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Abstract

Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the
complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality
burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the
mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion
topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for
different burning regimes and provide a direct link between parameters predicted by theory and what is to be
expected in observations. We illustrate this for analytical relations of different unstable burning regimes that
operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new
constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the
observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations:
when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this
can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the
burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate
keeps increasing with accretion.
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1. Introduction

When a compact object with a solid surface such as a neutron
star (NS) is part of a binary system with a less evolved
companion, accretion onto the compact object may start, which
will lead to the burning of the fresh fuel accumulated on the
surface of the NS. If the heating due to the burning is not
compensated by cooling, the burning will become unstable,
resulting in bright X-ray flashes: the so-called type I bursts (see
Strohmayer & Bildsten 2006). A complete description of the
phenomenology of the observed bursts depends on various
factors, such as accretion physics (Inogamov & Sunyaev 1999,
2010), thermonuclear reaction network physics (Fujimoto
et al. 1981; Cumming & Bildsten 2000; Cumming 2003;
Woosley et al. 2004; Heger et al. 2007a; Cyburt et al. 2016), and
hydrodynamics that may regulate the flame propagation across
the surface following localized ignition (Zingale et al. 2001,
2015; Malone et al. 2011; Cavecchi et al. 2013, 2015, 2016).

The implications of a complete understanding of the bursts
go well beyond a pure description of thermonuclear flashes.
Studying the effects of the outcome of the burning can help in
understanding the structure of the compact object. For instance,
in the case of NSs, type I bursts are one way to constrain the
equation of state of the matter on the inside (Miller 2013; Watts
et al. 2016), for example by inferring the mass and radius from
the pulse profiles of burst oscillations (fluctuations in the light
curves of the bursts due to asymmetric surface patterns that
emerge during the bursts; see e.g., Watts 2012). Another

example is the cooling light curves of the NSs after the
accretion outburst, which depend on how much (and where)
heat has been deposited by accretion and burning, and also on
the structure of the outer layers of the star (Hanawa &
Fujimoto 1984; Brown et al. 1998; Brown & Cumming 2009;
Wijnands et al. 2013; Schatz et al. 2014), therefore providing a
very useful way of exploring NS (crust) properties such as
composition, structure, neutrino emission, and superfluid
physics. Unfortunately, our understanding of the different
ingredients needed for modeling the observations is still
limited. This paper will discuss burning physics.
In the standard theoretical picture that emerges from

calculations and numerical simulations, how the burning
proceeds depends on the burning regimes (e.g., what fuel is
available and what has been spent already, which path the
nuclear reactions follow, their temperature dependence, and
their heat generation rate; see also Schatz 2011) and the
accretion rate. The accreted matter accumulates on the surface
of the star and sinks to deeper and deeper densities in the
ocean, eventually meeting the conditions where burning starts.
At this point, burning stability depends on whether or not the
cooling is capable of compensating for the heat release. Even at
low accretion rates, the burning rate and the energy release may
be above the instability threshold and the bursts begin; then,
the frequency of the bursts increases with accretion rate. At the
same time, accretion releases heat that eventually stabilizes the
burning, preventing any bursting (Fujimoto et al. 1981;
Bildsten & Brown 1997; Bildsten 1998; Cumming &
Bildsten 2000; Keek et al. 2009; Zamfir et al. 2014). The
amount of heat generation from accretion comes from
the gravitational energy released at the moment of accretion,
the compressional heat due to the extra weight of the
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accumulated material, and the heat of further reactions that take
place deeper than the burning layer (Cumming & Bild-
sten 2000). However, many details of the burst physics are
still uncertain, mainly the reaction rates (e.g., Schatz
et al. 2001; Cooper & Narayan 2006a, 2006b; Heger
et al. 2007b; Cyburt et al. 2010; Davids et al. 2011; Keek
et al. 2014; Cyburt et al. 2016), or, for example, the role of
mixing (e.g., Piro & Bildsten 2007; Keek et al. 2009).

One important factor in burst physics is the rotation of the
star. First of all, rotation opposes gravity, thus reducing the
local effective gravity, which has a direct effect on the local
accretion rate and on how the burning proceeds (for example,
determining the most likely ignition colatitude; Cooper &
Narayan 2007a; AlGendy & Morsink 2014 and see also the
next sections). Second, another source of heat that might have
significant importance for the burning processes is the heat
released by some effective friction that is present at the
boundary and the spreading layers between the accretion disk
and the surface of the star (Inogamov & Sunyaev 1999, 2010;
Kajava et al. 2014; Philippov et al. 2016). For stars with equal
mass and radius, the magnitude of this effect will still depend
on the spin frequency of the star and how this compares to the
velocity of the disk at the star radius. Furthermore, rotation
affects the burning by inducing mixing of newly accreted
material and ashes from previous bursts in deeper layers. It also
has indirect effects since the mixing changes the temperature
profile of the layer (Piro & Bildsten 2007; Keek et al. 2009).
Once again, the exact dependence of the bursting frequency on
the accretion rate and spin frequency is still not well-
understood.

As a consequence of all of the uncertainties, observations
often do not behave as models predict. For instance, the
burning stabilizes and the bursts disappear too early, in terms of
the mass accretion rate, with respect to theoretical expectations
(e.g., Cornelisse et al. 2003; Cumming 2004; Heger
et al. 2007b; but not always; see, for example, Linares
et al. 2012). Also, most theoretical works predict that the burst
rate should always increase with accretion rate. One notable
exception is the delayed mixed-burst regime found by Narayan
& Heyl (2003). However, Cooper & Narayan (2007b) caution
against conclusions about the time-dependent behavior drawn
from linear stability analysis like the one of Narayan & Heyl
(2003), and experimental work does not confirm the pre-
requisite for delayed mixed bursts (namely, a weaker CNO
breakout reaction rate of 15O(α, γ)19Ne; Piro & Bildsten 2007;
Fisker et al. 2007; Tan et al. 2007). Cooper & Narayan (2007a)
also found a burst rate decreasing with increasing accretion
rate, but that was due to the delayed burst regime of Narayan &
Heyl (2003), which, as we said, is not confirmed by direct
experiments. Lampe et al. (2016), using the 1D multizone code
KEPLER(Woosley et al. 2004), find a regime with a
decreasing burst rate, but do so only in very limited ranges
of high accretion rate. Despite the fact that the general
understanding would predict a continuously increasing burst
rate, the contrary is often observed: in many sources, the burst
rate is seen to decrease by as much as an order of magnitude
before the bursts stabilize (e.g., van Paradijs et al. 1988;
Cornelisse et al. 2003; see also Strohmayer & Bildsten 2006
and references therein); the reason why is still not clear.
Burst samples are now sufficiently comprehensive (e.g., the
MINBAR catalog; see Galloway et al. 2010) that we are able

for the first time to explore in a systematic way the effect of
accretion and rotation rates on the burst rate.
In this paper, we present general, if somewhat simplified,

calculations that relate burning and accretion physics
parametrizations to observed quantities such as burst rate
and mass accretion rate.6 We initially follow a similar
approach to that of Cooper & Narayan (2007a), who
discussed the effects of NS spin for specific burning regime
transitions. We develop the calculations considering the
effects of local gravity (Section 2) and we show how effects
of mixing can be included in the same formalism (Section 3).
We present a general study that covers all of the mathematical
possibilities and show which ones would be compatible with
observations. This paper is by necessity leaning toward the
abstract side, but we hope it would offer a guide to the
theoretical efforts and a bridge between theory and
observations.

1.1. A New Explanation for Decreasing Burst Rate

The algebra of this paper will be presented fully in the
following sections, but since the mathematical steps may hide
the physics and the results behind them, we will discuss here
the meaning and implications of the calculations and how they
compare with the previous standing of the theory of bursts.
We will show that, by generalizing the approach of Cooper

& Narayan (2007a), the burst rate of a single source can be
parametrized as (Equation (16))

m g . 1p = a b¯ ˙ ¯ ( )

̄, a, and b are constants that depend on the burning
regime. mp˙ is the local mass accretion rate at the pole, which
turns out to be a useful proxy for the global accretion rate Mtot˙ ,
as measured near the star, to which it is related by
(Equation (12))
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where R is the radius of the star, ν is the spin, and kn is the

Keplerian frequency at the star surface, GM R 2k
3
n p= ,

so that

N M g . 3tot  n= a a b¯ ( ) ˙ ¯ ( )

The important elements in Equation (3) are Mtot
a˙ and gb¯ . We

have different forms for ḡ. ḡ can be related to the colatitude θ

of the ignition by (Equation (9))

g 1 sin . 4
k

2
2n

n
q= -

⎛
⎝⎜

⎞
⎠⎟¯ ( )

This equation expresses the correction to the local effective
gravity of the star at a given θ due to the centrifugal force. In
particular, it expresses the ratio g g,eff eff, pq n( ) of the local
gravity to the gravity at the pole. Later, we will also suggest
that including the effects of mixing should give formulae of a
similar form to Equation (3) (and Equations (5) and (6)) with ḡ

6 More precisely, mass accretion rate is not directly observed, but it is inferred
from the X-ray luminosity under assumptions about the accretion flow and with
some information on distance. However, as far as this paper and its calculations
are concerned, we consider it to be in the category of “observables.”
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substituted by another function of ν and θ that is also 1 at the
pole and 1< at the equator (see Section 3.1). The effects of
mixing should be stronger than those due to changes in
effective gravity, making mixing a more plausible cause for the
decreasing burst rate with accretion rate; however, the
argument for the mechanism we suggest could be behind this
phenomenon relies mostly only on the fact that there is a
dependence of the burst rate on a function ḡ, which is greater at
the pole than at the equator.

The parameters α and β in Equation (3) depend on the
burning regime under consideration. a clearly describes the
dependence on accretion rate, while b is related to how
the ignition depth depends on the local effective gravity and on
mixing, which in turn are affected by the spin of the star and
the colatitude θ, as noted above. In the most relevant cases,
theory predicts a to be positive, which is also what intuition
would predict: the faster matter is accreted on the star, the faster
the critical conditions are reached for ignition. However, as
already mentioned, many sources show a complexity of
different behaviors, most importantly showing a apparently
becoming negative (burst rate decreasing) after some accretion
rate Mtot˙ .

Previously, it was tentatively suggested that a possible
reason for that is a change in accretion geometry that leads to
the local accretion rate ṁ decreasing while the global

accretion rate Mtot˙ increases (see Bildsten 2000; Strohmayer
& Bildsten 2006 and references therein), but exactly how
this would happen was not clear. Narayan & Heyl (2003)
and Cooper & Narayan (2007a) advocated instead a
switch to their delayed mixed-burst regime. We provide a
different explanation: the dimensionality of the problem is
the key.
Most of the burning physics theory is obtained with 1D

simulations, where the one dimension is the radial direction.
Although this approach is extremely valuable, it does not take
into account the fact that the surface of the star adds two extra
dimensions, namely θ and f, where the conditions are different
even for a single star. The role of ḡ in Equation (3) is then this:
to incorporate the effects of the second dimension θ. ḡ allows
us to take into account the fact that at different colatitudes θ of a
spinning NS, the burst rate given by the same physics will be
different (basically due to the different centrifugal force or
different mixing). The importance of this effect is given by the
power b . It is difficult to find the b associated with the different
theoretical works in the literature, since this aspect is often
neglected and the ignition depth and its dependence on gravity
and mixing are always reported vaguely, if at all. However, we
can extract it, for example, from the calculations in Bildsten
(1998) or Piro & Bildsten (2007). It can be seen that b is
expected to be negative in the first case and positive in the
second (see Sections 2 and 4 for more details).
So, how does this imply that above some critical Mtot˙ the

burst rate should decrease? The last ingredient to provide the
answer is the stabilization of burning. We show in Section 2
that bursting is possible at any colatitude θ (this was also
recognized by Cooper & Narayan 2007a) provided that

m g N M m m g , 5l tot p hl h n =g g˙ ¯ ( ) ˙ ˙ ˙ ¯ ( )

where ml˙ and mh˙ are values dependent on the burning regime
(Equation (18) and see Section 4 for an example). m gl lg˙ ¯ is the
condition for the onset of bursts,7 and m gh hg˙ ¯ is the condition for
stabilization. As for b , lg and hg are related to the ignition
depth and its dependence on the local effective gravity or
mixing. Once again, it is difficult to obtain values of hg from
the literature, but again we can infer its value for the cases
treated by Bildsten (1998), where 0hg > , or by Piro &
Bildsten (2007), where 0hg < . Note, however, that there is
uncertainty around these values (see Section 4).
The explanation we suggest for the decreasing burst rate then

goes as follows (see Figure 1 for a sketch). Let us consider the
case 0b < , 0hg > . Initially, the most probable ignition
location is the equator, point A in Figure 1, because 0b < ,
g g2 0q p q= < =¯ ( ) ¯ ( ), and this makes the rate at the equator
the highest, Equation (3). With increasing Mtot˙ , the most
probable ignition site will remain on the equator, until the
condition given by Equation (5) is broken (point B). In the
range AB of the accretion rate, the burst rate should be
increasing as Mtot

a˙ because the factor gb¯ in Equation (3) will not
change. The fact that ignition stays on the equator depends on
the fact that 0b < (see Section 3 for further details and more
possibilities). After point B, while the accretion rate Mtot˙
increases, the most probable ignition colatitude moves toward
the pole, while the part near the equator should be burning

Figure 1. Burst rate  vs. accretion rate Mtot˙ , solid line. Example for 0a > ,
0b < , and 0hg > . The inclined dashed lines represent the burst rate at three

colatitudes: equator, mid-colatitude, and pole. The slope is a. The equator has
the advantage (bursts more often), since 0b < . How much faster the burst rate
of each colatitude is with respect to the pole is given by gb¯ . The three vertical
dashed lines indicate the Mtot˙ at which burning stabilizes at the various
colatitudes. Ignition is highest at the equator initially, but then it stabilizes and
moves polewards. Depending on the “speed” with which the stabilization
moves toward the pole, Case 1 or 2 is realized. The “speed” of stabilization is
given by g Mln ln 1 ;tot hgD D =¯ ˙

hg is the power with which the stabilization
Mtot˙ depends on local conditions. Local conditions depend on the colatitude θ
and spin ν. When the vertical lines are “wide,” hg is high, such that

0ha b g+ > : the “speed” is slow and the burst rate keeps growing, Case 1.
When the vertical lines are “narrow,” hg is small such that 0ha b g+ < : the
“speed” is high and the burst rate is seen to decrease, Case 2.

7 The limit for the onset of the bursts of a specific burning regime should be
thought more accurately as the limit when the burst rate of that specific regime
becomes faster than the rate of the other regimes.
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stably. When the pole becomes the most probable location,
point C, the whole star should be burning stably and the bursts
should disappear. In the range BC, the rate of the bursts will
go as

M . 6tot
h µ a b g+¯ ˙ ( )

Depending on the sign of ha b g+ , the burst rate may actually
decrease.

Note that this condition is NOT in contradiction with the
theoretical results of simulations that give a consistently
increasing bursting rate as a function of Mtot˙ . As can be seen in
Figure 1, at a fixed colatitude, ḡ is a constant and the rate is
increasing as a function of Mtot˙ , but the dependence of ignition
depth and burst rate on local position, measured by gb¯ , makes
the normalization factor in Equation (3) different at different
colatitudes. The normalization is higher at the equator
(if 0b < ), so that the overall burst rate (normalization) near
the pole can be significantly lower than at the equator.

If the “speed” in terms of Mtot˙ at which the ignition moves
polewards is fast enough, the increase in burst rate due to Mtot

a˙ will
not be able to compensate for the initial deficit due to the
normalization factor gb¯ , and the burst rate will decrease. The
“speed” at which the ignition moves polewards can be thought of
as MtotqD D ˙ or, more conveniently, g Mln ln 1tot hgD D =¯ ˙ ;
see Equations (5) and (36). A small hg leads to a high “speed” and
decreasing burst rate, Case 2 in Figure 1. A high hg gives a slow
“speed” and the increasing Mtot

a˙ is able to cover the gap due to the
normalization factor gb¯ and the observed burst rate will increase.
We discuss more the role of a, b , and g in Section 5.

Finally, note that the fact that the ignition moves off its
initial site due to stabilization may also explain why bursts at a
high accretion rate seem to be less energetic (van Paradijs
et al. 1988). A smaller fraction of the star surface would be
burning efficiently, since part of the fuel in the stabilized
regions will have been spent in stable burning.8 In the case of
equatorial ignition, this very same mechanism may help
explain why bursts seem to stabilize before the expected Mtot˙ :
the theoretical Mtot˙ from the 1D multizone simulations is the
one corresponding to conditions at the pole, point C, since
corrections due to rotations are absent there. However, at that
point, the bursts may have become too weak and rare to be
detected.

2. The Relation Among Bursting Rate, Accretion,
and Spin Frequency

We begin by generalizing and extending the approach of
Cooper & Narayan (2007a). Thus, we initially present results
regarding the local effective gravity. In Section 3.1, we argue
that mixing can have effects on the burst rate that are formally
very similar to the effective gravity, even though of different
magnitude. Mixing has not been explored as thoroughly as
gravity. The latter offers therefore a more solid ground for
beginning this presentation. The burning rate of a specific
regime is generally described as a function of effective gravity
g ,eff q n( ) and local accretion rate m ,q n˙ ( ) (where ν is the spin
frequency and θ is the colatitude measured from the north pole;

see, for example, Bildsten 1998, 2000). Without considering
general relativistic corrections,9 geff is written

g g R sin , 7eff
2 2
 q= - W ( )

where Ω is the angular velocity of the star ( 2pnW = ) and R is
the radius of the star. If we take g g GM Reff, p

2
= = , we can

write

g g 1 sin , 8eff eff, p
k

2
2n

n
q= -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

where we have introduced the Keplerian frequency

GM R 2k
3
n p= , G is the gravitational constant, and M is

the mass of the star. We will write g g g ,eff eff, p q n= ¯ ( ) for later
convenience, so that

g 1 sin . 9
k

2
2n

n
q= -

⎛
⎝⎜

⎞
⎠⎟¯ ( )

ḡ depends not only on the spin and colatitude, but also on the
mass and radius of the star through kn . It is the ratio
g g,eff eff, pq n( ) and it measures the modification to local
gravity due to rotation with respect to a nonrotating star.
Presently, it has to be interpreted as a function of position θ

(and ν).
We also introduce the number  , which is ḡ evaluated at the

equator,

g 2, 1 , 10k
2 p n n n= = -¯ ( ) ( ) ( )

so that g , 1  q n¯ ( ) .  is a quantity characteristic of each
specific NS, combining the spin frequency, mass, and radius of
the star. It is equal to 1 for nonrotating stars and equal to 0 for
stars rotating at the Keplerian frequency. This latter limit is
nonphysical because the star would not be bound, at least at the
equator.
Assuming that the accreted material spreads rapidly over the

surface, the local accretion rate m ,q n˙ ( ) at a specific colatitude
is related to the local accretion rate at the pole mp˙ through
(Cooper & Narayan 2007a)

m m g g m g, , , . 11p eff, p eff
1

p
1q n q n q n= =- -˙ ( ) ˙ ( ) ˙ ¯ ( ) ( )

We note that the local accretion rate at the pole can be related to
the global accretion rate Mtot˙ , the total amount of mass accreted
per unit time as measured near the star, or to the surface-
averaged local accretion rate mav˙ as follows.

R m M m R4 , sin d d2
av tot

2
 òp q n q q f= =˙ ˙ ˙ ( ) , where the integral

is extended over the whole surface (assumed to be of spherical
shape for simplicity and consistency with Equation (7)).10

With Equations (9) and (11), this leads to mav =˙
m g2 , sin dp

1ò q n q q-˙ ¯ ( ) , where the integral in f yields 2p

8 Of course, this is similar to the suggestion of Narayan & Heyl (2003), but
here the origin of the stable burning is not the delayed mixed-burst regime, it is
the competition between b and hg in the power of Equation (6). In this sense,
the explanation is more similar to Bildsten (2000) even though we do not
invoke any strongly changing accretion geometry.

9 For the effects of general relativity, see AlGendy & Morsink (2014) and
Section 5.
10 If we were to include the effects of oblateness, the integral would be
M m R f, 1 sin d dtot

2 2 1 2
ò q n q q q f= +˙ ˙ ( ) [ ( )] , where f R Rd d q q=( ) ( )

and R is a function of θ only. This effect should be relevant only for very
fast rotating stars ( 0.3k n n ; AlGendy & Morsink 2014), unless general
relativity effects are taken into account.
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since ḡ does not depend on f. After some algebra, the result is

M

R
m m

4

arctan 1

1
. 12tot

2 av p
 

 p
= =

-

-

˙
˙ ˙

( )
( )

( )

0 = is not admissible and for m m1, p av  ˙ ˙ . The mapping
between m ,q n˙ ( ), mp˙ , and mav˙ should be taken into account
when comparing to observations, since observations are usually
stated in terms of Mtot˙ or mav˙ , while theoretical models prefer
the use of m ,q n˙ ( ). Equations (11) and (12) show how the
relation between these quantities depends on the rotation
frequency and the mass and radius of each star and is therefore
different for different systems (see also Figure 2). However, for
a star of mass M M1.4 =  and R 10 = km rotating at

10 Hz3n = ( 0.43kn n » , 0.82 » ), the correction due to
Equation (12) is only 1.14, so that this correction becomes
important only for very rapidly rotating systems.

Analytical calculations show that the ignition depth yign (the
column density in g cm−2 at which ignition takes place) can be
expressed as a function of local mass accretion rate, local
gravity, and the properties of the burning regime under
consideration, and this is confirmed by direct numerical
experiments (see Fujimoto et al. 1981; Bildsten 1998, and also
Section 4). In general, expressions for the ignition temperature
and depth can be estimated by combining the equations for the
temperature profile across one column of fluid, obtained, for
example, under the assumption of constant flux, with the
conditions for unstable burning and/or depletion of a specific
species (Fujimoto et al. 1981; Bildsten 1998). The flux depends
on the burning regime or on extra heat sources, usually
proportional to the accretion rate, like gravitational energy
release or extra nuclear reactions at the bottom of the ocean.
The conditions for instability are obtained by comparing the
energy release rate due to the burning and cooling rate. Gravity
enters the equations also through the equation of state of the
burning fluid and the relation between pressure P and column

depth: P ygeff= . Then, the burst recurrence time can be
expressed as the time it takes for accreted fluid to reach the
ignition depth, t y m ,rec ign q n= ˙ ( ) (Bildsten 1998; Cooper &
Narayan 2007a), and therefore we can write (see Section 4 for
an explicit example)

t m g, , . 13A B
rec effq n q nµ - -˙ ( ) ( ) ( )

This expression could be used also to fit measurements from
numerical experiments, therefore making it even more
generally useful.
The bursting rate  is the inverse of the recurrence time,

which leads to

m g, , . 14A B
eff q n q nµ ˙ ( ) ( ) ( )

This can be rewritten as

m g, , , 15A B  q n q n= ¯ ˙ ( ) ¯ ( ) ( )

where ̄ is a pseudo-constant that includes dependence on the
mass and radius through g GM Reff, p

2
= and physical

parameters like the fluid composition and conductivity (see
the example of Section 4, where we apply this to Equations
(20) and (32) in Bildsten 1998, and remember that

m y, ign q n= ˙ ( ) ). Using Equation (11), we can write

m g , 16p = a b¯ ˙ ¯ ( )

where Aa = , B Ab = - . In order to avoid cumbersome
notation, we dropped the explicit dependence over θ and ν from
ḡ, but that should be kept in mind since the role of ḡ is to track
the colatitude.
Typically, the bursting rate of a specific burning regime is

only valid within an interval of local mass accretion rate,
outside of which either the burning is stable or the burst rate of
another regime is higher. The limits for stability set conditions
on the burning temperature which, being found in a similar way
to yign, can be expressed in terms of ṁ and geff (see, for
example, the derivation of Equations (24)–(26) or (36) of
Bildsten 1998). The precedence of one regime over another is
mainly set by comparing the column depth yign at which
different regimes ignite and checking which one is smaller;
once again, these conditions involve ṁ and geff (e.g., Equation
(35) of Bildsten 1998; Cooper & Narayan 2007a). As a
consequence, these limits are quite generally of the form

m g m m g, , 17l hl h q nG G˙ ¯ ˙ ( ) ˙ ¯ ( )

where ml˙ and mh˙ are again pseudo-constants that hide the
dependence on physical parameters in the same way as ̄. The

sG are parameters that depend on the burning regimes and lG
need not necessarily be equal to hG (see an example in
Section 4). As for the burst recurrence time, these expressions
could be used to fit the results from numerical simulations, thus
providing a useful general form.
Thanks to Equation (11), these constraints can again be

written for convenience as

m g m m g , 18l p hl h g g˙ ¯ ˙ ˙ ¯ ( )

where 1
* *g = G + . Forms (16) and (18) are preferable over

(15) and (17), respectively, because they express the two
conditions in such a way that the dependence over θ and ν

(or  ) is only present through ḡ and clearly separated from the
dependence on the accretion rate, which is parametrized by mp˙ .

Figure 2. Relation between the observed, average accretion rate mav˙ and the
local accretion rate at the pole mp˙ . See Equation (12) and note that

1k n n = - . The divergence of the ratio m mav p˙ ˙ when kn n= , the
vertical asymptote (shown by the dashed line), is due to the fact that for a star
rotating at the Keplerian frequency, the local accretion should be 0. This plot is
general, and as a specific example, the dotted line indicates the position of a
star of M M1.4=  and R 10 = km spinning at 103 Hz. The hatched region
indicates the range of the known bursters: 11 Hz (Altamirano et al. 2010) to
619 Hz (Hartman et al. 2003).
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mp˙ has to be interpreted as a parameter that acts as a proxy for
the observational information mav˙ (Mtot˙ ), with the link being
provided by Equation (12). In principle, Equations (16) and
(18) could be expressed directly in terms of mav˙ and ν (or  ),
but that would make the following equations even more
cumbersome.

Finally, a star can experience different dominant burning
regimes, so we shall write in general

m g 19i i p
i i = a b¯ ˙ ¯ ( )

and

m g m m g , 20i ip 1i i 1 g g
+ +˙ ¯ ˙ ˙ ¯ ( )

where the index i indicates the burning regime. The critical
accretion rate m gi 1 i 1g

+ +˙ ¯ is also the lower limit of the rate i 1 + ,
etc.

The last quantities we need to define are the burst ignition
rate evaluated at the two mp˙ extremes of applicability:

m g , 21i i i m m g i i, i i
i i i

p
,  = = a d

= g∣ ¯ ˙ ¯ ( )˙ ˙ ¯

m g , 22i i i m m g i i, 1 1i i
i i i

p 1 1 , 1  = = a d
+ = +g

+ + +∣ ¯ ˙ ¯ ( )˙ ˙ ¯

where

23i i i i i,d a g b= + ( )

and

24i i i i i, 1 1d a g b= ++ + ( )

are useful shortening notations (note also that A Bi i i,* *d = G + ).

3. Where Does Ignition Take Place, Given a Specific mp˙ ?

For a given star with a given gravity and spin frequency,
ignition is to be expected at the colatitude where the rate is
higher (Cooper & Narayan 2007a). Let us consider the regime
i. The first question is whether at each colatitude the regime can
be realized at all. From Equation (20), we can see that at each θ,
we need m g m gi i 1i i 1g g

+ +˙ ¯ ˙ ¯ . Otherwise, the regime i would be
skipped there in favor of the regime i 1+ (or i−1). This
translates into

g
m

m
. 25i

i

1
i i 1 g g- +

+
⎛
⎝⎜

⎞
⎠⎟¯ ˙

˙
( )( )

It will be useful to define

, 26i i i i i1 1g g gD = - =G - G+ +( ) ( )
m

m
1 , 27i

i

i

1 m = +˙
˙

( ) ( )

and

. 28i i
1 i  m= gD ( )

It is easy to see that Equation (25) is satisfied by

g 1 if 0 & or 0, 29i i i    g gD < < D¯ ( )
g 1 if 0 & . 30i i i     gD <¯ ( )

Note that Equations (29) and (30) show that i
 marks a critical

value for  , and therefore for ν, across which the behavior
switches in the case of 0igD < . If im would be allowed to be
also 1im < , there would exist cases where the maximum
possible ḡ would be less than one, i.e., ignition may not reach

the pole, in analogy to the cases where the minimum value is i


and not  (i.e., some midlatitude and not the equator). That
1im < seems highly unlikely, and therefore we do not treat this

extra possibility here; see, however, Appendix A. The
colatitude i

q , which corresponds to i
, is given by

arcsin
1

1
. 31i

i
1 i


q

m
=

-

-

gD

( )

i
q is the solution of g1 sin i i ik

2 2   n n q- = =( ) ¯ and
corresponds to 2 ignp l- of Equation (8b) of Cooper &
Narayan (2007a). There exists also the solution i

p q- , but
this is in the southern hemisphere. Since the northern and
southern hemispheres are symmetrical, we consider only
northern hemisphere solutions. The condition for the existence
of i

q , if 1i m , is the same as Equation (30).
Equations (29) and (30) establish the range of colatitudes

(parametrized by ḡ) where bursts can happen. The next
question is: at a given accretion rate, parametrized by mp˙ ,
where does ignition take place first among the allowed
colatitudes? This question was addressed by Cooper &
Narayan (2007a), and we present its generalization here.

3.1. Another Mechanism Affecting the Burst Rate: Mixing

This is a good place to introduce another physical
mechanism that affects burst rate, regime switching, and
stability. In our formalism, that means another form for ḡ. In
the derivation so far, we have followed Cooper & Narayan
(2007a) and used the effects of the centrifugal force on local
gravity to identify a function ḡ that would have the following
properties: (1) depends on spin and latitude (being 1 at the
pole and 1< at the equator) and (2) changes the local behavior
of bursts. The centrifugal force case is more intuitive, being
well-known from the literature. However, another mechanism
that depends on spin and is known for affecting the burst
behavior is mixing. Piro & Bildsten (2007) give analytical and
linear stability analysis results about mixing, in particular
mixing due to the effective viscosity resulting from the
Tayler–Spruit dynamo (Spruit 1999, 2002). The authors found
that the mixing was more effective for slowly rotating stars.
Keek et al. (2009) performed more sophisticated, yet still 1D,
numerical simulations showing that mixing could also be
important for fast spins. They also found that mixing due to
other, purely hydrodynamical effects could be important for
high-enough spins. However, they did not provide analytical
expressions.
The analytical formulae of Piro & Bildsten (2007) are

particularly useful for this paper, since they express the burst
rate as m nµ a b-˙ and the limits for burning regimes as
mcrit nµ g-˙ . These formulae are derived based on equations
averaged over the surface, especially over θ, but some
dependence over θ is to be expected in reality (see
Fujimoto 1993; Spruit 2002). Finding the exact formulae is
beyond the scope of this paper, even though it definitely
warrants further work based on the conclusions of Section 5
(see also Section 1.1), where we suggest that they could
provide an explanation for the decreasing burst rate.
We can speculate, however, just in order to give a concrete

example of what we mean. The biggest difficulty is how to
extend the formulae of Spruit (2002) and, Piro & Bildsten
(2007) to the entire surface of the star, keeping the dependence
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over θ explicit. Since the Tayler–Spruit dynamo depends on an
external source to keep the shear in the vertical direction and
this can be provided more easily near the equator by the
accretion disk, the simplest possibility is to consider something
like sinn q. Note also that this formulation becomes unphysi-
cal, predicting infinite (or at least very high) rates for slow
rotators. We can speculate on the existence of a limiting,
perhaps very small, value minn such that we can write, for
example, sin 1 sinmin min n n q n q nµ + µ +b b- -( ) ( ) .
The exact form is not important here, but it should be
investigated when seeking a more quantitative analysis, of
course: we use this one only as an example. Then one can write

g 1
sin

. 32m
min

1n q
n

= +
-⎛

⎝⎜
⎞
⎠⎟¯ ( )

The reason for the negative power is that in this way gm¯ will be
1 at the pole and take a value m at the equator, just like ḡ of
Equation (9). In this example, the value at the equator would be

1 1, 33m
min

1

 n
n

= + <
-⎛

⎝⎜
⎞
⎠⎟ ( )

again characteristic of each star. Finally, for a given i
, the

corresponding colatitude would be

arcsin
1

1
. 34i

i
m,

1

m
1







q =
-
-

-

-
( )

We no longer discuss this formulation because it is not the
goal of this paper, but it is not unreasonable to think that a
similar expression to Equation (32) actually takes place. From
such a formula, definitions for m and im,

q could be obtained as
we did for our example.

As a final remark, we note that if the effects of mixing are
taken into account, the full formulae should in principle still
include the effects of gravity: m g gp m

m µ a b b˙ ¯ ¯ . However, since
geff does not change much from pole to equator, the effects of
mixing should be dominant, unless the dependence over
gravity is much higher than presently understood. The change
over gravity could thus be ignored. From now on, we will only
write our discussion in terms of ḡ,  , and i

q . The same
conclusions apply to the functions set by gravity and the
centrifugal force as in Equations (9), (10), and (31) or to the
functions set by mixing, as in our example Equations (32
)–(34).

3.2. Ignition Latitude of Type I Bursts

In order to determine at which colatitude ignition is to be
expected, we first need to know what is the range of allowed θ.
While Equations (29) and (30) give the overall range for a
given star and burning regime across all possible accretion
rates, the actual range at a specific mp˙ can be smaller. The
condition that determines this range is given by Equation (20).
Bursts take place only for values of mp˙ such that this relation is
satisfied by at least one of the overall allowed colatitudes.

Then, from Equation (20), we can define two functions that
will bound the range of available ḡ:

g
m

m
35i

i
,l

p
1 i

=
g⎛

⎝⎜
⎞
⎠⎟¯

˙
˙

( )

g
m

m
. 36i

i
,h

p

1

1 i 1

=
g

+

+⎛
⎝⎜

⎞
⎠⎟¯

˙
˙

( )

However, these functions can return values greater than 1 or
smaller than  (or i

), thus violating Equations (29) or (30). In
general, the correct values to consider are

g gmin max , or , 1 , 37i i i i, ,l   =¯ { [ ¯ ( )] } ( )

g gmin max , or , 1 , 38i i i i, 1 ,h   =+¯ { [ ¯ ( )] } ( )

and the real ranges for the available values of ḡ at a specific mp˙
are given by

g g gmin , , 39i i i imin , , 1= +¯ ( ¯ ¯ ) ( )

g g gmax , . 40i i i imax , , 1= +¯ ( ¯ ¯ ) ( )

Figure 3 shows schematically the various configurations of the
available ranges (gray areas) that can be found depending on
the signs of ig and i 1g+ . Note that g 1=¯ is the pole, g =¯ is
the equator, and g i

=¯ is somewhere in between. In the figure,
the points A and B are given by (see Equations (35) and (36))

m mln ln ln or , 41i i ip, A   g= +˙ ˙ ( ) ( )

m mln ln ln or . 42i i ip, B 1 1   g= ++ +˙ ˙ ( ) ( )

It is clear from the definition of i
, Equation (28), that in the

case of Equation (30), the points A and B coincide. Points C
and D correspond, respectively, to

m mln ln , 43ip, C 1= +˙ ˙ ( )
m mln ln . 44ip, D =˙ ˙ ( )

Finally, from Equation (16), it is immediately seen that
m gmax maxi p

i i = a b( ) ¯ ˙ ( ¯ ), so that the answer to the question
of where ignition takes place, given a specific mp˙ , is

g g0 , 45i maxb > =¯ ¯ ( )
g0 , 46ib = " ¯ ( )

g g0 . 47i minb < =¯ ¯ ( )

In Figure 3, the ignition colatitudes for the case 0ib > are
shown by the red dashed segments, while for 0ib < the
colatitudes are indicated by the solid blue segments. Basically,

0ib > traces the upper boundary and 0ib < the lower
boundary of the allowed colatitudes. If 0ib = , any colatitude
in the gray areas is equally probable.

3.3. The Bursting Rate Evolution for a Single Source

From an observational point of view, it is interesting to have
an idea of how the bursting rate would evolve within the
allowed range of mp˙ depending on the parameters ia , ib , and ig
and i 1g+ . In order to study the burst rate evolution for a single
source, the starting equation is once again Equation (16). In this
section, we restrict ourselves to the more physical condition

0ia > ; the other cases, being an easy extension of these
calculations, are reported in Appendix B.
If 0ib = , the bursting rate always grows as

m , 48i i p
i = a¯ ˙ ( )

and there is not much else to say. The behavior is more diverse
when 0ib ¹ and requires a more detailed analysis. This is
simple now that we know the paths that the ignition colatitude
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follows on the ḡ–mp˙ plane (Figure 3). The first step is to know
the bursting rate i as a function of mp˙ on the various segments
of the plots, then we can combine the different trends
depending on which path is taken. The bursting rates are (using
Equations (35) and (36))

m
m on AD, 49i

i

i

p
i i

i i
i
,




= b g

d
g

¯

˙
˙ ( )

m
m on BC, 50i

i

i

p
i i

i i
i

1

, 1
1


= b g

d
g

+

+
+

¯

˙
˙ ( )

m on DC, 51i i p
i = a¯ ˙ ( )

m on AB, when Equation 29 holds. 52i i pi i = b a¯ ˙ ( ) ( )

It is seen from Equations (49) and (50) that when the ignition
is moving between the pole and the equator (or the maximum
colatitude allowed i

q ), the trend is set by the sign and
magnitude of the ratios i i i,d g and i i i, 1 1d g+ + . In the spirit of
Figure 3, we will not be concerned with the magnitude of these
ratios, which can be determined by numerical simulations or
fitted from observations, but we will study their sign.
The expected burst rate evolution for a single burning regime

on a specific source for the cases 0ib ¹ is shown in Figures 4
( 0ib < ) and 5 ( 0ib > ). One thing to note is that, while the
sign of i i i,d g is not known in general, in the cases where it is

Figure 3. Simplified sketches showing the possible configurations of the allowed ranges of colatitudes where bursts can take place as a function of mp˙ for a single
source and burning regime i. The ranges in colatitude are parametrized by ḡ and are shown by the gray areas. The red dashed segments indicate the ignition colatitudes
as a function of mp˙ when 0ib > , and the solid blue segments indicate the ignition colatitudes when 0ib < . In the case of 0ib = , any colatitude in the gray areas is
equally probable. Point A is the first mp˙ at which ignition is possible at the highest colatitude allowed, and B is the last one. D is the first mp˙ at which ignition is
possible at the pole (the lowest colatitude allowed), and C is the last. Segments AD correspond to the limit set by Equation (35), while segments BC correspond to
Equation (36). Cases (a)–(d): configurations for cases described by 0 & or 0i i i  g gD < < D , Equation (29), where the overall minimum to ḡ is  (the equator).
The differences are set by the sign of ig for AD and i 1g + for BC. In order, they are positive (or 0)–positive (0), positive (0)–negative, negative–negative, negative–
positive (0). Note that the actual slopes are given by 1 ig and 1 i 1g + . In these cases, there is no implied relation between the magnitude of ig and i 1g + , apart from the
respective signs. For example, the first plot has AD steeper than BC, but it could also be the contrary. The first three plots could even be triangles, with the top segment
(the pole) collapsed to a point, but at least one mp˙ should be at the pole, due to the condition 1i m . Cases (e)–(h): same as cases (a)–(d), but for cases described by

0 &i i  gD < , Equation (30), where the overall minimum to ḡ is i  and the points A and B coincide. Since 0igD < , i i1g g>+ . Under this condition, the second
case is impossible.
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the slope of the function describing the bursting rate, we know
it will be positive! These cases are plots (c), (d), (g), and (h) of
Figure 4 and plots (a), (b), and (e) of Figure 5. The sign is
known because i i i i i i,d g a b g= + and for those cases, we
know that 0i ib g > . That also implies that i i i i,d g a> , a fact
that could be possibly detected by accurate enough observa-
tional campaigns. On the other hand, the same trick does not
apply when we need to know the sign of i i i, 1 1d g+ + : plots (a),
(d), (e), and (h) in Figure 4 and plots (b), (c), and (g) in
Figure 5. In those cases, 0i i 1b g <+ and the sign of i i i, 1 1d g+ +
depends on the difference i i i 1a b g+ + or, equivalently, on the
sign of i i, 1d + when 0ib < (Figure 4) and the sign of i i, 1d- +
when 0ib > (Figure 5).

As an example, we describe now how to obtain plot (d) of
Figure 4. We choose this example because it is one of the most
complicated ones, not because we think this is a more likely
one. For this we need to follow the blue solid line in the
corresponding plot of Figure 3. Ignition starts at the pole (on D)
and proceeds toward the equator as mp˙ increases (AD). From
Equation (49), we know that the rate is increasing mp

i i i,µ d g˙ .
When ignition takes place on the equator (AB), the bursting

rate keeps increasing as mp
ia˙ , but with a lower slope (Equation

(52)), since i i i i,d g a> . Finally, for higher mp˙ , ignition moves
again toward the pole (BC), and the bursting rate becomes

i i i, 1 1d gµ + + (Equation (50)). It is impossible, on general
grounds, to say if the rate will increase, remain constant, or
decrease: this depends on the sign of i i, 1d + . The other plots are
obtained in the same way. For example, plot (a) is very similar,
only the segment AD is absent; in plot (e) the segment AB is
also missing, since ignition starts off equator. The case of plot
(b) from Figure 5 is very close in nature to the case of plot (d)
of Figure 4, but reversed. Here, ignition is initially on the
equator, A, and then moves toward the pole on AD (following
the red path in Figure 3), the burst rate growing as mp

i i i,d g˙ .
While the flame ignites preferentially at the pole, on DC, the
rate grows as mp

a˙ since the normalization factor due to ḡ stays
constant. Finally, after point C has been reached, ignition
moves again toward the equator, with the burst rate evolving as
mp

i i i, 1 1d g+ +˙ . If 0i i i, 1 1d g <+ + , the burst rate will be observed to
decrease. However, very differently from the cases when

0b < , the accretion rate at which the burst rate is seen to peak
is constant: mi 1+˙ . Both in Figures 4 and 5 a negative i i i, 1 1d g+ +

Figure 4. Bursting rate evolution of a single source as a function of mp˙ , for cases when 0ib < and 0ia > : these correspond to the blue solid paths in Figure 3. The
plots shown are in a one-to-one correspondence with the plots of Figure 3 and so are the indicated points A, B, C, and D. Indicated above each interval is the slope of
the bursting rate. For the cases where the slope is i i i, 1 1d g+ + , the sign of the slope is not determined, and we show the three possible cases ( 0, 0, 0> = < ) using dotted
lines. In parentheses, we indicate that the sign of the slope is dictated by the sign of i i, 1d + . On the other hand, it is known that 0i i i i,d g a> > when i i i,d g is the slope
of the burst rate.
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would result in the burst rate starting to decrease after some
value of mp˙ (Mtot˙ ).

4. Example Application

Here we provide an explicit example of the formalism of this
paper, showing how the results of Bildsten (1998) and Piro &
Bildsten (2007) for helium burning translate into the para-
meters a, b , etc. We start with the case of gravity, which is the
most developed. In doing so, we repeat some of the formulae
from the author.11 This is also the regime initially described by
Cooper & Narayan (2007a).

First, we show how to obtain the bursting rate parameters
(see Equations (13)–(16)). In the case of ignition in a pure
helium environment, the ignition depth is given by Equation
(20) of Bildsten (1998):

y Y E m g1.08 10 g cm , 531,ign
14

18
2 5 1 5

eff
2 5 2m k= ´ - - - -( ) ˙ ( )

where Y is the helium mass fraction, E18 is the energy released
per unit mass by the burning in units of 1018 erg g−1, and κ is
the opacity in cm2 g−1.

m y, ign q n= ˙ ( ) , therefore

Y E m g9.28 10 Hz. 541
15

18
2 5 6 5

eff
2 5 m k= ´ - ( ) ˙ ( )

Comparing this to Equations (14) and (15), and expanding
g g geff eff, p= ¯, it is seen that A 6 51 = , B 2 51 = , so that

6 5 and 4 5. 551 1a b= = - ( )

The pseudo-constant Y E g9.28 101
15

18
2 5

eff, p
4 5 m k= ´ - -¯ ( ) Hz

(g s−1 cm−2)−6/5. It is evident how the properties of
composition, opacity, burning regime, stellar mass, and radius
are contained in ̄.

When helium burns in a mixed hydrogen–helium environ-
ment and flux from the bottom can be ignored (Equation (32) of
Bildsten (1998)), the ignition depth is

y Y Z g2.55 10 g cm ;

56
2,ign

10 1 3
CNO

5 18 2 9 7 18
eff

2 9 2m k= ´ - - - - - -

( )

here, ZCNO is the metallicity, i.e., the mass fraction of carbon,
nitrogen, and oxygen. Note that y2,ign is independent of ṁ, even
though this is not always the case (at high accretion rate and/or
low metallicity; Bildsten 1998, Equation (37)). Therefore,

Y Z mg3.92 10 Hz, 572
11 1 3

CNO
5 18 2 9 7 18

eff
2 9 m k= ´ - ˙ ( )

so that A 12 = , B 2 9;2 = then,

1 and 7 9. 582 2a b= = - ( )

Furthermore, Y Z g3.92 102
11 1 3

CNO
5 18 2 9 7 18

eff, p
2 9 m k= ´ -¯ Hz

(g s−1 cm−2)−1.
Second, we provide examples for the limits in the mass

accretion rate, Equations (17) and (18), for the validity of the
bursting rate of each of these burning regimes. In the case of
pure helium bursts, the lower limit is set by the stability of the
hydrogen burning, Equation (36) of Bildsten (1998), which
otherwise would be bursting before helium could:

m X Z4.18 10 g s cm 591,l
3 1

CNO
1 2 1 2 1 2k= ´ - - - - -˙ ( )

independent of gravity. The upper limit is set by the
requirement that helium ignites at a depth where all hydrogen
is depleted, Equation (35) of Bildsten (1998):

m Z X

Y g

2.32 10

g s cm . 60

1,h
2

CNO
13 18 1

1 3 2 9 7 18
eff

2 9 1 2m k

= ´

´

-

- - - - - -

˙
( )

This means that m 4.18 101
3= ´ -˙ X Z1

CNO
1 2 1k- - and

m Z X2.32 102
2

CNO
13 18 1= ´ -˙ Y g1 3 2 9 7 18

eff, p
2 9m k- - - - . Further-

more, 01G = , 2 92G = - , and so

1 and 7 9. 611 2g g= = ( )

Combining these with Equation (55), we have for
Equations (23), (24), and (26)

2 5, 621,1d = ( )

2 15, 631,2d = ( )

2 9. 641gD = ( )

For the case of helium ignition in a mixed hydrogen–helium
environment, the lower limit is set by the upper limit of pure
helium ignition, m m2,l 1,h=˙ ˙ . The upper limit is set by the
stability of helium burning in this mixed composition

Figure 5. Same as Figure 4, but for cases when 0ib > and 0ia > , the red dashed paths of Figure 3. For the cases where the slope is i i i, 1 1d g+ + , it is indicated in
parentheses that the sign of the slope is dictated by i i, 1d- + . Also here 0i i i i,d g a> > , when i i i,d g is the slope of the burst rate.

11 The formulae will look slightly different because we rederived them in order
to keep explicit all of the terms that involve the composition, we avoided
rounding numbers in intermediate steps, and we applied no scaling to variables
like ṁ or geff . We keep the opacity κ explicitly instead of inserting the electron-
scattering formula X m1 2es Th pk s= +( ) ( ).
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condition, Equation (24) of Bildsten (1998). This is

m Y E g1.79 10 g s cm ,

65
2,h

7 1 2 1 2
18

3 4 3 4
eff
1 2 1 2m k= ´ - - - - -˙

( )

which leads to m Y E g1.79 103
7 1 2 1 2

18
3 4 3 4

eff, p
1 2m k= ´ - - -˙ ,

1 23G = , and

3 2. 663g = ( )

This implies, with Equation (58),

0, 672,2d = ( )
13 18, 682,3d = ( )

13 18. 692gD = - ( )

For an NS with M M R1.4 , 10= = km, accreting solar
composition X=0.7, Y=0.29, Z 0.01CNO = , with the opacities
reported by Bildsten (1998), we have 2.08 101

8 = ´ -¯ Hz (g
s−1 cm−2)−6/5, 2.75 102

9 = ´ -¯ Hz (g s−1 cm−2)−1,
m 6.69 10 g s cm1

2 1 2= ´ - -˙ , m 4.72 10 g s cm2
3 1 2= ´ - -˙ ,

and m 1.33 10 g s cm3
5 1 2= ´ - -˙ (this value is actually ∼1.5

times the local Eddington limit m cm2edd p=˙ / X1Ths + =[ ( )]
8.88 104´ g s−1 cm−2),12 and we have

m g

mg

m g

m m g

m g

2.08 10 Hz

2.75 10 Hz

6.69 10 g s cm

4.72 10 g s cm

1.33 10 g s cm .

1
8 6 5 4 5

2
9 7 9

1,l
2 1 2

1,h 2,l
3 7 9 1 2

2,h
5 3 2 1 2




= ´
= ´
= ´

= = ´

= ´

- -

- -

- -

- -

- -

˙ ¯
˙ ¯

˙ ¯
˙ ˙ ¯
˙ ¯

For the case of ignition in a pure helium environment, we
have 0i 1g g= > , 0i 1 2g g= >+ , and 01gD > , which corre-
sponds to Equation (29) and to plot (a) of Figure 3. 01b < ,
which according to Equation (47) means ignition will take
place at gmin¯ . Therefore, as mp˙ increases, gign¯ will trace the
lower boundary of the gray area (solid blue segments): starting
at point A, ignition will be at the equator until the segment BC
begins, at which point ignition will move toward the pole
following this segment. The case of helium ignition in a mixed
hydrogen–helium environment is similar, having 02b < ,

0i 2g g= > , and 0i 1 3g g= >+ , but 02gD < . In this case,
the behavior is different for slow and fast rotators, where fast
means

1.33 102
5  < = ´( /4.72 10 9.83 103 1 13 18 3´ = ´- -) ( )

or equivalently, 1 9.95 10k 2
1

k n n n> - = ´ - . For slow
rotators,13 the evolution is again described by the lower
boundary of plot (a) of Figure 3, but for fast rotators, the
available ignition colatitudes are described by Equation (30)
and plot (e) of Figure 3. For fast rotators, ignition begins off
equator (at 2*q , g 2

=¯ ) on point A Bº and moves polewards
along the segment BC.

Since 01b < and 02b < , the bursting rate evolution is
described by the plots (a) and (e) of Figure 4. 01,2d > , so that
plot (a) tells us that we would expect an always increasing
bursting rate with increasing mp˙ for pure helium burning, with
a change of slope at some point. Since 02,3d > also, plots (a)
and (e) predict the same for bursts of helium ignition in a mixed

hydrogen and helium environment, with the faster sources
displaying one single slope. Since the maximum burst rate is
attained at the pole, it is independent of the rotation of the star
and so is the mass accretion rate of the peak, Equations (43)
and (51).
We now move on to see how the results of Piro & Bildsten

(2007) translate into our formalism. The main point to make is
that the powers in the formulae of those authors should change
signs, since we suggest having gm¯ depend on the inverse of ν in
order to have the minimum of gm¯ at the equator. As for the
burst rate, Equation (70) of Piro & Bildsten (2007) would read

m g, , 701.25
m
0.36 q nµ ˙ ( ) ¯ ( )

so that 1.25a = and 0.36mb = . The authors also report two
limits for their regime of mixing modified helium burning:

m g, , 71l m
3q n µ -˙ ( ) ¯ ( )

m g, , 72h m
0.62q n µ -˙ ( ) ¯ ( )

so that 3m,lg = - and 0.62m,hg = - . Note that also in the case
of mixing, the analytical predictions would give a consistently
increasing burst rate. 0mb > and both 0m,*

g < , so that the
case is that described by plots (c) or (g) of Figures 3 and 5
( 0igD < ). These cases allow for decreasing burst rate, but here

0.67 0i i i, 1 1d g = >+ + : the expected rate is increasing. How-
ever, once again, these are simplified analytical calculations
and some differences with real burst physics are to be expected
(see, e.g., Keek et al. 2009, who include a more elaborate
version of the Tayler–Spruit dynamo and also find that at high
spin hydrodynamical instabilities become efficient).
It is curious to note how both the case of Bildsten (1998) and

the case of Piro & Bildsten (2007) do actually fall in the
categories that would give decreasing a burst rate if the ratio

i i i, 1 1d g+ + were negative. The values of a, b , and
*
g are

uncertain enough that this could be happening in actuality.
Between the two mechanisms mentioned above, we think
mixing is the best candidate.

5. Summary and Discussion

5.1. The Role of Local Conditions

Wepresented simple analytical relations that would enable a
comparison between models and observations. In Section 2, we
began introducing the relation between the observed total mass
accretion rate Mtot˙ (as measured near the star, via the average local
accretion rate mav˙ , M R m4tot

2
avp=˙ ˙ ) and the local mp˙ at the pole

in Equation (12). This relation is used to facilitate the calculations
since it allows us to compare one single observational piece of
information, Mtot˙ , to one single theoretical piece of information,
mp˙ . However, as we noted, even up to 10 Hz3n = (the fastest
known NS spins at 716 Hz (Hessels et al. 2006), and the fastest
burster spins at 620Hz (Muno et al. 2002)), the difference
between mav˙ and mp˙ is just of order 10%. Then, in Sections 2
and 3, we generalized the work of Cooper & Narayan (2007a) and
presented a description of the burst rate  versus mp˙ . We
parametrized the burning physics with various parameters (ḡ, ia ,

ib ,
*
g , and m*˙ ). ḡ is a function of the colatitude θ and the spin

frequency ν. It is set by the dependence of the burning physics on
local conditions. We discussed two possible mechanisms that may
have an effect: local gravity, as explored by Cooper & Narayan
(2007a), and mixing, as explored by Piro & Bildsten (2007). The

12 This case is interesting because it shows that 1im > even though the
numerical coefficient of Equation (65) is smaller than the one of Equation (60).
13 Note that in this case almost every NS would be a slow rotator, since the
limit is very close to the mass-shedding limit.
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two mechanisms establish different relations among ν, θ, and the
burning physics, which are summarized by gb¯ . In the case of the
effective gravity, ḡ is the ratio g geff eff, p, Equations (8) and (9).
In the case of mixing, this dependence has not been worked out in
full form yet (but see Spruit 1999, 2002; Piro & Bildsten 2007),
and we just hint at a possibility in Equation (32).

The form of ḡ is very important because we use it to express
the colatitude of ignition once ν is fixed. While ia expresses the
dependence of the burst rate on the mass accretion mp˙ , ib
expresses the importance of each of the mechanisms that are at
work in setting the burst rate, Equation (16). In the case of the
changes to local gravity due to the centrifugal force, b is
determined by the dependence of the ignition depth and the
temperature profile of the column on gravity (Bildsten 1998).
In the case of mixing, it is determined by the dependence of
those very same quantities on the rotation–shear-induced
mixing (Piro & Bildsten 2007). The m*˙ are the boundaries of
the accretion rate where bursts can take place as calculated in
the absence of rotation, e.g., at the pole; these boundaries at
other colatitudes depend also on the local conditions via g *g¯ ,
Equation (18). As can be seen, the local conditions, whether set
by the effective gravity, mixing, or other mechanisms, are very
important, because they control very strongly the evolution of
the burst rate. In Section 3, we discussed the case 0ia > , i.e.,
when locally the burst rate increases with accretion rate. We
provided summarizing formulae and plots for the ignition
colatitude and burst rate as a function of mp˙ (Mtot˙ ):
Equations (45)–(52) and Figures 3–5. In the Appendices, we
provide similar results for other, less likely cases.

Due to their nature, the equations were derived under somewhat
simplified assumptions, which could be improved. First, general
relativistic corrections to geff could be taken into account.
AlGendy & Morsink (2014), for example, show that rotation
introduces further terms to the ratio g geff eff, p that we do not
include in Equation (9). These terms depend on the oblateness of
the star and the mass quadrupole moment. These corrections have
a different form from Equation (9) and can be higher even for
stars rotating at 500 Hz (AlGendy & Morsink 2014). Thus, they
would change some of the quantitative conclusions drawn from
the equations of this paper. The nature of the conclusions should
not be affected. Second, the local accretion rate depends on ν and
θ only through the effective gravity term, Equation (11). This may
not be the case depending on the extent of the boundary layer
(Bildsten 2000) or if some form of confinement is operating, for
example due to magnetic fields. This may change Equation (11)
and therefore most of the following equations. Third, there may
even be a dependence on Mtot˙ of the extent in θ of the boundary
layer or of the size of the accretion column in the case of strong
magnetic fields: this would even make Equations (11) and (12)
nonlinear in Mtot˙ . Finally, extra heating in the upper layer where
accretion takes place may affect the ignition depth, burst rate, and
boundaries in the mass accretion rate as in Equations (16) and
(18). This effect could arise from a magnetic hot spot or if some
heating mechanism is at work at the accretion disk boundary layer
(as suggested by Inogamov & Sunyaev 1999, 2010). These effects
would introduce different dependencies on the spatial position
(θ, f) and, in the case of the boundary layer, also on ν; therefore, ḡ
would have a different form. Including these dependencies may
contribute to further refining the equations presented here. We
leave this for future work.

We continued in Section 4, presenting an example applica-
tion that shows how the equations and plots of Section 3 and of

the Appendices could be used, after the ν-dependent conver-
sion between Mtot˙ and mp˙ has been applied. We showed in a
straightforward way that the dependencies predicted by theory
(in this case the values of ia , ib ,

*
g ,and m*˙ based on the

simplified analytical calculations of Bildsten 1998 and Piro &
Bildsten 2007) would not agree with observations, since they
predict a consistently increasing burst rate versus Mtot˙ , even
taking into account the effects of local gravity and mixing.

5.2. A Mechanism for Decreasing Burst Rate

The second goal (and a very exciting conclusion) of this
paper is a possible explanation that naturally accounts for two
observational oddities: decreasing burst rate with increasing
Mtot˙ , and the weakness of the high Mtot˙ bursts. The decrease in
burst rate after a certain accretion rate Mtot˙ is relatively common
(see e.g., Cornelisse et al. 2003). The reason behind this
decrease has been a mystery for many years. It has been
explained either as a consequence of a switch to a burning
regime with intrinsically decreasing burst rate, 0a < in our
formalism (Narayan & Heyl 2003; Cooper & Narayan 2007a),
or as a change in accretion geometry that changes the local ṁ
(see Bildsten 2000; Strohmayer & Bildsten 2006). We think we
can explain it with the effect that the local conditions have on
the burst rate, e.g., due to effective gravity or mixing. From the
plots in Section 3 (Figures 4 and 5), it can be seen that it is
actually possible to have a decreasing burst rate, even if 0ia >
locally all the time. The condition for this is that

0i i i i i i, 1 1 1d g a b g= + <+ + + . The physical meaning of this
combination is as follows.
Consider a case with 0ib < , 0ig > , and 0;i 1g >+ we will

highlight the role of each parameter separately, starting with

i 1g+ (see also Section 1.1 and Figure 1). The burst rate is
given by Equation (16), m g M gp tot

i i i i µ µa b a b˙ ¯ ˙ ¯ . The factor gb¯
sets the difference between the burst rate at the equator and
the pole (and also all of the other colatitudes). Since
g g2 0q p q= < =¯ ( ) ¯ ( ) and 0ib < , the burst rate at the
equator is higher and the bursts initially ignite there. As long as
the equator can burst, the rate in this phase will grow as Mtot

ia˙ .
When the equator stabilizes, the ignition site moves polewards
at a “speed” g Mln ln 1 itot 1gD D = +¯ ˙ . It will reach the pole in

Mln lnitot 1 gD = - +
˙ , where  is ḡ evaluated at the equator.

The rate will be Mtot
i i i 1 µ a b g+ +¯ ˙ . If the ignition moves toward

the pole in a range Mln totD ˙ that is wide enough, and the
growth of the burst rate due to Mtot

ia˙ is able to compensate
the initial gap due to g ib¯ , then the burst rate will increase (large

i 1g+ ; Case 1 in Figure 1). If the ignition moves toward
the pole in a range Mln totD ˙ that is too narrow, then the increase
of the burst rate due to Mtot

ia˙ will not be able to overcome the
initial gap and the burst rate will decrease (small i 1g+ ; Case 2
in Figure 1). If 0ib > , the situation is analogous, with the
pole and equator exchanging roles. This time the pole has
the advantage; see, for example, plot (c) in Figure 5. When the
ignition leaves the pole toward the equator on the segment BC,
the growth in the burst rate due to Mtot

ia˙ can or cannot
compensate the initial gap due to g ib¯ depending on the value of
the interval Mln lnitot 1 gD = +

˙ . Note that in the case where
0ib > , we need 0i 1g <+ . The burst rate is of course

Mtot
i i i 1µ a b g+ +˙ . In Figure 6, we describe how differences in b

and a can have similar effects. In panel (a), we show the effect
of b . b sets the gap between the burst rate at different
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colatitudes. If 0b < , the higher b∣ ∣, the higher this gap will be
(since g 1¯ ). For high b∣ ∣, the increase in Mtot

a˙ will not be able
to compensate for the gap and the burst rate will decrease, Case
2. If b∣ ∣ is small enough, the gap can be covered and the burst
rate will increase, Case 1. In panel (b) we show the role of a,
which is apparent by now. If a is high enough, Mtot

a˙ will be
high and will be able to cover the gap due to the normalization
factor gb¯ , Case 1. Otherwise, the rate will be seen to decrease,
Case 2. The physical meaning of the condition

0i i i 1a b g+ <+ is then this: that the resulting rate when
ignition moves off the initially favored site is a competition
between the increase in rate set by ia and the initial gap set by

ib compensated by the “speed” g Mln ln totD D¯ ˙ set by 1 i 1g+ .
This simple mechanism can explain quite naturally the

decrease in burst rate with the initial gap in burst rate,
the process of stabilization of the bursts, and the migration of
the ignition to other colatitudes. It is also very appealing
because it reconciles the observations with the time-dependent
1D simulations that predict a consistently increasing burst rate

0ia > . At the same time, since a smaller fraction of the star is
available for the unstable burning of regime i, the rest of the
star would be burning stably. The stable burning would reduce
the available fuel for the spreading flame of the bursts after
ignition took place, thus explaining the other observational
feature: less energetic bursts (van Paradijs et al. 1988;
Strohmayer & Bildsten 2006, and references therein). If this
scenario is true, it may also have implications for all
observational attempts at measuring the NS radius that exploit
the bursts, since not all areas of the star may be emitting, at
least not homogeneously. Furthermore, the decrease in burst
rate and the weakening of the bursts would make them more
difficult to detect before the theoretical limit is reached, and
this, combined with other stabilizing effects (e.g., Keek
et al. 2009), would give the impression of stabilization before
the expected theoretical value of the accretion rate boundary.

The last sentence needs some refinement. We presented two
cases where it is possible for the burst rate to decrease: 0b < ,

with bursts initially igniting on the equator, and 0b > , with
bursts initially at the pole. The value of Mln totD ˙ between the
peak of the burst rate and the end of the bursts is lni 1 g+∣ ∣ in
both cases. This value depends on the spin of the star via  .
However, the value of Mtot, max˙ at which the peak is reached is
different. In the case 0b > , the maximum is reached at the
pole, point C, and M N mitot, max 1n= +˙ ( ) ˙ , Equation (2), is
almost constant since N n( ) is very close to 1 for all known
bursters, unless various effects (like the accretion processes
discussed at the beginning of this section) contribute to make
N n( ) a stronger function of ν. In the other case, 0b < ,
M N mitot, max 1 i 1n= g

+ +˙ ( ) ˙ . This value depends on the spin of
the star more strongly, especially if  is given by what we call
m : the value due to mixing. It is therefore easier to reconcile
theory and observations if 0b < : the theoretical value for the
quenching of the bursts may be when the bursts are already too
rare and dim to be detectable above the fluctuating background
accretion luminosity. The case 0b > is still possible, of
course, but this would require a very strong correction to our
present understanding, since the value predicted by theory
would then correspond to Mtot, max˙ , which is much lower then
current estimations. This latter case seems less likely.
We also mentioned cases where limits to ḡ are set by i

,
Equation (28) and Appendix A. These correspond to cases when

1i m and 0igD < (or when 1im < and 0igD > , see
Appendix A). They correspond to cases where the equator (or
the pole) is always stable for slow rotators. It is interesting to note
that Mtot˙ , corresponding to i

, M N mi itot 1 i 1 n= g
+ +˙ ( ) ˙ , is almost a

constant. That is because of the weak changes of N n( ) and the
fact that mi 1+˙ , i

, and i 1g+ are constants depending only on the
burning physical processes. This is a partial artifact of the cases
we treated. i

 comes from equating m g m gi i 1i i 1=g g
+ +˙ ¯ ˙ ¯ . The fact

that ν and θ always appear together with the same form in the ḡ
(namely sinn q) makes the equality one equation in one
unknown, the unknown being sinn q. Then, sinn q is fully
determined and so are the ḡ, which in turn make mp˙ fully

Figure 6. Same as Figure 1, but highlighting the effects of b , panel (a), and a, panel (b). Panel (a): at fixed a and i 1g + , if 0b < and b∣ ∣ is small, Case 1, then the
increase in burst rate due to increasing Mtot

a˙ can cover the gap due to the normalization factor gb¯ , and the burst rate is seen to increase. When b∣ ∣ is large, Case 2, the
gap is too wide and the increasing burst rate cannot compensate for it: the burst rate is seen to decrease. Panel (b): at fixed b and i 1g + , if a is high enough, Case 1, then
the burst rate keeps increasing also when the ignition moves off the equator. If a is low, Case 2, then the increasing Mtot

a˙ cannot compensate for the normalization
factor and the burst rate is seen to decrease. For both panels, in Case 1, 0i i i, 1 1d g >+ + , and in Case 2, 0i i i, 1 1d g <+ +/ .
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determined and constant. On the other hand, if the two ḡ on the
two sides of the equivalence were in fact different, most
importantly depending differently onν and θ, something that
would happen, for example, if different mechanisms were at work
or if accretion physics were to change Equation (11) and the
relation between ṁ and mp˙ , then equating the two boundaries for
regime i would provide one equation in two unknowns and
therefore return a value for i

 and the corresponding mp˙ that
would depend explicitly on ν. This would also result in some
Mtot, max˙ depending more strongly on ν.
Very preliminary analysis of observational data shows that

the parameters b and
*
g would need to be very large to account

for observations if only the effect of changing gravity is taken
into account. This can be seen from the fact that the span in mp˙
between the peak burst rate and the minimum is lnh g . Even
taking into account general relativistic effects,  is still very
close to 1 even for fast rotators and that makes the logarithm
almost zero. On the other hand, when we considered mixing,
we suggested that gm¯ would be mostly proportional to ν, and so
would be m (see Section 3.1). That can lead to much stronger
effects. We do not study the exact form of gm¯ in this work, but
deem it a very worthy direction for research.

Finally, we want to add that any other mechanism could
explain the decreasing burst rate if it would set a gap between the
burst rate from different ignition locations and it would provide a
means of moving the ignition between these sites fast enough so
that the increase due to Mtot

a˙ would not be able to compensate for
the initial gap. We think that the local effective gravity and mixing
are among the most natural of such mechanisms.

5.3. Future Perspectives

Ultimately, a joint effort of fitting to observations and running
sets of numerical models varying both ṁ and ν should provide a
test of the idea described above and, if successful, our equations
would provide the constraints that theory has to follow to
reproduce the observations. The θ-dependent effects of mixing
should be included self-consistently. We plan to perform a
detailed comparison with observations in the future, but here we
mention some considerations concerning the applications of
Equation (16) when comparing to different sources. First of all,
the importance of composition. We saw that composition is
important because it determines the value of the coefficients i̄ ,
mi˙ and mi 1+˙ . Lampe et al. (2016) showed that composition, even
small variations in metallicity, will also change the values of the
parameter a. It seems reasonable to expect that b and g may also
be affected to some degree and therefore values may be different
from source to source. Piro & Bildsten (2007) and Keek et al.
(2009) also stress the effects of mixing. Piro & Bildsten (2007)
suggest that, to test the effects of spin at a first-order
approximation, it would be sufficient to run simulations varying
the mass fraction of helium. The work of Lampe et al. (2016)
changed the composition (even if the fraction of helium was tied
to that of the metallicity of the CNO species) for a part of the
range suggested by Piro & Bildsten (2007). In Figure 1 of Lampe
et al. (2016), it can be seen that indeed the burst stabilized at an
appreciably different ṁ. Second, we want to point out that
following the evolution of a single source, different burning
regimes will be experienced and therefore changes in the
parameters are to be expected when the burning regimes switch.
For example, the phase when the burst rate decrease is observed
could be described by the mechanism we propose during the
burning of helium in a mixed hydrogen–helium environment

followed by the regime of delayed mixed bursts described by
Narayan & Heyl (2003) and Lampe et al. (2016), where 0a < at
the very latest stages of the accretion rate. This regime happens for
a very narrow range at high Mtot˙ , before the bursts disappear.
Even if this happens at too high Mtot˙ to explain the observed
decrease in burst rate in all sources, it could still play a role in the
very last stages of the decreasing burst rate determined by the
mechanism we propose. Another example is what would happen
when the switch is not between a burning regime and burst
stability, but between the burning regime i and the burning regime
i 1+ . Locally, the switch always happens when the burst rate of
regime i 1+ becomes faster than the rate of regime i. Suppose the
switch from regime i to i 1+ takes place initially at the equator,
then the burst rate i 1+ at the equator can be either faster or
slower than the burst rate i at some other colatitude. If it is higher,
then the switch will also take place from the point of view of the
observer. If it is slower, then the burst rate will look like that of
bursts of regime i for higher accretion rates until the burst rate of
regime i 1+ eventually overtake. In both cases, the flame of the
bursts will meet different conditions across the surface of the star,
giving, for example, light curves with mixed properties: these
effects would need to be simulated with multidimensional
simulations (see below) and studying a series of burning regimes
would need the comparison of the compositions of the diagrams
of Figures 3–5 to observations.
A striking feature of the relations in Section 3 is how the kind of

expected behavior depends mostly on the sign of i,*d and the sign
of the parameters ig , i 1g+ . In case of behavior switching, controlled
once again by ig and i 1g+ , through igD , m mi i i 1m = +˙ ˙ is also an
important parameter. The role of i,*d is particularly informative:
since i,*d combines both the contribution from the bursting rate,
via ia , ib , and the boundaries in the mass accretion rate of a
bursting regime, via

*
g , one cannot say that one of these aspects is

much more important then the other. For example, both a small,
positive i 1g+ or a strong, negative ib would give a negative i i, 1d + .
However, small or large is relative to the value of ia . As a
possibility, the values of i 1g+ and ib required to explain the
observations could be determined, respectively, by a weak
dependence on ḡ of the bound on accretion rate or a strong
positive dependence on ḡ of yign, but there are, of course, other
possible combinations. However, since all of these parameters, in
one way or another, come from the ignition depth of a specific
burning regime (see Section 2), and this in turn depends quite
strongly on the energy release rate, this brings further evidence in
support of the need that nuclear research has to focus on better
understanding the reaction rates, which set the temperature of the
burning region (Schatz 2011). Another important point to clarify,
which also influences the ignition depth, is the origin and
magnitude of extra heat sources due, for example, to the accretion
process or further reactions in deeper layers as speculated for
explaining superbursts or NS cooling behavior. The dependence of
these factors on the local conditions at different colatitudes is key.
In an idealized procedure, one would have to input physical

parameters in 1D simulations and then extract the exponents ia ,
ib , and

*
g and the masses m*˙ from the simulations changing the

effective gravity geff , the local accretion rate ṁ, and also the
composition (see, for example, Lampe et al. 2016 and also
Galloway et al. 2017), compare the results to the constraints
obtained from the data (similar to those of Cornelisse
et al. 2003, for example), introduce more refined physical
processes, and then repeat the procedure until convergence.
The value of a for helium burning from the literature and
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simulations is well-established around 1–1.2 (see, e.g., Bildsten
1998; Lampe et al. 2016), but the dependence over the other
factors should be explored, since information on the values of
b and

*
g is scarce and should be measured more accurately.

Note that the results from 1D simulations would return the
values a, B b a= + , and 1gG = - in the case of the
dependence over gravity, while in the case of the dependence
over mixing, the exponents would be directly a, b , and

*
g .

However, one very important point to determine first is the
form of the function gm¯ (see Sections 2 and 3.1).

This kind of fitting could benefit further from the use of
global multidimensional simulations similar to those of
Cavecchi et al. (2013, 2015, 2016). Application of the
analytical equations determines the most likely ignition
colatitude for the burst and indicates whether some part of
the star may be covered in partly exhaust fuel. This information
could be used in global simulations in order to simulate flame
spreading from the most plausible colatitude with a reasonable
surface distribution of the fuel. The results could be compared
to observed light curves in order to test the agreement of
additional details such as, for example, burst oscillations or the
exact profile of the light curves of the bursts (see e.g., the
discussion in Heger et al. 2007a). Multidimensional simula-
tions would also be key in understanding the differences in
local initial conditions, or ḡ in our jargon. The advantage
introduced by the analytical relations of this paper is to make
the comparison between observations and theoretical models
faster and possibly even indicate the direction in which to
search for refinements in order to match the observational
criteria. We have already pointed out one: 0i i i 1a b g+ <+ .

Future large-area X-ray telescopes, such as the proposed
Enhanced X-ray Timing and Polarimetry mission (eXTP;
Zhang et al. 2016) and the NASA Probe-class mission concept
STROBE-X (Wilson-Hodge et al. 2017), will have improved
sensitivity, all-sky monitoring, and spectral-timing capability.
Analytical relations of the type given in this paper will be
particularly useful to interpret the high-quality sequences of
burst and burst oscillation data expected from such missions to
understand the details of burning and accretion physics.
Combining that with multidimensional simulations will allow
a faster and more powerful application of the phenomena
associated with thermonuclear explosions to the study of the
properties of the underlying NSs, such as, for example the use
of type I bursts to tackle the problem of the equation of state of
the NS cores (Miller 2013; Watts et al. 2016).

We thank L. Keek for comments on an earlier version of the
draft that improved its clarity. Y.C. wishes to thank P. Crumley
for asking the right questions. Y.C. is supported by the
European Union Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie Global Fellow-
ship grant agreement No. 703916. A.W. acknowledges support
from ERC Starting Grant No. 639217 CSINEUTRONSTAR.

Appendix A
What if 1im < ?

We stated at the beginning of Section 3 the condition 1i m ,
because 1im < seems highly unlikely. We can explore quickly
this alternative here.

Figure 7. Upper panel: available colatitudes for different combinations of the sign of ig and i 1g + as in Figure 3, but for the case 1im < . One difference is that the
maximum available for ḡ is i . Also, the fourth case, 0ig < and 0i 1g >+ (or 0), is impossible due to the requirement 0igD > . The red dashed segments correspond
to the paths followed by ignition when 0ib > ; the blue solid segments are the paths followed when 0ib < . When 0ib = , any colatitude in the gray areas is
equiprobable. Middle panel: burst rate evolution when 0ib < , corresponding to the blue solid paths in the upper panel. As in Figure 4, we know that 0i i i i,d g a> >
when it is the slope of the burst rate. The sign of i i i, 1 1d g+ + is not known when needed and the slope sign is determined by the sign of i i, 1d + . Lower panel: burst rate
evolution when 0ib > , corresponding to the red dashed paths in the upper panel. As in Figure 5, we know that 0i i i i,d g a> > when it is the slope of the burst rate.
The sign of i i i, 1 1d g+ + is not known and the slope sign is determined by the sign of i i, 1d- + .
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If 1im < , then the only possibility in order to have an
existing window for the bursts is 0igD > .14 Then, we can see
that Equation (25) constrains ḡ to be g i

¯ , with i
 defined as

in Equation (28). Since g  ¯, it follows that i   , or,
equivalently, we need i

q , defined as in Equation (31), to exist.
In summary,

g if 1 & 0 & . 73i i i i      m g< D >¯ ( )

The first conclusion is that when 1im < , ignition at the pole is
forbidden. Second, the requirement i   implies that very
slow rotators would not show bursts.

We will proceed to study the case 0ia > . The procedure
follows very closely the one of Section 3, with the only
difference set by the fact that the upper limit is i

 and not 1. If
we study the burst rate evolution for a single source as a
function of mp˙ , we obtain Figure 7. The results when 0ib <
are identical to the upper panel of Figure 4, apart from the fact
that the last case is impossible. When 0ib > , the results
resemble those of the upper panel of Figure 5, with the loss of
the segments corresponding to ignition at the pole and the
absence of the last case. Of course, if 0ib = , the rate always
grows mp

iµ a˙ .
There is an extra interesting detail. If we think that 0i 1g >+ ,

the maximum mp˙ at which bursts will take place is less than the
theoretical local one always, even if detectability were not an

issue. That is because

m m m m . 74i i i i ip, D C 1 1 1i i i1 1  m= = <g g g
º + +

D
++ +˙ ˙ ˙ ˙ ( )

In Section 4, we noted how the numerical factor for m2,h˙ ,
the upper bound for the helium ignition in a mixed hydrogen–
helium environment, Equation (65), is much smaller than
the one for m2,l˙ , the lower bound, Equation (60). That
led us to explore the possibility 1im < . However, we still
deem this possibility less likely than the one treated in the
main text.

Appendix B
Extra Cases: 0ia < and 0ia =

Here we report the extra, less physical cases, 0ia < and
0ia = , mainly for mathematical completeness.

B.1. Case 0ia <

Both Narayan & Heyl (2003) with linearized calculations
and Lampe et al. (2016) with KEPLERsimulations found
some cases where 0ia < . The window of accretion rates
where that happens is relatively small; however, that induces
us to discuss this case. The evolution of the bursting rate as a
function of mp˙ for a single source is shown in Figures 8
( 0ib < ) and 9 ( 0ib > ). In this case, it is known that

0i i i i, 1 1d g a< <+ + when we need it, while the sign of i i i,d g
is not known for the cases needed: it depends on the sign of

i i,d- when 0ib < (Figure 8) and on the sign of i i,d when
0ib > (Figure 9). When 0ib = , the rate always goes mp

iµ a˙
decreasing since 0ia < .

Figure 8. Same as Figure 4, 0ib < , but for cases when 0ia < . Top and middle row: these burst rate trends correspond to the blue solid paths in Figure 3. In this case,
the sign of i i i, 1 1d g+ + is known when we need it and 0i i i i, 1 1d g a< <+ + . The sign of i i i,d g is not known when we need it and it depends on the sign of i i,d- . Bottom
row: burst rate corresponding to the blue solid paths of Figure 7, where 1im < .

14 Consider Equations (17) and (18): it is needed that m g m gl hl hg g˙ ¯ ˙ ¯ ⟺
m g m g gln ln 0 ln lni il hl h  m g- Dg g( ˙ ¯ ) ( ˙ ¯ ) ⟺ ¯. Since ln 0im < and gln ¯

0, the inequality is satisfied only if 0igD > .
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B.2. Case 0ia =

Based on Equation (16), we know that gi i = b¯ ¯ for all
available ignition colatitudes. This is the most unnatural
case, since the burning rate does not depend on mp˙ ,
but it changes, of course, depending on the colatitude.

The evolution of the bursting rate as a function of mp˙ for a
single source is shown in Figures 10 ( 0ib < ) and 11
( 0ib > ). Both the signs of i i i i i, 1 1 1d g b g=+ + + and

i i i i i,d g b g= are known when needed. When 0ib = , the
rate is constant.

Figure 9. Same as Figure 5, 0ib > , but for cases when 0ia < . Top and middle row: these burst rate trends correspond to the red dashed paths of Figure 3. It is known
that 0i i i i, 1 1d g a< <+ +/ , although the sign of i i i,d g is not known when we need it, and it depends on the sign of i i,d . Bottom row: burst rate corresponding to the
red dashed paths of Figure 7, where 1im < .

Figure 10. Same as Figure 4, 0ib < , but for cases when 0ia = . Top and middle row: these burst rate trends correspond to the blue solid paths in Figure 3. Both the
signs of i i i i i, 1 1 1d g b g=+ + + and i i i i i,d g b g= are known. Bottom row: burst rate corresponding to the blue solid paths of Figure 7, where 1im < .
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