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—— Abstract

The Calculus of Conjunctive Queries (CCQ) has foundational status in database theory. A
celebrated theorem of Chandra and Merlin states that CCQ query inclusion is decidable. Its
proof transforms logical formulas to graphs: each query has a natural model—a kind of graph—
and query inclusion reduces to the existence of a graph homomorphism between natural models.

We introduce the diagrammatic language Graphical Conjunctive Queries (GCQ) and show
that it has the same expressivity as CCQ. GCQ terms are string diagrams, and their algebraic
structure allows us to derive a sound and complete axiomatisation of query inclusion, which
turns out to be exactly Carboni and Walters’ notion of cartesian bicategory of relations. Our
completeness proof exploits the combinatorial nature of string diagrams as (certain cospans of)
hypergraphs: Chandra and Merlin’s insights inspire a theorem that relates such cospans with
spans. Completeness and decidability of the (in)equational theory of GCQ follow as a corol-
lary. Categorically speaking, our contribution is a model-theoretic completeness theorem of free
cartesian bicategories (on a relational signature) for the category of sets and relations.
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1 Introduction

Conjunctive queries (CCQ) are first-order logic formulas that use only relation symbols,

equality, truth, conjunction, and existential quantification. They are a kernel language of

queries to relational databases and are the foundations of several languages: they are select-

project-join queries in relational algebra [16], or select-from-where queries in SQL [13]. While

expressive enough to encompass queries of practical interest, they admit algorithmic analysis:

n [14], Chandra and Merlin showed that the problem of query inclusion is NP-complete.
For an example of query inclusion in action, consider formulas

¢ =201 (w0 = 21) AR(w0, 20) and ¢ = 3z, z1: R(xo, 20) AR(21, 20) ANR(0, 21) AR(21, 21),

with free variables xg, x1. Irrespective of model, and thus the interpretation of the relation
symbol R, every free variable assignment satisfying ¢ satisfies ¢: i.e. ¢ is included in .

Chandra and Merlin’s insight involves an elegant reduction to graph theory, namely the
existence of a hypergraph homomorphism from a graphical encoding of ¥ to that of ¢. Below
on the left we give a graphical rendering of ) and ¢, respectively: vertices represent variables,
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Graphical Conjunctive Queries

while edges are labelled with relation symbols. The dotted connections are not, strictly
speaking, a part of the underlying hypergraphs. They constitute an interface: a mapping

o~ oo

from the free variables {xg, 1} to the vertices. The aforementioned query inclusion is
witnessed by an interface-preserving hypergraph homomorphism, displayed above on the
right. In category-theoretic terms, hypergraphs-with-interfaces are discrete cospans, and the
homomorphisms are cospan homomorphisms.

In previous work [5], the first and third authors with Gadducci, Kissinger and Zanasi
showed that such cospans characterise an important family of string diagrams—i.e. diagram-
matic representations of the arrows of monoidal categories—namely those equipped with
an algebraic structure known as a special Frobenius algebra. This motivated us to study
the connection between this fashionable algebraic structure—which has been used in fields
as diverse as quantum computing [1, 17, 30, 25], concurrency theory [7, 8, 10, 9], control
theory [6, 3] and linguistics [31]—and conjunctive queries.

We introduce the logic of Graphical Conjunctive Queries (GCQ). Although superficially un-
like CCQ, we show that it is equally expressive. Its syntax lends itself to string-diagrammatic
representation and diagrammatic reasoning respects the underlying logical semantics. GCQ
string diagrams for ¢ and ¢ are drawn below. Note that, while GCQ syntax does not have
variables, the concept of CCQ free variable is mirrored by “dangling” wires in diagrams.

While interesting in its own right as an example of a string-diagrammatic representation
of a logical language—which has itself become a topic of recent interest [21]—GCQ comes
into its own when reasoning about query inclusion, which is characterised by the laws of
cartesian bicategories. This important categorical structure was introduced by Carboni and
Walters [12] who were, in fact, aware of the logical interpretation, mentioning it in passing
without giving the details. Our definition of GCQ), its expressivity, and soundness of the laws
of cartesian bicategories w.r.t. query inclusion is testament to the depth of their insights.

The main contribution of our work is the completeness of the laws of cartesian bicategories
for query inclusion (Theorem 17).

As a side result, we obtain a categorical understanding of the proof by Chandra and Merlin.
This uncovers a beautiful triangle relating logical, combinatorial and categorical structures,
similar to the Curry-Howard-Lambek correspondence relating intuitionistic propositional
logic, A-calculus and free cartesian closed categories.

Chandra and Merlin [14]
Logical —

8! hypergraphs
CCQ=GCQ with interfaces

Theorem 17 % 31

Categorical
free cartesian bicategories

Combinatorial
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The rightmost side of the triangle (Theorem 31) provides a combinatorial characterisation
of free cartesian bicategories as discrete cospans of hypergraphs, with the Chandra and
Merlin ordering: the existence of a cospan homomorphism in the opposite direction. This
result can also be regarded as an extension of the aforementioned [5] to an enriched setting.
The fact that the Chandra and Merlin ordering is not antisymmetric forces us to consider
preorder-enrichment as opposed to the usual [12] poset-enrichment of cartesian bicategories.!

The step from posets to preorders is actually beneficial: it provides a one-to-one correspon-
dence between hypergraphs and models which we see as functors, following the tradition of
categorical logic. The model corresponding to a hypergraph G is exactly the (contravariant)
Hom-functor represented by GG. By a Yoneda-like argument, we obtain a “preorder-enriched
analogue” of Theorem 17 (Theorem 37). With this result, proving Theorem 17 reduces to
descending from the preorder-enriched setting down to poset-enrichment.

Working with both poset- and preorder-enriched categories means that there is a relatively
large number of categories at play. We give a summary of the most important ones in the
table below, together with pointers to their definitions. The remainder of this introduction is
a roadmap for the paper, focussing on the roles played by the categories mentioned below.

preordered posetal
free categories CB; (Def 29) CBs (Def 21)
semantic domains for the logic Span< Set (Def 33) Rel (Ex 20)
combinatorial structures CspS FHypsy, (Def 26) -

We begin by justifying the “equation” CCQ=GCQ in the triangle above: we recall CCQ
and introduce GCQ in Sections 2 and 3, respectively, and show that they have the same
expressivity. We explore the algebraic structure of GCQ in Sections 4 and 5, which—as we
previously mentioned—is exactly that of cartesian bicategories. As instances of these, we
introduce CBy;, the free cartesian bicategory, and Rel, the category of sets and relations.

In Section 6 we introduce preordered cartesian bicategories (the free one denoted by (CIB%%)
and the category of discrete cospans of hypergraphs with the Chandra and Merlin preorder,
denoted by Csp= FHyps,. Theorem 31 states that these two are isomorphic.

Theorem 37 is proved in Section 7. Rather than Rel, the preordered setting calls for
models in Span= Set, the preordered cartesian bicategory of spans of sets. In Section 8, we
explain the passage from preorders to posets, completing the proof of Theorem 17.

We delay a discussion of the ramification of our work, a necessarily short and cursory
account—due to space restrictions—of the considerable related work, and directions for future
work to Section 9. We conclude with the observation that (4) the diagrammatic language
for formulas, (¥i) the semantics, e.g. of composition of diagrams—what we understand in
modern terms as the combination of conjunction and existential quantification—and (i)
the use of diagrammatic reasoning as a powerful method of logical reasoning actually go
back to the pre-Frege work of the 19th century American polymath CS Peirce on existential
graphs. Interestingly, it is only recently (see, e.g. [29]) that this work has been receiving the
attention that it richly deserves.

Preliminaries. We assume familiarity with basic categorical concepts, in particular symmet-
ric monoidal, ordered and preordered categories. We do not assume familiarity with cartesian
bicategories: the acquainted reader should note that what we call “cartesian bicategories”

1 While cartesian bicategories were later generalised [11] to a bona fide higher-dimensional setting, our

preorder-enriched variant seems to be an interesting stop along the way.
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are “cartesian bicategories of relations” in [12]. A prop is a symmetric strict monoidal
category where objects are natural numbers, and the monoidal product on objects is addition
m @®n :=m+ n. Due to space restrictions, most proofs are in the Appendix.

2 Calculus of Conjunctive Queries

Assume a set ¥ of relation symbols with arity function ar : ¥ — N and a countable set
Var = {x;|i € N} of variables. The grammar for the calculus of conjunctive queries is:

=T |OAD |z, =x; | R(Z)| 2.0 (CCQ)

where R € ¥, ar(R) = n, and Z is a list of length n of variables from Var. We assume the
standard bound variable conventions and some basic metatheory of formulas; in particular we
write (;5[? / @’], where ;, 5 are variable lists of equal length, for the simultaneous substitution
of variables from 2 for variables in g_] We write z[m,n]v where m < n, for the list of variables
Ty Tont1, - - - Tn. Given a formula ¢, fv(¢) is the set of its free variables.

The semantics of (CCQ) formulas is standard and inherited from first order logic.
» Definition 1. A model M = (X, p) is a set X and, for each R € ¥, a set p(R) C X (1),

Given a model M = (X, p), the semantics [¢] s is the set of all assignments of elements from
X to fu(¢) that makes it evaluate to truth, given the usual propositional interpretation.

In order to facilitate a principled definition of the semantics (Definition 3) and to serve
the needs of our diagrammatic approach, we will need to take a closer look at free variables.
To this end, we give an alternative, sorted presentation of (CCQ) that features explicit free
variable management. As we shall see, the system of judgments below will allow us to derive
n F ¢ where n € N, whenever ¢ is a formula of CCQ and fv(¢) C {zo,...,Tn_1}

Re¥ ar(R)=n nk¢

—(T) )y ——— (3

OFT nl—R(ato,...,xn,l)( ) n—waxn,l.qb()
- -

(=) mro nte (")

2F 2o =1 m+ntgA (w[x[m,m+n71]/x[0,zn,1]]>

Note that the above are restrictive: e.g. (A) enforces disjoint sets of variables, and (3) allows
quantification only over the last variable. To overcome these limitations we include three
structural rules that allow us to manipulate (swap, identify, and introduce) free variables.

nkF¢ (0<k<n-—1) nk o nk¢
SWn’k) (Idn) - (Nun)
n b ¢lrrr1, Th/Th, i) n—1F ¢lrp_o/Tn_1] n+1lk¢

Rule Sw allows us to swap two free variables. Alone, Id identifies the final and the penultimate
free variable; used together with Sw it allows for the identification of any two. Finally, Nu
introduces a free variable. The eight suffice for any CCQ formula, in the following sense:

» Proposition 2. ¢ is a formula derived from (CCQ) with fu(¢) C {xg,...,2n-1} iff nF ¢.

We use the sorted presentation to define the semantics.
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for T = {o} (T) (4, 0,w, ©) € [nrolarssar/orernllm & (4, 0,0, %) € [a-sla (Swak)
[n+Rzorn)]m = p(R) (%) (V,w) € [n-1-len_s/zn )M < (U, w,w) € [n-elar (Idn)
[2rzo=2]m = {(v,v) |v € X} (=) ¥ € [n-1r3zn 1 .6]m < Fw € X. (0, w) € [nrs]a (3)
[r+1-6)am = [nre]am X X (Nuyp) [mnkon@l..D]m = [mFg]at X [nFw]ar (A)

Figure 1 Semantics of CCQ for a model M = (X, p). We write o for the unique element of X°.

» Definition 3. Given a model M = (X, p), the semantics of n - ¢ is a set of tuples
[nF ¢]am € X™. We define it in Figure 1 by recursion on the derivation of n b ¢.

Finally, we define the concepts that are of central interest: query equivalence and inclusion.

» Definition 4. Given n F ¢ and n F v, we say that ¢ and 1 are equivalent and write
¢ = if for all models M we have [n F ¢y = [n F ¢Y]ar. We write ¢ < 1) when, for all M,

[nkE é]Jm C[nt ). Clearly ¢ < 9 and ¢ < ¢ implies ¢ = ).
3  Graphical conjunctive queries

REX . m ci(n,z) d:(z,m) c:(n,m) d:(p,q)

—(12) (10 pinmy P—@D e—:(0.1) [ 10,0 —:11) XT:(22) s (my ) c@d: (ntp, mta)

Figure 2 Sort inference rules.

We introduce an alternative logic, called Graphical Conjunctive Queries (GCQ). GCQ
and CCQ are—superficially—quite different. Nevertheless, in Propositions 9 and 10 we show
that they have the same expressive power. The grammar of GCQ formulas is given below.

c:::4\{|}|F|::_;|—|>C|c@c\c;c|R (GCQ)

GCQ syntax is a radical departure from (CCQ). Rather than use CCQ’s existential quantifi-
cation and conjunction, GCQ uses the operations of monoidal categories: composition and
monoidal product. There are no variables, thus no assumptions of their countable supply,
nor any associated metatheory of capture-avoiding substitution.

The price is a simple sorting discipline. A sort is a pair (n, m), with n,m € N. We
consider only terms sortable according to Figure 2. There and in (GCQ), R ranges over the
symbols of a monoidal signature 3, a set of relation symbols equipped with both an arity and
a coarity: Xy n, consists of the symbols in ¥ with arity n and coarity m. A GCQ signature
plays a similar role to relation symbols in CCQ: we abuse notation for this reason. A simple
induction shows sort uniqueness: if ¢ : (n, m) and ¢ : (n/, m’) then n = n’ and m = m’.

In (GCQ) we used a graphical rendering of GCQ constants. Indeed, we will not write
terms of GCQ as formulas, but instead represent them as 2-dimensional diagrams. The
justification for this is twofold: the diagrammatic conventions introduced in this section mean
that a diagram is a readable, faithful and unambiguous representation of a sorted (GCQ)
term. More importantly, our characterisation of query inclusion in subsequent sections
consists of intuitive topological deformations of the diagrammatic representations of formulas.

A GCQ term ¢ : (n, m) is drawn as a diagram with n “dangling wires” on the left,
and m on the right. Roughly speaking, dangling wires are GCQ’s answer to the free
variables of CCQ. Composing (;) means connecting diagrams in series and tensoring means

12:5
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= {@ () leeX}  [olu={@e)|ecX} [odu=I[dudlu [ Tu=1{(e0)
DI ={((©)2) lee X} [odm={(2)[2eX} [eidlp=[dn:lda  [Rlu=p(R)
Sl ={((): () 12y e X} [lu=1{(2) |z X}

Figure 3 Semantics of GCQ for a model M = (X, p). We used the notation R ; S = {(z,2) | Iy €
Y s.t. (z,y) € Rand (y,2) € S} and R S = {((2), (Z)) | (z,y) € R and (u,v) € S}. e is the

o

unique element of X° and ( ' ) an element of X".

stacking. The shorthand -~ stands for m wires in parallel. The box 7™ stands

for a relation symbol R € %, ,,. Thus, given ¢ : (n, m), ¢ : (m, k), ¢ ; ¢ : (n, k)
~, and given d : (p, q), c®d : (n+ p, m + q) is drawn :.I )

is drawn !
;
1
1

» Example 5. Consider (— @ —«_) ®{ );(R® S) : (2, 1), assuming
R € Xy, 5 € ¥1,1. Its diagrammatic render-ir-lg is on the right. Note that the
use of the dotted boxes induces a tree-like quality to diagrams. Indeed, they
are a faithful representation for syntactic terms constructed from (GCQ).

We now turn to semantics. First, the notion of model of GCQ is similar to a model of CCQ.
» Definition 6. A model M = (X, p) is a set X and, for each R € X, ., p(R) C X™ x X™.

Given a model M = (X, p), the semantics of ¢ : (n, m) is the relation [¢]Jp € X™ x X™
defined recursively in Figure 3. Armed with a notion of semantics, we can define query
equivalence (=) and inclusion (£) for GCQ terms analogously to Definition 4.

» Example 7. Consider the GCQ term {e—e ! of sort (0, 0). For a model M = (X, p), its

semantics [[ o]0 € X0 x XY is either the empty relation ), if X is empty, or the relation

{(e, @)}, if X is not empty. Since ) C {(e, )}, and since [[ | = {(o, )} for all models M,

it holds that {e—e{ < "% Intuitively, the first term corresponds to the CCQ formula Jz.T,

holding in all non en;i)-t‘y models, while the second corresponds to the formula T. In the
remainder of this section we will make this intuition precise.

3.1 Expressivity

We now give a semantics preserving translation © from CCQ to GCQ. For each CCQ
relation symbol R € ¥ of arity n, we assume a corresponding GCQ symbol R € ¥,, . Using
Proposition 2, it suffices to consider judgments n - ¢. For each, we obtain a GCQ term
O(n F ¢) : (n, 0). The translation O, given in Figure 4, is defined by recursion on the
derivation of n F ¢. Given a CCQ model M = (X, p), let O(M) = (X, p’) be the obvious
corresponding GCQ model: p'(R) = p(R) x {e}. The following confirms that semantics is
preserved.

» Proposition 8. For a CCQ model M = (X, p): v € [n+ ¢p]am iff (v, o) € [O(n F ®)]ewm)-
Furthermore, to characterise query inclusion in CCQ), it is enough to characterise it in GCQ.

» Proposition 9. For all CCQ formulas nt ¢ and nt Y, ¢ Sccg ¥ iff O(0) Scco OW).
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_____________

_ :: Tomra]!
On+1k¢) = iy i (Nuy) __m

Figure 4 Translation © from CCQ to GCQ.

Proposition 8 yields the left-to-right direction. For right-to-left, we give a semantics-preserving
translation A from GCQ to CCQ in Appendix A. Modulo =, A is inverse of ©.

» Proposition 10. There exists a semantics preserving translation A from GCQ to CCQ
such that for all GCQ terms c,d: (n, m), it holds that ¢ Sqcqg d iff Alc) Sccg Ad).

Propositions 9 and 10 together imply that CCQ and GC'Q have the same expressive power.

» Example 11. Recall from Example 7, that H is related to dx.T. By translating the

syntactically—but they are equal modulo =. Note that their diagrams are similar: in the
next section, we prove that terms differing only by dashed boxes are equal modulo =.

4 From terms to string diagrams

The first step towards an equational characterisation of query inclusion is to move from GCQ),
where the graphical notation was a faithful representation of ordinary syntactic terms, to
bona fide string diagrams; that is, graphical notation for the arrows of a prop, a particularly
simple kind of symmetric monoidal category (SMC). This is an advantage of GCQ syntax: its
operations are amenable to an elegant axiomatisation. A hint of the good behaviour of GCQ
operations is that query inclusion (and, therefore, query equivalence is) a (pre)congruence.

» Lemma 12.
(i) Lete,d : (n,m) and d,d" : (m, k) withc < andd < d'. Then (c;d) < (¢ ;d).
(ii) Let ¢,c’ : (n, m) and d,d: (p, q) withc < ¢ andd < d Then (c®d) S (& d').

We now consider the laws of strict symmetric monoidal categories (Figure 5) and discover
that any two GCQ terms identified by them are logically equivalent. This means that we
can eliminate the clutter of dashed boxes from our graphical notation.

» Proposition 13. = satisfies the axioms in Figure 5.

12:7
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Figure 5 Axioms of strict symmetric monoidal categories. Wire annotations in (7)-(v) have been
omitted for clarity.

The terms of GCQ up-to query equivalence, therefore, organise themselves as arrows of
a monoidal category (axioms (i)-(v)), and the operation of “erasing all dotted boxes” from
diagrams is well-defined. The resulting structure is the well-known combinatorial/topological
concept of string diagram. Equality reduces to the connectivity of their components, and is
thus stable under intuitive topological transformations, known as diagrammatic reasoning.
For instance, axioms (ii) and (v) in Figure 5 imply that for ¢y : (m1, n1) and ¢z : (mg, na)

Axioms (vi)-(viii) assert that GCQ terms modulo = form a symmetric monoidal category
(SMC). Therein, —x_ stands for the crossing of n wires over m wires. This has a standard

recursive definition, using ~<_, — and the operations of GCQ. Intuitively, boxes “slide over”
wire crossings. Moreover, it is well-known that (vi) and (vii) of Figure 5 imply the Yang-
Baxter equation for crossings, which—with (viié)—implies that in diagrammatic reasoning
wires do not “tangle” and crossings act like permutations of finite sets.

5 Axiomatisation

We have seen that, up-to query equivalence, GCQ enjoys the structural properties of SMCs.
Here we give further properties that characterise query equivalence (=) and inclusion ().

Our first observation is that »— and e— form, modulo =, a commutative monoid,
i.e., they satisfy axioms (A), (C) and (U) in Figure 6. Similarly, —« and —e form a
cocommutative comonoid (axioms (A°P), (C°P) and (U°P)). Monoid and comonoid together
give rise to a special Frobenius bimonoid (axioms (S) and (F)), a well-known algebraic

structure that is important in various domains [1, 17, 7, 6].
» Proposition 14. = satisfies the axioms in Figure 6.

Figure 7 shows a set of properties of query inclusion. The two axioms on the left state
that —e is the left adjoint of &— and the central axioms assert that —« is the left adjoint

of “w—. For the rightmost ones, it is convenient to introduce some syntactic sugar: "«

“»—, —e and e~ stand for the n-fold versions of monoid and comonoid. Now, axiom (L;)

asserts that laxly commutes with e, while axiom (Ls) states that it laxly commutes

with "« . In a nutshell, is required to be a lax comonoid morphism.
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» Proposition 15. < satisfies the axioms of Figure 7.

e i

Figure 6 Axioms for special Frobenius bimonoids.

e e
_C

Figure 7 Axioms for adjointness of —e and e— (left) adjointness of —&  and »— (center) lax
comonoid morphism (right).

Interestingly, the observations we made so far suffice to characterise query equivalence
and inclusion. This is the main theorem which we will prove in the remainder of this paper.

» Definition 16. The relation <cp, on the terms of GCQ is the smallest precongruence
containing the equalities in Figures 5, 6, their converses and the inequalities in Figure 7. The
relation =cp,, is the intersection of <cp,, and its converse.

» Theorem 17. <¢p ==

» Remark. There is an apparent redundancy in Figure 7: (CM) follows immediately from (.S)
in Figure 6, while (S) can by derived from (CU), (U°P) and (U) for one inclusion and (CM)
for the other. We kept both (CM) and (S) because, as we shall see in §6, it is important to
keep the algebraic structures of Figures 6 and 7 separate.

» Example 18. Recall the example from the Introduction. We can now prove the inclusion
of queries using diagrammatic reasoning, as shown below. In the unlabeled equality we make
use of the well-known spider theorem, which holds in every special Frobenius algebra [27].

(L) (MC)
S e

%) vt et @

5.1 Cartesian bicategories

The structure in Figures 6 and 7 is not arbitrary: these are exactly the laws of cartesian
bicategories, a concept introduced by Carboni and Walters [12], that we recall below.

» Definition 19. A cartesian bicategory is a symmetric monoidal category B with tensor &
and unit I, enriched over the category of partially ordered sets, such that:

12:9

CSL 2018



12:10

Graphical Conjunctive Queries

1. every object X has a special Frobenius bimonoid: a monoid )ﬁ XX 5 X, 01—
X, a comonoid X—C: X 5 X ® X, Ze: X — I satisfying the axioms in Figure 6;

2. the monoid and comonoid on X are adjoint (axioms in Figure 7, left and center);

3. every arrow R: X — Y is a lax comonoid morphism (axioms in Figure 7, right).

Furthermore, a morphism F of cartesian bicategories is a functor F: By — By preserving

the tensor, the partial orders and the monoid and comonoid on every object.

» Example 20. The archetypal cartesian bicategory is the category of sets and relations
Rel, with cartesian product X as tensor and 1 = {e} as unit. To be precise, Rel has
sets as objects and relations R C X X Y as arrows X — Y. Composition and ten-
sor are defined as in Figure 3. For each set X, the monoid and comonoid structure is:

= {(2) |re X}, Fo={(z,0) [z € X}, ™ ={((§),2) [z € X}, o= ={(o,) [z € X}.

Cartesian bicategories allow us to employ the usual construction from categorical logic:
the arrows of the cartesian bicategory freely generated from ¥ are GCQ terms modulo =cg,;,
and morphisms from this cartesian bicategory to Rel are exactly GCQ models.

» Definition 21. The ordered prop CBy has GCQ terms of sort (n, m) modulo =cp,, as
arrows n — m. These are ordered by <cg,.

» Lemma 22. CBy, is a cartesian bicategory.

» Proposition 23. Models of GCQ (Definition 6) are in bijective correspondence with
morphisms of cartesian bicategories CBy, — Rel.

6 Discrete cospans of hypergraphs

In order to prove Theorem 17, in this section we give a combinatorial characterisation of free
cartesian bicategories as hypergraphs-with-interfaces, formalised as a (bi)category of cospans
equipped with an ordering inspired by Merlin and Chandra [14].

Indeed, the appearance of graph-like structures in the context of conjunctive queries
should not come as a shock. Merlin and Chandra, to compute inclusion ¢ < 1) of CCQ queries,
translate them into hypergraphs G, Gy with “interfaces” that represent free variables. Then
¢ < o iff there exists an interface-preserving homomorphism from Gy to Gyg.

6.1 Hypergraphs and Cospans

Our goal in this part is the characterisation of GC(Q diagrams as certain combinatorial
structures. We start by introducing the notion of X-hypergraph.

» Definition 24 (X-hypergraph). Let ¥ be a monoidal signature. A Y-hypergraph G is a set
Gy of vertices and, for each R € ¥,, ,,, a set of R-labeled hyperedges Gr, with source and
target functions sg: Gr — (Gyv)™, tr: Gr — (Gy)™. A morphism f: G — G’ is a function
fv: Gy = G, and a family fr: Gr — G, for each R € ¥, ,,, s.t. the following commutes.

(Gv)" GRS (Gy)™

fv\L le ifv

(Gv)" o G (Gy)™
Sp Utk

A Y-hypergraph G is finite if Gy and Gy are finite. Y-hypergraphs and morphisms form the
category Hypsy,. Its full subcategory of finite ¥-hypergraphs is denoted by FHyps..
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We visualise hypergraphs as follows: e is a vertex and is a hyperedge with ordered
tentacles. An example is shown below left, where S € ¥;y and R € ¥5 ;.

In order to capture GCQ diagrams, we need to equip hypergraphs with interfaces, as
illustrated in (1) on the right. Roughly speaking, an interface consists of two sets, called the
left boundary and the right boundary. Each has an associated function to the underlying set
of hypergraph vertices, depicted by the dotted arrows. Graphical structures with interfaces
are common in computer science, (e.g., in automata theory [22], graph rewriting [18], Petri
nets [32]). Categorically speaking, they are (discrete) cospans.

» Definition 25 (Cospan). Let C be a finitely cocomplete category. A cospan from X to Y is a
pair of arrows X — A + Y in C. A morphism a: (X - A+ Y) = PN
(X = B+« Y)isanarrow a: A — B in C s.t. the diagram on the right X la Y (2)
commutes. Cospans X — A+ Y and X — B « Y are isomorphic if \ B /

idx

there exists an isomorphism A — B. For X € C, the identity cospan is X I, x Jdx
The composition of X — A LyandYy LB ZisX = A +¢.9 B + Z, obtained by
taking the pushout of f and g. This data is the bicategory [4] Cospan(C): the objects are
those of C, the arrows are cospans and 2-cells are homomorphisms. Finally, Cospan(C) has
monoidal product given by the coproduct in C, with unit the initial object 0 € C.

To avoid the complications of non-associative composition, it is common to consider
a category of cospans, where isomorphic cospans are equated: let therefore Cospan=C be
the monoidal category that has isomorphism classes of cospans as arrows. Note that,
when going from bicategory to category, after identifying isomorphic arrows it is usual
to simply discard the 2-cells. Differently, we consider Cospan=C to be locally preordered
with (X - A« Y) < (X — B+ Y) if there exists a morphism « going the other way:
a: (X > B+Y)= (X > A« Y). Itisan easy exercise to verify that this (pre)ordering is
well-defined and compatible with composition and monoidal product. Note that, in general,
< is a genuine preorder: i.e. it is possible that both (X - A+ Y) < (X — B+ Y) and
(X > B<+Y)<(X = A+ Y) without the cospans being isomorphic.

Armed with the requisite definitions, we can be rigorous about hypergraphs with interfaces.

» Definition 26. The preorder-enriched category Csp= FHypy, is the full subcategory of
Cospan= FHypy, with objects the finite ordinals and arrows (isomorphism classes of) finite
hypergraphs, inheriting the preorder. We call its arrows discrete cospans.

The above deserves an explanation: an ordinal n can be considered as the discrete hypergraph
with vertices {0,...,n—1}. An arrow n — m in Csp= FHypsy, is thus a cospan n — G < m
where G is a hypergraph and n — G and m — G are functions to its vertices. The picture
in (1) shows a discrete cospan 3 — 1, with dotted lines representing the two morphisms.

6.2 Preordered cartesian bicategories

Here we explore the algebraic structure of Cospan=C. It is closely related to that of cartesian
bicategories, yet—given the discussion above it is more natural to consider Cospan=C as a
locally preordered category. We therefore need a slight generalisation of Definition 19.
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|—l=1—=1+1
i l=0—=0«0

le@d]] = |lc]] @ [ld]]

Figure 8 Inductive definition of the isomorphism [|-]|: CBS — Csp= FHypy. In the first two
lines, the finite ordinal n denotes the discrete hypergraph with n vertexes, and the functions between
ordinals are uniquely determined by initiality of 0 and finality of 1.

» Definition 27. A preordered cartesian bicategory has the same structure as a cartesian
bicategory (Definition 19), with one difference: the ordering is not required to be a partial
order, merely a preorder — it is for this reason we separated the equational and inequational
theories in Figures 6 and 7. The definition of morphism is as expected.

» Proposition 28. Cospan=C is a preordered cartesian bicategory.

As a consequence, CospanS FHypsy;, and thus also CspS FHyps, are preordered cartesian
bicategories. The latter is of particular interest: the main result of this section, Theorem 31,
states that Csp= FHypy, is the free preordered cartesian bicategory on X, defined as follows.

» Definition 29. The preordered prop CIB%§ has, as arrows n — m, GCQ terms of sort
(n, m) modulo the smallest congruence generated by = in Figures 5 and 6. These are ordered
by the smallest precongruence generated by < in Figure 7.

» Remark. Intuitively, the ordered prop CByx of Definition 21 is the “poset reduction” of the
preordered prop (C]B%; introduced above. We will make this formal in Section 8.

Theorem 3.3 in [5] states that CspS FHyps, and (CIB%% are isomorphic as mere categories,
i.e. forgetting the preorders. We thus need only to prove that the preorder of the two
categories coincides, that is for all ¢, d in (CIB%%7

¢ < diff |[c]] < [|d]] (3)

where ||-]|: CBS — Csp= FHypsy, is the isomorphism from [5] recalled in Figure 8. The
‘only-if” part is immediate from Proposition 28. An alternative proof consists of checking, for
each of the inclusions ¢ < d in Figure 7, that there exists a morphism of cospans from |[|d]]
to ||c]], as illustrated by the following example.

» Example 30. The left and the right hand side of (L2) in Figure 7 for R € ¥, ; are translated
via ||-]| into the cospans on the left and right below. The morphism from the rightmost
hypergraph to the leftmost one, depicted by the dashed lines, witnesses the preorder.

The ‘if” part of (3) requires some work. Its proof is given in full detail in Appendix B.2.
» Theorem 31. Csp= FHypy, = (CIBS; as preordered cartesian bicategories.

» Example 32. Recall Example 18. The derivation corresponds via || || to the homomorphism
of cospans of hypergraphs illustrated in the Introduction.
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7 Completeness for spans

Having established a combinatorial characterisation of the free preordered cartesian bicategory,
here we prove our central completeness result, Theorem 37. In the preordered setting,
completeness holds for “multirelational” models: the role of the poset-enriched category Rel
of sets and relations is taken by a (preorder-enriched) bicategory of spans of functions.

» Definition 33 (Span, Span<). Given a finitely complete category C, the bicategory
Span(C) is dual to that of cospans of Definition 25: it can be defined B

as Cospan(C°P). More explicitly, objects are those of C, arrows of TR
type X — Y are spans X + A — Y, composition ; is defined by X QT Y

pullback and @ by categorical product. The 2-cells from A
X + A=Y to X + B — Y are span homomorphisms, that is arrows a: A — B

such that the diagram on the right commutes. As before, the bicategory Span(C) can be
seen as a category by identifying isomorphic spans. We obtain a category Span=C, on
which we define a preorder in a similar way to CospanSC7 but in the reverse direction:
(X 2 A+ Y) < (X — B+ Y) when there is a homomorphism (4).

(4)

» Lemma 34. SpanSC is a preordered cartesian bicategory.

Models are now morphisms M : (CIB%; — SpanS Set of preordered cartesian bicategories.
Observe that, since the interpretation of the monoid and comonoid structure is predetermined,
a morphism is uniquely determined by its value on the object 1 and on R € ¥. In other words,
a model consists of a set M(1) and, for each R € ¥,, ,,,, a span M(1)" <~ Y — M(1)™. This
data is exactly the definition of a (possibly infinite) X-hypergraph (Definition 24).

» Proposition 35. Morphisms M: (CIB%; — Span= Set are in bijective correspondence with
Y -hypergraphs.

Given this correspondence and the fact that (CIB%% >~ CspS FHypsy,, each hypergraph G
induces a morphism U : Csp= FHypy, — Span= Set. Moreover, G acts like a representing
object of a contravariant Hom-functor, in the following sense: Ug maps n — G’ <= m to

HypZ [Tl, G} éi HypE[G/7 G] w’—_> HypE[ma G]

where Hypy,[G’, G] is the set of hypergraph homomorphisms from G’ to G, and (¢ ; —) and
(w; —) are defined, given f € Hypy[G',G], by (¢; =)(f) =¢; fand (w; —)(f) =w; f.

» Proposition 36. Suppose that n < G' <~ m a discrete cospan in Csp= FHyps.. Then
U(n % G' & m) = Hypg[n, G] +— Hypg|G', G] = Hypg[m, G.

Proof. The conclusion of Theorem 31 allows us to use induction on n — G’ < m. The
inductive cases follow since the contravariant Hom-functor sends colimits to limits. Four of
the base cases, ||—«_ ||, || »—]], [|—o]] and ||e—]], follow by the same argument, and the
others (||—]|, [|=<_]] and || R]]) are easy to check. The details are in Appendix B.3. <«

» Theorem 37 (Completeness for Span=Set). Let n = G <~ m and n = G’ <~ m be
arrows in Csp= FHyps,. If, for all morphisms M: Csp= FHypy, — Span= Set, we have

’

M(nQGﬁm)SM(nQG’#m), then(nQG&m)S(ngG’ﬁm).
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Proof. If the inequality holds for all morphisms, it holds for Ug. By the conclusion of
Proposition 36, there is a function a: Hypy[G, G] = Hypy[G’, G] making the diagram on

= Hyp}[G,G] T N

Hypy[n, G] Hyps,[m, G| Oz(ldc)
(L,\ Hyps[G', G 47 \ </

the left commute. We take the identity idg € Hypy[G, G] and consider a(idg): G — G.
By the commutativity of the left diagram, we have that : = ¢/ ; a(idg) and w = W' ; a(idg).

This means that the right diagram commutes, that is (n - G << m) < (n = G’ <~ m). <

» Remark. The reader may have noticed that, in the above proof, Us plays a role analogous
to Chandra and Merlin’s [14] natural model for the formula corresponding to n < G < m.

Given the completeness theorem of this section, proving completeness for models of CBsy;
in Rel is a simple step that we illustrate in the next section.

8 Completeness for relations

We conclude by showing how Theorem 37 leads to a proof of Theorem 17. The key observation
lies in the tight connection between the preordered setting and the posetal one.

» Definition 38. Let C be a preorder-enriched category. The poset-reduction of C is the
category C™ having the same objects as C and morphisms in C™ are equivalence classes of
those in C modulo ~=< N >. Composition is inherited from C; this is well-defined as ~ is a
congruence wrt composition.

This assignment extends to a functor (-)~ from the category of preorder-enriched categories
and functors to the category of poset-enriched ones. See Appendix B.4 for details.

We have already seen, although implicitly, an example of this construction in passing
from CB5 (Definition 29) to CBy (Definition 21): it is indeed immediate to see that

((CB;)N = CByx. Another crucial instance is provided by the following observation, where
Span™C is a shorthand for (SpanSC)N
» Proposition 39. Span™ Set = Rel as cartesian bicategories.

The above proposition implicitly makes use of the following fact.

» Proposition 40. The functor ()~ maps preorder-enriched cartesian bicategories and
morphisms into poset-enriched cartesian bicategories and morphisms.

To conclude, it is convenient to establish a general theory of completeness results.

» Definition 41. Let C, D be preorder-enriched categories and let F be a class of preordered
functors C — D. We say that C is F-complete for D if for all arrows z,y in C, M(z) < M(y)
for all M € F entails that x < y.

» Lemma 42 (Transfer lemma). Let C,D be preorder-enriched categories and F a class of
preordered functors C — D. Assume C to be F-complete for D.

1. Then C~ is F~ -complete for D~, where F~ = {F~ | F € F}.

2. If F C F, then C is F'-complete for D.
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All the pieces are now in place for a

Proof of Theorem 17. We need to show completeness—that is—assuming ¢ < ¢/, we need
to prove ¢ <cpy, ¢ for all GCQ terms ¢ and ¢’. Observe that ¢ <cp,, ¢ if and only if

¢ < ¢ as arrows of CBy, (Definition 21). (1)
Moreover, using Proposition 23, ¢ < ¢ iff
Mec < Md, for all morphisms of cartesian bicategories M: CBy, — Rel. (1)

Our task becomes, therefore, to show that (1) implies (). In other words, we need to prove
CBy, to be G-complete for Rel, where G is the class of morphisms of cartesian bicategories of
type : CBy, — Rel. Let F be the class of morphisms of preorder-enriched cartesian bicate-
gories from (CIB%% to Span= Set. Since, by Theorem 37, (CIB% is F-complete for Span= Set, we

can conclude by Lemma 42.1 that ((C]E%%) is F~-complete for (SpanS Set) . By Propo-

sition 39, this is equivalent to CBy being F~-complete for Rel. Now, by Proposition 40
F~ C G, so the claim follows by Lemma 42.2. <

9 Discussion, related and future work

We introduced a string diagrammatic language for conjunctive queries and demonstrated a
sound and complete axiomatisation for query equivalence and inclusion. To prove complete-
ness, we showed that our language provides an algebra able to express all hypergraphs and
that our axioms characterise both hypergraph isomorphisms and existence of hypergraph
morphisms. A recent result [19] introduced an extension of the allegorical fragment of
the algebra of relations [33] that is able to express all graphs with tree-width at most 2.
Furthermore, the isomorphism of these graphs can be axiomatised. The algebra in [19], which
is clearly less expressive than ours, can be elegantly encoded into our string diagrams. The
same holds for the representable allegories by Freyd and Scedrov [20].

We also prove completeness with respect to Span= Set, the structure of which is closely
related to the bag semantics of conjunctive queries in SQL. Indeed, the join of two SQL-tables
is given by composition in Span= Set and not in Rel: in the resulting table the same row
can occur several times. As we have seen, with the relational semantics, query inclusion can
be decided with Chandra and Merlin’s algorithm [14] and its reduction to existence of a
hypergraph homomorphism. On the other hand, decidability of inclusion for the bag semantic
is, famously, open. Originally posed by Vardi and Chaudhuri [15], it has been studied for
different fragments and extensions of conjunctive queries [23, 2, 24]. It is worth mentioning
that it is known [26] that there is a reduction to the homomorphism domination problem,
which seems intimately related with our Proposition 36. Unfortunately, the preorder in
Span= Set—the existence of a span morphism—does not directly correspond to bag inclusion:
one must restrict to the existence of an injective morphism. We leave this promising path for
future work.
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A A translation from GCQ to CCQ

To translate GCQ diagrams to CCQ formulas we need to introduce a minor syntactic variant
of CCQ, this time assuming two countable sets of variables Var; = {z; | i € N} and
Var, ={y; | i € N}. The idea is that a diagram c: (n, m) will translate to a formula that
has its free variables in {zq,...,Zn—1} U{y0,-..,Ym—11, i.e. there are “left” free variables z
and “right” free variables Z

» Definition 43. We write n,m b ¢ if fr(¢) C {zo,...,Tn-1}U{¥0,-.-,Ym—1} and n+m
(b[m[n,nerfl] /y[O,mfl]} .

Next, for R € %, , we assume a CCQ signature in which R is a relation symbol with arity
n 4+ m. Then, given a GCQ model M = (X, p) we can obtain a CCQ model A(M) = (X, p/)
in the obvious way. With this in place, we can give a recursive translation A from GCQ
terms to CCQ formulas. The details are given in Figure 9. and A preserves the semantics:

» Proposition 44. Fiz a GCQ model M = (X, p) and suppose that ¢ : (n, m) is a GCQ
formula. Then (v, w) € [c: (n, m)]m iff (v,0) € [n+m A(S)]amy-

Proof. Induction on the derivation of ¢ : (n, m). <

The following is immediate from the definition of the translations © and A.

» Lemma 45. Letn b ¢ and M be a CCQ model. Then [n = ¢]p = [AO(n = d)]rom). <«
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A(—& )=1,2+(zo=yo)A(zo=y1), A(—@)=1,0-T, A(_®—)=2,1F(zo=yo)A(z1=y0), A(®—)=0,1-T,
AG D=00FT,  A()=LlFzo=yo,  A(CXO)=2.2-(zo=y1)A(z1=y0)

my ny ma n2
e —  my,nikA(er) ° —  ma,na2tA(c2)

(@)

| A(C2)[$[m1 ym1+mog—1],Y[nq ,nl+n271]/m[0,m271] »y[o,n271]])

—.—]C SN k,mbEA(c1) —.—m = mnFA(c2)

----------- )

» Example 46. An interesting case is :}w L. It is the translation, via O, of 2 - z¢ = 2.

Returning to CCQ via A, we obtain 2,0 - 3z. (zg = 2) A (x1 = 2) A T. The formulas are
quite different, but they are logically equivalent. The case of GCQ terms{ }and le—elis

,,,,,,,

also interesting. The first translates via A to 0,0 - T, the second to 0,0 Elz-(;.'l' AT.

B Proofs
B.1 Proofs of Sections 2, 3, 4, and 5

Proof of Proposition 2. The ‘only if’ direction is a straightforward induction on the deriva-
tion of a formula generated by (CCQ). The ‘if’ is a trivial induction on derivations obtained

from {(T)v (R), (3)7 (:)7 (/\)7 (Swn,k)7 (Idn)ﬂ (Nun)}' <
Proof of Proposition 8. Easy induction on the derivation of n - ¢. |

Proof of Proposition 9 and 10. The translation is given in Figure 9. The rest follows easily
from Propositions 8 and 44 and Lemma 45. <

Proof of Lemma 12. Follows immediately from the definition of semantics and relational
composition / tensor in Figure 3. <

Proof of Proposition 13. For each fixed model the axioms of Figure 5 are satisfied because
the category of relations with monoidal product x is symmetric monoidal. |

Proof of Lemma 22. For every object n, the monoid and comonoid are given by —«_, —e,

“»— and e, standing for the “stacking” of n of these diagrams respectively in the usual
manner. An easy induction shows that these satisfy the required laws. The definition of CBy

asserts that for every R € X, pn, is a lax comonoid morphism in CBy, but cartesian

bicategories require this for all arrows. This follows by another induction. |

Proof of Lemma 23. In the easy direction, to extract a model M = (X, p) from a morphism
of cartesian bicategories F: CBy — Rel, define X := F(1) and let p(R) := F(R) for R € %.
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Conversely, given a model M = (X, p), we observe that the semantics map [-Ja (Figure 3)
gives rise to a morphism of cartesian bicategories [-]os: CBy — Rel. To prove that it is well
defined and preserves the ordering, one can easily see that the axioms of =cg,, and <cg,, are
sound. By the inductive definition, [-]a preserves composition ; and tensor &. Finally, we
observe that, by definition, [-Ji¢ maps the monoids and comonoids of CBy; into those of Rel.

<

B.2 Proofs of Section 6

We first prove Proposition 28 and then we work towards a proof of Theorem 31.

Proof of Proposition 28. We endow every object with a monoid and comonoid structure,

prove these structures to be adjoint and satisfy the special Frobenius property.

1. Define the monoid/comonoid structure on every object: Considering C as a cocartesian
monoidal category via its coproduct, it is well known, that every object comes with
a natural monoid structure. There is a monoidal functor F: C — CospanSC sending

f: X =Y to the cospan X Ly @y and mapping the natural monoid structure on every
object through F yields the monoid structures in Cospan=C. Furthermore, there is a

duality operation °® on Cospan=C given by mapping X Lz28y oy 4z, X Now
define the comonoid structure on every object as the dual of the monoid. It is easy to see
that every morphism in Cospan=C is a lax comonoid homomorphism, which follows from
the fact that every morphism in C preserves the monoid structure.

2. The monoid and comonoid structures are adjoint: In general, for f: X — Y a morphism
in C, we have F(f); F(f)°° <idx and idy < F(f)°P ; F(f). This follows easily from
the definition and implies the adjointness of monoid and comonoid.

3. The monoid and comonoid enjoy the special Frobenius property: The Frobenius law is a
consequence of associativity of the natural monoid and its definition. The special law
follows from the multiplication being epi.

<

We will prove in Theorem 31 that CspS FHypy, = (C]B%%. It is convenient to begin with
¥ = @. Consider the category F: objects are finite ordinals n = {0,...,n — 1} and arrows all

functions. Then CospanSIF is the free preordered cartesian bicategory on the empty signature.

» Theorem 47. Cospan=F (CIBB(Z)S as preordered cartesian bicategories.

Proof. The translation in Figure 8 defines an isomorphism ||-]]: (CIB%Q? — Cospan=F (first
three lines). The translation [[-]]: Cospan=F — (CIB%% can be found in [5, Theorem 3.3], where
it is proved that it defines an isomorphism between categories, i.e. forgetting the ordering. It
thus suffices to prove, that both translations preserve the ordering. For ¢,d € CIB%(DS, we have

AN
¢ < d implies ||c]| < ||d]| by Proposition 28. Consider a morphism of cospans n J{a m.
N v

We want to prove [[n — T + m]| < [[n — S + m]|. Since every function a: S — T can be
decomposed into sums and compositions of 2 — 1 and 0 — 1 as demonstrated for example
in [28, VIL.5], we can consider only these cases. In the case a: 0 — 1, we have n =m =0
and we have to prove e—e < ! ! which is axiom (UC). The case a: 2 — 1, can be
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2
/’ ‘\
further reduced by the following observation: Given a diagram nj + no J mi + mo, one
~ ! —

id o id 5 jid o id
easily computes the composite of spans 71 + 12 — 2 €=2-5245252¢m1 +m2to be

id id
ny+ng — 2+ my+ms andthecompositenl‘*‘WHQ@QH1H292<*m1+m2

2
VAN RN
to be n1 +no — 1 <+ my + mo. By compositionality, it suffices to consider the case 2 J 2
NV
1
which corresponds to }—{ < which is axiom (MC). <

A cospan of hypergraphs is said to be disconnected if it is of the form ||Ro|| & || R1]] ®
L Rn]] for Rg,... R, € X.

» Lemma 48. Letn 5 E & m and n' = E' & m/ be disconnected cospans. If there are
functions f:n—n', g: m —m' and h: E — E' s.t. the following commutes

L w

n E m
r nl L ()
n/ E/ /

’ ’
L w

then Tn L% B & ml < Tn % E & m]).

Proof. First note that in the case of disconnected cospans, h uniquely determines f and g. To
give a hypergraph homomorphism h: E — FE’ is the same as giving a label-preserving function
between their sets of hyperedges, so we identify E and E’ with their sets of hyperedges. We
can now consider the labels separately, so assume to have only one label. Furthermore, we
can consider each fiber over elements of E’ separately, so assume E' = 1. Son’ — E' < m/’
consist of a single hyperedge with label R € 3; ;, yielding

o' <5 B < = AP

and thus n’ =7 and m’ = j. It now suffices to consider cases where the size of E is either 0 or

BT 000 i
2, yielding diagrams ;| il li (6) and v 1) lv - (7)
i le—— i——1 —J

L w

The result for |E| > 2 can be obtained inductively from these base cases. For (6),

[0—=0«0]] =

L and [[0—=10]] = e 4

1
|
R

<.

it i S & g = e T
.
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derivation thus completes the proof:

We have now all the ingredients to prove Theorem 31.

Proof of Theorem 31. The proof relies on a result appearing in the proof of Theorem 3.3
in [5]: every discrete cospan of hypergraphs n > G' <~ m can be written as the composition

SV g Gvek a2 OV o
AN /d@ v / AN
n Gy +n Gy +m m

where 7 5 E & m is disconnected, Gy is the set of vertices of G2, j: i — Gy and
j: m — Gy maps the vertices of i — E < mm into those of G. We only need to prove the
right-to-left implication of (3). We will show that if n - G’ < m < n — G < m then
[[n—= G+ m]] <[[n— G+ m]l.

Assume now that n = G’ & m < n = G & m, i.e., there exists an f: G — G’ such that
ft=1and fw =w’'. The morphism f induces fv: Gy — GY,, fg: E — E', fr: 7 - n’ and
fm: m — m/ making the following commute.

Gy o E

/ ‘ [id, ] it%y v &d zd,p] ‘ r\
n fv Gy +1n fvofe Gy +m fv m
] | l l 7

v fa G, @ F v fm

\fi/ S

[ld]] ~ 7 id®di’ id®o’ 2 id,p’]
m/

From the commutativity of the above diagram, one has:

(M=) noG,+«Gv+n < n=>Gy+Gy+n (=0)
(’yQ::> Gv+ﬁl—>G/V(—m < Gy+m—Gy+m (::62)
(’}/3 ::) GV —>G/V (—GV < GV —>GV FGV (:I (53)
(y4 =) n—E<+m < n—E«m (= 44)

Since the first three inequations only involve sets and functions, one can use the conclusion

of Theorem 47 and deduce that: [[v;]] < [[d;]] for ¢ € {1,2,3}. From the fourth inequation,

via Lemma 48, one obtains furthermore [[74]] < [[44]] and concludes as follows.

n =G mll =1n; (@7 ;%0 =Mnll; (Tl @ [yall) 5 el
< [To1 15 (M1l @ [Toal) 5 [T02]] = [[d1 5 (63 © b4) 5 2] = [[n = G = m]]

2 Since cospans are taken up-to isomorphism and since G is finite one can always assume, without loss of
generality, that Gy is a finite ordinal.
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B.3 Proofs of Section 7

Proof of Lemma 34. Immediate from Proposition 28 by duality. <

Proof of Proposition 35. As stated in the main text, M is uniquely determined by the set
M(1) and, for each R € %, ,,,, a span M(R): M(1)" — M(1)™. This data is that of a
(possibly infinite) hypergraph (Definition 24). <

Proof of Proposition 36. By definition, Ug(1) = Gy and Ug(||R]]) = (Gv)" & Gr 2
(Gy)™ for each R € ¥, ,,. Below, we also use the fact that (Gv)" is Hyps[n, G].
The conclusion of Theorem 31 allows us to argue by induction on n % G’ & m. The

base cases are ||—« ||, || »—1|, [l—el], eI, [—1], [[=<C]] and || R]|. Let us consider

the last of these, where n = G/ & m is

Any homomorphism f: G’ — G maps its single hyperedge to an R-hyperedge of G, call it
ef, the n vertices in the image of ¢ to the source of ef (¢; f = sg(ey)) and the m vertices in
the image of w to the target of ey (w; f =tr(es)). This means that the following commutes:

(Gv)" e-
\ /

4= T Hypy[G',G] T wim

(Gv)™

The function e_: Hypy[G',G] — G is clearly an isomorphism of spans. The other base
cases are simpler or, as stated in the main text, follow from the fact that Hypy[_, G] maps
colimits to limits, which also immediately implies the inductive case. |

B.4 Proofs of Section 8

Observe that we have a canonical identity-on-objects-functor Ac¢: C — C™ that sends a
morphism in C to its ~-equivalence class in C~. We will omit the subscript on A whenever
possible. An immediate consequence of the definition is that A preserves and reflects the
ordering in the following sense:

» Lemma 49. For C a preorder-enriched category, and x,y morphisms in C, we have
A(z) < A(y) if and only if x < y. <

The functors A exhibit the following universal property:

» Lemma 50. For every preordered functor F: C — D between the preordered category C and
poset-enriched category D, there is a unique poset-enriched functor G: C~ — D making the
left diagram commute. Hence, for every preordered functor H: C — C', C' preorder-enriched,
there is a unique functor H~: C~ — C'™ making the right diagram commute.

ctLp c-H¢
Al 7 Al LA

c~ c~ e
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Proof. For a morphism f € C let [f] denote the equivalence class of f modulo ~. Then
setting G([f]) = F(f) is well-defined, since D is a poset-enriched category. G defines a
functor since ~ is a congruence, hence compatible with composition. Since A¢ is surjective
on objects and morphisms, there can be at most one such functor GG, hence G is unique. <«

In other words, we get a function, (-)”, that turns functors between preorder-enriched
categories into functors between the associated poset-enriched ones.

Proof of Proposition 39. We recall a well-known construction of the ordinary category of

relations: a span X <L A% Y induces a relation Ra C X xY by factorising A M XxY

as a surjection followed by an injection; the injection, when composed with the projections,
yields a jointly-injective span. These, up-to span isomorphism, are the same thing as subsets
R4 C X x Y. This procedure respects composition and monoidal product, yielding a
functorial mapping SpanS Set — Rel on objects and arrows. Given the above, it suffices to
show that there exists a span homomorphism (X <~ A —-Y) = (X« B—=Y)iff R4 C Rp
as relations. The ‘only if’ direction is implied by the dotted function below, which is an
injection since it is the first part of a factorisation of an injection.

RA% xY

For the ‘if” part, since (by the axiom of choice) surjective functions split, we obtain R — B.

Then A—» Rs — Rp — B is easily shown to be a homomorphism of spans. |

Proof of Proposition 40. We stated the axioms of preordered cartesian bicategories and
cartesian bicategories in a way that makes the first part obvious. Given a morphism
F: By — By of preorder-enriched cartesian bicategories, clearly F'™ is still an order-preserving
monoidal functor. It also preserves the monoid and comonoid structures. |

Proof of Lemma 42. The second item is trivial. For the first one, let z,y be morphisms
in C™~ such that G(z) < G(y) for all G € F~. We want to prove x < y. Now let F' € F be
arbitrary. Then F~(x) < F~(y) by assumption on x,y. Since morphisms in C~ are just
equivalence classes of morphisms in C, choose representatives, i.e. morphisms f, g in C such
that A(f) = « and A(g) = . Since the diagram

c~ 2 p~

commutes, we get A(F(f)) = F~(A(f)) = F~(z) < F~(y) = F~(A(g)) = A(F(g)). Since
A reflects the ordering (Lemma 49), we get F(f) < F(g). But F € F was arbitrary, therefore
f < g, since C is F-complete for D. But therefore © = A(f) < A(g) = y. <
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