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Abstract:

Ergodic theorem shows that ergodic averages of the posterior draws converge in probability

to the posterior mean under the stationarity assumption. The literature also shows that

the posterior distribution is asymptotically normal when the sample size of the original data

considered goes to infinity. To the best of our knowledge, there is little discussion on the large

sample behaviour of the posterior mean. In this paper, we aim to fill this gap. In particular, we

extend the posterior mean idea to the conditional mean case, which is conditioning on a given

vector of summary statistics of the original data. We establish a new asymptotic theory for the

conditional mean estimator for the case when both the sample size of the original data concerned

and the number of Markov chain Monte Carlo iterations go to infinity. Simulation studies show

that this conditional mean estimator has very good finite sample performance. In addition, we

employ the conditional mean estimator to estimate a GARCH(1,1) model for S&P 500 stock

returns and find that the conditional mean estimator performs better than quasi–maximum

likelihood estimation in terms of out–of–sample forecasting.
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1 Introduction

In Bayesian analysis, posterior means are commonly used as point estimates for unknown

parameters. However, little attention has been paid to the large sample properties of posterior

means. In this paper, we aim to address this issue. Particularly, we focus on the investigation

of large sample properties of a conditional mean estimator, which includes the posterior mean

as a special case.

Suppose Tn is a vector of summary statistics of the original data (x1, x2, · · · , xn) with sample

size n. Let θ be a d–dimensional vector of unknown parameters for a model which seeks to

explain Tn. Our interest is learning about θ. In Bayesian inference, inferences are normally

based on the conditional density of θ given the data denoted as fn(θ|Tn). The conditional mean

is then used as a point estimate of θ, which is expressed as

E[θ|Tn] =

∫
θfn(θ|Tn)dθ. (1.1)

However, most of the time, (1.1) cannot be worked out analytically, especially in high

dimensions. Therefore we evaluate (1.1) by doing simulation to obtain a sequence of draws

{θjn}, j = 1, 2, · · · ,m, from fn(θ|Tn), where m denotes the number of iterations. For simplicity,

we assume here that conditioning on Tn, we can obtain that {θjn} is a sequence of stationary

Markov chains. We then denote the simple average 1
m

∑m
j=1 θjn as θ̂mn before we use θ̂mn to

approximate E[θ|Tn]. It can be checked that this approximation is valid because by the law

of large numbers, as m→∞, we have θ̂mn − E[θ|Tn]→P 0 for any fixed n. Now one natural

question is: What is the asymptotic behaviour of θ̂mn and E[θ|Tn] when n→∞ ?

Admittedly, Bayesian inference is based on a given finite sample. However, with more and

more data becoming available, it would be meaningful to investigate whether the performance

of the conditional mean estimate θ̂mn differs very much between small and large samples. For

example, suppose we want to capture the movement of a stock market return by a GARCH

(1,1) model given by

yt = εtσt, εt ∼ N(0, 1), t = 1, 2, · · · , n,

σ2
t = θ1 + θ2y

2
t−1 + θ3σ

2
t−1.

Let θ = (θ1, θ2, θ3)
>. Will the behaviour of the conditional mean estimates of θ change if the

sample size varies from 500 to 10,000 ? In other words, what is the difference between E[θ|T500]

and E[θ|T10,000] ?

To the best of our knowledge, there is little discussion available to answer this question. Until

recently, most efforts aimed at investigating the asymptotic behaviour of posterior distributions

rather than investigating posterior means. For example, Walker (1969) showed that under
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suitable regularity conditions, as n → ∞, the posterior distribution converges to a normal

distribution. Based on Walker (1969), Chen (1985) further introduced three sets of conditions

for an asymptotic posterior normality. Phillips (1996); Phillips and Ploberger (1996) developed

an asymptotic theory for Bayesian inference for stationary and nonstationary time series

and provided the limiting form of the Bayesian data density for a general case of likelihoods

and prior distributions. Kim (1998) also established an asymptotic posterior normality for a

nonstationary time series setting. Chernozhukov and Hong (2003) developed a class of quasi–

Bayesian estimators (QBEs), which are defined using a general econometric criterion function in

place of the parametric likelihood function. They established
√
n–consistency and asymptotic

normality for QBEs. The QBEs are computed using Markov chain Monte Carlo methods.

Beaumont, Zhang and Balding (2002) proposed an approximate Bayesian computation (ABC)

method to solve complex problems in population genetics, in which the principle of the ABC

is that we make the best use of a vector of summary statistics rather than the whole sample

(x1, x2, · · · , xn). Our work is related to the ABC idea. More recently, Gao and Hong (2014)

established a link between the ABC method and the implementation of the so–called generalized

method of moments (GMM).

The main contributions of this paper are summarized as follows.

(i) We improve existing results for the posterior distribution with a fast rate of convergence,

and also establish an asymptotic theory for the conditional mean estimator.

(ii) We conduct several simulation studies to evaluate the finite sample performance of the

conditional mean estimator, and we also employ the conditional mean estimator to estimate

a GARCH(1,1) model for S&P 500 stock returns.

The rest of this paper is organized as follows. Section 2 proposes the conditional mean

estimator. In Section 3, we develop asymptotic properties for the conditional mean estimator.

Section 4 presents Monte Carlo simulation studies to examine the finite sample performance of

the conditional mean estimator. In Section 5, a GARCH(1,1) model for S&P 500 stock returns

is presented to illustrate the advantages of the conditional mean estimator. Section 6 concludes

the paper. The proofs of the main theorems are given in an appendix.

2 Conditional mean estimation

Consider a random variable X with a density function f(x; θ) characterized by θ, a d–dimensional

vector of unknown parameters. Let θ0 be the true value of θ. We aim to estimate θ0 by the

conditional mean E[θ|Tn], where Tn is a vector of summary statistics of the original data

(x1, x2, · · · , xn) generated from f(x; θ).
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We can construct the likelihood function given by

Ln(θ) = Ln(θ|Tn) =
n∏
i=1

f(xi; θ). (2.1)

Define ln(θ) = logLn(θ) as the log–likelihood function. Let π(θ) denote a prior density of θ.

The conditional (posterior) density of θ given Tn is

fn(θ|Tn) =
eln(θ)π(θ)∫
eln(θ)π(θ)dθ

. (2.2)

The conditional (posterior) mean of θ given Tn can be expressed as

E[θ|Tn] =

∫
θfn(θ|Tn)dθ. (2.3)

This paper considers using the conditional distribution of θ given Tn rather than Xn =

(x1, x2, · · · , xn), mainly because using Tn is enough for the case where it is a vector of sufficient

statistics. Meanwhile, it is both theoretically and conventionally more attractive in using Tn as

a fixed–dimensional vector than using Xn as an n–dimensional vector of the full sample. Note

that θ̂n can be chosen as Tn in such cases where θ̂n as the maximum likelihood estimator of θ0,

the true value of θ, is already a vector of sufficient summary statistics.

Due to the intractability of the likelihood function in some cases, equation (2.3) may not have

any closed form. We thus evaluate (2.3) by simulating a sequence of draws from fn(θ|Tn). If the

conditional density fn(θ|Tn) is available for sampling, we can obtain a sequence of independent

draws. If direct sampling is infeasible, we can use either an importance sampling or a cumulative

distribution function transformation method. By such a method, we can obtain independent

draws. If such methods are not applicable, we can instead use a Markov chain Monte Carlo

(MCMC) algorithm, such as Metropolis–Hasting algorithm, one of the most popular MCMC

methods.

Then we approximate E[θ|Tn] by

θ̂mn =
1

m

m∑
j=1

θjn,

where {θjn, j = 1, 2, · · · ,m} denotes the j–th draw conditioning on Tn and m denotes the

number of Markov chain Monte Carlo iterations. We refer θ̂mn as the conditional mean estimator

(CME hereafter). In the next section, we will establish some new asymptotic properties for both

fn(θ|Tn) and θ̂mn.

3 Asymptotic properties

Before we establish some asymptotic properties for fn(θ|Tn) and θ̂mn, we introduce the following

notation. Let θ̂n denote the maximum likelihood estimator of θ, and θ0 be the true value of θ
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involved in the model under consideration. Under Assumption 1(i) below, both the first and

second derivatives, l
(1)
n (·) and l

(2)
n (·), of ln(·), do exist. Let ∆n(θ̂n) = −l(2)

n (θ̂n). For any given and

fixed c > 0, denote Cn =
{
θ : ∆

1/2
n (θ̂n)‖θ̂n − θ‖ ≤ c

}
and Dn =

{
θ : ∆

1/2
n (θ̂n)‖θ̂n − θ‖ > c

}
.

In this section, we introduce the necessary conditions to establish our asymptotic results.

Note that Assumptions 1–4 below may not be the weakest possible.

Assumption 1. (i) Suppose that f(·; θ) is twice differentiable with respect to θ, and the

second–order derivative, f (2)(·; θ), is continuous.

(ii) The density π(θ) is twice differentiable and its second derivative is continuous.

Assumption 2. (i) Suppose that conditioning on Tn, {θjn} is a sequence of Harris and geomet-

rically ergodic Markov chains with stationary distribution such that E [θ1n|Tn] = E[θ|Tn].

Let maxn≥1 E
[
|θ1n|2+ε0 |Tn

]
<∞ for some ε0 > 0.

(ii) Let ∆−1
n (θ̂n) →P 0 and ∆

1/2
n (θ̂n)σn√

m
→P 0 as n → ∞ and m → ∞, where 0 < σ2

n =

Var[θ1n|Tn]+2
∑∞

k=1 γn(k|Tn) <∞, where γn(k|Tn) = E[θ1nθ1+k,n|Tn]−E[θ1n|Tn]E[θ1+k,n|Tn].

(iii) For each small ε0 > 0, P
(
Rn(θ̂; δ0) < ε0

)
→ 1 as n → ∞ and δ0 → 0, where

Rn(θ̂; δ0) = supθ∈{θ: ‖θ−θ̂n‖≤δ0}

∣∣∣∣∣∣∆−1
n (θ̂n)

(
∆n(θ)−∆n(θ̂n)

)∣∣∣∣∣∣.
Assumption 3. Let λ = λn be an increasing function of n such that λn →∞ and λn ∆

−1/2
n (θ̂n)→P

0 as n→∞.

(i) Let f−1(θ̂n|Tn) = OP (1).

(ii) Let
∫{
θ:∆

1/2
n (θ̂n)‖θ̂n−θ‖>λ

} fn(θ|Tn)dθ = oP (∆
−1/2
n (θ̂n)) and

∫{
θ:∆

1/2
n (θ̂n)‖θ̂n−θ‖>λ

} θ fn(θ|Tn)dθ =

oP (∆
−1/2
n (θ̂n)).

Assumption 4. As n→∞, ∆
1/2
n (θ̂n)

(
θ̂n − θ0

)
→D N(0, Id), where Id is the d×d dimensional

identity matrix.

Assumptions 1 and 3 are similar to those used by Phillips (1996); Phillips and Ploberger

(1996); and Kim (1998). Assumption 1(i) is standard to ensure that ln(θ) is twice differentiable

with respect to θ. It ensures that we can do Taylor expansion for ln(θ). Assumption 1(ii)

is used to make sure that we can do Taylor expansion for π(θ). Assumption 3 is satisfied

in many cases. With λ as an increasing function of n, Assumption 3(ii) is satisfied as the

following example shows. When θ̂n = Tn = 1
n

∑n
j=1 xi ∼ N (θ, σ2

n) and θ ∼ N(0, 1) with σ2
n = 1

n
,

we have L(θ|Tn) =
(

1√
2π

)n
exp

(
−nUn−2nθ Tn+nθ2

2

)
, θ|Tn ∼ N

(
Tn

1+σ2
n
, σ2

n

1+σ2
n

)
, and ∆n(θ̂n) = n,

where Un = 1
n

∑n
i=1 x

2
i . In this case, f(θ̂n|Tn) =

√
n+1
2π

exp
(
− θ̂2n

2(n+1)

)
. Thus, Assumption 3(i) is
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also satisfied trivially as n→∞. Note that Assumption 3 remains true when only requiring
Tn−θ)
σn
→D N(0, 1) and σn → 0 as n→∞.

Assumption 2(i)(ii) basically requires that m going to infinity is faster than n going to

infinity, and this simply reduces to requiring m→∞ when ∆n(θ̂n) is proportional to n and σ2
n

is proportional to n−1 in many cases. It is pointed out that the geometric ergodicity assumption

can be weakened to a polynomial ergodicity condition (see, for example, Corollaries 1 and 2

of Jones (2004)) without affecting the main results in Theorem 2 below. Assumption 2(iii) is

in a similar spirit to Condition (C2) of Chen (1985) and Condition (C1)(b) of Kim (1998) by

requiring a kind of “smoothness” of ∆n(θ̂n). Assumption 4 imposes a general condition to allow

that Tn is a vector of summary statistics of either independent, or stationary time series, or

nonstationary time series. In either the independent or dependent stationary time series case,

an asymptotic normality can be the limiting distribution. As shown in Phillips (1996), Phillips

and Ploberger (1996) and Kim (1998), Assumption 4 can be verified in the independent data as

well as dependent stationary and nonstationary time series cases. In general, the asymptotic

theory of the MLE is also available at Amemiya (1985), Fuller (1996) and Ling and Li (1998).

We now establish the main theorems of this paper.

Theorem 1. Under Assumptions 1, 2(iii), 3(i) and 4, as n→∞ and m→∞, we have

∆n

(
θ̂n

)(∫
Cn

fn(θ|Tn)dθ − 1√
2π

∫ c

−c
e−

1
2
u2du

)
− π(2)(θ0)

2 π(θ0)
· 1√

2π

∫ c

−c
u2e−

1
2
u2du→P 0 (3.1)

whenever π(θ0) 6= 0, where Cn =
{
θ : ∆

1/2
n (θ̂n)‖θ̂n − θ‖ ≤ c

}
for any given and fixed c > 0, and

π(2)(·) denotes the second–order derivative of π(·).

Theorem 1 strengthens and complements existing results (see, for example, Walker (1969),

Chen (1985) and Kim (1998)) with a fast rate of convergence. In many conventional cases,

∆n

(
θ̂n

)
is proportional to n. In such cases, the rate of convergence of

∫
Cn
fn(θ|Tn)dθ to

1√
2π

∫ c
−c e

− 1
2
u2du can be as fast as n−1.

Meanwhile, it should be pointed out that the constant c = cn involved in Theorem 1 can

also be varying and increasing with n, as long as ∆
−1/2
n (θ̂n) cn →P 0 as n→∞ to ensure that a

Taylor expansion is valid for θ ∈ Cn. As a matter of fact, the larger the value of c, the faster of

convergence of ∆n

(
θ̂n

)(∫
Cn
fn(θ|Tn)dθ − 1√

2π

∫ c
−c e

− 1
2
u2du

)
− π(2)(θ0)

2π(θ0)
· 1√

2π

∫ c
−c u

2e−
1
2
u2du→P 0.

Thus, in the finite–sample evaluation, it is probably more interesting to look at the case where

c is not large, as c = 1.0 in Section 4 below.

Theorem 2. (i) Under Assumptions 1–4, as n→∞ and m→∞, we have

∆1/2
n (θ̂n)

(
θ̂mn − θ̂n

)
= oP (1). (3.2)

6



Let Assumptions 1, 2, 3(i) and 4 hold. If we can strengthen Assumption 3(ii) to Assumption

3(ii)’: ∫
{
θ:∆

1/2
n (θ̂n)‖θ̂n−θ‖>λ

} fn(θ|Tn)dθ = oP (∆−1
n (θ̂n)) (3.3)

and ∫
{
θ:∆

1/2
n (θ̂n)‖θ̂n−θ‖>λ

} θ fn(θ|Tn)dθ = oP (∆−1
n (θ̂n)), (3.4)

then equation (3.2) can be strengthened to

∆n(θ̂n)
(
θ̂mn − θ̂n

)
→P

π(1)(θ0)

π (θ0)
(3.5)

when π(θ0) 6= 0 and ∆n(θ̂n)σn√
m

→P 0 as m→∞ and n→∞.

(ii) Under Assumptions 1–4, as n→∞ and m→∞, we have
√
m

σn

(
θ̂mn − E[θ|Tn]

)
→D N(0, Id), (3.6)

∆1/2
n (θ̂n)

(
θ̂mn − θ0

)
→D N(0, Id), (3.7)

where θ̂mn = 1
m

∑m
j=1 θjn.

Equation (3.2) of Theorem 2(i) also shows that the rate of convergence of θ̂mn − E[θ|Tn] to

zero can be as fast as 1√
mn

in the case where σ2
n is proportional to n−1. Equation (3.5) further

shows that the rate of approximation between θ̂mn and θ̂n can be as fast as n−1. Theorem 2(ii)

shows that an asymptotic normality is achievable for the conditional mean estimator θ̂mn with a

rate of convergence of ∆
1/2
n (θ̂n). Equation (3.7) shows that θ̂mn is actually a consistent estimator

of θ0 with certain rate of convergence even though n → ∞. As a consequence, we can now

construct new test statistics for some testing problems concerning θ0 and/or its functionals in

the case where n→∞. We plan to leave such issues for further research.

In summary, it is our knowledge that both Theorems 1 and 2 establish some considerably

new findings about the asymptotic consistency of the posterior density function with a rate of

convergence in Theorem 1 and an asymptotic normality for the conditional mean estimator, θ̂mn,

in Theorem 2. Before we give the proofs of Theorems 1 and 2 in the Appendix, we will evaluate

the finite sample properties of the estimation method and its resulting theory in Sections 4 and

5 below.

4 Simulation

In this simulation study, we have two objectives. First, we examine the finite sample per-

formance of the proposed conditional mean estimator through six simulated examples. Sec-
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ond, we investigate the convergence of
∫
Cn
fn(θ|Tn)dθ to 1√

2π

∫ c
−c e

− 1
2
u2du graphically, where

Cn =
{
θ : ∆

1/2
n (θ̂n)‖θ̂n − θ‖ ≤ c

}
.

The six simulated examples that we considered include a location model, a linear model, a

random coefficient model, an AR(1) process, a GARCH model and a normal mixture density. For

each simulated example, we consider sample sizes n = 200, 600 and 1200. For each sample size,

we generate 1000 samples. Let θ0 = (θ10, θ20, · · · , θp0)> denote the true value of the unknown

parameter vector θ = (θ1, θ2, · · · , θp)> and θ̂mn = (θ̂1,mn, θ̂2,mn, · · · , θ̂p,mn)> denote the estimated

parameter vector, where p denotes the dimension of the parameter vector.

Before we discuss how to evaluate the finite sample performance of θ̂n and θ̂mn, we show

how θ0 is related to the moments of the original data as follows:

• In Example 1 below, θ0 is the unconditional mean of E[x1].

• In Example 2 below, θ0 = (α0, β0)>, where β0 = Cov(x1,y1)
Var(x1)

and α0 = E[y1]− Cov(x1,y1)
Var(x1)

E[x1].

Similar definitions can be given for β0 involved in Example 3.

• In Example 4 below, θ0 ≡ ρ0 = (E [y2
1])
−1 E [y1 y2].

• In Example 5 below, θ0 = (θ10, θ20, θ30)> satisfies θ10 = (1− θ20 − θ30) E [y2
1].

• In Example 6 below, θ0 = 1
2
θ10 + 1

2
θ20 is the population mean of a mixture normal

distribution.

To examine the finite sample performance of the estimation method, we compute the

absolute biases (abs.bias), standard deviations (std) and the mean squared errors (mse) of θ̂k,mn,

k = 1, 2, · · · , p, as follows:

abs.biask =
1

1000

1000∑
r=1

∣∣∣θ̂k,mn(r)− θk0

∣∣∣ , stdk =

√√√√ 1

1000

1000∑
r=1

(θ̂k,mn(r)− θ̂k)2, (4.1)

msek = 1
1000

∑1000
r=1 (θ̂k,mn(r)− θk0)2, in which θ̂k,mn(r) is the r–th replication of the k–th compo-

nent, θ̂k,mn, of θ̂mn, and θ̂k = 1
1000

∑1000
r=1 θ̂k,mn(r).

Example 1. Consider a location model given by

xi = θ + ei, for i = 1, 2, · · · , n, (4.2)

where θ follows a normal distribution N(θ0, 1) and ei is assumed to be independent and identically

distributed (i.i.d.) with the standard normal distribution. Here θ and ei are independent. For
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each replication, we generate θ from N(θ0, 1) and generate ei from N(0, 1) and then obtain xi

by xi = θ + ei, for i = 1, 2, · · · , n.

In this example, we choose θ0 = 0.8. So the density of θ, π(θ), is given by

π(θ) =
1√
2π

exp

(
−(θ − 0.8)2

2

)
. (4.3)

Given a sample Xn = (x1, x2, · · · , xn)>, define Tn = 1
n

∑n
i=1 xi and Un = 1

n

∑n
i=1 x

2
i . Then

the likelihood function can be written as

L(θ|Tn) =

(
1√
2π

)n
exp

(
−nUn − 2nθ Tn + nθ2

2

)
. (4.4)

By definition, the conditional density of θ given Tn is

fn (θ|Tn) =
π(θ)L(θ|Tn)∫
π(θ)L(θ|Tn)dθ

. (4.5)

Substitute (4.3) and (4.4) into (4.5). Then we can get

fn (θ|Tn) =

√
n+ 1

2π
exp

(
−

(n+ 1)(θ − nTn+0.8
n+1

)2

2

)
. (4.6)

The conditional mean of θ is then given by

E[θ|Tn] =

∫
θfn (θ|Tn) dθ =

nTn + 0.8

n+ 1
.

We also considered the maximum likelihood estimator (MLE) of θ0. For the r–th replication,

r = 1, 2, · · · , 1000, the maximum likelihood estimate of θ can be computed by

θ̂n(r) =
1

n

n∑
i=1

xi,r, (4.7)

where xi,r, for i = 1, 2, · · · , n, is the random sample from the r–th replication.
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Table 1: Absolute bias, standard deviation and mean squared error of CME and MLE for θ in

the location model based on 1000 replications.

n E[θ|Tn] θ̂n

abs.bias

200 0.0781 0.0785

600 0.0469 0.0470

1200 0.0324 0.0325

std

200 0.0984 0.0989

600 0.0581 0.0582

1200 0.0407 0.0408

mse

200 0.0097 0.0098

600 0.0034 0.0034

1200 0.0017 0.0017

We compute the absolute bias, standard deviation and mean squared errors for both CME

and MLE using (4.1). The results are presented in Table 1. From Table 1, we find that with

the increase of sample size, the absolute bias, standard deviation and mean squared errors of

the proposed conditional mean estimator decrease. This indicates that the proposed conditional

mean estimator has very good finite sample performance. In addition, by comparing the results

of CME and MLE, we can find that CME and MLE have similar performance in terms of the

absolute bias, standard deviation and mean squared errors.

From (4.6), it is easy to see that the conditional distribution of θ given Tn is a normal

distribution with mean Tn+0.8
n+1

and variance 1
n+1

.

Graphically, we compare
∫
Cn
fn(θ|Tn)dθ with 1√

2π

∫ c
−c e

− 1
2
u2du graphically for the case of

c = 1.0, where Cn =
{
θ : ∆

1/2
n (θ̂n)|θ̂n − θ| ≤ c

}
. Based on the first replication, we produce the

plots for the shaded area of S = 0.6827 and those for
∫
Cn
fn(θ|Tn)dθ in Figure 1. Note that this

is only based on one replication.
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Figure 1: Plots of
∫
Cn
fn(θ|Tn)dθ (the upper panel with sample sizes n=200, 600, 1200) and

1√
2π

∫ c
−c e

− 1
2
u2du . In each plot, S denotes the shaded area.
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Example 2. Consider a linear regression model of the form

yi = α + βxi + ei, for i = 1, 2, · · · , n, (4.8)

where α and β are random parameters, and the error term ei is assumed to be i.i.d. with the

standard normal distribution.

In this study, xi is generated from a stationary AR(1) process xt = 0.5xt−1 + ut with ut

being generated from the standard normal distribution. We generate α from N(1.0, 1.0) and β

from N(2.5, 1.0). So the densities of α and β are given by

π(α) =
1√
2π

exp

(
−(α− 1)2

2

)
and π(β) =

1√
2π

exp

(
−(β − 2.5)2

2

)
. (4.9)

Given a sample Xn = (x1, x2, · · · , xn)> and Yn = (y1, y2, · · · , yn)>.

Define Tn = (Tx1, Tx2, Ty1, Ty2, Txy)
>, where Tx1 =

∑n
i=1 xi, Tx2 =

∑n
i=1 x

2
i , Ty1 =

∑n
i=1 yi,

Ty2 =
∑n

i=1 y
2
i and Txy =

∑n
i=1 xiyi.

The likelihood function can be written as

L(α, β|Tn) =

(
1√
2π

)n
exp

(
−Ty2 + β2Tx2 − 2βTxy + 2αβTx1 − 2αTy1 + nα2

2

)
. (4.10)
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By definition, the conditional density of θ = (α, β)> given Tn is

fn (θ|Tn) =
π (α) π (β)L(α, β|Tn)∫∫
π (α) π (β)L(α, β|Tn)dαdβ

=
1

2π
√
|Σ|

exp
(
−(θ − µθ)>Σ−1(θ − µθ)

)
, (4.11)

where 1/|Σ| = (n+ 1)(1 + Tx2)− T 2
x1 and

Σ−1 =

 n+ 1 Tx1

Tx1 1 + Tx2

 , µθ =

 µα

µβ

 =

 1+Ty1−µβTx1
n+1

(Txy+2.5)(n+1)−Tx1(Ty1+1)

(1+Tx2)(n+1)−T 2
x1

 . (4.12)

The maximum likelihood estimators of β0 and α0 are given by

β̂n = (X>nXn)−1X>n Yn and α̂n = y − β̂nx, (4.13)

respectively, where y = 1
n

∑n
i=1 yi and x = 1

n

∑n
i=1 xi.

Then we compute the absolute bias, standard deviation and mean squared errors for CME

and MLE using (4.1). The results are presented in Table 2. From Table 2, we find that with

the increase of sample size, the absolute bias, standard deviation and mean squared errors of

the proposed estimator decrease. This supports the theory that the proposed conditional mean

estimator has some good finite sample performance. In addition, we find that the CME and

MLE have similar performance.

From (4.11), we can see that the conditional distribution of β given Tn is a normal distribution

with mean µβ and variance 1
1+Tx2

and the conditional distribution of α given Tn is a normal

distribution with mean µα with variance 1
n+1

.

Let c = 1.0. Based on the first replication, we produce the plots to visually see the change

of
∫
Cnα

fn(α|Tn)dα and
∫
Cnβ

fn(β|Tn)dβ with the increase of sample size in Figure 2, where

Cnα =
{
α : ∆

1/2
n (α̂n)|α̂n − α| ≤ c

}
and Cnβ =

{
β : ∆

1/2
n (β̂n)|β̂n − β| ≤ c

}
.
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Figure 2: Plots of
∫
Cnα

fn(α|Tn)dα (the upper panel with sample sizes n=200, 600, 1200) ,∫
Cnβ

fn(β|Tn)dβ (the middle panel with sample sizes n=200, 600, 1200) and 1√
2π

∫ c
−c e

− 1
2
u2du .
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Table 2: Absolute bias, standard deviation and mean squared error of CME and MLE for

parameters in a linear regression model based on 1000 replications.

CME MLE

n E[α|Tn] E[β|Tn] α̂n β̂n

abs.bias

200 0.1060 0.1121 0.1066 0.1125

600 0.0586 0.0628 0.0587 0.0629

1200 0.0404 0.0486 0.0404 0.0487

std

200 0.1326 0.1421 0.1333 0.1427

600 0.0745 0.0774 0.0747 0.0775

1200 0.0505 0.0606 0.0506 0.0607

mse

200 0.0176 0.0202 0.0178 0.0203

600 0.0056 0.0060 0.0056 0.0060

1200 0.0026 0.0037 0.0026 0.0037

Example 3. Consider a random coefficient model with one explanatory variable given by

yi = βixi + ei, for i = 1, 2, · · · , n, (4.14)

where βi = β + 0.5ui with ui being from the standard normal distribution, and ei follows

the standard normal distribution, in which {ui}ni=1 and {ei}ni=1 are assumed to be mutually

independent.

Model (4.14) can be written as

yi = βxi + vi, (4.15)

where vi = 0.5xiui + ei. It is easy to see that E[vi] = 0 and E[v2
i ] = 0.25x2

i + 1. In this example,

we generate β from a normal distribution N(1.5, 1). So the density of β, π(β), is given by

π(β) =
1√
2π

exp

(
−(β − 1.5)2

2

)
. (4.16)

Let Yn = (y1, y2, · · · , yn)> and Xn = (x1, x2, · · · , xn)>. Let Tn be the generalised least

squares (GLS) estimator of β, which is given by

Tn = (X>nD
−1Xn)−1X>nD

−1Yn, (4.17)

where D = diag{E[v2
1], E[v2

2], · · · , E[v2
n]}.

We approximate the conditional density of Tn given β by its limiting distribution f(Tn|β),

which is a normal distribution with mean β and variance σ2
∗ = (

∑n
i=1 x

2
i (0.25x2

i + 1)−1)−1.
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By definition, the conditional density of β given Tn is

fn(β|Tn) =
f(Tn|β)π(β)∫
f(Tn|β)π(β)dβ

.

It is easy to show that

fn(β|Tn) =

√
1 + σ2

∗
2πσ2

∗
exp

−(1 + σ2
∗)(β −

Tn+1.5σ2
∗

1+σ2
∗

)2

2σ2
∗

 . (4.18)

The conditional mean of β is then given by

E[β|Tn] =

∫
βfn (β|Yn) dβ =

Tn + 1.5σ2
∗

1 + σ2
∗

.

The maximum likelihood estimator of β0 can be obtained by maximizing the following

likelihood function

L(β|Yn, Xn) =
1∏n

i=1

√
2π(0.25x2

i + 1)
exp

(
−1

2

n∑
i=1

(yi − xiβ)2

0.25x2
i + 1

)
. (4.19)

The resulting maximum likelihood estimate is denoted as β̂n. The results of the absolute bias,

standard deviation and mean squared errors of CME and MLE are presented in Table 3. From

Table 3, we find that with the increase of sample size, the absolute bias, standard deviation

and mean squared errors of the proposed estimator decrease. This indicates that the proposed

conditional mean estimator has very good finite sample performance. In addition, by comparing

the results of CME and MLE, we can find that CME and MLE have similar performance in

terms of the absolute bias, standard deviation and mean squared errors.

Table 3: Absolute bias, standard deviation and mean squared error of CME and MLE for β in

the random coefficient regression model based on 1000 replications.

CME MLE GLS

n E[β|Tn] β̂n Tn

abs.bias

200 0.098238 0.098890 0.098889

600 0.057195 0.057339 0.057321

1200 0.040029 0.040074 0.040073

std

200 0.124469 0.125299 0.125294

600 0.071303 0.071474 0.071460

1200 0.049653 0.049720 0.049708

mse

200 0.015463 0.015670 0.015669

600 0.005104 0.005128 0.005126

1200 0.002471 0.002478 0.002477
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From (4.18), it is clear that the conditional distribution of β given Tn is a normal distribution

with mean Tn+1.5σ2
∗

1+σ2
∗

and variance σ2
∗

1+σ2
∗
.

Figure 3: Plots of
∫
Cn
fn(β|Tn)dβ (the upper panel with sample sizes n=200, 600, 1200) and
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∫ c
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Unlike Examples 1–3, we cannot obtain any closed forms for fn(θ|Tn) and the conditional

cumulative distribution function Fn(θ|Tn) in Examples 4 and 5 below. In those examples,

Fn(θ|Tn) is approximated by

F̂n(θ|Tn) =
1

m

m∑
j=1

Φ

(
θ̂jn − θ
h

)
, (4.20)

where Φ(·) denotes the distribution function of the standard normal distribution. The bandwidth

h is obtained by using the normal reference rule h = 1.06 σθ m
−1/5, where σθ denotes the standard

deviation of simulated draws {θ̂jn, j = 1, 2, · · · ,m}.
The conditional density function fn(θ|Tn) is approximated by a kernel density estimator

f̂n(θ|Tn) with the form of

f̂n(θ|Tn) =
1

mh

m∑
j=1

φ

(
θ̂jn − θ
h

)
,
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where h is bandwidth and φ(·) is the density function of the standard normal distribution. The

choice of h is same as that in (4.20).

Based on the first replication, Figure 3 shows the finite sample behaviour of
∫
Cn
f̂n(β|Tn)dβ

for the case of c = 1, where Cn =
{
β : ∆

1/2
n (β̂n)|β̂n − β| ≤ c

}
.

Example 4. Consider an autoregressive model of the form

yt = ρ yt−1 + et, (4.21)

where ρ is random with expectation ρ0 = 1, y0 = OP (1), and {et} is a sequence of independent

and identically distributed random errors with E[e1] = 0 and E[e2
1] = 1.

We generate data from (4.21) with ρ being generated from an uniform distribution U(0.9, 1.1),

which implies that yt is nearly nonstationary when 0.9 < ρ < 1.0 and nonstationary when ρ ≥ 1.

We generate et from the standard normal distribution. We set y0 = 1.

Given a sample Yn = (y1, y2, · · · , yn)>. Define Tn = (Tn1, Tn2, Tn3)
>, where Tn1 =

∑n
t=1 y

2
t ,

Tn2 =
∑n

t=1 ytyt−1 and Tn3 =
∑n

t=1 y
2
t−1.

The likelihood function can be written as

L(ρ|Tn) =

(
1√
2π

)n
exp

(
−Tn1 − 2ρTn2 + ρ2Tn3

2

)
.

By definition, the conditional density of ρ given Tn is

fn (ρ|Tn) =
π (ρ)L(ρ|Tn)∫
π (ρ)L(ρ|Tn)dρ

.

The conditional mean of ρ is then given by E[ρ|Tn] =
∫
ρfn (ρ|Tn) dρ.

For the r–th replication, r = 1, 2, · · · , 1000, we use the random–walk Metropolis algorithm

to sample ρ from fn (ρ|Tn). We record ρ at each iteration after the burn–in period to obtain

the sequence {ρjn(r)}, for j = 1, 2, · · · , 10, 000. Then the conditional mean estimate will be the

ergodic mean of each recorded chain given by

ρ̂mn(r) =
1

m

m∑
j=1

ρjn(r),

where m = 10, 000.

Then we compute the absolute bias, standard deviation and mean squared errors using (4.1).

We also compare the finite sample performance of our estimate with the MLE of the form

ρ̂n =
(∑n

t=1 y
2
t−1

)−1 ∑n
t=1 yt−1yt.

The results are presented in Table 4. From Table 4, we find that with the increase of sample

size, the absolute bias, standard deviation and mean squared errors of the proposed estimator

decrease. This indicates that the proposed conditional mean estimator has very good finite
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sample performance. In addition, the performance of estimates of ρ by MLE and CME are very

close.

Table 4: Absolute bias, standard deviation and mean squared error of CME and MLE for the

parameter ρ in AR(1) model based on 1000 replications.

n ρ̂mn ρ̂n

abs.bias

200 0.01264 0.01275

600 0.00532 0.00544

1200 0.00377 0.00372

std

200 0.01631 0.01661

600 0.00583 0.00605

1200 0.00351 0.00347

mse

200 0.00036 0.00038

600 0.00005 0.00006

1200 0.00002 0.00002

Figure 4: Plots of
∫
Cn
f̂n(ρ|Tn)dρ (the upper panel with sample sizes n=200, 600, 1200) and

1√
2π

∫ c
−c e

− 1
2
u2du.
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Based on the first replication, we produce the plots to visually see the change of
∫
Cn
f̂n(ρ|Tn)dρ

for the case of c = 1, where Cn =
{
ρ : ∆

1/2
n (ρ̂n)|ρ̂n − ρ| ≤ c

}
. The finite sample closeness can

be seen from Figure 4.

Example 5. A GARCH (1,1) model with Gaussian innovations can be written as

yt = etσt, et ∼ N(0, 1), t = 1, 2, · · · , n,

σ2
t = θ1 + θ2y

2
t−1 + θ3σ

2
t−1,

where θ1 > 0, θ2, θ3 ≥ 0, θ2 + θ3 < 1. Note that the restrictions on the GARCH parameters θ1,

θ2 and θ3 guarantee positivity of the conditional variance σ2
t and make sure that the series yt is

covariance stationary. In this model, we assume θ = (θ1, θ2, θ3)> is random.

We generate data from the GARCH model with θ1 being generated from an uniform

distribution U(0.01, 1), θ3 from U(0, 1) and θ2 from U(0, 1− θ3), respectively.

For this GARCH model, we choose the summary statistics Tn to be the maximum likelihood

estimates of θ. As the exact closed form of the conditional density of Tn given θ is unknown, we

use its limiting distribution f(Tn|θ), which is a normal distribution with mean θ and covariance

matrix Σθ, in which Σθ can be computed using the method proposed by Ma (2008).

By definition, the conditional density of θ given Tn is

fn (θ|Tn) =
π (θ1)π (θ2) π (θ3) f(Tn|θ)∫∫∫

π (θ1) π (θ2) π (θ3) f(Tn|θ)dθ1dθ2dθ3

.

The conditional mean of θ is then given by E[θ|Tn] =
∫
θfn (θ|Tn) dθ.

For the r–th replication, r = 1, 2, · · · , 1000, we use the random–walk Metropolis algorithm

to sample (θ1, θ2, θ3)> from fn (θ|Tn). We record θ1, θ2 and θ3 at each iteration after the burn–in

period to obtain sequences {θ1,jn(r)}, {θ2,jn(r)} and {θ3,jn(r)}, for j = 1, 2, · · · ,m. In this

study, m = 10, 000. Then the conditional mean estimates will be the ergodic mean of each

recorded chain given by

θ̂1,mn(r) =
1

m

m∑
j=1

θ1,jn(r), θ̂2,mn(r) =
1

m

m∑
j=1

θ2,jn(r) and θ̂3,mn(r) =
1

m

m∑
j=1

θ3,jn(r).

Then we compute the absolute bias, standard deviation and mean squared errors using (4.1).

We also compute the overall absolute bias and standard deviation for θ2 and θ3 together as

follows. Define θ23 = (θ2, θ3)> and θ̂23 = (θ̂2,mn, θ̂3,mn)>.

abs.biasθ23 =
1

1000

1000∑
r=1

∣∣∣θ̂2,mn(r)− θ20

∣∣∣+
1

1000

1000∑
r=1

∣∣∣θ̂3,mn(r)− θ30

∣∣∣ ,
stdθ23 =

√∑
i,j

σ2
ij, where σ2

ij = cov(θi, θj), for i, j = 2, 3,
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mseθ23 =
1

1000

1000∑
r=1

(
θ̂2,mn(r)− θ20

)2

+
1

1000

1000∑
r=1

(
θ̂3,mn(r)− θ30

)2

.

We also compare the performance of CME with that of maximum likelihood estimator of θ.

The results of parameter estimates are presented in Table 5. From Table 5, we find that with

the increase of sample size, the absolute bias, standard deviation and mean squared errors of

the proposed estimator decrease. This indicates that the proposed conditional mean estimator

has some good finite sample performance. In addition, we find that CME has slightly better

performance than MLE in terms of the absolute bias, standard deviation and mean squared

errors.

Table 5: Absolute bias, standard deviation and mean squared error of CME and MLE for

parameters in GARCH (1,1) model based on 1000 replications.

CME MLE

n θ̂1,mn θ̂2,mn θ̂3,mn θ̂23,mn θ̂1,n θ̂2,n θ̂3,n θ̂23,n

abs.bias

200 0.1698 0.0893 0.1501 0.2394 0.2456 0.1171 0.2030 0.3202

600 0.1064 0.0614 0.0875 0.1489 0.1476 0.0717 0.1180 0.1896

1200 0.0915 0.0414 0.0710 0.1123 0.1000 0.0584 0.0899 0.1483

std

200 0.1906 0.0899 0.1739 0.1240 0.3045 0.1402 0.2262 0.1861

600 0.1239 0.0783 0.1191 0.0890 0.1891 0.0726 0.1312 0.1108

1200 0.1116 0.0497 0.0870 0.0735 0.1263 0.0537 0.0910 0.0729

mse

200 0.0451 0.0109 0.0330 0.0439 0.1035 0.0226 0.0640 0.0866

600 0.0176 0.0061 0.0141 0.0202 0.0399 0.0082 0.0248 0.0330

1200 0.0133 0.0025 0.0077 0.0102 0.0180 0.0052 0.0131 0.0184

Based on the first replication, we produce the plots for
∫
Cn1

f̂n(θ1|Tn)dθ1,
∫
Cn2

f̂n(θ2|Tn)dθ2

and
∫
Cn3

f̂n(θ3|Tn)dθ3 with sample size 1200 in Figure 5, where Cni =
{
θi : n1/2|θ̂i,n − θi| ≤ c

}
,

for i = 1, 2, 3. We can see that when the sample size is large,
∫
Cni

f̂n(θi|Tn)dθi is quite close to
1√
2π

∫ c
−c e

− 1
2
u2du for the case of c = 1.

We then consider the final simulated example, in which we consider the case where it is

difficult to obtain an easily computable MLE, while it is easy to compute θ̂mn.
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Figure 5: Plots of
∫
Cni

f̂n(θi|Tn)dθi (from left to right in the upper panel, i=1,2,3, respectively) and
1√
2π

∫ c
−c e

− 1
2
u2du.
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Example 6. Consider a mixture of two normal distributions with the density function given by

f(x|θ) = w1φ(x|µ1, σ
2
1) +w2φ(x|µ2, σ

2
2). Let w1 = w2 = 0.5 and σ2

1 = σ2
2 = 1 for the two normal

components, which means that we generate x from N(µ1, 1) with probability 0.5 and generate x

from N(µ2, 1) with probability 0.5. So in one sample, we have n1 observations {x1i}n1
i=1 from

N(µ1, 1) and n2 observations {x2i}n1+n2
i=n1+1 from N(µ2, 1). Let n = n1 + n2. We generate µ1 from

N(−3, 1) and µ2 from N(3, 1). So the densities of µ1 and µ2 are given by

π(µ1) =
1√
2π

exp

(
−(µ1 + 3)2

2

)
and π(µ2) =

1√
2π

exp

(
−(µ2 − 3)2

2

)
. (4.22)

Denote θ = (µ1, µ2)
>. Define Tn = (Tn1, Tn2)>, where Tn1 = 1

n1

∑n1

i=1 x1i and Tn2 =
1
n2

∑n
i=n1+1 x2i. Define Un = (Un1, Un2)>, where Un1 = 1

n1

∑n1

i=1 x
2
1i and Un2 = 1

n2

∑n
i=n1+1 x

2
2i.

Then the likelihood function can be written as

L(θ|Tn) =

(
1√
2π

)n

exp

(
−n1Un1 + n2Un2

2

)
exp

(
−n1µ

2
1 − 2µ1n1Tn1

2

)
exp

(
−n2µ

2
2 − 2µ2n2Tn2

2

)
. (4.23)
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By definition, the conditional density of θ given Tn is

fn (θ|Tn) =
π(θ)L(θ|Tn)∫
π(θ)L(θ|Tn)dθ

. (4.24)

Substituting (4.22) and (4.23) into (4.24), then we can obtain the conditional distribution of

(µ1, µ2) given Tn as follows.

µ1|Tn ∼ N

(
n1Tn1 − 3

n1 + 1
,

1

n1 + 1

)
and µ2|Tn ∼ N

(
n2Tn2 + 3

n2 + 1
,

1

n2 + 1

)
.

The conditional mean of µ1 and µ2 is then given by

E[µ1|Tn] =
n1Tn1 − 3

n1 + 1
and E[µ2|Tn] =

n2Tn2 + 3

n2 + 1
.

The maximum likelihood estimators of µ1 and µ2 are given by µ̂1n = Tn1 and µ̂2n = Tn2. We

then compute the absolute bias, standard deviation and mean squared errors for CME and MLE

using (4.1). The results are presented in Table 6. From Table 6, we find that with the increase

of sample size, the absolute bias, standard deviation and mean squared errors of the proposed

estimator decrease. This indicates that the proposed conditional mean estimator has good finite

sample performance. We also find that the CME and MLE have similar performance.

Table 6: Absolute bias, standard deviation and mean squared error of CME and MLE for

parameters in a normal mixture density based on 1000 replications.

CME MLE

n E[µ1|Tn] E[µ2|Tn] µ̂1n µ̂2n

abs.bias

200 0.1109 0.1043 0.1120 0.1053

600 0.0625 0.0672 0.0627 0.0674

1200 0.0442 0.0457 0.0443 0.0458

std

200 0.1386 0.1305 0.1400 0.1318

600 0.0786 0.0836 0.0789 0.0839

1200 0.0566 0.0567 0.0567 0.0568

mse

200 0.0192 0.0171 0.0196 0.0174

600 0.0062 0.0070 0.0062 0.0071

1200 0.0032 0.0032 0.0032 0.0032
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For c = 1.0 and i = 1, 2, recall Cnµi =
{
µi : ∆

1/2
n (µ̂in)|µ̂in − µi| ≤ c

}
. Based on the

first replication, we produce the plots to compare
∫
Cnµi

fn(µi|Tn)dµi with and 1√
2π

∫ c
−c e

− 1
2
u2du

graphically in Figure 6.

Figure 6: Plots of
∫
Cnµ1

fn(µ1|Tn)dµ1 (the upper panel with sample sizes n=200, 600, 1200) ,∫
Cnµ2

fn(µ2|Tn)dµ2 (the middle panel with sample sizes n=200, 600, 1200) and 1√
2π

∫ c
−c e

− 1
2
u2du.

0
2

4
6

8
10

n=200

mu1

D
en

si
ty

−3.5 −3.25 −3.06 −2.5

S=0.7288

0
2

4
6

8
10

n=600

mu1

D
en

si
ty

−3.5 −3.06 −2.95 −2.5

S=0.6684

0
2

4
6

8
10

n=1200

mu1

D
en

si
ty

−3.5 −2.98 −2.89 −2.5

S=0.6765

0
2

4
6

8
10

n=200

mu2

D
en

si
ty

2.5 3.04 3.25 3.5

S=0.6510

0
2

4
6

8
10

n=600

mu2

D
en

si
ty

2.5 2.98 3.09 3.5

S=0.6913

0
2

4
6

8
10

n=1200

mu2

D
en

si
ty

2.5 2.88 2.96 3.5

S=0.6730

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

standard normal

z

D
en

si
ty

−3 −1 1 3

Benchmark: S=0.6827

23



5 Application

In this section, we use our conditional mean estimator to estimate a GARCH (1,1) model for

S&P 500 daily stock return. We downloaded the S&P 500 daily closing prices, pt, during the

period from 2 January 2002 to the 9 December 2009 from http://finance.yahoo.com. The date

t return is calculated as rt = log(pt/pt−1), and there are T = 2000 observations of the return.

The time series plot of the return series is presented in Figure 7.

We fit a GARCH (1,1) model for the demeaned log–returns {yt} given as follows, where

yt = rt − 1
T

∑T
t=1 rt, yt = et σt and σ2

t = θ1 + θ2y
2
t−1 + θ3σ

2
t−1, in which θ1 > 0, θ2, θ3 ≥ 0,

θ2 + θ3 < 1. Note that the restrictions on the GARCH parameters θ1, θ2 and θ3 guarantee the

positivity of the conditional variance and that the log–return series is covariance stationary.

Let θ = (θ1, θ2, θ3)>. By using the quasi–maximum likelihood estimation method, we obtain

the estimates of θ, θ̂n = (0.0000, 0.0651, 0.9282)>. Use the estimation procedure outlined in

Example 5 in the simulation studies, we obtain the conditional mean estimates of θ, θ̂mn =

(0.0166, 0.069, 0.7733)>. As a by–product of the conditional mean estimation, we produce the

kernel density estimates of the conditional density of θ1, θ2 and θ3 in Figure 8.

Figure 7: Time series plot of S&P 500 daily returns.
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Figure 8: Kernel density estimates of the conditional density function of θ given Tn. From left to

right, we have f(θ1|Tn), f(θ2|Tn) and f(θ3|Tn).
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Figure 9: Kernel density estimates of return on 10 December 2009 with CME and QMLE.

−0.02 −0.01 0.00 0.01 0.02

0
50

10
0

15
0

 

return

D
en

si
ty

CME
QMLE

25



Based on the parameter estimates θ̂mn and θ̂n, we estimate the density of the return series

on 10 December 2009 using kernel estimation method:

f̂(y|θ̂mn) =
1

Thσ̂T+1(θ̂mn)

T∑
t=1

K

(
y/σ̂T+1(θ̂mn)− yt/σ̂t(θ̂mn)

h

)

f̂(y|θ̂n) =
1

Thσ̂T+1(θ̂n)

T∑
t=1

K

(
y/σ̂T+1(θ̂n)− yt/σ̂t(θ̂n)

h

)
,

where K(·) is chosen to be the Gaussian kernel function and h is selected by normal reference

rule. The density estimates are displayed in Figure 9, from which we can find that f̂(y|θ̂mn)

and f̂(y|θ̂n) have different characteristics at the peak and tail areas.

As in practice, the true data generating process is unknown, we cannot tell which method

is better just based on these estimation results. In the following discussion, we evaluate our

conditional mean method and the quasi–maximum likelihood estimation method based on the

performance of out–of–sample density forecasting and squared return forecasting.

For density forecasting, we employ the scoring rule introduced by Amisano and Giacomini

(2007). Using this scoring rule, we are able to decide which method performs better. We

conducted a rolling–sample procedure to evaluate the performance of each estimation method.

Let T denote the number of the observations, and let yt denote return at day t, for t = 1, 2, · · · , T .

The first sample contains the first n observations, y1, y2, · · · , yn, and is used to obtain the

parameter estimates, based on which, we can obtain the estimated variance at time n+ 1, σ̂n+1.

As the error distribution is unknown, here we forecast the density of yn+1 by the kernel density

estimation method:

f̂(yn+1|θ̂) =
1

nhσ̂n+1(θ̂)

n∑
t=1

K

(
yn+1/σ̂n+1(θ̂)− yt/σ̂t(θ̂)

h

)
,

where K(·) is chosen to be the Gaussian kernel function and h is selected by normal reference

rule.

The second sample contains y2, y3, · · · , yn+1, which are obtained by rolling the first sample

forward for one step. Using this sample, we repeat what was done based on the previous sample

and forecast the density of yn+2. This rolling procedure continues until the density of yT is

forecasted.

We calculated the average likelihood scores over the out–of–sample period:

Sn =
1

T − n

T−n∑
r=1

f̂
(
yn+r|θ̂(r)

n

)
, Smn =

1

T − n

T−n∑
r=1

f̂
(
yn+r|θ̂(r)

mn

)
,

where θ̂
(r)
n =

(
θ̂

(r)
1,n, θ̂

(r)
2,n, θ̂

(r)
3,n

)>
and θ̂

(r)
mn =

(
θ̂

(r)
1,mn, θ̂

(r)
2,mn, θ̂

(r)
3,mn

)>
are the parameter estimates
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based on the r–th rolling sample. In terms of the average likelhood score, the larger it is, the

better the corresponding estimation method performs.

The number of the observations is T = 2000, and the size of a rolling sample is n = 1000,

which implies that we have 1000 rolling samples in total. By 1000 rolling samples, we obtained

Sn = 69.98 and Smn = 71.33, which means that the forecast with the use of our conditional

mean estimator leads to a slightly higher score. To see this more clearly, we plot the likelihood

score (f̂(yn+r|θ̂(r))) in different out–of–sample period (r) with both methods in Figure 10. From

this plot, we can see that most of the time, the likelihood score with CME is higher than that

with MLE. This implies that the use of our conditional mean estimator outperforms that of the

maximum likelihood estimation method in terms of density forecasting.

Figure 10: Out–of–sample likelihood score with MLE and CME.
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Using the same rolling–sample procedure, we also evaluate the performance of squared return

forecasting. We compute the mean absolute error (MAE) and mean squared error (MSE) for

1–step ahead squared return using conditional mean estimator as follows:

MAE
(
θ̂mn

)
=

1

T − n

T−n∑
t=1

∣∣∣y2
n+r − σ̂2

n+r

(
θ̂mn

)∣∣∣ ,
MSE

(
θ̂mn

)
=

1

T − n

T−n∑
t=1

[
y2
n+r − σ̂2

n+r

(
θ̂mn

)]2

.

Similarly, we define MAE and MSE with parameter estimated by quasi–maximum likelihood
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estimation method:

MAE
(
θ̂n

)
=

1

T − n

T−n∑
t=1

∣∣∣y2
n+r − σ̂2

n+r

(
θ̂n

)∣∣∣ ,
MSE

(
θ̂n

)
=

1

T − n

T−n∑
t=1

[
y2
n+r − σ̂2

n+r

(
θ̂n

)]2

.

We obtain that

MAE
(
θ̂mn

)
= 1.8366× 10−5, MSE

(
θ̂mn

)
= 1.4409× 10−8

and

MAE
(
θ̂n

)
= 5.3789× 10−5, MSE

(
θ̂n

)
= 2.1873× 10−8.

Given the smaller MAE and MSE results for the conditional mean estimator, we can conclude

that conditional mean has better performance in squared return forecasting. Therefore, we

can conclude that the conditional mean estimator performs better than the quasi–maximum

likelihood estimator in terms of the out–of–sample density forecasting and squared return

forecasting.

6 Conclusions

This paper has established some new asymptotic properties for Bayesian estimators. The

simulation studies have shown that our proposed conditional mean estimators have very good

finite sample performance. We have used the conditional mean estimation method to estimate

a GARCH(1,1) model for S&P 500 daily returns and we found that compared with quasi–

maximum likelihood estimation method, our conditional mean estimator has better out–of–

sample forecasting performance.
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Appendix

This appendix gives the full proofs of Theorems 1 and 2. For notational simplicity, we only

consider the case where the dimensionality of θ is d = 1.

Proof of Theorem 1

Let pn(Tn) =
∫
eln(θ)π(θ)dθ. Let us first deal with pn(Tn). Observe that

pn(Tn) =

∫
eln(θ)π(θ)dθ = eln(θ̂n)

∫
eln(θ)−ln(θ̂n)π(θ)dθ

= eln(θ̂n)

∫
Cn

eln(θ)−ln(θ̂n)π(θ)dθ + eln(θ̂n)

∫
Dn

eln(θ)−ln(θ̂n)π(θ)dθ

≡ p1n(Tn) + p2n(Tn), (A.1)

where Cn = {θ : ∆
1/2
n (θ̂n)‖θ − θ̂n‖ ≤ c} and Dn = {θ : ∆

1/2
n (θ̂n)‖θ − θ̂n‖ > c} for any given and fixed

c > 0.

For θ ∈ Cn, we can have the following Taylor expansion:

ln(θ)− ln(θ̂n) = l(1)
n (θ̂n) (θ − θ̂n) +

1

2
l(2)
n (θ̂∗n) (θ − θ̂n)2 = −1

2
∆n(θ̂∗n)(θ − θ̂n)2, (A.2)

using the fact that l
(1)
n (θ̂n) = 0, where θ̂∗n is between θ and θ̂n, l

(i)
n (·), for i = 1, 2, denote the first

and second derivatives of ln(·), and for each given n, both exist and ∆n(θ) is continuous in θ under

Assumption 1.

For p1n(Tn), in view of (A.2), using Assumption 1, we have

p1n(Tn) = eln(θ̂n)

∫
Cn

eln(θ)−ln(θ̂n)π(θ)dθ = (1 + oP (1)) eln(θ̂n)

∫
Cn

e−
1
2

(θ−θ̂n)>∆n(θ̂∗n)(θ−θ̂n)π(θ)dθ

= (1 + oP (1)) eln(θ̂n) ∆−1/2
n (θ̂n)

∫
|y|≤c

e−
y2

2 π
(
θ̂n + ∆−1/2

n (θ̂n)y
)
dy

= (1 + oP (1)) eln(θ̂n) ∆−1/2
n (θ̂n)π

(
θ̂n

) ∫
|y|≤c

e−
y2

2 dy

+
1

2
(1 + oP (1)) eln(θ̂n) ∆−3/2

n (θ̂n)π(2)
(
θ̂n

) ∫
|y|≤c

y2e−
y2

2 dy, (A.3)

where we have used Assumption 2(iii).

Let En = {θ : ∆
1/2
n (θ̂n)‖θ − θ̂n‖ ≤ λ} and Fn = {θ : ∆

1/2
n (θ̂n)‖θ − θ̂n‖ > λ} for the same λ = λn

as being introduced in Assumption 3. Under Assumption 3(i), similar to (A.3), we have as n→∞

pn(Tn) = eln(θ̂n)

∫
En

eln(θ)−ln(θ̂n)π(θ)dθ + eln(θ̂n)

∫
Fn

eln(θ)−ln(θ̂n)π(θ)dθ
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= (1 + oP (1)) eln(θ̂n) ∆−1/2
n (θ̂n)π

(
θ̂n

) ∫
|y|≤λ

e−
y2

2 dy

+eln(θ̂n) π(θ̂n)

∫
Fn

eln(θ)−ln(θ̂n) π(θ)

π(θ̂n)
dθ

= (1 + oP (1)) eln(θ̂n) ∆−1/2
n (θ̂n)π

(
θ̂n

) ∫ ∞
−∞

e−
y2

2 dy

= (1 + oP (1)) eln(θ̂n) ∆−1/2
n (θ̂n)π

(
θ̂n

) √
2π, (A.4)

where we have used
∫
Fn
eln(θ)−ln(θ̂n) π(θ)

π(θ̂n)
dθ =

∫
Fn
f(θ|Tn) f−1(θ̂n|Tn)dθ = oP

(
∆
−1/2
n (θ̂n)

)
by Assump-

tion 3(i) and then 3(ii).

Equations (A.3) and (A.4) then imply as n→∞

∆n(θ̂n)

(∫
Cn

fn(θ|Tn)dθ − 1√
2π

∫
|y|≤c

e−
y2

2 dy

)
(A.5)

−
π(2)

(
θ̂n

)
(1 + oP (1))

2π
(
θ̂n

) 1√
2π

∫
|y|≤c

y2e−
y2

2 dy

= ∆n(θ̂n)

(∫
Cn

fn(θ|Tn)dθ − 1√
2π

∫
|y|≤c

e−
y2

2 dy

)

− (1 + oP (1))
π(2) (θ0)

2π (θ0)

1√
2π

∫
|y|≤c

y2e−
y2

2 dy →P 0,

which completes the proof of Theorem 1.

Proof of Theorem 2

Recall that we define θ̂mn = 1
m

∑m
j=1 θjn, in which θjn denotes the jth posterior draw and m denotes

the number of Markov chain Monte Carlo (MCMC) iterations. It is assumed here that conditioning on

Tn, {θjn} is a sequence of Harris ergodic Markov chains.

In order to show the properties of θ̂mn, we proceed with the following three steps.

1. First, by Assumption 1(ii) and using an existing result (see, for example, Corollary 2 of Jones

(2004)), we have 1√
mσn

∑m
j=1 (θjn − E[θ|Tn]) →D N(0, 1) as m → ∞ and n → ∞, where σ2

n is

the same as defined in Assumption 2.

2. Second, we show that ∆
1/2
n (θ̂n) (E[θ|Tn]− θ0)→D N(0, 1), as n→∞.

3. Third, we combine the previous two steps to show that ∆
1/2
n (θ̂n)

(
1
m

∑m
j=1 θjn − θ0

)
→D N(0, 1),

as m→∞ and n→∞.

4. Lastly, we show Theorem 2.1(i) as a consequence.

By definition, we have that

E[θ|Tn] =

∫
θfn(θ|Tn)dθ =

∫
θeln(θ)π(θ)dθ∫
eln(θ)π(θ)dθ

=
qn(Tn)

pn(Tn)
,
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where qn(Tn) =
∫
θeln(θ)π(θ)dθ and pn(Tn) =

∫
eln(θ)π(θ)dθ.

Define qn(Tn) =
∫
θeln(θ)π(θ)dθ. Similarly to equation (A.4), we can write

qn(Tn) =

∫
En

θeln(θ)π(θ)dθ +

∫
Fn

θeln(θ)π(θ)dθ

= (1 + oP (1))

∫
En

θeln(θ̂n)e−
1
2

∆n(θ̂n)(θ−θ̂n)2π(θ)dθ +

∫
Fn

θeln(θ)π(θ)dθ

= (1 + oP (1)) q1n(Tn) + q2n(Tn), (A.6)

where q1n(Tn) =
∫
En
θeln(θ̂n)e−

1
2

∆n(θ̂n)(θ−θ̂n)2π(θ)dθ and q2n(Tn) =
∫
Fn
θeln(θ)π(θ)dθ.

In a similar way to equation (A.3), we also have

q1n(Tn) = eln(θ̂n) ∆−1/2
n (θ̂n)

∫
|y|≤λ

(
θ̂n + ∆−1/2

n (θ̂n)y
)
π
(
θ̂n + ∆−1/2

n (θ̂n)y
)
e−y

2/2dy

= (1 + oP (1)) eln(θ̂n) ∆−1/2
n (θ̂n) θ̂n π

(
θ̂n

) ∫
|y|≤λ

e−y
2/2dy

+ (1 + oP (1)) eln(θ̂n) ∆−3/2
n (θ̂n)π(1)

(
θ̂n

) ∫
|y|≤λ

y2e−y
2/2dy, (A.7)

which, along with equation (A.4), implies that as n→∞

∆1/2
n

(
θ̂n

)(
E[θ|Tn]− θ̂n

)
= ∆1/2

n

(
θ̂n

)(∫
En

θfn(θ|Tn)dθ − θ̂n
∫
En

fn(θ|Tn)dθ

)
− ∆1/2

n

(
θ̂n

)
θ̂n

∫
Fn

fn(θ|Tn)dθ + ∆1/2
n

(
θ̂n

) ∫
Fn

θfn(θ|Tn)dθ

= (1 + oP (1)) ∆−1/2
n

(
θ̂n

) π(1)
(
θ̂n

)
π
(
θ̂n

) · 1√
2π

∫
|y|≤λ

y2e−y
2/2dy

− ∆1/2
n

(
θ̂n

)
θ̂n

∫
Fn

fn(θ|Tn)dθ + ∆1/2
n

(
θ̂n

) ∫
Fn

θfn(θ|Tn)dθ →P 0 (A.8)

by Assumption 3(ii). Furthermore, we have as n→∞

∆n(θ̂n)
(
E[θ|Tn]− θ̂n

)
= (1 + oP (1)))

π(1) (θ0)

π (θ0)
· 1√

2π

∫
|y|≤λ

y2e−y
2/2dy →P

π(1) (θ0)

π (θ0)
(A.9)

whenever π(θ0) 6= 0, if both ∆n

(
θ̂n

) ∫
Fn
fn(θ|Tn)dθ = oP (1) and ∆n

(
θ̂n

) ∫
Fn
θfn(θ|Tn)dθ = oP (1).

Equation (A.8), along with Assumption 4, implies

∆1/2
n (θ̂n) (E[θ|Tn]− θ0) = ∆1/2

n (θ̂n)
(
E[θ|Tn]− θ̂n

)
+ ∆1/2

n (θ̂n)
(
θ̂n − θ0

)
= ∆1/2

n (θ̂n)
(
θ̂n − θ0

)
+ oP (1)→D N(0, 1). (A.10)

Meanwhile, Assumption 2, along with an application of an existing central limit theorem for

stationary Markov chains (see, for example, Corollary 2 of Jones (2004)), implies that as m→∞

1√
mσn

m∑
j=1

(θjn − E[θ|Tn])→D N(0, 1), (A.11)
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which completes the proof of the first part of Theorem 2(ii).

Therefore, under Assumptions 1, 2, 3(ii) and 4, as (m,n)→ (∞,∞), we have

∆1/2
n (θ̂n)

 1

m

m∑
j=1

θjn − θ0

 = ∆1/2
n (θ̂n)

 1

m

m∑
j=1

θjn − E[θ|Tn] + E[θ|Tn]− θ0


= ∆1/2

n (θ̂n)

 1

m

m∑
j=1

θjn − E[θ|Tn]

+ ∆1/2
n (θ̂n) (E[θ|Tn]− θ0)

=
∆

1/2
n (θ̂n)σn√

m

 1√
mσn

m∑
j=1

(θjn − E[θ|Tn])

+ ∆1/2
n (θ̂n) (E[θ|Tn]− θ0)→D N(0, 1),

which completes the proof of equation (3.5) of Theorem 2(ii).

In addition, equations (A.11) and (A.8) also show that as (m,n)→ (∞,∞)

∆1/2
n (θ̂n)

(
θ̂mn − θ̂n

)
= ∆1/2

n (θ̂n)
(
θ̂mn − E[θ|Tn]

)
+ ∆1/2

n (θ̂n)
(
E[θ|Tn]− θ̂n

)
=

∆
1/2
n (θ̂n)σn√

m

 1√
mσn

m∑
j=1

(θjn − E[θ|Tn])

+ ∆1/2
n (θ̂n)

(
E[θ|Tn]− θ̂n

)
→P 0, (A.12)

which completes the proof of the first part of Theorem 2(i).

Using equation (A.9), we have as (m,n)→ (∞,∞),

∆n(θ̂n)
(
θ̂mn − θ̂n

)
= ∆n(θ̂n)

(
θ̂mn − E[θ|Tn]

)
+ ∆n(θ̂n)

(
E[θ|Tn]− θ̂n

)
=

∆n(θ̂n)σn√
m

 1√
mσn

m∑
j=1

(θjn − E[θ|Tn])

+ ∆n(θ̂n)
(
E[θ|Tn]− θ̂n

)
= (1 + oP (1))

π(1) (θ0)

π (θ0)
· 1√

2π

∫
|y|≤λ

y2e−y
2/2dy →P

π(1) (θ0)

π (θ0)
(A.13)

whenever π (θ0) 6= 0 and ∆n(θ̂n)σn√
m

→P 0. Equation (A.13) completes the proof of the second part of

Theorem 2(i).
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