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Abstract

Stereo-DIC allows to track with a high accuracy the shape change and the

surface displacement field of objects during deformation processes. When

multiple camera arrangements are used, the shape and deformation mea-

surement can be performed over the whole surface of the object. We submit

that, in the case of intact specimens, with no internal defects and/or discon-

tinuities, such boundary information can be used to estimate the internal

displacement field by using proper interpolation functions. This calculation

could serve, for instance, to evaluate the strain localization that occurs in

metal specimens subjected to plastic deformation, hence allowing to get a

better insight in the necking initiation and fracture propagation processes.

In this paper, an interpolation method based on Bézier curves is developed

and tested using simulated and real experiments on specimens with flat

and cylindrical geometries. In particular, the deformation behaviour in the

necking zone was investigated in the case of highly ductile and anisotropic

materials. Numerical models were used to validate the method while the

application to two real experiments demonstrated its feasibility in practi-
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cal cases. The applicability of the method to more complex loading cases

(e.g., bending, torsion, mixed-loads) or different initial shapes (e.g., curved

beams, notches) will be investigated in future studies.

Keywords:

stereo-DIC, large deformation, 3D volume reconstruction, necking, Bézier

curves

1. Introduction

In the recent years, the use of full-field optical techniques to measure the

shape, motion and surface deformation of solids has considerably increased.

Among the several reasons for its popularity, there are the decreasing cost of

the equipment, the increasing performances of digital optical sensors and the

wide availability of dedicated commercial and academic software packages

for image processing. In engineering, full-field measurements are frequently

used for material testing and characterization [1].

Among the full-field optical techniques used in solid mechanics, Digital

image Correlation (DIC)[2, 3] is probably the most widespread and fastest-

growing method. The DIC technique tracks the displacement of a random

speckle pattern that, if not naturally present, can be applied onto the spec-

imen surface using different techniques [2]. If the target surface is flat and

the displacement is in-plane, a single camera (2D-DIC) is sufficient for the

measurement, otherwise a two-camera arrangement (stereo-DIC) allows to

retrieve the shape and track the displacement of the object surface in the

three-dimensional space on the basis of the stereo-photogrammetric princi-

ples [4].

Such a surface measurement suffers form an important limitation in

2



material characterization since no information is provided in the bulk of

the material. Usually, plane-stress or plane-strain conditions are assumed.

However, these assumptions are not always appropriate when, for instance,

necking occurs in the plastic deformation regime [5, 6]. Information on the

three-dimensional distribution of strain and stress field inside a specimen is

also important to calibrate ductile damage models [7, 8].

Commonly, the stress-strain distribution inside solids is computed by Fi-

nite Element Method (FEM) analyses. In particular, Finite Element Model

Updating (FEMU) approaches can be adopted to iteratively identify the

mechanical properties of materials [9, 10]. The main limitations of FEMU,

especially for 3D models, are the high computational cost and the mesh

sensitivity [11]. If volume deformation was directly evaluated from experi-

ments, more computationally efficient identification methods could be used,

e.g. the Virtual Fields Method (VFM) [12–15].

Nowadays, the volume deformation of solids can be obtained directly

from experiments by Digital Volume Correlation (DVC) [16]. Although this

technique is very promising, it presents a series of limitations: it requires

expensive and complex equipments (e.g. x-ray tomography [17, 18]), the

investigated material needs to have a random internal pattern (e.g. foams,

bones tissue, composites etc.) [19–21] and the correlation algorithm is com-

putationally expensive. Magnetic resonance imaging or magnetic resonance

elastography can serve to evaluate the volume displacement too, however

their use is usually limited to biological tissues [22]. For most materials of

engineering interest such as metals, polymers, rubber, etc., the aforemen-

tioned techniques cannot be effectively employed.

In this work, a method is proposed to reconstruct the volume displace-

ment field from surface data. A first attempt in this direction was made
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by some of the authors in [23], however, no validation of the method was

provided at that time. In this paper, the reconstruction technique is stud-

ied in detail, numerical models were used to evaluate the accuracy and the

application to two experimental cases are presented and discussed.

In order to apply the proposed volume reconstruction method, it is re-

quired to know the displacement field over the whole external surface of the

investigated solid. To this purpose, different approaches can be used: (i)

the object is surrounded by a multi-camera arrangement [24–26], (ii) a sin-

gle camera is rotated about the object [27–29], (iii) the camera is fixed and

the object is rotated by using a rotation stage [30–32]. The latter method

cannot be adapted to a standard tensile machine, therefore only the first

two approaches will be used in the experiments. Multiple optical methods

could also be used, as for instance in [33, 34] where a combined use of DIC

and fringe projection was employed to improve the accuracy of the object

surface reconstruction.

The paper is organized as follows: in Section 2, a detailed description

of the proposed reconstruction method is reported, a numerical validation

is performed in Section 3 and finally, in Section 4, the experimental results

are presented and discussed.

2. Methods

The proposed algorithm was developed with the aim to reconstruct the

volume displacement field inside a solid starting from surface measurements.

In the version described here, it can be applied to basic geometries that un-

dergo large (e.g. plastic or hyperelastic) deformation. The method generates

internal nodal points with positions that are changed according to surface
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information, therefore it will be referred to as Internal Mesh Generation

(IMG) method. Two test cases were considered: an initially flat specimen

where the displacement field is measured on the two opposite faces and an

initially cylindrical specimen, where the full-field displacement is known for

the whole 360-deg surface. The reconstruction algorithm varies in the two

cases, as described below.

2.1. Flat specimens

In the initial undeformed configuration, flat specimens have a constant

thickness and two opposite parallel faces. In order to apply the IMG method,

the displacement field has to be known on both faces, named here Face A and

Face B. Figure 1 shows a schematic of the measurement point grids obtained

in the two faces in the initial and deformed configuration. The coordinate

system is chosen so that the z-axis is perpendicular to the thickness at the

beginning of the test. Let us consider a point NA in Face A and the corre-

sponding opposite point NB in Face B. According to the selected coordinate

system, at the beginning, NA and NB have the same {x, y} coordinates and

different z. As deformation occurs, the spatial coordinates {x, y, z} of NA

and NB can be evaluated at each load step from the full-field displacement

measurement.

In order to generate the internal mesh, the method exploits quadratic

Bézier curves defined starting from three points, which are NA, NB and a

point P inside the volume. The resulting curve B(t) is described by the

following equation:

B(t) = (1− t)2NA + 2(1− t)tP + t2NB with 0 6 t 6 1 (1)

where t is a parameter that varies from 0 to 1, so that B(0) = NA and
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Figure 1: Identification of points NA and NB in the two faces of the specimen.

B(1) = NB. An important property of quadratic Bézier curves is that the

curve is tangent to segment NAP at the starting point B(0) and to segment

NBP at the end point B(1) .

The definition of the Bézier curves and the internal mesh generation

process is illustrated in Figure 2, for the initial and deformed configura-

tions. For the sake of clarity, the point of view is chosen perpendicular

to the y-direction, however points and vectors are considered in the three-

dimensional space. The internal point P is defined as the intersection be-

tween the straight line perpendicular to Face A (or Face B) in NA (or NB)

and the mid-plane perpendicular to segment NANB. In the initial configu-

ration, the specimen is flat and NA is opposite to NB, thus the coordinates

of point P are:

P =
NA + NB

2
(2)

and the resulting Bézier curve is a straight line from NA to NB. In the de-
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Bézier curve

B(t)

P

Final deformed configuration

Reconstructed mesh

NA

NB

Face A

Face B

mid-plane

n̂A

n̂B

P

NA

NB
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Figure 2: Schematic of the reconstruction method for flat specimens.
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formed configuration, instead, the two surfaces are not flat and two different

points PA and PB are obtained depending on whether starting from Face A

or Face B, see Figure 2. If n̂A and n̂B are the normals to Face A and Face B

at points NA and NB respectively, according to geometrical considerations,

it follows:

PA = NA −
|NA −NB|2

2 (NA −NB) · n̂A
n̂A (3)

PB = NB −
|NB −NA|2

2 (NB −NA) · n̂B
n̂B (4)

where · is the scalar product. Point P is finally computed as1:

P =
PA + PB

2
(5)

It may be be noted that, if the deformation of the two surfaces was

symmetrical, as theoretically occurs in necking of isotropic materials, PA,

PB and P would be coincident. However, this is not usually true because

of the measurement errors and the possible anisotropic or heterogeneous

behaviour of the material.

For each load step, a different Bézier curve is generated for each pair of

points in the two faces. As illustrated in the second schematic of Figure 2,

parameter t identifies a specific point of curve B(t). We assume that a

given point is identified by the same value of t during deformation, i.e. its

position can be tracked at different steps of the test using the same t in the

1Note that each point can be regarded as a position vector respect to the origin O, e.g.

P =
−−→
OP. For the sake of clarity O is omitted, however all terms of Eqs. 3, 4 and 5 and

following are actually vectors.
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corresponding curve. This assumption was found to be reasonable following

the reconstruction validation presented later on using numerical models. It

is interesting to note that similar approaches can be found in the literature

in [35, 36] in the case of necking and strain localization.

Choosing a suitable number of internal points, as illustrated in the last

schematic of Figure 2, a 3D mesh can be assembled where the position

of each node is known for every step of the test. If X0 is a point in the

initial configuration and X1 is the corresponding point in the deformed

configuration, the displacement vector u is:

u = X1 −X0 (6)

The displacement and strain fields inside the body can be retrieved using

3D shape function similarly to FEM analysis.

2.2. Cylindrical specimens

The IMG method can be adapted to derive the volume deformation of

cylindrical objects using simple assumptions. Figure 3 describes the proce-

dure. In this case, the initial geometry is a cylinder, the measurement points

are placed on a regular cylindrical grid along the 360-deg external surface

and the initial coordinate system is defined so that the z-axis coincides with

the cylinder axis. NA and NB become two opposite points in one circum-

ference of the cylindrical grid. For each circumference, there will be n pairs

of (N
(i)
A ,N

(i)
B ) with i = [1, . . . , n].

As a first step, the central axis perpendicular to the circumferential plane

has to be identified. This is straightforward for the initial configuration, but

not for the deformed one, because the section is not necessarily circular

anymore. However, many algorithms are available to identify a cylindrical

9



axis from point clouds [37]. In this work, a 3D fitting algorithm that ex-

ploits the minimization of an error function was used, (the details can be

found at https://geometrictools.com/Documentation/CylinderFitting.pdf).

Afterwards, the coordinates of (N
(i)
A ,N

(i)
B ) are rewritten in terms of cylin-

drical coordinates {r, θ, z} with respect to the identified axis. For each pair

(N
(i)
A ,N

(i)
B ), the reconstruction is performed in the r-z plane, reducing the

problem to a 2D one. Point P(i) is obtained as in the previous section using

the normals to the two faces, that are now two profiles in the r-z plane.

Finally, a point P is generated as the average of the P(i) coordinates.

For each pair (N
(i)
A ,N

(i)
B ), a Bézier curve is created in the {r, z} 2D

system using P as central point. A given set of internal points are hence

generated using parameter t as explained before. Eqs. 1, 3, 4 and 5 re-

main the same with the only difference that the points and vectors have

2 components instead of 3. Finally, the generated {r, z} coordinates are

transformed back to the corresponding Cartesian coordinates {x, y, z}. For

each point, the coordinate θ
(i)
A (θ

(i)
B ) is assumed to be the same as that of

the corresponding N
(i)
A (N

(i)
B ).

3. Numerical validation

The proposed reconstruction algorithm is based on pure geometrical in-

formation (i.e. surface displacement and local curvature). In order to eval-

uate its accuracy when applied to real experiments, the method was first

validated using 3D numerical simulation, for which the whole volume defor-

mation history is known. In particular, the test cases simulate the necking

evolution in specimens under severe plastic deformation. Two geometries

were considered, a flat specimen with an initially rectangular section of
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Figure 3: Application of the IGM method for cylindrical geometry.
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80 × 20 mm and a cylindrical specimen with an initial radius of 25 mm.

The numerical models were built up using the commercial FE software

Abaqus/Standard, adopting 8-nodes brick elements and a constitutive law

that describes the behaviour of a metal with high ductility and anisotropy.

The Hill48 yielding function [38] was used to describe the yield locus and

the Swift power law adopted to describe the stress-strain hardening curve.

Mesh

Flat specimen Cylindrical specimen

Elements 76778 26564

Nodes 85218 29216

Element type C3D8R C3D8R

Constitutive law

Yielding Hill48

R0 = 1.8, R45 = 1.5, R90 = 2.2

Hardening Swift law

σ̄ = 700 + 1200 ε̄

Table 1: Mesh details and material parameters used in the finite element model .

The mesh information and the input constitutive parameters are listed

in Table 1, the FE models are illustrated in Figure 4a (flat specimen) and

Figure 4b (cylindrical specimen). For both models, the undeformed and

deformed configurations are shown in Figure 4 where it is possible to notice

that a severe necking occurs at the centres of both specimens. The necking

is associated to a complex three-dimensional deformation field as illustrated

over the cross sections of Figure 4. The maximum strain is obtained at the

inner part of the specimen and thus cannot be directly evaluated by surface
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measurements. The value of the equivalent strain is about 1, which falls

in the range of the fracture strain observed for ductile metals [39]. The

effect of the choice of anisotropic material behaviour for the FE models is

particularly evident for the cylindrical specimen for which the deformation

is not axisymmetric and the necking section is elliptical.

(a) Flat specimen

X

Y

(Avg: 75%)
PEEQ

0.500
0.546
0.591
0.637
0.683
0.729
0.774
0.820
0.866
0.911
0.957
1.003
1.049

0.000

Z

X

Y

Undeformed Deformed εeq in the central section

(b) Cylindrical specimen

(Avg: 75%)
PEEQ

0.600
0.628
0.655
0.683
0.711
0.738
0.766
0.794
0.821
0.849
0.876
0.904
0.932

0.000
X

Y

Z

Undeformed Deformed εeq in the central section

Figure 4: FE models used in the numerical validation, namely a flat (a) and a cylindrical

(b) specimen. For each model, the central cross section reveals the strain localization

within the necking zone.

The IMG method was used to calculate the internal displacement and

strain fields that were compared to their numerical counterparts obtained
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from the FEM analyses.

3.1. Flat specimen reconstruction

As is well known, the necking occurs in the central part of the specimen,

where the stress/strain state is triaxial and cannot be inferred from surface

data. As illustrated in Figure 4, the FE model has a regular hexahedral

mesh. The volume of interest (VOI) used to verify the reconstruction algo-

rithm is the central zone where the localized necking occurs. The VOI has

6 nodes along the specimen length (y-direction), 52 nodes along the width

(x-direction) and 14 nodes through the thickness (z-direction). The coordi-

nates of the 6×52 nodes belonging to the two external surfaces were used to

reconstruct the displacement of the internal nodes. Each Bézier curve was

divided in 14 points in order to create a direct correspondence between the

FEM nodes and the IMG reconstructed nodes.

Figure 5 shows a picture of the VOI and reconstructed points along the

three major section planes. The starting points on the external faces are

represented with red square markers, the reference FEM points with blue

circles and the IMG reconstructed points with black dots. Plane x-y is the

cross section containing the mid-plane and hence all points reported in the

plot are the reconstructed/reference ones, no surface data. A reasonably

good agreement on the positioning of internal points is observed, with an

average error of 0.06 mm (±0.05 standard deviation).

The capability of the IMG method to reconstruct the internal strain field

is shown in Figure 6. The solid lines represent the principal strain evaluated

by FEM in the central cross section along two paths, one on the surface

and one in the inner part of the specimen, an increase of around 20% is

observed in the centre (ε1 from 0.9 to 1.06). The dashed line represents the
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Figure 5: Comparison of reconstructed internal points with the FEM reference data for

the flat specimen.
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Figure 6: Assessment of the strain field evaluated with the IMG method at the centre of

the specimen, where z = 0 according to the used coordinate system (see Figure 5).

reconstructed strain in the inner part, the IMG method is able to reproduce

the internal localization although it slightly underestimates the maximum

value (ε1 = 1.04 instead of 1.06, 2% error).

It should be underlined that the reconstruction algorithm is purely ge-

ometrical and no information on the constitutive model is used. Moreover,

the reconstruction of the deformation field inside the necking region of an

anisotropic material is not trivial and represents a suitable case study to

explore the capabilities of the IMG algorithm.

3.2. Cylindrical specimen reconstruction

A similar validation approach was adopted for the cylindrical specimen.

In this case, the whole 360-deg set of surface nodes were used to reconstruct

the internal displacement. As in the previous case, only the volume where
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the necking occur was reconstructed, the considered VOI has 9 nodes in the

axial direction and 24 nodes along the circumference.

(Avg: 75%)
LE, Max. Principal
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−10
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Figure 7: Comparison of reconstructed internal points with the FEM reference data for

the cylindrical specimen.

The reconstruction is illustrated in Figure 7 for three section planes.

Plane z-x represents a longitudinal section of the specimen across the major

axis of the neck, plane z-y a longitudinal section across the minor axis of

the neck and plane x-y a cross section in the central part of the neck. The

internal nodes were derived following the procedure described in Section 2.2,
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using 26 internal points for each Bézier curve. In this case, there is not direct

correspondence between internal FE nodes and the reconstructed points. As

illustrated in Figure 7, the IMG method for cylindrical specimens produces

a distribution of points in the section perpendicular to the axis (see Plane

x-y) that is not compatible with a suitable FEM mesh, because the elements

in the central zone would have a distorted aspect ratio. The FEM model

was therefore built up using an optimal regular mesh, see Figs. 4 and 7.

To allow a quantitative comparison, the displacement field of the FE

nodes was remapped according to the position of reconstructed points, using

the scatteredInterpolant interpolation function implemented in Matlab. If

XFEM are the coordinates of the FEM nodes in the VOI, X0 the coordinates

of the IMG points in the initial configuration, uFEM the displacement field

from FEM and I the interpolation function, it follows:

uI = I (uFEM,XFEM,X0) (7)

and

XRef = X0 + uI (8)

where XRef are the points used to make the comparison of Figure 7. As

for the flat specimen, a fairly good agreement was found, with an average

positioning error of 0.09 mm (±0.08 standard deviation).

The accuracy in terms of strain evaluation is reported in Figure 8, where

the first plot shows the two sets of data in the central section of the spec-

imen for two paths along the major and the minor axes of the elliptical

section, respectively. Even for this geometry, a reasonably good agreement

was found. In particular, it is worth noting that the increase of strain in

the central point with respect to the surface is +10% for the major axis and
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Figure 8: Comparison of the strain field evaluated in the centre of the specimen with the

reconstruction method for the cylindrical specimen. Two paths in the central section and

a path in the axial direction were evaluated.
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+25% for the minor axis.

The second plot of Figure 8 shows the maximum principal strain eval-

uated along three paths in the axial direction. In particular, the labels

“x-side” and “y-side” refer to paths on the external surface of the specimen,

while the label “Inner part” refers to the strain evaluated along the central

axis of the specimen. Again, a good agreement is obtained using the re-

construction algorithm. The graph clearly shows how, in the necking zone,

the state of deformation in the inside of the specimen is largely different

from what is observed over the surface and, if the material is anisotropic, a

large difference also occurs at different angular positions along the specimen

circumference.

Results from the numerical validation demonstrate that the reconstruc-

tion algorithm is able to describe with a reasonable accuracy the internal

displacement and strain field in the necking zone, although purely based on

geometrical surface data. The validation was carried out by considering non

trivial case studies including severe necking and anisotropic materials. The

reconstructed strain field should be used to identify the material properties

through an inverse method like the VFM to check if the level of accuracy

is sufficient to use the IMG method for material characterization. Nonethe-

less, this is beyond the scope of this paper and it will be studied in details

in future works.

In the following section, the results of the IMG method as applied to

real experiments are reported and discussed.
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4. Experimental results

The IMG method starts from the full-field displacement information on

the two sides of a flat specimen or on the whole 360-deg surface of a cylin-

drical specimen. Both cases were considered for this study (see pictures of

the experimental set-ups reported in Figure 9).

For the flat specimen (Figure 9a), four identical cameras (JAI Pulnix

TM-4000CL, 2048×2048 pixel resolution, 10-bit dynamic range) were used,

two for each side of the sample. The four cameras were synchronized and

calibrated in order to reconstruct the measured points clouds on the two

sides of the specimen in the same coordinate system. The specimen was a

flat notched sample obtained from a 3 mm thick sheet metal of 316L stain-

less steel. It had a minimum width of 18 mm and 11 mm radius notches.

The tensile test was conducted using an Instron 880 universal machine. The

displacement field over the two faces was obtained using the commercial

software Vic3D (http://correlatedsolutions.com/vic-3d/). The reconstruc-

tion algorithm was applied to a single deformed configuration. In particular,

the chosen load step is just before the final fracture, when the localized neck-

ing through the thickness is most evident.

For the cylindrical specimen, a different set-up was used (Figure 9b).

A single camera (Nikon7100, 4000×6000 pixel resolution, equipped with a

Nikkor 60 mm Micro lens, used at f/16) was mounted on a slewing ring

in order to capture multiple pictures of the specimen at different angles.

The specimen was a cylindrical sample of Grade X100 steel with an initial

diameter of 8 mm. A detailed description of the procedure used to derive

the 360-deg displacement together with the related error analysis is reported

in [29]. In this case, to accurately reconstruct the surface displacement
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Figure 9: Experimental set-ups used for the flat and the cylindrical specimen.
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field, the commercial software MatchID (http://matchidmbc.be/) was used

to perform a large deformation DIC analysis.

As result of the stereo-DIC analysis, a set of measurement points with

coordinates XDIC and the corresponding 3D displacement field uDIC were

obtained for both tested geometries. These data were not directly used for

the IMG method but they were first regularized using the scatteredInter-

polant Matlab interpolation function.

The different steps of the volume reconstruction are listed below.

1. A regular grid of points with coordinates XS0 was defined over the

specimen surface in the undeformed configuration. The displacement

field uDIC obtained from DIC was mapped over the regular grid using

the interpolation function I:

uS0 = I (uDIC ,XDIC ,XS0) (9)

where uS0 is the resulting displacement field. The coordinates XS1 of

the grid points after deformation are obtained as:

XS1 = XS0 + uS0 (10)

2. The reconstruction algorithm described in Section 2 was used to ob-

tain the internal points XV 0 and XV 1 starting from the corresponding

surface points. The volume displacement field uV 0 was then derived

as:

uV 0 = XV 1 −XV 0 (11)

3. As a final step, the volume displacement uV 0 was projected over

a 3D mesh of the specimen obtained using the mesh generator of
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Abaqus. The displacement uN of each node was obtained from the

reconstructed displacement field using the interpolation function:

uN = I (uV 0,XV 0,XN ) (12)

where XN are the coordinates of the nodes. The FE software was

then used as post-processing tool to display the 3D dispalcement and

strain fields. It must be specified that no computation was performed

because the displacement of each node was determined through the

IMG procedure.

The procedure reported above was implemented for both experiments,

the number of points corresponding to the different steps are listed in Ta-

ble 2. For the flat specimen, for each face, the DIC measurement evaluated

4977 points that were then reshaped over a regular grid of 40×50, in the

x and y directions, respectively. The IMG method reconstructed a total of

22000 points, corresponding to the nodes of the 3D mesh. For the cylindrical

specimen, a very dense point cloud was obtained from the 360-deg measure-

ment. Such points were used to reconstruct a regular grid of 28×29 points,

in the θ and z directions, respectively. Then 8932 points were generated with

the IMG method and they were used to retrieve the deformation of the 8410

nodes of the solid mesh. For the two studied cases, the deformation is large

and the shape change due to necking is reasonably smooth, therefore the

IMG method is not significantly affected by surface imperfections or noise.

In case of highly localized behaviour or not smooth surfaces, a sensitivity

analysis on the effect of noise is recommended.

The experimental results are discussed separately for the two tests in the

next sections.
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Number of points

stereo-DIC regular grid IMG method solid mesh

Flat spec. 4977 2000 (40×50) 22000 22000

Cylind. spec. 629104 812 (28×29) 8932 8410

Table 2: Number of points used in the various steps of the reconstruction process.

4.1. Flat specimen

Figure 10 illustrates the reconstruction of the volume deformation of

the flat specimen. The initial undeformed configuration of the investigated

portion of the specimen has a height of 16 mm, a width of 18 mm in the

minimum section and a thickness of 8 mm. At the last step of deformation,

a final height of 26.06 mm was reached and a localized necking occurred at

the centre of the specimen.

In Figure 11, the maximum principal strain at the surface and within

the specimen is plotted along the specimen width. The surface deforma-

tion is not symmetrical, a larger deformation is observed on the left side

of the specimen, probably due to an initial uneven geometry of the spec-

imen and/or to an asymmetrical application of the load during the test.

When the reconstructed volume is sectioned along the longitudinal (Section

A-A) and transverse (Section B-B) directions, it reveals the expected strain

concentration that occurs in the central zone of the necking.

In order to better visualize the inner peak of strain, Figure 12 reports the

plot of the maximum principal strain in the central section of the specimen

as evaluated at the top, bottom and mid-plane surfaces, as a function of the

section width. As expected, the strain distribution at the top and bottom

surfaces, i.e. the values calculated from the back-to-back stereo-DIC, are

similar. In contrast, the strain path reconstructed within the specimen has
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Figure 10: Reconstructed three-dimensional geometry for the flat specimen in the unde-

formed and deformed configuration and comparison with the experimental pictures of the

specimens.
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(Avg: 75%)
LE, Max. Principal
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Figure 11: Longitudinal and transversal cross sections of the specimen showing the strain

concentration.
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Figure 12: Comparison of the principal strain obtained on the middle plane and on the

top and bottom surfaces along the specimen width (y-direction).
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a value comparable to that of the surface measurement only at the edges of

the specimen. In the central zone, an increase of about the 10% is observed,

going from 0.85 to 0.95.

4.2. Cylindrical specimen

The reconstructed undeformed and deformed shapes of the cylindrical

specimen are illustrated in Figure 13. In this case, the VOI is a central

zone of 13.5 mm in length. At the considered deformed stage, a 17.47 mm

longitudinal length was reached and a well developed localized necking was

clearly visible in the central portion of the specimen.

X

Y
Z

X

Y
Z

Initial configuration Deformed configuration

13.5

8

17.47

y

z

x

Figure 13: Three-dimensional reconstruction of the deformation of the cylindrical speci-

men and pictures of the specimen.

The used Grade X100 steel is homogeneous and rather anisotropic [7].

Because of the material anisotropy, the shape of the neck is not symmetrical.

The strain localization inside the sample is shown in Figure 14 where the

strain field over two of its cross sections is reported. As expected, the

deformation contour pattern is not axi-symmetrical and the maximum strain

is obtained in the centre of the specimen. The principal maximum strain
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along different radial paths is plotted in Figure 15. In particular, three

paths are shown, one along the major axis of the neck section, one along the

minor axis and one at 45◦ with respect to the major axis. Depending on the

considered angular position, the strain increase in the centre with respect

to the surface ranges from +15% to almost +50%.

(Avg: 75%)
LE, Max. Principal

0.400
0.434
0.468
0.502
0.536
0.570
0.603
0.637
0.671
0.705
0.739
0.773
0.807

−0.010

Major axis

Minor axis

x

y
z x

y

Figure 14: Strain distribution across two orthogonal cross sections of the specimen showing

the strain concentration at its centre.

5. Discussion and Conclusion

This paper presented a Bézier curve-based reconstruction algorithm,

named the IMG method, that allows to retrieve the three-dimensional dis-

placement and strain field inside a solid, starting from surface displacement

measurement data. The formulation presented here described in detail the

procedure adopted for the reconstruction for flat or cylindrical specimens

under tensile load. However a similar approach could be developed to study

other deformation cases, e.g. torsion, bending, mixed-load, etc.

The IMG method, or a modified version of it, could be relevant in all

cases where large deformation is encountered and the material is homoge-
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Figure 15: Plots of the principal strain along three different radial paths in the central

section of the specimen.

neous. Since surface data are nowadays reasonably easy to obtain, it could

be potentially applied in a large number of situations of engineering interest

(e.g. biological tissues, soft materials, etc.). Nonetheless, the feasibility has

to be conveniently verified on a case by case basis.

The strain localization within the necking region represents a suitable

example that the proposed technique can be successfully applied to. On

the other hand, in order to obtain acceptable results, the following remarks

should be carefully taken into consideration:

• the raw displacement data obtained from stereo-DIC are usually not

suitable to be directly used with the reconstruction algorithm. As

shown in Section 4, a smoothing and a remap of the displacement over

a regular grid could be necessary. Since interpolation is involved, the

starting measurement points should be denser than the final regular
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grid in order to reduce the interpolation error.

• The size of the regular mesh used to define the starting surface points

in the reconstruction algorithm should be properly chosen. As a prac-

tical solution, the mesh generator of commercial FE codes can be con-

veniently used to this purpose.

• In the discussed examples, the basic built-in Matlab function normsurf

was used to find surface normals and the function scatteredInterpolant

was used to interpolate points. The use of more sophisticated rou-

tines and smoothing algorithms could be implemented to investigate

their possible beneficial effect on the robustness of the IMG method,

especially in the presence of large measurement noise.

• A rigorous error analysis of the reconstruction algorithm was beyond

the scope of this paper. In order to assess the feasibility of applica-

tion to material identification, a detailed study should be performed

to evaluate the impact of the reconstruction errors on the material

identification, using for instance simulated experiments as in [40, 41].

In summary, the paper describes a reconstruction algorithm able to de-

rive the displacement and strain fields in the bulk of a solid sample. The

proposed method was validated using numerical models and then applied

to real experiments to retrieve the strain concentration inside the necking

region of metal specimens subjected to large deformations The following

concluding considerations can be made:

• the proposed method can be applied to flat or cylindrical specimens

subjected to large deformation;
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• the numerical validation proved that the reconstruction algorithm is

feasible even if the material is highly anisotropic and the necking shape

produces a complex three-dimensional stress-strain state;

• the method was applied to real experiments. The strain concentration

inside the neck is considerable, especially for the cylindrical specimen,

where an increase up to 50% was observed in the inner part with

respect to the surface;

• the experimental technique used to obtain the displacement field over

the solid surface plays an important role for the accuracy of the recon-

struction. In particular, the spatial resolution of the surface measure-

ment is very important.

• The authors note that the proposed method, which does not use

boundary condition information as part of the process, is strictly appli-

cable in situations where the problem is of the type known as ”geomet-

rically determined”. These problem types include important applica-

tions such as beams, plates, and shells that do not have flaws, internal

cut-outs or geometric complexities. In these cases, it is well-known

that the interior (through-thickness) deformation can be estimated

from surface deformation data (including curvature). The extension

of the method for use in a hybrid approach with analytic or computa-

tional algorithms to address the effect of additional complexities will

require additional research in the future.

In future, the method will be coupled with inverse identification tech-

niques to identify the constitutive parameters of plasticity and damage mod-

els.
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