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Abstract. Given the rapid rise of electric vehicles (EVs) worldwide, and
the ambitious targets set for the near future, the management of large
EV fleets must be seen as a priority. Specifically, we study a scenario
where EV charging is managed through self-interested EV aggregators
who compete in the day-ahead market in order to purchase the electricity
needed to meet their clients’ requirements. In order to reduce electric-
ity costs and lower the impact on electricity markets, a centralised bid-
ding coordination framework has been proposed in the literature, using a
trusted black-box coordinator. In order to improve privacy and limit the
need for the coordinator, we propose a reformulation of the coordination
framework as a decentralised algorithm, employing the Alternating Di-
rection Method of Multipliers (ADMM). We test the resulting algorithm
in a realistic scenario with real market and driver data from Spain. Fi-
nally, we discuss the potential of implementing the proposed coordination
algorithm in a blockchain, providing transparency and anti-tampering
guarantees.

Keywords: Multi Agent Systems - Day-ahead market - Electric vehicle
aggregation - Alternating Direction Method of Multipliers - Blockchain.

1 Introduction

To date, there exists a world-wide fleet of more than two million electric vehicles
(EVs), combining purely electrical and hybrid [I2]. Furthermore, EV sales are
growing exponentially in most countries and there are targets to achieve 50 to
200 million of EVs at a global scale in the next decade [II]. These high pene-
tration targets aim to reduce the use of fossil fuels and improve environmental
conditions. However, the transition from conventional to electric vehicles is not
without challenges [22]. Specifically, compared to traditional fuel powered vehi-
cles, EVs present a novel and heavy strain to existing electricity networks, which
will need to accommodate a new type of consumer with high demand.

In order to deal with this challenge, the last decade has seen the introduction
of the concept of the EV aggregator [13]: an intermediary between a fleet of
EVs and the electricity grid and markets. The aggregator is able to control the
charging of its fleet, and this way informed collective decisions can be made. In
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contrast with individual EV operation, the much higher degree of coordination
possible when a fleet is centrally managed by an aggregator offers great benefits.
For example, electricity consumption to charge the fleet’s batteries can be spread
over time, avoiding expensive and polluting demand peaks. In particular, in this
work we focus on EV aggregators participating in day-ahead markets, in order
to purchase the electricity needed to meet their clients’ energy requirements.
In more detail, day-ahead markets match electricity supply and demand on an
hourly basis (see Section , and are the main source of whole-sale electricity.
Here, increased electricity demand means increased prices, resulting in the so-
called price impact, and hence it is in every market participant’s interest to avoid
unnecessary demand peaks.

In this work we focus on a scenario where different EV aggregators co-exist
in the same day-ahead market. These aggregators may vary in nature and size,
but it is reasonable to assume that they are self-interested. Indeed, reduced
electricity costs translate in more profit for the aggregator and/or more benefits
for their EV fleet. In this scenario, reduced overall costs can be achieved by inter-
aggregator coordination, producing more informed and optimised bidding. This
coordination problem was studied in our previous work [20], where we propose a
centralised approach using a coordinator: a trusted entity which collects energy
requirement information from the participating EV aggregators and performs a
global optimisation problem. Cooperation is encouraged by employing techniques
from mechanism design to distribute monetary payments. In a similar vein, we
studied the same multi-aggregator scenario from a coalitional perspective [21].
Specifically, given the fact that the coordinator may not be a unique entity,
any willing coalition of aggregators can potentially form. By using results from
the field of cooperative game theory, we prove that the grand-coalition, where
all aggregators cooperate together, provides the most benefits, and propose a
payment mechanism which stabilises it.

Against this background, there are several challenges that have not been
studied so far:

1. The sharing of information and requirements among aggregators should be
minimised, as private entities would be reluctant to sharing these details.

2. Trust-less and transparent operation, removing the need for a trusted coor-
dinator and providing guarantees against malicious tampering.

In order to address these two challenges, we propose a novel decentralised
mechanism which allows the coordination of the EV aggregators without the
need of a trusted coordinator, and without revealing their private requirement
information. Specifically, we reformulate the centralised optimisation algorithm
proposed in [20] using the Alternating Direction Method of Multipliers (ADMM),
which decomposes optimisation problems into smaller problems coordinated
through an aggregation step [5]. ADMM methods have been widely applied in
the smart-grid sector, for example in optimal power flow studies [T7126124IT9123],
but have not been applied to a multi-EV aggregator scenario. Moreover, in or-
der to provide full transparency and anti-tampering guarantees, we propose the
implementation of this decentralised algorithm in a private blockchain, using



Decentralised Coordination of Electric Vehicle Aggregators 3

smart contracts. Similar blockchain applications in the smart grid sector include
smart-grid managing frameworks [I8/T0IT6] and micro-grid operation [I7I28|[1].
In these works, blockchain technology is found to be an appropriate solution for
the decentralised and trust-less operation of their respective models. Hence it
seems a good candidate for the similar challenge addressed in this study.

In more detail, this paper makes the following contributions to the state of
the art:

— We propose the first decentralised optimisation algorithm for the coordina-
tion of self-interested EV aggregator participation in day-ahead markets.

— We present a preliminary empirical evaluation that uses real market and
driver data to assess the performance of the proposed algorithm.

— We describe a guideline for the blockchain implementation of the proposed
decentralised algorithm.

The rest of the paper is structured as follows. Section [2| introduces the con-
sidered day-ahead market and the mathematical formalism to quantify price
impact. Section [3| details the considered EV aggregators and presents the pro-
posed decentralised optimisation algorithm using ADMM. Next, an empirical
evaluation using real market and driver data is detailed in Section 4l The pro-
posed blockchain implementation is discussed in Section |5l Finally, we conclude
in Section

2 The Day-Ahead Market

This section details the day-ahead market structure considered in this paper and
present in most countries. Moreover, we discuss how to quantify the price impact
of buy orders (electricity demand), which is an important aspect of our work.
The exposition in this section follows [20021].
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Day-ahead markets divide each day into 24 hourly slots, each running a
separate uniform-priced double-sided auction. Before closure time (usually noon)
on day D, bids and offers for each hourly slot of day D + 1 must be submitted
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to the market. Then, a matching algorithm determines the accepted bids and
offers, and establishes an hourly uniform price using marginal pricing, this is,
the price of the intersection between supply and demand.

Bids (buy orders) and offers (sell orders) for each hourly slot are quantity-
price pairs. For bids (offers), the price represents the highest (lowest) price the
participant is willing to pay (sell for). As is common in most markets, we define
a minimum price pni, = 0 and some maximum price, pmax. After closure time,
the auctioneer aggregates all buy and sell orders, by high-price and low-price
priorities, respectively. This generates the aggregated demand and supply curves,
and their intersection determines the accepted orders and the resulting uniform
price, as depicted in Fig.

Clearly, the arrival of a new buy order pushes the clearing price up if it gets
accepted (i.e. if it lies towards the left-hand side of the intersection). Fig. [2]illus-
trates the effect of a new buy order with quantity F placed at price ppax- The
price increase (price impact) depends on the new order’s price and quantity, and
on the supply and demand curves. Price impact is an essential market character-
istic associated with large market participants, and careful managing is required
to avoid pushing prices up unnecessarily. Price impact has been studied in the
electricity markets literature by employing residual curves [9J20/21], which are
detailed below.

Employing standard notation, for any given hour ¢, let D;(p) and S;(p) be
the aggregated demand and supply curves respectively, as a function of price,
p. The residual supply curve is defined as Ri(p) = Si(p) — Di(p) = E, and
represents the amount of energy, F/, an agent could bid for while maintaining
a clearing price p. Conversely, the clearing price when bidding a quantity F is
given by p = R; '(E). Introducing the notation P;(F) = R; *(E), the clearing
price when the new agent bids an amount F is p = P;(E), and the price impact
Ap of this order is given by Ap = Pi(E) — P(0), where P;(0) represents the
base price at hour t, i.e. the price without the agent’s new bid. This formalism
is depicted in Figs. 2] and

We are now ready to introduce the EV aggregator model considered in this
paper and the optimal day-ahead bidding algorithm.

3 Optimal Multi-EV Aggregator Participation in the
Day-Ahead Market

As discussed in Section an EV aggregator is responsible for the charging
of a fleet of EVs and, to this end, purchases the required electricity from the
day-ahead market (see Section . We will start by describing the considered
aggregator structure and operation. Then, we will describe the optimal bidding
algorithm proposed in [20021] and how it can be used to optimise the bidding of
a group of EV aggregators with a central coordinator. Finally, we will decom-
pose this centralised algorithm into a decentralised optimisation algorithm by
using the Alternating Direction Method of Multipliers (ADMM), as discussed in
Section [
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3.1 EV Aggregator Model

In our model, following [412002T], EVs arrive and depart dynamically over time.
When an EV i arrives to the charging point, it communicates the desired depar-
ture time, t%, and desired state of charge at departure, SOCZ, to the aggregator.
We assume that arrival time and state of charge, ¢ and SoC{, can be automati-
cally inferred by the aggregator. Each EV has a maximum charging speed, Pt
in kW, which depends on two factors: the available physical infrastructure, and
the EV’s battery. The charging schedule of the EV is then left at the aggregator’s
discretion, which can choose when to perform the charging while guaranteeing
the desired state of charge by departure time. This flexibility allows charging
the battery in an informed way, rather than randomly, or at arrival, providing
cheaper electricity costs.

Due to the nature of the day-ahead market, electricity bids need to be placed
between 12 and 36 hours before delivery time (assuming market closure at noon,
see Section . This requires the market participants to forecast their electricity
needs and to bid accordingly.

Following [4J20021], we model the requirements of an EV by employing two
vectors with 24 entries each, r™i™¢ and r™®%¢, Specifically, r}" 0% is the amount
of energy needed at hour ¢ assuming charging has been left for the last possible
moment and that the charging requirements need to be fulfilled. Conversely,
r %" is the amount of energy needed at hour ¢ assuming charging starts as
soon as possible. For example, consider an EV arriving at 3pm, stating 9pm
departure time and 8kWh charging needs with Ppax = 3kW. Then, r™™? would
be as specified in Table [I} Specifically, if 6pm is reached with no charging done,
at least 2kW of energy needs to be charged between 6-7pm in order to fulfil
the EV driver requirements. The same applies with 3kW between 7-8pm and
8-9pm. Similarly, for the same scenario, the requirement vector r™2%? would be
as specified in Table [2]

Then, in order to provide mathematical tractability, two global energy re-
quirement vectors, R™" and R™®*, can be obtained by summing the hourly
requirements of all the EVs associated to the particular aggregator, i.e. RIMn =
SOV e and Rrax = TN pma5E Note that these aggregated constraints
do not exactly capture the individual requirements of each EV, but have been
widely employed in the literature [A2B820121]. The reasons are the fact that
considering constraints for each individual EV renders the problem unfeasible
with moderate problem sizes, and the fact that bidding uses day-ahead price and
energy requirements forecasts, which will not be exact anyway.

We will denote the quantities that need to be forecasted with a hat: hourly
energy requirements, fif‘in and I%f‘ax, hourly number of available EVs, Nt, and
hourly price impact functions, P,

3.2 Optimal Day-Ahead Bidding Algorithm

Now that the day-ahead and EV aggregator models have been detailed, we are
ready to present the optimal day-ahead bidding algorithm. The algorithm is
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min,?| min,¢| min,z| min,z| min,z| min,z| min,?
Ts Ty s Ts 7 s Ty

0 0 0 2 3 3 0
Table 1. Example of requirement vector r

min,i

Tmax,z max,i |, max,i|, max,i|, max,?| max,? rmax,z
3 4 5 6 7 8 9

3 3 2 0 0 0 0

max,i

Table 2. Example of requirement vector r

from [20I21] and reproduced here for convenience. The mathematical problem is
defined as follows: given an EV aggregator’s forecasted requirements and price
impact functions, find the optimal distribution of energy quantities to bid across
the 24 hourly slots of the next day, E = (Ey,..., Fa3), in order to satisfy its
clients’ charging needs while minimising the total cost of the purchased energy.
We assume that the agent’s bids are set at maximum price, pmax, in order to
guarantee execution. Hence only bidding hours and quantities need to be decided.

As discussed in [20], and in order to avoid a complex minimisation landscape
with multiple minima, the forecasted hourly price impact functions P, (see Sec-
tions [2| and are approximated by quadratic convex functions. Specifically,
they are given by Pfonvex = q, E? + b, E; + P;(0), where all the coefficients a; are
restricted to be positive. Formally, the optimisation algorithm is given by Eqgs.
(La), (0), (Ic), (Id). In more detail, the objective function minimizes the
total cost of the purchased energy. The constraints guarantee that the amount
of purchased energy is enough to satisfy the forecasted demand , that it is
not purchased before the forecasted arrival of the EVs and that the energy
purchased at each hour is not greater than the amount that the aggregator is
able to charge at the given hour, based on the forecasted number of available
vehicles (the aggregator cannot store energy). It is worth noting that the num-
ber of constraints is always 72, independent on the fleet size. Also, given the
convexity of the problem, there exists a unique global minimum, which we are
guaranteed to find.

min » Py (Ey) - By (1a)
{E:+} 7
t t
S B =) Ryt vt=0,...,23 (1b)
j=0 j=0
t t
Ej <Y RM™ vt =0,...,23 (1c)
Jj=0 j=0
E;JAt < NyPoax, Vt=0,...,23 (1d)

3.3 Centralised Joint Bidding

The bidding algorithm detailed in the previous section for a single aggrega-
tor can be extended to perform joint bidding, where a coordinator collects the
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requirements of a number of independent aggregators and applies the optimisa-
tion algorithm globally. In more detail, let C' be a set of EV aggregators. Then,
following [20021], let R™™* and R i be aggregator i’s forecasted energy re-
quirements for hour ¢ , and N ! the number of available EVs from aggregator 4,
as specified in Sectlon 2| The combined requirements of all the aggregators in
C are then:

R o SR @ RS-SRSO @) N-YS O

i€C
To find the optlmal global energy bldS the bidding optimisation algorithm
given by Egs. . . can be applied with constraints given by the
combined requirements ([2)), ) and . This will result in obtaining a global

day-ahead energy volume E2'°"* for each hour ¢, which can be then distributed
among the aggregators in C.

The redistribution mechanism is defined in [20], and allocates an hourly en-
ergy schedule to each participating aggregator after obtaining a global energy
schedule as detailed above. The redistribution problem is as follows. Letting E
be the amount of energy allocated to EV aggregator ¢ at time ¢, we need to find
Eifort=0,...,23 and i = 1,...,n satisfying the following constraints:

M -
&
%
M -
m)

W YE=0,...,23;Vi=1,...,n (5a)
7=0 7=0
t ) t R
Y Ei < XVt =0,...,23; Vi=1,...,n (5b)
j=0 j=0
E}JAt < N{Ppax, ¥t =0,...,23;¥i=1,....n (5¢)
> Bl =B vt =0,...,23 (5d)

In this Constraint Satisfaction Problem (CSP), Egs. (5a)), (5b)), ensure
that each EV aggregator has enough energy to satisfy its requirements, no more,
no less, for each hour. Eq. makes sure the sums of the allocated hourly
energies add up to the available global energy.

3.4 Decentralised Optimisation Algorithm

We are now ready to introduce the novel decentralised optimisation algorithm
based on ADMM [5]. Speciﬁcally7 our goal is to reformulate the optimisation
problems given by Egs. , , , , , as an iterative decen-
tralised algorithm, where each EV aggregator bolveb a local optimisation prob-
lem. The solutions to each local problem are coordinated by a global consensus
step, and this procedure is iterated. This type of algorithm is appropriate for our
problem for several reasons: (i) it converges to the global centralised optimum;
(ii) it enables coordination without the aggregators revealing their energy re-
quirements, i.e. R™™ and R™&; (iii) it is particularly well suited for blockchain
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implementation, providing transparency and anti-tampering guarantees (see Sec-
tion [5{ and [17]).

Specifically, following the notation introduced in Section let E* = (E, ..., Ei3)

be the energy schedule for aggregator i. Moreover, let E = (El, .. .,E”) be
the joint vector encapsulating each individual energy schedule, and E&°® =

B8P ,E%Ob) be such that EF” = S  E!. We are now able to rewrite

Eq. as:

23 23 n n
. A lob lob . A i i
min y P (BF) - B :mEan P (ZE;)ZE; =
t=0 t=0 i=1 i=1
n 23 n )
—p S (moA (S]] ©
i=1 | t=0 j=1

This way the objective function is expressed as a sum of n terms, as required
by the ADMM formulation [5]. Note that, given that the price impact of each
aggregator affects everybody else, we cannot fully separate Eq. @ in the variable
1. This type of problem is suited to be formulated as a global variable consensus
problem [B], which works as follows. Consider a minimisation problem in the
following form:

Inwini fi(x)
i=1

where the goal is that each term in the sum can be handled independently. In
the cases where the variable  is not separable in ¢, local variables * and a
global variable z can be introduced, rewriting the problem as:

min filx!
i 4
subject to: ' —2=0,Y=1,...,n

The name global consensus problem arises from the constraint that all the lo-
cal variables should agree. Also, note that any individual constraints can be
embedded into each f;.

In a similar vein and focusing on our scenario, let E and E() be the global
and local variables respectively, all vectors with dimension 24n. In more detail,
E® = (ED1 . E@O") and B = (Eg“’j,...,ng;}’j). Following Eq. (IEI)
the functions f; are given by:

fi (E(i)) =

23 ()i A no (i) if constraints (IB), (Ld),
t=0 {Et P (Ej:l = ﬂ ’ are met by E()7

o0 , otherwise
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The resulting ADMM algorithm is given by the following iterative equations:

i . )T p
Efk)ﬂ] = argErfnn (fZ(E') + éfkﬁ (E’ — E[k]) + §||E' — E[k]||§> (7a)

L~ (g0, Lo
By = > (EUZH] + ;5[2] (7b)
1=1
(@)  _ #0) (4)
Eir) =& TP <E[k+1] - E[k+1]) (7c)

where the subscript [k] denotes iteration number, and € and p are the dual vari-
able and the augmented Lagrangian parameter, respectively [5]. The iterative
algorithm works as follows: first, each EV aggregator solves their local problem,
Eq. , and update their local copy of the energy schedule, E®). Then, an
aggregation step, Eq. , collects all the local solutions proposed by each ag-
gregator and updates the global energy schedule, E, reporting this vector back
to all the aggregators. Lastly, each aggregator updates their local copy of the
dual variable, £ as per Eq. and proceeds to the new iteration.

The usual stopping criterion involves the primal and dual residuals, stop-
ping the iterative process when certain user-specified tolerances, €pyi and €qual
have been reached [5/I7]. Specifically, the primal residual is denoted by 7 =

(r[lk], e ,7'&])7 where rfk] = EEIQ — Ey). Similarly, the dual residual is given by
8ix) = Ex) — E;—1). The stopping criterion then takes the form:
Irpglls < €pri (8a)
||3[k]||3 < €dual (8b)

3.5 Payment Mechanism

So far we have focused on solving the multi-EV aggregator scheduling prob-
lem, in order to find the optimal schedule for each participant that minimises
energy expenditure and grid impact. An essential component of this coordina-
tion mechanism is the determination of the payment for each aggregator. An
adequate payment mechanism prevents strategic manipulation and incentivises
cooperation. Discussion about payment mechanisms is outside of the scope of
this paper, and we refer to our previous work [20/21].

4 Empirical Evaluation

In this section we present a preliminary analysis of the performance of the de-
centralised algorithm proposed in Section [3.4] This empirical evaluation employs
real market and driver data from Spain. The main purpose of this study is to
analyse the convergence of the decentralised algorithm to the optimal solution
(found using the centralised algorithm from Section . We will start by detail-
ing the real data employing in the simulations, and then describe the empirical
results.
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4.1 Experimental Setup

The experiment setup described in this section closely follows the case studies
presented in [20021]. We consider a night-time residential scenario in which EVs
arrive in the evening and need to be charged by the next morning. The EVs
are assumed to be medium-sized with 24kWh battery capacity and maximum
charging speed P, = 3.7kW. Moreover, charging efficiency is set to 90%.

Real market data from the Spanish day-ahead market OMIEH is employed
in the simulations, as described in [20]. Specifically, for this paper we focus on a
single trading day, 1/11/2016. Similarly, real driver data from a Spanish survey
is used to determine probabilistic EV driving patterns, as detailed in [20]. In
more detail, we employ the distribution of times for the first and last trip from
and to home, as shown in Table

Time 19h |20h |21h |22h |23h Time 6h |7h |8h |9h |10h

to Probability|0.16 |0.25 [0.32]0.12]0.15 ta Probability |0.04]0.02(0.34 (0.5 |0.1

Table 3. Possible arrival (¢o) and departure (¢q) times rounded to the nearest hour,
with their respective probabilities.

Regarding energy requirements, the desired state of charge of an EV at arrival
and departure times are drawn from uniform distributions as follows: SoCy €
[SoCiota1 /4, S0Ciota1 /2] and SoCy € [2 - SoCiotal/3, S0Ciotal]. Consequently, the
EV charging requirements range between a large percentage of the battery (up
to 75%), to a small percentage (down to 16%), accounting for long and short
trips home.

4.2 Experimental Results

The main focus of our study is the convergence of the decentralised algorithm
to the optimal solution. A key determinant of convergence is the augmented
Lagrangian parameter p (see Eqgs. , , ) Intuitively, it controls the
weight that the similarity of local and global solutions has in the local minimi-
sation algorithms (see Eq. . If it is set too large or too small, the algorithm
will not converge. For every problem, there is a range of values providing conver-
gence, but again, for some values it can be very slow. Thus, a suitable value for p
needs to be found in order to make the algorithm applicable and quick. Also, in
a different vein, the number of participating aggregators affects the convergence
of the algorithm: the higher the number of participants, the more fragmented
the optimisation problem is, so more iterations may be required.

We study the convergence of the decentralised algorithm with different values
of p, for a given number of aggregators. In this preliminary evaluation we will
focus on three scenarios, with two, three and five EV aggregators respectively.
Results are shown in Figs. [ [5] and [6] In the top plots we can see the total
amount of daily energy selected by the decentralised optimisation algorithm at
each iteration, compared to the optimal solution. The bottom plots show how

3 http://www.omie.es/en/inicio
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Fig. 4. Convergence of the ADMM decentralised algorithm to the optimal centralised
solution, for different values of p. Simulations with two EV aggregators, each with
150000 EVs. Market data from 1/11/2016.
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Fig. 5. Convergence of the ADMM decentralised algorithm to the optimal centralised
solution, for different values of p. Simulations with three EV aggregators, each with
150000 EVs. Market data from 1/11/2016.
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far the decentralised solution is from the optimal solution. We can see similar
convergence behaviour for the three scenarios, although the case with two EV
aggregators is slightly faster and more uniform. These preliminary results show
evidence of good computational scaling with the number of EV aggregators,
something key for tackling larger problem sizes. Moreover, for both scenarios,
convergence starts slow for a value of p = 1073, becoming fastest for a value
p ~ 107?, and diverging for larger values. This suggest a value about p = 107°
presents the best convergence for these scenarios, although larger problem sizes
need to be tested.

5 Proposed Blockchain Implementation

So far, we have motivated and formulated a decentralised algorithm addressing
the coordination of multi-EV aggregator bidding in day-ahead markets. Specif-
ically, the proposed algorithm addresses the first challenge presented in Section
i.e. reducing the amount of private information shared by the aggregators.
In more detail, when using a centralised algorithm, each aggregator needs to
report sensitive information to the central coordinator [20121]. Differently, with
the proposed decentralised approach, each aggregator solves a private local prob-
lem concerning their own private requirements, so no explicit sharing of these is
needed. However, the second challenge, ¢.e. trust-less and transparent operation,
has not been addressed so far. In order to do so, as introduced in Section |1}, we
propose employing a blockchain to implement the aggregation step of the pro-
posed decentralised algorithm, similarly to [I7]. In more detail, this aggregation
step requires communication between each aggregator and the coordinator, hence
is susceptible to tampering. Also, if the coordinator remains a black-box, i.e. an
entity that receives messages from the aggregators and responds with some other
message without its internal workings being transparent, the aggregators cannot
be sure that they are billed and allocated a fair electricity schedule.

As a brief introduction, a blockchain is a decentralised ledger and compu-
tation environment, protected by cryptographic techniques, which allows the
participants to agree on the state of the system at all times. The name comes
from its architecture, where transactions and information are recorded in blocks,
each block referencing all the previous blocks in the chain, hence blockchain.
For a more detailed introduction to blockchain technology, see [7UI7]. Moreover,
apart from monetary transactions, blockchains can be seen as a general comput-
ing system, by using smart contracts. A smart contract is simply a piece of code
hosted publicly and immutably in the blockchain, which can receive messages
from other blockchain users and send its own following its internal logic.

Also, if desired, the proposed coordination mechanism can be fully imple-
mented in the blockchain by using cryptocurrencies. This way, no centralised
entity is needed, and all the bidding and coordination process can run trans-
parently on the blockchain. Moreover, it is worth noting that the operation of
the coalition of EV aggregators can be easily externally audited, maybe by the
government or the electricity market operator.
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Lastly, Algorithm [I] describes the proposed implementation of the decen-
tralised algorithm on the blockchain, closely following [I7]. In more detail, the
local optimisation problems P; are executed locally by each aggregator, sending
the results to the smart contract S;, who does the aggregation step. This process
is iterated until the algorithm has converged.

Data: initialise E|q, Efé]), {Eé]), €pri; €dual

while ||r[k]||§ < €pri and ||s[k]\|§ < €duar do

begin P;: private optimisation problem, compute locally
Update 5{137 Eq. (7d)

Update EEQ, Eq. 1) and send to smart contract S;

end
begin S;: ADMM aggregation, smart contract
Update Ey, Eq.
if |7 ll5 < €pri and [[spkl|3 < €aua then
ADMM algorithm finished
Compute payments for each aggregator
Send schedule and allocated payments to So
end

end

end

Algorithm 1: Decentralised optimal multi-EV aggregator day-ahead bid-
ding algorithm implemented in a blockchain.

6 Conclusion

We have presented a decentralised coordination mechanism for multi-EV ag-
gregator bidding in the day-ahead market, employing an Alternating Direction
Method of Multipliers algorithm. This proposed algorithm extends our previ-
ous work, which addresses the same scenario, but with a centralised framework.
Specifically, the proposed decentralised framework removes the need of the ag-
gregators communicating private requirement information to the coordinator, as
each aggregator solves its own local private optimisation problem with their own
requirements. In order to study the appropriateness of the proposed algorithm,
we present an empirical evaluation using real market and driver data from Spain,
showing the convergence of the decentralised method to the optimal solution for
two different scenarios, with two and three cooperating EV aggregators respec-
tively. Finally, we also propose a guideline for implementing this decentralised
algorithm on a blockchain, providing a trust-less execution environment with
greatly increased transparency and anti-tampering guarantees.

Several aspects are left for future work. Firstly, in order to better assess the
performance decentralised algorithm, a more exhaustive empirical study needs
to be conducted, addressing larger problem sizes and spanning longer periods of
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time. Secondly, the strategic manipulation opportunities of the proposed algo-
rithm need to be studied. In more detail, as we assume that the participating
EV aggregators are self-interested, they could cheat the coordination mechanism
if a greater personal benefit is perceived. In our previous work, employing cen-
tralised algorithm, we address this issue by carefully designing suitable payment
mechanisms. However, when the bidding algorithm is decentralised, there is new
room for manipulation, as misreporting the solutions of the local problem may
affect the global solution. Thirdly, the blockchain aspect of our work needs to be
fully implemented in a test blockchain. Specifically, good scaling to large prob-
lem sizes is key to ensure the practical applicability of the proposed coordination
mechanism.
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