

too close to that of a new battery, that price will not be paid for a less

efficient product that must be replaced sooner; the price can be lowered

the more supply exceeds demand, but this is undesirable from a resource

use point of view; or the price can be lowered if recycling is a comparatively

unattractive option, but it must still be attractive enough to be done at695

least at the end of second lifetime.

If promoting the second-life battery industry is such a fine balancing act,

one might ask, why not focus research efforts purely on recycling instead? To

answer this definitively, more information is needed on the cradle-to-cradle envi-

ronmental impact of second-life batteries compared to new batteries in station-700

ary applications. Sathre et al. [6] find a net positive impact, but they compared

second-life batteries to a scenario with no batteries. Would the greater conver-

sion losses of a less efficient second-life battery outweigh the embodied emissions

of manufacturing a new one?

Whether recycling or refurbishing, electrifying transport or pedestrianizing,705

one certainty remains: it should not be an option to allow petrol and diesel

vehicles to continue polluting our towns and contributing to climate change.
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Supplementary Information

S1. Capacities of BEVs and PHEVs

Sales data for the most common makes/models of BEV and PHEV from

the EV Volumes website [31, 32, 33] and nominal battery capacity for each720

make/model from the websites of the EV manufacturers are tabulated in the

spreadsheet BEV PHEV salesdata.xls. They are used along with unit sales data

from the International Energy Agency [30] to calculate total annual (kWh) first-

time EV sales. These are summarized in Table S3 below. As 2010 was the first

year with complete unit sales data [30], it was taken as t = 0.725

Year
BEV sales

(cumul.)

BEV

sales

(annual)

BEV

average

capacity

(kWh)

PHEV

sales

(cumul.)

PHEV

sales

(annual)

PHEV

average

capacity

(kWh)

Total

annual

sales

(GWh)

2010 16 420 16 420 (26.0) 390 390 (9.0) 0.430

2011 55 160 38 470 (27.0) 9 420 9 030 (9.5) 1.132

2012 112 940 57 780 (28.0) 69 700 60 280 (10.0) 2.221

2013 226 780 113 840 30.8 161 290 91 590 10.5 4.468

2014 420 330 193 550 29.1 295 060 133 770 10.6 7.050

2015 745 610 325 280 31.7 517 000 221 940 12.0 12.97

2016 1 208 900 463 290 40.4 805 320 288 320 12.5 22.32

Table S3: Deriving total EV battery capacity annual sales from cumulative BEV

and PHEV fleets [30] and average battery capacities [33], values in 2010-2012

(in parentheses) extrapolated back from 2013-2016.
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S2. Mathematical Formulation of Price-Supply Curve

The price-supply curve for second-life batteries is approximated as an expo-

nential:

Ps(Q) = (Crecyc + Crefurb) +As(e
(αsQ) − 1) (8)

where the price Ps ($/kWh) is a function of quantity Q (kWh), and the730

dependence on t is only implied above;

As(t) = 1
ne

(Cbatt(t)− (Crecyc(t) + Crefurb(t))),

αs(t) = ln (1+ne)
fEV (t) ,

the new battery cost is taken to decrease exponentially from C0 in 2010 (when

t = 0) to a minimum of C∞, at rate β: [17]735

Cbatt(t) = C∞ + (C0 − C∞)e(−βt), (9)

and fEV (t) is the production rate of used EV batteries as found in Section

3.1.3. Inserting these expressions into (8), one finds

Ps(0, t) = Crecyc(t) + Crefurb(t), as required to have Ps(Q, t) > (Crecyc(t) +

Crefurb(t)) for all Q (as otherwise recycling would be preferable to second-life

sale), and740

Ps(fEV (t), t) = Cbatt(t), as required to have Ps(Q, t) < Cbatt(t) for all Q, and

Q ≤ fEV (t), that is, the quantity sold cannot exceed the supply of used EV

batteries in year t.

S3. Mathematical Formulation of Price-Demand Curve

The niche-market and mass-market segments of the price-demand curve, (10)745

and (11) respectively, are joined by a quadratic function to smooth the joint.

Pd(niche)(Q) = ad1Q+ bd1 0 ≤ Q < Q∗ (10)

Pd(mass)(Q) = ad2Q+ bd2 Q∗ < Q ≤ Nbatt. (11)
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The constraint that Pd(Q, t) can never exceed Cbatt(t), leads to: bd1(t) =

Cbatt(t).

The other constraints are that Pd(mass)(Nbatt(t), t) = 0, that is, the total

possible demand Nbatt(t) that year can only be reached when price goes to zero,750

and Pd(niche)(Q) and Pd(mass)(Q) join at the point (Q∗, P ∗d ). This leads to:

ad1 =

−
(
Cbatt(t)−P∗

d (t)
Q∗(t)

)
Cbatt(t) > P ∗d (t)

0 Cbatt(t) ≤ P ∗d (t)

,

ad2 =

−
(

P∗
d (t)

Nbatt(t)−Q∗(t)

)
Cbatt(t) > P ∗d (t)

−
(

Cbatt(t)
Nbatt(t)−Q∗(t)

)
Cbatt(t) ≤ P ∗d (t)

,

bd2 =


(
Nbatt(t)P

∗
d (t)

Nbatt(t)−Q∗(t)

)
Cbatt(t) > P ∗d (t)(

Nbatt(t)Cbatt(t)
Nbatt(t)−Q∗(t)

)
Cbatt(t) ≤ P ∗d (t)

.

The quadratic function smoothing the joint around (Q∗, P ∗d ), spans the do-

main Q ∈ [Qa, Qb], where:

Qa =

Q
∗ − 15

100fEV Q∗ > 15
100fEV

0 Q∗ ≤ 15
100fEV

,

Qa =

Q
∗ + 15

100fEV Q∗ + 15
100fEV < fEV

fEV Q∗ + 15
100fEV ≥ fEV

.

The factor 15
100 is chosen to ensure a joint that is smooth but the two linear

segments are still distinct. To determine the coefficients a, b, c of the quadratic755

polynomial

Pjoint(Q) = aQ2 + bQ+ c Qa ≤ Q ≤ Qb,

the following conditions are imposed:
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• Pjoint(Qa) = Pd(niche)(Qa)

• Pjoint(Qb) = Pd(mass)(Qb)

• dPjoint

dQ |Qb
= ad2760

In other words, the quadratic section joins continuously to each linear segment,

at Qa and Qb, and the gradient is continuous at Qb. There are not enough

degrees of freedom (only three coefficients determine a quadratic polynomial)

to ensure continuous gradient at Qa as well. We rejected the option of a cubic

function to smooth the joint because this can lead to inflection points, when the765

price-demand curve should be monotonically decreasing.

To evaluate the coefficients a, b, c, a matrix equation is formed from the

constraints, and solved:


ya

yb

ad2

 =


Q2
a Qa 1

Q2
b Qb 1

2Qb 1 0



a

b

c


where ya = Pd(niche)(Qa), yb = Pd(mass)(Qb), to find:

a =
(

ya−yb
Q2

a−2∗Qa∗Qb+Q2
b

)
−
(

ad2
Qa−Qb

)
770

b =
(

2Qb(yb−ya)
Q2

a−2∗Qa∗Qb+Q2
b

)
+ ad2

(
Qa+Qb

Qa−Qb

)
c =

(
Q2

bya+Qayb(Qa−2Qb)

Q2
a−2∗Qa∗Qb+Q2

b

)
− ad2

(
QaQb

Qa−Qb

)
.

S4. EV Uptake Scenario Parameters

Tabulated below in Table S4 are parameters to generate fEV (t) under sce-

narios L1, L2, L3, M, H, as used in Section 4.2. L1, M and H are Low, Medium,775

High. L2 and L3 are additional scenarios in between Low and Medium, to

show the trend more clearly in the Results. The EV penetration percentages

are rough values derived from summing all the first-time sales
∑
gEV (t) and

assuming average battery capacity 40 kWh and vehicle fleet of 2 billion.
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A (kWh) p q EV penetration

L1 6.05× 108 0.0112 0.6039 0.75 %

L2 4.00× 109 1.87× 10−4 0.5696 5 %

L3 1.00× 1010 7.56× 10−5 0.5661 12.5 %

M 3.60× 1010 2.11× 10−5 0.5645 45 %

H 8.00× 1010 9.50× 10−6 0.5641 100 %

Table S4: Bass model parameters for various EV uptake scenarios, and corre-

sponding eventual penetration of EVs into the vehicle fleet.

780

S5. Additional Results

See the discussion in Section 4.6. Changing the niche market size to the

larger value of Q∗ = 167 GWh (again, static) only causes the second-life price

to be higher until around 2030, as by that time the new battery cost has de-

clined enough that there ceases to be a distinction between niche market and785

mass market (see Fig. S18). That is, when Cbatt → P ∗d , the two line segments

constituting the price-demand curve converge on the same gradient, and there-

after the curve switches from concave to convex. The resultant quantity sold

is larger by roughly 100 GWh, suggesting that an increase in the niche market

size translates to the same order of magnitude increase in second-life sales (see790

Fig. S19).

A run was conducted with maximum mass market price P ∗d at the lower

values of $70/kWh and $60/kWh (each static), as may happen if home battery

suppliers incur more overheads in addition to the batteries themselves. These

made almost imperceptible difference to the second-life price, and only slowed795

down the increasing part of Qeqm(t) before it converged to Qeqm(t) for the

default scenario (see Fig. S19).
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Figure S18: Average second-life price, shown in comparison to the new battery cost, and

sum of refurbishment cost and recycling net credit, for different niche-market sizes Q∗ and

mass-market maximum prices P ∗
d . Default, P ∗

d = $60/kWh, and P ∗
d = $70/kWh, are almost

indistinguishable from each other.
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Figure S19: Quantity sold into second-life applications, shown in comparison to the total used

EV batteries produced, for different niche-market sizes Q∗ and mass-market maximum prices

P ∗
d .
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