The University of Southampton
University of Southampton Institutional Repository

Exogenous fault detection and recovery solutions in swarm robotics

Exogenous fault detection and recovery solutions in swarm robotics
Exogenous fault detection and recovery solutions in swarm robotics
A robotic swarm needs to ensure continuous operation even in the event of a failure of one or more individual robots. If one robot breaks down, another robot can take steps to repair the failed robot, or take over the failed robot’s task. Even with a small number of faulty robots, the expected time to achieve the swarm task will be affected. Observing failure detection techniques requires an investigation of similar techniques in insects. The synchronisation approach of fireflies is an exogenous failure detection technique. This approach requires all the robots in the swarm to be initially synchronised together in order to announce a healthy status for each individual robot. Another exogenous failure detection approach is the Robot Internal Simulator. The concept of this approach is to have robots that are capable of detecting partial failures by possessing a copy of every other robot’s controller, which they then instantiate within an internal simulator on-board to be run for a short period of time to predict the future state of the other robots. The work in this research draws inspiration from both approaches, which both still have several issues when they are implemented in swarm robotics. The enhanced technique developed in this research will depend on the input and output values in the robot’s controller to diagnose other robots within the swarm during the entire swarm operation. In this research, communication plays an important part of the diagnosis procedure. While robots retain possession of their own controller values including their co-ordination, the receiver computes the distance between them based on the signal strength. A fault suspicion is generated if the computed distances do not match and an acknowledgement of the failure will be broadcast to the robotic swarm. This research explores the performance of the simulation experimental results. It has shown that failed robots are rapidly detected failures using the proposed technique. A mitigation procedure takes place after the faulty robot is shut down, either by pushing it away or allowing it to work as a communication bridge to operational robots.
University of Southampton
Khadidos, Adil
c4a95d18-8088-4ee8-9760-4f0b24a6642a
Khadidos, Adil
c4a95d18-8088-4ee8-9760-4f0b24a6642a
Crowder, Richard
ddeb646d-cc9e-487b-bd84-e1726d3ac023

Khadidos, Adil (2017) Exogenous fault detection and recovery solutions in swarm robotics. University of Southampton, Doctoral Thesis, 204pp.

Record type: Thesis (Doctoral)

Abstract

A robotic swarm needs to ensure continuous operation even in the event of a failure of one or more individual robots. If one robot breaks down, another robot can take steps to repair the failed robot, or take over the failed robot’s task. Even with a small number of faulty robots, the expected time to achieve the swarm task will be affected. Observing failure detection techniques requires an investigation of similar techniques in insects. The synchronisation approach of fireflies is an exogenous failure detection technique. This approach requires all the robots in the swarm to be initially synchronised together in order to announce a healthy status for each individual robot. Another exogenous failure detection approach is the Robot Internal Simulator. The concept of this approach is to have robots that are capable of detecting partial failures by possessing a copy of every other robot’s controller, which they then instantiate within an internal simulator on-board to be run for a short period of time to predict the future state of the other robots. The work in this research draws inspiration from both approaches, which both still have several issues when they are implemented in swarm robotics. The enhanced technique developed in this research will depend on the input and output values in the robot’s controller to diagnose other robots within the swarm during the entire swarm operation. In this research, communication plays an important part of the diagnosis procedure. While robots retain possession of their own controller values including their co-ordination, the receiver computes the distance between them based on the signal strength. A fault suspicion is generated if the computed distances do not match and an acknowledgement of the failure will be broadcast to the robotic swarm. This research explores the performance of the simulation experimental results. It has shown that failed robots are rapidly detected failures using the proposed technique. A mitigation procedure takes place after the faulty robot is shut down, either by pushing it away or allowing it to work as a communication bridge to operational robots.

Text
Final_submission_Thesis_2017 - Version of Record
Available under License University of Southampton Thesis Licence.
Download (25MB)

More information

Published date: May 2017

Identifiers

Local EPrints ID: 422425
URI: http://eprints.soton.ac.uk/id/eprint/422425
PURE UUID: f094fbe4-d1ff-4f5f-b7db-bea692ee4b01

Catalogue record

Date deposited: 23 Jul 2018 16:31
Last modified: 15 Mar 2024 18:34

Export record

Contributors

Author: Adil Khadidos
Thesis advisor: Richard Crowder

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×