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Research on the reading of proofs is an important area of proof research in mathe-
matics education. As one aspect of the reading of proofs, we focus on ‘proof appraisal’
by students (that is, students’ judgements about given proofs) and explore how students
appraise different proofs of an identical statement. Using a simple proof and a gen-
eralisable proof of a statement, we analysed the results of a questionnaire completed
by 39 Grade 8 secondary school students (13—-14 years old). We show aspects of each
proof that were appraised by the students, such as simplicity, and the relativeness of
their proof appraisals. An implication is a possible ‘gap’ between the ‘mathematical
value’” appreciated by students and that by researchers and teachers.

INTRODUCTION

Research on the reading of proofs has recently gained more attention in the mathe-
matics education community, and there have been several types of recent studies in this
research area (Komatsu et al., 2017). One type relates to students’ comprehension of
given correct proofs, such as whether students can understand key terms and state-
ments in the proofs and illustrate a sequence of inferences with a specific example (e.g.
Mejia-Ramos et al., 2012). Another type of study is of proof validation with students
asked to determine the validity/invalidity of the purported deductive proofs (e.g. Inglis
& Alcock, 2012). In this paper, we focus on another type of research in the reading of
proofs, namely proof appraisal. We use this term to refer to students explaining their
reasons for preferring a particular given proof.

Some existing studies have examined whether students appreciate certain aspects of
proofs, such as verifying that statements are true and explaining why statements are
true (e.g. Healy & Hoyles, 2000; Segal, 1999). However, research on the functions of
proofs shows that the power of proofs is not only in the verification and explanation of
statements (de Villiers, 1990; Hanna & Barbeau, 2008). Recently, Inglis and Aberdein
(2014, 2016) have classified mathematicians’ appraisals of proofs into four dimen-
sions: aesthetics, intricacy, precision, and utility. Although mathematicians and stu-
dents are different in various ways, such as mathematical maturity and interest in ma-
thematics, it is anticipated that students’ proof appraisals are also likely to be diverse.

To this end, we consider a specific setting where students are given multiple valid
proofs of an identical statement and are asked to judge these proofs. This setting is
different from those of existing studies that have contrasted valid proofs with insuffi-
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cient arguments (e.g. empirical arguments) and with purported deductive proofs that
actually include errors (e.g. Healy & Hoyles, 2000; Inglis & Alcock, 2012). We use
multiple valid proofs of an identical statement because the given multiple proofs have
in common the capability of verifying that the statement is true, and thus we expect it to
be possible to elicit students’ appraisals of various aspects of proofs other than the
verification of the statement. Hence, in this paper, we address the following research
question: How do students appraise different proofs of an identical statement?

FRAMEWORK: COHERENCE AND GENERALISABILITY OF PROOF

As a framework for classifying proofs that are different in terms of how they draw the
conclusion of the statement, we employ the notions of direct fit and familial fit sug-
gested by Raman-Sundstrdém and Ohman (in press). Direct fit here refers to the rela-
tionship between a statement and a proof, while familial fit refers to the relationship
between a proof and a family of proofs. In this paper, we focus on the notion of co-
herence, one aspect of direct fit, and that of generalisability, one aspect of familial fit.
A proof is regarded as coherent if the proof is stated in the same terms as the statement
that the proof addresses. A proof is regarded as generalisable if the idea of the proof
can be used for a larger class of statements.

We explicate these notions by taking a statement as an example: the sum of the interior
angles of a star octagon is 720° (this statement was also used in our questionnaire
whose data are examined in this paper). Here, a star polygon is defined as a polygon
constructed by connecting vertices while skipping the adjacent vertex. Figure 1 shows
a star heptagon. Star polygons where the numbers of the vertices are odd (hereafter,
star-odd polygons) can be drawn in one stroke, whereas star polygons where the
numbers of the vertices are even (star-even polygons) cannot, but can be drawn by a
combination of two polygons. Figure 2 shows two different proofs of the statement that
the sum of the interior angles of a star octagon is 720°.

- Proof A:

The interior angle sum of a quadrilateral is 360°. We multiply '
it by two because a star octagon consists of two quadrilaterals.

Thus, the interior angle sum of a star octagon is 720°.

- Proof B:

There are eight triangles on the outside, and the interior
angle sum of these triangles is 1440° (= 180° X 8). The
white- and black-marked angles are not the interior
angles of the star octagon, and these angles constitute
two sets of the exterior angle sum of the ‘inside
octagon’, namely 720° (= 360° X 2). Hence, the interior
angle sum of a star octagon is 720° (= 1440 — 720).

Figure 1: Star hep- Figure 2: Two proofs of the identical statement
tagon
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Proof A can be regarded as coherent because it uses only interior angles that are stated
in the statement, whereas Proof B lacks coherence because it introduces the concept of
exterior angles, which is not mentioned in the statement. With respect to generalisa-
bility, Proof B is generalisable because the idea of this proof (based on the constancy
of the sum of exterior angles in any polygon) can be applied to all star polygons. For
example, it is possible to prove that the sum of the interior angles of a star heptagon is
540° by calculating ‘180 = 7 — 360 = 2°. On the other hand, Proof A relatively lacks
generalisability because the idea of this proof is not applicable to the star-odd polygon
case. Note that the discussion here is just an example; some proofs may have both
coherence and generalisability, and other proofs may have neither.

METHODS
Background

The study reported in this paper consisted of two parts; one part involved designing
and implementing a series of proof tasks related to star polygons over four 50-minute
lessons in a secondary school classroom (Komatsu et al., in press), and the other part
involved conducting a questionnaire after the lessons to investigate how the students
appraised two proofs of the aforementioned statement about the star octagon case. This
paper presents the results of the second part. In a later section, we briefly describe the
implemented lessons because the results of the questionnaire would be influenced by
the features of those lessons.

Questionnaire and participants

We produced a questionnaire presenting two proofs almost identical to Proof A and
Proof B shown in Figure 2 and then asking, “Which method do you use for finding the
sum of the interior angles of a star octagon, Proof A or Proof B? Describe the reason
for your choice”. We decided to ask such a question because we expected that if stu-
dents were requested to select either of the two proofs with explaining the reasons for
their choices, they would express their appraisal of the advantages of the two proofs
more explicitly.

This questionnaire was implemented with 39 eighth-grade students (13—14 years old)
in a Japanese lower secondary school affiliated with a national university. The
mathematical capabilities of the students were above average for Japan according to
their teacher (the fifth author of this paper). The students had covered in class the
knowledge necessary to understand the two proofs (e.g. the interior/exterior angle sum
theorems of polygons).

Procedure of data analysis

Although our questionnaire was based on a single task, we obtained rich data where the
students fully explained the reasons why they preferred one proof to the other proof.
Hence, we analysed the students’ responses in a qualitative way, coding their responses
and then counting the number of students referring to each code in order to investigate
what aspects of each proof tended to be appraised by the students. Our coding proce-
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dure was as follows. The first author split each of the students’ descriptions of their
proof appraisals into several segments; there were 97 segments in total for the 39
students (which shows the richness of our data). Temporal codes were then devised to
denote these segments. After that, if certain codes were found to be similar, they were
unified into a single code. The second author then checked the appropriateness of the
coding, and any discrepancies were discussed until the authors reached a consensus
(see Tables 2 and 3 for identified codes and their distributions).

Lessons implemented before the questionnaire

As mentioned earlier, our questionnaire was conducted after the implementation of a
series of tasks about star polygons over four lessons. Because space here is limited, we
give only a brief summary of the implemented lessons, in Table 1 (for more details, see
Komatsu et al., in press). The students explored the sums of the interior angles of
various star polygons in the lessons. As shown in Table 1, they had had the experience
of constructing both Proof A and Proof B before the questionnaire. In particular, in the
fourth lesson, they had recognised the generalisability of Proof B, where they found
that this proof idea could be applied to all the star polygons. They also invented an
algebraic expression for the interior angle sum of a star polygon: 180n — 720 = 180(n —
4) (where n is the number of the vertices of the star polygon).

Lesson  Star polygons investigated in each lesson

1% lesson  Star pentagon
2" Jesson  Star-even polygons (e.g. constructing Proof A for a star octagon)

3" ]esson  Star-odd polygons (considering ‘outside triangles’ and ‘inside
polygons’ like Proof B)

4™ lesson  Star-even polygons revisited (e.g. constructing Proof B for a star
octagon) and then star polygons in general

Table 1: Summary of the implemented lessons
RESULTS

In the questionnaire, 27 students selected Proof A and 12 students selected Proof B. As
a result of coding their proof appraisals, we found that most of the codes could be
divided into two types. The first type showed what aspects of each proof the students
appraised, while the second type represented the relativeness of the students’ proof
appraisals (e.g. whether they thought that their proof choices depended on situations).
Below, we show the obtained results by type. English translations of the students’
responses are rendered from the original Japanese by the authors.

Students’ reasons for their proof appraisals

Table 2 shows our classification for the first type of codes, showing what aspects of
each proof the students appraised and how many students referred to those aspects. For
each proof, the sum of the numbers for all codes is larger than the number of students
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who selected the proof because there were cases where the proof appraisal by a given
student was related to multiple codes.

Selecting Proof A (n=27)  Selecting Proof B (n=12)

Code # % in Proof A # % in Proof B
Simple 20 74% 2 17%
Brief 6 22% 1 8%
Understandable 4 15% 2 17%
Free from error 4 15% 0 0%
Immediate 3 11% 0 0%
Generalisable 0 0% 8 67%
Advantage of formula 0 0% 4 33%

Table 2: Students’ reasons for their proof appraisals

For the selection of Proof A, the most frequent code is simple (indicating that the de-
scription of the proof is mathematically simple). This code is also related to other
codes, such as brief (which means that the proof requires only a single calculation).
Below are examples of students’ responses for each of these (we use parentheses to
show codes assigned to each response):

S1: Because there are two polygons, if the sums of the interior angles of these polygons
can be found, it can be easily solved. (simple)

S2: Proof A does not require complicated calculations, and the answer can be found with
a single calculation. (simple and brief)

As can be seen above, students selecting Proof A considered this proof to be simple
and brief because it required only a property well-known by the students (the interior
angle sum of a quadrilateral) and a single calculation. These students focused on a
specific case mentioned in the questionnaire (the star octagon).

Students choosing Proof B had a different viewpoint, in which they took other star
polygons into consideration; the most common reason for the selection of this proof is
thus represented by the code generalisable. This code is also related to the code ad-
vantage of formula:

S3: If we know that the sum of the interior angles of a triangle is 180°, calculate 180 x 8
since 180 x star octagon. Because the sum of exterior angles is always 360°, this method
can be used for all cases. (generalisable)

S4:180(n —4) -> 180 % 4 = 720. The formula is easy. It has applicability, it can be used
for odd cases, and if we use the formula, other problems can be solved as well. Dividing
into odd and even cases is bothering. (advantage of formula, generalisable, and simple)

As shown earlier, the idea represented in Proof B can be generalised to all star poly-
gons, and students choosing this proof appreciated this generalisability. In the lessons
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implemented before the questionnaire, the students found that the sum of the interior
angles of a star polygon can be expressed as 180(n — 4) (see the methods section). So-
me students, such as S4, mentioned the advantage of using this algebraic expression.

Relativeness of students’ proof appraisal

The second type of codes, which represent the relativeness of the students’ appraisals
of the two proofs, i1s summarised in Table 3.

Selecting Proof A (n=27)  Selecting Proof B (n = 12)

Code # % in Proof A # % 1n Proof B
Depending on situation 9 33% 1 8%
Appreciation of the 3 11% 1 8%
other proof

Limitation of the se- 2 7% 0 0%
lected proof

Criticism of the other 2 7% 6 50%
proof

Table 3: Relativeness of students’ proof appraisals

One code in this type is depending on situation: nine students selecting Proof A stated
that they would choose Proof B if the number of the vertices of the star polygon had
been different. Other relevant codes are appreciation of the other proof and limitation
of the selected proof: some students choosing Proof A mentioned the value of Proof B
as well as the limitations of Proof A:

S5: When finding the sum of the interior angles of a star polygon in future, I will use
Proof A in the case where the number of vertices is even, and Proof B in the odd case.
(depending on situation)

S6: When finding the sum of the interior angles of a star polygon, I feel that Proof B is

good as it can be used for odd and even cases. For the even case where it is obvious that
polygons overlap, I want to use Proof A. (appreciation of the other proof)

S7: Although Proof A can be used only for the case where the number of vertices is even,
it is simple, and thinking and calculation are easy. (limitation of the selected proof and
simple)
Students can be regarded as relatively appraising Proof A if they referred to the code
depending on situation, appreciation of the other proof, or limitation of the selected
proof. This is because these students not only appraised Proof A, but also recognised
the limitations of Proof A and the advantage of Proof B. In the questionnaire, 13 stu-
dents selecting Proof A (48% of that group) appraised it relatively.

On the other hand, half of the students selecting Proof B explicitly criticised Proof A,
making criticism of the other proof a common code for Proof B but not Proof A:

3-232 PME 42 - 2018



Komatsu, Yamazaki, Fujita, Jones, & Sue

S8: The star octagon case can be solved with the method of Proof A, but the star heptagon
case etc. cannot be solved with the method of Proof A. The method of Proof B can be
commonly used for all of star polygons, so I will use the method of Proof B. (criticism of
the other proof and generalisable)

In relation to this, only one student referred to the code depending on situation for
Proof B, and the same is the case for appreciation of the other proof. Thus, students
selecting Proof B tended to appraise this proof absolutely rather than relatively.

DISCUSSION

In this paper, we have examined how secondary school students appraised two dif-
ferent proofs of the same statement. To this end, we employed Raman-Sundstrom and
Ohman’s (in press) notions of direct fit and familial fit to prepare two contrasting
proofs. In the implemented questionnaire, the most common reasons for selecting
Proof A and Proof B were respectively simplicity and generalisablity. Although more
students preferred Proof A to Proof B, proof appraisals by almost half of the students
selecting Proof A were relative, indicating that they recognised the limitations of Proof
A and the value of Proof B in terms of generalisability.

Our findings may raise an issue for mathematics teachers and mathematics education
researchers. Proof B can be generalised to all star polygons, and generalisation is much
appreciated in the mathematics education community (e.g. Mason, 2002). General-
isable proofs, or proofs that can be used for different purposes, are highly evaluated in
mathematicians’ practice as well (Hanna & Barbeau, 2008; Weber & Mejia-Ramos,
2011). However, in our study, when asked to select either the simple proof or the
generalisable proof, the students tended to prefer the former. This may relate to stu-
dents’ emerging mathematical values (Seah, 2016). It may be that there is a ‘gap’
between the type of mathematical value appreciated by students aged 13—14 years old
and that by teachers and researchers (mathematics education researchers and mathe-
maticians).

That said, a note of caution is that this ‘gap’ may have arisen from the specificity of our
questionnaire where the students were shown a single case (the star octagon) and were
asked to select a proof only for this case. In fact, as mentioned above, there were stu-
dents who preferred the simple proof (Proof A) and, at the same time, appreciated the
generalisability of Proof B. Hence, it would be necessary to explore further the gap
found in this study by asking different types of questions and adopting different
methodologies.

While our questionnaire was based on a single task and implemented with only a re-
latively small number of students, and, as such, we do not intend to assert the genera-
lisability of all our results, several of the codes that we devised for representing stu-
dents’ proof appraisals may be useful beyond our study. Inglis and Aberdein (2014,
2016) classified mathematicians’ proof appraisals, and intricacy (its opposite) and
utility in their classification are respectively related to simplicity and generalisability
among our codes. Given that simplicity and utility are observed in studies involving
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different groups (students and mathematicians), these codes, on the one hand, may
likely be employed to represent proof appraisals in general. On the other hand, other
codes used here (e.g. depending on situation and appreciation of the other proof) are
probably best considered as being specific to our study, derived from the specific
question in our questionnaire where the students were shown multiple valid proofs of a
statement and were asked to show their preferences. Thus, these codes may be useful
for capturing students’ proof appraisals in similar contexts.
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