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Abstract

In this work electrical resistance measurements were utilized as a mean to assess the dispersion of
Graphene Oxide nanoinclusions into CFRP laminates. This approach involves resistance
measurements in the through-thickness and transverse directions of the laminates. Measurements were
conducted in CFRP laminates containing Graphene Oxide dispersed into the epoxy matrix with filler
contents of 1wt% and 5wt%. The morphology of the samples was examined by means of optical
microscopy and scanning electron microscopy. The obtained results suggest that at low filler contents,
1wt%, the dispersion is uniform into the bulk of the sample, while at higher filler loadings, 5wt%,
there are indications of non-uniformity due to the formation of areas with higher filler concentration.

1. Introduction

Carbon Fiber Reinforced Polymer (CFRP) composites are being increasingly used in load carrying
applications were low weight is required. Despite their excellent mechanical properties, their electrical
and thermal anisotropy can introduce challenging problems when CFRPs are exposed to lightning and
thermal loads [1-3]. Specifically, the lower electrical and thermal conductivities in the through-
thickness and transverse directions, compared to the properties along the fibre direction, pose
problems.

The mitigation of the effects of this anisotropic behaviour upon the electric and thermal responses has
been focus of scientific research over recent years, and several approaches have been proposed as
possible solutions to address this matter [4]. Altering the electrical and thermal properties of the
polymer matrix of CFRP laminates has been proven to be an effective method since it can affect the
bulk properties of the laminate significantly. This is achieved by the addition of a conducting filler into
the resin prior to the manufacturing of the laminate. Considering that resin rich layers exist between
the individual laminae, thus hindering heat dissipation and current flow, improving the properties of
the polymer matrix will affect the interlaminar region polymer thus enhancing the transverse
properties of the laminate. Several conducting fillers have been used in the past; including carbon-
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based fillers, e.g. Graphene Nano platelets (GNPs), Carbon nanotubes (CNTs), Carbon black (CB) and
Carbon Nanofibres (CNFs), as well as metallic inclusions, like e.g. Silver nanoparticles (SNPs), Silver
nanowires (SNWs)[5-8].

From a composites manufacturing point of view, improving the properties of polymer resin systems, in
this case epoxies, depends on the successful dispersion of the reinforcing phase into the matrix. For the
case of nanoreinforced CFRP the process is somewhat more complex. The majority of the work
conducted in CFRP reinforced with some type of a conducting filler dispersed into the resin has
involved hand lay-up processes or alterations of prepreg for the manufacturing of the samples [2, 5, 6].
Only recently infusion processes have been reported but not concerning bulk infusion of a laminate
with a modified matrix. A major concern in these processes is whether the nanofiller will be
homogenously distributed into the laminate’s bulk or it will be “filtered” by the fibres close to the
resin inlet.

Graphene Oxide (GO) is a 2D material with a similar structure to Graphene. It is produced by the
oxidation of graphite, hence the produced sheets are covered with oxygen. In addition functional
groups such as hydroxyl and epoxides are grafted on the basal plane. Finally, carbonyl and carboxyl
groups can be found grafted on the edges of the graphene sheets. These groups are responsible for a
highly hydrophilic behaviour that makes graphene oxide highly dispersible in water [9]. This
behaviour makes GO easily dispersible to epoxies [10].

In this work, as-received GO was dispersed into an epoxy resin system prior to the infusion process.
To assess the quality of the infusion and the dispersion/distribution of the nanoinclusions into the
laminate’s bulk electrical resistance measurements were conducted in the through-thickness and
transverse directions.

2. Experimental methodology
2.1. Materials

A two-component epoxy system was utilised, kindly supplied by BASF. The system was consisting of
the Baxxores™ 5300 epoxy resin and the Baxxodur™ EC 5310 curing agent. The components were
mixed by weight at a ratio of 100/20 according to the specifications of the manufacturer. The
Graphene Oxide (GO) (edge-oxidized) was kindly provided by Garmor Inc, USA, consisting of
approximately 10 graphene layers and a nominal particle size diameter of 500nm. Finally, a
unidirectional non-crimp carbon fabric utilising Zoltek Panex 35 50K carbon fibres and an areal
weight of 882 g/m? was used as reinforcement.

2.2 Manufacturing of nanoreinforced CFRP laminates

The manufacturing process of the nanoreinforced CFRP can be divided into two different stages. The
first one includes the dispersion of GO into the epoxy resin and the second the actual infusion process
of the laminates. The dispersion of GO into the epoxy was achieved by means of high speed mixing,
Speedmixer™ DAC 150.1 FV. This apparatus operates in way of a dual asymmetric centrifuge that
leads to introduction of high shear forces in the mixture, reducing the formation of agglomerates and
contributing to homogenous mixtures. GO/epoxy nanocomposite mixtures were prepared in filler
contents of 1wt% and 5wt%. GO nanoparticles were added to the epoxy in the specified quantities
followed by high speed mixing for 10 min at ambient temperature. After the mixing the curing agent
was added and the mixture was hand stirred for 5 min followed by degassing in a vacuum oven at
ambient temperature for 10 min. The preparation of the GO/modified CFRP was achieved by means of
Vacuum Assisted Resin Transfer Molding (VARTM). Five layers of dry carbon fabric were stacked in
a steel plate. To obtain identical surface finish to both sides of the laminate, flow media were placed
on both sides of the fabric stack, mold and upper side. After the infusion process the laminates were
cured for 6h at 70°C. No noticeable influence on the viscosity was observed after the mixing and
during the infusion. The fibre volume fraction of the manufactured laminates was approximately 57%.
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Table 1. Composition of the manufactured GO/CFRP samples

Vs Veo Vi

Sample/wt% %) (%) (%)

Neat 57 0 43
1wt% 57 0.015 42.985
Swit% 57 0.075  42.925

2.3 Experimental methods
2.3.1 Electrical contact preparation

Prior to the measurements the samples surfaces that were intended to act as electrodes were initially
polished with Silicon Carbide sandpaper, 600 and 1000 grit, to remove the excess polymer from the
surface and expose the fibres to achieve direct electrical contact. To mitigate the influence of surface
roughness and to promote ohmic contact across the electrode area, an epoxy based adhesive containing
silver particles, supplied by RS Components, with a volume conductivity of 10® S/cm was employed.
A thin layer of the adhesive was applied to the intended electrode surface followed by curing at
ambient temperature for 24h.

2.3.2 Electrical resistance measurements- Assessing the dispersion

The DC electrical resistance in the through-thickness and transverse directions of the CFRP samples
was measured by means of a two-probe setup with the use of TTi BS-407 milli/micro-ohmmeter. For
the measurements in the through-thickness direction disk shaped, 50mm in diameter, electrodes were
utilized, a guard-ring was featured in the voltage sensing electrode. For measurements in the
transverse direction a PTFE test cell was manufactured. The test cell featured a screw actuator to
control the amount of applied pressure, 5 MPa, in the electrical contact area to provide consistency
over the measurements. The electric current was injected via copper foils, with a thickness of 35um,
which were bonded to the test fixture. All the measurements were conducted at a temperature of 25°C
and 55% RH. To assess the dispersion electrical resistance measurements were done in the though-
thickness and transverse directions in samples that were cut from the manufactured plate as shown in
Figure 1. It is known that electric current conduction in the through-thickness direction is affected by
the polymer located in the interlaminar region, resin-rich layers between the laminae act as insulating
barriers. Thus, resistance measurements in the through-thickness direction are more sensitive to detect
the influence of the addition of a conductive inclusion. Assuming homogenous distribution of the filler
along the bulk of the laminate, including the interlaminar region, the resistance should exhibit similar
values both in the resin inlet side and the vacuum outlet. Deviations between measurements in these
locations can be attributed to non-uniform particle distribution, possible creation of areas with higher
filler concentration due to filtration of the inclusions from the fibres.

Initially the transverse resistance of the manufactured plate was measured before it was cut in half
with the use of water cooled diamond disk saw. In this way two samples for transverse measurements
were formed, samples TR-1 and TR-2, to detect possible variations of the dispersion along the resin
flow. After this step the samples TT-1 and TT-2 were waterjet cut from the CFRP and measurements
were conducted. To provide corrections for parameters such as sample dimensions, the results will be
presented in terms of apparent electrical conductivity.

2.3.3 Morphological characterization

The morphology of the manufactured samples was examined by means of optical microscopy,
Olympus BX51, and Scanning Electron Microscopy (SEM), Carl Zeiss EVO 50.
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Figure 1. Schematic of the position the samples were cut off, measurement areas (TR: transverse, TT:
through-thickness).

3. Results
3.1 Sample morphology

From both the optical microscopy and SEM images the existence of GO inclusions was evident, see
Figure 2. While it was possible to detect the GO inclusions with the use of an optical microscope,
SEM images were to determine their morphology. From the SEM image below, Figure 2 (right), it can
be observed that the shape of the inclusions appears to be flake-like and penny shaped, with the
diameter significantly larger than the thickness. The observed dimensions seem to be in good
agreement with the ones stated from the supplier of the filler.

Figure 2. Optical microscopy micrograph (left) and SEM image (right) from the sample 5wt% GO
into the epoxy matrix.

3.2 Electrical characterization
Table 2 depicts the results obtained from the characterization of the transverse direction electrical

conductivity. It is seen that the addition of GO does not affect the conduction mechanism in this
direction. By comparing the results for the individual samples small variations can be observed. In the
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case of the sample containing 5wt% GO, the conductivity appears to be slightly increased compared to
the rest of the examined systems. This can be associated with the formation of conducting paths
between the carbon fibres, as it can be seen in SEM images, Figure 2. By comparing the values for the
entire sample with the ones obtained from the two smaller parts of the sample, no significant
difference can be identified. This is expected due to the fact that the transverse electrical conductivity
is governed by the fibre to fibre contact points and considering that the fibre volume fraction is well
above percolation.

Table 2. Transverse direction results

Entire

TR-1 TR-2
Sample/wt% sample
(S/cm) (S/cm) (S/cm)
Neat 5.6x10* 5.68x10"  5.62x10*
1wt% 548x101  553x10!  5.5x10?

Swit% 5.78x10*! 5.94x101  5.82x10*

The results from the characterization of the through-thickness direction are listed in Table 3. The
influence of GO particles appears to be more significant in this direction, i.e. increased conductivity
values are observed with higher weight fractions of GO. For the neat system the values exhibit almost
identical values, with only a slight variation. The sample containing 1wt% GO exhibits a similar
behaviour with a minor discrepancy, with a slightly higher conductivity value close to the resin inlet
side compared to the vacuum side. The addition of higher filler content, 5wt%, provides further
increase in the through-thickness electrical conductivity. Similarly to the sample containing 1wt% a
variation can be observed for the 5wt% GO sample. Although the variation cannot be considered high,
it is assumed that close to the resin inlet side the concentration of GO particles is higher than on the
vacuum side.

Table 3. Through-thickness direction results

TT-1 TT-2
0,
Sample/wt% (Slem) (Slem)
Neat 5.4310% 5.51x102

1wt% 6.08x102  5.90x1072
Swit% 7.86x102  7.08x1072

Conclusions

A new method to assess the dispersion of conducting nanoinclusions has been presented. By
conducting electrical resistance measurements in the through-thickness and transverse directions of the
nanoreinforced laminate information about the distribution of the filler can be extracted. The results in
the through-thickness direction provided a clearer insight since the conduction mechanism in this
direction is affected by the resin rich layers in the interlaminar regions. However, the characterization
of the transverse direction did not provide substantial information about the dispersion since fibre
contact point dominate the conduction process. While the distribution appeared to be homogenous for
low filler contents, some aggregation for higher filler contents leads to non-uniform particle
distribution, Figure 3. The technique described although simple has been proven to be effective for
probing particle distributions, and shows potential for quality control of nanoreinforced laminates.

Evangelos C. Senis, Igor O. Golosnoy, Janice M. Dulieu-Barton and Ole T. Thomsen



ECCM18 - 18 European Conference on Composite Materials
Athens, Greece, 24-28t June 2018 6

Vacuum outlet

Carbon fibres Epoxy resin

Area with high filler concentration-
lower resistance

sin inlet

GO inclusions

y

Resin flow during
infusion

«—

Figure 3. Non-uniform inclusion dispersion
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