

PRIM

Terrer Terrer

Partners News L R

Tools & Denn

Engagement

Our vision is to enable the sustainability of nany-core scaling by preventing the incontrolled increase in energy consumption and papeliability through a step change in Releasing methods and cross-layer

RUN-TIME POWER MANAGEMENT OF MULTI- AND MANY-CORE SYSTEMS

Dr Geoff Merrett

Adaptive Many-Core Architectures and Systems workshop 13-15 June 2018 | York, UK

THE PRIME PROJECT

"Enable the sustainability of many-core scaling by preventing the uncontrolled increase in energy consumption and unreliability through a step change in holistic design methods and cross-layer system optimisation."

www.prime-project.org

WE ARE MANY-CORE

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

MANY-CORE PLATFORMS

Nvidia Jetson TK1 - Quad core CPU + 192 cores GPU

Parallella - Dual core CPU + FPGA + 16 cores NoC

www.prime-project.org

Southampton

RUNTIME POWER MANAGEMENT

Maeda-Nunez, Luis Alfonso, Anup K. Das, Rishad A. Shafik, Geoff V. Merrett, and Bashir Al-Hashimi. "*PoGo: an application-specific adaptive energy minimisation approach for embedded systems.*" HiPEAC Workshop on Energy Efficiency with Heterogenous Computing, 2015

LEARNING OPTIMAL DVFS CHOICES

Reinforcement Learning

- Observes the current system state
- Selects an action (V-F pairs)
- Changes the state (workload)
- Leads to a payoff (reward/penalty)

	ACTIONS (Power Modes)						
STATES (Tasks)	PO	P0 P1 P2 P3					
WD0	128	128	128	128			
WD1	128	128	128	128			
WD2	128	128	128	128			
WD3	128	128	128	128			
WD4	128	128	128	128			
WD5	128	128	128	128			

Shafik, Rishad Ahmed, Das, Anup K., Maeda-Nunez, Luis Alfonso, Yang, Sheng, Merrett, Geoff V. and Al-Hashimi, Bashir (2015) *Learning transferbased adaptive energy minimization in embedded systems*. **IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems**, 1-14.

MANAGING THERMAL (LIFETIME) RELIABILITY

Application	Data Set	Averag	e Temperature (Celcius)	Peak Temperature (Celcius)			
Application		Linux	Ge et al.	Proposed	Linux	Ge et al.	Proposed	
	set 1	69.2	52.6	38.6	71.5	63	60	
tachyon	set 2	50.5	44.5	43.8	57.3	56.3	52	
	set 3	50.8	44.7	41.6	57.8	54.5	48.8	
	clip 1	36	34	34.2	42.7	41.3	39	
mpeg2_dec	clip 2	35.6	34.4	34.2	42.3	42	39.3	
	clip 3	34.3	34.4	34	43	39.7	44.3	

Average MTTF improvements: 5x (thermal aging); 4x (thermal cycling)

Das, Anup, Al-Hashimi, Bashir and Merrett, Geoff (2015) Adaptive and hierarchical run-time manager for energy-aware thermal management of embedded systems. ACM Transactions on Embedded Computing Systems, 1-25.

OVERVIEW

Applications

 From single > sequential > concurrent execution

Offline Characterisation

• Can we improve RTM through offline characterisation?

Towards Many-Core

• How do RTM approaches scale with number of cores?

Novel Platforms

• Can our RTM approaches be applied to novel platforms?

RTMs and Application Workloads

From single > sequential > concurrent execution

QUALITY OF EXPERIENCE

- User cares about **observable performance**
 - Responsiveness, battery life, consistency, uninterrupted service
 - Doesn't really care about FLOPS, FPS, bandwidth, latency (QoS)
- Therefore, optimise for **quality of user experience** (QoE)
 - "good-enough" performance
 - Minimum energy usage

Bischoff, Alexander S. (2016) User-experience-aware system optimisation for mobile systems, University of Southampton, Electronics and Computer Science, Doctoral Thesis, 199pp.

Bischoff S, Hansson A and Al-Hashimi BM. *Applying of Quality of Experience to System Optimisation*. International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), Germany, 2013.

QUALITY OF EXPERIENCE

Example Scenario

QUALITY OF EXPERIENCE

Workload Classification

Applications	Type of QoE	
Audio	Throughput	
Video	Throughput	
Application Loading	Latency	
Web Page Loading	Latency	
Downloading a File	Latency	~
3D Gaming	Throughput	\succ
Word Processing	Latency	
3D Gaming Word Processing	Throughput Latency	2

- Types of QoE:
 - Latency sensitive complete workload in short time period
 - Throughput sensitive complete at minimum rate

Bischoff S, Hansson A and Al-Hashimi BM. *Applying of Quality of Experience to System Optimisation*. International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), Germany, 2013.

QOE CHARACTERISTICS 1 1 1 QoE Latency QoE QoE **Sensitive** 0.5 QoE_{t_x} 0.5 Inverse exponential $\frac{QoE_{t_x}}{0}$ QoE_{t_x} 0 t_0 to t_{r} to tr tr Time Time Time 1 0.9^{1} 0.99 Throughput **Sensitive** QoE QoE QoE 0.5 0.5 0.5 Sigmoid function 0.1 0 0 R_{target} $m R_{target}$ mm Rtarget Rate Rate Rate 14

0.9

• WiFi • 4G

• 3G

0.8

TUNING DPM/RTM PARAMETERS

- Tune governor parameters for the executing (interactive) workload
- Account for variability in access times and user input
- Prediction/detection dependent
- Energy saving/QoE improvement compared to '*default*', e.g.

consumption

energy

0.65

0.6

0.55

0.5 - 0.45

- default

offline

network

predict predict+network

detect

- detect+network

- 13% energy saving
- 27% QoE improvement
- 9% energy + 15% QoE

Exynos-5422 A15/A7, Android 6.0 Google Chrome browser workloads Touch input emulation Network throttling (UL, DL, RTT latency)

0.5

0.55

0.6

0.65

consumption

Normalized energy

0.7

0.9

0.8

0.7

0.6

0.5

0.5

0.6

0.7

EXECUTING MULTIPLE APPLICATIONS

- Workload and performance variation due to:
 - Changes within an application
 - Changing applications (sequential execution)

Overlapping applications (concurrent execution)

Shafik, Rishad, Das, Anup, Maeda-Nunez, Luis, Yang, Sheng, Merrett, Geoff and Al-Hashimi, Bashir (2015) *Learning transfer-based adaptive energy minimization in embedded systems*. **IEEE TCAD**.

DETECTING WORKLOAD CHANGES

- Density ratio-based statistical divergence between overlapping sliding windows of CPU cycles
- Use this information to clear learning table (i.e. start afresh)

Change

TRANSFERING LEARNING

- Detect workload changes
- Transfer knowledge where possible
- Learn again fresh when not

(d)

RTM FOR CONCURRENT EXECUTION

- Approaches so far instrument a single application executing at a time
- How can we manage multiple applications executing concurrently?

Reddy, Basireddy Karunakar, Singh, Amit, Biswas, Dwaipayan, Merrett, Geoff and Al-Hashimi, Bashir (2017) Inter-cluster thread-to-core mapping and DVFS on heterogeneous multi-cores IEEE Transactions on Multiscale Computing Systems, pp. 1-14.

Online vs Offline

Can we improve RTM through offline characterisation?

RTM FOR CONCURRENT EXECUTION

MRPI (Memory Reads Per Instruction)

Reddy, Basireddy Karunakar, Singh, Amit, Biswas, Dwaipayan, Merrett, Geoff and Al-Hashimi, Bashir (2017) Inter-cluster thread-to-core mapping and DVFS on heterogeneous multi-cores IEEE Transactions on Multiscale Computing Systems, pp. 1-14.

Run-time changes in:

Performance requirements

MODEL-BASED RTM: HETEROGENEITY

Heterogeneous Platforms

Yang, Sheng, Shafik, Rishad Ahmed, Merrett, Geoff V., Stott, Edward, Levine, Joshua, Davis, James and Al-Hashimi, Bashir (2015) *Adaptive energy minimization of embedded heterogeneous system using regression-based learning*. **PATMOS 2015**, Salvador, BR, 01 - 04 Sep 2015. 8pp.

MODEL-BASED RTM: HETEROGENEITY

Heterogeneous Platforms

Yang, Sheng, Shafik, Rishad Ahmed, Merrett, Geoff V., Stott, Edward, Levine, Joshua, Davis, James and Al-Hashimi, Bashir (2015) *Adaptive energy minimization of embedded heterogeneous system using regression-based learning*. **PATMOS 2015**, Salvador, BR, 01 - 04 Sep 2015. 8pp.

Towards Many-Core

How do RTM approaches scale with number of cores?

MODEL-BASED RTM

Stereo Matching Application: <u>http://github.com/PRiME-project/PRiMEStereoMatch</u>

Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) *Run-time performance and power optimization of parallel disparity estimation on many-core platforms* **ACM Transactions on Embedded Computing Systems**

MODEL-BASED RTM

Model Building

Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) *Run-time performance and power optimization of parallel disparity estimation on many-core platforms* **ACM Transactions on Embedded Computing Systems**

MODEL-BASED RTM

Runtime Management

Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) *Run-time performance and power optimization of parallel disparity estimation on many-core platforms* **ACM Transactions on Embedded Computing Systems**

ENERGY RTM ON HPC SYSTEMS

- Applications targeted for HPC are usually multi-threaded
- Modern HPC often based on Non-Uniform Memory Access (NUMA) architecture
- Our Approach:
 - Platform characterized offline
 - Workload estimated based on memory-intensity, thread synchronization contention, NUMA latency
 - V-f determined using binning, while accounting for contention due to concurrent execution An

Illustration of various steps in the proposed approach

An example of V-f setting selection using binning-based approach

Basireddy, Karunakar Reddy, Wachter, Eduardo W., Al-Hashimi, Bashir M. and Merrett, Geoff V. (2018) *Workload-aware runtime energy* management for HPC systems. In Int'l Workshop Optimization of Energy Efficient HPC & Distributed Systems (OPTIM'18). (In Press)

ENERGY RTM ON HPC SYSTEMS

- Xeon E5-2630 (12 cores, 24 threads) and Xeon Phi 7620P (61 cores, 244 threads); NAS and Rodinia benchmarks
- Proposed (Prop) approach achieves energy savings of up to 81% (Xeon) and 61% (Phi) compared to Linux's governors
- Outperforms Sundrival *et al.* by 10% in energy efficiency and 3.7% in performance

Basireddy, Karunakar Reddy, Wachter, Eduardo W., Al-Hashimi, Bashir M. and Merrett, Geoff V. (2018) *Workload-aware runtime energy* management for HPC systems. In Int'l Workshop Optimization of Energy Efficient HPC & Distributed Systems (OPTIM'18). (In Press)

RTM of Novel Platforms

Can our RTM approaches be applied to novel platforms?

RTM ON SPINNAKER

- Implemented 4 RTMs
 - User (G1): user-defined static f
 - On-demand (G2): Highest f when CPU load is high, lowest when it's low
 - Conservative (G3): Increase or decrease
 f by fixed step according to load.
 - Proposed (G4): As G3, but using a nonlinear f step

		Governor						
App.	Res.	G1	G2	G3	G4			
	vga	955	976	976	975			
A1	svga	1490	1522	1522	1523			
	xga	2444	2498	2498	2498			
	vga	2670	3080	3080	3080			
A2	svga	4408	4737	4737	4737			
	xga	7114	7342	7342	7342			
1012	vga	437	454	454	451			
A3	svga	674	696	696	697			
	xga	1111	1150	1150	1150			
	in the second se		and the local sectors in the second	and the state of the second state of the secon	and the second se			

		Governor						
App.	Res.	G1	G2	G3	G4			
	vga	2.76	1.98	2.11	2.27			
A1	svga	6.40	5.06	5.05	5.12			
	xga	17.79	13.74	13.82	13.74			
A2	vga	8.24	6.84	7.16	7.06			
	svga	22.20	16.46	17.02	16.13			
	xga	58.72	39.29	40.95	39.29			
A3	vga	9.41	7.16	7.17	6.62			
	svga	17.07	13.01	13.08	11.90			
	xga	48.30	37.19	36.87	33.92			

Timing (ms)

Energy Consumption (J)

Indar Sugiarto, Stephen Furber, Delong Shang, Amit Singh, Bassem Ouni, Geoff Merrett, and Bashir Al-Hashimi, (2018) Software-defined PMC for runtime power management of a many-core neuromorphic platform. In 12th Int'l Conf. Computer Engineering and Systems (ICCES 2017).

Keynote 5 + S2.3 Thursday 11:10

RTM ON THE GRACEFUL PLATFORM

- Opportunity for Hierarchical RTM
 - Local RTM (DVFS, local mapping etc) on each node
 - Higher level 'strategic' RTM (mapping within cluster, migration, load balancing etc) in clusters
 - Potential for a third level negotiating between clusters

• See our (early) demonstration of this

Poster and Demo Session Thursday 14:30

RTM ON THE GRACEFUL PLATFORM

Example Application

- Face/Object Detection/Classification
- Uses OpenCV classifiers
 - Detect faces/animals/objects
 - Classify gender
 - Estimate age

OPEN SOURCE TOOLS

POWMON: STABLE POWER MODELLING

www.powmon.ecs.soton.ac.uk

Our stable approach achieves a low average error and narrow error distribution compared to existing techniques.

[a] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin, "Power-performance modeling on asymmetric multi-cores," CASES '13.
[b] M. Walker et al., "Run-time power estimation for mobile and embedded asymmetric multi-core cpus," HIPEAC Workshop Energy Efficiency with Hetero. Comp. 2015
[c] S. K. Rethinagiri et al., "System-level power estimation tool for embedded processor based platforms," RAPIDO '14. New York, 2014.
[d], [e] R. Rodrigues et al, "A study on the use of performance counters to estimate power in microprocessors," IEEE TCAS II, vol. 60, no. 12, pp. 882–886, Dec 2013.

M. J. Walker *et al.*, "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

S3.1 Friday 09:50

6. Uses

OS Run-time

management

gem5 add-on

Reference for research

POWMON: METHODOLOGY

39 workloads used: MiBench,

 R^2 : > 0.99

Error: 2.8 – 3.7%

٠

•

M. J. Walker et al., "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

Southampton

OWMON: METHODOLOGY

Increasing RTM Usability/Comparative Evaluation

Plat.	Const.	Space	T	ype		For	No
		disc	GOVI	ERNER	A7 cluster		
		disc	GOVERNER		A15 cluster		
		disc	FREQ		A7 cluster		1
	1	disc	FREO		A	15 cluster	1
	KNOD	disc	FRE	Q_EN	G	PU DVFS	1
		disc	FREQ			GPU	1
G 33		disc	PMC_CTRL			A7 cores	16
k-bi		disc	PMC_	CTRL	ł	A15 cores	24
Odro		cont	P	OW	Clusters,	RAM, GPU, SoC	5
0		cont	TEMP		1	A15 cores	4
		cont	TEMP		GPU		1
	mon	disc	CYCLE		A7 cores A15 cores		4
		disc					4
		disc	PMC		A7 cores		16
		disc	PMC		A15 cores		24
	knob	cont	VOLT VOLT		A9 cluster, peripherals		4
e V	KIIOD	cont			FPGA, peripherals		3
clon		cont	P	OW	A9 clu	ster, peripherals	5
S.	mon	cont	P	OW	FPG.	A, peripherals	4
		cont	P	OW		SoC	1
Арр	lication	Nai	ne	Const.	Space	Allowed/target v	alues
		Iterat	ions	knob	disc	$\mathbb{N} \in [1,\infty)$	
Jacobi		Data	type	knob	disc	{float, doub.	le}
		Device type Throughput		knob	disc	{CPU, GPU/FPC	JA}
				mon	cont $\mathbb{R} \in [10, \infty]$		
		Err	or	mon	cont	$\mathbb{R} \in (-\infty, 1e^{-1})$	¹²]
Video	decoder	Throug	ghput	mon	cont	$\mathbb{R} \in [25,\infty)$	
11/1-	aletena	Thre	ads	knob	disc	$\mathbb{N} \in [1,\infty)$	
Whetstone		Throug	ghput	mon	cont	$\mathbb{R} \in [2.5,\infty)$)

S2.2 Thursday 10:15

CONCLUSIONS

Runtime Power Management

- Single > multiple > concurrent applications
- Online vs offline+online approaches
- >> Number of cores
- COTS > Novel multi-/many-core platforms
- Homogeneous vs Heterogeneous platforms

Tools and Support <u>www.prime-project.org</u>

- PowMon power estimation
 www.powmon.ecs.soton.ac.uk
 www.gemstone.ecs.soton.ac.uk
- PRiME RTM Framework
 <u>github.com/PRiME-project/PRiME-Framework</u>
- PRiMEStereoMatch application
 <u>github.com/PRiME-project/PRiMEStereoMatch</u>

Any Questions?

Southampton

Dr Geoff V Merrett Associate Professor | Head of Centre

Centre for IoT and Pervasive Systems Tel: +44 (0)23 8059 2775 Email: gvm@ecs.soton.ac.uk | www.geoffmerrett.co.uk Highfield Campus, Southampton, SO17 1BJ UK