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Abstract:

Ergodic theorem shows that ergodic averages of the posterior draws converge in probability
to the posterior mean under the stationarity assumption. The literature also shows that
the posterior distribution is asymptotically normal when the sample size of the original data
considered goes to infinity. To the best of our knowledge, there is little discussion on the large
sample behaviour of the posterior mean. In this paper, we aim to fill this gap. In particular, we
extend the posterior mean idea to the conditional mean case, which is conditioning on a given
vector of summary statistics of the original data. We establish a new asymptotic theory for the
conditional mean estimator for the case when both the sample size of the original data concerned
and the number of Markov chain Monte Carlo iterations go to infinity. Simulation studies show
that this conditional mean estimator has very good finite sample performance. In addition, we
employ the conditional mean estimator to estimate a GARCH(1,1) model for S&P 500 stock
returns and find that the conditional mean estimator performs better than quasi-maximum

likelihood estimation in terms of out—of—sample forecasting.
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1 Introduction

In Bayesian analysis, posterior means are commonly used as point estimates for unknown
parameters. However, little attention has been paid to the large sample properties of posterior
means. In this paper, we aim to address this issue. Particularly, we focus on the investigation
of large sample properties of a conditional mean estimator, which includes the posterior mean
as a special case.

Suppose T, is a vector of summary statistics of the original data (xy, z, - - - ,x,) with sample
size n. Let # be a d-dimensional vector of unknown parameters for a model which seeks to
explain T,,. Our interest is learning about . In Bayesian inference, inferences are normally
based on the conditional density of € given the data denoted as f,(0|7;,). The conditional mean

is then used as a point estimate of 8, which is expressed as
BIOIT,) = [ 65,(61T,)3. (1.1)

However, most of the time, (1.1) cannot be worked out analytically, especially in high
dimensions. Therefore we evaluate (1.1) by doing simulation to obtain a sequence of draws
{0;n}, 7=1,2,---,m, from f,(0|T,), where m denotes the number of iterations. For simplicity,
we assume here that conditioning on 7},, we can obtain that {6,,} is a sequence of stationary
Markov chains. We then denote the simple average % Z;nzl 0, as /H\mn before we use @\mn to
approximate E[f|T,]. It can be checked that this approximation is valid because by the law
of large numbers, as m — 0o, we have gmn — E[0|T},] —p 0 for any fixed n. Now one natural
question is:  What is the asymptotic behaviour of Oy, and E[0|T,] when n — oo ?

Admittedly, Bayesian inference is based on a given finite sample. However, with more and
more data becoming available, it would be meaningful to investigate whether the performance
of the conditional mean estimate gmn differs very much between small and large samples. For
example, suppose we want to capture the movement of a stock market return by a GARCH
(1,1) model given by

Yy =0y, €~ N(0,1), t=1,2,--- n,
o7 =01 + Osy; | + Os07_,.
Let 6 = (61,0,,05)". Will the behaviour of the conditional mean estimates of § change if the
sample size varies from 500 to 10,000 7 In other words, what is the difference between E[6]T50]
and E[0]T0000] 7
To the best of our knowledge, there is little discussion available to answer this question. Until

recently, most efforts aimed at investigating the asymptotic behaviour of posterior distributions

rather than investigating posterior means. For example, Walker (1969) showed that under
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suitable regularity conditions, as n — oo, the posterior distribution converges to a normal
distribution. Based on Walker (1969), Chen (1985) further introduced three sets of conditions
for an asymptotic posterior normality. Phillips (1996); Phillips and Ploberger (1996) developed
an asymptotic theory for Bayesian inference for stationary and nonstationary time series
and provided the limiting form of the Bayesian data density for a general case of likelihoods
and prior distributions. Kim (1998) also established an asymptotic posterior normality for a
nonstationary time series setting. Chernozhukov and Hong (2003) developed a class of quasi—
Bayesian estimators (QBEs), which are defined using a general econometric criterion function in
place of the parametric likelihood function. They established /n—consistency and asymptotic
normality for QBEs. The QBEs are computed using Markov chain Monte Carlo methods.
Beaumont, Zhang and Balding (2002) proposed an approximate Bayesian computation (ABC)
method to solve complex problems in population genetics, in which the principle of the ABC
is that we make the best use of a vector of summary statistics rather than the whole sample
(x1,29, -+ ,x,). Our work is related to the ABC idea. More recently, Gao and Hong (2014)
established a link between the ABC method and the implementation of the so—called generalized
method of moments (GMM).

The main contributions of this paper are summarized as follows.

(i) We improve existing results for the posterior distribution with a fast rate of convergence,

and also establish an asymptotic theory for the conditional mean estimator.

(ii) We conduct several simulation studies to evaluate the finite sample performance of the
conditional mean estimator, and we also employ the conditional mean estimator to estimate

a GARCH(1,1) model for S&P 500 stock returns.

The rest of this paper is organized as follows. Section 2 proposes the conditional mean
estimator. In Section 3, we develop asymptotic properties for the conditional mean estimator.
Section 4 presents Monte Carlo simulation studies to examine the finite sample performance of
the conditional mean estimator. In Section 5, a GARCH(1,1) model for S&P 500 stock returns
is presented to illustrate the advantages of the conditional mean estimator. Section 6 concludes

the paper. The proofs of the main theorems are given in an appendix.

2 Conditional mean estimation

Consider a random variable X with a density function f(x;6) characterized by 6, a d-dimensional
vector of unknown parameters. Let 6y be the true value of 6. We aim to estimate 6y by the
conditional mean E[f|T},], where T,, is a vector of summary statistics of the original data

(1,29, ,x,) generated from f(z;0).



We can construct the likelihood function given by
La(0) = L(0|T,) = [ [ f(2::6). (2.1)
i=1

Define [,,(0) = log L,,(0) as the log-likelihood function. Let m(#) denote a prior density of 6.
The conditional (posterior) density of 6 given T,, is
el O 7 (9)
20|T,) = —F——. 2.2

The conditional (posterior) mean of € given 7,, can be expressed as

E[9|T,] = / 0£.(0|T,,)db. (2.3)

This paper considers using the conditional distribution of 6 given T,, rather than X, =
(1,29, -+ ,x,), mainly because using T,, is enough for the case where it is a vector of sufficient
statistics. Meanwhile, it is both theoretically and conventionally more attractive in using 7T,, as
a fixed—dimensional vector than using X,, as an n—dimensional vector of the full sample. Note
that é\n can be chosen as 7,, in such cases where @1 as the maximum likelihood estimator of 6,
the true value of 0, is already a vector of sufficient summary statistics.

Due to the intractability of the likelihood function in some cases, equation (2.3) may not have
any closed form. We thus evaluate (2.3) by simulating a sequence of draws from f,,(0|7},). If the
conditional density f,(6|7},) is available for sampling, we can obtain a sequence of independent
draws. If direct sampling is infeasible, we can use either an importance sampling or a cumulative
distribution function transformation method. By such a method, we can obtain independent
draws. If such methods are not applicable, we can instead use a Markov chain Monte Carlo
(MCMC) algorithm, such as Metropolis—-Hasting algorithm, one of the most popular MCMC
methods.

Then we approximate E[0|T,] by
~ 1 &
an - 0 iy
2

where {6;,, 7 = 1,2,--- ,m} denotes the j-th draw conditioning on 7, and m denotes the
number of Markov chain Monte Carlo iterations. We refer gmn as the conditional mean estimator

(CME hereafter). In the next section, we will establish some new asymptotic properties for both
fu(0IT,,) and 6,,,,.

3 Asymptotic properties

Before we establish some asymptotic properties for f,,(6|7,,) and é\mn, we introduce the following

notation. Let gn denote the maximum likelihood estimator of 8, and 6y be the true value of ¢
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involved in the model under consideration. Under Assumption 1(i) below, both the first and
second derivatives, 17(11)(_) and Z(Q)( -), of 1,(+), do exist. Let An(g ) = —1 (0 ). For any given and
fixed ¢ > 0, denote C, = {e AY2@,)10, — 0| < c} and D, = {9 AY2@,)0, — 0| > c}

In this section, we introduce the necessary conditions to establish our asymptotic results.

Note that Assumptions 1-4 below may not be the weakest possible.
Assumption 1. (i) Suppose that f(-;0) is twice differentiable with respect to 6, and the
second-order derivative, f(?(-;#), is continuous.
(ii) The density 7(€) is twice differentiable and its second derivative is continuous.
Assumption 2. (i) Suppose that conditioning on 7}, {6;,} is a sequence of Harris and geomet-

rically ergodic Markov chains with stationary distribution such that E [0y, |T,] = E[0|T,,].

Let max,>1 E [\61n|2+60 ]Tn] < oo for some €5 > 0.

—~ /2,5
(ii) Let A,(0,) —p 0 and L\/%")U" —p 0 as n — oo and m — oo, where 0 < 02 =

Var[61n|Tn]+2 220:1 ’Yn(len) < 00, where Vn(k|Tn) = E[81n01+k,n|Tn]_E[eln‘Tn] E[61+k,n|Tn]

(iii) For each small ¢ > 0, P (Rn(a, do) < eo> — 1 as n — oo and dp — 0, where

2710 (2a(0) — 2.6 ||

Assumption 3. Let A = )\, be an increasing function of n such that A\,, — co and A\, A_l/Z(Hn) —p

R, (0;60) = SUDge 9. (19—8,|/<60}

0asn— oo.

(1) Let fﬁl(é\nu—‘n) = OP(l)

‘s _ -1/2 /7 _
(11) Let f{G:A,ll/Z(é\n)||§n—€||>)\} fn(9|Tn)d9 = OP(An (Gn)) and I{O:Aﬁ/2(§n)||§n—9\\>>\} 9 fn<0|Tn)d6 =
op(An2(8,)).

Assumption 4. Asn — oo, A1/2(0 ) <0 — 00> p N(0, 1;), where I, is the d x d dimensional

identity matrix.

Assumptions 1 and 3 are similar to those used by Phillips (1996); Phillips and Ploberger
(1996); and Kim (1998). Assumption 1(i) is standard to ensure that [, () is twice differentiable
with respect to 6. It ensures that we can do Taylor expansion for [,,(6). Assumption 1(ii)
is used to make sure that we can do Taylor expansion for 7(¢). Assumption 3 is satisfied
in many cases. With A as an increasing function of n, Assumption 3(ii) is satisfied as the
following example shows. When 6, = T, = Sy xi~ N (0,07) and 6 ~ N(0,1) with o} =

we have L(0|T,) = <\/L27)”6Xp (_W) 9|T ~ N( o2 )7 and A,(6,) = n,
where U, = £ 37"

1+o‘2 ) 1+02
In this case, f(@ T,) = /%= exp ( (52 1)>. Thus, Assumption 3(i) is
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also satisfied trivially as n — oco. Note that Assumption 3 remains true when only requiring
T"(;G) —p N(0,1) and 0, — 0 as n — 0.

Assumption 2(i)(ii) basically requires that m going to infinity is faster than n going to
infinity, and this simply reduces to requiring m — co when A, (6’ ) is proportional to n and o2

is proportional to n~!

in many cases. It is pointed out that the geometric ergodicity assumption
can be weakened to a polynomial ergodicity condition (see, for example, Corollaries 1 and 2
of Jones (2004)) without affecting the main results in Theorem 2 below. Assumption 2(iii) is
in a similar spirit to Condition (C2) of Chen (1985) and Condition (C1)(b) of Kim (1998) by
requiring a kind of “smoothness” of A (9 ). Assumption 4 imposes a general condition to allow
that T}, is a vector of summary statistics of either independent, or stationary time series, or
nonstationary time series. In either the independent or dependent stationary time series case,
an asymptotic normality can be the limiting distribution. As shown in Phillips (1996), Phillips
and Ploberger (1996) and Kim (1998), Assumption 4 can be verified in the independent data as
well as dependent stationary and nonstationary time series cases. In general, the asymptotic

theory of the MLE is also available at Amemiya (1985), Fuller (1996) and Ling and Li (1998).
We now establish the main theorems of this paper.

Theorem 1. Under Assumptions 1, 2(iii), 3(i) and 4, as n — oo and m — 0o, we have

1 [ 1. 72 ™(0o)
T,)df — — —au — 2e—3u? 1
9></Cnfn(0\ n)do 27?/_C6 du) 27?90 27?/ u‘e du —p0 (3.1

whenever w(0y) # 0, where C,, = {9 Al/Q( )||9 —0) < c} for any given and fized ¢ > 0, and

) (.) denotes the second-order derivative of m(-).

Theorem 1 strengthens and complements existing results (see, for example, Walker (1969),
Chen (1985) and Kim (1998)) with a fast rate of convergence. In many conventional cases,
A, (§n> is proportional to n. In such cases, the rate of convergence of an 1a(0]T,)do to
\/%? =, e~2%"du can be as fast as n~L.

Meanwhile, it should be pointed out that the constant ¢ = ¢, involved in Theorem 1 can
also be varying and increasing with n, as long as AEI/Q(@Z) ¢, —p 0asn — oo to ensure that a
Taylor expansion is valid for 6 € C,,. As a matter of fact, the larger the value of ¢, the faster of

convergence of A, <§n> (an 1n(0]T,)d6o — W =, e~ 3v du) — 7;(:(596;0)) : \/%7 -, wle 3 dy —p 0.

Thus, in the finite-sample evaluation, it is probably more interesting to look at the case where

c is not large, as ¢ = 1.0 in Section 4 below.

Theorem 2. (i) Under Assumptions 1-4, as n — oo and m — oo, we have

~

AY2(3,) (amn - 9n> — op(1). (3.2)



Let Assumptions 1, 2, 3(i) and 4 hold. If we can strengthen Assumption 3(ii) to Assumption

3(ii):

) FulBIT,)d0 = 0p(576) 3:3)
{9 AY2(0,)]10, 79||>)\}
and
) 0 1(OIT,)d0 = 0p(8;' D). 3:4)
{0:A1/2 0,:)10n—0]>X
then equation (3.2) can be strengthened to
~ —~ 7T(U(QO)

when w(0y) # 0 andAf —p 0 asm — oo and n — oc.

(ii) Under Assumptions 1-4, as n — oo and m — 0o, we have

\T (O — EIBIT.]) =0 N(0, L), (3.6)
AL (62) (Hmn - 90> p N(0, 1), (3.7)

where 0, = # Z;nzl .

Equation (3.2) of Theorem 2(i) also shows that the rate of convergence of O — E[0|T},] to
zero can be as fast as F in the case where o2 is proportional to n~!. Equation (3.5) further
shows that the rate of approximation between Gmn and Qn can be as fast as n=!. Theorem 2(ii)
shows that an asymptotic normality is achievable for the conditional mean estimator 5,% with a
rate of convergence of A/ (9 ). Equation (3.7) shows that O, is actually a consistent estimator
of Oy with certain rate of convergence even though n — co. As a consequence, we can now
construct new test statistics for some testing problems concerning )y and/or its functionals in
the case where n — oco. We plan to leave such issues for further research.

In summary, it is our knowledge that both Theorems 1 and 2 establish some considerably
new findings about the asymptotic consistency of the posterior density function with a rate of
convergence in Theorem 1 and an asymptotic normality for the conditional mean estimator, §mn,
in Theorem 2. Before we give the proofs of Theorems 1 and 2 in the Appendix, we will evaluate
the finite sample properties of the estimation method and its resulting theory in Sections 4 and
5 below.

4 Simulation

In this simulation study, we have two objectives. First, we examine the finite sample per-

formance of the proposed conditional mean estimator through six simulated examples. Sec-
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ond, we investigate the convergence of [, f,(0|T,)df to \/% I e~2%"du graphically, where
C, = {e AY2@)0, — 6| < c}

The six simulated examples that we considered include a location model, a linear model, a
random coefficient model, an AR(1) process, a GARCH model and a normal mixture density. For
each simulated example, we consider sample sizes n = 200,600 and 1200. For each sample size,
we generate 1000 samples. Let 0y = (619, 020, -+ ,0,0) " denote the true value of the unknown
parameter vector 6 = (61,0, ,0,)" and émn = (é\l,mn; ‘/9\27mn, . ,gp,mn)T denote the estimated
parameter vector, where p denotes the dimension of the parameter vector.

Before we discuss how to evaluate the finite sample performance of «/9\71 and @\mn, we show

how 6 is related to the moments of the original data as follows:

e In Example 1 below, 6 is the unconditional mean of E[x;].

In Example 2 below, 6y = (ag, 8o) ", where 8, = %@yf) and ag = E[y;] — %&f’;) E[z4].

Similar definitions can be given for (3, involved in Example 3.

In Example 4 below, 8y = po = (E [12])) " E [y ).

In Example 5 below, 8y = (610, 020, 930)T satisfies 019 = (1 — 0y — 030) E [y3].

In Example 6 below, 6y = %910 + %920 is the population mean of a mixture normal

distribution.

To examine the finite sample performance of the estimation method, we compute the
absolute biases (abs.bias), standard deviations (std) and the mean squared errors (mse) of /H\kmn,

k=1,2,---,p, as follows:

1000 | looo _
abs.bias;, = m Z ‘Hk mn(T) — Orol, stdy = 1000 ;(ﬁk,mn(r) — 0;)?, (4.1)

msey, = 1000 Zmoo(ﬁk mn( ) — Qko) in which é\k .mn(7) is the r—th replication of the k—th compo-

nent, 0y, of Hmn, and 9 = 1000 21000 Ok (7).
Example 1. Consider a location model given by
x;,=0+e¢, fori=12---n, (4.2)

where 6 follows a normal distribution N (f, 1) and e; is assumed to be independent and identically

distributed (i.i.d.) with the standard normal distribution. Here 6 and e; are independent. For



each replication, we generate 6 from N (6, 1) and generate e; from N(0, 1) and then obtain z;
by ;=60 +¢;, fori=1,2,--- n.
In this example, we choose 6y = 0.8. So the density of 6, 7(0), is given by

(0) = \/12_7Texp (-M) | (4.3)

- _ T _ 1N\ _ 1y 2
Given a sample X,, = (v1, 22, -+ ,2,) ', define T), = = > 2; and U, = = >, ;. Then

the likelihood function can be written as

LOO|T,) = (\/%)n exp (—"U" - 2"2 Tn ”92) . (4.4)

By definition, the conditional density of 6 given T, is

m(0)L(0]Tn)

N FORTAIT -
Substitute (4.3) and (4.4) into (4.5). Then we can get
_ nTx+40.8\2
fa (BT, = /" exp <_("+1)(92 i) ) (4.6)

The conditional mean of 6 is then given by

n1,, + 0.8

BIOIT,) = [ 67, (61T, do = "2

We also considered the maximum likelihood estimator (MLE) of 6. For the r—th replication,

r=1,2,---,1000, the maximum likelihood estimate of # can be computed by
NGRS @)
n\T") = — 7,7 .
i3 .

where ;,, for ¢ = 1,2,--- ,n, is the random sample from the r—th replication.



Table 1: Absolute bias, standard deviation and mean squared error of CME and MLE for 6 in

the location model based on 1000 replications.

n E[0|T,] Oy,
200 0.0781 0.0785
abs.bias 600 0.0469 0.0470
1200 0.0324 0.0325
200 0.0984 0.0989
std 600 0.0581 0.0582
1200 0.0407 0.0408
200 0.0097 0.0098
mse 600 0.0034 0.0034
1200 0.0017 0.0017

We compute the absolute bias, standard deviation and mean squared errors for both CME
and MLE using (4.1). The results are presented in Table 1. From Table 1, we find that with
the increase of sample size, the absolute bias, standard deviation and mean squared errors of
the proposed conditional mean estimator decrease. This indicates that the proposed conditional
mean estimator has very good finite sample performance. In addition, by comparing the results
of CME and MLE, we can find that CME and MLE have similar performance in terms of the
absolute bias, standard deviation and mean squared errors.

From (4.6), it is easy to see that the conditional distribution of € given T, is a normal

T,+0.8 . 1
snies and variance =

distribution with mean

Graphically, we compare [, fn(6|T,)d6 with \/%7 I, e~2"du graphically for the case of
¢ = 1.0, where C,, = {9 : A}/2(9n)\9n -0 < c}. Based on the first replication, we produce the
plots for the shaded area of S = 0.6827 and those for [, f.(6|T,)d¢ in Figure 1. Note that this

is only based on one replication.
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Figure 1: Plots of an fn(0|T,)d0 (the upper panel with sample sizes n=200, 600, 1200) and
\/% ffc e~3%du . Tn each plot, S denotes the shaded area.
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Example 2. Consider a linear regression model of the form
yi =+ pr; +e, fori=1,2,--- n, (4.8)

where o and ( are random parameters, and the error term e; is assumed to be i.i.d. with the
standard normal distribution.

In this study, z; is generated from a stationary AR(1) process z; = 0.5z;_1 + u; with u;
being generated from the standard normal distribution. We generate « from N(1.0,1.0) and 3
from N(2.5,1.0). So the densities of @ and [ are given by

2 2
() = \/12_77 exp (—@) and 7(B) = \/12_7T exp (—w) : (4.9)
Given a sample X,, = (21,29, -+ ,2,)" and Y, = (Y1, ¥2, -+ »Yn) -

Define T, = (Ty1, T2, Ty1, T2, Tiy) T, where Tpy = S0 @i, Tog = S0 22, Ty = > i Ui,

Ty =iy yi and Ty = 370, 23y

The likelihood function can be written as
1 \" T, 2T o — 28T, + 2aBT,; — 2aT, 2
L(a, B|T,) = (—) exp <— v2 57Ty = 20Ty + 200 = 20Ty, + na ) . (4.10)
\ 2T

2
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By definition, the conditional density of # = («, 3)" given T), is

( ) (8) L(«, BIT,)
Jn (O] = I 0) 7 (9 o AT,
= exp (—(0 — o) "0 — o)) (4.11)

where 1/|3| = (n + 1)(1 4+ Tye) — T2 and

n+1 Tml L 1+Ty1 —ppTe
1o e _ n+1 ' (412)
Tml 1 —+ TmQ IU/,B (sz+2'5)(n+1)_Tzl(Ty1+1)

(14 T2) (n+1)—-T2

The maximum likelihood estimators of fy and «q are given by
Bu=(X[X,)'X]Y, and @, =7~ b7, (4.13)

respectively, where g =1 3" g, and T =1 3" | ;.

Then we compute the absolute bias, standard deviation and mean squared errors for CME
and MLE using (4.1). The results are presented in Table 2. From Table 2, we find that with
the increase of sample size, the absolute bias, standard deviation and mean squared errors of
the proposed estimator decrease. This supports the theory that the proposed conditional mean
estimator has some good finite sample performance. In addition, we find that the CME and
MLE have similar performance.

From (4.11), we can see that the conditional distribution of 5 given T, is a normal distribution

1
14+T2

distribution with mean p, with variance n_+1
Let ¢ = 1.0. Based on the first replication, we produce the plots to visually see the change

of [ fula|T,)da and anza fn(B|T;,)dB with the increase of sample size in Figure 2, where
Cha = {a : A}/Q(&\nﬂ&n —al < c} and Cyg = {6 : AL/2(BH)|BR - < c}.

with mean pp and variance and the conditional distribution of « given T, is a normal
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Figure 2: Plots of me fn(a|T,)da (the upper panel with sample sizes n=200, 600, 1200) ,
anB fn(B|T,)dB (the middle panel with sample sizes n=200, 600, 1200) and \/% Ie. e 3% dy
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Table 2: Absolute bias, standard deviation and mean squared error of CME and MLE for
parameters in a linear regression model based on 1000 replications.

CME MLE

n E[o|T,]  E[B|T,] an By
200 0.1060 0.1121 0.1066 0.1125
abs.bias 600 0.0586 0.0628 0.0587 0.0629
1200 0.0404 0.0486 0.0404 0.0487
200 0.1326 0.1421 0.1333 0.1427
std 600 0.0745 0.0774 0.0747 0.0775
1200 0.0505 0.0606 0.0506 0.0607
200 0.0176 0.0202 0.0178 0.0203
mse 600 0.0056 0.0060 0.0056 0.0060
1200 0.0026 0.0037 0.0026 0.0037

Example 3. Consider a random coefficient model with one explanatory variable given by
y; = Bix; +e;, fori=1,2--- n, (4.14)

where 8; = [ + 0.5u; with u; being from the standard normal distribution, and e; follows
the standard normal distribution, in which {u;} , and {e;}, are assumed to be mutually
independent.
Model (4.14) can be written as
yi = PBx; + v;, (4.15)

where v; = 0.5z;u; + ¢;. It is easy to see that E[v;] = 0 and E[v?] = 0.25z% + 1. In this example,
we generate § from a normal distribution N(1.5,1). So the density of 3, m(3), is given by

1 (B 15)
w(B) = \/ﬁexp ( — ) . (4.16)

Let Y, = (y1,92,- ,9n)' and X,, = (z1,72,-+-,7,) . Let T}, be the generalised least

squares (GLS) estimator of 3, which is given by
T, =(X,D'X,)'X] DY, (4.17)

where D = diag{ E[v}], E[v3],--- , E[v?]}.

We approximate the conditional density of T, given § by its limiting distribution f(7,|5),

which is a normal distribution with mean § and variance o2 = (3.7, 27 (0.2527 + 1)~ )L,
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By definition, the conditional density of § given T, is

f(L]8)m(B)
IO = T 57, 8)m(5)d5
It is easy to show that
: (1+02)(8 - B5Z)
£ (BITy) = 12;? exp [ —— . (4.18)

The conditional mean of 3 is then given by

T, + 1.502
BISIT = [ 57, (61%) 45 = 400

The maximum likelihood estimator of 3, can be obtained by maximizing the following

likelihood function

_ 1 1 (i —wp)?
LYo, Xu) = TN ( 2 2 0.2527 + 1) ' (419)

=1

The resulting maximum likelihood estimate is denoted as Bn The results of the absolute bias,
standard deviation and mean squared errors of CME and MLE are presented in Table 3. From
Table 3, we find that with the increase of sample size, the absolute bias, standard deviation
and mean squared errors of the proposed estimator decrease. This indicates that the proposed
conditional mean estimator has very good finite sample performance. In addition, by comparing
the results of CME and MLE, we can find that CME and MLE have similar performance in

terms of the absolute bias, standard deviation and mean squared errors.

Table 3: Absolute bias, standard deviation and mean squared error of CME and MLE for § in
the random coefficient regression model based on 1000 replications.

CME MLE GLS

n E[B|T,] B\n T,
200 0.098238 0.098890 0.098889
abs.bias 600 0.057195 0.057339 0.057321
1200 0.040029 0.040074 0.040073
200 0.124469 0.125299 0.125294
std 600 0.071303 0.071474 0.071460
1200 0.049653 0.049720 0.049708
200 0.015463 0.015670 0.015669
mse 600 0.005104 0.005128 0.005126
1200 0.002471 0.002478 0.002477
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From (4.18), it is clear that the conditional distribution of 8 given 7, is a normal distribution

Tn+1. 50
1+02 +a*

with mean

Figure 3: Plots of an fn(B|Ty)dB (the upper panel with sample sizes n=200, 600, 1200) and
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Unlike Examples 1-3, we cannot obtain any closed forms for f,(0|T,,) and the conditional
cumulative distribution function F,(0|7,) in Examples 4 and 5 below. In those examples,

F,(0|T,,) is approximated by

E,(0|T;,) Z@( _> (4.20)

where ®(+) denotes the distribution function of the standard normal distribution. The bandwidth

h is obtained by using the normal reference rule h = 1.06 oy m~1/°

, where oy denotes the standard
deviation of simulated draws {@\jn,j =1,2,---,m}.

The conditional density function f,(0|T,) is approximated by a kernel density estimator
£.(0|T,) with the form of

. 1 < (06, —6
fn(9|Tn) = —0 ¢ ( 2 > y
mh ; h

16



where h is bandwidth and ¢(+) is the density function of the standard normal distribution. The
choice of h is same as that in (4.20).

Based on the first replication, Figure 3 shows the finite sample behaviour of |, cn ﬁ(an)dﬁ
for the case of ¢ = 1, where C,, = {5 : A}ﬂ(gn)ﬁn -8 < c}.

Example 4. Consider an autoregressive model of the form

Yt = PYt—1 T €, (4.21)

where p is random with expectation py = 1, yo = Op(1), and {e;} is a sequence of independent
and identically distributed random errors with Efe;] = 0 and Ele?] = 1.

We generate data from (4.21) with p being generated from an uniform distribution U(0.9,1.1),
which implies that g, is nearly nonstationary when 0.9 < p < 1.0 and nonstationary when p > 1.
We generate e; from the standard normal distribution. We set y, = 1.

Given a sample Y, = (y1, 2, - ,yn) . Define T,, = (T},1, T2, T3) ", where Ty = S i,
Too =220y yeye—1 and Ty = 3000, 4.

The likelihood function can be written as

1 \" T — 20T, T,
L(p|T,) = (E) exp (— S 22 s 3) :

By definition, the conditional density of p given T,, is

7 (p) L(p|T3)
7 (p) L(p|T,)dp

The conditional mean of p is then given by E[p|T,] = [ pfn (p|T5) dp.

fu (pITh) = T

For the r—th replication, r = 1,2,--- ,1000, we use the random—walk Metropolis algorithm
to sample p from f, (p|T,). We record p at each iteration after the burn—in period to obtain
the sequence {p;,(r)}, for j =1,2,---,10,000. Then the conditional mean estimate will be the

ergodic mean of each recorded chain given by
N 1
pmn<r) = E Z Pjn(’/’),
j=1

where m = 10, 000.

Then we compute the absolute bias, standard deviation and mean squared errors using (4.1).
We also compare the finite sample performance of our estimate with the MLE of the form
Pn = (Z?:l yt271)—1 Z?:l Yt-1Yt-

The results are presented in Table 4. From Table 4, we find that with the increase of sample
size, the absolute bias, standard deviation and mean squared errors of the proposed estimator

decrease. This indicates that the proposed conditional mean estimator has very good finite
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sample performance. In addition, the performance of estimates of p by MLE and CME are very

close.

Table 4: Absolute bias, standard deviation and mean squared error of CME and MLE for the

parameter p in AR(1) model based on 1000 replications.

200 0.01264 0.01275

abs.bias 600 0.00532 0.00544
1200 0.00377 0.00372

200 0.01631 0.01661

std 600 0.00583 0.00605
1200 0.00351 0.00347

200 0.00036 0.00038

mse 600 0.00005 0.00006
1200 0.00002 0.00002

Figure 4: Plots of fcnﬁl(p]Tn)dp (the upper panel with sample

sizes n=200, 600, 1200) and
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Based on the first replication, we produce the plots to visually see the change of |, c. ﬁ(p|Tn)dp
for the case of ¢ = 1, where C,, = {p : A711/2<,/0\n>|ﬁn —pl < C}. The finite sample closeness can

be seen from Figure 4.

Example 5. A GARCH (1,1) model with Gaussian innovations can be written as

Yt = €10y, etNN(O,l)’ t:1’27...,n7
o7 =6 + Oay; | + 0307,

where 07 > 0, 05, 03 > 0, 05 + 03 < 1. Note that the restrictions on the GARCH parameters 6,
0, and 03 guarantee positivity of the conditional variance o2 and make sure that the series y; is
covariance stationary. In this model, we assume 6 = (6,6, 05)" is random.

We generate data from the GARCH model with 6; being generated from an uniform
distribution U(0.01,1), #3 from U(0, 1) and 6, from U(0,1 — 65), respectively.

For this GARCH model, we choose the summary statistics 7}, to be the maximum likelihood
estimates of 6. As the exact closed form of the conditional density of T;, given # is unknown, we
use its limiting distribution f(7},|@), which is a normal distribution with mean 6 and covariance
matrix Xy, in which ¥y can be computed using the method proposed by Ma (2008).

By definition, the conditional density of 6 given T, is

0 (‘91) (Q2) 7 (63) f(15,19)
fn (0]T5) = :
[ ( )7 (03) f(T,,]0)d0,d0>d05
The conditional mean of 6 is then given by E[ 9]T = [0f,(0|T,)d6.
For the r—th replication, r = 1,2,--- 1000, we use the random-walk Metropolis algorithm

to sample (01, 60,05)" from f, (0|T,,). We record 61, 0, and 65 at each iteration after the burn—in
period to obtain sequences {61 j,(r)}, {62n(r)} and {05 ;,(r)}, for j = 1,2,--- ,;m. In this
study, m = 10,000. Then the conditional mean estimates will be the ergodic mean of each

recorded chain given by

R 1 m R 1 m
91,mn<7a) = E Z el,jn(r)a 92,mn (7’) = E Z 92,jn( and 03 mn Z 93 ]n
j=1 j=1

Then we compute the absolute bias, standard deviation and mean squared errors using (4.1).
We also compute the overall absolute bias and standard deviation for fy and 03 together as
follows. Define 923 = (62, 93)T and 523 = (é\g,mn, é\gjmn)—r.

1000 1000

abs.biasg,, = 1000 Z ‘ 2,mn ( 20‘ + o 1000 Z‘ 3.mn(T) — O30/,

stdg,, = /ZU%, where o7, = cov(6;,0;), for i,j =23,
]
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We also compare the performance of CME with that of maximum likelihood estimator of 6.
The results of parameter estimates are presented in Table 5. From Table 5, we find that with
the increase of sample size, the absolute bias, standard deviation and mean squared errors of
the proposed estimator decrease. This indicates that the proposed conditional mean estimator
has some good finite sample performance. In addition, we find that CME has slightly better

performance than MLE in terms of the absolute bias, standard deviation and mean squared

errors.

Table 5: Absolute bias, standard deviation and mean squared error of CME and MLE for

1

~ 1000

1000

S (Bosun(r) — 00

=1

* 1000

1000

r=1

parameters in GARCH (1,1) model based on 1000 replications.

S (Basea(r) — 00)

CME MLE
é\l,mn 52,mn §S,mn 523,mn é\l,n 53,11 523,11
0.1698 0.0893 0.1501 0.2394 | 0.2456 0.2030 0.3202
abs.bias 0.1064 0.0614 0.0875 0.1489 | 0.1476 0.1180 0.1896
0.0915 0.0414 0.0710 0.1123 | 0.1000 0.0899 0.1483
0.1906 0.0899 0.1739 0.1240 | 0.3045 0.2262 0.1861
std 0.1239 0.0783 0.1191 0.0890 | 0.1891 0.1312 0.1108
0.1116 0.0497 0.0870 0.0735 | 0.1263 0.0910 0.0729
0.0451 0.0109 0.0330 0.0439 | 0.1035 0.0640 0.0866
mse 0.0176 0.0061 0.0141 0.0202 | 0.0399 0.0248 0.0330
0.0133 0.0025 0.0077 0.0102 | 0.0180 0.0131 0.0184

Based on the first replication, we produce the plots for [, ) ﬁ(01|Tn)d91, Je , fAn(92|Tn)d02
and | Cos ﬁl(engn)dﬁg with sample size 1200 in Figure 5, where C,;

7 e

We then consider the final simulated example, in which we consider the case where it is

®du for the case of ¢ = 1.

difficult to obtain an easily computable MLE, while it is easy to compute gmn.

{:ei : 711/2‘823n - ei’ fg (3}7
for i = 1,2,3. We can see that when the sample size is large, [, ﬁ(0i|Tn)d9i is quite close to



Figure 5: Plots of me- fn(ﬁi\Tn)dHi (from left to right in the upper panel, i=1,2,3, respectively) and
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Example 6. Consider a mixture of two normal distributions with the density function given by
f(z|0) = w1 (x| 1, 03) + wad (|2, 03). Let wy = wy = 0.5 and 0} = 02 = 1 for the two normal
components, which means that we generate = from N(pg, 1) with probability 0.5 and generate x
from N (u9, 1) with probability 0.5. So in one sample, we have n; observations {xy;};; from
N(p1,1) and ny observations {@s;}20 "2, from N(ug,1). Let n = ny + no. We generate j; from

N(—=3,1) and py from N(3,1). So the densities of y; and ps are given by

() = &exp(—@) and  7(ji) = V;_Wexp(—sz_gy). (4.22)

Denote 6 = (/,Ll,/,LQ)T. Define Tn = (Tnl,Tng)T, where Tnl = n—llzzb:ll T4 and Tng =
n—12 > i 41 T2i- Define U, = (Up, Ups)', where U,y = n% Sortat; and Uy = n% > a1 T
Then the likelihood function can be written as

L(0|T,) = (\/127)" exp (nlUmanQUm) exp <n1#§ — 22M1H1Tn1) exp <n2u% - 22u2n2Tn2> . (4.23)
™
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By definition, the conditional density of 6 given T, is

m(0)L(0|T5)
7(0)L(0|T,)do

In (0|Tn) = f (4.24)

Substituting (4.22) and (4.23) into (4.24), then we can obtain the conditional distribution of
(1, p2) given T,, as follows.

TLlTnl—?) 1
n1—|—1 ’nl—l—l

T, ~ N ,
lull ( TL2+1 TL2—|—1

Tw+3 1
) and u2|Tn~N(n2 2t )

The conditional mean of p; and s is then given by

niTm — 3 noThe + 3
E{u|T,| = ——— d Elusl|T,| = ——F———.
la] = S and Bl = "
The maximum likelihood estimators of p; and uo are given by i1, = Ty and fig, = Tre. We

then compute the absolute bias, standard deviation and mean squared errors for CME and MLE
using (4.1). The results are presented in Table 6. From Table 6, we find that with the increase
of sample size, the absolute bias, standard deviation and mean squared errors of the proposed
estimator decrease. This indicates that the proposed conditional mean estimator has good finite

sample performance. We also find that the CME and MLE have similar performance.

Table 6: Absolute bias, standard deviation and mean squared error of CME and MLE for
parameters in a normal mixture density based on 1000 replications.

CME MLE

n Elm|T,]  Elps|T,] Hin Hon
200 0.1109 0.1043 0.1120 0.1053
abs.bias 600 0.0625 0.0672 0.0627 0.0674
1200 0.0442 0.0457 0.0443 0.0458
200 0.1386 0.1305 0.1400 0.1318
std 600 0.0786 0.0836 0.0789 0.0839
1200 0.0566 0.0567 0.0567 0.0568
200 0.0192 0.0171 0.0196 0.0174
mse 600 0.0062 0.0070 0.0062 0.0071
1200 0.0032 0.0032 0.0032 0.0032
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For ¢ = 1.0 and 7 = 1,2, recall C,,, = {,ui : A}/z(ﬁm)mm — ] < c}. Based on the
. . . c _ 1,
first replication, we produce the plots to compare fcw Jon(i| ) dp; with and \/LQTT Jiez *du
graphically in Figure 6.

Figure 6: Plots of [ } fu(u1|Ty)dpy (the upper panel with sample sizes n=200, 600, 1200) ,
npuy

fC’ﬂLLQ fn(u2|Ty)dpe (the middle panel with sample sizes n=200, 600, 1200) and \/% I . e 2% du.
n=200 n=600 n=1200
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5 Application

In this section, we use our conditional mean estimator to estimate a GARCH (1,1) model for
S&P 500 daily stock return. We downloaded the S&P 500 daily closing prices, p;, during the
period from 2 January 2002 to the 9 December 2009 from http://finance.yahoo.com. The date
t return is calculated as r; = log(p:/p:—1), and there are T'= 2000 observations of the return.
The time series plot of the return series is presented in Figure 7.

We fit a GARCH (1,1) model for the demeaned log-returns {y;} given as follows, where
Yy = T4 — %Zthl re, yr = e 0y and 02 = 01 + Ooy? | + 0302 |, in which 0; > 0, 6, 03 > 0,
0y + 03 < 1. Note that the restrictions on the GARCH parameters 6, #5 and 5 guarantee the
positivity of the conditional variance and that the log-return series is covariance stationary.

Let 0 = (01,05,05)". By using the quasi-maximum likelihood estimation method, we obtain
the estimates of 6, 0, = (0.0000,0.0651,0.9282) . Use the estimation procedure outlined in
Example 5 in the simulation studies, we obtain the conditional mean estimates of 6, gmn =
(0.0166,0.069,0.7733) ". As a by—product of the conditional mean estimation, we produce the

kernel density estimates of the conditional density of 6,60, and 63 in Figure 8.

Figure 7: Time series plot of S&P 500 daily returns.

0.04
I

S&P 500 return
0.00
|

-0.04

I I I I I
2002 2004 2006 2008 2009

Year

24



Figure 8: Kernel density estimates of the conditional density function of 6 given T,,. From left to

right, we have f(01|T,), (02|T,) and f(6s]T,):
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Figure 9: Kernel density estimates of return on 10 December 2009 with CME and QMLE.
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Based on the parameter estimates 5,% and (9], we estimate the density of the return series

on 10 December 2009 using kernel estimation method:

T - -~ ~ ~
f/\(ylé\mn) = ,\;A Z K y/UT'H(gm”)h_ yt/o-t(emn)
ThUT+1(0mn) t=1

~ o~ 1 d y/3T+1(§n) - Z/t/at(an)
Hn = g ?
f(y16) Thors1(6n) = " ( h

where K (-) is chosen to be the Gaussian kernel function and h is selected by normal reference
rule. The density estimates are displayed in Figure 9, from which we can find that f(y|§mn)
and f(y|§n) have different characteristics at the peak and tail areas.

As in practice, the true data generating process is unknown, we cannot tell which method
is better just based on these estimation results. In the following discussion, we evaluate our
conditional mean method and the quasi-maximum likelihood estimation method based on the
performance of out—of-sample density forecasting and squared return forecasting.

For density forecasting, we employ the scoring rule introduced by Amisano and Giacomini
(2007). Using this scoring rule, we are able to decide which method performs better. We
conducted a rolling—sample procedure to evaluate the performance of each estimation method.
Let T denote the number of the observations, and let y; denote return at day ¢, fort =1,2,--- | T.
The first sample contains the first n observations, y1, s, - ,¥yn, and is used to obtain the
parameter estimates, based on which, we can obtain the estimated variance at time n + 1, 7,,41.
As the error distribution is unknown, here we forecast the density of v, .1 by the kernel density

estimation method:

~ ~

ﬂyn+1|§) = % ZK (ynﬂ/anﬂ(i) - yt/at(9)> 7

nh0n+1(6) t=1

where K(-) is chosen to be the Gaussian kernel function and h is selected by normal reference
rule.

The second sample contains o, y3, « - - , Ynt1, Which are obtained by rolling the first sample
forward for one step. Using this sample, we repeat what was done based on the previous sample
and forecast the density of y,.o. This rolling procedure continues until the density of yr is
forecasted.

We calculated the average likelihood scores over the out—of—sample period:

T—n T—n
1 ~ ~ 1 ~ —~
Sn:—E (nre(r))7 Smn:—E (nre('r‘)>7
T_nrzlf y+|n T_nTzlf y+|mn

o) o)

2nY3n

>

1,mn> ¥2,mn> ¥3mn

where 55:“) = (9\(”

1,n

T T
> and éimr% = </9\(T) o) g ) are the parameter estimates
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based on the r—th rolling sample. In terms of the average likelhood score, the larger it is, the
better the corresponding estimation method performs.

The number of the observations is 1" = 2000, and the size of a rolling sample is n = 1000,
which implies that we have 1000 rolling samples in total. By 1000 rolling samples, we obtained
S, = 69.98 and S,,, = 71.33, which means that the forecast with the use of our conditional
mean estimator leads to a slightly higher score. To see this more clearly, we plot the likelihood
score (f(Ynsr|0)) in different out—of-sample period (r) with both methods in Figure 10. From
this plot, we can see that most of the time, the likelihood score with CME is higher than that
with MLE. This implies that the use of our conditional mean estimator outperforms that of the

maximum likelihood estimation method in terms of density forecasting.

Figure 10: Out—of-sample likelihood score with MLE and CME.
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Using the same rolling—sample procedure, we also evaluate the performance of squared return
forecasting. We compute the mean absolute error (MAE) and mean squared error (MSE) for

1-step ahead squared return using conditional mean estimator as follows:

N 1 T—n
MAE (On) = 7= 3

2 ~2 )
Yntr = Ontr <9mn)

~ 1 LI - 2
9 1) - 52— )]

t=1

Similarly, we define MAE and MSE with parameter estimated by quasi-maximum likelihood
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estimation method:

=
=
=
—
)
N
I
~
| =
N

We obtain that
MAE @m) — 1.8366 x 10~°, MSE <§mn) — 1.4409 x 10°8

and

MAE (§n> — 5.3789 x 10~°, MSE @) — 21873 x 10°%.

Given the smaller MAE and MSE results for the conditional mean estimator, we can conclude
that conditional mean has better performance in squared return forecasting. Therefore, we
can conclude that the conditional mean estimator performs better than the quasi-maximum
likelihood estimator in terms of the out—of-sample density forecasting and squared return

forecasting.

6 Conclusions

This paper has established some new asymptotic properties for Bayesian estimators. The
simulation studies have shown that our proposed conditional mean estimators have very good
finite sample performance. We have used the conditional mean estimation method to estimate
a GARCH(1,1) model for S&P 500 daily returns and we found that compared with quasi—
maximum likelihood estimation method, our conditional mean estimator has better out—of—

sample forecasting performance.
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Appendix

This appendix gives the full proofs of Theorems 1 and 2. For notational simplicity, we only

consider the case where the dimensionality of 6 is d = 1.
Proof of Theorem 1

Let pn(Ty) = [ €@ (0)dd. Let us first deal with p,(T},). Observe that

Pa(Ty) = / ) 1(0)dh = ebn(Fn) / 0 ~10@) () df

eln(é\n)/ eln(e)_ln(an)ﬂ-(e)dg_|_€ln(§n)/ eln(e)—ln(a\n)ﬂ-(g)dg

n

= p1n(Tn) + p2n(Th), (A1)

where C, = {0 : AY%(0,)]10 — 0, < c} and D, = {0 AY?(6,)]|0 — || > ¢} for any given and fixed
c> 0.

For 6 € C,,, we can have the following Taylor expansion:

10(6) ~ 1n(B) = 805 (60— ) + 51D ) (0~ B =~ M@0 - 5% (A2)

using the fact that l(l)(G ) = 0, where gj; is between 6 and é\n, 7(3)(-), for 1 = 1,2, denote the first
and second derivatives of [,,(-), and for each given n, both exist and A, (0) is continuous in 6 under
Assumption 1.

For p1,(T},), in view of (A.2), using Assumption 1, we have

pln(Tn):eln@)/ e O=12@) 1 ()4 = (1 + 0p(1)) zn(m/ e~ 3O=8)T A @:)0-D0) 1 ()

2

= (1+0p(1)) ) A 12(G,) / e T (én + A,;l/?(én)y) dy

ly|<c
= (1+o0p(1)) el"(an)An1/2(9n)7r<0n>/ % dy
lyl<c
1 @) A=3/2(2 1\ —(2) (7 2 ¥
Fo(1 4+ 0p(1)) @) A-32(F ) 1 (an) e dy, (A.3)
2 lyl<e

where we have used Assumption 2(iii).
Let E, = {0: AY*(8,)]10 — 0,|| < \} and F, = {6 : AY*(8,)]|6 — 0, > A} for the same A = A,

as being introduced in Assumption 3. Under Assumption 3(i), similar to (A.3), we have as n — oo

pu(Ty) = eln@n) / O =120) 1 (9) g + eln Pr) / O =1200) 1 () g

n n
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' ﬂ(é\n)
(G P N L.
= (1+op(1)) ) ATV2(6,) 7 (9"> / e Tdy
= (14 0p(1)) @) A=12(G ) 7 (én) V2, (A.4)
where we have used [}, eln(0)— l"(G") m(t = [ FOITy) f FYBn|T0)d6 = op (An Y29, )> by Assump-

tion 3(i) and then 3(ii).
Equations (A.3) and (A.4) then imply as n — oo

(/'L1WT VyKCQWJ (A.5)

7(2) (9n> (1 + OP
_ — / -5 dy
2m <9n) m y|<c

— Au(B) ( /C AU = / e 2dy>

72 (6y) 1 / v?
— yvle~Tdy —p 0,
( ) V2 ly|<c

—(1+0p(1)) 5

which completes the proof of Theorem 1.

Proof of Theorem 2

Recall that we define gmn = % Z;nzl 0jn, in which 6;, denotes the jth posterior draw and m denotes
the number of Markov chain Monte Carlo (MCMC) iterations. It is assumed here that conditioning on
Ty, {0;n} is a sequence of Harris ergodic Markov chains.

In order to show the properties of é\mn, we proceed with the following three steps.

1. First, by Assumption 1(ii) and using an existing result (see, for example, Corollary 2 of Jones

(2004)), we have \/n%a > i1 (On — E[0|T]) —p N(0,1) as m — oo and n — oo, where o2 is

the same as defined in Assumption 2.

2. Second, we show that A1/2( 0y) (E[0|T,) — 6p) —»p N(0,1), as n — oo.

3. Third, we combine the previous two steps to show that A,ll/z(gn) <% Z;n:l Ojn — 00) —p N(0,1),

as m — oo and n — oo.
4. Lastly, we show Theorem 2.1(i) as a consequence.

By definition, we have that

[0e"Or(0)do g, (T)
[enOr(0)ds — pn(T)’

E[6|T,] = / 04, (0]T,)d0 =
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where q,(Ty,) = [ 0O 7(0)do and p,(T,,) = [ el
Define ¢,(T,) = [ 0D r(0)df. Similarly to equatlon (A.4), we can write

an(Ty) = 0eln<9> 0)d0+ | 0eOr(6)do
F,
= (1+op(1 / feln ) =3280 O=02° 2 (9)do + [ 9t O 1 (0)do
Fy
= (I +op(1) >QIn(T ) + q2n(Th), (A.6)

where q1,(T},) = fEn Gel"(é\")eféA"(é\")(efé\")Q7T(9)d9 and qo,(T),) = an Gel O (0)db.

In a similar way to equation (A.3), we also have
Q1 (Tn) = e @) ATV2(G,) / (B0 + 227200)y) 7 (B0 + A7 2 @0)y) e dy
lyl<x
= (14 0p(1)) @) A28, 8, 7 (B,) / V24,
lyl<A

+ (1 op(1)) e AZH2(G,) 20 (7, / ye V' Py, (A7)
ly|<A

which, along with equation (A.4), implies that as n — oo

AL/ (9 )( [9|T]—0) AW (/ 0£,(6/T,)d6 — B, / £ (01T, d@)

A1/2 / Fu(BIT,)dO + AL2 (9 ) / 0£.(0/T,)do
F,
M
= (1+op(1) A, (6) : (g;) \/127 y|<xy2€y2/2dy
A1/2 / Ful0]T,)d0 + A2 (9 ) / 0£.(0/T,)d0 —p 0 (A.8)
F,

by Assumption 3(ii). Furthermore, we have as n — oo

_ _ 7 (g , (1)
An(Br) (E[am] —9n> — (1 + op(1))) 7T(90 m/my eV 24y 5 p ﬂ(éf;)) (A.9)

whenever 7(6g) # 0, if both A,, (@) S, £a(01T0)d0 = op(1) and A, (én) S, 02(01T0)d0 = op(1).
Equation (A.8), along with Assumption 4, implies
AN (0n) (BIOITo) = 0) = A/ (Bn) (EIOITo) = b, ) + AY(0n) (8 — 00)
— AY2(G,) (9 - 90) +op(1) —p N(0,1). (A.10)

Meanwhile, Assumption 2, along with an application of an existing central limit theorem for

stationary Markov chains (see, for example, Corollary 2 of Jones (2004)), implies that as m — oo

m

(60 — EI6|T]) —p N(0, 1), (A.11)

n jil
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which completes the proof of the first part of Theorem 2(ii).

Therefore, under Assumptions 1, 2, 3(ii) and 4, as (m,n) — (oo, 00), we have

A28, Zejn— o | = AY?@, Zam— 0]T;,] + E[0]T] — 6o

= A}/ (0n Zem— OIT.] | + A% (8a) (B[O Tn] — o)

_A}L/Q(é\n)an 1 i(e
T Um o, &V

Jj=1

E[0|T.]) | + Ay/%(8a) (E[OIT,] — 60) —p N(0,1),

which completes the proof of equation (3.5) of Theorem 2(ii).
In addition, equations (A.11) and (A.8) also show that as (m,n) — (oo, c0)

AY200) (rin = B0 ) = AY2B) (O — BIOIT]) + AY(0r) (EI6IT,] - 0 )
A}/Q(@L)an 1 7

- ﬁ%;(@jn—wm) + AY2(0) (EIOIT] — 6

—p 0, (A.12)

which completes the proof of the first part of Theorem 2(i).

Using equation (A.9), we have as (m,n) — (0o, 00),

~

An () (emn _ (?n) — An(B)) (émn - E[9|Tn]) + An(Br) (E[eyTn] - §n)

An(é\n) On =
= n = EOIT,]) | + An(0n) (EOIT,] — 0,
e (1S (eom-3)
. 1) (6o) 1 5 —y?)2 1) (6o)
= (14 o0p(1)) ) v /y|<Ay e dy —p @) (A.13)

whenever 7 (6y) # 0 and %\/;Ln)g” —p 0. Equation (A.13) completes the proof of the second part of
Theorem 2(i).
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