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ABSTRACT
Accreting neutron stars (NS) can exhibit high frequency modulations in their light curves
during thermonuclear X-ray bursts, known as burst oscillations. The frequencies can be offset
from the spin frequency of the NS by several Hz, and can drift by 1–3 Hz. One possible
explanation is a mode in the bursting ocean, the frequency of which would decrease (in the
rotating frame) as the burst cools, hence explaining the drifts. Most burst oscillations have
been observed during the H/He-triggered bursts; however there has been one observation of
oscillations during a superburst; hours long Type I X-ray bursts caused by unstable carbon
burning deeper in the ocean. This paper calculates the frequency evolution of an oceanic r
mode during a superburst. The rotating frame frequency varies during the burst from 4–14 Hz
and is sensitive to the background parameters, in particular the temperature of the ocean
and ignition depth. This calculation is compared to the superburst oscillations observed on
4U-1636-536. The predicted mode frequencies (∼10 Hz) would require a spin frequency of
∼592 Hz to match observations; 6 Hz higher than the spin inferred from an oceanic r-mode
model for the H/He-triggered burst oscillations. This model also overpredicts the frequency
drift during the superburst by 90 per cent.
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1 IN T RO D U C T I O N

Buoyant modes in rotating oceans are a topic in fluid dynamics with
a long history and a wide range of application (Pedlosky 1987).
Interesting in and of their own right, they also have the potential to
explain phenomena that have puzzled neutron star (NS) astronomers
for nearly two decades.

Accreting NS develops thin surface oceans of hydrogen, helium,
and heavier elements. Heat is generated by accretion and thermonu-
clear burning which can be unstable and explosive, resulting in type
I (thermonuclear) X-ray bursts. Most of these bursts are caused
by unstable H/He burning (for a review, see Bildsten 1998), and
last seconds to minutes. Timing analysis of these bursts reveals
periodic frequencies which are either at, or very close to, the NS
spin frequency (known independently for some stars; for a review,
see Watts 2012). These burst oscillations (Strohmayer et al. 1996)
must arise from some kind of surface brightness pattern; however,

�
E-mail: frnchambers@uva.nl

the mechanism responsible for these oscillations has yet to be
identified.

One possibility is the development of ocean modes. These modes
can give rise to large-scale patterns and the variety of different fam-
ilies (driven by different restoring forces) can lead to a range of
observed frequencies. Moreover, ocean modes could plausibly be
excited by bursts which is why Heyl (2004) suggested them as a
potential explanation for burst oscillations. Heyl used some simple
arguments, based on observed properties, to constrain the class of
modes that could potentially fit the data. The key constraints were:
(1) the rotating frame frequency of the mode should be ∼1 Hz
and the azimuthal eigenvalue, m, should be small, making the ob-
served frequency close to the spin frequency; (2) since observed
frequencies drift upwards to the spin frequency (when known inde-
pendently) as the layer cools, the modes should travel in the oppo-
site sense to the star’s rotation (retrograde); (3) the modes should
have no latitudinal nodes, maximizing visibility since modes are
squeezed near the equator; (4) modes should have no radial nodes
which would separate modes (in frequency) with a similar angular
dependence, helping to ensure that only a single mode is excited
during a burst.
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Buoyant r modes, with very low m, are the most promising can-
didate to fit these constraints. These modes are strongly influenced
by the Coriolis force, and hence do not occur on non-rotating stars.
Buoyancy acts as the restoring force in the hot bursting ocean due
to large temperature and compositional gradients. This buoyancy
could also give rise to g modes or Kelvin modes. These are dis-
counted since, in the case of the g modes, perturbations would be
squeezed into a narrower band near the equator (Heyl 2004) (where
obscuration by the accretion disc would also be more of an issue)
and therefore less visible than other candidates. In the case of the
Kelvin modes, these are prograde, which implies a negative drift in
the aftermath of a burst.

One problem with the buoyant r-mode model is that the amount
of frequency drift predicted, as the burning layer cools, is larger
(at ∼10 Hz) than that observed (which is ∼1–3 Hz). Work by Piro
& Bildsten (2005b, hereafter PB05b) explored the idea that the
ocean mode might transition into a crustal interface wave, thereby
curtailing the drift. This particular idea has since been ruled out by
Berkhout & Levin (2008) due to the weak coupling between the
ocean mode and the crustal interface wave. The drift size, therefore,
remains an issue.

Nevertheless, an ocean mode of some form remains a reasonable
candidate to explain the burst oscillation phenomenon, since it pro-
vides a natural way to explain frequency drifts. Other mechanisms
that may be involved in this phenomenon include: a change in spin
frequency of the surface layers due to expansion (Cumming et al.
2002); a possible flame spread model (Cavecchi et al. 2016); and
a cooling wake model (Mahmoodifar & Strohmayer 2016). These
models have problems; the frequency drift in the expansion model
underpredicts what should be observed; the flame spread model can
account for oscillations in the rise, but not the tail, where most drifts
are measured, and requires a higher magnetic field than expected
for most sources; and the cooling wake model requires enhanced
cooling from an as yet unidentified physical mechanism. It is also
possible that convection in the ocean of the NS must be taken into ac-
count (Medin & Cumming 2015; Garcia, Chambers & Watts 2018).
More extensive studies, however, need to be performed. Magnetic
modes, too, could play a role (Heng & Spitkovsky 2009).

Another class of Type I X-ray bursts is superbursts; hours long
explosions caused by unstable C burning that takes place much
deeper in the ocean than the H/He burning. They are quite differ-
ent to H/He bursts, being 102–103 times more energetic and with
longer recurrence times of approximately 1 yr as compared to hours
or days (see Cumming 2004; Kuulkers 2004; Strohmayer & Bildsten
2006; in’t Zand 2017, for reviews). A superburst on 4U 1636-536
is the only one to have been observed in high time resolution. In
the period from 102 to 103 s after the start of the superburst, it
exhibited burst oscillations (Strohmayer & Markwardt 2002). This
source has also exhibited oscillations during the H/He X-ray bursts
(Strohmayer et al. 1998; Muno, Özel & Chakrabarty 2002), provid-
ing the opportunity to compare the oscillations in the H/He bursts
and superbursts, for the same star. Oscillations during the superburst
were more stable and at a slightly higher frequency than their H/He
burst counterparts. The small frequency drift of the superburst os-
cillations was consistent with orbital Doppler shifts, while the H/He
burst oscillations drift by rather more. The amplitude of the oscilla-
tions during the superburst was weaker than that of the H/He burst.
There have also been weak higher frequency oscillations observed
during this superburst (Strohmayer & Mahmoodifar 2014).

Since buoyant r modes in the H/He bursts are thought to develop
due to the temperature and compositional gradients present after the
burst ignites, it is plausible that such modes should also develop in

the aftermath of superbursts when strong temperature and composi-
tion gradients are also present. The only mode calculations carried
out to date, however, have used simple models for the composition
of burst ashes at depths appropriate for H/He bursts (PB05b). Buoy-
ant r mode calculations have not yet been carried out for depths and
compositions appropriate for the aftermath of carbon burning.

We follow similar analysis to PB05b, calculating the frequency
and frequency-drift of a buoyant r mode. This paper, though, calcu-
lates these quantities for a burst deeper in the ocean in the aftermath
of a superburst. This study aims to find stable modes on the cooling
background and to test the sensitivity of mode frequencies to dif-
ferences in the cooling profile. We start, in Section 2, by outlining
the perturbation equations that are solved to obtain the mode fre-
quencies. Section 3 describes the thermal evolution of the burning
layer during the burst tail, since this is the cooling background in
which the modes form. Section 4 discusses the solutions that are
found. In Section 5, we discuss the implications for models of the
burst oscillation mechanism.

2 PE RT U R BAT I O N EQUAT I O N S

The outer layers of an accreting NS are made of an accreted H and
He ocean which burns to heavier elements as material moves deeper
into the star. This ocean extends down as far as the outer crust; a
lattice of heavy ions (Chamel & Haensel 2008) bound by Coulomb
forces surrounded by a sea of degenerate electrons. The ocean/crust
transition is usually defined using the Coulomb coupling parameter
which is the ratio of Coulomb energy to thermal energy;

� = (Ze)2/a

kBT
, (1)

where Z is the charge per ion in units of e, electron charge; a =
(4πni/3)−1/3 is the average ion spacing, with ni the ion number
density; T is the temperature; and kB is the Boltzmann constant. The
ocean/crust transition occurs at � ≈ 173 (Farouki & Hamaguchi
1993), giving a transition density around 109 g cm−3at the top of the
crust from

� ≈ 173

(
Z

26

)2 (56

A

)1/3 (3 × 108K

T

)(
ρ

109g cm−3

)1/3

, (2)

with A the atomic mass of each ion and ρ the density of matter, both
enter by using the formula ρ = niAmu.

Modes that exist in the ocean could penetrate into the crust since
the boundary between these regions is in principle flexible (Piro &
Bildsten 2005a, hereafter PB05a). We solve a set of perturbation
equations (described in the following section) upon a background
which is cooling in the aftermath of a superburst. The background is
treated as a series of static snapshots, which requires that the cool-
ing time-scale is much slower than the mode time-scale. Cooling
follows the model of Cumming & Macbeth (2004) and Keek et al.
(2015) described in Section 3. It is assumed that the amplitude of
these perturbations decays to zero as the mode penetrates further
into the crust.

Full solution of the modes of an accreting NS ocean requires:
solving perturbations in spherical geometry, taking into account
the burning physics on the surface, accounting for magnetic field
effects (which could turn out to be dynamically important for some
stars, especially if amplified during the burning process, Cavecchi
et al. 2016), allowing for the oblateness of the NS and its ocean
due to rapid rotation, taking into account relativistic effects due to
the strong gravitational field and rapid rotation, and coupling of
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all of the relevant layers from the crust to the photosphere (where
radiative transport effects become important).

In what follows, we will neglect many of these effects and follow
the approach of PB05b. This allows a direct comparison of our
surface mode calculations for carbon-triggered bursts with their
surface mode calculations for H/He-triggered bursts.

The general equation for gravitational acceleration inside a star,
including the effects of general relativity, is

g(r) = Gm(r)

r2

(
1 − 2 Gm(r)

rc2

)−1/2

, (3)

where m(r) is the mass enclosed by a sphere of radius r, G is the
gravitational constant, and c is the speed of light. We assume a
canonical NS of mass M = 1.4 M� and radius R = 10 km, which
results in surface gravity: g ≈ 2 × 1014 cm s−2. Since the thickness of
the ocean (�r ≈ 104 cm) is much less than the radius of a typical NS,
we assume a constant surface gravity and that perturbations of the
gravitational potential can be neglected (Cowling approximation).
Relativistic effects due to frame dragging and redshift are discussed
further in Section 4. Though superbursts occur much deeper in a
NS ocean than H/He bursts, the difference has little effect on the
gravitation acceleration. This is also discussed further in Section 4.

Mode solutions are found by perturbing the equations of conti-
nuity and momentum for a static background (vvv = 0). Rotational
effects are assumed to be small in the unperturbed state, leaving only
a radial dependence for the background. Using δ for Eulerian per-
turbations, the perturbed versions of the continuity and momentum
equations are written:

∂t δρ + ∇ · (ρδvvv) = 0, (4a)

∂t δvvv = 1

ρ
∇ · δσ − δρ

ρ
ggg − 2��� × δvvv, (4b)

with vvv and ρ the velocity and density of the fluid in a frame rotating
with the star, and ��� and ggg the rotation vector and gravitational field
of the star. The stress tensor, σ , is included at this stage and describes
shearing relevant to modes that interact with the crust. Since there
are no shear stresses in the ocean, the stress tensor simplifies to only
having diagonal components equal to pressure: σ ij = −pδij, making
the term involving stress in equation (4b) simply the gradient of the
pressure perturbation: ∇ · δσ = −∇δp.

We assume spins of less than 1 kHz which is in line with observed
burst oscillation frequencies and below the breakup speed for the
given NS. This meant that the centrifugal term could be neglected
from equation (4b). Modes are assumed to be adiabatic, which
requires the thermal time-scale to be much greater than the mode
frequency: tth � 2π /ω, which is the case in the deep ocean (at typical
carbon ignition depths, tth ∼ 105 s) and for the modes of interest here,
which have ω/2π ∼ 5 Hz. Using � for Lagrangian perturbations, the
adiabatic approximation provides another equation for the density
and pressure perturbations:

�p

p
= �1

�ρ

ρ
, (5)

with �1 = (∂ log p/∂ log ρ)s , the adiabatic exponent. Eulerian and
Lagrangian perturbations of a quantity Q are related using ξξξ , the
Lagrangian fluid displacement, as

�Q = δQ + ξξξ · ∇Q. (6)

Other useful quantities in this calculation are the pressure scale
height

h = p/ρg (7)

and the Brunt-Väisälä frequency, N, which is given by

N2 = −g

(
∂r log ρ − 1

�1
∂r log p

)
, (8)

where r is the radial coordinate in spherical geometry and should
be replaced by z in plane parallel geometry.

In the next section we proceed to simplify these equations as far
as possible, first deriving equations for modes that exist exclusively
in the ocean in both spherical geometry and plane parallel geometry
and then deriving equations for modes that penetrate into the crust
only for the case of plane parallel geometry.

2.1 Choosing a wavenumber

A full derivation of the spherical perturbation equations in the ocean
is given in Bildsten, Ushomirsky & Cutler (1996) and Piro & Bild-
sten (2004). Using spherical geometry, a perturbed quantity Q is
decomposed into solutions of the form: δQ(r, θ , φ, t) = δQ(r,
θ )eimφ − iωt with ω the (angular) frequency of the wave, and m the
wavenumber. Perturbations of velocity are written in terms of the
Lagrangian fluid displacement (Friedman & Schutz 1978), which in
the rotating frame and in the case of a static background is δvvv = dtξξξ .

Equations (4a) and (4b) are simplified by the use of the Tradi-
tional Approximation (Eckart 1960). Buoyancy and Coriolis forces
in the radial component of equation (4b) are in competition, and
their relative strengths can be estimated from slow rotating solu-
tions for low-frequency modes as: ω � N and ξ r/ξ θ ∼ �r/R where
�r is the thickness of the layer. Dropping the Coriolis force term
in the radial direction requires the spin frequency of the star to be
�/2π � N2�r/2πωR ∼ 105 Hz (using a 10 km NS, a 104 cm thick
layer, approximate frequency ω/2π = 10 Hz, and N/2π = 104Hz).
This requirement is less restrictive than neglecting the centripetal
force from equation (4b). By assuming a low number of latitudinal
nodes, terms of the order of ξ r/ξφ in the φ component of equation
(4b) may be dropped.

Given these assumptions, the ocean perturbation equations in
spherical geometry are1

∂r

(
δp

p

)
= ξr

gh

(
ω2 − N2

) + δp

p

1

h

(
1 − 1

�1

)
, (9a)

∂r ξr + ξr

h

(
2h

R
− 1

�1

)
+ 1

�1

δp

p
= − gh

ω2R2
Lμ

(
δp

p

)
, (9b)

where Lμ is a new operator which depends on the frequency and
spin through the parameter q = 2�/ω and wavenumber m. This
operator is more conveniently written in terms of μ ≡ cos θ as

Lμ ≡ ∂μ

(
1 − μ2

1 − q2μ2
∂μ

)
− m2(

1 − μ2
) (

1 − q2μ2
)

− qm
(
1 + q2μ2

)
(
1 − q2μ2

)2 , (10)

and contains no radial dependence. This operator ap-
pears in Laplace’s Tidal Equation; an eigenvalue problem
Lμ(δp/p) = −λδp/p, the eigenfunctions of which are Hough func-
tions. Methods of solution are outlined in Longuet-Higgins (1968),
Bildsten et al. (1996), and Piro & Bildsten (2004); we will not
go into details here. Equations (9a) and (9b) are separable, which

1Note that there is a misprint in Bildsten et al. (1996) equations (5)–(6),
corrected in Maniopoulou & Andersson (2004) equations (55-56).
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4394 F. R. N. Chambers et al.

means that solutions can be found by presupposing a mode and
replacing the operator Lμ with the appropriate eigenvalue −λ, thus
removing the angular dependence and leaving dependence on a sin-
gle variable r. Solving the remaining pair of ordinary differential
equations (hereafter, ODEs) requires knowledge of the background
conditions.

Rather than working in spherical geometry, we choose to solve
the full set of equations including the crustal interaction in a plane
parallel geometry, since this is what has been done in previous stud-
ies (Bildsten & Cutler 1995, PB05a,b), enabling an easy comparison
of results. The justification for making this switch of geometries is
that the pressure scale height and thickness of the ocean, h ∼ 103 cm,
is much less than the radius of the star.

For a plane parallel geometry, a full derivation of the perturbation
equations can be found in Bildsten & Cutler (1995). In this geometry
there are only two variables: z and x, where now z is the vertical
direction and x the horizontal displacement. Linking the calculations
in plane parallel geometry to spherical geometry, x follows lines
of constant longitude and is related to small changes in θ in the
spherical case by δx ≈ Rδθ , while z is mapped to r. This means that
a perturbed quantity Q is decomposed as δQ(z, x, t) = δQ(z)eikx − iωt

T with ω the angular frequency and k the wavenumber.
We start from equations (4a) and (4b) and drop the Coriolis term.

Dropping this term was performed in previous literature (Bildsten
& Cutler 1995) and will be necessary for crustal waves. It should
limit spin frequencies to less than the frequency of the mode. The
resulting equation, however, will be similar to those in spherical
geometry. A case is made below that k can be used to compensate
for this simplification. The ocean perturbation equations in plane
parallel geometry are

dz

(
δp

p

)
= ξz

gh

(
ω2 − N2

) + δp

p

1

h

(
1 − 1

�1

)
, (11a)

dzξz − ξz

�1h
+ 1

�1

δp

p
= gh

ω2
k2 δp

p
, (11b)

which are ODEs in z. These equations are written in terms of the
pressure perturbation, but using the x component of the equation
(4b) ρω2ξ x = ikδp could be written in terms of ξ x, the Lagrangian
fluid displacement.

As can be seen, the two sets of equations for ocean perturbations,
equations (9a), (9b), (11a), and (11b), match when k2 = λ/R2 (ne-
glecting a small term proportional to ξ r/R). The spherical harmonic
order and degree (m and l) of the particular mode come through
the constant k or λ, which contain all the information involving the
mode and, in the case of λ, rotation of the star. This means solving
the perturbation equations in plane parallel geometry for some k
is equivalent to the spherical case for a suitable λ = k2R2. It also
means that when setting k or λ care must be taken to do so in a
consistent manner.

2.2 Crustal perturbations

Crustal perturbation equations are derived in Bildsten & Cutler
(1995) and PB05a. They assume no shear stresses in the unper-
turbed background, as described above, and assume perturbations
of the same form as the ocean case in plane parallel geometry
(δQ(z, x, t) = δQ(z)eikx − iωt), with the wave vector choice governed

by k2 = λ/R2. The equations are written here for completeness:2

d2
zξx = ξx

(
ω2

gh
− 4k2μ

3p
− �1k

2

)
+ dzξx

1

p
dzμ

+ ikξz

(
1

p
dzμ − 1

h

)
+ ikdzξz

(
μ

3p
+ �1

)
, (12a)

d2
zξz

(
�1 + 4μ

3p

)
= ikξx

(
1 − �1

h
− 2dzμ

3p
+ dz�1

)

+ ikdzξx

(
μ

3p
+ �1

)
+ ξz

(
ω2

gh
− μk2

p

)

+ dzξz

(
4dzμ

3p
− �1

h
+ dz�1

)
, (12b)

where μ is the crystalline shear modulus in the crust and appears
in the stress tensor σ . Note that these equations are written in
terms of Lagrangian displacement in the x direction, not pressure
perturbations (ξ x, not δp). Strohmayer et al. (1991) calculate μ as

μ = 0.1194

1 + 0.595(173/�)2

ni(Ze)2

a
, (13)

with ni the ion number density, a the average ion spacing, and � is
the Coulomb coupling parameter. By assuming that the crust is that
of a relativistic totally degenerate gas of electrons, the appropriate
equation of state (EOS) relation can be used: p = Kn

4/3
i and the

expression for shear modulus simplifies. This makes the shear mod-
ulus proportional to pressure, or μ/p approximately constant with
depth, as

μ

p
= 1.4 × 10−2

1 + 0.595(173/�)2

(
Z

30

)2/3

. (14)

This approximation is reasonably accurate and simplifies the pertur-
bation equations quite a bit, since the derivatives of shear modulus
can be related to derivatives of pressure.

2.3 Motivating the transverse wavenumber

The transverse wavenumber is chosen by considering equation (10),
which exhibits a variety of solutions including g modes, Kelvin
modes, and r modes (Longuet-Higgins 1968). Bildsten et al. (1996)
and Piro & Bildsten (2004) describe a dispersion relation between
wavenumber, rotation, and frequency (k, �, and ω) for r modes,
which is used to set k consistently with respect to rotation. Only
r modes are considered here, however, since Heyl (2004) showed
that buoyant r modes with very low m are the only solution to
this equation that could be consistent with the basic properties of
burst oscillations in H/He bursts. PB05b adopted this restriction and
focused their attention on the l = 2, m = 1 r mode in their calculation
for H/He bursts. As we are comparing modes for superbursts to these
results, we also choose this mode, for which λ = 0.11.

2.4 Boundary conditions

Boundary conditions for these modes are straightforward. At the
outer boundary, in the shallow ocean, the Lagrangian pressure per-
turbations are set to zero (�p = 0). At the inner boundary, deep
within the crust (ρ > 1011 g cm−3), the displacement perturbations
are set to zero (ξ x, ξ z = 0). Using these conditions, solutions are

2These equations match Bildsten & Cutler (1995) equations (4.5a,b) and
PB05a equations (15)–(16).
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found using a shooting method. Solutions start in the ocean by solv-
ing equations (11a) and (11b) as far as the interface between ocean
and crust. Passing through the ocean–crust interface requires match-
ing conditions, where the shear modulus, μ, changes from zero to
non-zero. From here the crustal perturbation equations (11a) and
(11b) are solved until the deep crust boundary depth.

There must be two constraints at the ocean–crust interface since
the ocean perturbation equations form a pair of first-order ODEs
whereas the crust perturbation equations are a pair of second-order
ODEs. Components of the stress tensor provide these constraints,
namely: �σ zz is assumed to be continuous across the interface and
�σ xz = 0 at the interface, resulting in conditions on the derivatives of
ξ x, ξ z. Across the interface, it is assumed that the vertical component
of the displacement perturbation, ξ z, is continuous; however, there
is a discontinuity in transverse component, ξ x, characterized by a
parameter,3 χ , where: ξ x, crust = χξ x, ocean.

The only physical quantities under examination are the frequen-
cies, ω, which are not affected by the normalization of the modes. A
simple normalization is, therefore, chosen: maximum perturbation
is set to unity, max (ξx(rrr), ξz(rrr)) = 1. Other possible choices might
include, for example, constraints on the energy of the mode:

E = 4πR2
∫

1

2
ρω2ξ 2 dz (15)

as done in PB05b.

3 BAC K G RO U N D C O N D I T I O N S

The evolving background is computed along similar lines to the
model of Cumming & Macbeth (2004) and Keek et al. (2015).
The ocean is divided into two layers; a hot, shallow layer where
heat from unstable nuclear burning has been deposited; and a cool,
deeper layer that continues into, and is in thermal equilibrium with,
the crust. The boundary between the hot and the cold layers is the ig-
nition depth, which depends on the accretion rate, composition, and
strength of shallow heating in the outer layers of the crust (required
to explain NS cooling curves and superburst recurrence times, see
Deibel et al. 2016; Wijnands, Degenaar & Page 2017). The ignition
depth dictates the cooling time-scale of the burst, and for super-
bursts lies in the range of column depths:4 1011–1014 g cm−2 (Keek
& Heger 2011). The bursting/hot layer cools with no extra sources
of heat generation and the composition is fixed. Heat from this layer
radiates from the star at the outer boundary and propagates into the
cool ocean layer and crust throughout the course of the burst.

3.1 Cooling equations

Recall that the rotational effects are neglected for the background
so that quantities only have radial dependence. This means that the
Euler equation for the unperturbed quantities is simply hydrostatic
equilibrium:

∂rp = −ρg. (16)

Cooling in the wake of the burst is calculated from the entropy
equation:

cp∂t T = −εν − 1

ρ
∂rF , (17)

3Notation is changed from PB05a where the crustal discontinuity is λ, to
avoid confusion with the eigenvalue of Laplace’s Tidal Equation.
4Defined in Section 3.1

with cp the heat capacity at constant pressure, εν the neutrino energy
loss rate, and F the heat flux calculated according to the radiative
transfer equation:

F = −4acT 3

3κρ
∂rT , (18)

with a the radiation constant, c the speed of light, and κ the opacity.
Cooling is calculated by assuming an initial temperature profile and
allowing it to cool according to equation (17).

Column depth, defined by dy = −ρdr, is a more useful quantity to
measure depth in the ocean: it represents the integrated surface mass
density from the surface of the star to a point inside the star. Since we
have also assumed constant gravity, hydrostatic equilibrium reduces
to: p = gy. Here, we are using spherical coordinates, but the same
equations are valid for plane parallel, substituting r → z. Thus,
in all equations so far, the spatial derivative is replaced by y (and
appropriate factors).

Solution of equation (17) uses the method of lines; spatial deriva-
tives are calculated using finite difference methods upon a grid. This
grid is chosen to be uniform in sinh −1(log y/yign); this function con-
centrates points about the ignition depth yign. The resulting sets of
Ti at points yi are variables in an ODE in time which is solved us-
ing a stiff integrator. Gradients are calculated upon this grid using
a fourth-order finite difference scheme. For instance, the Brunt-
Väisälä frequency, N2, depends on the gradient of density which
is calculated numerically. Boundary conditions are also required;
the inner boundary condition holds temperature fixed deep within
the crust, while the outer boundary holds the gradient of tempera-
ture fixed according to dlog T/dlog p ∝ 1/4, which is the case for a
radiatively diffusive atmosphere.

3.2 Initial temperature profile

The model for the initial temperature profile is the same as in Keek
et al. (2015). Heat in the shallow bursting layer radiates from the star
at the outer boundary and propagates to the deep layer throughout
the course of the burst. The cooling time-scale is mostly dictated by
yign.

The initial temperature profile of the shallower layer obeys a
power law in column depth:

T = Tpeak

(
y

yign

)α

, (19)

where Tpeak is the peak temperature of the burst (temperature at the
ignition depth at the beginning of the burst) and α is the power-law
exponent. Choosing Tpeak as a parameter differs from Keek et al.
(2015), where Tpeak is set by a normalization condition, depending
upon the energy released during the burst. This difference will be
discussed further in Section 4, where a comparison to observations
is made. The deeper layer which continues to the crust is at a near-
constant5 temperature Tcrust.

These four parameters α, yign, Tcrust, and Tpeak are each varied over
two possible values, listed in Table 1. This makes 16 different mod-
els for superbursts. An example of the temperature profile cooling
in the aftermath of a superburst is given in Fig. 1. As can be seen, it
is relatively late into the burst (∼103 s) that the temperature profile

5The inner boundary acts as a heat bath where temperature remains fixed.
For numerical reasons, there is a small, positive slope where the temperature
changes by a factor of 1.1 across the cool layer. Results are insensitive to
this condition.
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4396 F. R. N. Chambers et al.

Table 1. The different values each of the parameters can take in this study.
For each parameter, there is a choice of two values, so with four parameters
this makes a total of 16 possible combinations, or models.

Parameter Value 1 Value 2 Unit

α 0.23 0.25 –
yign 2 × 1011 6 × 1011 g cm−2

Tcrust 3 × 108 5 × 108 K
Tpeak 4.8 × 109 5.1 × 109 K

Figure 1. Cooling of the ocean in the aftermath of a burst using pa-
rameters: α = 0.23, yign = 6 × 1011 g cm−2, Tcrust = 5 × 108 K, and
Tpeak = 4.8 × 109 K. Quantities plotted are temperature, density, and Brunt–
Väisälä frequency. The profiles shown are for times t = 0, 103, 104, 105 s
in solid (black), dashed (orange), dotted (purple), and double-dot–dashed
(green), respectively. The full profiles range over depths 106 to 1017 g cm−2.
The crust starts at a column depth 4.9 × 1013 g cm−2.

changes noticeably. The luminosity of the burst is also plotted in
Fig. 2.

3.3 Composition and equation of state

The most important compositional changes, ∼ 1s into the super-
burst, are electron captures on 56Ni, making 56Fe (see Fig. 6 of Keek

Figure 2. Luminosity of several different parameter combinations for ini-
tial conditions as the layer cools. This figure can be compared to fig. 2 of
Keek et al. (2015), which compares the luminosity of this model to the
observed luminosity during a superburst, removing the persistent and reflec-
tive components of the emission. Different slopes in the rising phase of the
burst are for values of α, steeper for greater α (in the colour version black
and purple indicate α = 0.23, orange and green α = 0.25). Different peak
times correspond to different ignition depths, the earlier sets of peak for
shallower depths yign = 2 × 1011 g cm−2 and later ones 6 × 1011 g cm−2.
Solid (dashed) lines are for Tpeak = 4.8 × 109 K (5.1 × 109 K). Tcrust is fixed
at 3 × 108 K as this parameter has little effect on luminosity.

& Heger 2011, for time-scales). Since all the available nuclear en-
ergy is assumed to be used in the initial flash, the composition of
the entire envelope is assumed to be the end product of the burning
process: pure 56Fe (Cumming & Macbeth 2004). Throughout the
burst, the atmosphere is replaced with fresh H/He while the cooling
is ongoing; this is not included in the calculation.

The EOS in the ocean and crust layers of a NS is that of a fully
ionized non-ideal electron-ion plasma, as described in Potekhin &
Chabrier (2010). This EOS is modelled using analytic approxima-
tions and fitting formulae for relevant thermodynamic processes,
allowing efficient numerical implementation. It is calculated with
the aid of the freely available Ioffe Institute EOS code.6

Contributions from an ideal gas of electrons are included
(Blinnikov, Dunina-Barkovskaya & Nadyozhin 1996; Chabrier &
Potekhin 1998), with non-ideal exchange-correlation contributions
from the electron fluid (Ichimaru, Iyetomi & Tanaka 1987). The
contributions of ideal ion–ion interactions are calculated in both
the liquid (Potekhin & Chabrier 2000) and crystal regimes (Baiko,
Potekhin & Yakovlev 2001). Corrections for a strongly coupled
Coulomb liquid (DeWitt & Slattery 1999) contain anharmonic cor-
rections for classical and quantum regimes (Carr, Coldwell-Horsfall
& Fein 1961; Farouki & Hamaguchi 1993; Baiko et al. 2001), as
well as corrections for different plasma regimes. For mixtures of
different ion species, the EOS is calculated using the linear mixing
rule for the solid regime (Potekhin et al. 2009).

The opacity is calculated from radiative and conductive compo-
nents as: 1/κ = 1/κ rad + 1/κcond. Radiative opacity is only domi-
nant in the most shallow layer of the ocean where density is low,
while conductive opacity dominates in the more dense layers. Since

6http://www.ioffe.ru/astro/EIP/eipintr.html
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Superburst oscillations 4397

this calculation takes place in the deeper layers of the ocean, the
main contribution to opacity is the conductive component. Radiative
opacity is calculated following Schatz et al. (1999), with contribu-
tions from electron scattering from Paczynski (1983) and free–free
absorption using the basic form of Clayton (1983), the Gaunt factor
is calculated using fitting formulae devised by Schatz et al. (1999)
to match Itoh et al. (1991); the total radiative opacity is calculated
as the sum of these including a non-additivity factor (Potekhin &
Yakovlev 2001). Conductive opacity is calculated from fitting for-
mulae in Potekhin et al. (1999), improving upon the basic form of
Yakovlev & Urpin (1980). These formulae are valid in the ocean
and crust of the star. Neutrino cooling is important at very high
temperatures, T ≥ 1 GK, and is calculated using fitting formulae
from Schinder et al. (1987).

4 R ESULTS

In order to verify that the code written for this calculation worked as
expected, we first reproduced results of previous calculations: the
background evolution for both Cumming & Macbeth (2004) and
PB05b, and the mode calculations for PB05b. Results are in good
agreement, except for a 5-s discrepancy in the time of transition from
surface mode to crustal interface wave. This is due to the slower
cooling rate for this calculation than PB05b, which acts to prolong
drifts; and because the crustal wave calculated here is ∼1 Hz lower
than that of PB05b because of a slightly steeper gradient in the cool
layer. Having established the validity of this code, it was used to
calculate the evolution of modes during a superburst.

4.1 Analytic frequency estimates

Analytic estimates for the surface r mode follow from the pre-
scription for a shallow-surface wave in a thin ocean limit given in
Pedlosky (1987):

ω2 ≈ ghignk
2 �ρ

ρ
, (20)

where hign is the pressure scale height at the ignition site and k is
the wavenumber. As one moves across the ignition site, between the
bursting and cool layers, there is a discontinuity in temperature and
density, �T = Tb − Tc and �ρ = ρc − ρb, while pressure remains
the same (�p = 0). The temperature of the bursting layer is greater
than that of the cool layer and vice versa for the density.

PB05b gave estimates for this frequency in the aftermath of an
H/He burst by estimating pressure using an ideal gas of electrons.
This approximation would be inappropriate for a superburst, where
the pressure is due mainly to degenerate electrons. We approximate
the pressure to be a sum of electron gases in the ultra-relativistic
and ideal regimes:

p = K

(
ρ

μe

)4/3

+ ρ

μe

kB

mu
T . (21)

The degenerate component is the dominant pressure in both layers.
However, the ideal component of pressure is more significant in the
hot bursting layer. A useful quantity to characterize which regime
is dominant is the ratio of these two pressures:

DI ≡ pideal

pdegen
= 4kBT

EF

≈ 0.15

(
ρ/μe

108g cm−3

)−1/3
T

109K
, (22)

which depends weakly on density. We estimate this value on either
side of the discontinuity, assuming that the density changes very
little and remains at approximately 2 × 108 g cm−3. The temperature

on the hot side is ≈4 × 109 K, which gives DI ≈ 0.6 and on the cool
side the temperature is ≈4 × 108 K, so DI ≈ 0.06.

The relative change in density across the discontinuity can be
obtained by equating the pressure on either side of the burst site,
resulting in

�ρ

ρ
≈ (1 + DI) �μ/μ + DI�T /T

4/3 + DITc/Tb
, (23)

where μb and μc are mean molecular weight on the bursting and
cool layers, �μ/μ ≡ μc/μb − 1 is the fractional change in mean
molecular weight across the discontinuity, and DI denotes the ratio
of pressures in the bursting layer.7 The importance of a composition
change as compared to temperature change across the layer can
be estimated from this result. Adding a quantity of carbon in the
bursting layer so that the mass fraction of carbon becomes XC = 0.2,
while keeping pure iron in the cool layer, means the ratio of the two
terms in the numerator of equation (23) is 3.6 × 10−2; the first
term is negligible in comparison to the second. In what follows,
we proceed assuming the same composition in the bursting and
cool layers, which makes �μ now zero, and the molecular weights
equal, μb = μc ≡ μe.

The factor of ghign can be calculated using the same EOS, so that

ghign = pign

ρb
= pideal

ρb
(1 + 1/DI) = 1

μe

kB

mu
Tb

1 + DI

DI
. (24)

Finally, using k2 = λ/R2, as in Section 2, we find an estimate for
frequency:

ω

2π
≈ 18Hz

(
2Z

A

)1/2 (
Tb

4 × 109K

)1/2 (10km

R

)

×
(

λ

0.11

)1/2 (
1 − Tc

Tb

)1/2 ( 1 + DI

1 + 3DITc/4Tb

)1/2

, (25)

where Z and A are the average charge and mass of ions in the
bursting layer, respectively. The final two factors in this expression
are of the order of unity.

This result is similar to the expression for the frequency of r
modes during H/He bursts (PB05b, equation 3), the differences
being a different temperature scale (PB05b use 109 K) an extra
factor for the significance of degeneracy, and terms in the final two
factors for different compositions in the bursting and cool layers
which can be restored by using equation (23). Taking the limit of
only ideal gas contributions to the pressure, DI → ∞, results in the
same expression as in PB05b.

This result predicts a strong dependence upon the temperature in
the bursting layer, with increasing temperature resulting in increased
frequency, and a slight dependence on the temperature of the cool
layer. The temperature of the cool layer is only relevant when it is
similar to that of the bursting layer, so as the bursting layer cools this
term will become more important. The parameter α, the slope of
the initial temperature profile, acts to control the temperature of the
entire bursting layer. Since a decrease in α results in a higher average
temperature for the layer (recall that the peak temperature is kept
fixed), equation (25) predicts an associated increase in frequency.

There is a dependence upon the ignition depth of a burst, through
the final factor in the expression and implicitly through temperature.
Given two bursts with different ignition depths (but the same tem-
peratures in each of the respective layers), the deeper burst would
have a smaller value for DI, and thus a smaller frequency.

7There is a slight difference in the definition of �ρ/ρ to PB05b who use
�ρ/ρ = 1 − ρb/ρc, here we use �ρ/ρ = ρc/ρb − 1.
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4398 F. R. N. Chambers et al.

Figure 3. Frequency evolution of r mode and crustal interface wave (CIW) solutions, in the rotating frame, for all models tested in this study. Fig. 3(a) shows
solutions upon a background with a cool crust, while solutions in Fig. 3(b) are for a background with a hotter crust. Fig. 3(b) further separates background with
different ignition depths, the left column containing shallower, and the right deeper, yign. Over the time shown, cool crust solutions (Fig. 3a) do not undergo
a transition to the CIW, whereas hot crust solutions (Fig. 3b) do demonstrate such a transition. For this reason a second set of lines is plotted in each panel of
Fig. 3(b); these are the CIWs for early times and r modes for late times. These extra solutions each have an extra node in their Lagrangian fluid displacement.
For a discussion of whether or not this gives rise to an avoided crossing, see the text. Each panel shows solutions for several models and collects models with
the same parameter according to the line type (the common parameter is specified in the bottom left-hand corner of the panel). For example, in the top panel
of Fig. 3(a) solid-black lines are models with α = 0.23 and dashed-orange lines are models with α = 0.25. Parameters belonging to the first column of Table 1
(Value 1) are solid-black and the second column dashed-orange. α and Tpeak have an effect on frequencies at early times, while yign affects frequency changes
over the entire course of the burst. The strongest effect is due to Tcrust, which dictates when the transition to the CIW occurs.

4.2 Solutions

Each model for the background described in Section 3 was used
to solve equation (12). Rotating frame frequencies as a function of
time after ignition are plotted in Fig. 3, with each panel of the figure
demonstrating the effect of changing a single parameter across a
series of different background models. Example eigenfunctions of
two models with differing values for Tcrust are shown in Fig. 4, at
102 and 104 s after ignition. The values for χ , which measures the
discontinuity in ξ x across the crust (see Section 2), are between
−10−4 and −10−5 for all models.

As found by PB05b, there are two families of solutions: a buoyant
r mode, concentrated in the surface layers and a crustal interface
wave (hereafter CIW). The frequency of the latter evolves very
little as the superburst progresses. The frequency of the former
drops substantially as the envelope cools and can (depending on
the background parameters) cross the frequency of the CIW. The
peak in energy of the buoyant r-mode eigenfunction also moves
deeper as this occurs. If the frequencies do cross, then before this
occurs, solutions with a single node in ξ z and no nodes in ξ x are
r modes, while solutions with two nodes in ξ z and one in ξ x are
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Figure 4. Structure of the mode solutions at different times for two back-
ground models with different values of Tcrust. The left column shows so-
lutions on a background with 3 × 108 K (frequencies in Fig. 3a) and right
column 5 × 108 K (frequencies in Fig. 3b). Solid-black lines are for 102 s
after burst and dashed-orange at 104 s. The other parameters are the same:
α = 0.23, yign = 6 × 1011 g cm−2, and Tpeak = 4.8 × 109 K. Vertical lines
on each panel represent the ignition depth and the ocean–crust transition
depth. The normalization of these modes is not physical, hence the scale on
the y-axis is arbitrary. At the later time for the hotter crust (right column,
dashed-orange), the mode has undergone a transition to the CIW.

CIWs. After the frequencies pass each other, the number of nodes
switches between the two solutions.

For the duration of the calculation, the buoyant r-mode solution
on the background with a cooler crust remains an r mode, while that
on the background with a hotter crust has a frequency that crosses
that of the CIW.8

Whether or not the buoyant r mode would actually transition to a
CIW is an interesting question, in the cases where the frequencies
cross. Berkhout & Levin (2008) showed that this transition cannot
occur in the case of H/He-triggered bursts, using the criterion that the
cooling time-scale must be greater than the inverse of the difference
in frequency between the two branches at the avoided crossing,
which is ∼1 Hz (see Fig. 3b). This criterion is satisfied in the case
of superbursts, the cooling time-scale being of the order of 103 s,
so it is plausible that this transition may occur during superbursts.

The parameter α only changes frequencies in the rising phase
of the burst, with a larger value for α (a steeper slope in the ini-
tial temperature profile) resulting in a lower frequency, as predicted

8For the solution on the background with a cool crust, the transition occurs
later in the burst than shown here (at ∼105).

from the analytic estimate. The difference between different values
of α is approximately 0.2 Hz. At around the peak in luminosity,
the different temperature profiles converge and differences in fre-
quency reduce. This is also the time at which frequencies resulting
from different α start to converge, which is what one would ex-
pect from the analytic estimates, as the difference in temperature at
the discontinuity decreases and reaches a similar value independent
of α.

Shallower yign acts to increase frequencies substantially in the
rising phase of the burst, by 2 Hz, because a shallower yign results
in a hotter bursting layer. This is captured in our model for initial
temperature profile, but is also true for more extensive calculations
of superbursts (see Fig. 3 of Keek & Heger 2011). Temperature
stays higher for longer in deeper bursts (see the turnover time in
Fig. 2) which is why the drop in frequencies occurs at later times
for deeper bursts.

The temperature of the crust has a small effect (∼0.1 Hz) on
frequencies for early times, consistent with the analytic estimates.
For late times, this parameter still has little effect on frequencies
(∼0.3 Hz). Fig. 4 compares two models that only differ in Tcrust

to demonstrate the transition from r-mode to CIW (should this
transition occur). The reader should be reminded that these modes
are normalized so that the maximum of ξ 2

x + ξ 2
z is one, so the value

of the mode energy is arbitrary.
Increasing Tpeak acts as to increase frequencies by ∼1 Hz, which

is as expected from the analytic estimates. As the layer cools, the
difference in frequency between two models with different Tpeak

diminishes. This is because the model with a higher 〈0:italic 〉T〈/0:
italic〉〈0:sub 〉peak〈/0:sub〉coolsfaster and results in a temperature
profile similar to the smaller Tpeak.

Damping times are assumed to be long in comparison to the
time-scale of cooling, so are not considered here. Inspecting Fig. 6
and fig. 8 of PB05b, which show the damping time and energy
distribution of an r mode during an H/He burst, it can be seen that
the region where the damping time is comparable to cooling time-
scale occurs when the peak in energy of the mode is in the region
y < 1010 g cm−2. Since the peak in energy of the r mode during a
superburst is always deeper than this, we assume that damping time
is similarly longer.

4.3 Sensitivity to outer boundary and ocean–crust transition
depth

The depth of the outer boundary, ytop, was chosen at the location
where the thermal time-scale, tth = cpyT/F, is approximately equal
to the time-scale of the mode, 2π /ω. This condition is due to the
requirement that perturbations are adiabatic, which is true in the
limit ωtth/2π � 1 (Bildsten & Cutler 1995). For all models, and
assuming a mode with frequency ω/2π ≈ 10, the value used in this
calculation was 107 g cm−2.

The sensitivity of frequencies to the depth of the outer boundary
was tested. At t = 102 and 104 s after ignition, the frequency of
the r mode was measured for a range of different outer boundary
depths: 106–108 g cm−2. The frequency changes by <0.005 Hz over
the range of ytop, which is a small fraction of the average frequency
(< 0.05 per cent). The frequency converges for shallower ytop; be-
yond ytop ≈ 107 g cm−2 the adiabatic condition, tth > 2π /ω, no
longer holds, and residual perturbations which are this shallow do
not affect the mode in the deeper ocean.

The depth of the ocean–crust transition, ycrust, is chosen at the
point where � = 173, where � is the Coulomb coupling pa-
rameter. This depth is dictated by the temperature in the crust
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4400 F. R. N. Chambers et al.

Table 2. Depth of the ocean–crust interface for different crust temperatures.

Tcrust (K) ycrust (g cm−2)

3 × 108 5.6 × 1012

5 × 108 4.9 × 1013

Figure 5. Effect on frequencies of changing the depth of the ocean–crust
transition. The two panels represent the calculations at 102 and 104 s. Fre-
quencies are calculated over a range of ycrust for two different crust tempera-
tures 3 × 108 K in solid (black) and 5 × 108 K in dashed (orange). For early
times, the temperature of the crust and the depth are similarly important;
however for late times the change in frequency due to the temperature of the
crust is dwarfed by the effect of the depth. The ignition depth used in this
calculation was 6 × 1011 g cm−2.

where ycrust = 5.6 × 1012 g cm−2 for Tcrust = 3 × 108 K, and
ycrust = 4.9 × 1013 g cm−2 for Tcrust = 5 × 108 K. This informa-
tion is contained in Table 2. An interesting question is whether the
frequency of the r mode depends on Tcrust itself, or on ycrust through
this temperature.

Fig. 5 shows frequencies for a range of different ycrust between
1012 and 1014 g cm−2, at two times (102, 104 s), for two different
values of Tcrust (3 × 108, 5 × 108 K), and for a set of the remain-
ing background parameters (α, yign, and Tpeak) where the buoyant
r-mode frequency does not cross that of the CIW. For early times,
the frequency changes consistently by ∼0.05 Hz between the two
temperatures for a given depth, and by ∼0.15 Hz for a given temper-
ature over the range of different depths. It appears that the frequency
depends on both ycrust and Tcrust, hence there is some intrinsic tem-
perature dependence. This dependence, however, is very small since
the frequency of the mode is dominated by shallower layers and the
physics in the crust has a small effect. The same cannot be said for
late times, where crustal interaction is more important. Frequencies
change for different temperatures and the same ycrust by ∼0.01 Hz,

Figure 6. Observed superburst oscillation frequencies for 4U 1636-536
compared to frequencies of two models of buoyant m = 1 r modes (in
the inertial frame, including orbital Doppler shifts). The fit to the data
using an orbital Doppler shift model (drift by <0.1 Hz) from Strohmayer
& Markwardt (2002) is solid (black) and the two models differ only in
Tcrust; dashed (orange) is 3 × 108 K and dotted (purple) 5 × 108 K. The
spin frequency is chosen to be 591.35 Hz so as to best match the observed
superburst oscillation frequency. The models assume superburst parameters,
constrained by Keek et al. (2015), as α = 0.25, yign = 2 × 1011 g cm−2, and
Tpeak = 5 × 109 K; however, the temperature of the crust is unconstrained.

while for the same temperature and different ocean–crust transition
depths this change is ∼2 Hz, or ∼3 Hz at the extreme case.

4.4 Comparison to 4U 1636-536

A superburst from 4U 1636-536 was observed by RXTE on 2001
February 22. The observations lasted over the course of ∼104 s and
exhibited oscillations over the 800 s after the burst peak (Strohmayer
& Markwardt 2002). The frequency of the oscillation remained very
stable throughout cooling, with a drift of at most 0.1 Hz, and was a
few Hz higher than the burst oscillation frequency seen in the H/He-
triggered bursts. The drifts were consistent with those that would
have been expected due to orbital Doppler shifts without requiring
any intrinsic drift.

Keek et al. (2015) were able to constrain some of the param-
eters of this superburst by using spectral analysis techniques and
fitting parts of the light curve to a cooling model similar to the
one used here. The parameters of the initial temperature profile
were constrained to: initial slope α ≈ 0.25, ignition depth yign ≈
2 × 1011 g cm−2, and energy deposited by the burst Enuc ≈ 2.5 × 1017

ergs g−1. The parameter Enuc corresponds to Tpeak ≈ 5 × 109 K for
the given slope and ignition depth.

Fig. 6 compares the frequency evolution of the observations with
that of buoyant r modes in an inertial frame, including the effects
of orbital Doppler shifts given in Strohmayer & Markwardt (2002),
calculated using a background model that matches the constrained
parameters. The time covers the period over which oscillations are
observed during the superburst; calculated modes are translated to
match this time. From Fig. 2, the peak of the burst is at approxi-
mately 2.6 × 102 s. Frequencies in an inertial frame are related to
those in a corotating frame by: ωi = � − mωrot, neglecting relativis-
tic effects (recall we calculated a mode with m = 1). Two models are
plotted, with different values of Tcrust, since this is not constrained
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Superburst oscillations 4401

by Keek et al. (2015). This parameter would have more of an effect
for late times in the superburst where the interaction with the crust
is more important (especially if a transition to the CIW occurs), but
by this time the oscillations in this particular observation were no
longer detectable. The spin frequency of the star is chosen to be
591.35 Hz so as to best fit the observations. This figure should be
compared to fig. 3 of Strohmayer & Markwardt (2002).

If the true spin frequency is 582 Hz, the asymptotic frequency
of the H/He burst oscillations (Strohmayer et al. 1998; Muno et al.
2002), then the superburst oscillation model would give a frequency
10 Hz below the observed superburst oscillation frequency. If the
true spin frequency is 586 Hz, as suggested by the buoyant r-mode
model of PB05b for the H/He burst oscillations, then the super-
burst oscillation model would predict a frequency 6 Hz below that
observed.

4.5 Constant gravity and GR effects on frequencies

The assumption of using constant gravity is now considered. The
calculation takes place over a wide range in column depth from
107–1017 g cm−2. So it might be expected that the gravitational
acceleration changes between the top and the bottom of the layer.
This assumption might be important when comparing the modes
between the H/He bursts and superbursts, the ignition depths of
which differ by 3 × 108 g cm−2 compared with 1011–1012 g cm−2.

First we estimate the thickness and the mass of the layer in
which the calculation takes place. These can be calculated using
column depth with a crude estimate of the EOS to be that of an
ultrarelativistic electron gas, and that the radius is constant over the
pressure range we consider:

�r =
∫ ybase

ytop

dy

ρ
≈ 104cm, (26a)

�m =
∫ ybase

ytop

4πr2dy ≈ (
6 × 10−14 M�

)

×
(

R

10km

)2
�y

1017g cm−2 , (26b)

which means that the difference in radius at the top or bottom of the
layer is of the order of �r/R ≈ 0.01, and the difference in enclosed
mass is �m/M ≈ 10−14.

Gravitational acceleration at a point r inside the star is calculated
from equation (3). Using a constant M in place of m(r), and noting
the Schwarzschild radius: Rs = 2 GM/c2, the relative change in
gravitational acceleration from the top of the layer to the base of
the layer can be estimated by expanding the radius as R → R + �r
for the result:∣∣∣∣1 − g(R + �r)

g(R)

∣∣∣∣ ≈
(

2 + 1

2

Rs

R

)
�r

R
. (27)

Errors due to changes in gravity are of the order of 4 per cent.
Analytic estimates of equation (20) predict frequency scale with
surface gravity as

√
g; errors in frequency due to changes in gravity

should be of the order of 2 per cent.
Using equation (26a), the difference in depth between the two

ignition sites of H/He bursts and superbursts is estimated at 103 cm.
From equation (27) the change in surface gravity is 0.4 per cent,
also negligible. This enables us to compare results obtained for
H/He bursts to superbursts.

Maniopoulou & Andersson (2004) give general relativistic cor-
rections to the traditional approximation due to frame-dragging and

redshift, which depend on the compactness of the system and the
modes under consideration. For the canonical NS mass and radius
used here, frequency errors in the rotating frame of up to 15 per cent
are predicted for r modes by including these effects, and 20 per cent
for Kelvin and g modes. While these relativistic effects influence
absolute frequencies of modes, the size of the drift during cooling is
not affected (unless the mode undergoes a transition from one class
of mode to another).

A 20 per cent reduction in the frequency of buoyant r modes, in
the rotating frame, corresponds to a 2 Hz change. The spin frequency
required to ensure a match to the observed superburst oscillation
frequency would then be lower by 2 Hz. The problem with the
frequency drifts, however, remains: the model still predicts drifts of
0.3 Hz over the duration of the observation, whereas the observed
frequency drift is ∼0.04 Hz, consistent with orbital Doppler shifts
and no requirement for any intrinsic drift.

5 C O N C L U S I O N

We have computed the frequencies of buoyant r modes excited dur-
ing superbursts. We found rotating frame frequencies to be greater,
by ∼4 Hz, than the frequencies of r modes excited by the H/He-
triggered Type I bursts as computed by PB05b, and drift by up to
∼10 Hz in the aftermath of the burst.

According to the analytic approximations, equation (25), the fre-
quency of the surface r mode (in the rotating frame) scales with
the temperature in the bursting layer. This explains the higher fre-
quencies predicted for superbursts as compared to the H/He burst
since the temperatures are higher in superbursts. Factors that might
act to reduce the frequency are the degeneracy and composition.
Limits on these, however, only act to reduce the frequency by ∼10
per cent. Should the same mode be present in both superbursts and
the H/He bursts, the frequency of the mode should be higher in the
superbursts.

As can be seen from Fig. 6, the frequencies of the mode calcu-
lated here do not match those of 4U 1636-536. A spin frequency
of 591.35 Hz would be required for the mode model to match the
superburst oscillation observations, whereas using a mode model
for the H/He-triggered burst oscillations of the same system would
predict a spin frequency for the NS not greater than 586 Hz. This
is a large discrepancy, should burst oscillations and superburst os-
cillations both be explained by a mode model. The frequency drifts
predicted by the superburst oscillation model are also larger than
those observed. The observations can be explained using Doppler
shifts without any intrinsic frequency drift, whereas our model pre-
dicts an observed drift ∼1.5 Hz during the time period in which the
oscillations were observed.

Another possible explanation of these oscillations is that the fre-
quency comes directly from a CIW, the frequency of which would
be stable throughout the burst. An explanation of how this wave
could couple to observable variations in the photosphere is however
problematic, given how small the energy perturbations are in that re-
gion in comparison to the crust. A more accurate cooling model that
accounts for the physics of the crust (EOS, free neutrons, changes in
composition), and more comprehensive solution of the perturbation
equations in spherical geometry would be required, which is beyond
the scope of this paper. The possibility of a transition from r mode
to CIW at later times certainly needs to be studied in greater detail.
The avoided crossing and associated change of mode type, ruled out
for the H/He bursts by Berkhout & Levin (2008), cannot be ruled
out for superbursts since the cooling time-scale is sufficiently long,
and the frequency difference between the two branches sufficiently
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small. The original analysis also had caveats, whose applicability
remains to be explored (Berkhout & Levin 2008, section 4.1).

There is physics missing from this mode calculation that could
have significant effects on the frequencies of modes. This includes
the effects of magnetic fields, ongoing nuclear burning through-
out the course of the burst (this would strongly affect temperatures
which have the largest effect on frequencies), and general relativis-
tic effects (although estimates of these are given in Section 4.5 and
are estimated to be of the order 2 per cent). The influence of the
photosphere and outer layers of the atmosphere on frequencies is
also not taken into account. Given the observed emission emerges
from this region of the star, any model proposed to explain oscil-
lations on the surface of the star must eventually consider how the
mechanism would be affected by the photosphere.

The surface modes found here are very sensitive to the back-
ground model and therefore the underlying physics of superbursts.
Different initial temperature models can change frequencies by up
to ∼4 Hz (see Fig. 3). This high sensitivity means that if modes do
exist during superbursts and these bursts can be observed in high
time resolution they will be an excellent probe of the physics of
the deep ocean. The next generation of large high time resolution
X-ray satellites such as the proposed eXTP (Zhang et al. 2016) and
Strobe-X (Wilson-Hodge et al. 2017), may be able to detect these
differences.
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