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Abstract

Genetic algorithms are integral to a range of applications. They utilise Dar-

win’s theory of evolution to find optimal solutions in large complex spaces

such as engineering, to visualise the design space, Artificial Intelligence, for

pattern classification, and financial modelling, improving predictions. Since

the original Genetic Algorithm was developed, new theories have been pro-

posed which are believed to be integral to the evolution of biological sys-

tems. However, genetic algorithm development has focused on mathematical

or computational methods as the basis for improvements to the mechanisms,

moving it away from its original evolutionary inspiration. There is a possibility

that the new evolutionary mechanisms are vital to explain how biological sys-

tems developed but they are not being incorporated into the genetic algorithm;

it is proposed that their inclusion may provide improved performance or in-

teresting feedback to evolutionary theory. Multi-level selection is one example

of an evolutionary theory that has not been successfully implemented into the

genetic algorithm and these mechanisms are explored in this paper. The re-

sulting MLSGA is unique in that it has different reproduction mechanisms at

each level and splits the fitness function between these mechanisms. There are
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two variants of this theory and these are compared with each other alongside

a unified approach. This paper documents the behaviour of the two variants,

which show a difference in behaviour especially in terms of the diversity of the

population found between each generation. The multi-level selection 1 variant

moves rapidly towards the optimal front but with a low diversity amongst its

children. The multi-level selection 2 variant shows a slightly slower evolution

speed but with a greater diversity of children. The unified selection exhibits a

mixed behaviour between the original variants. The different performance of

these variants can be utilised to provide specific solvers for different problem

types when using the MLSGA methodology.

Keywords:

Evolutionary theory, algorithm development, multi-level selection,

multi-objective optimisation, single objective optimisation.

1. Applications using Genetic Algorithms

There is a large literature pertaining to applications and developments of

evolutionary algorithms. Coello Coello [1] has collected 10714 references re-

lating to genetic algorithms and a google scholar search of the term “genetic

algorithm” for 2017 supplied 37600 examples using or developing these algo-

rithms. These references cover a wide range of areas related to finding optimal

solutions to complex problems across a wide range of different types of search

space. A recent review by Zhou et al. [2] lists 50 major applications for evo-

lutionary algorithms. This is augmented by recent high profile examples that

utilise these algorithms from a number of different fields of study, including

architecture, bioinformatics, computational science, evolutionary theory, en-

vironmental science and materials engineering ([3]; [4]; [5]; [6]; [7]; [8]; [9];

[10]; [11]; [12]; [13] and [14]). The problems being solved are becoming more

complex and therefore promising methods for the improvement of genetic al-
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gorithms should be further explored and documented. This research investi-

gates the adoption of multi-level selection, a popular explanation for the mech-

anisms of evolution, as a potential inspiration to improve evolutionary compu-

tation.

1.1. Evolutionary Inspiration

Evolutionary algorithms were originally proposed by Turing [15] and were

first developed by Holland [[16] and [17]] to study evolution through simula-

tions. The usages of genetic algorithms quickly expanded due to their ability

to search large and complex spaces, with a corresponding increase in the num-

ber of available algorithms. Since these initial attempts, there has been lim-

ited success in improving genetic algorithm performance using evolutionary

inspired methods. A recent benchmarking of top algorithms in the CEC’09,

[18], show no biologically or evolutionary inspired mechanics and a recent re-

view of the state-of-the-art in biomimetics doesn’t list evolution in the top 100

topics[19]. However, other algorithms have benefited from developments that

more closely mimic the original concepts that inspired them, such as the ant

colony optimisation developed by Zhang [20].

In parallel with the improved performance in genetic algorithms, there have

been developments in evolution theory, which have led to a larger range of

mechanisms available to explain how organisms evolve; many researchers now

believe that some of these mechanisms are necessary for biological evolution.

These proposed mechanisms are missing from the genetic algorithm and the

authors believe they should be used to re-inspire it; if they are critical to evo-

lution then they should provide benefits to algorithm development. Amongst

the newer evolutionary theories is the multi-level selection theory, originally

proposed by Sober and Wilson [21], with the idea that evolution does not oc-

cur at only one level but is actually occurring at different levels of a hierar-

chical structure. An example of a hierarchical structure is shown in Figure
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1 where evolution at multiple levels is shown using collectives, larger units,

which contain a number of individuals, smaller units; darker shading of the

individuals or the collectives is used to illustrate higher fitness. As the gen-

erations progress the collectives may continue, and possibly reproduce, or be

eliminated, depending on their ability to survive. Within the surviving collec-

tives, the individuals also reproduce or are eliminated, based on their fitness.

The strongest individuals generally have more offspring and this leads to an

increase in average fitness. Whilst the authors believe the process makes intu-

itive sense, and there is a growing body of evidence to support the idea that

it increases evolutionary speed, the theory of multi-level selection is not with-

out controversy. There are many arguments for other mechanisms through

which evolution might occur, such as Dawkin’s popular selfish gene theory

[22] which emphasises a gene-centric level of evolution, or Sterelny and Kitcher

[23] which questions whether there must be a uniquely correct identification of

the level at which selection is occurring. The authors believe multi-level selec-

tion provides the most promising inspiration for improvements to the genetic

algorithm, allowing a collective mechanism to be put in parallel with current

individual mechanisms and allowing more flexibility in the manner in which

the fitness function can be interpreted. Initial research by the authors investi-

gating one variant of multi-level selection shows promise [24] and can be used

to solve practical problems [25] but further investigation into the inspiration

behind these mechanisms needs exploring. This paper therefore documents

the behaviour of different variants of this algorithm to provide specific solvers

for different problem types when using the MLSGA methodology. These will

exploit the unique reproduction mechanisms at each level of MLSGA and the

split in the fitness function.
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Figure 1: Nested hierarchical collective reproduction

1.2. Multi-level selection theory

Natural selection encourages individuals to adapt to the environment de-

veloping traits that increase their chance of survival; it is therefore common

to consider adaptions at the individual level, for example, giraffes with longer

necks can reach leaves on trees that others cannot. Multi-level selection pro-

poses that it is rare for a population to compete as individuals without some

kind of beneficial interaction; often a number of individuals will group to-

gether with the aim of helping each other. This can be in the form of a num-

ber of organisms grouping into a tribe or pack but it can also be at a lower

level where a number of organelles create a hybrid form. An argument is of-

ten made to support the statement that there are characteristics that have de-

veloped which cannot be explained satisfactorily at the individual level, for

instance altruism; which is a trait that does not benefit the individual and, by

definition, actually results in a cost to itself. Sober and Wilson [21] suggested

that evolution of altruists can be observed at a level higher than the individual

by watching the development of colonies.
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Multi-level selection is an outcome of three determinants based around

those proposed by Lewontin [26], which holds that evolution occurs when:

1. Different individuals in a population have physical variations.

2. Different individuals have different rates of survival due to different fit-

ness.

3. There is a correlation between parents and offspring so that fitness is her-

itable.

Natural selection occurs if there are variations in characteristics of individu-

als and some offspring are considered to be fitter than others. Individuals with

these different characteristics can be defined as a ‘unit of selection’. Individ-

uals are encouraged to adapt over time to the environment developing traits

that increase their chance of survival. This causes evolution as weaker mem-

bers of the population are lost and the stronger members, on average, survive.

Gradually the make-up of the population will change over successive genera-

tions to favour the stronger characteristics. A species can be described based

on a hierarchical organisation, which is normally viewed as a nested hierarchy,

with one level being enclosed within another. A nested hierarchical organisa-

tion is presented in Figure 1 which forms the basis of the Multi-Level Selection

Genetic Algorithm (MLSGA). McShea [[27], [28]] proposes an interactionist ap-

proach indicating that selection at a higher level will occur when individuals at

a lower level perform fitness-affecting interactions with each other, a physical

connection is not required, and this is supported by Sober and Wilson [21] in

their theory of multi-level selection. The new algorithm is developed by creat-

ing a hierarchical organisation, including collective level reproduction. How-

ever, since classical genetic algorithms already utilise selection of individuals

based on their adaption to their environment it is therefore possible to utilise

a standard Genetic Algorithms as the reproduction method at the individual

level.
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In addition to the collective level reproduction mechanism the new algo-

rithm relies on a change to the way fitness is defined. Amongst the theories for

multi-level selection, there are two main strands, multi-level selection 1 and 2

(MLS1 and MLS2) which are dependent on how fitness is defined on the indi-

vidual and collective levels. For multi-level selection 1 the fitness is defined the

same way at each level, the aggregate of the individuals. For multi-level selec-

tion 2 the fitness is defined differently at each level. For multi-level selection

to occur there are a number of important concepts defined in Table 1 including

the unit evolution is working on at each hierarchical level, the character or abil-

ities of a unit used to determine the fitness, the fitness used to judge survival

for each unit and finally the implications of these factors on the heritability of

the unit. Both of these theories have proponents and a large background of

literature with which to support these views. For a larger and more in-depth

review the authors recommend the excellent text by Okasha [29] outlining the

history, theory and gaps in multi-level selection research.

1.3. Comparison to the state-of-the-art

In reviewing algorithms specifically pertaining to multi-level selection there

are already a few attempts to use the process as inspiration to improve evolu-

tionary algorithms, but these fail to replicate the key aspects of this theory and

the resulting performance is poor. Lenaerts el al. [30] were the first to use

multi-level selection and they study a biological model based on multi-level

selection. It shows the importance of variation between groups as selection

at group level occurs only when there is enough variation. However, the me-

chanics to generate selection at different levels are prescribed based on interac-

tions between individuals, as opposed to fitness. Akbari et al. [[31] and [32]]

looked at multilevel selection including selection at different levels. However,

they do not present group, collective, mechanisms such as characters, fitness

and heritability, necessary for multilevel selection. The algorithm relies on a
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Table 1: Important concepts of multi-level selection

Individual level Collective level

Hierarchical Number of individuals Number of collectives

Unit in each collective composed of individuals

Character The qualities shown by the

individual which can affect its

fitness e.g. speed from body

type

Collective characters are the

qualities of the collective that

can affect its fitness and can be

the average or total character of

individuals (aggregate, MLS1),

e.g. the aggregate speed of each

individual, or different from

individual’s character

(emergent, MLS2) with

independent qualities, e.g. the

ability to communicate abstract

concepts

Fitness Individual fitness measured

directly on individuals

Collective fitness measured the

same as the individual

(aggregate, MLS1) or differently

to individual’s (emergent,

MLS2).

Heritability Individuals with higher fitness

produce more offspring with

characters correlated to the

parent individuals

Collectives with higher fitness

leave more collectives with

characters correlated to the

parent collectives.
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number of complex mechanisms to replicate the sub-problem generation and

individual replacement. Finally, Wu and Banzhaf [33] focused on selections us-

ing any hierarchical model. However, in multilevel selection, selection at one

level influences the selection at the adjacent levels and the concepts of multi-

level selection, such as units of selection at all levels and the products induced

by selections between levels, are not obviously applied. The authors feel that

these efforts miss the key aspects of multi-level selection in that they are ori-

entated around complex prescriptive mechanisms, forcing the selection to oc-

cur rather than letting it emerge as part of the process. As these mechanisms

do not replicate the key aspects of multi-level selection the authors provide a

novel evolutionary algorithm, supported by the fact that the results provide an

improved performance compared to those previously documented.

Furthermore, multiple different methodologies in the current state of the

art show similarities to the idea of a collective and fitness split, such as sub-

population approach and problem decomposition. In Niching algorithms, such

as NSGA-II [34] and U-NSGA-III [35], Co-evolutionary algorithms, for exam-

ple BCE [36] and HEIA [37] and Island model algorithms proposed by [38] the

population is divided into groups with often different operations performed

on each sub-population. However, between these groups, only one level of se-

lection is used with no competition between sub-groups and split in the fitness

function, unlike MLSGA. The decomposition-based methods as MOEA/D [39],

MOEA/D-M2M [40], CS-NSGA-II [41] DMOEA-DD [42], LiuLi [43], RVEA

[44] and K-RVEA [45] operate by partitioning the entire objective space into

subspaces, dividing the problem into a number of separate subproblems each

with its own subpopulation. This is done by using a set of uniformly spread

reference points, or weight vectors, and scalarization functions. However, the

effectiveness of these methods decreases for discontinuous problems as sub-

populations can be assigned to regions where feasible solutions do not exist. A

priori knowledge about the objective and search spaces are therefore required
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to adjust the mechanisms. In MLSGA, the sub-regional search is created using

different fitness definitions, instead of forced decomposition, and therefore all

individuals operate on the same region.

Introduction of selection at multiple levels provides the inspiration for the

development of a new algorithm for optimisation, Multi-Level Selection Ge-

netic Algorithm (MLSGA), adding multi-level concepts to the classic genetic

algorithm. Current genetic algorithms consider the evolution of its individuals

at a single level similar to the manner in which Holland [16] first developed

the algorithm. It is proposed here that if multi-level selection speeds the pro-

cess of evolution then its addition will elicit an increase in performance in the

genetic algorithm, speeding up the rate at which higher fitness solutions will

be found. This evolutionary inspiration has been used by the authors to de-

velop an algorithm, Multi-Level Selection Genetic Algorithm but there are a

number of different variants of multi-level selection theory and these are ex-

plored on single- and multi-objective problems to categorize any differences in

behaviour.

2. Methodology

Outlined are the mechanisms that are used, inspired by the concept of multi-

level selection, and the methodology used, showing the adaptations from the

classic genetic algorithm. This is documented for the two variants of multi-

level selection theory to show the differences in performance, the unified the-

ory and also to the commonly used NSGA-II algorithm and also to the com-

monly used NSGA-II algorithm and MOEA/D developed by Zhang and Li

[39]. NSGA-II was created by Deb et al. [34] and is the most commonly used

Genetic Algorithm but is also selected to represent a niching algorithm. The

specific method selected is the 2011 updated version which shows similar re-

sults on 2 objective functions to the more mature U-NSGA-III. MOEA/D de-

veloped by Zhang and Li [39], represents sub-region search algorithms, and is
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the highest performing genetic algorithm for unconstrained test functions, for

multi-objective problems. In these cases the hyperparameters are taken from

the CECŠ09 benchmarking with no additional tuning [18].

2.1. Multi-Level Selection Genetic Algorithm (MLSGA)

The Genetic Algorithm starts with a randomly generated population of in-

dividuals each of which represents a set of variables representing the search

space for an optimisation problem. This population is then evaluated against

a fitness function. Once the variables for each individual have been assessed,

and the fitness determined, a new generation can be created from the current

parent generation. Whatever the specific selection methodology chosen the

process involves finding the fittest individuals within a population to mate

and produce a child generation. These children are produced by the process

of crossover where the chromosome of the parents is split. The chromosomes

are then combined forming a new offspring different to the parent generation.

Further diversity is found through mutation of the chromosome, where ran-

dom changes are made normally based on a probability value, which is chosen

to be low. Once this process has been repeated for the whole population a new

population is then ready for the process to be repeated. Over successive gener-

ations, the average fitness of the population will become lower until either the

optimal value or the limit of the number of generations is reached. This repli-

cates a simplified process of evolution first developed to simulate the process

but since then many adaptions and improvements have been made.

The Multi-Level Selection Genetic Algorithm is similar to previous genetic

algorithms except that it utilises the key concepts from Table 1, defining fitness

and heritability, through reproduction mechanisms, at different hierarchical

units, individuals and collectives. The main addition is therefore the collec-

tive, which contains a number of individuals and has a fitness dependent on

the character of those individuals.
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1. Initialisation - a population of individuals is created at random.

2. Classification - sorted into collectives of the most similar individuals, in

this case using a Support Vector Machine (SVM). The quality of the result

is dependent on a good spread of results between the collectives where

SVM is used over clustering algorithms to allow the user control over the

size of the collectives.

3. Individual reproduction - As the algorithm progresses the individuals

inside each of the collectives are treated in the same manner as for the

standard genetic algorithm so that the process of selection and mating

continues as normal.

4. Collective reproduction - the difference is that the collectives themselves

have a fitness and elitism process where the least fit are eliminated and

the fittest reproduce. Hyperparameter tuning is performed which shows

that the results are relatively insensitive to the new parameters. Large

or small numbers of collectives are shown to provide poor performance

with 6 giving the best performance for these problems and 4 or 8 col-

lectives giving similar but worse results. In this case 2 collectives are

eliminated and 2 are created from the old surviving collectives with the

individuals being populated from the fittest 4 collectives, where the num-

ber of new individuals in the offspring collective is equal to the number

of individuals in the eliminated one. Individuals are generated by repli-

cating the best individuals, according to the collective fitness function,

equally from the remaining collectives. As an example in the case where

there are 6 collectives and 2 are eliminated then if there are 40 individ-

uals in the first eliminated collective and 60 in the second then the best

10 individuals from the remaining 4 collectives are replicated and added

to the first new collective and the next 15 best are then taken from the

remaining 4 collectives and are added to the second new collective.

5. Termination - The algorithm terminates, in these cases after a given num-
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ber of generations.

This process, with the specific details used in this paper for each stage, are

documented in Table 2.

2.1.1. MLS1

The two types of multi-level selection differ in the manner in which the

fitness function is represented. In MLS1 the fitness of the collectives is the ag-

gregate of the sum of the individuals and is illustrated using the ZDT1 function

where f1(x) is,

f1(x) = x1, (1)

and f2(x), is,

f2(x) = 1 +
9

n− 1

n∑
i=1

xi

1−
√

x1

1 + 9
n−1

∑n
i=1 xi

 , (2)

where variables are in the range 0 ≤ xi ≤ 1, n is the number of variables.

The first objective function is arbitrarily taken as f1(x) and the second, remain-

ing, objective function is f2(x). This means that the same fitness function can

be used to determine the selection in the collectives as well as the individuals.

The fitness function for the MLS1 individuals and collectives is,

Fitness =
f1(x) + f2(x)

2
. (3)

2.1.2. MLS2

The MLS2 theory states that the fitness for the collectives is different to the

fitness for the individuals. Therefore, this variant only allows the use of multi-

objective optimisation problems or the generation of an abstract objective for

single objective problems. For the cases chosen here, the fitness function has

been split into two with one of the objectives forming the fitness for the indi-

viduals,
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Table 2: Multi-level selection algorithm methodologies

Step Parameter Value

1. Initialisation

Type Random

Encoding Real values

Pop. Size 600

2. Classification
Method SVM

Number of collectives 6

3. Individual Reproduction

Fitness Evaluation Type MLS1 or MLS2

individual fitness

Selection Type Roulette wheel

Mating

Crossover type Real variable SBX

Crossover rate 0.7

Mutation type Polynomial mutation

Mutation Rate 0.08

Elitism Rate 0.1

4. Collective Reproduction

Fitness Evaluation Type MLS1 or MLS2

collective fitness

Elimination Number of 2

eliminated collectives

Replacement Number of 2

new collectives

5. Termination Criterion Reaching 500 generations
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Individual Fitness = f1(x), (4)

and the other forming the fitness function for the collective,

Collective Fitness = f2(x). (5)

The effect of reversing this order is also investigated to determine whether it

affects the results of the optimisation and is designated MLS2R, i.e in equations

4 and 5 individual fitness is assigned to be f2 and collective fitness f1.

2.1.3. MLS-U

Contradicting the need to define MLS1 or MLS2, Sterelny and Kitcher [23]

indicate that a single mechanism for selection does not need to be defined at

each level. United Multi-Level Selection (MLS-U) is introduced, inspired by

this definition, exhibiting characteristics of both MLS types. In MLS-U all MLS

variants are used in parallel where some collectives only utilise MLS1, MLS2

or MLS2R, maintaining an equal number of collectives of each type.

2.1.4. Computational complexity of one generation

The computational cost of the MLSGA is determined by three operations:

the PF selection, individual reproduction and collective reproduction. The PF

selection identifies nondominated individuals from 1.5N members at most, ag-

gregate of external population of maximum size equal to the overall population

size N and current collective of maximum size of 0.5 N, requires O(m(1.5N)2)

comparisons using fast nondominated sorting approach, where m is the num-

ber of objectives [34]. In individual reproduction the full replacement of old

generation with elitims take place which require O(N2) at most, as only one of

the objectives is considered. For collective reproduction, the fitness evaluation

step requires O(N) computations, as is calculated as the average of single fit-

nesses of the individuals and collective replacement of O((0.5N)2) complexity



16

at most, due to maximum size of the collective.

To summarize, the overall computational compexlity of one generation of

MLSGA is bounded by O(mN2).

3. Characterisation of multi-level selection variants

The results of genetic algorithms developed using the two strands of multi-

level selection, MLS1 and MLS2, are compared to each other for the different

test functions from Ziztler et al. [46], shown in Table 3, on 30 separate runs.

These are popular in testing genetic algorithms due to the wide range of near

optimal points which are difficult to find, and which the classical Genetic Algo-

rithms cannot solve. Whilst there are more complex functions available, these

are not selected at this stage, as it is difficult to identify differences between

variants on these problems. Furthermore, these problems have clear differ-

ences in complexity for both fitness functions, where f2 is harder, making it

easier to investigate the differences between MLS2, MLS2R and MLS1. For

each of these functions the number of variables used is 30, except in the case

of ZDT4 where 10 are used. The variable bounds are [0, 1] for all cases except

in ZDT4 where these are: x1 = [0, 1], x2..10 = [−5, 5]. The stopping criterion is

when a value of 300,000 function evaluations, generations multiplied by pop-

ulation size, is reached. If the optimal result is not found at this stage then the

best fitness to this point is used as the minimum fitness value. To demonstrate

the accuracy of each algorithm results show the minimum, the maximum and

the average optimal results found over the all the runs. The robustness of the

algorithm is investigated to determine the percentage of runs over which the

algorithm found the optimal result.

3.1. Weighted average optimisation - evolutionary speed

A weighted average optimization is used to demonstrate the algorithm

working for single objective problems. MLS2 and MLS1 become the same for a
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Table 3: ZDT Test Functions

Problem Objective Functions Comments

ZDT1 [47] f1(x) = x1; f2(x) = g(x)

[
1−

√
x1

g(x)

]
Convex,

g(x) = 1 + 9
∑n

i=2 xi

n−1 continuous

ZDT2 [47] f1(x) = x1; f2(x) = g(x)

[
1−

[
x1

g(x)

]2]
Nonconvex,

g(x) = 1 + 9
∑n

i=2 xi

n−1 continuous

ZDT3 [47] f1(x) = x1 Convex

f2(x) = g(x)

[
1−

√
x1

g(x) −
x1

g(x)sin(10x1)

]
Disconnected

g(x) = 1 + 9
∑n

i=2 xi

n−1

ZDT4 [47] f1(x) = x1, f2(x) = g(x)

[
1−

√
x1

g(x)

]
Convex,

g(x) = 1 + 10(n− 1) +
∑n

i=2

[
x2
i − 10cos(4xi)

]
large search space

ZDT6 [47] f1(x) = x1 − exp(−4x1)sin
6(6x1) Nonconvex

f2(x) = g(x)

[
1−

[
x1

g(x)

]2]
Non-uniformly

g(x) = 1 + 9
[∑n

i=2 xi

n−1

]0.25
spaced
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true single objective problem, f1 = f2, however, in the weighted average case

two objectives still exist and so MLS2 can still be examined, even though it still

splits the function into two components but is trying to find the solution illus-

trated in eq. 3, conversely MLS1 considers all problems as a weighted average.

The results are shown in Table 4 with the best performing algorithm shaded

for each category other than the standard deviation.

The results show that the MLS1 function rapidly finds the solution to all of

these problems, except for ZDT4; in the case of the ZDT4 function a close to

best value is found. A similar performance is seen for the MLS2R function but

with a slightly greater variation in the solutions for the more complex func-

tions, ZDT3-6, finding the best solution 43% of the time for the ZDT3 function

and 77% for the ZDT6 function. The MLS2 variant performs extremely poorly

for most of the functions only finding the best solution for the ZDT2 function

and in this case only 30% of the time. The unified variant, MLS-U, exhibits a

similar performance to the MLS1 and MLS2R variants and outperforms MLS2,

in terms of the final accuracy of the Pareto front. However, the results take

considerably more generations to form than for the other variants, especially

MLS1. The results demonstrate the manner in which the MLS1 algorithm dives

towards the Pareto front reaching it quickly, in single objective optimisation or

scenarios where the optimal value is not of so much interest and the near op-

timal is required the MLS1, with a low generation cut off, would provide an

excellent solution in few generations. For the MLS2 the choice of function for

the individual and collective is important in determining the performance with

one variant finding the Pareto front rapidly and the other struggling to find any

optimal solutions. Computationally the new algorithm is rapid and the only

extra computational effort over a standard genetic algorithm is the generation

and elimination of the collectives.
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Table 4: Comparison of multi-level selection algorithms for weighted average optimisation

Test Function
Fitness

Convergence
Max. Min. Mean Standard Deviation (Generations)

MLS1

ZDT1 0.375 0.375 0.375 0 49

ZDT2 0.500 0.500 0.500 0 34

ZDT3 0.039 0.039 0.039 0 100

ZDT4 0.375 0.375 0.375 1.90E-06 500

ZDT6 0.500 0.500 0.500 0 145

MLS2

ZDT1 0.500 0.584 0.508 0.017 500

ZDT2 0.500 0.558 0.505 0.013 412

ZDT3 0.500 0.583 0.506 0.016 500

ZDT4 3.38 32.8 16.7 7.58 500

ZDT6 0.516 0.601 0.567 0.025 500

MLS2R

ZDT1 0.375 0.375 0.375 0 169

ZDT2 0.500 0.500 0.500 0 57

ZDT3 0.039 0.039 0.039 1.00E-06 368

ZDT4 0.375 0.375 0.375 1.19E-04 500

ZDT6 0.500 0.501 0.500 4.11E-04 377

MLS-U

ZDT1 0.378 0.393 0.388 2.84E-03 500

ZDT2 0.500 0.500 0.500 0 299

ZDT3 0.039 0.039 0.039 0 465

ZDT4 0.375 0.375 0.375 4.70E-05 500

ZDT6 0.500 0.501 0.500 4.33E-04 479
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3.2. Multi-objective optimisation - evolutionary diversity

The speed and accuracy with which the optimal point is found is interesting

and useful for a subset of problems. However, the benefits of evolutionary

algorithms lie in their ability to assess multi-objective cases where a spread of

optimal points is required. Whilst these fronts are useful they can be difficult to

generate, as the algorithm must be accurate while ensuring an even spread of

results to ensure that sharp variations in the front are found. The algorithm is

adapted from the weighted-average results by storing the 400 best values in the

Pareto front the objective functions are evaluated in the same way and only the

objectives against which they are judged are changed, i.e. the spread of results

is now evaluated unlike in the previous section. In this case, the 3 algorithms,

including the 4 variants of MLSGA, are used to generate a Pareto front for the

previously defined functions. The results for ZDT1-4 and 6 are found and are

illustrated for the MLSGA variants at 50 and 100 generations for the ZDT1

case at 50 generations, Figure 2, and 100 generations, Figure 3, to demonstrate

the difference in performance. This is shown again for the more complex ZDT6

function in Figure 4, for 50 generations, Figure 5, 100 generations, and Figure 6,

250 generations. Blue diamonds represent MLS1, red squares represent MLS2,

green triangles represent MLS2R and purple circles represent MLS-U.

The Pareto front evolution shows a large difference between the algorithms

at the early generations. However, by the time 100 generations have been com-

pleted then the algorithms have all found, or are close to finding the Pareto

front. Figure 3 demonstrates the speed with which the Pareto front is found.

In this case, the MLS2R algorithm finds the front rapidly with a good spread

of results. The MLS2 algorithm finds a few points on the top left hand part

of the front, but is unable to provide a greater diversity of points. The MLS1

algorithm finds some points along the front rapidly and is the first to reach it

but struggles to diversify these with extra points along this front. The MLS-U

shows the worst speed for reaching the front, and never reaches it in over the
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Figure 2: Pareto front comparison at 50 generations ZDT1 function

Figure 3: Pareto front comparison at 100 generations ZDT1 function
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30 runs. This is because the MLS-U variant uses 3 different methods simulta-

neously where each has approximately only a third of the overall population.

In this case, the evolutionary pressure is not as concentrated as when only a

single variant is used and results in slower progression.

The process is repeated for the more complex ZDT6 functions where all

of the algorithms are slower to find the front, shown in Figures 4, 5 and 6.

The MLSGA variants find the front with the MLS2 and MLS2R finding a good

spread of results. The MLS2 in this case is able to find the front more rapidly

than the MLS2R. The MLS1 algorithm finds some on the front but many of the

points are a considerable distance from the front. The MLS-U results show a

slower progression to form the Pareto front to the extent that the results for

Figure 5 are not visible as they are out of range, resulting from a change in

axes from Figure 4 to Figure 5. Figure 6 shows the results after 250 generations

where MLS-U has not found the front due to the lower evolutionary pressure

exhibited by this variant.

Figure 4: Pareto front comparison at 50 generations ZDT6 function

Table 5 illustrates the IGD values for the different algorithms with the best
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Figure 5: Pareto front comparison at 100 generations ZDT6 function, where the MLS-U results are

not visible due to poor convergence

Figure 6: Pareto front comparison at 250 generations ZDT6 function
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results shaded, MLS-U is ignored because of its poor performance. The MLS2R

algorithm provides slightly better results in almost all cases except for the

ZDT6 function, where MLS2 provides better results. This raises a question

about how the collective and individual functions should be defined. It ap-

pears that the collective level mechanism is much weaker than that of the in-

dividual. Improvements to the collective level mechanism should result in a

considerable increase in performance.

Table 6 presents the best results from MLS2, the best performing variant,

using the best result from MLS2 or MLS2R, making the assumption that the

correct algorithm is selected. These results show an increase in performance

for MLSGA over the most popularly used GA, NSGA-II, and the top algorithm

on unconstrained functions, MOEA/D. This is despite the fact that the algo-

rithm uses a simple mechanism at the individual level and shows the potential

for this method. In one case the MOEA/D algorithm has a better mean perfor-

mance that MLSGA, but NSGA-II never shows better performance.

4. Evolutionary performance

Amongst the theories for multi-level selection, there are two main strands,

multi-level selection 1 and 2 (MLS1 and MLS2) which are dependent on how

fitness is defined on the individual and collective levels. For multi-level selec-

tion 1 the fitness is defined the same way at each level, the aggregate of the

individuals, which results in deep specialisation of individuals, and greater

evolutionary pressure thus increasing the rate of evolution. For multi-level se-

lection 2 each level has different "goals", which results in competition between

individuals and collectives, and leads to increased diversity of population as

a compromise between the two goals is found. Importantly separate groups,

across the whole environment, can have different fitness definitions at each

level, similar to species where each becomes specialised, developing different

traits. According to Okasha [29], multi-level selection is proposed to enhance
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Table 5: Comparison of multi-level selection algorithms for multi-objective optimisation

Test Function
IGD

Max. Min. Mean Std. deviation

MLS1

ZDT1 0.11500 0.18000 0.16000 1.6E-02

ZDT2 0.11800 0.25100 0.15800 3.1E-02

ZDT3 0.02900 0.08100 0.05100 1.3E-02

ZDT4 0.02900 0.15300 0.09800 3.6E-02

ZDT6 0.13700 0.46800 0.29400 1.0E-01

MLS2

ZDT1 0.84000 0.88100 0.84600 1.2E-02

ZDT2 0.60900 0.72500 0.61900 2.4E-02

ZDT3 0.82000 0.96200 0.83500 3.4E-02

ZDT4 9.8 62.3 34.4 13.4

ZDT6 0.00313 0.00334 0.00320 5.10E-05

MLS2R

ZDT1 0.00390 0.00403 0.00395 3.80E-05

ZDT2 0.00389 0.00403 0.00396 3.00E-05

ZDT3 0.00477 0.00561 0.00499 1.40E-04

ZDT4 0.00388 0.00414 0.00401 6.70E-05

ZDT6 0.00316 0.00397 0.00340 2.60E-04

MLS-U

ZDT1 0.00567 0.02770 0.01585 5.28E-03.

ZDT2 0.00405 0.39442 0.14610 1.08E-01

ZDT3 0.02903 0.17426 0.07854 4.92E-02

ZDT4 0.00443 0.06126 0.00776 1.00E-02

ZDT6 0.00397 0.10147 0.05535 3.98E-02
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Table 6: Comparison of MLSGA with the state-of-the-art

Test Function
IGD

Max. Min. Mean Std. deviation

MLSGA

ZDT1 0.00390 0.00403 0.00395 3.80E-05

ZDT2 0.00389 0.00403 0.00396 3.00E-05

ZDT3 0.00477 0.00561 0.00499 1.40E-04

ZDT4 0.00388 0.00414 0.00401 6.70E-05

ZDT6 0.00313 0.00334 0.00320 5.10E-05

NSGA-II

ZDT1 0.00407 0.00425 0.00416 5.30E-05

ZDT2 0.00401 0.00420 0.00409 4.80E-05

ZDT3 0.00488 0.00521 0.00510 8.60E-05

ZDT4 0.00409 0.25500 0.05730 7.70E-02

ZDT6 0.00340 0.00361 0.00351 5.00E-05

MOEA/D

ZDT1 0.00407 0.00422 0.00414 3.20E-05

ZDT2 0.00406 0.00417 0.00410 2.90E-05

ZDT3 0.00485 0.00503 0.00500 4.10E-05

ZDT4 0.00409 0.00415 0.00413 1.50E-05

ZDT6 0.00335 0.00345 0.00337 2.20E-05
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the specialization of different sub-groups, and this correlates with the results

found here.

The results show that the introduction of MLS1 or MLS2 provides an in-

crease in performance over the classic Genetic Algorithm with respect to both

optimisation and generation of the Pareto front. This provides some promising

behaviour on some simple test functions when judged against that of its con-

temporaries, as an example NSGA-II and MOEA/D. The MLS2R algorithm

outperforms the other algorithms in the generation of Pareto fronts on the sim-

ple test functions proposed. The Pareto front itself is found rapidly but, more

importantly, the diversity is high whereby the Pareto front has a good spread of

results. This is in contrast to the MLS1 code, which searches one specific zone

to a high degree but does not develop any front, it finds a close-to-optimal lo-

cation rapidly but there is a lack of spread of results. MLS1 shows the best

performance on single objective problems. Whilst on the multi-objective prob-

lems the MLS1 code can outperform the MLS2 in rapidly finding near optimal

results the performance is not that much faster than the MLS2R and the abso-

lute optimum is never found. The MLS2R performs strongly in both tasks with

a wide spread of different optimal areas investigated showing a wide diver-

sity. Interestingly the MLS2 algorithm outperforms the MLS2R algorithm for

the ZDT6 function, in contrast to the weighted fitness results. The difference

between MLS2 and MLS2R results are caused by the fact that individual selec-

tion is more efficient than collective selection, and the f2 functions are more

complex than the f1 functions in most of the test problems, this is reversed in

the ZDT6 function. The authors suggest that the individual level should have

the more complex function assigned to it. MLS-U is outperformed only by the

best variants, MLS2R for the ZDT1-4 functions and MLS2 for ZDT6, and shows

better results than the remaining variants. This sensitivity can be removed by

utilisation of a unified MLS-U approach. MLS-U, despite a decrease in perfor-

mance in comparison to the best variants, does not require extensive a priori
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knowledge about the optimised problem and eliminates the necessity of per-

forming the optimisation process repeatedly in order to find the best possible

solutions, in the case when close-to-the-best result is sufficient. However, in

many real world cases the complexity of the problem will be well understood,

through domain knowledge or simple computational tests, meaning that the

most powerful variant can be selected. Improvements to the novel collective

level reproduction mechanism will further reduce this sensitivity and reduce

the hyperparameters associated with MLSGA.

Whilst the authors propose the MLSGA method they are surprised at the

increase in robustness, diversity and evolutionary speed generated from the

simple process of considering the fitness at multiple levels. The optimal fit-

ness is found rapidly and the average fitness of the populations is high, mak-

ing it suitable for finding Pareto fronts. The authors hesitate to draw over-

arching conclusions into evolutionary theory based on a biologically inspired

algorithm however, it is interesting to note the increase in speed with which

the generations find higher fitness solutions due to the increased evolution-

ary pressure. Furthermore, there are considerable differences in behaviour be-

tween the MLS1, MLS2 and MLS2R algorithms and the resultant differences

in fitness. The MLS1 seems to find the optimal value correctly but lacks the

diversity of children seen in the MLS2 algorithm. In this case, the MLS1 has a

concentrated search in which there are two layers to remove individuals that

are unfit. In MLS2 this phenomenon is weaker but still provides a concentrated

search towards the individual’s objective function, many of the poor solutions

are removed at each generation pushing the search quickly towards the Pareto

front but using the collectives to retain some diversity; on finding the Pareto

front the search then rapidly spreads out increasing the range of solutions. This

also differs from other currently high performing, computationally inspired,

algorithms that first aim to create a diverse set of solutions that push towards

the optimal front, with the potential to perform well on discontinuous fronts.
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While it may be shown that multi-level selection is not the process by which

evolution should be considered, the emergent change in the optimisation pro-

cess is interesting and beneficial.

The test functions that have been selected are simple and the early results

on the ZDT6 function already show that the MLSGA algorithm is starting to

struggle to find the optimal solution with the more complex functions. This

set is used to allow an easy comparison in performance but the ZDT1-4 func-

tions have a special structure, with f1 being only determined by a single de-

cision variable, while all other decision variables are zero for all Pareto opti-

mal solutions. Further iterations of the algorithm will move away from evolu-

tionary inspiration and utilise more complex individual and collective repro-

duction methods to improve performance based on the findings here and this

will include determining the sensitivity of performance to the various hyper-

parameters. Algorithms such as NSGA-II and MOEA/D are shown to outper-

form the original GA, currently used at the individual level, by a considerable

margin, it is proposed that their inclusion at the individual level will increase

performance. The effectiveness of the new collective reproduction will also be

explored using simple search functions, such as hill climb, and evolutionary al-

gorithm mechanisms, such as MTS, to boost the effectiveness of the collective

search.

5. Conclusions

There are a number of evolutionary mechanisms proposed in recent years,

which have not been explored in genetic algorithms. One of these, multi-level

selection, has been used to inspire a new genetic algorithm but the different

variants of this theory have not been compared. Interestingly the two variants

of the algorithm, MLS1 and MLS2 show considerable differences in behaviour

instigated by the definitions of fitness. The algorithm performs well on the sim-

ple ZDT functions with the MLS2 finding a wide diversity of results along the



30

front and the MLS1 algorithm rapidly finding the weighted fitness optimum,

demonstrating excellent single-objective performance. These different variants

allow the MLSGA methodology to have different behaviour for different sets of

problems, allowing strong performance on multi-objective and single objective

problems.
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