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Location based services are becoming an indispensable part of our life. The wide adoption of 

satellite based positioning - Global Positioning System (GPS) has practically solved the problem 

of outdoor localization for a wide range of scenarios. Unfortunately, satellite based positioning is 

not possible indoors because of weak radio signals and loss of the direct line of sight from the 

satellites. Therefore, significant efforts have been motivated towards finding a practical solution 

for indoor localization especially in regards to localizing pedestrian. 

Certainly the topic of indoor pedestrian positioning does not lack research, there have been 

several research studies also various commercial solutions have been developed. What is common 

for all of them is that no approach has yet made a big impact within this area (e.g. GPS for outdoor 

localization). The reason behind this is that they either need an expensive infrastructure 

deployment (e.g. Wi-Fi access points) or have specialised hardware needs (e.g. network card), or 

have low accuracy and low reliability or have privacy issues such that pedestrians’ location is 

continuously monitored without their consent. There is also a trade-off between accuracy and 

cost. Sensing infrastructures (e.g. Wi-Fi) involving higher investments provide better accuracy 

where as those involving lower investments (e.g. QR codes) provide lower accuracy. 

Even worse, systems could not logically localize a pedestrian that is whether they are on 

this room or the adjoining room separated by a dividing wall and somehow if they do, they require 

large amounts of infrastructure to be installed into the environment.  

Smartphones are little less to ubiquitous. Thus, this thesis investigates an alternative 

approach to indoor pedestrian localization that uses smartphones to provide accurate, reliable, low 

cost logical localization. A significant emphasis is given on user privacy and minimal usage of 

infrastructure or none at all. It is demonstrated that how the information from smartphone sensors 

can be used for positioning in an infrastructure free environment by means of a case study. An 

extension to the well-studied inertial navigation technique is implemented using smartphone 

mounted on a toy vehicle over an artificial testbed – Scalextric track.  
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Having learnt that infrastructure free positioning is possible using only the inertial 

navigation sensors embedded in smartphone, off the shelf stride estimation methods (foot step 

detection techniques and stride length estimation models) are applied to investigate the most 

suitable stride estimation method for smartphone based pedestrian dead reckoning (PDR) 

positioning system. Unfortunately, what was most noticeable in all the methods was that their 

performance was user specific and importantly, dependent on heuristic parameters. In addition, 

the position error grows overtime because of slowly accumulating errors in the measurement of 

inertial sensor.  

To reduce the dependency on heuristic parameters we investigate the statistical approach – 

‘Kalman filter’ to get a better estimate of the stride lengths. Nevertheless, drifts are mitigated by 

enforcing constraints from map using map matching technique – multiple uncertain routes engine 

(MURE). MURE is an extension to the Kalman filter that allows location to be described using 

multiple discrete Gaussian distributions bound to a map. The developed map aided pedestrian 

dead reckoning (PDR) system was field tested in different buildings. It yielded accurate matching 

results as well as a significant enhancement in positioning accuracy. Experimental results 

demonstrate that the mean absolute position error is less than 1.3 m and 95% confidence interval 

is between -3.16 m to 3.32 m.  

To further improvise the performance of map aided PDR system an extension to map based 

positioning is proposed via using landmarks. Landmark based positioning uses human as a sensor 

to sense proximity to landmarks. Landmarks are nothing specific as such but objects that are 

unique enough in comparison to the adjacent items e.g. quick response (QR) codes. Experimental 

results demonstrate that when map based positioning is used in addition to landmark based 

positioning the mean absolute position error is less than 1.0 m and 95% confidence interval is 

between -2.0 m to 2.0 m. 

Smartphones are mostly held in hands however these can be used as a lieu to dedicated 

wearable gadgets e.g. smart glasses that contain the similar set of sensors as smartphones. Hence, 

we investigate a scenario similar to smart glasses via smartphone mounted on helmet. The thesis 

concludes that in principle it is possible to logically localize a pedestrian within buildings using 

the inertial sensors embedded in smartphone. The algorithms developed in this thesis are suited 

to cases in which it is impossible or impractical to install large amounts of fixed infrastructure 

into the environment in advance. Also, methods proposed in this thesis are applicable in indoor 

tracking applications. 
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1. Chapter 1: Introduction 

With the growing trend towards a world where people, vehicles, and other mobile objects are 

getting more and more interconnected, location information is increasingly becoming a 

recognized need for providing rapid and timely information to the mobile workforce. In the 

context of security personnel, as stated by Callmer [1]. 

 “Be it fire-fighters, soldiers or police officers, being able to track the position of each 

individual user in real time while in a building, is the dream of the operational management. In 

case something urgent happens, knowing where all the personnel are and where they have been, 

enables swift and accurate cooperation to solve the problem. Having a positioning system would 

therefore greatly enhance the safety and efficiency of the personnel.” In the context of visitors 

and students, as stated by Wang et al. [2]. 

“University campuses have thousands of new students, staff and visitors every year. For 

those who are unfamiliar with the campus environment, an effective pedestrian navigation system 

is essential to orientate and guide them around the campus.” The development of pedestrian 

navigation system necessitates an effective pedestrian localization system too [3].  In the context 

of health professionals, as stated by Want et al. [4]. 

“Hospitals, for example, may require up-to date information about the location of staff and 

patients, particularly when medical emergencies arise.”  

Evidence suggests that the location revolution has been underpinned by the deployment of 

Global Navigation Satellite Systems (GNSSs) such as GPS [5]. Google, Yahoo, Microsoft, 

Facebook almost every big player in the Web 2.0 economy have introduced a location based 

service [6]. Moreover, small start-up firms such as Foursquare [7], BrightKite [8] or RallyUp [9] 

all have launched distributed, mobile solutions based on a user's location thus starting what 

infamously became known as the “location war" [10]. 

However, all these positioning solutions are built using systems that provide only very 

coarse positioning, which, in practice, allow for outdoor use only. SatNavs [11] are now almost 

standard equipment for the motorist and even play a large role in applications as diverse as 

agriculture and surveying. Largely driven by the inclusion of GPS receivers in smartphones, 

global shipments are predicted to exceed 1 billion units per annum by 2020 [12]. However the 

growth of mass market `Location Based Services' is hindered by the technological limitations of 

GPS. Most significantly, GPS does not provide a robust and accurate position solution to a user 

trying to navigate where they spend most of their time – indoors [13]. As mentioned by Takahashi 

[14]. 

“Indoor navigation is one of the last great technical problems that hasn't been solved.”  
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Certainly, the topic of indoor positioning does not lack research, several approaches and 

suggestions based on different technologies have been developed and introduced over the last two 

decades [15]. An extensive review of these is done in Chapter 2. What is common for all of them 

is that no approach has made a big impact within the area. A number of systems have even been 

commercialized, produced and installed in different quantities but none of these have yet made a 

big penetration into the society.  

One important development has been the emergence of small, ultra-low power cellular 

mobile phones [16]. But, as we will see in more detail later on, while cellular enabled positioning 

works well in outdoor environments however indoors, cellular signals get scattered, absorbed and 

offer suffer from the problem of multipath. As a result alternative solutions are required for 

positioning inside buildings. Evidence of this development can also be found in the sudden rise 

of web-based positioning services like Navizon [17], Skyhook [18], etc. that allow to determine 

location using Wi-Fi signals. Even more so, many big players in the consumer market, e.g. Apple 

iBeacon [19], provide location-based services for their mobile platforms using Bluetooth, 

developing and running the required software in-house. 

However, the question still remains that why none of the indoor positioning systems have 

yet made a big penetration into the society? 

After evaluating the built systems, we came to conclusion that the main reason for this is 

that the proposed solutions, although can be very accurate (less than 1 m) and even low cost (less 

than 30 GBP), have one thing in common that it is very challenging to find a balance between 

accuracy and cost. On top of this, the more complex challenge is to develop a solution that is both 

low cost (affordable by all less than 30 GBP or may be free) and reasonably accurate (less than 

1.5 m) too. Specifically, an accuracy less than 1.5 m because for most indoor applications e.g. 

search and rescue mission, indoor tracking, augmented reality applications, disaster management 

applications, visually impaired navigation, etc. accuracy better than room level (2 – 5 m) is 

adequate [20, 21]. 

Cricket system [22] locates pedestrians with an accuracy less than 1 m through a 

combination of radio frequency and ultrasound systems installed in the surrounding. Nokia 

deployed Bluetooth based beacon transmitters to locate pedestrians in different rooms of the lab 

[23]. Deploying special infrastructure adds an extra cost which was however taken care by the 

company. Navisens [24] have developed a software stack to estimate pedestrian’s position with 

an accuracy less than 2 m using only the inertial measurements from smartphone sensors with 

zero infrastructure (no Wi-Fi, no GPS and no Bluetooth) cost. CEO Ashod Donikian however 

comments that if the position estimation is not done over a long time, the cumulative errors can 

grow which may make the positioning ambiguous. Thus the problem remains as such.  
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On further filtering the literature, we noticed that there are some other limitations too which 

prevent wide scale implementation of indoor positioning systems. These are as follows: 

i. Localization using pre-existing infrastructure and specialised hardware: It is not 

always that the infrastructures such as Wi-Fi radios, Bluetooth beacons, etc. are 

already pre-installed across the buildings. Since, many a time building 

administrators may be reluctant to add additional infrastructures specifically for 

the sole purpose of indoor positioning as these deployments incur heavy costs on 

them. For an area of 312 m2, King et al. [25] installed 9 Wi-Fi access points so that 

the Wi-Fi signal could be sensed everywhere in the building. The cost of Wi-Fi 

infrastructural setup was about 1300 GBP excluding the hardware cost – network 

card.  

In general, positioning by these infrastructure require an additional hardware 

to be carried by pedestrians for positioning e.g. network card in previous system 

[25]  that further adds to the overall cost.  Consequently, one of the challenge that 

this thesis would address is to how to reduce the usage of infrastructure (e.g. Wi-

Fi radios, Bluetooth beacons, etc.) and dedicated hardware (e.g. network card, 

cameras, etc.). Users already carry mobile devices (a personal smartphone), and 

may be unwilling to carry an additional device specifically for localization. 

Localization technologies need to rely on minimum hardware and infrastructural 

requirements. 

ii. Complexity: An indoor positioning system may be built to work all over the world, 

within city limits, throughout a campus, just in a particular building, or even just 

in one room and systems can often expand to a larger scale by increasing the 

infrastructure. For instance, a simple tag system like the Active Badge location 

system [4], which locates tags in a single room, can be used on a campus by 

equipping all buildings with the required infrastructure. But barriers to positioning 

do not only include infrastructure but also middleware complexity.   

This complexity is mostly associated to software complexity [5, 26] i.e., 

complexity of the positioning algorithm. Rai et  al. [27] locates the pedestrian using 

Wi-Fi and inertial navigation system (INS). System combines technologies using 

particle filter. 2000 particles are used for each step update. Although system 

provides an accuracy less than 5 m in 90% of the time however position 

computation when performed with slight modifications in a different environment 

the positioning accuracy degrades (less than 9 m in 90 % of the time [28]). Hence, 

reliability is low. Such a system may be suitable for some laboratory testing but 
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not practical for actual situations e.g. firefighter tracking, patient tracking, etc. in 

indoor environment. The other challenge that this thesis would therefore address is 

to how to provide reliable location updates, while keeping the software complexity 

low. Algorithms that are light in nature, shall be developed in this thesis.  

iii. Privacy: Lack of privacy of location information could provide knowledge of 

activities of any individual whose location can be unobtrusively tracked.  Service 

provider who know location of users can exploit location information to provide 

location dependent services not wanted by users. This is sometimes referred as user 

personalization. Personalization combining logging information and location 

information can have serious outcomes [29].  Thus the challenge here lies in 

providing anonymous position estimates. This is necessary, as the potential of data 

mining is very high [30].  Using suitable heuristics, as for example correlating a 

person's often visited locations, even position data can be correlated [31].  

For some applications e.g. Active Badge [4],  it is possible to keep user’s 

location undisclosed if the calculation is carried out in mobile device’s side. 

However, the problem is that in case of positioning in complete building, the 

computation cost becomes too large because of which responsiveness of the device 

decreases [32] and as a result the performance of positioning system degrades. We 

feel that undoubtedly, there is a trade-off between performance and privacy and 

moreover location tracking poses a serious imminent privacy threat. 

Consecutively, the other challenge that this thesis would address is how to maintain 

the privacy of users confidential?, without degrading the performance of system.  

Methods, running the localization algorithm on the smartphone device would be 

used to keep user privacy intact in the thesis. Low energy sensors and smart sensor 

fusion techniques would be further used to keep the computation cost low. 

iv. Logical localization: If physical localization is employed to compute the 

pedestrians’s logical location, the technology used needs to provide very accurate 

location estimates. The reason is that two rooms (e.g. a Starbuck’s coffee shop and 

a Costa coffee shop) can be very close to each other, separated only by a dividing 

wall. A physical localization error of just 1 m, can localize the pedestrian on the 

wrong side of the wall, and thus, place the pedestrian in the wrong logical context. 

Likewise, if a pedestrian is in some store (e.g. departmental store) or in a train 

where there are several parallel bays, an error margin of 1 m may place the 

pedestrian on a different bay. 
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While very accurate (less than 1 m) indoor localization is possible using 

specialized hardware [25, 33, 34] and dense infrastructure deployment [4, 35], 

these solutions are difficult to deploy on wide scale. Alternate solutions are 

required to identify the user logical location accurately while obviating the need 

for specialized hardware and infrastructure deployment. A pioneered work in this 

direction is SurroundSense [36] that combined effects of sound, light and colour to 

identify the logical location. They hypothesised that every store in a shopping 

complex have different ambience – sound, light and colour e.g. ambient sound in 

Starbucks from coffee machine and microwaves, may be different from the sound 

of spoons clinging from the adjacent restaurant, lighting style in a ZARA shopping 

store may be different from the NEXT shopping store, etc. that when combined 

together can be used to provide logical localization.  

Their hypothesis can be true for some cases e.g. shopping complexes, airports, 

etc. but not always. Two similar hardware stores can be side by side or there can 

be Government policies to keep the lightings minimum and background colours 

similar in stores in shopping complexes moreover, in University buildings, trains 

or in hospitals most of the rooms and compartments have similar ambience except 

varying in the size and floor geometry [37, 38]. We argue that by using map 

matching technique in addition to smart sensor fusion techniques and inertial 

navigation techniques we may not only be able to identify which side of the 

dividing wall they are present (provided initial location is known) but also and 

more importantly, on which bay of the store they are present.   

To summarize, we need a localization system that (i) operate on mobile devices (e.g. 

smartphones), (ii) requires minimum infrastructure installations (including minimal dedicated 

hardware usage) or none at all, (iii) do not intervene privacy, (iv) reliable, and (v) provide accurate 

logical localization while keeping the overall cost low. The main aim of this research work is 

therefore to investigate how the information from smartphone sensors can be used to provide 

accurate, reliable, low cost logical localization. A significant emphasis is given on user privacy 

and minimal usage of infrastructure (including zero usage of dedicated hardware). To achieve 

this, the following objectives are formulated: 

 To critically asses different existing indoor positioning technologies, systems, and 

combinations of those. 

 Analyse the performance characteristics of smartphone embedded sensors. The focus will 

be primarily towards inertial sensors.  
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 Understand whether the positioning is possible using inertial sensors embedded in 

smartphone. 

 Understanding the movement pattern of pedestrians, since the unconstrained movement 

of pedestrians is often varied.  

 To develop an intelligent sensor fusion technique for merging the multimodal data from 

inertial sensors.  

 To develop a map database for indoor localization. Generally a building is represented by 

a 2D plan, missing alphanumerical data regarding doors, furniture, staircases and so on. 

This representation is not convenient for the needs of localization [39]. Specific map 

database must be created representing the building as a spatial graph. 

 To develop a map matching algorithm for projecting the position fix from sensor fusion 

technique into the map database of studied region.  

In addition to these objectives, we also formulated two more objectives to further enhance the 

performance of developed map matching algorithm. These are as follows: 

 To develop a landmark matching algorithm for projecting the position fix from sensor 

fusion technique into the map database of studied region while integrating the knowledge 

of artificial landmarks – quick response (QR) codes, present in the route.  

 Compare the developed map matching algorithm and landmark matching algorithm.  

Our work extends state of the art by exploiting the multitude of sensors embedded in 

smartphones. Low-energy inertial sensors, such as gyroscopes and accelerometers, are employed 

to localize the pedestrian. Indoor maps, designed in form node-link model, are used to correct 

noisy sensor measurements. A map matching algorithm – multiple uncertain routes engine 

(MURE) has been designed to estimate and predict the likelihood of a pedestrian on various links 

in a map. In addition, a landmark matching algorithm is designed which further extends the 

performance of MURE. The key contributions of this research work are as follows: 

 Localization using single inertial sensor: We devised a case study to investigate the 

usage of smartphone embedded single inertial sensor – gyroscope to position a moving 

object (toy vehicle) on an artificial test bed – ‘Scalextric track’. This kind of case study 

is first of its kind. It was reasoned that if an object moves in a repetitive manner in a 

pathway, and moreover the geometry of pathway is known a-priori then we can localize 

the object using only the single inertial sensor.  An experiment has been conducted to 

verify this concept. The obtained results show that position error does not grow with time 

unlike the other traditional inertial navigation systems (INS). We also found that the 

fidelity of the localization is higher at the turnings where the heading is more informative. 
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 Analysis of techniques for processing the inertial signal from smartphone sensors 

and extracting human gait characteristics: In contrast to the traditional pedestrian dead 

reckoning (PDR) positioning systems, the smartphone based PDR positioning system is 

different. Since, smartphone orientation is non-static and can vary with time; also the 

smartphone sensors are of relatively low quality [40, 41]. Therefore, off the shelf stride 

estimation methods (foot step detection techniques and stride length estimation models) 

do not work for this case. So we extensively studied the characteristics of acceleration 

signal in time and frequency domain to extract the human gait characteristics. Some of 

the results have been published in [42]. We also evaluated a case when the smartphone is 

placed farthest from head and torso. Such a case has never been reported before. In 

addition we also found that when an individual walks normally they vary their walking 

speed little less and also their body shakes a little less. 

 A novel probabilistic map based positioning algorithm: The geospatial data model is 

designed in the form of a network map such that the main characteristic of human made 

indoor environments, namely the parallelism and perpendicularity between the walls are 

preserved. A complication of the network representation arises from the fact that 

pedestrians are constrained to be on one of a number of discrete edges of the network. 

This discretization does not immediately lend itself to the use of the Gaussian distribution 

and the Kalman filter, which are powerful tools for dynamic localization in continuous 

space. In particular, if there is an ambiguity over which edge a pedestrian is located on, a 

single unimodal probability distribution is not suitable to represent the position of the 

pedestrian. In this case we propose a scheme ‘multiple uncertain routes engine (MURE)’ 

to keep track of multi-modal discontinuous probability distributions in a network map. 

Several experiments have been performed to verify the feasibility of this scheme. The 

obtained results show that this scheme not only has the ability to localize the pedestrian 

but also it estimates and predicts the likelihood of a pedestrian on a link in a network map. 

In nutshell, it can logically localize the pedestrian that is it can differentiate on which side 

of the dividing wall a pedestrian is present.  

 A novel method for pedestrian localization using landmarks: As our technique of map 

matching is dependent on detection of corner features, it is equally possible that the corner 

features are distantly separated or potentially absent. This may cause the potential 

ambiguity in distribution amongst links to persist over a long time and moreover position 

error to grow. To deal with this issue, we rely on opportunistic encounters with artificial 

landmarks – quick response (QR) codes that when observed by the pedestrian triggers the 

landmark matching algorithm to run in system. The landmark matching algorithm 
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behaves like a look up table that calibrates the positioning system on detection of an 

artificial landmark. In addition, it rules out the extraneous distributions, and enables 

merging while confirming the pedestrian whether they are on the actual path or not. Such 

a method has never been reported before. Several experiments have been performed to 

investigate the feasibility of this method. Results show that the position error is 

significantly less using this method in comparison to the other methods reported in the 

literature. A significant drawback of this method is that QR codes affect the user 

experience. In addition, it requires time and effort to articulate the environment with QR 

codes therefore, its usage should be minimised. 

 A helmet mounted PDR system: In general most of the sensors in gadgets (e.g. Google 

smart glasses [43], Oculus Rift [44], etc.) that employ user’s location, are similar to the 

smartphone sensors e.g. inertial sensors, camera, etc. In addition they have the similar 

connectivity e.g. Wi-Fi, Bluetooth, etc. that can successfully provide useful navigation 

information. However, it is not always possible for security officers in a hospital to carry 

such gadgets for positioning even a builder or a hospital owner may not always be willing 

to purchase such costly gadgets for every worker just for the sake of positioning. Instead 

most of the officers wear some sort of headgears therefore we investigate how smartphone 

could be incorporated into this headgear and thereby be used for the purpose of 

localization. Such a scenario has never been investigated before. We have emulated a 

scenario by rigidly attaching a smartphone to a bicycle helmet. We have found that 

smartphones mounted on helmet can be an alternative option to locate pedestrians (e.g. 

construction workers) at lesser costs in comparison to wearable gadgets e.g. Google glass. 

1.1 Structure of thesis 

The document is structured as follows: 

 Chapter 2 (Literature review): An extensive literature review is provided in this chapter. 

The underlying existing positioning technologies, methods and systems relevant to 

pedestrian’s localization are introduced and discussed. As will become apparent, 

accurate, reliable, low cost logical localization of the pedestrians is still a problem; 

although there have been prior works in this domain however these are constrained to 

some typical indoor settings and moreover require heavy deployment of infrastructures.  

 Chapter 3 (Case study: feature based localization): In this chapter, I describe the 

smartphone architecture and the characteristics of each of the built-in sensor used in this 

work followed by the performance analysis of these sensors. Based on the analysis, a case 

study is presented to localize a smartphone mounted on top of a toy vehicle on an artificial 

testbed (a Scalextric track).   
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 Chapter 4 (Inertial pedestrian dead reckoning): In this chapter, I describe inertial 

pedestrian dead reckoning (PDR), a technique which has been used in many projects in 

recent years to build pedestrian tracking systems. Several algorithms used for detecting 

pedestrian’s footsteps and stride lengths have been detailed, implemented and analysed 

on smartphone based PDR system.    

 Chapter 5 (Helmet mounted PDR): In this chapter, I describe an alternative to smart 

glasses for positioning. A Smart Glasses simulator has been designed in this context using 

smartphones mounted onto helmet, considering the fact that smartphones have the similar 

set of sensors and connectivity as smart glasses.   

 Chapter 6 (Map aided PDR): In this chapter, I describe different types of map and how 

these are used for positioning. A map based positioning technique has been designed in 

this context to curb the growth of positioning errors in the earlier developed smartphone 

based PDR system. In particular, a topological map of the building has been designed in 

form of nodes and links. Following this, a map matching algorithm – multiple uncertain 

routes engine (MURE) has been designed and implemented on the smartphone based 

PDR system to monitor the position of a pedestrian at several locations simultaneously.  

 Chapter 7 (Landmark aided PDR): In this chapter, a landmark based positioning 

technique has been designed and implemented onto the smartphone based PDR system. 

Landmark based positioning extends the prior developed map based positioning. 

Landmarks in form of QR codes are stored in landmark database which when sensed by 

the pedestrian, initiates landmark matching algorithm to run and subsequently reset the 

position error.  

 Chapter 8 (Discussion): In this chapter, I discuss how findings from this research study 

complement to the existing body of research.  

 Chapter 9 (Conclusion and future work): In this chapter, I conclude this thesis by 

summarizing the key findings of this research work and, highlighting some advantages 

and disadvantages of the developed technologies. Also, I would be giving directions of 

the future work and potential applications of this research study. 
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2. Chapter 2: Background and related work 

In this chapter we present an overview of different techniques and mechanisms used for indoor 

positioning. With the advent of GPS, compact computers and inertial sensor systems in the 

1980’s, it started to become possible to envision man-carried systems for accurate positioning. 

Since then, many techniques have been proposed to solve the problem of indoor pedestrian 

positioning. At the time of writing of this thesis it is not clear whether this problem of providing 

accurate, reliable, low cost logical pedestrian localization within buildings has been completely 

solved.  

Therefore we present an extensive review of the technologies used for indoor positioning 

and identify their pitfalls. Several positioning technologies can be combined using sensor fusion 

methods. Over the course of this chapter, we also investigate and examine related work where it 

is appropriate and shall identify the research gap. The first section of this chapter presents the 

attributes that are used as a measure for positioning. Section 2.2 reviews the existing systems and 

methods used for positioning. Section 2.3 details about sensor fusion methods. Section 2.4 details 

about the commercial indoor positioning applications available in the market. Section 2.5 

summarises the key findings of this chapter and identifies the research gaps in the state-of-art of 

indoor positioning. 

2.1 Attributes 

Naturally, the position should be as precise, secured and accurate as possible. However, since 

every positioning system inherently determines the location with a certain error, the user of this 

information wants to know how big this error actually is moreover, is the information secured or 

not.  Speaking of location information, some of the important attributes are privacy, accuracy and 

precision [5]. In addition, to this, a user wants its positioning system’s cost to be as low as 

possible. These attributes are described below.  

2.1.1 Accuracy and Precision 

Accuracy can be defined as the degree of conformance between the estimated or measured 

position of a point at a given time [5]. It is the error difference between the position estimated by 

the positioning system and the actual position. Precision however denotes the distribution of all 

measurements i.e. how consistently the system works. This is also alternatively referred as 

reliability in some studies [45]. Figure 2.1 illustrates the difference between the accuracy and 

precision. Nevertheless it is possible to trade less precision for increased accuracy [46]. 

Consequently, these two attributes must be processed in a common framework in order to 

compare and rate them [45]. 
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Figure 2.1: Location error, accuracy and precision. 

2.1.2 Cost 

One of the factors that make up the cost of an indoor positioning system, is the computation cost 

that is how much time is needed to report the location. Other time factors are the effort required 

to install and administer a system [5, 45]. Space is another important cost factor that is the extent 

and complexity of installed infrastructure and the used hardware's size and form factor. Energy is 

another important cost factor of a system [5]. Some mobile units (e.g. passive RFID tags, which 

are addressed later) are completely energy passive. These units only respond to external fields 

and, thus, could have an unlimited lifetime. Other mobile units (e.g., devices with rechargeable 

battery) have a lifetime of several hours without recharging. Above all, the capital costs, it 

includes factors such as the price of the devices used,   infrastructural cost and salaries of support 

and maintenance personnel [47, 48]. 

2.1.3 Privacy 

The level of privacy influences the approval by the pedestrian [49]: How comfortable are 

pedestrian with their data (e.g. trajectory) being stored? Do pedestrians have legal concerns about 

their privacy? If so, can pedestrians be motivated to provide personal data. Approval also includes 

the requirements for the system to allow certification by authorities. For e.g. if there is a need for 

admissibility in court, the requirements for the system to deliver evidence should be given.  
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2.2 Systems and methods for personal positioning  

Smartphones integrate a variety of sensors that can be used to determine the position of a 

pedestrian. Specific positioning methods of how a position can be derived independent from the 

underlying technology is described. Later, key technologies using 1) radio frequency waves 2) 

magnetic fields 3) inertia 4) landmark and 5) sound waves are introduced.   

2.2.1 Positioning methods 

Positioning methods are independent from the used positioning technology [50]. Different 

positioning methods can be potentially employed by a specific positioning technology. Particular 

attention is paid to the capability of the implementation of these methods with sensors that 

commonly integrate into actual smartphones. 

Three different categories of positioning methods are typically used for positioning 

systems. These are based on the Proximity detection, Triangulation and Scene analysis as 

illustrated in Figure 2.2. These will be detailed in the following sub-sections.  

Location detection

Proximity detection Triangulation Scene analysis

Angulation Lateration

Angle based method
Time based methods

Signal property 
based method

 

Figure 2.2: Classification of location detection methods (Source: [51]).  

2.2.1.1 Proximity Detection 

The proximity detection technique examines the location of a target object with respect to a known 

position or an area. A set of detectors are fixed at known locations; so when a target object is 

sensed by a detector. It is thereby considered to be present in the proximity area of that detector. 

In case multiple detectors sense the target the position of target is calculated by combining 

information of multiple detectors using different algorithms [52]. Figure 2.3 illustrates a simple 

scenario of proximity detection where two moving targets G and H are monitored by a detector D.  
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Figure 2.3: Illustration of proximity detection principle. 

The detector D reports target G to be in its proximity. While it reports target H to be in non-

proximity considering the fact that target G is within the proximity area of detector D shown by a 

dotted circular ring. In case multiple targets are present in close proximity, the detector would 

report their positions based on the measured signal strength. The closest target would be one 

whose signal strength sensed by the detector is highest. One major advantage of this method is 

that infrastructure is already deployed (in form of cellular networks) so implementation cost is 

very low or almost zero. However accuracy is significantly affected by dimensions of the cell, the 

range of signals and the density of detectors in a network [52].  

2.2.1.2 Triangulation 

Triangulation is a way of determining the target’s location using the geometric properties of 

triangles. Figure 2.4 illustrates the basic principle of triangulation for a 2-D position measurement. 

Consider the geographical coordinates of three reference beacons  A, B and C to be known. 

The  RA, RB and RC are the distances of the moving target from the three reference beacons A, B 

and C respectively. Or alternatively, these are the centre of circles A′, B′ and C′ respectively. Then 

according to the principle of triangulation the position of target object M would be in the area 

where each of the circles  A′, B′ and C′intersect [53]. The triangulation is subdivided into two 

categories: (1) Lateration and (2) Angulation. 
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Figure 2.4: Basic principle of triangulation. 
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Lateration 

Lateration computes the target’s position by estimating the distance of the target from the 

reference beacons. If there are multiple reference beacons, it is multi-lateration. Trilateration is a 

specialised case of multi-lateration which uses three reference beacons [51]. Instead of measuring 

the distance directly using received signal strengths (RSS); time of arrival (TOA) or time 

difference of arrival (TDOA) is usually measured, and the distance is derived by computing the 

attenuation of the emitted signal strength or by multiplying the radio signal speed (usually the 

speed of light) and the travel time [5]. The lateration is further subdivided into two categories: 

 Time based methods 

 Signal property based methods 

Time based methods 

The time based methods involve the measurement of one or more parameters related to signal 

travelling time to compute the relative distance of the target from reference beacons. These are 

sub-grouped into two types:  

 Time of Arrival (TOA) 

 Time difference of arrival (TDOA) 

The principle of TOA is based on the precise measurement of the arrival time of a signal 

transmitted from a mobile target to several reference beacons [5]. Considering the velocity of the 

signal to be known (usually the speed of light) the distance between mobile target and reference 

beacons is determined by multiplication of the signal travel time with the signal’s speed. It is 

imperative that the clocks are very precise and synchronized at both the transmitter and receiver 

ends [54]. 

The principle of distance estimation by TDOA is also similar to the TOA. However, the 

receiver at TDOA does not need to know about the absolute time at which signal was transmitted 

‐ only the difference of arrival time from the transmitters is needed. To calculate the position of a 

mobile target hyperbolic lateration is used [55]. Figure 2.5 illustrates a scenario for 2-D position 

measurement of a mobile target. Consider a mobile target M that transmits message, which is 

received by two reference beacons A and B. If the message is received by A earlier than by B, then 

this implies that mobile target is closer to A in comparison to B.On the other hand, if B receives 

message earlier than A. This would imply the opposite i.e. B is closer to mobile target than A. As 

a result there is mostly a time difference between the arrival of message at A and B. This time 

difference between the arrival of message at A and B is mapped to a distance difference according 

to the velocity of the signal; which is represented by a hyperbola of possible locations of the 

mobile target. Identically, a third reference beacon (if present; consider it to be C) could form a 

second hyperbola. The intersection of both hyperbolas is the position of a mobile target. 
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Figure 2.5: Illustration of TDOA method by hyperbolic lateration. 

Signal property based methods 

The signal property based methods measure the attenuation in received signal strength to compute 

the relative distance of a mobile target from reference beacons [51]. Various propagation models 

are used to translate the difference between transmitted signal strength and the received signal 

strength into a range (relative distance from the mobile target to beacon) estimate. 

These propagation models are typically expressed in terms of path loss [56]. The path loss 

represents how much a signal is attenuated as it propagates through space. Total path loss is 

however a complex function with multiple components [57] such as propagation distance (free-

space loss), signal properties (frequency), terrain (hills, mountains, bodies of water), etc. It is 

essential that propagation model should consider as many loss factors as possible to provide 

higher accuracy. However, it is often unfeasible indoors [58] because of the multipath effects 

from the surroundings. Consequently, there are multiple different propagation models proposed 

by various researchers varying in complexity and path loss components [59]. For instance, a 

model defined by International Telecommunication Union (for indoor settings) [60]. 

Ltotal = 20 log 10 f + NLlog10d + Lf(nf) − 28 dB (2.1) 

where Ltotal is the total path loss, NL is a distance power loss coefficient, d is the travel 

distance, f is signal frequency in MHz, Lf(nf) is floor penetration loss factor in dB, and nf is the 

number of floors between transmitter and receiver. 

Methods that are based on time measurements have to guarantee a good synchronisation 

between target and reference beacons. On the other hand, methods that are based on the signal 

strength have problems with interferences and reflection. Therefore, these are in general more 

suitable for outdoors than for indoors. 
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Angulation: Angle of Arrival (AOA) 

Angulation computes the mobile target’s position by estimating the angles relative to multiple 

reference beacons. In principle, it locates the target from the intersection of several pairs of angle 

direction lines, each formed by the circular radius from a reference beacon [54]. To measure the 

incident angle, the reference beacons are equipped with an antenna array capable of determining 

the angle from which the signal was received. If at least two reference beacons are able to 

determine this angle, the intersection of virtual lines drawn from the respective beacons heading 

towards the angle the signal was received from denotes the position of the emitter i.e. the mobile 

target [5]. 

In contrast to the other methods, the AOA requires only two reference beacons to estimate 

position in two dimension (2D) and three reference beacons for three dimension (3D) localization 

[58]. However, the AOA method is highly vulnerable to certain effects of signal distribution 

especially multipath effects of the signal. Since, this causes the signal to reach the reference 

beacons via different paths (i.e. across different angles). Consequently, direct line of sight is a 

prerequisite for flawless functionality of the AOA principle rendering it quite impractical for 

indoor scenarios [54, 61]. Additionally, AOA measurements require highly directional antennas 

to measure the angle of incidence at reference beacons. This increases both the cost of the system 

and beacons’ size, making the system too large for indoors. 

2.2.1.3 Scene analysis 

The scene analysis refer to the type of algorithms that first collect fingerprints of a scene and then 

estimate the location of a mobile target object by matching some characteristics of that scene with 

the collected fingerprints. A fingerprint is a signature or unique characteristic that differentiates 

one scene from other [5, 51]. There are two stages for location fingerprinting 1) offline stage and 

2) online stage. During the offline stage, signal strengths from access points are collected at pre-

identified locations and stored in the form of a database. Next during an online stage, the currently 

observed signal strengths and previously collected fingerprints are matched to figure out the 

location of a mobile target. 

Again the performance of this method is hindered by the multipath effects of signal [54]. 

Since, the fingerprint of a signal could change with the change in physical conditions of the 

environment [62]. As a result this would increase or decrease the signal reception paths at a 

particular point. Consequently, this causes the variation of received signal strength at a particular 

point, and thereby degrades the overall accuracy of positioning system. 

2.2.2 Radio frequency (RF) based positioning 

The RF based positioning employ radio frequency (RF) signals to position a mobile target. The 

RF signals are the electromagnetic waves generated by an oscillating electrically charged particle. 
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These waves are in practise transmitted by a fixed transmitter towards a moving target. One or 

more properties of these electromagnetic waves are measured at the receiver station to estimate 

the position of a mobile target [63]. Location acquisition is done using methods namely Proximity 

detection, Triangulation and Scene analysis. Few of the key positioning systems designed using 

RF waves are as follows:  

 Global Navigation Satellite Systems (GNSSs) 

 Cellular systems 

 Wireless local area network (WLAN) systems 

 Radio Frequency Identification (RFID) systems 

 Ultra-wideband (UWB) systems 

 Bluetooth 

2.2.2.1 Global Navigation Satellite Systems (GNSSs) 

Global Navigation Satellite Systems (GNSSs) aim to provide global positioning and navigation 

services. These systems allow mobile targets to determine their location (which is defined by 

longitude, latitude, and altitude) utilizing signals that are sent by satellites orbiting around the 

Earth. Few of the operational GNSSs are U.S.NAVSTAR Global Positioning System (GPS) [64] 

(see Figure 2.6), Glonass (Russia) [65] and IRNSS (India) [66]. Since GPS is the most widely 

used system and conceptually similar to the other systems, therefore this section details about it. 

Originally designed and built to serve a military requirement for navigations, GPS is a 

satellite-based positioning technology that is currently being used by many civil users. Although 

only 24 satellites are needed to be considered as a full system, there are often more than 24 present 

as new ones standby to replace the older satellite [3].The GPS system works on the theory of 

triangulation. Each satellite broadcasts a RF signal including timestamp and the satellites 

coordinates to the receivers (mobile target) located on or close to the surface of the earth at every 

billionth of a second.  
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Figure 2.6: NAVSTAR: GPS Satellite Network (Source: [67]). 

Receiver takes this information from the triangulation of at least four satellites and uses it 

to calculate its position. The mathematics of actual positioning calculations can be seen in [64]. 

Receiver, which is either a hand-held device, mounted on a vehicle, found in a plane or ship, 

compares its own time with the time sent by the satellites and calculates its distance between the 

satellites using the difference between the two timing. The final product of GPS readings, 

depending on the receiver, will pinpoint location in terms of longitude, latitude and altitude. 

It has been observed in [68] that when GNSS signals are available, absolute position fixes  

within standard deviation of 2.5 m and mean error of 3.5 m can be attained using commodity, 

stand-alone, single frequency receivers outdoors. This performance is improved by integrating 

measurements from inertial measurement units (IMUs) and applying forward-backward 

smoothing in time as illustrated by [69].  

Nevertheless, reception of GNSS signals indoors is difficult and error prone [70]. Assisted-

GPS (A-GPS) techniques can dramatically reduce satellite acquisition times via the use of aiding 

information supplied by cellular network operators. However, this does not help in the acquisition 

of extremely weak signals typically found indoors. High-sensitivity GPS (HSGPS) receivers can 

often provide position estimates indoors by increasing the number of satellite observations [71] 

but the accuracy is generally poor (with errors often greater than 30 m) [72].   .  

According to Lachapelle [73], even with new GNSS satellites (Galileo) signals (L2C and 

L5) as well as future low-cost micro- electronic mechanical system (MEMS) sensors and their 

ultra-tight integration with HSGPS, it will still be very difficult to get consistent accuracy indoors 

better than 10 m. Additional position aiding, such as from in-building instrumentation, short-

range RF devices, and 3D maps of buildings will likely be required. 
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Locata Corporation [74], have developed “locata technology” to locate the receivers 

indoors and outdoors. It utilises a group of time-synchronized pseudolite transceivers that transmit 

GPS like signals to enable single point positioning using carrier phase measurements. Test 

experiments demonstrate positioning accuracy less than 20 cm. This can potentially provide 

logical localization but at the expanse of installing LocataLite devices (pseudolite transceivers, 

see Figure 2.7) in every room. The similar concept of pseudolites has been utilized by Xu et al., 

in [75] to position a mobile receiver indoors. The pseudolites receive real world GPS signals, 

repeat each satellite signal and transmit them to the mobile receiver. The mobile receiver 

determines its position via four TDOA measurements with an accuracy of about 1 m in static 

conditions and slightly less than 1 m in dynamic conditions.   

 

Figure 2.7: LocataLite positioning system (Source:[74]) 

2.2.2.2 Cellular systems 

Cellular positioning systems are based on RF infrastructure transmitters that do not form 

contiguous network as GNSS however it covers a significant part of the Earth’s landmass.  The 

cellular networks are organized in cells (see Figure 2.8), which are built up by base stations called 

Base Transceiver Stations (BTS) and several mobile devices [76]. Each cell is identified by a 

unique cell Identification (CID) and covers a range from approximately hundred meters up to 35 

km depending on the terrain and the estimated number of mobile devices the cell has to handle. 

The mobile device locates the nearest BTS by identifying CID and determines its position in a 

cell based on proximity detection method (see Section 2.2.1.1) or time based methods (see Section 

2.2.1.2)  [77]. For a review about cellular systems see Chapter 8 in [78]. Positional accuracy of 

these techniques typically depends on the density of base stations, network layout and the 

reliability of time of arrival measurements  [55, 79]. 
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Figure 2.8: An illustration of cellular network (Source: [50]). 

 Angle of Arrival (AOA) is another algorithm adopted by cellular service providers, but is 

not as widely implemented. Technically, indoor positioning via cellular systems is practically 

possible only if signals from existing outdoor infrastructure can be detected which has proven to 

be difficult because of RF multipath and the need of direct line of sight from base stations [55, 

80]. However, in few cases this has been achieved, but at the expense of location fingerprinting.  

In [81] Otsason et al. localized pedestrians using existing cellular network – Global System 

for Mobile Communications (GSM) only. It involved measuring of wide signal fingerprints from 

35 cells. These wide fingerprints included six strong GSM cells and readings of up to 29 additional 

GSM channels, most of which were strong enough to be detected but too weak to be used for 

efficient communication. The higher dimensionality introduced by the additional channel 

dramatically reduced the position error and moreover, improved the positioning accuracy but at 

the context of increased computational cost. The results showed that positioning system was able 

to differentiate between floors in both wooden and steel-reinforced concrete structures, and 

achieved median accuracy ranging from 2.48 m to 5.44 m in large multi-floor buildings.  

Tian et al. [20] have combined Bayesian filtering along with machine classifiers to 

associate cellular telephone network received signal strength fingerprints for positioning. The 

authors used a sampling scheme in the training procedure, and the Bayesian filter to introduce 

information about room layout and pedestrian trajectories. Results indicate accuracy greater than 

95% with Bayesian filtering and greater than 69% for non-Bayesian filtering over a period of 42 

days, at the context of several days of former training. While in  [82] authors have used the code 

division multiple access (CDMA) networks for identifying different floor levels and positioning 

Cell 
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a pedestrian. The system works on the same principles of fingerprinting i.e. firstly the offline 

phase of collecting fingerprints and then online phase of determining location by searching for 

the closest matches of the current measurement to the set of measurements collected in the training 

phase. 

Whatever specific positioning algorithm is used, the performance of cellular positioning 

depends greatly on the propagation conditions imposed by the wireless channel [3]. Consequently, 

reliability of the systems can vary with change in physical conditions. Nevertheless, cellular 

positioning remains of interest since it may be available when other signals are not, as well as for 

older devices that are not A-GPS and/or Wi-Fi enabled. As a result, the refinement of algorithms 

for cellular positioning remains an active area of research for indoor environment  [83].  

2.2.2.3 Wireless local area network (WLAN) systems 

WLAN positioning systems are those RF based systems that aim to provide positioning services 

temporarily on an emergency sites or it could be part of a wider, ad hoc tactical communication 

network [84]. It operates in the 2-4 GHz Industrial Scientific and Medical (ISM) band with a gross 

bit rate of 11, 54 or 108Mbps over a range of 50-100 m, particularly dominated by Institute of 

Electrical and Electronics Engineers (IEEE) 802.11 standards – Wi-Fi [5]. 

  The setup of WLAN is very much similar to the cellular networks (see Figure 2.9); where 

WLANs are subdivided into several cells called Basic Service Sets (BSS), and each cell is 

controlled by a base station which is referred as an access point [50]. Each access point broadcasts 

a signal that has a higher transmission power than GPS plus special signal structures allow for 

better penetration into walls of the buildings and less mitigation to multipath effects. As a result 

these are often preferred for positioning indoors [5, 85]. The broadcasted signals are received by 

wireless receivers. These receivers have a capability to measure the strength of received signal. 

 

Figure 2.9: Basic WLAN setup (Source: [86]). 
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 The received signal strength is converted into a number known as received signal strength 

indicator (RSSI) in a wireless receiver. Based on the RSSI values the receiver locates itself using 

proximity detection method (see Section 2.2.1.1), trilateration method (see Section 2.2.1.2) and 

scene analysis method (see Section 2.2.1.3) [51, 87]. The methods – trilateration and scene 

analysis rely on knowledge of the exact location of APs and/or the ability to model signal strength 

as a function of distance from the AP’s location. This is however difficult for indoor 

implementation [54]. As a result, fingerprinting techniques have emerged as the preferred method 

for Wi-Fi positioning in the indoor environment. Instead, fingerprinting employs a calibration 

phase (also referred to as the training or offline phase) in which Wi-Fi signals are observed at 

known locations. The set of APs and their respective signal strengths presents a “fingerprint” that 

is unique to that location.  In the positioning phase (or online phase) the observed Wi-Fi signals 

at an unknown location are compared to the database of previously recorded fingerprints to 

determine the closest match. Several matching techniques have been developed for this, including 

k-nearest neighbor estimation; support vector regression, Bayesian modeling, neural networks, 

etc. [88].  

Performance varies with AP density and distribution, reliability of the positional reference 

database, and the positioning algorithm employed, among other factors. For a single building with 

a substantial number of APs, median horizontal accuracy between 1 - 5 m has been reported  in 

[89, 90] provided the radio map is stationary over time. Bahl et al.  [91] proposed an in-building 

pedestrian location and tracking system – RADAR using signal propagation models and pattern 

matching approach - K-Nearest Neighbour (KNN) method [92]. The results depicted an accuracy 

of about 3 m over 50% of the time using the pattern-matching approach and 4.3 m over 50% of 

the time using lateration techniques. Performance was however dependent on the number of data 

points considered and the orientation and speed of the pedestrian. Horus system [89], improved 

upon RADAR, employs a stochastic description of the RSSI-location relationship and uses a 

maximum likelihood-based method to estimate locations. Experimental results show that the 

average accuracy of the Horus system is better than the RADAR system by more than 82%. In 

both the systems Wi-Fi calibration was done frequently at many physical locations. Also, the 

performance of system varied with density of APs.  

WILL [90] presents an indoor logical localization approach without site survey or 

knowledge of AP locations. Fingerprints are partitioned into different virtual rooms based on 

RSSI stacking difference. Fingerprints with high similarity are put into one virtual room. 

Different virtual rooms then construct the logical floor plans, which are mapped into physical 

floor plans using centrality of a vertex and shortest paths length between vertices. The 

implementation results show that WILL can achieve an average room-level accuracy of 86%. 
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Besides, WILL involves complex mathematical computation in addition it is also indicated 

that some virtual rooms are indistinguishable. 

King et al. [25] proposed a probabilistic indoor positioning system – COMPASS based on 

the digital compass and WLAN infrastructure. The system estimates the position of a pedestrian 

by comparing the received signal strength fingerprints (from the access points) in the offline stage 

with the measurements done in an online stage. A pedestrian’s orientation is measured by a digital 

compass to reduce the human body’s blocking influence to the positioning process. Since as 

addressed by authors, the human body consists of more than 50 percent of water which blocks the 

radio signals and influences the measurement accuracy. As a result they have increased the 

number of signal strength samples in each position with different orientations.  Experimental 

results show after a training of about 10 hours, the COMPASS system achieved an average 

distance error of less than 1.65 m in an area of 312 m2. Locating multiple users at the same time 

has not been discussed moreover measurement errors always occurred close to electromagnetic 

objects such as high-voltage power lines and electronic devices. Thus, reliability is low.  

An important limitation of WLAN is the attenuation of signal at wireless receivers due to 

movement of furniture, doors, human, etc. [93].  In [94] and [95] wireless location fingerprinting 

was performed to achieve a positioning accuracy less than 3.5 m, 90% of the time. The most 

pressing challenge was however the non-stationarity of radio map. This was reflected as the 

differences in the measured signals during the online and offline phases of same exact location. 

Another emerging WLAN technology is Zigbee [96]. It operates on unlicensed bands 

including 2.4 GHz, 900 MHz and 868 MHz. The signal range coverage of a ZigBee network in 

indoor environments is typically 20 to 30 m. It has low energy consumption and is designed for 

multi-channel control systems, alarm systems, and lighting control. Distance calculation between 

two ZigBee nodes is usually carried out from RSSI values [51]. One of the concerning challenges 

with Zigbee networks is that it operates in an unlicensed band therefore it is often susceptible to 

interferences with the other radio networks. Hu et al. [97] have deployed a ZigBee network for 

indoor environments and have proposed an algorithm to mitigate such interferences. The system 

is sufficient to logically localize in a room. They have incorporated methods such as arranging 

reference nodes' position, calibrate RSSI values and lower the output power level including 

shutting down of irrelevant wireless nodes for accurate positioning. Experimental results show 

that in an empty closed room (with no human present) of dimension 56mx30m, the stationary 

node could locate the other moving node with a root mean square error less than 1 m and when 

humans were present the root mean square error was increased to 1.8 m. The cost of whole system 

(excluding prior time and effort in setting up the system) for achieving such an accuracy in a 

single room was approximately 400 GBP.   



Chapter 2: Background and related work 

24 

 

2.2.2.4 Radio Frequency Identification (RFID) systems 

RFID positioning systems are those RF based systems that aim to provide positioning service on 

a complex indoor environment such as hospitals, offices, etc. [53] to locate movable or non-

movable objects [98]  including pedestrian, food items, drugs, etc. A summary scheme of how 

RFID positioning system works is shown in Figure 2.10. 

 

Figure 2.10: A schema of RFID positioning systems (Source: [98]). 

The data is stored in form of RFID tags that comprise of a chip and an antenna. RFID tag 

acts as a transponder, responding to queries from a nearby transceiver (reader) by transmitting 

back its own unique 64-bit or 128-bit identifier via radio waves. The tags generally do not include 

a power source therefore power required for its operation is transferred by electromagnetic 

induction [99, 100]. Principally, RFID systems operate in three frequency ranges: low frequency 

(125 Hz-134 Hz), high frequency (13.56 MHz) and ultra-high frequency (860 MHz-960 MHz). 

Their performance is unhindered by non-line of sight conditions; since transmitted radio waves 

have the ability to penetrate solid materials. However, signal strength received at reader depends 

upon density of objects [98]. Based upon the received signal strength at reader, reader locates 

itself or tags using proximity detection method (see Section 2.2.1.1) or lateration method (see 

Section 2.2.1.2) [101, 102]. In case of reader localization, the positioning accuracy is highly 

dependent on the density of tags. Tesoreiro et al.  [103] introduced a localization system based 

on proximity to RFID tags to position a museum visitor. The museum visitor carried a personal 

digital assistant (PDA) that obtained the identifier (ID) of RFID tags in the vicinity. Each tag was 

associated with an exhibit in the museum. The ID of the detected tag was subsequently transmitted 

to a server, which returned information about the exhibit in proximity to the user. The localization 

accuracy of this system was not reported. However, the accuracy was related to the density of 

tags in the environment. In addition, the privacy of a pedestrian was an issue since the position 

computation was done at server end. So there was always a possibility of leakage of the position 

information 

The navigation system ‘ways4all’ developed by Kiers et al. [104, 105] included an array 

of RFID tags. These tags were deployed under the carpet to provide positioning and route 

guidance for visually impaired and blind people. RFID-tags send their code to the user‘s mobile 
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phone through a mobile RFID reader. The phone sends the code to a RFID-database server where 

all the tags together with some additional information are saved as location points. The mobile 

phone receives real-time routing information (including interruptions, delays and platform 

changes) from the database server. Experiments show, that the current maximal reading range of 

30 cm needs to be extended to 60 cm in order to obtain a sufficiently high tag detection rate. This 

can be a potential option for logical localization. However again maintaining the privacy of user 

confidentiality was an issue. The project highlighted a serious drawback of RFID based 

localization i.e. there is no RFID standard, so not every RFID reader can be used. Instead, 

selection of RFID readers should be done cautiously.  

On the contrary, tag localization necessitates readers to be placed at known locations. This 

makes the overall process of positioning more expensive. Hightower et al. [106] locates objects 

woven with RFID tags indoors with metre level positioning accuracy. The approach is generally 

a good option for logical localization. It utilised multiple readers to collect signal strength 

measurements that were subsequently used to approximate the distance from the objects (woven 

with tags) via mathematical function defined with empirical data. Although authors claim 

localization accuracy of 87–95% for classifying regions at 3 m resolution and 67% at 1 m 

resolution, the performance was significantly limited because of the delay in processing 

measurements. Also, the cost of whole system was approximately 1000 GBP including 

infrastructure cost, SpotOn board and cost of tags.  

While RFID based localization solutions are in-expensive in comparison to the earlier 

discussed RF based positing systems and can achieve fine positioning accuracy (less than 1 m), a 

wide scale deployment however requires a dense infrastructure of tags (for mobile reader) and 

readers (for mobile tags) for positioning. In addition, RFID positioning systems are often limited 

by the extent of supplied power, coverage and need of sporadic location updates. This makes it 

non-preferable for general purpose indoor localization [107].  

2.2.2.5 Ultra-wide band (UWB) systems 

The UWB positioning systems have been in existence since late 1890s however technological 

limitations pushed the research towards the development of transmissions employing narrowband 

signals [108]. It was only in the 1960s that baseband sub-nanosecond pulses found their 

applications for radar devices, and subsequently their implementation began for communication, 

localization and radar. The UWB systems use an electronic tag/device which emits short UWB 

pulses (typically <1 ns and duty cycle of approximately 1: 1000) to track an object or person, and 

in some cases the UWB systems monitor signal changes introduced by the tracked object or 

person in the environment [109] to locate their position. In principle there are two approaches to 

estimate the position of a moving target [110]: 1) direct approach and 2) two-step positioning 
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approach. The two step approach estimates the position of a moving target at central unit from 

the information gathered by reference tags. However, in a direct approach the moving target self 

localizes as illustrated in Figure 2.11.     
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Figure 2.11: (A) Direct positioning (B) Two step positioning  

Although the two-step positioning approach is suboptimal in general, it can have 

significantly lower complexity than the direct approach. UWB systems operate at multiple band 

of frequencies ranging from 3.1 to 10.6 GHz and use techniques that cause a spreading of the 

radio energy over a wide frequency band with a very low power spectral density ( less than -41.3 

dBm/MHz) [111]. This high bandwidth offers high data throughput for communication. The low 

frequency of UWB pulses enables the signal to effectively pass through obstacles such as walls 

and objects. 

The high data rate of UWB can reach 100 Mbps, which makes it a good solution for near-

field data transmission. Also, the high bandwidth helps in reducing the effect of multipath 

interference and other external noises caused by nearby physical devices such as doors, furniture, 

etc. This makes it suitable for general purpose indoor localization [112]. An important 

requirement for UWB positioning is precise clock synchronization between transmitter and 

receiver. This can potentially take long time. Therefore, the time based methods (see Section 

2.2.1.2) and angle based methods (see Section 2.2.1.2) are commonly used to acquire range data 

for estimating position of the fixed or mobile target [113]. UWB systems can provide accuracy 

less than 1 m however the high accuracy comes with additional costs in setting up the system. 

Speaking up generally the UWB systems are ccommercially expensive compared to other 

technologies [114]. As a result their applicability is restricted to industries. Designing and 

implementation of UWB antennas is another challenging task that prohibits the usage of UWB 

indoors and outdoors [115]. 

(A) 

(B) 
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Several indoor positioning systems are implemented commercially using UWB (see [112] 

for more details). One of the most known positioning systems that use UWB is Ubisense system 

[116]. The Ubisense system consists of three parts: the sensors, the tracked tags and the Ubisense 

software platform as illustrated in Figure 2.12. The tracked tags transmit UWB pulses that are 

received by sensors fixed at known locations. Then the location data of the tags is forwarded from 

these sensors via existing ethernet to the Ubisense software platform, which analyses and 

estimates the position of moving target (tags) via time based methods (see Section 2.2.1.2). The 

Ubisense sensors are organized into cells. In each cell, there are at least four sensors which cover 

an area of up to 400 m2. The tracked tags are wireless, easily wearable, light weight (45 g) and 

have a battery life of about 1 year. The authors predict that Ubisense system can locate pedestrians 

with an accuracy of about 15 cm.  However, the price of this high performance positioning system 

is also high. The whole package illustrated in Figure 2.12 costs about 11,000 GBP. UWB systems 

have also been used for important military applications where accuracy and reliability is important 

e.g. [117]. 

 

Figure 2.12: Hardware of the Ubisense System in an Academic Research Package: five tags 

(left) and four sensors (right) (Source: [53]). 

Chen et al. [117] introduced a UWB short pulse radar for through-wall surveillance using 

the finite-difference time-domain. Results are based on simulated data for UWB short pulse radar 

trying to detect a box in a 2.36 m x 3.59 m simulated room with concrete walls. The range location 

of the target is determined by measuring the propagation delay time from the transmitting point 

to the target and back to the receiver point after accounting for the presence of the wall. Using the 

received field data at several observation points, an image of the target is constructed by using 

the Back Projection (BP) algorithm. They conclude that the proposed solution is a viable solution 

for a through-wall monitoring system however it is to be noted that  directional antennas are 

required to collect the signals which itself is a costly venture. 

Even though UWB has high immunity to multipath fading, the UWB signals get blocked 

too easily (40% of the time according to [118]) in various indoor environments, leading to the 
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possibility of the first pulse detected not being the line of sight path. The absence of the line of 

sight signal can easily create errors of a meter or two, which gives a localization accuracy similar 

to the other wireless-based solutions. 

2.2.2.6 Bluetooth 

Bluetooth is a wireless standard for Wireless Personal Area Networks (WPANs) and operates in 

the 2.4 GHz Industrial, Scientific and Medical (ISM) band. Bluetooth is functional only on a room 

or hall level, with a range of 10 to 15 m, and a bit rate of 1 Mbps. It is divided into three classes, 

each of which has a different range, as shown in Table 2.1. This range can potentially be affected 

by the surrounding environment, as the signals are susceptible to propagation effects [119]. This 

is especially true in an indoor environment. Although class 3 devices are ideal for indoor 

positioning purposes because of the small range, however such devices are very uncommon and 

the vast majority of available devices are of class 2. 

Class Range 

Class 1 100 m 

Class 2 10 m 

Class 3 5 m 

Table 2.1: Bluetooth range (Source: [119]) 

A device may connect to up to seven other devices simultaneously by setting up an ad-hoc 

network in which the device that initiates the communication acts as a master. Such networks can 

be set up without the need of user interaction. In order to avoid interference between devices, 

Bluetooth uses a technique known as spread-spectrum frequency hopping, in which a device 

transmits on one of 79 randomly selected frequencies, changing from one frequency to another 

1600 times per second. This makes it unlikely that two devices transmit on the same frequency 

and therefore minimizes the risk of interference. 

Positioning works on the similar principles as described for WLAN. Due to the shorter 

range a better accuracy might be expected, however it needs more beacons to cover an area  [98]. 

Before setting up a network, a device must perform an inquiry in order to discover other devices 

that are within its range. This is a rather lengthy process that may last for up to 10 - 30 seconds 

and can significantly increase the power consumption. For this reason, Bluetooth device has 

latency unsuitable for real-time localization applications [119]. Another major concern is the 

privacy of user. Because the location data is consistently exchanged between beacons and user, 

between beacons, etc. so there is always a possibility of intercepting the data by external sources 

[120].   
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Usage of RSSI is significantly hampered by poor implementations of the hardware and 

firmware which may vary by manufacturer. Bargh and de Grote [121] used a fingerprint‐based 

localization method which relies only on the response rate of Bluetooth inquiries. It was shown, 

that the measured response rate decreases with respect to the distance, e.g. for 2 m response rate 

= 97% and for 10 m response rate = 86 %. An extensive fingerprinting was necessary to achieve 

sub‐room accuracy.  Diaz et al. [122] developed a Bluetooth based positioning framework – 

Bluepass to locate multiple users at the same time. It allow users to locate and to be located by 

other users with the help of mobile devices. It is based on a server-client architecture where the 

detection of Bluetooth devices is done by a program running on personal computer with universal 

serial bus (USB) Bluetooth adapters. The program continuously scans for mobile devices, and 

maintains a connection to the server, to which it sends the RSSI and address of the devices it has 

found. The server is responsible for calculating the position. Users are required to log in to the 

system via a Bluetooth-enabled device on which a mobile application is running. This gives them 

access to a map showing the position of all the users in the system. 

In [119] authors used fingerprints from Bluetooth beacons in addition to GPS for indoor 

and outdoor positioning. Three different algorithms – k-Nearest Neighbour, regression based on 

k-Nearest Neighbour and Naïve Bayes classifier were utilised, and performance was compared. 

Table 2.2 show the results for an office setting (3 rooms of dimension 6 m x 4 m and a corridor 

of dimension 35 m x 2.3 m), using 168 fingerprints. 

 Accuracy Precision 

50% 80% 95% 

k-NN 1.62 1.72 3.42 5.16 

k-NN regression 1.60 1.42 2.40 3.79 

Naïve Baye’s 2.13 1.97 3.31 5.72 

Table 2.2: Comparison of performance of different algorithms (Source: [119]). 

 At the context of 168 fingerprints, authors achieved positioning accuracy less than 2.2 m 

with 95% of the chances of the pedestrian to be within 5.72 m. An important conclusion was 

drawn from the study that for continuous and reliable positioning, Bluetooth beacons should be 

placed at requisite distances.  Privacy of the user is maintained by preventing mobile devices to 

work in discovery mode. Also, the computations are performed on the mobile device itself.  

Limitations: A major problem reported by some of the authors [63, 83] is the multipath 

problem of RF waves. Certain materials such as wood, rubber, etc. can absorb the RF waves. 

While some materials such as glass, metals, etc. can scatter the RF waves. This causes the RF 
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signal to delay and to deviate in multiple directions. As a result of this the received signal strength 

at a particular point fluctuates. Another problem reported by some of the authors [51, 123] is the 

decay of RF received signal strength with the change in physical conditions such as arrangement 

of furniture, structural modification or movement of personnel, etc. and distance [51].   

Interferences and noises from surroundings are another major issue for RF based 

positioning [63, 96], since only some of the solutions operate on reserve band while others operate 

in unlicensed band. This further limits their applicability.  

2.2.3 Magnetic positioning  

The magnetic based positioning utilise ambient magnetic fields for positioning. It is categorised 

into two types depending on the way magnetic field is used [124]: 1) artificial magnetic field and 

2) Earth’s magnetic field. In case of artificial magnetic field, pre-deployed coils are required to 

create an artificial field. Theoretical models are used to translate the magnetic flux density into a 

range estimate. These models are typically function of the range and geometry of the coil therefore 

if multiple coils generate magnetic fields at known locations, the relative 3D position of the sensor 

is estimated [125]. In [126] Blankenbach and Norrdine have built an experimental model using a 

coil with 0.5 m in diameter and 140 loops. Magnetic field sensing was accomplished using three 

magneto resistive transducers placed in orthogonal directions. The magnetic coils are placed at 

some known distances (4.2 m, 12.6m and 16.6 m) from each other. The distances to at least three 

reference coils are estimated using the lateration principle to determine the position of static or 

moving target. Experimental results demonstrate a ranging accuracy of a few cm for short 

distances of less than 10 m. However, over longer distances the accuracy detonates by 10 cm at 

distance of 12.6 m and by 1.6 m at distance of 16.6 m. Thus, system can potentially logically 

localize. However, reliability over long distances is an issue.  

On the contrary, in case of magnetic positioning using Earth’s magnetic field; 

characteristics of magnetic field signatures present ubiquitously in the environment are identified 

as reference fingerprint to locations. This approach is mostly applied to determine the orientation 

of the pedestrian [127]. Liu et al. [128] proposed an indoor positioning system based on the 

smartphone in-built magnetic sensor – compass and accelerometer. Wi-Fi fingerprints are 

collected at the centre of room and at corridors. Digital compass measurements are taken at each 

step to compute heading while footsteps are detected by the accelerometer. To prevent the drifts 

and other disturbances from nearby surrounding magnetic materials the compass and other 

sensors are fused by particle filter. Results show that system achieves an accuracy of 1.62 m for 

a walk of 16 m but at the context of training of several hours.  

In [129]  IndoorAtlas have identified the anomalies in Earth’s magnetic field to pinpoint 

the location of a pedestrian in a building with an accuracy ranging from 0.1 m to 3 m. The key 
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idea behind localization lies in the fact that every concrete structure leads to anomalies (see Figure 

2.13) in the Earth’s magnetic field. These anomalies are specific to locations which are used to 

position the mobile target. A significant advantage of this approach is that user privacy is secured 

because the position computation is done on the device itself. However, positioning involves prior 

mapping of the environment. This can be a problem in dynamic environments where magnetic 

fields change over time thus reliability is low.   

 

 

Figure 2.13: Earth’s magnetic field anomaly (Source: [129]). 

A significant advantage of this positioning technology is that it does not require a direct 

line of sight between source and sensor, unlike others [125].  

Limitations: The magnetic flux generated by artificial coil are highly dependent on the number 

of loops in the coil, area of the coil and the current supplied in the coil [125] as illustrated by the 

following equation  

B = 
μoNIF√1 + 3sin2∅

4πr4
 

(2.2) 

where μo is permeability of vacuum, N is the number of loops, I is the electric current, F is 

the area of the coil, ∅ is the elevation angle of an arbitrary point P in relation to the coil and r is 

the distance of that point to the coil. As a result proper selection of the coil and suitable 

infrastructural arrangements are needed for positioning. Another problem reported by some of the 

authors is fluctuating of magnetic fields indoors [124, 130]. This can be because of the presence 

of ferromagnetic materials or from an electrical device, such as a cathode ray tube, electric wires, 

etc. that generate electric and magnetic fields which disturb the Earth’s magnetic fields.  Authors 

have focussed on mitigating such perturbations [131]. But it is not an easy task as reported in 

[132].  



Chapter 2: Background and related work 

32 

 

2.2.4 Inertial positioning 

Inertial positioning describes a methodology, where the position of a person or device is 

calculated relative to its last known position using dead reckoning (DR) [133]. The current 

position is derived from previous position using known or estimated movement information 

(speed, direction, acceleration, etc.) derived from the data acquired from inertial measurement 

unit (IMU). The IMUs consist of two orthogonal sensor triads – accelerometer and gyroscope and 

in some cases compass as well [134]. 

 The IMUs yield relative position only, an absolute reference is however required to specify 

the displacement of a pedestrian [63].  IMUs are either fixed on a pedestrian’s body such as in 

shoe or held freely such as in pockets [101]. The accelerometers measure linear acceleration, 

gyroscopes typically measure angular velocity and compass measures the direction relative to the 

geographic cardinal directions [134]. There are numerous accelerometer, gyroscope and compass 

designs, descriptions of some designs are given in [134-136]. A simple construction of a micro-

electro-mechanical system (MEMS) accelerometer is shown in Figure 2.14, where it contains 

proof mass, usually held by a flexural support. It works by measuring the displacement of the 

proof mass, due to acceleration, using a pickup sensor.  

Figure 2.15 (B) illustrates an example of a simple MEMS gyroscope. It contains a vibrating 

proof mass held by flexural support. It uses Coriolis acceleration effect on the vibrating proof 

mass to detect inertial angular rate [137]. Figure 2.15 (A) shows the basic principle of Coriolis 

acceleration [134] . The proof mass in Figure 2.15 (B) is made to vibrate with certain velocity by 

a drive motor. This velocity vector axis (x-axis) is perpendicular to the angular rate input axis (z-

axis, out of the plane). When angular rate is applied on its input axis (gyroscope rotates), a Coriolis 

force is produced, which induces an oscillation of the proof mass in y-axis. Angular rate can then 

be estimated by measuring the amplitude of the oscillation in y-axis (Coriolis acceleration), which 

is proportional to the applied input rate. 

Inertial measurement systems usually consist of a cluster of accelerometers and gyroscopes. 

Complete six-degree-of-freedom inertial measurement requires acceleration measurements in 

three orthogonal directions and angular velocity measurements in three orthogonal directions. 
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Figure 2.14: Basic principle of MEMS accelerometer (Source: [136]).  

 

Figure 2.15: (A) Coriolis force generation and (B) Basic principle MEMS gyroscope (Source: 

[136]).  

In some systems the sensor cluster is gimbaled and the gyroscope measurements are used 

in a feedback control loop to isolate the sensor cluster from rotations [134]. Thus the measured 

accelerations are in the Earth relative reference frame. Other systems use a strap-down design 

where the position and orientation of the sensor cluster are fixed relative to the moving target 

object [134, 138]. Thus measured accelerations are in a body fixed reference frame and the sensor 

signals must be integrated in real time to obtain the transformation to an Earth relative coordinate 

frame. This method is more computationally expensive but the hardware is simpler, cheaper and 

smaller without the gimbals. The strap-down system is more prevalent in modern IMU’s. 

To understand the process of obtaining the position using a strap-down IMU consider the 

following simplified example of how to integrate accelerometer and gyroscope measurements to 

obtain position and velocity estimates in six degrees of freedom for a moving object. First some 

coordinate frames must be defined (see Figure 2.16): the body frame is a Cartesian coordinate 

(A) (B) 
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system which is aligned with the object’s body and hence the IMU. The global frame is the 

coordinate system against which rotations are measured; this can be defined as a non-rotating 

Cartesian frame with an origin at the centre of the Earth and axes aligned with the Earth’s rotation 

axis. The Earth frame is similar to the global frame except that it is rotating with the Earth and is 

hence fixed with respect to a meridian. 
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Figure 2.16: An illustration of the three frames. The blue arrows show the Earth frame, the 

green arrows show the global frame and the black arrows show the body frame. 

Measurements from a strap-down IMU’s accelerometers give acceleration in body 

coordinates ẍb, where ẍ is an acceleration vector. And measurements from the gyroscopes give 

the angular velocity vector of the body frame with respect to the inertial frame ωib. We need to 

find the position vector of the target moving object in the Earth frame xe. The acceleration of 

moving target object in the Earth frame can be found using 

ẍe =  Rb
e ẍb − 2ωie × ve + gl (2.3) 

where Rb
e  is a rotation matrix which transforms body coordinates to Earth coordinates, 2ωie × ve 

is the Coriolis acceleration due to the rotation between the inertial and Earth frames (ωie) and the 

velocity of the object in the Earth frame (ve), gl is the the local acceleration due to gravity.  

The acceleration of moving target object in the Earth frame can be integrated once to obtain 

the velocity ve and twice to obtain the position  xe. The local acceleration due to gravity gl is 

found using a gravity model, and ωie is found using a Coriolis model. The two angular velocities 

ωib and ωie can be concatenated to obtain a rotation matrix derivative Ṙb
e  between the body and 

the Earth frame. This can be done, for example, using quaternions [3]. The rotation matrix 

derivative can then be integrated to get Rb
e . Equation 2.3 can be solved dynamically. Values of 

 xe, veand Rb
e  from the previous time step are used to calculate ẍe in the current time step and this 

is integrated numerically over the length of time step. Thus it is the change in the position of the 
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moving target object that is being tracked relative to some initial estimates of the position. Figure 

2.17 shows a block diagram of the dynamic calculation.   
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Figure 2.17: Strap down IMU state calculation algorithm (Source: [134]).  

The IMUs provide high frequency (50 Hz is typical) position information with no latency 

under normal operation. They are autonomous i.e. not reliant on any external technology or 

references and thus work under all normal conditions [139]. A significant drawback of IMU 

assisted positioning is the presence of drift error. Because position is calculated by integrating the 

acceleration and angular rate over time the error in position is cumulative and as a result grows 

over time. It has also been observed in [140] that this error can even grow super linearly with time 

– 100 m after 1 minute of operation and 1000 m after 2 minutes of operation. The cost of an IMU 

is generally proportional to the rate of this drift error [133]. Table 2.3 reproduced from [141] 

shows typical errors in position with time and cost for IMU systems. These data were published 

in 1997, today the costs may be somewhat lower but the trend remains the same. 

 Cost $(USD) 

 > 750, 000 ~100, 000 ~10, 000 

Position 0.3 –  0.5 m 0.5 –  3 m 30 –  50 m 

Attitude 0.3 – 0.5 mdeg 4 – 5 mdeg 0.2 –  0.3 deg 

Table 2.3: Drift in position and attitude after 1 minute of operation 

Two methods have generally been used to overcome this problem of drift error [142]: (1) 

frequently-calibrated pedestrian dead reckoning and (2) step-based pedestrian dead reckoning. 

2.2.4.1 Step based pedestrian dead reckoning 

Step-based PDR, commonly, depend on the walking movement of pedestrians. Human walking 

is indeed a periodical activity at its core that can be observed from the analysis of human gait 



Chapter 2: Background and related work 

36 

 

[143, 144]. The gait cycle consist of two main phases: the stance phase and the swing phase as 

shown in Figure 2.18.  

  

 

Figure 2.18: Typical Normal Walking Cycle (Source: [143]). 

The foot is in contact with the ground for the entire stance phase until toe-off occurs. Toe-

off initiates the swing phase when the foot is lifted off the ground and carried forward to begin 

the next stride. The swing phase ends when the foot is again placed on the ground, beginning the 

next stance phase, and completing the gait cycle. The opposite limb repeats the same sequence of 

events, but is 1800 out of phase. The horizontal velocity of the foot varies with each stride from 

stationary to over twice the velocity of the torso. This leads to a cyclical periodic pattern of 

acceleration signal [143]. 

Pattern of human walking cycle is same for all normal humans where parameters can be 

different based on some factors like gender, height, and weight. Normally stance phase occupies 

60% of the gait cycle. Step based PDR typically depends of three techniques: foot step detection, 

step length estimation and step heading estimation. The accelerometer signal is analysed for 

detecting footsteps. The linear displacement is calculated during each foot step by using stride 

length estimation models [145] and the pedestrian’s heading is estimated using gyroscope or a 

compass or combination of both. This method is usually applied in pedestrian dead reckoning 

(PDR) systems as follows [146]: 

X(t + 1) =  X(t) + SNcos θ   (2.4) 

Y(t + 1) =  Y(t) + SNsin θ  (2.5) 

if the displacement is in 2-D and if the displacement is in 1-D, this method is usually applied 

as follows [147]:  

X(t + 1) =  X(t) + SN  (2.6) 

where X(t) and  Y(t) represent the pedestrian’s location at time index t, X(t + 1), and 

 Y(t + 1) represent the pedestrian’s location at time index t + 1, S is the displacement in one foot 
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step, N is the number of footsteps and θ represents the direction of motion or heading.. The 

pedestrian’s heading is estimated via two different approaches [52]. These are as follows: 

 An absolute direction is directly measured or estimated by sensors.  

 A relative direction change between two time instants is measured by sensors; and the 

absolute heading of current epoch is propagated to the next epoch.     

2.2.4.2 Frequently calibrated pedestrian dead reckoning 

In contrast to step based PDR, frequently calibrated PDR decreases the accumulating error by 

applying a solution called zero velocity update (ZUPT) [139]. The ZUPT algorithm calibrates the 

velocity of the sensor based on the fact that the speed of a pedestrian’s foot decreases to zero on 

the stance phase when a pedestrian simply steps on the ground during walking. If supposedly the 

sensor is affixed to the foot, the sensor’s speed would also be zero.  

Once start and end moments of stance phases have been detected, any non-zero velocity 

measurement during the phases could be viewed as errors. Then, the averaged value of velocity 

errors during every stance phase could be propagated back to calibrate the velocity values during 

the previous movement period. ZUPT does not make any assumption about the user's movement 

[139]. As a result, it is also suitable for distance updating when pedestrians runs, walks backward 

or even steps sideways. However, the requirement of mounting IMU on a foot has to be met, 

which is not convenient for smartphone users.  

In comparison, a step-based PDR has no such device mounting position requirement, and 

is widely used in smartphone tracking applications. Also, in this research study we use step based 

PDR. 

One of the earliest public descriptions of IMU assisted pedestrian positioning is the 1996 

patent by Judd et al. [148]. The same concept was later applied by Levi et al. [149] to design the 

first commercial pedestrian dead reckoning (PDR) system. They developed a light weight and 

mobile PDR module that detected human walking steps and estimated the step length based on 

the peak detection of the vertical acceleration changes and its frequency analysis. The module 

also sensed the direction with in-built compass. In the same year, a DARPA project [150] 

proposed PDR technique using shoe-mounted inertial sensors with ZUPT. However, the results 

were never published. Later, the same concept was extended by NavShoe [151] to locate the 

pedestrian indoors and outdoors. The NavShoe software detected the stance (stationary) phase of 

the pedestrian and applied ZUPTs as pseudo measurements into the Extended Kalman filter (see 

[152], for more details on Extended Kalman filter). Experimental result show that for a walk of 

length 118.5 m the estimated pedestrian’s position drifted by 0.3% of the travelled distance. Thus 

making the positioning ambiguous. 
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Khairi et al. [153] and Angermann and Robertson [154] designed a foot mounted PDR 

system. However, in addition to the foot mounted IMUs, they even applied environmental 

heuristics Khairi et al.  [153] set the drifts in velocity to zero by applying ZUPTs while heading 

errors are mitigated by the information from building such as walking in corridors is restricted to 

straight pathways, 4 cardinal directions are usually possible in a rectangular floor, etc. 

Experimental results show for an average of walk of 24 minutes, the average error was 

approximately 5 m when building information was used however without using building 

information the error was approximately 150 m.  It is to be noted the cost of IMU was 1700 GBP.   

Angermann and Robertson [154] designed a foot mounted PDR system – FootSlam. The 

knowledge of all user intention was used to design a map of the building that was later used to 

guide the pedestrian through it. The more number of times places were visited within the building, 

the better information or map was built for that place. This information was fused with the human 

trajectory information using a Rao-Blackwellized particle filter [155] to represent the pedestrian’s 

position in a 2-D hexagonal grid. Simulation results show an average accuracy of 1 – 2 m was 

achieved for 3 walks of 10 minutes.  It is however unclear how these results would scale for longer 

walk. On an average 30,000 particles were used in computer simulation. A significant benefit of 

this approach was that pedestrian had full control on the location data, thus privacy of the user 

was kept confidential.  

In conjunction with Wi-Fi, GPS and other sensors IMU’s are also used in applications 

where high accuracy and frequency are important such as robotic vehicles [156]. Systems that 

combine DGPS and sensitive IMU’s costing around 15,000 GBP can give localization accuracy 

of 0 – 2 m at a frequency of 100Hz [157]. Fallon et al. [33]  have designed a wearable inertial 

indoor positioning system to localize pedestrians on the go. The system consists of an IMU, a 

Microsoft Kinect camera, a light detection and range finder laser and a button to tag the point of 

interests in map. The camera identifies the ceilings, wall junctions and other point of interests and 

subsequently localizes the pedestrian onto the designed map of a building (with unknown layout) 

at a go. Positioning results indicate that when a system is carried by a pedestrian for duration of 

94 seconds, the particle cloud surrounding the pedestrian have a median error of 0.66 m. While 

the same system when carried on a wheelchair for duration of 180 seconds, the particle cloud 

surrounding the wheelchair has a median error of 0.48 m. This can be a potential option for logical 

localization however it is to be noted that the cost of whole system was around 5000 GBP. 

Jin et al. [158] proposed a PDR approach suitable for any pedestrian carrying a smartphone 

or a tablet PC or a sensor set embedded in a customised key chain. The footsteps, were detected 

from magnitude of the acceleration, projected on the global frame and measured in the vertical Z 

direction. Step length was estimated by a heuristic model referred in [159].The heading was 
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estimated using gyroscopes. Specifically, principal controlled analysis was done on the gyroscope 

values over a sliding window of 1s to learn and recognize the pedestrian’s direction indoors. 

Experimental results show that the average tracking error was reduced by 73.7% in comparison 

to the traditional PDR approach in the laboratory environment. However, the system had the 

drawback of poor scalability and incremental cost. Since, the pedestrian was required to carry 

multiple smartphones or a tablet PC and a smartphone for its effective implementation at any 

point of time.  Moreover, it was required that they are all wirelessly connected and are synced. 

Meanwhile, there have also been research studies that have designed waist mounted PDR 

system [160, 161], head mounted PDR system [162] and body wearable inertial PDR system [163, 

164] using IMUs embedded in smartphones or as a direct sensing unit. But what has not yet been 

investigated is the usage of smartphones for helmet mounted PDR system which can be of a 

potential use to the construction workers or firefighters who wear helmets at all times. This would 

be investigated in this thesis.   

Limitations: As mentioned before, one of the major problems is the presence of drift errors. The 

drift can be due to the thermal changes and inherent noise [133]. This will be discussed in detail 

in Chapter 3. Another major issue reported by some of the authors [3, 139] is that the inertial 

sensors provide (acceleration and angular velocity) measurements that when integrated report 

relative position. Therefore it needs an initial starting point for positioning.  

Thus systems that provide the absolute position reference are required to report absolute 

location estimates. Although such systems can provide unique localization, the addition of inertial 

sensors could improve localization accuracies by working in parallel, as discussed earlier.   

2.2.5 Landmark based positioning  

The general procedure for performing landmark-based positioning is shown in Figure 2.19. 

 

Figure 2.19: General procedure for landmark-based positioning (Source: [165]). 

Firstly, the landmarks are selected, such that they are easy to identify; for example, there 

must be sufficient contrast to the background. Secondly, sensors are used to sense the environment 

and then extract distinct structures that serve as landmarks. Once the landmarks are extracted then 

a correspondence need to be established between the sensed landmarks and the stored database. 

Lastly, localization is done to compute the relative position of the target with respect to landmark.    

Landmarks in general, can be an object or structure that marks a locality and is used as a 

point of reference. This concept is bound to the prominence or distinctiveness of a landmark from 
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the nearby objects in a large-scale environment or landscape [166]. The landmarks can be either 

‘naturally’ present in the environment or can ‘artificially’ be attached to the scene. Based on the 

presence of these landmarks the landmark based positioning is classified into two categories [165, 

167, 168]. These are as follows: 

 Natural landmark based positioning 

 Artificial landmark based positioning 

The natural landmark based positioning involves objects in the environment that have a 

function other than navigation (importantly positioning) [165]. These landmarks can be objects 

such as doors, pillars, staircases, junction between two walls, etc., and even turning corners are a 

form of natural landmarks. A significant drawback associated with this positioning technique is 

that it works best when the environment is highly structured (e.g. museums, hospitals, etc.) [168]. 

Also, it is necessitates that complex signal processing is done to extract the natural landmark 

features from the environment [169]. The natural landmark based positioning is primarily 

performed using techniques related to Computer Vision [165]. Positioning using computer vision 

involves two stages: recognition, where beacons are detected in the images from the cameras and 

localization, where transformations are applied to determine the position of cameras relative to 

the beacons. 

 Recognition: Object recognition algorithms are used to detect and identify beacons within 

the images. These beacons can also be termed as landmarks. The landmarks must be easy 

to identify and the probability of false positive must be low, therefore careful selection of 

landmarks is important [168]. One approach is to use artificial landmarks with easily 

identifiable shapes, patterns or colours. Lee et al. [170] used a triangular shaped marker. 

The shaded triangular sections were coated with film that was reflective to infra-red light. 

Tai et al. [171] used colours, geometric elements, and structural features in images to 

identify taxis, pedestrian walk symbols, zebra crossings, and, straight line tactile guide 

paths and junctions. 

Another approach is to use the natural features present in the scene as landmarks. 

The natural features can be such as floors, pillars, etc.  SurroundSense [36] have identified 

the ambient sound, light, and floor colour to recognise the logical location of the 

pedestrian. It considers audio sample amplitude distribution as the ambient sound 

fingerprint for acoustic processing. Pixels of the floor pictures are translated to a hue-

saturation-lightness (HSL) space, and the light intensity on L-axis as the ambient light 

fingerprint. Two simple states from the accelerometer readings, stationary and motion are 

used as the input to the support vector machines (SVM). The sequence of stationary or 

moving state are viewed as an abstraction of the user's movement pattern which are again 
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considered as a fingerprint. These fingerprints are merged by a multi-sensor filter to 

localize pedestrian with an average accuracy of 87%.  

Tarzia et al. [172] have used acoustic background spectrum, an ambient sound 

fingerprint to recognise the logical location. The system first calculates the acoustic 

background spectrum of the room, and then classifies the room by comparing its acoustic 

background spectrum with the existing, labelled acoustic background spectrum values in 

the database. The system yields 69% correct fingerprint matches. It is however still a 

matter of question how would these results scale down in university buildings or hospitals 

where ambience of every room are almost similar. Or in a store with several bays side by 

side. This thesis would take up these challenges later on.  

 Localization: When beacons have been detected in images from the camera the next step 

is localization. A camera cannot directly measure the range of objects in the images 

therefore this information needs to be inferred by post-processing the image data. The 

problem of localizing a camera in a field of beacons can be framed by considering the 

following simple example based on the perspective projection model [173, 174]. 

The perspective projection model in camera centred coordinates is illustrated in 

Figure 2.20. The focal point of the camera is located at the origin of the camera frame 

[xc, yc, zc]. The camera is oriented so that it is pointing in the zc direction. The image 

plane is parallel to the [xc, yc] plane and a distance f along the zc axis, f is the focal length. 

Lines can be drawn between points in space and the focal point, then where these lines 

intersect with the image plane is where the points will show up in the image. The 

coordinate transformation between a point in the camera frame [xc, yc, zc] and the 

coordinates of the point in the image [xi, yi] is given by equation 2.7  

 

Figure 2.20: Perspective projection model for a monocular vision system. 
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(2.7) 

This transformation is not reciprocal and given the image coordinates, it is only 

possible to define a ray in camera space on which the point lies. The ray can be described 

using homogeneous coordinates as 

xi = 
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ω
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f
ω ]

 
 
 

 

(2.8) 

where ω is an arbitrary scalar. However with a binocular system like that illustrated 

in Figure 2.21 there is enough information in the two images to reverse the 

transformation, as illustrated by equation 2.9. 

xc = 
b

2

xl + xr

xl − xr
, yc = 

b

2

yl + yr

yl − yr
, zc = 

bf

xl − xr
 

(2.9) 

 

 

Figure 2.21: Perspective projection model for a binocular vision system. 

In order to relate points in global space to the rays or points in camera space 

described above, the pose of the camera must be known. This can be described by a 

rotation R, where R is a 3x3 rotation matrix, followed by a translation T, where T is a 

3x1 vector. A point in global space X =  [x, y, z]′ can also be represented in homogeneous 

coordinates as Xh = [x, y, z, 1]′ and transformation between this point and the 

perspective ray of a monocular camera is given by 

xi = [RT]Xh (2.10) 

X can be transformed to a point in camera space Xc by the simple Euclidean 

transformation 
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Xc = RX +  T (2.11) 

Now the problem to be solved is to find R and T given point correspondences 

between X and Xc (in the case of a binocular system) or xi (in the case of a monocular 

system). For a direct linear transformation there are 12 unknowns in R and T and there 

are three equations in 2.11 or two equations in 2.10. This means 4 point correspondences 

between global space and three-dimensional camera space in the case of a binocular 

system. Or 6 point correspondences between global space and two-dimensional image 

space in the case of a monocular system. 

In fact although there are 12 unknowns in R and T it can be shown that, ignoring scale, 

there are only 11 degrees of freedom [174] meaning that strictly a direct linear 

transformation only requires 3
2

3
 (binocular) or 5

1

2
 (monocular) point correspondences. 

However practically this still means having 4 or 6 points in the image. This is the case for 

a direct linear transformation but it is still possible to get localization with fewer points 

when line correspondences (between points) are used.  

Computer vision based localization has often achieved accuracy less than 1 m in closed 

monitored zones using robots, however it is unclear whether the same accuracy level can be 

achieved for pedestrians walking freely indoors and outdoors [175]. In some cases pre-placed 

beacons have been used but in others a more advanced process called simultaneous localization 

and mapping [176] has been used. Here the robot is initialized using beacons with a known 

position but from then on the system finds and identifies new beacons through the relative position 

of points in images as the robot moves around. Experimental results show an accuracy of less 

than 1 m.  

In comparison, artificial landmark based positioning involves objects (landmarks) that are 

specially designed for the sole purpose of enabling navigation (importantly positioning) [165]. 

These landmarks are specially designed patterns or markers such as Quick response (QR) codes 

[177], triangle-shaped landmark [170], specific light patterns [178], etc. Detection of these 

landmarks is much easier in comparison to the natural landmarks, since these are designed for 

optimal contrast and their identification is unique and, shared in a reference database. Necessarily 

artificial landmark based positioning require hardware installation while this is drawback is some 

applications (such as robot exploring unknown regions e.g. on an unknown planet), it is however 

suitable for localization of pedestrians [167]. Computer vision is again one of the preferred 

positioning technique for artificial landmark based positioning [179, 180]. Some of the key 

elements of the two landmark based positioning techniques are illustrated in Table 2.4. 
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 Natural landmark based 

positioning 

Artificial landmark based 

positioning 

Common targets of 

positioning 

Mobile robots and vehicle 

[167] 

Pedestrian [167] 

Accuracy achievable 

indoors 
 Average (1m – 3m) [181, 

182] 

 Best (< 0.2m) [183] 

 Average (1m – 5m) 

[184, 185] 

 Best (< 0.1m) [320] 

Strengths  No additional hardware or 

specialized infrastructure 
requirements 

 Make navigation easier, 

real time and steady. 

Limitations  Selecting the natural 

landmark is hard (depends 

on individual’s prudence). 

 Detecting and matching 

the characteristic feature 

from sensory inputs is 

hard. 

 High installation cost. 

 Specialized hardware 

requirements. 

 Recognition of 

landmark is dependent 
on distribution of 

illumination which can 

change with position 

and atmospheric 
condition [186]. 

Table 2.4: Characteristics of two landmark based positioning techniques. 

A project by Microsoft research group – Easy Living [187], proposed the usage of computer 

vision to provide context awareness within intelligent environments. The architecture of system 

was built with 3 computers and two colour cameras. Each camera was connected to a computer, 

and both the computers were connected to the third computer. The third computer was primarily 

used for running person tracker algorithm. The algorithm combined colour and depth of the 

images taken from two cameras to provide position of the moving target. Experimental results 

depict positioning error less than 10 cm however partial occlusion was observed. This may be 

sufficient for logically locating pedestrians. However, a major concern is whether an employer or 

building owner may be willing to invest a hefty amount for setting up such a system. 

In [188] the authors presented a navigation system for a humanoid robot, which can be 

extended to the case of human walking. Location determination was accomplished in two stages. 

In the off-line stage, images were captured. The on-line stage involved autonomous robot 

navigation between two arbitrary points while capturing images. To achieve localization, an 

algorithm correlated freshly captured images with images in the route database. In this way, the 

unprocessed raw image was considered as a large set of features. Correlation analysis yielded the 

position deviation between the learned route and the current position. Temporary occlusions were 

detected as sudden drops in the correlation. The maximum position deviation for a 17 metre long 

route, was 0.9 m. This represents a deviation of 5.3% of the walked distance. A significant 

advantage of proposed system was that privacy of the pedestrian was maintained in addition to 

the high accuracy (less than 1 m) achieved. Nevertheless, it is not known how these algorithms 

would fit in memory constrained devices (e.g. smartphones).   

Fallah et al. [189] proposed a system – Navstar for visual impaired navigation. The system 

uses a virtual representation of the indoor environment that uses tactile landmarks (such as doors, 



Chapter 2: Background and related work 

45 

 

walls, and hallway intersections), that the human can sense. Feedback from the pedestrian upon 

confirmation of landmarks in the environment is used as ground truth to periodically update 

location data. In between landmarks, dead-reckoning (using smartphone sensors such as the 

accelerometer) was used to perform localization. Ten particle filters were executed in parallel. 

Each one of them employing a different set of assumptions regarding the capabilities of the user 

depending on pedometer and compass data from the smartphone and landmark confirmations by 

the pedestrian. What was most noticeable that each filter required 50-100 particles for every 

iteration. This implied on an average 500 – 1000 particles were simulated on a single instant. In 

addition, a pedestrian was required to worn an infrared camera, a belt carrying a battery, a tablet 

personal computer at all time during the walk.  

Wang et al. [62] combined dead-reckoning, urban sensing, and Wi-Fi-based partitioning into 

a common framework – UnLoc for pedestrial localization. Pedestrians move naturally in the 

building collecting accelerometer, compass, gyroscope, and Wi-Fi readings. By assimilating data 

from these sensors, UnLoc identifies signatures of landmarks (e.g. corridor turn, stairs, stopping 

or drinking of water, etc.) present in the environment that are subsequently used a reference point 

for dead reckoning and also for localization.  Results show median localization accuracy of 0.89 

m when system runs offline, and 1.69 m in case when system runs online. This can be an option 

for logical localization however higher accuracy necessitates 2 hours of prior training. 

Furthermore, the implementation of UnLoc requires the smartphone and server are always 

wirelessly synced. Again, maintaining user privacy was an issue since the position computation 

was done at server end and there were no arrangements made to keep the position information 

secured.   

Mulloni et al. [180] explored the usage of fiducial markers and maps; in addition to the 

signpost application for navigating a pedestrian across a venue. The fiducial marker served as a 

reference point. Whenever a signpost application detects a marker, the application updated the 

pedestrian’s current position on a map and subsequently allowed the pedestrian to decide how to 

reach to the destination. For an area of roughly 100 m × 200 m, 37 markers were installed, the 

accuracy as such is not reported by the authors. However, authors highlight that privacy is an 

issue for the developed system given the application has a provision of storing the pedestrian’s 

position in a server.  

Limitations: Common problems reported for landmark based positioning solution using 

computer vision sensor are the ambient noise in the form of light or thermal radiation, signal 

reflections and illumination variability [63]. The ambient noise is usually overcome by filtering 

techniques [190] or by combination of different modulation techniques [191]. Another problem 

that is referred by most of the authors [192, 193] is the inefficiency of landmark based positioning 
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solutions (especially, computer vision based) to work under thick smoke, gust of air particles and 

dark conditions. This limits their applicability and makes them less appropriate for positioning 

tasks. Few authors have also reported the problem of occlusion caused by movement of dynamic 

objects. For instance, in the experiments performed in [191], the introduction of new objects or 

humans was specifically avoided during the experiments. Therefore installing of cameras in the 

ceiling or deploying of camera sensors with overlapping coverage areas has been suggested by 

authors in [177].  

2.2.6 Sonic based positioning 

Sonic waves are mechanical vibrations transmitted over a solid, liquid or gaseous medium. These 

waves are produced by vibrations below and above the threshold of human hearing. In particular 

these waves can be either infrasonic waves (<20 Hz) or ultrasonic waves (>20,000 Hz). The 

principle behind sonic based positioning is similar to the RF based positioning. The sonic waves 

are transmitted into the medium, and from the time it takes to revert back to the receiver is used 

to calculate the relative distance of the mobile target [125] according to the following equation: 

r =  ∆t ∗ vus  (2.12) 

  where ∆t is the time of flight, vus is the velocity of wave (equal to 344 m/s) and r is the 

relative distance of the target. Or alternatively, the mobile target’s position can be estimated by 

multi-lateration (see Section 2.2.1.2) from three or more ranges to fixed receivers deployed at 

known locations. The sonic waves operate optimally at a range of 10 m or less [125]. Doubling 

the distance causes the signal’s sound pressure level to attenuate by almost 6 dB. Accurate logical 

localization is possible, however positioning solutions are limited by the need of infrastructures. 

For e.g. Ward et al. [194, 195] designed an Active Bat location system to monitor the position of 

pedestrians and objects. The Bats are carried by mobile objects as illustrated in Figure 2.22. These 

transmit ultrasonic signals that are received by several RF transmitter ultrasound receiver units, 

mounted at the ceiling. The ceiling mounted units are interconnected and synchronized. Once the 

bat sends an ultrasonic pulse, these are received by ceiling mounted units to estimate the position 

of a moving target. The authors report accuracy less than 10 cm for 95% of the measurements 

however using ultrasound this way require a large fixed sensor infrastructure throughout the 

ceiling.  
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Figure 2.22: Active Bat location system (Source: [53]). 

Complementing the Active Bat system, in [22] Priyantha et al. have designed Cricket 

Location Support System to position the mobile target. The ultrasound emitters were used to 

create an infrastructure while receivers were attached to the object being located. The emitter 

sends periodic information to the receiver containing its ID, range of coverage and its coordinates. 

Based on the received information, the receiver calculates its position using the time based 

methods (see Section 2.2.1.2). The emitters also transmit RF messages for synchronization of the 

TOA measurement in a decentralized fashion. However, when there are not enough emitters for 

the location calculation, the receiver uses the semantic string forwarded by the radio link to get 

proximity location information. Experimental results show that Cricket system can provide a 

position estimation accuracy of 10 cm and an orientation accuracy of 3o. A significant drawback 

with the proposed system was that receivers performed many operations simultaneously. For e.g. 

it received both ultrasound and RF signal at the same time and subsequently, performed location 

estimation calculation. As a result receiver consumed more power and there was a significant 

delay in positioning.  

Sonitor [196] is another positioning solution that can locate humans including the other 3D 

objects present in a room e.g. a key ring or any hidden objects in a room with a room level 

accuracy. Motion activated tags are worn by the people or equipment. These tags transmit 

ultrasonic signals with unique identification codes to wall mounted receivers on a particular room. 

These receivers process the signal and transfer relevant information to a central unit via wired or 

wireless local area network (LAN). Again the deployment of Sonitor system necessitates 

installation of cables and mounting of receivers onto the walls. In oppose to this, Wan and Paul 

[197] designed an ultrasonic positioning system to track persons without the need for body‐worn 

tags. Instead using ultrasound transducers (see Figure 2.23), the ultrasonic transducers captured 

analogue  echoes,  which  are  then  digitized  and  analysed  in  order to  calculate  the  1D  range  

Bat 
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of  the  moving  target. The tracking algorithm utilizes a number of signal processing techniques 

to remove interference from other objects in the room and data from multiple sensors are fused 

by Kalman filter based smoother to determine the moving target’s 2D position with accuracy 

better than 0.5 m. Again it is to be noted that experiments were performed in a test lab (dimension: 

6m x 5m) with walls augmented by 6 ultrasonic transducers. The cost of a single module was 

approximately 30 GBP.  It is not known how many of such modules would be needed in a 

building.   

 

Figure 2.23: A sonar module with two separate transducers (Source: [197]). 

Limitations: Some authors report that high levels of ambient noise commonly encumber the 

detection of the sonic signal [198, 199]. This is particularly important when considering the 

deployment of a sonic localization solution in densely populated regions such as hospitals. 

Another common issue is the dependency of sound speed on temperature T. The dependency is 

given by 

vus = (331.3 + 0.6T) m/s (2.13) 

where  T is the absolute temperature in Celsius (oC). At room temperatures this effect 

causes about 0.2 % systematic range deviation per degree Celsius. For a typical maximum range 

of 10 m, a change of 1°C in the temperature causes a deviation in the range estimation of 2 mm 

[125]. Minor influences on the speed of acoustic sound are also from air pressure, CO2 content, 

etc. however it can be compensated by calibrating the measurements between known nodes.  

Some authors [198] have also reported the co-interference of the sonic waves with multiple 

emitters. This prevents the isolation of a single source and lastly, the propagation properties of 

the waves pose a challenge for accurate positioning in indoor environments [199, 200]. 

Especially, with the change in physical conditions such as furniture, walls, etc. it can lead to 

echoes that result into localization inaccuracies.   

2.3 Sensor fusion 

As stated in the previous section (Section 2.2), each positioning technology have specific 

advantages and disadvantages. Therefore, the combination of different positioning technologies 

or systems that complement each other would be beneficial in regard to the quality of positioning 
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[201]. This section describes how sensor fusion can fuse data from multiple sources to get an 

improved estimate of the position. 

The sensors complement each other best when their errors are independent of each other 

[50]. Because the position estimation relies on the probability theory a short introduction to the 

fundamentals of stochastics will be given in this section. Sensor fusion methods can be sub-

divided into types with regard to the temporal dynamics: (1) static estimators and (2) dynamic 

estimators [202].   

2.3.1 Fundamentals of Stochastics 

“The aim of stochastic filters is to estimate the state of a system on the basis of measurements. 

The measurements, as well as the system model itself, can be afflicted with uncertainties and 

errors that can be described with stochastic concepts” [203]. In the following, some of the basic 

terms of related to stochastics will be introduced.  

 Random variable 

Mathematically, a random variable is neither random nor a variable, it is a mapping from sample 

space into the real-line (“real-valued” random variable) or the complex plane (“complex-valued 

” random variable) [204]. There are two different ways to distinguish random variables: discrete 

and continuous random variables. Discrete random variables are mapped to values of a countable 

set, whereas continuous random variables are mapped to arbitrary values. These values are also 

termed as realizations.  

Probability density 

The probability density is a possibility to describe random variables. The function determines 

how likely is to obtain one or another outcome for each observation of the variable [205]. In the 

case of a discrete random variable X, its distribution is defined by means of a probability mass 

function, which reflects the probability of X to be exactly Xi, for the whole domain of possible 

values of Xi. 

For a continuous variable x, the distribution is described by its probability density function 

(PDF), denoted by px(k) which does not indicate probabilities, but probability densities for each 

possible value of x = k. Here, probabilities can be always obtained for the event that the variable 

x falls within a given range [a, b] by means of 

P (a < x < b) = ∫  px(k)
b

a
 dk  (2.14) 

The probability that the realization ρ occurs for the random variable x and the realization 

φ occurs for the random variable y is called compound possibility [50]. If a certain realization φ 

of y is given, the probability that realizations ρ of x will occur under this condition provided if it 

follows this relationship:  
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px| y (ρ|y =  φ) = 
pxy(ρ,   φ)

py(φ)
 (2.15) 

This relationship is called as conditional probability or alternatively, Bayes’ rule. If, in 

contrast, a realization  ρ of x is given one has: 

px| y ( φ|x =  ρ) = 
pxy(ρ,   φ)

py(ρ)
 (2.16) 

Normal or Gaussian distribution 

In the area of stochastic filters, the Gaussian distribution is of particular interest because this 

distribution is an excellent model for the observed frequency distribution for many naturally 

occurring events. Furthermore, this distribution is important mainly because ("under mild 

regularity conditions") the sum of many independent and identically distributed random variables 

approaches normal, when many approaches infinity [206]. 

The distribution function of each random variable is independent of each other as well they 

can have any arbitrary values [50]. Under these conditions the distribution function tends to the 

normal distribution with an increasing number of random variables. A random variable x is said 

to be Gaussian distributed if its density function is of the form 

f(x) =  
1

σ√2π
exp (−

(μ −x)2

2σ2
)  (2.17) 

 where μ and σ2 are the mean and variance of a random variable x respectively. Note that 

density function of a random variable is completely defined once the mean and variance of the 

random variable are specified. Figure 2.24 illustrates the probability density function for different 

values of mean μ and variance σ2, the more the variance of random variable the higher the spread 

across bell curve. 
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Figure 2.24: Different normal distribution PDFs with varying values of mean and variance.  

2.3.2 Static estimators 

Static estimators can be used to fuse data of multiple sources provided that the position estimation 

of the object to be tracked is nonrecurring or the object is stationary [50, 202]. The positioning 

sources are described as random variables via a PDF. PDFs of different independent sources if 

known then the optimal PDF can be estimated by multiplication of all the PDFs. For e.g. refer to 

Figure 2.25; the top two images (on right) depict the two independent disturbed sources with their 

respective PDFs adjacent to them. The third image depicts the outcome of multiplicative 

combination of the two PDFs. Both PDFs produces high values only for those areas, where both 

PDFs are indicating a high probability. 

 

Figure 2.25: Example of the operation of two independent static position sources (Source: 

[202]). 
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2.3.3 Dynamic estimator 

Static estimators cannot track moving objects continuously, so dynamic estimators are utilised. 

These take into account the possible physical movement, as well as the temporal characteristics 

of the sensors [202]. In the area of tracking objects and navigation few of the commonly 

implemented dynamic estimators are Kalman filter [152] and Particle filter [207] that combine 

data from different sensors. These will be introduced shortly. However, these are based on the 

Bayesian principles that would be introduced next. 

Bayesian filter 

Bayesian filtering is aimed to apply the Bayesian statistics and Baye’s rule to the stochastic 

filtering problem [208]. It allows to model the uncertainty about the world and the outcomes of 

interest by incorporating prior knowledge and observational evidence. In principle, Bayesian filter 

probabilistically estimates the state of a dynamic system from noisy observations [209]. The state 

is not directly measurable instead it is estimated using sensor measurements. 

Bayesian filters represent the state of a random variable at time t by xt. At each point in 

time, a probability distribution over the state xt is called a belief, denoted by Bel(xt). A belief 

represents the probability that state xt is equal to the true state. The belief distribution Bel (xt) is 

a posterior density over state xt conditioned on all past available measurements z1, z2, z3 …zt. 

Bel(xt) = p(xt|z1, z2, z3 …zt) (2.18) 

Speaking in general terms, it represents the probability of a random variable to be present 

at state xt given history of sensor measurements [210]. If the number of measurements increase 

over time, the complexity of computing such probabilities grows exponentially [209]. To avoid 

this, the Bayesian filter assumes that the dynamic system is a Markov process. A process is a 

Markov process when the present state xt is sufficient to infer the next state xt+1 and no further 

information about previous states xt−1, xt−2, … . , x1 are needed.  

Figure 2.26 illustrates such a hidden Markov process. The measurement at time t depends 

stochastically on the pedestrian’s current physical location at time t (state xt). The location at time 

t + 1 depends only on the previous state at time t, and previous states do not provide any further 

information [209]. This kind of model is also termed as Hidden Markov model (HMM).  
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Figure 2.26: Graphical representation of the hidden Markov model for a localization problem.  

HMM is a Markov process, where the parameters of the original system cannot be observed 

directly and the measurement might not represent the parameters exactly, hence they are only 

estimates [209]. Equation 2.18 can reformulated as equation 2.19. Here, zt is the measurement 

data at time t and mt is the motion data at time t. 

Bel(xt) = p (xt| z1:t,m1:t) (2.19) 

The state changes from xt−1 to xt by applying the motion data. After that, belief can be 

calculated before incorporating the current measurements. This probability distribution is called 

prediction and is denoted by Bel(xt). Calculating Bel(xt) from Bel(xt) using the measurement 

data at time t is called correction or measurements update (see equation 2.20). These are the two 

essential steps of Bayesian filters.   

Bel(xt) = p (xt| z1:t−1,m1:t)  (2.20) 

In general, there are two popular families of recursive state estimation techniques for 

realizing the Bayesian filter. The two families differ in how they represent the probability density 

over state xt. The most popular family of Bayesian filter is Gaussian filters. Gaussian filters are 

unimodal with a single maximum and posterior focused around the true state with a small margin 

of uncertainty. “They assume that the functional form of probability density over the state xt is 

fixed and known, but its parameters are unknown” [210]. The Kalman filter is the most widely 

used member of this family. They represent belief by multivariate normal distributions expressed 

by two set of parameters, the mean and the covariance.  

The second popular family of Bayesian filter is nonparametric filters. They do not depend 

on a fixed functional form of posterior. Instead, they approximate belief by a finite number of 

values, each approximately corresponding to a region in state space. As the number of values 

approaches infinity, the approximation error converges uniformly to zero [205]. Particle filter is 

the most popular members of this group. 
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Kalman filter 

The Kalman filter (KF) is a mathematical tool developed by Rudolph E. Kalman [152]. It is based 

on a Markov process and is used to estimate the state of a linear system. Measurements are 

processed that are linearly related to the system state [203].  

The sensor fusion framework is modified to be implemented by linear system models and 

simple Gaussian distributions. System and measurement noise, which are assumed to be zero-

mean and Gaussian distributed, are taken into account within a system and a measurement model 

[134].  Predictions of future states are based on the system model. These predictions are evaluated 

on the basis of the measurement model. There are five core elements of the Kalman filter [3]. 

These are as follows: 

 State vector and error covariance matrix 

 System model 

 Measurement vector and measurement noise covariance matrix 

 Measurement model 

 KF algorithm 

State vector and error covariance matrix: The state vector xt is a set of quantities (states) that 

can sufficiently model the movement of a system. It may be a constant or time varying. An error 

covariance matrix P t describes the uncertainties in the KF’s state estimates.  

System model: The system model encodes prior knowledge of how the KF’s states and error 

covariance matrix vary with time.  

Measurement vector and measurement noise covariance matrix: The measurement vector zt 

is a set of simultaneous measurements of the system’s properties, which are functions of the state 

vector. The measurement vector has an associated measurement noise covariance matrix Rt. It 

describes the statistics of noise on the measurements. 

Measurement model: The measurement model describes how the measurement vector varies as 

a function of the true state vector (as opposed to the state vector estimate) in the absence of 

measurement noise. 

KF algorithm: The Kalman filter algorithm utilises the measurement vector, measurement 

model, and system model to derive optimal estimates of the state vector. This is done by updating 

the states with weighted measurements recursively, based on their statistical information. The 

system and measurement model at time t are defined as follows: 

xt+1 = A xt  + wt  (2.21) 
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zt = H xt  +  vt (2.22) 

 where A and  H are the known matrices, wt denotes the system noise and vt denotes the 

measurement noise. The noises are zero mean, white and Gaussian distributed such that 

wt ~ N(0, Qt)     (2.23) 

vt ~ N(0, Rt) (2.24) 

Qt and Rt are the covariance matrix of system noise and measurement noise respectively 

and determined experimentally. In this thesis, we use the Bayesian interpretation of the Kalman 

filter [211], which is based on assuming that the noises are Gaussian and that the states have a 

Gaussian distribution. Details of the implemented algorithm are discussed in Chapter 6. The 

prediction and measurement step of the Kalman filter are given as follows: 

Prediction 

x̂t
− =  Ax̂t−1 (2.25) 

Pt
− = A Pt−1A

T + Q (2.26) 

Measurement update 

Kt =  Pt
−HT(HPt

−HT + R)−1 (2.27) 

x̂t = x̂t
− + Kt(zt − Hx̂t

−) (2.28) 

Pt = Pt
− − KtHPt

−  (2.29) 

These reiterate to find the optimal estimate. Here  x̂t−1 is the previous best estimate at time 

(t − 1)  with the corresponding covariance denoted by Pt−1. x̂t
− is the predicted state at time t 

with the corresponding covariance denoted by Pt
−. Kt is the Kalman gain at time t. It is used to 

determine the weighting of the measurement information in updating the state estimates. 

For detailed derivations of the above equations please see [134]. The equations above show 

the basic linear Kalman filter, however for most real world applications the dynamics of 

pedestrian are not actually linear nor are the sensor measurements truly linear. Therefore, several 

enhancements, such as the Extended Kalman filter (EKF) and Unscented Kalman filter (UKF), 

target these restrictions. EKF and UKF do not share the characteristic of being optimal estimators 

with the original Kalman filter [202]. 

Particle filter 

The particle filter is a nonparametric implementation of the Bayes filter. It was first introduced in 

1993 [212].  It represents the belief by a set of state samples, called particles, drawn from the 

posterior or belief 
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Bel(xt) = Xt = xt
1, xt

2, xt
3 …… . . xt

M (2.30) 

where M denotes the number of particles. Each particle xt
M is a possible state at time t, that is, a 

hypothesis as to what the true world state may be at time t. The key point of Particle filter is 

distribution which is not limited to Gaussian only and second the number of particles. For an 

infinite number of particles the approximation would be optimal. In the case of a finite number of 

particles the approximation is not optimal, but as long as the number of particles is not too low, 

the difference is negligible [205]. 

Initially the particles are assumed to be distributed according to some distribution function 

and in case states cannot be narrowed down, particles are assumed to be uniformly distributed. At 

every time step each particle is moved randomly according to the movement model. As a result 

particles would be more likely performing anticipated movements rather than unlike movements. 

Following this particles are evaluated based on the measurements; and weights are computed 

according to the particle likelihoods. This is called the update step. The steps are performed 

iteratively.  

Table 2.5 depicts the algorithm of a basic Particle filter. Lines 3 and 4 represent the 

prediction and update step. The input of this algorithm is the particle set Xt−1, along with the most 

recent motion mt and the most recent measurement zt.  

Algorithm Particle filter (Xt−1 , mt, , zt) 

1. X̅t = Xt =  φ 

2. for i = 1 to M do  

3. sample xt
[i]

 ~ p(xt|mt, xt−1
[i]

) : motion model 

4. wt
[i]

 =  p (zt | xt
[i]

) : measurement model 

5. X̅t = X̅t + ⟨xt
[i]

,wt
[i]

⟩   

6. end for 

7. for i =  1 to M do  

8. draw q with replacement from  probability ∝ wt
[i]

 

9. Xt = Xt + xt
[i]

 

10. end for 

11. return Xt 

Table 2.5: Particle filter algorithm (Source: [205]) 
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Line 3 generates a hypothetical state xt
[i]

, by sampling the state transition probability 

p(xt|mt, xt−i
i ). In other words, a new particle (particle number 𝑖 of prediction set) is generated 

using the i-th particle of the previous posterior distribution at time t – 1 ( xt−1
[i]

 ) and current motion 

data mt. The line 4 incorporates the measurement zt into the particle set. It calculates importance 

factor wt
[i]

, that is the probability of the measurement zt under the particle xt
[i]

.  

Lines 8 to 11 implements resampling or importance resampling step. The algorithm draws 

with replacement 𝑀 particles from the temporary set X̅t and fills in the set Xt. The chance of a 

particle to be drawn from the input set is proportional to its weight wt
[i]

 (importance factor). The 

idea is, that particles with low weights hardly add to Xt and therefore most likely will not be 

drawn whereas particles with high weights will do. In some cases, the distribution of particles 

may also change after the resampling step. 

Many versions of the algorithm however never resample, instead maintain an importance 

weight of each particle that is initialized by 1 and updated multiplicatively. The accuracy of the 

estimation increases with the number of particles. Although the estimation technique is sequential, 

the number of particles in belief set depends on both the computational resources and timing of 

new data. 

The main advantages of Particle filter in comparison to Kalman filter is that it avoids  

linearization errors and moreover, represents other PDFs apart from Gaussian distributions [205]. 

However, the major drawback of the particle filter is its high computation complexity. For e.g. 

1600 particles are needed for each filter update for a 40m×40m experimental area to achieve the 

best performance [213]. This large computation workload cannot be handled by the memory 

constrained devices to give real-time updates to the user. Hence, this thesis chooses the Kalman 

filter to post-process the estimates. 

2.4 Commercial products  

There are a number of tailor made applications that guarantee to provide positioning information 

over different indoor environments using various sensors and technologies. The Navizon 

application [17] estimates a mobile device's current geographic location, latitude and longitude, 

by triangulating Wi-Fi signals, in addition to GPS. They propose to provide reliable position 

information anywhere – indoors and outdoors. Tests performed in [214] on Navizon 2 demo 

application  showed that positioning accuracy ranging from 3 m – 5 m is possible. However, the 

application provides accurate positioning only in case when following conditions were compiled: 

accurate fingerprinting, precise mapping and good Wi-Fi coverage.  

IntraNav [215] leverage sensory data reported by inertial sensors, including 

accelerometers, gyroscopes and digital compasses to track locations as device moves, and later 
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integrate UWB signals to compensate for accumulated errors in motion tracking. Based on the 

similar concept of positioning few other commercial vendors are Navigine [216], Skyhook [18] 

that use WI-Fi,  Bluetooth, etc. instead of UWB. One major problem faced by such applications 

is precision is low because of the non-stationarity of radio map. Navisens [24] in comparison use 

only the information from inertial navigation system for positioning. The vendor claims it can 

trace the location of a person with an accuracy less than 1 m and the direction they are facing with 

an accuracy of 1 cm.  The positioning algorithms and sensor fusion techniques that they apply are 

not disclosed. So, it is more of a black box.  

 In 2006, Infsoft [217]  developed an integrated prototype of software and hardware. It 

makes use of multiple wireless technologies – Wi-Fi, Bluetooth and UWB to localize pedestrian 

and objects. These technologies can work in synchronous and asynchronous mode. In case of 

UWB, the locator nodes measure the distance to several APs. The locator node processes the data 

it receives from the APs and sends them to the backend where the position is displayed on a map. 

In case positioning data should be immediately displayed on a mobile device, the locator tags 

communicate with the smartphone via Bluetooth directly. In case of Bluetooth, the beacons are 

installed across the building that transmit continuous frames which are received by smartphone 

application. For an area of 370,000 square metres, it necessitates installing of 1200 beacons which 

is itself a laborious and time taking task. In case of Wi-Fi, positioning is accomplished in the 

similar manner as done by Navizon. Company claims to achieve an accuracy of 5 - 15 m which 

is however too low for indoor localization [218].    

Ericsion Labs' introduced a hardware independent positioning solution in 2011 [219]. It 

gave developers a tool to create their own indoor maps and enable personal positioning. As 

reported by the vendors no third party is needed to design the maps, however pedestrian is needed 

to map each wireless AP manually. Smartphone application scans for APs within reach and sends 

the data to central server, via an application programming interface, which returns a position using 

trilateration. Note, a location can only be provided within an area with access to at least three APs 

as illustrated in Figure 2.27. It is not specified how user privacy is kept secured, importantly the 

position computation is done on server end thus there is a possibility of the data being mishandled 

by others at server end.  
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Figure 2.27: Illustration of valid and invalid locations for positioning, within a floor plan in 

Ericsson Labs’ system (Source: [219]). 

Meanwhile Google Indoor Maps [220] reduced the burden of designing maps. It uses the 

same interface as Google Maps [220] and is accessed through it. Figure 2.28 illustrates the 

working of Google map indoors and outdoors. Its indoor navigation algorithm is based on 

triangulation of received signal strengths from nearby Wi-Fi APs and cellular towers to determine 

user’s position. In some mapped venues, position is enhanced by three-dimensional view of parts 

of the interior constructed with photographs and walks through it. Accuracy is not given as such, 

however it is limited by the signal broadcast strength and potential interferences from thick walls.   

 

Figure 2.28: How Google map work indoors and outdoors (Source: [220]). 
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Another classical product by Google Inc. – Google glass [43] which has often been used 

for augmented reality applications. It uses complex mathematical algorithms to fuse the data from 

INS, GPS and other sensors to accurately localize the pedestrian. The positioning algorithms are 

not known however Google Inc. claims to achieve accuracy less than 2 m. The cost of gadget is 

1000 GBP.  

In 2012, Quuppa introduced High Accuracy Indoor Positioning (HAIP) system [221]. It 

uses Bluetooth smart as the core technology and exists in two different variants. The first is a 

mobile-centric system that analyse RSSI parameters to determine user’s position.  An application 

developed for cell-phones broadcasts a  special  Bluetooth  smart  request,  which  causes  all  

nearby  HAIP-locators  (Bluetooth smart beacons) to respond to the inquiry.  When the application 

receives the response, a request is sent to a locator database server that responds with the position 

of the discovered beacons. The information about the locator position together with the RSSI 

parameters which were received in the broadcast response allows the application to estimate 

pedestrian’s position. Company claims to achieve an accuracy of 5-10 m using this application. 

This accuracy may be sufficient for outdoor localization however for indoor environments again 

it is too low. The second variant is a network-centric solution which also uses Bluetooth smart 

for sending radio packets however it differs from the prior in the sense that it requires special tags 

for positioning. The system does not rely on signal strength, instead angular estimation is used 

where the locator's beacon is equipped with an antenna capable of determining the angle of arrival 

of incoming radio packets. This angle together with information about locator position and the 

known height of the tag allow the system to determine pedestrian’s position. Company claims to 

achieve an accuracy of 0.3 – 1 m using this variant. Accuracy is sufficient for indoor localization 

however an important requirement for the positioning to work by this solution is that the tag 

should not deviate from height of more than 1 m. In addition, environment should be evenly 

augmented with Bluetooth beacons. This may require time and effort.  

In 2013 Apple introduced iBeacon [19] that uses Bluetooth low-energy wireless technology 

to provide location-based services. The iBeacons are low energy beacons that continuously 

transmit packets which are received by Bluetooth enabled devices (e.g. smartphone, PDA, etc.) 

to enable positioning.  These are usually installed at requisite distances across the building. The 

positioning is typically made against a single beacon and will thus provide an approximate 

position in a large area if several iBeacons are deployed. Virgin Atlantic airlines trialled the 

technology at Heathrow airport, however results are unpublished. The company however claims 

that positioning accuracy would increase with the density of beacons where as it could subside 

with distance from beacons or in the presence of obstacles e.g. humans, etc.   
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A common issue reported in all the above discussed wireless (Wi-Fi and Bluetooth) enabled 

consumables is that user privacy is not secured (even though the identity of the user is not 

exposed) given that the APs or beacons can monitor the network physical address of a mobile 

user at any time.  

Senion’s StepInside [222] nevertheless keeps the user privacy confidential. Every user is 

assigned a random ID in the system. This means all user position data is treated anonymously and 

cannot be linked to a physical smartphone. StepInside makes use of multiple wireless technologies 

(Wi-Fi and Bluetooth) and INS to localize the user with an accuracy less than 2 m in 95% of the 

cases. It is however required that wireless technologies cover the entire area, this implies that 

beacons are installed at requisite distances across the venue. Also, beacons should be provided by 

StepInside – no third party beacons can be used. In a way, limiting the user’s freedom.   

In oppose to varying signal strengths and beacon installations, GeniusMatcher [223] 

developed a positioning application – Mally using computer vision and 3D technology. The user 

needs to take a picture of their surroundings and Mally compares it with the images stored in its 

database to compute the user’s current location and orientation. On the same lines, researchers at 

TU Munich have designed an application – Navvis [224] using similar technologies but differing 

in the sensor fusion part. Tests are still in progress; however researchers report to achieve sub-

metre level accuracy in experimental conditions. Given the complexity of computer vision 

algorithms [174], it is not at all clear whether it would be fast enough to report the pedestrian’s 

location with no latency. In addition, their applicability is limited e.g. Mally can only provide 

location based services across Israel and some malls of UK.   

There are a several other indoor location positioning initiatives, but these discussed above 

are the major players in indoor positioning and cover a range of technology approaches discussed 

earlier in the Section 2.2 e.g. Indoo.rs  is working on solutions that leverage similar technologies 

to that of HAIP. It guarantees accuracy less than 5 m radius in 95% of the cases.   

2.5 Summary 

This chapter presented a comprehensive review of the existing indoor positioning technologies. 

Also, it discussed their limitations, benefits and systems designed using these technologies. Table 

2.6 summarizes the salient features of these technologies. Several sensor fusion techniques were 

also discussed. It is however becoming apparent that there is no single technology that can be 

ubiquitously accurate and reliable, as a result integrated systems are been designed to cater such 

needs. 

Notably, majority of such systems use some or the other form of infrastructures or 

dedicated hardware for accurate positioning (less than 1.5 m). Systems that provide high 

reliability in general have difficulty in deployment. Also, it is observed that there is a trade-off 
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between accuracy and cost. Sensing infrastructures involving higher investments provide better 

accuracy where as those involving lower investments provide lower accuracy.  

INS can provide infrastructure free positioning. Furthermore, they offer an additional 

degree of privacy since the user can choose either to share or not to share their location 

information with any third party. However, the cost associated with this positioning is that errors 

accumulate over time. As a result, instead of localizing a pedestrian in a particular room, it often 

localizes the pedestrian in the adjoining room separated by a dividing wall. By integrating with 

other sensors, pedestrians have however been localized to a room 1 but studies still show that 

problem persists in estimating whether a pedestrian is present on this side of the dividing wall or 

the opposite of the dividing wall  [36, 172, 225]. 

Bhattacharya et al. [225] implemented a tailor made Ekahau prototype (based on Wi-Fi 

fingerprinting) in addition to a grid-based location model to position the pedestrian. The model 

represents indoor environment using a grid constructed on top of a floor plan. Whenever the 

system overestimates or underestimates the position, the grid system incorporates the inaccuracies 

of system to reduce the errors to the nearest cell. Out of 40 tasks, three navigation errors were 

recorded while using the instruction aided navigation. Here an error means that the user entered 

the wrong aisle, or walked past the correct one. Thus, an error of about 10% was recorded at the 

context of tailor made solutions.  

Taking these problems as a motivation, the research efforts are therefore directed towards 

investigating a method that is reliable, low cost (with minimal infrastructure deployment and low 

computation cost), do not intervene privacy, and can provide localization with that much accuracy 

to differentiate a pedestrian on either side of the dividing wall. This is also what we foresee as a 

research gap and which we would fill in by this thesis.
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Technology/ 

Sensors 

Accuracy Range Infrastructure 

cost 

Strength Weakness 

GNSS 95 % within  
6 – 10 m 

Anywhere 
outdoor 

Not applicable High availability 
outdoors. 

1. Minimal availability indoors. 

2. Processing time is slow. 

3. Slow update rate. WLAN 95% within 

1 – 5 m 

Indoor: ~ 32 m 

Outdoor: ~ 95 m 

 

> 200 GBP Readily available in 

most buildings. 

1. Signal strength degrades because of 

changes in physical conditions. 

2. Precision is low. 

3.High power consumption 

RFID 95% within 

1 – 3 m 

<= 100 m > 650 GBP 1. Quick response 

time. 

2. Unaffected by non-

line of sight 

condition. 

1. Low power supply. 

2. Sporadic location updates. 

Cellular Cell based <=  35.0 km >300 GBP Presence of 

infrastructure. 

1. Infrequent availability of the signal indoors. 

2. Affected by multipath. 

UWB 95 % within 

15 cm – 4 m 

50 m (with 

reduced accuracy) 

9m: (normally 

with chips due to 
power cap) 

> 900 GBP 1. High bandwidth. 

2. Low operating 

frequency. 

Precise clock synchronization required 

between transmitter and receiver. 
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Bluetooth 95%  within 
10 m – 20 m 

<=100 m >  200 GBP High speed data 
transfer. 

 

Explicit links between devices required. 

 

Magnetic 95% within 
0.1 – 2 m 

Available 
everywhere. 

Not applicable Available 
everywhere. 

1. Flux density varies due to interference from 
the surroundings. 

2. Precision is low. 

Inertial 95% within 

1 – 5 m 

Indoor and 

outdoor 

Not applicable 1. High update rate. 

2. Portable and easy 

to handle. 

1. Error accumulation with time. 

2. Reference is linked to initial point. 

3. Performance depends on the quality of 
inertial sensor. 

landmark 95% within 
1 – 3 m 

1-10 m >  100 GBP High reliability and 
high precision. 

1. Inability to work under thick smoke, gust of 
air particles and dark conditions. 

2. Ambient noise in the form of light or 
thermal radiation, signal reflections and 

illumination variability 

3. Time and effort needed to augment 

environment. 

Sonic 95% within 
3 cm – 4 m 

2-10 m >  1000 GBP 1. Robust to 
multipath fading. 

2. Privacy is 

maintained. 

1. Noise from the surroundings. 

2. Variation with temperature. 

Table 2.6: Summary of the positioning technologies and systems.  
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3. Chapter 3: Case study – feature based localization 

This thesis is about investigating techniques that can be employed for low cost accurate, reliable, 

logical localization of the pedestrians in buildings with minimal usage of infrastructure. Based on 

the research gaps identified in the previous chapter, it is understood that the key to solving the 

problem of indoor pedestrian localization is a combination of different positioning techniques and 

sensor modalities. This chapter provides a first step towards developing such a system. 

Smartphones have redefined the notion of mobile computing platform. Being low cost, nearly 

ubiquitous, easily available, portable, and affordable by all these can also support positioning 

[226]. Also, as stated by Kothari et al. [227]. 

“In recent years, smart-phones have re-defined the notion of mobile computing platforms. 

Ever improving features of affordability, ubiquity, and portability, increased sensory and 

computational power along with low power consumption fuelled by readily available batteries, 

have opened up a number of interesting applications. One such application is software that is 

location-aware.” 

Therefore this research’s first focus was to investigate how the smartphones can be used 

for positioning. In principle, this chapter investigates the performance characteristics of 

smartphone embedded INS – accelerometer and gyroscope and also investigates how a single 

sensor – gyroscope can be used for positioning. Parts of this chapter are based on the paper entitled 

“Vehicle localization based on heading data using low cost sensors", which was presented in 46th 

Annual Conference of the Universities Transport Study Group (UTSG) held in Newcastle, UK 

[228] (copied in Appendix  A). 

To begin with, this chapter first gives an introduction about the Android platform. Next, it 

describes few of the salient features of the used smartphone – HTC Sensation Z710e  

in Section 3.2. In Section 3.3, it investigates the performance characteristics of INS embedded in 

this smartphone. Third, this chapter presents a proof of concept study to localize a smartphone 

mounted on top of a toy vehicle in Section 3.4. And lastly, findings from this chapter are 

summarized in Section 3.5. The key finding of this chapter is that feature detection in an INS 

enables error bounded localization in a feature rich map. 

3.1 Android 

Android is an open source Linux based software stack for mobile devices that is created by open 

handset alliance (OHA). The OHA is an alliance of several handset manufacturers, software 

providers, mobile operators and integrated chip manufacturers like Google, Intel, HTC, etc. [229]. 

The Android is available in different versions. The Android 1.x and 2.x versions are for 

smartphones and low-end tablet computers, whereas the Android 3.x version is only for tablet 
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computers. The recent version of Android is the 4.x series. It combines the functionalities of the 

2.x and 3.x series, and is also applicable to latest smartphones and tablets [230].  

 The Android operating system is supported by a software development kit (SDK) to create 

new applications. These applications are written in Java programming language [231]. The 

architecture of an Android operating system is illustrated in Figure 3.1. It is sub-grouped into five 

categories which are as following [232]: 

 Application layer: This layer is the top most layer and the applications are written in this 

layer.  

 Application framework: The framework consists of blocks with which the application 

interacts with. These blocks are responsible for managing the basic functions of phone 

like resource management, voice call management etc.  

 Libraries: The available libraries are written in C/C++ and they are called through a Java 

interface.  

 Android runtime: The Android runtime is sub-divided into two components. These are as 

follows: 

 Core libraries: The core libraries provide most of the functionalities defined in 

the Java core libraries. 

 Dalvik virtual machine: The machine operates like a translator between the 

application side and the operating system. It is optimised for low processing 

power and low memory requirements.  

 The kernel: The kernel is based on Linux operating system. It is responsible for managing the 

hardware and contains essential device drivers. Moreover, it is also responsible for memory 

management, process management and networking. 
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Figure 3.1: Android architecture diagram (Source: [232]) 

As a part of the project, I was given HTC Sensation Z710e, to work on. Some of the salient 

features of the smartphone are discussed in the following section – Section 3.2. However, on 

comparing the features of the smartphone – HTC Sensation Z710e with the other smartphone 

present in the market (see Table 3.1), we noticed that the HTC Sensation Z710e had rich set of 

sensors in comparison to the other smartphones that can provide positioning at lesser price range 

with the average acceptability. Therefore, we planned to carry on this research work with HTC 

Sensation Z710e. It is to be noted that the given costs of smartphones and ratings in Table 3.1 are 

of the year 2012 when we started off this research study.  
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Smartphone Features Threats Ratings 

(out of 5) 

Cost 

(£) 

Motorola 

Atrix 2 

Sensors: Fingerprint, accelerometer, 

proximity, compass, camera.  

Connectivity: WLAN, Bluetooth, GPS, 

USB 

Processor: 1.5 GHz dual core 

No radio 4.0 250 

Samsung 

Galaxy S2 

Sensors: Accelerometer, gyro, proximity, 

compass and camera. 

Connectivity: WLAN, Bluetooth, GPS, 

USB, Near Field Communications (NFC) 

and Radio 

Processor: 1.2 GHz dual core 

Java via 

MIDP 

emulator 

4.5 350 

Motorola 

Razr XT910 

 

Sensors: Accelerometer, proximity, 

compass and camera. 

Connectivity: WLAN, Bluetooth, GPS and 

USB. 

Processor: 1.2 GHz dual core 

No radio 4.0 270 

Samsung 

Galaxy 

Nexus 19250 

Sensors: Accelerometer, gyro, proximity, 

compass, barometer and camera. 

Connectivity: WLAN, Bluetooth, GPS, 

USB, NFC. 

Processor: 1.2 GHz dual core Cortex-A9 

No Radio 

and No 

Java 
support 

4.5 240 

HTC 

Sensation 

Z710e 

Sensors: Accelerometer, gyro, proximity, 

ambient light sensor, compass and camera. 

Connectivity: WLAN, Bluetooth, GPS, 

USB, NFC and radio. 

Processor: 1.2 GHz dual core Scorpion 

Not 

applicable 

3.5 320 

Sony 

Ericsson 

Xperia X12 

Sensors: Accelerometer,    proximity, 

compass and camera. 

Connectivity: WLAN, Bluetooth, GPS, 

USB, NFC and radio. 

Processor: 1.0 GHz Scorpion 

Not 

applicable 

3.0 280 

Table 3.1: Top Android smartphones launched in 2011 [233-238]. 



Chapter 3: Case study- feature based localization 

69 

 

3.2 Salient features 

HTC Sensation Z710e is co-developed by Google and HTC. It uses Android version 2.3.4 

(Gingerbread), and is also upgradable to version 4 (Ice cream Sandwich). Table 3.2 summarizes 

few of the key features of this smartphone [239, 240]. 

S. No.  Properties Specifications 

1. Network 2G & 3G  

2.  Physical 

Dimensions 
Height: 126.1mm; Width: 65.4 mm; Depth: 11.3 mm; Weight: 148 
gram 

3. Memory 1. Internal phone storage: 1 GB,  768 MB RAM  

2. Expansion slot: micro-SD, up to 32 GB, 8 GB included 

4. Connectivity 1. GPRS: Up to 114 kbps  

2. EDGE: Up to 560 kbps  
3. WLAN: Wi-Fi 802.11 b/g/n, and Wi-Fi hotspot  

4. Bluetooth: Yes, version 3.0  

5. USB: Yes, micro USB version 2.0  

6. Near field communications  
7. GPS: Yes  

5. Sensors Accelerometer, gyroscope, digital compass, proximity sensor, 

ambient light sensor and camera (8MP + VGA) 

6.  CPU  Dual-core 1.2 GHz Scorpion 

7. Battery 1. Stand-by: Up to 350 hours (2G) / Up to 400 hours (3G) 

2. Talk time: Up to 8 hour 20 minutes (2G) / Up to 6 hour 40 
minutes (3G) 

8. Display 540 x 960 pixels, 4.3 inches  

Table 3.2: Some of the key features of HTC Sensation Z710e. 

Table 3.2 shows that this smartphone is inlaid with various essential technologies and 

components that can not only assist in making phone calls but can also assist in the process of 

positioning. For instance, this smartphone has 2G and 3G network connectivity. This enables us 

to make voice and video calls, etc. over the network. While the inbuilt sensors such as INS – 

accelerometer, gyroscope and digital compass, and technologies particularly RF based such as 

Wi-Fi and Bluetooth can be used for positioning.    

As discussed in the previous chapter (see Chapter 2, Section 2.2.2), RF based positioning 

technologies were sufficiently able to locate the pedestrian indoors. However, their performance 

was primarily limited because of two key constraints. First, they required deploying infrastructure 

in terms of Wi-Fi APs, Bluetooth beacons, etc. for positioning and second they required a data 

connection between the transmitter and receiver. Also, the quality of data connection significantly 
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degraded with the change in infrastructure of the indoor environments. As a result, the positioning 

solution behaves unexpectedly.  

On the other hand, INS particularly suffered from drift errors (see Chapter 2, Section 2.2.4). 

This made the inertial based positioning solution unreliable. However, it provided an autonomy 

in positioning, since these did not required the support of any form of infrastructure or any other 

facilities for positioning [134].  Also, as it is known from the literature review (see Chapter 2), 

that there is always an accuracy and cost trade-off. The systems that result in minimum 

localization error employ expensive sensors. So the following experimental tests (detailed in the 

next Section) are devised to investigate the performance of smartphone embedded INS – 

accelerometer and gyroscope.   

3.3 Performance analysis of smartphone embedded INS 

The smartphone HTCZ710e has an ultra-low power digital three-axis accelerometer sensor 

and an ultra-low power digital three axes gyroscope sensor manufactured by Invensense [234]. 

The accelerometer sensor measures the acceleration of device (in m/s2), by measuring the forces 

affecting the sensor. Let F be the forces affecting the sensor and m is the mass of the device so 

F = m ẍ (3.1) 

ẍ =  F m⁄  (3.2) 

where ẍ is the acceleration of the device. The gyroscope sensor measures the turn rate 

(angular velocity) of the device (in rad/s). Integrating the gyroscope sensor measurements over 

time provides the total change in angular position during the integration time. While double 

integrating the accelerometer sensor measurements over a period of time provides the relative 

change in linear position during that time [231].   

These inertial sensors – accelerometer and gyroscope are continuously subjected to errors 

which limit the accuracy to which the correct value can be measured [241]. Primarily, there are 

two types of error [133] – systematic and random. The systematic errors are deterministic in 

nature. These can be removed by calibration while random noise errors are stochastic in nature 

and often have a Gaussian distribution [3]. The systematic errors include the bias errors and the 

scale factor errors. These errors govern how well the positioning system would perform. The 

actual value of the gyroscope angular velocity θ̇(t) and the accelerometer linear acceleration ẍ(t) 

differ from the measured values by addition of these errors as illustrated by the following 

equations 

Gyroscope: θ̇(t) = s θ̂̇(t) +  ϵ +  μ (3.3) 

Accelerometer: ẍ(t) = sẍ ̂(t) +  ϵt +  μ (3.4) 
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where θ̇(t) and ẍ(t) are the actual value of the angular velocity and acceleration at time t 

respectively. θ̂̇(t) and ẍ ̂(t) are the measured value of angular velocity and acceleration at time t 

respectively. ϵ is a constant bias error, s is a scale factor error and μ is a random noise error with 

mean zero and Gaussian distributed such that 

 μ~ N(0, σ2)     (3.5) 

where σ is the standard deviation. A short discussion about these errors is detailed below.  

3.3.1 Bias error 

The bias of a sensor is the average error measured over a specified time at specified operating 

conditions. The bias generally, remains fixed throughout the INS operating period but may vary 

between different operating periods [133]. In a gyroscope, a constant bias error of ϵ when 

integrated causes the angular position θ(t) to grow linearly with time t. In contrast, a constant 

bias error of ϵ in an accelerometer causes the linear position x(t) to grow quardratically with time 

t when double integrated. Integrating equations 3.3 and 3.4, considering scale factor error to be 

zero to study the effects of only bias error on the actual values of the sensors. 

Gyroscope:  θ(t)=  ∫ θ̂̇(t) dt +  ϵt (3.6) 

Accelerometer: x(t) =  ∬ x̂̈(t) dt + ϵ 
t2

2
 (3.7) 

 where θ(t) is the angular position in radians and x(t) is the linear position in metres at time 

t. Therefore, it is essential to remove this error before proceeding further. It can be measured by 

taking a long term average of the sensor’s output when the smartphone is neither accelerating nor 

undergoing any rotation. Table 3.3 lists the constant bias errors present in the accelerometer and 

the gyroscope, when the smartphone was kept at rest on a table for 7 hours. For an accelerometer, 

the bias error was calculated by aligning each of the device’s sensitive axes parallel to gravity g 

and then subtracting the mean value of long idle log along that axes from g.  In the case of 

gyroscope, when the device is lying still the expected output is zero so therefore any offset from 

zero is a bias in the sensor, and the mean value from a long idle log is the constant bias error from 

the sensor. So the mean value from a long idle log was taken to calculate the constant bias error 

of the gyroscope sensor. 

Axis Accelerometer (m/s
2
) Gyroscope (rad/s) 

X -0.4791 -0.2895 x 10-5 

Y -0.3021 -0.0502 x 10-5 

Z 0.1228 -0.0533 x 10-5 

Table 3.3: Constant bias errors present in the two sensors - accelerometer and gyroscope. 
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3.3.2 Scale factor error 

The scale factor error is the multiplicative error that represents the ratio of the change in output 

to the input from unity. The scale factor varies non-linearly with temperature but for a limited 

temperature range the scale factor could be considered as constant [3]. In an accelerometer and 

gyroscope, the scale factor error scales the true value by a factor s on integration as illustrated by 

equations 3.8 and 3.9 respectively.  Integrating equations 3.3 and 3.4, considering bias error to be 

zero to study the effects of only scale factor error on the actual values of the sensors. 

Gyroscope: θ (t) = s ∫ θ̇ ̂(t)dt (3.8) 

Accelerometer: x(t) =  s ∬ x̂̈(t) dt (3.9) 

 where θ(t) is the angular position in radians and x(t) is the linear position in metres at time 

t. The scale factor error can be measured by affecting the sensor with a fixed input signal for a 

period of time while measuring the output signal. Table 3.4 lists the scale factor errors present in 

the accelerometer and gyroscope respectively. In an accelerometer, the scale factor error was 

calculated by aligning the smartphone’s sensitive axes parallel to the gravity g after the bias error 

has been removed by calibration and subsequently, measuring the corresponding acceleration 

along the three axes. 

Axis Accelerometer (m/s
2
) Gyroscope (rad/s) 

X 1 .0481 0.9828 

Y 1. 00687 0.9780 

Z 0.9781 0.9858 

Table 3.4: Scale factor errors present in the two sensors - accelerometer and gyroscope. 

 In contrast, the scale factor error along the gyroscope’s sensitive axis was calculated by 

comparing the cumulative change in the angles to the true value when the gyroscope is rotated by 

fixed number of turns along the three axes. The smartphone was placed on a rotary tripod, with 

the axes of gyroscope aligned to the rotational axis of the tripod. The tripod was then rotated 5 

full turns (31.41 radians) in clockwise direction. The accumulated rotation along the smartphone’s 

coordinate axes - pitch, roll and yaw (see Figure 3.2(B)) were 30.8774, 30.7272 and 30.9712 

radians respectively. So the scale factor error was determined according to equation 3.10. 
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Figure 3.2: (A) Global Coordinate System (B) Smartphone’s Coordinate system 

s =  
Accumulated rotation value

True value
   (3.10) 

3.3.3 Random noise error 

The output of the accelerometer and gyroscope is perturbed with thermo-mechanical and 

electrical noise which fluctuates at a rate much lower than the sampling rate. The spectrum of 

such a noise signal for frequencies below 1Hz is white so it cannot be calibrated and compensated. 

The result of integrating the random noise causes the bias to fluctuate and creates angular random 

walk in the integrated gyroscope output and velocity random walk in the integrated accelerometer 

output. The characteristic of such a noise is modelled by the Allan Variance method [133, 241]. 

The steps of computing Allan Variance are as follows:  

1. Assume N samples of data from the sensor output. 

2. Divide the data into n equal clusters of length τo with n < N/2 

3. Average the data in each cluster to obtain a list of averages a(t1), a(t2), a(t3)…… a(tn) 

4. Compute Allan Variance using (3.11) 

AV = 
1

2 (n − 1)
∑(a (t)i+1 −  a (t)i)

2

n−1

i=1

 
(3.11) 

where n is the number of clusters and N is the number of data samples from the sensor. The 

Allan variance is plotted as a function of averaging time on a log-log scale and the slope of Allan 

variance plot represents the random process which helps to identify the random noise 

characteristics in the sensor. The random walk introduced by the white noise appears as an 

asymptote with slope −0.5 and the bias instability appears as a flat region with slope 0 in the Allan 

Variance plot. Numerically, the bias instability is measured by reading the minimum value on the 

Allan variation plot and the random walk is measured by drawing a line through the measured 

points on the Allan variation plot that form the downward slope at τo = 1 [241]. Table 3.5 and 
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Table 3.6 lists the random noise errors present in the accelerometer and gyroscope sensor 

respectively derived from the Allan Variance plot as shown in Figure 3.3((A) and (B)). 

Axis Bias Instability (m/s
2
) Random Walk (m/s/√s) 

X 0.0092349 at 8s 0.01094 

Y 0.0032846 at 16s 0.005288 

Z 0.00736629 at 8s 0.008921 

Table 3.5: Random noise characteristics of the accelerometer. 

 

Axis Bias Instability (rad/s) Random Walk (rad/√s) 

X 1.07821x10-7 at 8192s 1.344 x 10-4 

Y 4.45602 x10-9 at 8192s 6.641 x 10-6 

Z 5.20406x10-26 at 10000s 4.264 x 10-24 

Table 3.6: Random noise characteristics of the gyroscope. 
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Figure 3.3: Allan Variance characteristics of the two sensors: (A) accelerometer and (B) 

gyroscope. 

Interestingly, there are two key findings from this investigation of the performance 

characteristics of the smartphone embedded INS. These are as follows:  

1. Bias instability and random walk can have a significant impact on the INS performance 

in measuring position and orientation. This instability and random walk will be 

manifested as a ‘drift’ in the overall positioning process. Therefore ‘feature detection’ to 

periodically correct drift would be desirable.  

(A) 

(B) 
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2. Bias instability and random walk are significantly less for the gyroscope sensor. Also, 

single integration is done on the gyroscope signal to obtain the angular position (see 

equation 3.6 or equation 3.8). In comparison to the double integration of the 

accelerometer signal to obtain the linear position (see equation 3.7 or equation 3.9). So 

drift will be much less severe in the case of a single integration i.e. for a gyroscope signal. 

Therefore, methods of localization that employ the smartphone’s gyroscope sensor may 

be more accurate than methods that use the smartphone’s accelerometer sensor.   

Based on these key findings, a case study was devised, involving the usage of a single 

smartphone embedded inertial sensor – gyroscope to localize a toy vehicle in an artificial test bed 

– Scalextric track.  Furthermore, correcting the drift via ‘feature detection’. This is detailed in the 

following section – Section 3.4. Scalextric is a track based slot car racing system invented by Fred 

(B F) Francis [242] in 1957.  

3.4 Case study 

Given the relatively robust error characteristics of the gyroscope sensor, a case study experiment 

was designed to further test the performance of the gyroscope sensor and also to prove the concept 

of gyroscope based localization. The gyroscope based localization approach will be discussed in 

Section 3.4.1. A test bed – Scalextric track was designed with a well-defined geometry (see Figure 

3.4). Circular curved edges were of radii 0.33 m at angle π/2 radians. The straight edges were of 

length 0.17 m.  A proof of concept experiment was carried out to localize a smartphone mounted 

on top of a toy vehicle (see Figure 3.4) driving around a Scalextric track. It allowed us to move a 

smartphone around in a control environment in a very repeatable way where ground truth is 

obtained relatively easily. 

 

 

Figure 3.4: A slot car ‘Scalextric’ racing track powered by a DC voltage supply with 

smartphone mounted on top of the toy car kept at the top left. The track consist of several 

curved and straight edges with temporary bridges placed at some distance apart from each other. 
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The small footprint of the track combined with the high speeds of the vehicle was designed 

to create a significant challenge for a gyroscope based localization. To this end, a gyroscope based 

localization technique was designed specifically using the heading data obtained from gyroscope 

sensor. The heading data is then combined with a priori knowledge of the path’s curvature to 

estimate the location of a toy vehicle in the map. The technique is discussed in the following sub-

section 3.4.1. In sub-section 3.4.2 experimental setup and results are detailed. Following this, in 

sub-section 3.4.3 potential sources of error in the Scalextric model of localization are discussed. 

3.4.1 Gyroscope Localization technique 

The block diagram of system model is depicted in Figure 3.5. The system model assumes that the 

toy vehicle is always moving in forward direction only. Furthermore, it also utilises the fact that 

the Scalextric track is circular at curved edges and straight at the mid edges. The key component 

of this designed system is a gyroscope sensor embedded in smartphone and digital map of the 

track. The measurements from gyroscope are filtered and subsequently, mapped onto the digital 

map of the track using a data fusion algorithm to estimate the toy vehicle’s position in the 

Scalextric track. Technical details of the algorithm and the working of components are discussed 

below. 

Digital map of the track Data fusion

Localization

Gyroscope

Accelerometer

Magnetometer

Smartphone

1 2

 

Figure 3.5: System overview showing the hardware and software components. Steps followed 

by the approach during localization. (1) The system obtains the information from digital map of 

the track. (2) The gyroscope provides the turn-rate of smartphone mount. 

3.4.1.1 Gyroscope 

As mentioned earlier (see Section 3.3), the gyroscope measures the turn rate of the device in three 

orthogonal directions. And integrating these measurements over time provides the total change in 

angle during the integration time. Since, we were only concerned with the heading of the toy 
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vehicle therefore we only integrated along the smartphone’s z axis to derive the yaw (see Figure 

3.2(B)); considering that the device’s sensitive z axis is perpendicular to the ground. 

3.4.1.2 Digital map of the track 

A virtual map was constructed based on the geometry of the track. Continuous curved and straight 

edges were represented by smooth arc splines in the virtual map that are composed by joint 

circular arcs of radii 0.33 m and line segments of length 0.17 m as depicted in Figure 3.6. The 

map contains landmarks of low lateral dimension represented by blue triangles. These mark the 

position of bridges over the track that is used as reference points (for evaluation only, and not in 

the positioning algorithm). The straight edges are denoted by e1, e2, e3 and e4. 

 

Figure 3.6: Virtual map of the track, depicting bridges with the triangle markings at some 

distance apart. The four straight edges are represented by e1, e2, e3 and e4.  

3.4.1.3 Data fusion algorithm 

The INS assumes a known initial position. This is also one of the primary reason for it being used 

along with other positioning systems such as GPS and Wi-Fi [243] rather than as independent 

positioning system. Similarly, in this case it is assumed that the initial conditions are known. The 

point at which the toy vehicle crosses the first bridge was considered as the starting position. The 

algorithm was designed based on the knowledge of the geometry of track and its main idea was 

to combine the direction of movement of the toy vehicle provided by the smartphone with the 

curvature of the track provided by the digital map. As mentioned by Mariani et al. [244] a turn is 

considered detected when the orientation around the vertical axis has changed by a sufficient 

value. Therefore based on this assumption a threshold limit of 0.025 rad was set to decide 

whether the toy vehicle was at the curved edges or at the straight edges as depicted by the 

following equations 
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∆θ = θt − θt−1  (3.12) 

∆θ {
> 0.025 rad, on curved edges  
≤ 0.025 rad, on straight edges

  
(3.13) 

where θt is the heading of toy car at time instant t and θt−1 is the heading of toy car at time 

instant t –  1. The threshold value was set by observing the difference in values of azimuth (θ) 

over 30 different runs of the toy car for voltages greater than 7.0 volts (see Figure 3.7 and Figure 

3.8). Consider the toy car starts moving from the straight edge, its initial direction is saved as the 

direction, in which it last moved straight. All the following samples are compared to the previous 

samples in the straight direction. If one sample differs by more than 0.025 radians from the last 

sample in straight direction, the corner is detected and, to determine the end of a corner, for each 

new sample, the difference between the newest and the last sample is calculated. If two samples 

lie in between a previously specified boundary of constant size of 0.025 rad, the end of a corner 

is detected i.e. starting of a straight edge (see Figure 3.8). 

 

Figure 3.7: Example of a corner and curved edges detected in a single lap.  
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Figure 3.8: End of a turn example (sample data as in Figure 3.7). 

The main steps of the algorithm are as follows: 

Let the state vector X be defined as 

X =  [

x1

x2

ẋ1

ẋ2

]  

 

(3.14) 

where x1 and x2 represent the position coordinates of the toy vehicle in the global 

coordinate system and, ẋ1 and ẋ2 represent the rate of the change of the position of the toy vehicle 

in the track. If the difference in the measured heading goes beyond the threshold limit, it would 

imply that the toy vehicle is at the curved edges, then 

x1,t = rcos(−θt−1) + ε1,c (3.15) 

x2,t = rsin(−θt−1) +  ε2,c (3.16) 

ẋ1,t = 
x1,t−1 − x1,t−3

∆t
 (3.17) 

ẋ2,t = 
x2,t−1 − x2,t−3

∆t
 (3.18) 

And if the difference in heading is below the threshold limit, it would imply that the toy 

vehicle is at straight edges, then 

x1,t = x1,t−1 + v1,s∆t (3.19) 

x2,t = x2,t−1 + v2,s∆t (3.20) 
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ẋ1,t = v1,s (3.21) 

ẋ2,t = v2,s (3.22) 

At transition, from the curved edges to straight edges 

v1,s = {
ẋ1,t−1, if horizontal and on edge e2 or e4

0,     if vertical and on edge e1or e3          
  

(3.23) 

v2,s =  {
0,     if horizontal and on edge e2 or e4

ẋ2,t−1, if vertical  and on edge e1 or e3
 

(3.24) 

Here x1,t, x2,t and x1,t−1, x2,t−1 represent the position coordinates of the toy car in the track 

at time t and t − 1 respectively. ẋ1,t and ẋ2,t represent the rate of change of the position of the toy 

car in the track at time t. θt−1 is the heading of the toy car in the track provided by the gyroscope 

at time (t − 1) and r is the radius of the curvature of circular edges. ε1,c and ε2,c are the position 

coordinates of the centre of the circular curved edges. ∆t is the time difference between the last 

two time steps i.e. equal to 0.04 seconds. v1,s and v2,s are the velocities of the toy car at the 

straight edges.  

The three dimensional angular velocity vector φt provided by the gyroscope in the 

smartphone’s reference frame is used to calculate an axis angle vector ψt which describes the 

orientation of smartphone in global frame of reference (see Figure 3.2(A)) at time t. Let  

qt =  

[
 
 
 
 cos (

|φt | ∆t

2
)

φt 

|φt |
sin (

|φt| ∆t

2
)
]
 
 
 
 

 

 

(3.25) 

denotes the quaternion [245] formed from the angular velocity vector φt at time t and ∆t 

be the sampling rate of the gyroscope. Then the current quaternion qt based on the last time step 

is calculated by equations 3.26 and 3.27 [134].    

qt =  0.5 ∗ qt−1 ∗ pt−1 ∗ ∆t  + qt−1  (3.26) 

pt−1 = [0 φt−1]
T (3.27) 

where ∗ represents the quaternion multiplication and pt−1 is the transpose vector of the 

quaternion qt .So, the estimate of the axis angle vector is then obtained by the transformation of 

quaternion as given by equation 3.28 

ψt = fq2e (qt) (3.28) 

where the function fq2e denotes the transformation of the orientation stored as a quaternion 

to the axis angle vector via the direction cosine matrix. The resulting value of the axis angle 

vector ψt
Z, corresponding to global vertical axis is then taken as the estimate of the measured 

heading θt for the course of the toy vehicle i.e. 

θt = ψt
Z     (3.29) 
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3.4.2 Experimental setup & results 

As depicted above, Figure 3.4 shows the experimental setup – a slot car racing track: ‘Scalextric’ 

consisting of several curved and straight edges. A smartphone (HTC Sensation Z710e) was 

mounted on top of a toy car and the toy car was driven repeatedly on the Scalextric track. The 

speed of toy car was controlled by power supply – BST PSD 30/3B [246] having an accuracy of 

± 1% and noise root mean square (rms) error of 0.3 milli-volt. A current was applied to the track 

which powers the car’s motor. The voltage was regulated, and this pushed the toy car in forward 

direction. The experiment was performed at three different voltage conditions – 7.2 volts, 7.65 

volts and 8.1 volts, and the smartphone’s gyroscope sensor logged the data at 50Hz. 

 The toy car was driven around the Scalextric track and the position estimated by the model 

(described in Section 3.4.1) is compared to the actual position (ground truth) of the known 

landmarks (bridges, illustrated in Figure 3.4). Specifically, these bridges were placed at three 

straight edges and three curved edges. The starting point of toy car was taken as the point where 

the toy car crosses the first bridge. To estimate the toy car’s position, changes in the photo-sensor 

embedded in the smartphone were monitored. An event is generated by the photo-sensor when 

the toy car passes under the bridge. These events are time synchronised with the events generated 

by the gyroscope. The precise positions of the bridges were measured off-line. The position error 

pe of the sample points in toy car’s trajectory is then estimated using the bridges as reference 

points using equation 3.30. 

pe = Actual position − Estimated position (3.30) 

Figure 3.9 displays the result of eight laps for the three test cases, 7.2 volts, 7.65 volts and 

8.1 volts.  A cursory examination on the results show that the positioning error histogram curves 

across different voltages is symmetrical with negative bias.  
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Figure 3.9: Position error histograms, corresponding to three test cases – 7.2 volts, 7.65 volts 

and 8.1 volts during eight laps of the track. 

The results also indicate that the position error is independent of the toy vehicle’s speed. 

This is as expected. Since, there is no correlation between the position error and the supplied 

voltage. The same characteristic can also be observed from Figure 3.10 and Figure 3.11. 

Specifically, from Figure 3.10 by looking at the times the toy car takes to complete 8 laps. It 

indicates the speed of toy car to be growing with voltage. However, position error appears to be 

random throughout. Figure 3.11 depicts the root mean square error as a function of number of 

laps, which again indicates the same i.e. the position error is independent of the supplied voltage 

(or speed). Moreover, it can also be observed that the position error does not grow with time or 

instead, with the number of laps. This behaviour is significant. As traditional INS positioning 

approach suffers from drift [133, 134], the method outlined here does not. This can be attributed 

because of the fact, that the algorithm detects the presence of ‘features (corners)’ on the known 

track and calibrates itself according to the equations 3.15 and 3.16. In this case, the corner is a 

curved edge. This ‘feature (corner) detection’ and ‘map method approach’ would be central to the 

methods of pedestrian localization discussed in later chapters (Chapter 6 and Chapter 7).  
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Figure 3.10: Positioning error, corresponding to three test cases - 7.2 volts, 7.65 volts and 8.1 

volts with increasing time. 

 

Figure 3.11: Root mean square error, corresponding to three test cases - 7.2 volts, 7.65 volts 

and 8.1 volts. 

The performance of algorithm was also investigated separately in the curved edges and 

straight edges. It was our belief that the performance shall be better in the curved edges. The 

collected data was classified separately into the curved edges and straight edges. The positioning 

error was then evaluated separately at the curved edges and straight edges with the same process 
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as described above. As expected, it was observed that the performance of algorithm was better in 

the curved edges in comparison to the straight edges in all the three test cases (see Figure 3.12). 

Again, the behaviour could be explained with the same reasoning as mentioned before, i.e. the 

algorithm self-calibrates itself on detection of the ‘corner feature – a curved edge’. Since all the 

measurements from gyroscope sensor were made on these curved edges. As a result of which the 

presence of drift was less severe in these curved edges in comparison to the straight edges.  

 

 

Figure 3.12: Position error histograms in the (A) curved edges (B) straight edges corresponding 

to three test cases- 7.2 volts, 7.65 volts and 8.1 volts. 

Table 3.7 summarises the precision (95% confidence level), and mean absolute error (MAE) 

for three test cases. The MAE is calculated according to the following equation  
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MAE =  
1

N
∑ ⌊pei

⌋N
i=1     (3.31) 

where N is the number of data points i.e. equal to 40. The error appears to be slightly biased 

towards the negative side. The 95% confidence level lies in the region -4.5 to 3.1 cm with MAE 

less than 2 cm. This could be due to the presence of systematic errors (see Section 3.3) that were 

not completely filtered out. Also, there were errors in establishment of the proper ground truth. 

This would be detailed in the next section – Sources of error. 

Volts 95% confidence level 

(cm) 

MAE (cm) 

7.2 -3.81 to 2.55 1.57 

7.65 -4.27 to 3.09 1.60 

8.1 -4.5 to 3.06 1.67 

Table 3.7: Summary of the position error for three test cases – 7.2 volts, 7.65 volts and 8.1 

volts. 

3.4.3 Sources of error 

There were several sources of potential error in this experiment that can be enumerated as follows: 

i. Bridge detection: The lateral dimension of the bridges is 4 cm. This would cause the true 

position to deviate by ±2 cm of the ground truth target (centre of the bridge). 

Theoretically, the length of the bridge for proper detection by means of photo-sensor is 

less than 2.4 cm (calculations shown below), but it was observed by several tests that this 

length was insufficient leading to missed detection. Therefore, a wider bridge of 4 cm 

was used to ensure detection.  

Calculations 

Polling rate of the photo-sensor = 50Hz (3.32) 

Length of the track = 280 cm  (3.33) 

Number of laps = 5 (3.34) 

Total Distance travelled = 280x5 = 1400 cm (3.35) 

    7.2 Volts 

Time elapsed in 5 laps = 14.6 seconds (3.36) 

Speed of the toy car =
Distance travelled

Time taken
=  0.96 m/s 

(3.37) 

Distance travelled in 20 millisecond = 0.96 x 100 x 
1

50
  (3.38) 

                             = 1.92 cm  

7.65 Volts  
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Time elapsed in 5 laps = 13.2 seconds (3.39) 

 Speed of the toy car =
Distance travelled

Time taken
=  1.06 m/s (3.40) 

Distance travelled in 20 millisecond = 1.06 x 100 x 
1

50
  (3.41) 

                        = 2.12 cm   

8.1 Volts  

Time elapsed in 5 laps = 12 seconds (3.42) 

 Speed of the toy car =
Distance travelled

Time taken
=  1.16 m/s (3.43) 

Distance travelled in 20 millisecond = 1.16 x 100 x 
1

50
  (3.44) 

                        = 2.3 cm   

ii. Mismatch in the timings between the events generated by the photo-sensor and 

gyroscope: Though the system clocks of the gyroscope and photo-sensor are time 

synchronised, it is however noticed that the timestamps associated with the gyroscope 

lags behind the occurrence of a photo sensor event by a delay of less than 10 ms. Since, 

the event listener responsible for handling the events generated by two sensors in the 

Android systems have a marginal time gap [247]. Furthermore, because of the limited 

resources on the device, and the existence of other processes such as garbage collection 

reduces the sampling rate of these sensors [232]. This causes the true position to deviate 

by ± 0.5 to ± 0.6 cm (calculations shown below) of the ground truth target.  

Calculations 

7.2 Volts  

From (3.31), Speed of the toy car =0.96 m/s (3.45) 

Distance travelled in 10 millisecond = 0.96 x 100 x 0.01  (3.46) 

                                                        = 0.96 cm  

7.65 Volts  

From (3.31), Speed of the toy car =1.0 m/s (3.47) 

Distance travelled in 10 millisecond = 1.0 x 100 x 0.01  (3.48) 

                                                        = 1.0 cm  

8.1 Volts  

From (3.31), Speed of the toy car =1.16 m/s (3.49) 

Distance travelled in 10 millisecond = 1.16 x 100 x 0.01  (3.50) 

                                                        = 1.16 cm  
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i. Sensor noise and drift error: The systematic error largely determines the mean error while 

the random noise error has zero mean and mainly impacts the error variance. For instance 

a bias error of -0.0533 x 10-5 rad/s (see Table 3.3) in a gyroscope along z axis would cause 

the net decrease in the true orientation to decay by 3.2 x 10-5 radians in 1 minute along z 

axis. A random noise of 4.264 x 10-24 rad/√s would cause the standard deviation of 

orientation error after 1 hour to be 4.264 x 10-24 . √60 =33.02 x 10-24 radians along z axis.  

3.5 Summary 

This chapter provided a first essential step towards our aim. The principal behind this work was 

to show that the ‘low cost smartphone embedded INS’ system can be effectively used for 

positioning. However, there is always an associated accuracy and cost trade off. So, we devised 

tests to investigate the performance characteristics of smartphone embedded INS.  The key 

findings of tests are as follows: 

 Bias instability and random walk can have a significant impact on the INS performance 

in measuring position and orientation. This instability and random walk is manifested as 

a ‘drift’ in the overall positioning process. 

 Bias instability and random walk are significantly less for the gyroscope sensor in 

comparison to the accelerometer sensor. 

Based on these key findings, a case study was devised to investigate the usage of ‘smartphone 

embedded single inertial sensor – gyroscope’ to position a moving object (toy vehicle) on an 

artificial test bed – ‘Scalextric track’ with bridges placed at some distances apart. The bridges 

were used for evaluation only and not included in the positioning algorithm. Considering the fact 

that map geometry was well defined and known a-priori, the drift was corrected via ‘feature 

(corner) detection’. This kind of case study has never been reported before. The outcomes of this 

case study are as follows: 

 Position error is independent of the supplied voltage. Or instead, it is independent of 

the speed at which the toy vehicle moves around the whole Scalextric track.   

 Position error does not grow with time, unlike other traditional inertial positioning 

techniques [134]. This behaviour can be attributed because of the fact that the 

algorithm self-calibrates on detecting the presence of ‘corner features’ on the track. 

This ‘feature (corner) detection’ and ‘map method approach’ would be central to the methods 

of localization discussed in later chapters (Chapter 6 and Chapter 7). This case study also showed 

that, it is possible to localize an individual (in this case study: a toy vehicle) without carrying any 

form of dedicated hardware structures like camera, GPS receivers, etc. Furthermore, this case 

study showed that it is possible, in principle to localize an individual in an infrastructure free 

environment. Specifically, an infrastructure free environment is an environment that is devoid of 
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any specialised infrastructure deployment. This specialised infrastructure deployment can be in 

the form of any external hardware installations that is attached to the scene for the purpose of 

localization. For instance, Wi-Fi beacons, RFIDs, QR codes, etc.   

The case study was performed in a control environment – Scalextric track. While in real 

scenario, the building floor plan is not as detailed as an artificial test bed. There are many long 

straight walks, U turnings, ramps, etc. in the building. Also, the movement of an individual 

(whether he/she is a pedestrian or it is a motor vehicle) is unlike the movement of a toy vehicle. 

A shock can occur at each pedestrial foot step or at every switching ‘ON and OFF’ of the motor 

vehicle engine. This can provoke errors in the smartphone embedded INS [248, 249]. The 

following chapter begins to address these concerns by introducing the concept of inertial 

pedestrian dead-reckoning (PDR), and subsequently details the tests for localizing an individual 

– pedestrian in the real indoor environment. 
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4. Chapter 4: Inertial PDR  

The previous chapter was a proof of concept study carried on an artificial test bed – Scalextric 

track. In principal, it investigated whether an individual (toy vehicle) can be localized without 

any support of dedicated hardware or specialised infrastructure deployment using smartphone 

embedded inertial navigation system (INS) in a control environment. The results were 

encouraging – 95% confidence level lies in the region -4.5 to 3.1 cm with MAE less than 2 cm. It 

implied that bounded positioning error was possible using a single inertial sensor, provided the 

geometry of track is well defined. Therefore based on the findings of previous chapter, this chapter 

provides a reference implementation of the smartphone embedded INS to position a ‘pedestrian’ 

in a ‘real indoor environment’ provided there is no support of any kind of infrastructure or 

dedicated hardware.  

 Parts of this chapter are based on the paper entitled “Low cost infrastructure free indoor 

localization", which was published in proceedings of the 5th IEEE International Conference on 

Indoor Positioning and Indoor Navigation (IPIN) held in Busan, South Korea [42] (copied in 

Appendix A).The focus of this chapter is to analyse the inertial sensor measurements recorded 

from smartphone sensors to detect the occurrence of footsteps as well as to indirectly estimate 

step lengths. It also compares various off the shelf foot step detection techniques and stride length 

estimation models. 

From the literature review (see Chapter 2), it was recognised that inertial positioning (see 

Chapter 2, Section 2.2.4) has several advantages. Out of which there are three key advantages, 

specifically for the pedestrian:  

1) Portability:  The inertial sensors are light weight and low power meaning they can be 

easily carried by a pedestrian for continuous positioning.  

2) Suitability:  Importantly, the inertial sensors are suitable for identifying and classifying 

different kinds of human motion. For e.g. jumping, crawling, running, sprinting, 

descending and ascending a ladder or stairs, etc.   

3) Privacy: The inertial sensors offer a degree of location privacy to the pedestrian. It is 

totally dependent on the pedestrian whether he/she wants to share his/her location data to 

a third party or not.  

This autonomy and versatility offers great potential for locating pedestrians in an 

infrastructure free indoor environment. In a PDR system, the accelerometer signal is usually 

applied for calculating linear displacement and the gyroscope or a compass or combination of 

both is used to calculate pedestrian’s heading [145]. PDR are usually applied as frequently 

calibrated PDR or step based PDR (see Chapter 2, Section 2.2.4). Out of which frequently 
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calibrated PDR is often applied, when IMUs are placed on foot otherwise step based PDR are 

preferred choice. Thus, in case of smartphone based PDR system we apply step based PDR. 

The PDR technique has been successfully applied previously to design many positioning 

systems and applications over the last two decades. These are summarized in paper [139]. In 

contrast to all the PDR positioning systems discussed, the smartphone based PDR positioning 

system is different. Since, smartphone orientation is non-static and can vary with time; also the 

smartphone inertial sensors are of relatively low quality [40, 41] in comparison to the other 

commercially available IMUs (see Table 4.1). Therefore, off the shelf stride estimation methods 

(foot step detection techniques and stride length estimation models) would not work for this case. 

So, the following experimental tests (detailed in the Section 4.2) are devised to investigate the 

most suitable stride estimation method for smartphone based PDR positioning system. Also, 

traditional heading estimation technique (detailed in Section 4.1.3) is applied on the smartphone 

PDR positioning system for estimating the course of pedestrian during the whole walk.  

Sensor 

Manufacture 

Invensense  

 

Xsens 

 

Honeywell 

Model MPU-9150  MTi – G  HG1700 

Type Smartphone IMU Factory calibrated IMU Factory calibrated 
IMU 

Cost 100 USD 2500 USD 9,000 USD 

Accelerometer errors 

Bias ±80(x&y) milli-g 

150(z) milli-g 

0.02 m/s2  1-2 milli-g 

Noise 400 micro-g/√𝐻𝑧 0.002 to 0.004 m/s2/√𝐻𝑧 - 

Scale factor error ±3% ±0.03% 300 ppm 

Gyroscope errors 

Bias ±20 0/s ±1 0/s 1 – 10 0/hr 

Noise 0.005 0/s/√𝐻𝑧 0.05 to 0.1 0/s/ √𝐻𝑧 - 

Scale factor error ±3% Not calibrated 150 ppm 

Table 4.1: Comparison of an IMU usually embedded in a smartphone and a factory calibrated 

IMU [136, 250-253].  
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To begin with, the chapter first details the designed smartphone based PDR system in Section 

4.1. Section 4.2 presents the experimental setup and results obtained from the smartphone based 

PDR system. Finally, Section 4.3 summarizes the key findings of this chapter. 

4.1 Smartphone based PDR system 

The algorithmic flow of smartphone based PDR positioning system is depicted in Figure 4.2. 

Initially, the systematic and random noise error (detailed in Section 3.3) is removed out from the 

sensor (accelerometer and gyroscope) data. The sensor (including magnetometer sensor) data is 

then filtered out using a low pass filter (or simply, a moving average) according to equation 4.1 

[254], to remove the high frequency noise present in the signal waveform.  

w(t) =  αw(t − 1) + (1 − α)v(t) (4.1) 

Here w(t) is the filtered signal at time t,  v(t) is the raw signal at time t and α is a constant 

equal to 0.7.  The parameter α was set to 0.7, such that frequencies above 4 Hz (i.e. maximum 

strolling pace, including light running) [255] were suppressed. Figure 4.1 demonstrates that 

“pseudo” peaks are almost removed, resulting in a much smoother signal.  

 

Figure 4.1: Raw acceleration signal (solid) versus filtered acceleration signal (dashed). 

The filtered accelerometer signal is then forwarded to the footstep detection module. The 

footstep detection module detects the pedestrian’s footsteps and also confirms whether the 

pedestrian is really walking. If the pedestrian’s walking state is confirmed, the stride length is 

estimated at each detected footstep while the heading is determined using magnetometer and 
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gyroscope data.  The detected footsteps, headings and stride lengths are substituted in equations 

(2.4) and (2.5) to estimate the relative position of pedestrian.  

Sensor data

Footstep detection

Stride length estimation

Estimated position

Absolute heading 

estimation

Relative heading

Magnetometer data

                                                           

Accelerometer data

Gyroscope data

Low pass filter

 

Figure 4.2: Block diagram of the smartphone based PDR positioning system. 

4.1.1 Footstep detection 

This section investigates footstep detection techniques suitable for smartphone embedded sensors. 

Also, it would present a method to classify whether the pedestrian was really walking or not.  The 

pedestrian state is recognized whether he/she is walking or at rest (static). Based on the state 

recognized (refer Section 4.1.1.4 for details); if they are walking, the footsteps are detected. 

Accelerometer sensors have been commonly used for detecting footsteps and to classify different 

types of pedestrial motions – walking, running, jumping, etc. [256, 257]. The measured 

acceleration values represent a combination of the applied acceleration on the smartphone due to 

motion and the force of Earth’s gravity [3]. Considering the fact that a smartphone can be at any 

position on the pedestrian’s body, with time-varying orientation change, the magnitude of 3-axis 

accelerometer readings ẍ was used, instead of its x, y and z components (ẍx, ẍy, ẍz) as shown 

below 

ẍ =  √ẍx
2  + ẍy

2 + (ẍz − g)2 
(4.2) 

where the component g is Earth’s gravity (equal to 9.8m s2⁄ ) . Since, the Earth’s gravity 

can have sudden changes in the measured acceleration values when the pedestrian switches their 

state of motion (static to walking state or to any other state and vice versa) therefore the Earth’s 

gravity was subtracted out. There are different types of foot step detection techniques that can be 
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used to analyse the acceleration signal for confirmation of the occurrence of footsteps and 

estimation of the step frequency [139, 258, 259]. Here, three of state-of-the-art foot step detection 

techniques for smartphone based PDR positioning system are investigated: 

 Peak detection [145, 260] 

 Zero-crossing [261] 

 Fast Fourier Transform (FFT) [257, 262] 

4.1.1.1 Peak detection 

The peak detection algorithm is based on filtering the magnitude of acceleration signal followed 

by applying a threshold on the acceleration signal [145, 263]. Its current implementation depends 

on high accuracy foot mounted accelerometers [260], which differ significantly from phone-

embedded sensors. We quantify its performance when applied to smartphone embedded sensors 

in Section 4.2. The algorithm counts a valid footstep when local maximum peak (maxima) and 

local minimum peak (minima) are detected in sequence. The value of local maxima should be 

higher than that of the most recent valid local minima by at-least a threshold value  ∆o (equal 

to+0.5 m s2⁄ ) as shown in Figure 4.3. Also, the value of the valid local minima should be lower 

than that of the most recent valid local maxima by a threshold value  ∆t (equal to −0.5 m s2⁄ ). 

The detection thresholds are selected by analysing acceleration magnitudes of over 500 real step 

data points from 6 subjects while keeping in note that false peaks caused by acceleration jitters 

(that are too small in magnitude) are filtered. Table 4.2 shows the results.  

Steps taken Steps detected False positive 

85 84 2 

83 80 4 

88 89 2 

86 86 1 

84 84 1 

86 85 2 

Table 4.2: Performance of step counting algorithm. 

Error of 1 to 2 steps is observed due to the highly unstable pattern obtained towards the end 

of walk. The red stars represent the footsteps detected in Figure 4.3. 
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Figure 4.3: Enlarged view of the foot step detected via peak detection algorithm for (14-24) s.  

4.1.1.2 Zero crossing 

Another method for foot step detection based on the acceleration values is  zero crossing method 

discussed in [261]. This method first computes the magnitude of the acceleration signal. The step 

boundaries are defined by either positive or negative going zero crossing of a filtered version of 

the acceleration signal as shown in Figure 4.4. Black dot points the occurrence of a valid footstep 

in Figure 4.4.  One condition that needs to be fulfilled is that the number of samples between two 

zero crossings should be within certain thresholds. If they are greater than maximum threshold or 

less than minimum threshold, foot step is not counted. The maximum threshold was determined 

to be approximately 700 ms and minimum threshold was determined to be 300 ms approximately. 

This method has been effectively applied to the foot-mounted sensors and wearable sensors [151, 

160]. We quantify its performance when applied to smartphone embedded sensors in Section 4.2. 

The choice of the 700 ms time difference threshold is due to the fact that, at normal walking 

speeds human approximately takes 1 – 2   footsteps per second whereas the choice of 300 ms time 

difference is due to the fact that at higher walking speeds human can approximately takes 3 – 4 

footsteps per second [255].  
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Figure 4.4: Enlarged view of the foot step detected via zero crossing algorithm for (14 -24) s. 

4.1.1.3 Fast Fourier transform  

Fourier transform is a mathematical transformation employed to transform signals between 

time and frequency domain [264]. So, it can be used for analysing the frequency component of 

the recorded accelerometer samples during pedestrial walk. Various researchers [257, 259, 262] 

have potentially applied the Fourier transform, specifically Fast Fourier Transform (FFT) to 

estimate the step frequency. We quantify its performance when applied to smartphone embedded 

sensors in Section 4.2. FFT is executed on the filtered accelerometer signal ẍ(t) as follows [265]: 

φ (k) =  ∑ ẍ(t)e
−j2πkt

N

N−1

t=0

; k = 0,1… . N − 1 

(4.3) 

where φ(k) is the frequency response of accelerometer signal at the kth spectral point, ẍ(t) 

represents the tth time sample of the accelerometer signal, √−1 = j  and N is the window length 

over which FFT is executed. The window length N is a critical parameter. It determines the 

resolution in time and frequency domain [259, 266]. It should neither be too long nor too small. 

If window length is too long, the resolution in time domain is too small. Therefore, the local 

change in the periodicity of the signal would be missed. On the contrary, if the window length is 

too short the resolution in frequency domain is too high therefore close walking frequencies 

cannot be separated [267, 268].  

The step rate for a normal walk varies between 0.7 Hz to 1.51 Hz  [269], so to detect no 

less than 1 foot step in a second, we selected a window size  of 1 second for this investigation. 
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However, in the later chapters (see Chapter 5 and Chapter 6) a window of bigger size is 

investigated and used.  

As mentioned earlier, the pedestrian motion is a repeating process of placing the footsteps 

(walking) and non-placing of footsteps (rest). So, to know whether the pedestrian has really placed 

his/her footsteps activity classification was performed. It is detailed next in the following section. 

4.1.1.4 Activity classification 

The pedestrian’s walking and rest states were recognized from the filtered accelerometer signal 

by observing several characteristics in the frequency domain like FFT amplitude and FFT energy 

via sliding window of 20 samples, with no overlap. Each sliding window covers a time interval 

of 1 s. The window of 1 s is used to sufficiently capture cycles of the pedestrian activities – 

walking and static [270]. Out of various frequency domain quantities – FFT amplitude was the 

most promising to identify between the start and stop of walking as shown in Figure 4.5. The 

figure depicts a pedestrian to be at rest for the first 2 s (see Figure 4.5(A) and Figure 4.5(B)) and 

walking for the remaining 2 s (see Figure 4.5(C) and Figure 4.5(D)).  

 

Figure 4.5: Variation of FFT amplitudes over different time periods: (A) (0-1) s (B) (1-2) s (C) 

(2-3) s and (D) (3-4) s. 

0 2 4 6 8 10
0

1

2

3

4

Frequecy (Hz)

M
a
g
n
it
u
d
e

 

 

FFT amplitude

Static threshold

Dynamic threshold

0 2 4 6 8 10
0

1

2

3

4

Frequecy (Hz)

M
a
g
n
it
u
d
e

 

 

FFT amplitude

Static threshold

Dynamic threshold

0 2 4 6 8 10
0

1

2

3

4

Frequecy (Hz)

M
a
g
n
it
u
d
e

 

 

FFT amplitude

Static threshold

Dynamic threshold

0 2 4 6 8 10
0

1

2

3

4

Frequecy (Hz)

M
a
g
n
it
u
d
e

 

 

FFT amplitude

Static threshold

Dynamic threshold

(A) 

(C) 

(B) 

(D) 



Chapter 4: Inertial PDR 

98 

 

Two FFT amplitude thresholds – T1 (equal to 0.6 m s2⁄ ) and T2 (equal to 0.2 m s2⁄ ) were 

set to identify the rest state and walking state respectively (as illustrated in Figure 4.6). These 

thresholds were set by analysing the waveform of over 800 steps from ten pedestrians. Table 4.3 

illustrate the statistics of the two cases when the pedestrian was walking and secondly at rest.  It 

was assumed that the pedestrian initially starts from rest. If FFT amplitude was greater than 

threshold T1, dynamic state was identified, indicating walking has started. On the other hand, if 

FFT amplitude was less than threshold T2, rest state was identified, indicating pedestrian has 

stopped walking. However, if the amplitude was in between static and dynamic thresholds, 

previous state is retained that is either walking or rest state. For e.g. in Figure 4.5(B) the pedestrian 

is considered to be at rest (the previous state from Figure 4.5(A)), although FFT amplitude 

threshold has crossed the threshold T2.  

States Magnitude 

 Absolute mean Standard deviation Minimum 

Rest state 0.24 0.07 0.04 

Walking 1.3 0.67 0.59 

Table 4.3: Magnitudes of the two states. 

Magnitude>T1

WalkingMagnitude>T2

Rest

Previous state

FFT

Yes

No

No

Yes

Accelerometer 

data

Rest Walking
 

Figure 4.6: Activity classification: Walking or Static. 
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4.1.2 Stride length estimation 

Once the footsteps were detected, the step size was still needed in order to compute the relative 

position of pedestrian. One way to estimate the step size was to assume that all steps have equal 

lengths as proposed by Groves [3]. This assumption can be true for some cases, but not always 

because the step size is not a constant value but related to walking speed and acceleration 

magnitude [271]. In a typical human walking behaviour, it has been observed that as step 

frequency increases, the peak acceleration difference increases and the time period between 

footsteps decreases while stride becomes larger [258].There are different models for step length 

estimation, but in most of them the sensor unit was attached to foot [272, 273]. However, the 

smartphones are mostly carried in hands or kept in pocket during walking [274]. As a result, we 

investigate three of the most common state-of-the-art stride length (SL) estimation models over 

pedestrians while they carry the smartphone in hand (see Figure 4.7). These models are as follows 

 Weinberg model [275] 

 Scarlett model [276] 

 Kim model [271] 

We quantify their performance, when applied to smartphone embedded sensors in Section 

4.2. These models are detailed below: 

 

Figure 4.7: Pedestrian walking with a smartphone in a straight aisle. 

4.1.2.1 Weinberg model 

The Weinberg model [275] is based on the principle that a vertical bounce in an individual’s 

foot step is directly correlated to that person’s stride length. This bounce is calculated from the 

4 
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difference of the peaks at each foot step. SL is calculated using the filtered accelerometer signal 

by following equation.  

SL = k √𝑥̈𝑚𝑎𝑥 − 𝑥̈𝑚𝑖𝑛
4

 (4.4) 

where k is a constant. The peak acceleration values ẍmax and ẍmin were calculated separately 

for each footstep.  

4.1.2.2 Scarlett model 

The Scarlett model [276] calculated the stride length by deriving a correlation between the value 

of maximum, minimum, and average acceleration of a footstep, according to equation 4.5. Since, 

the motion of pedestrian is periodic and also it can be represented by the motion of a spring. 

Therefore, this model tried to solve the accuracy problem caused by the variation of spring in the 

steps of different people, or in the steps of one person using different paces from one measurement 

to another. 

SL =  k 

∑ |ẍi|
N
i=1
N

 − ẍmin

ẍmax − ẍmin
 

(4.5) 

where k is a constant and N is the window size.  

4.1.2.3 Kim model 

The Kim model [271] calculated the stride length by placing fixed markers at known locations 

(60 cm and 80 cm).The acceleration values were measured when the pedestrian walked through 

these marked locations. An experimental equation was derived for a step as shown by (4.6).  

SL = k √
∑ |ẍi|

N
i=1

N
 

(4.6) 

where k is a constant and N is the window size. To estimate the k values for the different 

stride length models, a known distance of 10 m is walked by 10 volunteer subjects and the k is 

adjusted for each walk such that the estimated distance becomes the same as the real. The 

individual k values of the 10 walks by 10 volunteer subjects are then averaged to derive the actual 

value of constant k. Table 4.4 shows the results.  

 

 

 

 

3 



Chapter 4: Inertial PDR 

101 

 

Weinberg Scarlett Kim  

destimated (m) k destimated (m) k destimated (m) k dreal(m)  

5.2 0.52 5.5 0.55 7.7 0.77 10 

5.6 0.56 5.9 0.59 7.6 0.76 10 

5.8 0.58 5.2 0.52 8.0 0.80 10 

5.5 0.55 5.9 0.59 7.5 0.75 10 

5.4 0.54 5.6 0.56 7.2 0.72 10 

5.4 0.54 5.6 0.56 7.4 0.74 10 

5.5 0.55 5.7 0.57 7.6 0.76 10 

5.6 0.56 5.6 0.56 7.3 0.73 10 

5.6 0.56 5.5 0.55 7.6 0.76 10 

5.7 0.57 5.3 0.53 7.9 0.79 10 

 Table 4.4: Statistics of the ten subjects. 

Here drealand destimated are the real and estimated distances. In the case of Weinberg 

model the value of constant k was estimated to be 0.55, and in the case of Scarlett model the value 

of constant k was estimated to be 0.56, and in the case of Kim model the value of constant k was 

estimated to be 0.76. It is to be noted that the constant value k was different from the actual values 

referred in [271, 275, 276] due to different placement of the sensor unit and at different places.    

4.1.3 Heading estimation 

Once the strides (footstep and stride length) were estimated, it was important to estimate the 

pedestrian’s heading for the complete course of pedestrian’s walk (see Figure 4.2). Therefore, in 

this section we discuss one of the traditionally employed heading estimation technique. We 

quantify its performance when applied to smartphone embedded sensors in Section 4.2. 

Traditionally, heading can be estimated from either the magnetometer sensor or gyroscope sensor 

[277].The magnetometer sensor measures Earth’s magnetic field. While gyroscope sensor 

measures the angular velocity around the three axes of a smartphone (see Figure 3.2(B)) [134]. 

The characteristics of two sensors are summarized in Table 4.5. 

 

 

 



Chapter 4: Inertial PDR 

102 

 

 Sensor Characteristics 

Magnetometer  Absolute heading  

 Unpredictable external disturbances 

Gyroscope  Relative heading  

 No external disturbances  

 Short term accuracy 

Table 4.5: Comparison of the (gyroscope and magnetometer) sensor characteristics (Source: 

[271]). 

In summary, the magnetometer sensor has a long-term accuracy. Therefore, it is more 

suitable for estimating the absolute heading, while gyroscope sensor is more suitable for 

estimating the relative heading. Also, it has been observed that unlike the magnetometer sensor, 

the gyroscope sensor are more stable in indoor environments [278]. The primary reason of such 

behaviour is because of the fact that the ferromagnetic material such as steel rods or electrical 

devices such as electrical wires, etc. generate a field that disturbs the Earth’s magnetic field [124, 

130]. This subsequently causes the Earth’s magnetic field to fluctuate in an unpredictable manner. 

As a result, smartphone embedded magnetometer sensor was used for estimating initial absolute 

heading θabs of the pedestrian and smartphone embedded gyroscope sensor was used for 

subsequent heading θre estimation. The initial absolute heading was estimated according to 

equation 4.7 [279, 280]. 

θabs = arctan (
my

mx
) 

(4.7) 

where my and mx are the magnetic readings along the smartphone’s y and x axis (see Figure 

4.8) respectively. Following this, the subsequent relative heading θre was estimated according to 

equation 4.8 and added to the absolute heading θabs (determined at previous footstep) to estimate 

the total heading θtotal  of the pedestrian at the current footstep (according to equation 4.9).  

xm

ym

zm

Y

Z

X

Smartphone coordinate system

Global coordinate system

 

Figure 4.8: Illustration of the smartphone coordinate system and global coordinate system.  

θre = ∫ θ̂̇z(t) dt

t

0

 

(4.8) 



Chapter 4: Inertial PDR 

103 

 

θtotal = θabs + θre (4.9) 

where θ̂̇z(t) is the gyroscope measurement along the smartphone’s z axis at time t. The 

smartphone’s z axis is perpendicular to the ground therefore the global frame and the 

smartphone’s coordinate frame are similar for this investigation. 

4.2 Experimental setup & results 

In order to validate the reliability of smartphone based PDR positioning system some walking 

experiments are done. The unrestricted human walking is complex and varied therefore walking 

was limited to horizontal forward walking [143] in the first instance. Twenty volunteer test 

subjects consisting of eight females and twelve males aged 20 - 40 years old were selected 

(selection criteria and ethics documentation are in Appendix B). The height of the test subjects 

ranged from 1.55 m to 1.85 m. There was no restriction on the type of footwear. All of them had 

different footwear – six of the women wore boots, two of the men wore leather shoes and the 

remaining wore sports shoes. The sensor data (accelerometer, gyroscope and magnetometer) was 

logged at a sampling rate of 20 Hz in a comma separated values (csv) file with our designed 

SensorData app, as illustrated in Figure 4.9.   

        

 

Figure 4.9: Screenshot of the designed SensorData app. 

The csv file was stored in smartphone’s external memory – secure digital (SD) card. It was 

then analysed in the MATLAB environment. It was noticed that because of the limitation of 

Android kernel the sampling events were generated at varied time instants. Therefore, the sensor 

data was re-sampled at 20 Hz by linear interpolation in MATLAB. It was assumed that there was 

(A) (B) 
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no obstacle in front of the pedestrian and the smartphone was assumed to be kept flat and 

stationary on the palm with screen facing upwards during the whole walk. Two set of experiments 

were performed, with the selected group of participants: 

1. Straight line experiment 

2. Square turning experiment 

4.2.1 Straight line experiment 

To evaluate the performance of foot step detection and stride length estimation algorithms, we 

performed – ‘Straight line experiment’. The experiment was grouped into two sub-experiments – 

constant speed experiment and dual speed experiment. In the constant speed experiment, the 

subjects were asked to walk along a straight aisle of length 32.7 m at a pace which they perceived 

as a normal walking pace. In the dual speed experiment, the subjects were again asked to walk 

the same distance but at varying pace, half the distance (14.9 m) at normal walking pace, then 

pause and then remaining at a slow running pace. The pedestrian steps varied from 40 to 55 steps 

in the constant speed experiment. While the pedestrian steps varied from 17 to 24 steps in the first 

half and 12 to 27 steps in the second half on the dual speed experiment. The foot step detection 

error characteristics is evaluated by equations 4.10 and 4.11. RMAE is the relative mean absolute 

error (RMAE) percentage and  ε is the error in footsteps detected.  

ε =  |FSestimated − FSactual|    (4.10) 

RMAE(%)  =  
1

N
∑

|εi|

FSactual

N
i=1  100    (4.11) 

 where FSactual is the actual number of footsteps taken and FSestimated  is the number of 

footsteps estimated by the foot step detection algorithms, and N is the number of times the 

experiment was performed i.e. equal to 20. The FSactual was recorded in a csv file by asking the 

subjects about the number of footsteps they took to complete the whole walk. The step detection 

error percentage for all test subjects during the two set of sub-experiment is shown in Figure 4.10. 

The solid lines in Figure 4.10(B) represent footsteps detected over a length of 14.9 m and the 

dashed lines represent the footsteps detected over a length of 17.8 m in a dual speed experiment. 
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Figure 4.10: Comparison of foot step detection algorithms for (A) constant speed experiment 

and (B) dual speed experiment. 

Error characteristics of the results for all the test subjects during two sets of sub-experiment 

are shown in Table 4.6 and Table 4.7.  
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Algorithm Length (m) RMAE (%) 95% confidence level (%) 

FFT 32.7 4.10 1.44 to 6.76 

Zero crossing 32.7 5.34 3.03 to 7.65 

Peak detection 32.7 6.41 3.36 to 9.46 

Table 4.6: Comparison of error characteristics for footstep detection algorithms for the constant 

speed experiment. 

Algorithm Length (m) RMAE (%) 95% confidence level (%) 

FFT 14.9 2.98 -3.74 to 10.7 

 17.8 6.04 -3.06 to 17.14 

Zero crossing 14.9 4.41 -3.27 to 12.09 

 17.8 7.40 -1.9 to 17.46 

Peak detection 14.9 4.55 -4 to 13.09 

 17.8 9.07  -1.09 to 18.05 

Table 4.7: Comparison of error characteristics for footstep detection algorithms for the dual 

speed experiment. 

The results indicate that the FFT based algorithm outperform the other foot step detection 

techniques during the two sets of sub-experiment. This behavior was as expected. Since the peak 

detection algorithm considers a valid foot step when the acceleration peak crosses a minimum 

threshold because of which several footsteps are missed and also falsely detected. In contrast, 

zero crossing algorithm rejects false foot step detection via time based thresholding. While FFT 

based approach employs the nature of the pedestrian’s gait and the periodicity of placing the 

footsteps on ground to count the footsteps. As a result of this, the approach rejects the false foot 

step detection and avoids missing steps. Comparing the first half walk’s performance to second 

half walk’s performance in the dual speed experiment; all techniques perform better in the first 

half walk when a pedestrian was walking normally. This is due to the fact that when a pedestrian 

moves briskly they shake their body more. As a result more step misdetection occurs, and 

subsequently this behavior causes the accuracy of algorithm to be reduced. 

After foot step detection, the stride length is computed to estimate the actual distance 

travelled. The total distance travelled is calculated by summing up the estimated step length of 

every detected foot step using equation 2.6 (see Chapter 2, Section 2.2.4). Dynamic methods were 

used, as described in Section 4.1.2, to estimate the stride length. Comparison of the error 

characteristics – mean absolute error (MAE) and 95% confidence interval for the total distance 
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travelled using these methods are summarized in Table 4.8 and Table 4.9. The MAE is calculated 

according to the equation 3.31 (see Chapter 3, Section 3.4.2). 

 MAE(m) 95% confidence level (m) 

Weinberg model 1.35 -3.12 to 3.08 

Scarlet model 1.48 -4.13 to 2.19 

Kim model 1.52 -3.71 to 3.65 

Table 4.8: Comparison of error characteristics for the stride length models for constant speed 

experiment. 

 MAE(m) 95% confidence level (m) 

Weinberg model  1.62 -3 to 6.24 

Scarlet model 1.73 -3.37 to 7.83 

Kim model 1.90 -3.48 to 7.08 

Table 4.9: Comparison of error characteristics for the stride length models for dual speed 

experiment 

It is observed that Weinberg stride length model can estimate the total distance travelled 

better than others. This is indicated by the smallest mean absolute error (MAE) and the smallest 

95% confidence level. On comparing the two experiments, it is observed that the stride length 

models perform relatively poor in the dual speed experiment. Again, this behavior is as expected. 

It can be explained with the same reasoning as before that is due to the fact when a pedestrian 

walks briskly their footsteps are often missed and falsely detected. As a result, the accuracy of the 

foot step detection algorithms decreases down and because of which the performance of stride 

length models also decreases. The similar results have also been observed in [281]. In particular, 

they used the Weinberg stride length model to estimate the total distance travelled during normal 

and varying pace walking. Also, Weinberg et al. [275] have reported that the step length can vary 

by as much as 40% between pedestrians walking at normal speed, and up to 50% across the range 

of walking speeds for an individual. Therefore it can be concluded that when a pedestrian walks 

normally, the position error is significantly less in comparison to when the pedestrians walks at 

varying pace.  

4.2.2 Square turning experiment 

After the investigation of stride estimation (foot step detection techniques and stride length 

models) algorithms, two set of sub-experiments were again performed on different routes for 

evaluation of heading estimation algorithm (see Section 4.1.3). The similar set of subjects were 
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again asked to walk along two different L shaped paths – path 1 and path 2 as illustrated in Figure 

4.11. The green dot in Figure 4.11 represents the starting point of the walk and red dots represent 

the stopping point of the walk in two L shaped paths.   

 

Figure 4.11: Indoor floor plan of the level 3, building 22 of the University of Southampton. 

In the first set of sub-experiment, the subjects were asked to walk along the path 1 of length 

12.1 m. The first straight path walk was of length 8 m then a 90 degree left turn and then the rest 

path was of length 4.1 m. In the second set of sub-experiment, the subjects were asked to walk 

the path 2 of length 15.4 m. The first straight path walk was of length 11.3 m then a 90 degree 

right turn and then the rest path was of length 4.1 m. In both the cases the subjects started at the 

same point and it was again assumed that there was no obstacle in the path.  

Figure 4.12 (A & B) shows the actual and estimated trajectory of the pedestrian of height 

1.79 m walking along the two L shaped paths. The trajectories were drawn using equations 2.4 

and 2.5 (see Chapter 2, Section 2.2.4.1). The estimated trajectory does not have the same exact 

trajectory but it is close to the actual walking path. This can be because of the presence of 

positional drifts. 
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Figure 4.12: True and estimated path in the two L paths. 

The percentage error in heading at turning corners is evaluated by the following equation 

Relative Absolute Heading error (%) = 
|θactual−θestimated|

θactual
 100    (4.12) 

where θactual is the actual heading during turning at corners. It is equal to 900. θestimated 

is the estimated heading during turning at corners. Table 4.10 summarizes the results. As can be 

seen, the average relative heading error percentage is less than 11% in corners for both the cases. 

This is sufficient to trace the sharp changes in the heading when a pedestrian makes a left or right 

turn [282]. Comparing the path 1 with path 2, the relative mean absolute percentage error is less 

in path 2. This behavior was expected. Since, the path followed by the pedestrian was more 

constrained during turning in the path 2 which can also be observed from Figure 4.11. Therefore, 

as a result the pedestrian took a sharp turning in the path 2 when approaches near the turning point 

J.   

L paths Relative mean absolute heading error (%) 95 % confidence level (%) 

Path 1 9.78 3.5 to 16.04 

Path 2 7.07 0.33 to 13.81 

Table 4.10: Comparison of the heading error characteristics in the turning corners along the two 

L paths. 

4.3 Summary 

This chapter focussed on investigating whether off-the-shelf stride estimation techniques 

(footstep detection techniques and stride length estimation models) and traditional heading 

estimation algorithm could be applied to the multi-modal sensor data from inertial sensors 
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embedded in a smartphone, to position a pedestrian on a real indoor environment.  It was the first 

of its kind in the sense that smartphone was placed farthest from the torso and toe. Although, 

several research studies have applied such techniques however most of these have focussed on 

applying the techniques on foot mounted inertial module [260, 273]. Considering the fact that 

human motion is a periodic activity of placing and removing the toe from ground. So sensors 

placed nearer to toe can sense the optimal signal. In [161], authors have applied the techniques 

when senor unit was placed in waist and in [283] authors have applied the techniques on inertial 

sensors embedded in smartphone however smartphone was placed in pocket. The key findings of 

this chapter are as follows: 

 For, an individual the walking speed varies less and also their body shakes a little less 

when they walk normally. Significantly, the performance of footstep detection techniques 

in a smartphone based PDR positioning system is best when the pedestrian walks 

normally. 

 The FFT based footstep counting algorithm outperforms the other footstep detection 

techniques that are based on applying threshold to either the acceleration signal or the 

time. This behaviour is significant. Considering the fact, that human walking is a 

periodical activity and FFT based footstep counting algorithm employ the periodicity of 

acceleration signal to count footsteps, so as a result it avoids missing and falsely detecting 

steps. 

 The Weinberg stride length model performs better in comparison to the other off-the-

shelf stride length estimation models. This can be attributed because of the dependence 

on heuristic parameter ‘k’, that fitted on the selected set of data relatively better than 

others. 

 The average percentage heading error is less than 11% in corners. This behaviour is 

significant. Since, it ascertains that it can be employed to sufficiently trace the sharp 

changes in heading when a pedestrian makes a left or right turn [282].  

Although encouraging results were obtained in this chapter, there were some limitations. These 

are as follows: 

 Presence of positional drifts: This drift introduces error in position estimates, either 

suddenly, due to a hardware glitch or an out-of-range measurement, or gradually, due to 

slowly accumulating measurement errors. Figure 4.12 showed the presence of positional 

drifts in the estimated trajectory. This drift can be because of the error in step direction 

estimation. Since the experiment was performed for less than a minute, the effect of drift 

was not dominant. However, for long walks the positional drifts can be dominant [133].    
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 Dependence on heuristic parameter ‘k’: In all the stride length estimation models (see 

Section 4.1.2) the parameter k is user specific. Therefore, the parameter k can be set 

individually for a user through calibration. This sets the average error of the estimated 

distance to be reduced [284]. However, one-size-fit-all model is going to produce large 

errors for people with more extreme walking characteristics. Also, for the same person, 

the step length can vary due to differences in walking speed [139, 275] and difference in 

shoes [285]. 

These shortcomings of the designed smartphone based PDR system make it unreliable as a 

standalone indoor positioning system. In particular, the presence of drift errors that tends to grow 

overtime.  Figure 4.12 illustrated that if we know the map we could correct the trajectory. 

Moreover, Chapter 3 reiterated that features could be used to ‘correct drift’ and ‘locate on a map’. 

So we set out augmenting the PDR technology described in this chapter by incorporating the 

feature detection method in Chapter 6. 

Also, in this chapter it was assumed that the orientation of smartphone relative to pedestrian 

was static. The position of smartphone was dictated to the pedestrians throughout the experiments 

to keep it straight and flat such that the orientation of pedestrian relative to the smartphone is 

static. However, at times this was not true because of sudden obstacles or glitches. A more realistic 

scenario to consider this assumption to be valid is a ‘Smart Glass’ scenario. This is discussed in 

the next chapter.   

 

 



Chapter 5: Helmet mounted PDR 

112 

 

5. Chapter 5: Helmet mounted PDR  

The previous chapter was primarily limited to smartphone handheld (see Chapter 4) scenario; 

with the assumption that orientation of the smartphone relative to the pedestrian was fixed during 

the complete walk. This assumption may not always be valid for a pedestrian walking on a 

pathway (either indoors or outdoors) while carrying a smartphone on their hand. However, this 

assumption can be considered as true for the case of smart glasses (e.g. Google Glass). Since, 

their orientation relative to the pedestrian is much more predictable and static [286].  Therefore, 

this chapter provides a reference implementation of smartphone enabled ‘Smart Glasses 

simulator’ for pedestrian positioning. 

To begin with, the chapter first gives an introduction about the smart glasses in Section 5.1. 

It would also detail about the designed Smart Glasses simulator. Next the chapter presents the 

experimental setup and results obtained from the smartphone enabled Smart Glasses simulator 

PDR system in Section 5.2. Finally, Section 5.3 summarizes the key findings of this chapter. 

5.1 Introduction 

Smart glasses allow a user to augment reality by superimposing into the visual field a digital 

image. The device resembles the eye goggles found with virtual reality [287], however, unlike 

virtual reality, smart glasses display a virtual world in addition to what a user sees naturally by 

integrating the information from various sensors embedded in the device. An illustration of the 

smart glasses is shown in Figure 5.1. These contain the similar set of sensors as a smartphone as 

illustrated in Table 5.1.      

 

 Figure 5.1: An illustration of Google Smart Glass (Source: [43]). 
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Hardware Sensors Connectivity Cost 

Google Glass Accelerometer, gyroscope, digital 

compass, proximity sensor, 
ambient light sensor and camera (5 

megapixel) 

GPS, WLAN (Wi-Fi 

802.11b/g) and Bluetooth 

£1000 

HTC Z710e Accelerometer, gyroscope, digital 

compass, proximity sensor, 

ambient light sensor and camera (8 

megapixel + VGA) 

GPS,EDGE, WLAN (Wi-

Fi 802.11 b/g/n and Wi-Fi 

hotspot), Bluetooth and 

USB 

£300 

Table 5.1: Comparison of the sensors present in a Smart Glass and smartphone. 

In addition, smart glasses are provided with the similar connectivity like GPS, Bluetooth and 

Wi-Fi as a smartphone that can successfully provide useful navigational information to the 

pedestrians. However, the cost of purchasing smart glasses is roughly three times the cost of 

purchasing a smartphone (see Table 5.1). So, in lieu of purchasing smart glasses for positioning 

we have developed the “University of Southampton Smart Glasses Simulator” – see Figure 5.2 

below. 

 

Figure 5.2: The University of Southampton Smart Glasses Simulator 

This kind of smartphone enabled ‘Smart Glasses Simulator’ has never been investigated 

before for positioning. 

5.2 Experimental setup & results 

To evaluate the performance of our smartphone enabled ‘Smart Glasses simulator’ based PDR 

positioning system some walking experiments are done. The experiment was focussed on 

analysing two different scenarios as illustrated in Figure 5.3. 

 Earlier (handheld, see Chapter 4, Section 4.2) scenario: Pedestrian walking normally 

while carrying a smartphone (HTCZ710e) flat (with screen facing towards ceiling) on 

their hand.  
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 Smart Glasses Simulator: Pedestrian walking normally while smartphone (HTCZ710e) 

attached to the helmet. 

 

Figure 5.3: Pedestrian holding smartphones during walk to evaluate the two scenarios: Smart 

Glasses Simulator and smartphone handheld. 

Twenty volunteer test subjects consisting of eight females and twelve males aged 20 – 40 

years old were selected (selection criteria and ethics documentation are in Appendix B).  Each 

subject was given one smartphone and one Smart Glasses simulator for the complete walk. The 

subjects were asked to walk normally on a straight path of length 25 m in addition they were also 

asked to count the number of steps during the whole walk. Again, as earlier in the previous chapter 

(see Chapter 4, Section 4.2), the experimental conditions were same i.e. it was presumed that there 

was no obstacle during the whole walk and secondly, the starting point was known a-priori. Also, 

there was no restriction on the type of footwear and all of them had different footwear – two of 

the women wore boots, four of the men wore leather shoes, two of the men wore slippers and the 

remaining wore sports shoes. Table 5.2 summarizes the conditions of conducted series of 

experiment. 
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Conditions Values 

Number of subjects 20 (12 men and 8 women) 

Distance 25 m 

Weight 45kg – 90kg 

Height 1.50 m – 1.85 m 

Table 5.2: Conditions for the conducted series of experiment. 

5.2.1 Step Counter 

As discussed earlier (see Chapter 4, Section 4.1.1.3), we use FFT based step rate estimation 

technique to count the number of footsteps. The footstep detection error ε is evaluated by equation 

4.10 (see Chapter 4, Section 4.2.1). The error statistics is evaluated in terms of the relative mean 

absolute error (RMAE) percentage via equation 4.11 (see Chapter 4, Section 4.2.1) and 95% 

confidence interval, as illustrated in Table 5.3. The step count error for all test subjects during the 

complete walk is shown in Figure 5.4. 

Scenario Length (m) RMAE (%) 95% confidence level (%) 

Smart Glasses simulator 25 2.74 -2.46 to 7.94 

Smartphone handheld  25 1.67 -1.47\ to 4.81 

Table 5.3: Step count error characteristics.  

 

Figure 5.4: Histogram of the step count error for the two scenarios (A) smartphone handheld 

and (B) Smart Glasses simulator.  
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A cursory examination of the logged accelerometer data in csv file indicated that the Smart 

Glasses simulator performs relatively poor in comparison to the handheld scenario. This is also 

viable from Figure 5.4 and the stats shown in Table 5.3. The primary reason of such a behaviour 

can be attributed because of the fact that when a smartphone is placed on hand it is directly 

attached to the body, and also cautiously as well as continuously stabilized by the pedestrian 

throughout the walk. So, as a result of this the high frequency vibration and noises get damped. 

In comparison, the smartphone attached to the helmet undergoes several events of wobbling 

throughout the walk. This is likely due to the weight and fit of the helmet and may not be an issue 

for real smart glasses. As a result, there are several instances which cause the smartphone to move 

and, to detect false and miss steps. Thus, the step counter accuracy substantially degrades for 

Smart Glasses simulator. 

Although the results appear to be counter intuitive, in general it is expected that the 

performance of smartphone attached to the helmet should have been better in comparison to its 

smartphone handheld counterpart. Since, internal human locomotor system tries to balance the 

head as stated and observed in the work by Blum et al. [288].  It is however to be noted that Blum 

et al. have tightly and directly mounted the sensor module onto the pedestrian’s head. On the 

contrary, in the case of Smart Glasses simulator the smartphone is attached to the bicycle’s helmet. 

While in the case of smartphone handheld scenario the pedestrian continuously stabilizes their 

hand. Arguably, if the smartphone would have held freely the results may have been different. 

5.2.2 Position error 

After foot step detection, the stride length is estimated to compute the distance travelled using 

equation 2.6 (see Chapter 2, Section 2.2.4). The total distance travelled is calculated by summing 

up the estimated step length of every counted footstep. Dynamic method was used, as described 

in Section 4.1.2 to compute the stride length. In particular we selected Weinberg stride length 

model since, it fitted our collected data set relatively better in comparison to other stride length 

models (as observed in the previous chapter, see Chapter 4, Section 4.2.1). This estimated distance 

travelled is then compared against the actual distance at end point to compute the position error 

derr. The position error at known point of interest (POI) i.e. end point is computed as follows: 

derr = |Estimated distance at POI − Actual distance at POI | (5.1) 

The error statistics is evaluated in terms of mean absolute error (MAE) and 95% confidence 

level. The MAE is calculated according to the equation 5.2 at known point of interest as shown 

below:  

 MAE =  
1

N
∑ |derr|

N
i=1    (5.2) 

where N is the number of times pedestrian walked across the straight path (i.e. N = 20). 

Table 5.4 illustrate the error statistics for the two scenarios, it is observed that the mean absolute 
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error is less than 2.5 m in either of the two scenarios. However, 95% confidence level is relatively 

less for the smartphone handheld scenario. This behaviour is likely to happen because the 

pedestrians continuously try to stabilize their hand during the walk. As a result, the hand held 

smartphone actually yield more reliable step length estimates than its head-mounted counterpart.  

 MAE (m) 95% confidence level (m) 

Smartphone handheld 1.68 -3.62 to 4.58 

Smart Glasses simulator 2.31 -6.62 to 5.56 

Table 5.4: Position error statistics for the two scenarios (A) smartphone handheld scenario and 

(B) Smart Glasses simulator. 

A work by Shih et al. [289] have reported the similar results like this. In particular, 

smartphones placed slightly away from the body (i.e. smartphone is not attached to the body 

tightly) has shown higher position error. They have placed the smartphones on chest pocket and 

on waist. So, the smartphone placed on chest pocket showed higher positioning error in 

comparison to the smartphone firmly attached to the waist. However, in this research work the 

smartphones are handheld and attached to the Smart Glasses simulator. 

5.3 Summary 

The chapter focussed on investigating a scenario when the orientation of smartphone relative to 

the pedestrian was static and more predictable e.g. in Smart Glasses. A ‘University of 

Southampton Smart Glasses Simulator’ was designed in this context instead of purchasing a smart 

glass, considering the fact that smart glasses are roughly three times the price of a smartphone. 

This kind of investigation has never been reported before (as per our knowledge). The key 

findings of this chapter are as follows: 

 The step count error for a Smart Glasses simulator is relatively high in comparison to the 

smartphone handheld scenario. This can be attributed because of the fact that they don’t 

experience the damping effect means they experience high frequency noises. This can 

make signal processing activity like step detection more difficult. As a result performance 

of step counter algorithm degrades. This can be observed in Figure 5.4.  

 The mean absolute error is less than 2.5 m in either of the two scenarios – smartphone 

handheld and Smart Glasses simulator. However, 95% confidence level is relatively less 

when the smartphone is handheld. This behaviour is likely to happen because the 

pedestrian continuously tries to stabilize his hand during the walk. This damps the high 

frequency vibrations and noises caused due to walking. As a result, the hand held 

smartphone actually yield more reliable step length estimates than its helmet mounted 

counterpart in a Smart Glasses simulator. 
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Although encouraging results are observed for smartphone enabled Smart Glasses simulator, 

there are some limitations. These are as follows: 

 Weight unfit problem: In order to design the ‘University of Southampton Smart Glasses 

Simulator’, we have used the bicycle helmet as the base. While the helmet fitted relatively 

well to a set of pedestrians. However, it drooped for some of the pedestrians. So it had to 

be adjusted. This is a time consuming process. Nevertheless, this may not be a problem 

for real smart glasses.  

 Position of smartphone: The position of smartphone is relatively static in either of the two 

scenarios – smartphone handheld and Smart Glasses simulator. In the smartphone 

handheld scenario, the pedestrian is dictated to keep the hand still throughout the walk. 

On the contrary, in the Smart Glasses simulator scenario the smartphone was mounted 

onto the helmet.  It is however less likely that the smartphone’s positon remains static for 

a long duration during walking in an actual scenario.  
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6. Chapter 6: Map aided PDR  

In the Chapter 4, it was investigated whether off-the-shelf stride estimation techniques (footstep 

detection techniques and stride length estimation models) and traditional heading estimation 

algorithms could be applied to the data from inertial sensors embedded in a smartphone to position 

a pedestrian in an indoor environment. The experimental results showed interesting performance 

(see Chapter 4, Section 4.2). Step detection error was least using FFT based step rate estimation 

algorithm, mean absolute position error was least using Weinberg Stride length model and relative 

mean absolute heading error was less than 11% in turning corners.  

Their performance was however limited due to variance in drift, users’ walking 

characteristics and dependence on heuristic parameters. Therefore, this chapter would utilise the 

findings of Chapter 3 to counter the drift. In particular, it would employ the ‘feature (corner) 

detection’ and ‘map matching method approach’ introduced in Chapter 3, Section 3.4 to counter 

the drift. Also, it would investigate the statistical approach – ‘Kalman filter’ [152] to get a better 

estimate of the stride lengths; while reiterating the experiments over the two scenarios discussed 

earlier in the previous chapter (see Chapter 5, Section 5.2) – smartphone handheld and Smart 

Glasses simulator. As stated by Attia et al. [290].  

“In indoor environment, where it is hard to provide a continuous reliable position estimate, 

map matching can bridge the navigation solution based on the floor alignments. The building 

information provide a logical threshold to bound the solution into a certain region, changing the 

main target of the navigation system from obtaining a high accuracy to position information to 

obtaining a position with enough accuracy allows the system to select the correct passageway.”    

To begin with, the chapter first gives an introduction about the basic principles of map 

based positioning technique in Section 6.1. A review of previous work is provided in Section 6.2. 

Next the chapter provides detail about the designed map based positioning technique aided with 

the smartphone based PDR positioning system in Section 6.3. The map based positioning 

technique is designed based on a probabilistic framework – multiple uncertain routes engine 

(MURE). It computes the probability of a pedestrian to be present on a particular link in a map 

provided the map is defined in form of nodes and links. In particular, it extends the continuous 

probabilistic framework of the Kalman filter to keep track of multi-modal discontinuous 

probability distributions in a map. Section 6.4 presents the experimental setup and results obtained 

from the smartphone based PDR positioning system aided with map. Finally, Section 6.5 

summarizes the key findings of this chapter.  
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6.1 Introduction 

Over the past two decades, many map based positioning techniques have been proposed and 

evaluated in various scenarios [291]. Most techniques have been developed for vehicle 

navigation, a few for outdoor pedestrian navigation, and very few have focused on pedestrian 

indoors. This can be attributed to the complex nature of building layouts and unconstrained 

motion of the pedestrian indoors [292-294]. Importantly, most of the map-based positioning 

techniques are limited to laboratory settings and to relatively simple environments [168]. The map 

based positioning technique offers three key advantages in terms of locating pedestrian indoors 

[272, 295, 296]. 

1) It employs the naturally occurring structure of typical indoor environments to derive 

pedestrian’s position information.  

2) It constrains the pedestrians’ motion according to the geometry of floor structures. 

3) It improves the accuracy of the positioning system by limiting the scope of pedestrian to 

the nearest feasible point. 

The map based positioning technique, is not an independent positioning technology instead 

it aids positioning by adding constraints [297]. The constraints can be in form of vertical or 

horizontal lines as illustrated in Figure 6.1. Or these can be physical constraints such as corridor 

width, obstacles, road connectivity, etc.  [298, 299]. There are two primary aspects of map based 

positioning technique [165]: 

1. Building the geospatial data model  

2. Map matching  

 

Figure 6.1: An example of a road network model (Source: [300]) 
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6.1.1 Building the geospatial data model 

The geospatial data model is a form of Geographic Information System (GIS), with specific 

attributes moulded for navigation applications [280]. The map presents the pedestrian’s location, 

direction and his/her navigation states in the pictorial form. At its simplest level maps can be in 

form of a floor plan of a building [28]. However, floor plans do not include any information on 

semantics or any further alphanumerical data regarding staircases, doors and so on [39]. 

Therefore, most of the maps are designed in form of spatial graphs. The graphs model all possible 

passageways, height change access (stairs, elevators, etc.), topological (connectivity between 

passageways, etc.) and geometrical characteristics of the environment [290, 294]. 

Broadly the maps are classified into two forms [301] (1) polygon and (2) network. The 

polygon type maps define the walls and other geometrical features as “obstacles” that cannot be 

traversed by a person. For instance Walder et al. [292] have employed the knowledge of the 

polygons of the outline of accessible areas of the rooms and transition objects such as doors and 

stairs to constraint the path of pedestrian. Significantly, increased level of position accuracy was 

observed from unmatched to the matched trajectory.  

In contrast, a network type map defines the path in which pedestrian walks as polylines. It 

is composed of links, nodes and arcs [302]. According to the Graph theory [303] an arc is a set of 

curves in the Euclidian space (R2). An arc can be completely characterized by a finite sequence 

of points. A node is a point at which an arc terminates or begins or a point at which it is possible 

to move from one arc to another. A link is a linear element between two adjacent points [296].   

Wakuda et al. [301] reported a comparison of these two map forms. Some of the key 

elements of the two map forms are illustrated in Table 6.1. 

 Network Map Polygon map 

Characteristics Represents walkable path and 
steps as polylines. 

Represents geometrical structures – 
wall, walkable space, etc. as polygons. 

Strengths Low calculation cost and easy to 
prepare. 

Open spaces are clearly visible with 
furniture and other accessories 
represented as obstacles. 

Limitations Cannot represent open space and 

simultaneously, extensive 
knowledge of the map geometries 

including high quality map data is 

required. 

High calculation cost and cannot 

represent pathways.  

Table 6.1: Key elements of the two map forms. 

6.1.2 Map Matching  

Map matching is a method to match the estimated position (determined from positioning system) 

to the coordinates of physical location (samples of data structure) using map data [293, 304]. The 
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key assumption being that if the positioning system returns a location that is not present on the 

map then this is likely an error and therefore, identifying the most likely location on the map is a 

correction. There are currently several approaches to map matching [291, 305], but in regards to 

indoor environment  these can be classified as follows [306]: (1) geometrical map matching (2) 

topological map matching and (3) probabilistic map matching.  

Originally these techniques were used for outdoor road-navigation however they have also 

proven their use for indoor navigation [303]. If only geometric information is used, the algorithm 

relies only on the shape of the arcs and not on the way they are connected. When the topological 

information is used in addition to geometrical information, the connectivity, proximity, and 

contiguity of the arcs are also considered. Thus the match is done in context and in relationship 

to the previous established matches. That makes the topological solution more likely to be correct. 

One of the commonly used geometric approaches is point-to-point matching [307]. In this 

approach, the position fix from navigation system is snapped to the nearest node in the network 

as illustrated in Figure 6.2 In practise, the point-to-point matching is easy to implement with low 

computational load. However, it is very sensitive to the number of shape points building the 

candidate trajectories. It might be expected for the results to be much more accurate when using 

digital maps consisting of links with a dense distribution of nodes [308], but where the algorithm 

fails to match correctly when, for instance, challenged with the scenario shown in Figure 6.2. 

Assume that the pedestrian is moving on link A, and po is the position estimated from navigation 

system. Since the node by is closer to the po than any of the nodes belonging to link A, the point-

to-point algorithm would falsely match the position fix to by.  

Link A

ay

by

bz

P0

Link B

ax

 

Figure 6.2: point-to-point map matching. 

Another commonly used geometric map matching approach is point-to-curve matching 

[308]. In this approach, the position fix obtained from the navigation system is matched onto the 

closest link in the network as shown in Figure 6.3. The true pedestrian’s path is shown by the 
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thick green line, position fixes and results of map matching are shown by the circles and triangles 

respectively. In practise, it is more accurate than point-to-point matching however, point-to-curve 

matching results can be very unstable in dense indoor network because the closest link may not 

always be the correct link. This approach may fail if a pedestrian is travelling on a nearby parallel 

links and near intersections as shown in Figure 6.3 by the hollow triangles. 

Incorrectly identified links

 

Figure 6.3: Point-to-curve map matching.  

An enhancement of the point-to-curve and point-to-point map matching algorithms is 

generalized in the weighted topological algorithms which was first proposed by Greenfeld for 

road networks. Greenfeld [309] developed the topological map-matching algorithm that involves 

matching the curve generated by the raw positioning data with the geometry of the network-

navigation model segments. However, different versions of the algorithm have been proposed for 

the indoor applications e.g. [70, 280]. The main purpose of this algorithm is to choose a suitable 

link where the pedestrian is located on a network map and then location of a pedestrian on this 

link. This selection is based on the shortest distance between the position fix (the position 

provided by the navigation system) and the links. The link that yields the shortest distance is 

selected. In addition, many other constraints can be used with the previous proximity constraint 

such as the heading of pedestrian. This constraint is implemented by calculating the angle between 

the bearing of the link (using coordinate information from the spatial database) and the heading 

of the pedestrian (from navigation sensor output). The link with the smallest angle is selected. 

The selection of a suitable link is then based on a weighting between the proximity and bearing 

factors, as shown in Figure 6.4 and Figure 6.5.  
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Figure 6.4: Similarity in pedestrian heading and bearing of a link 

 

Figure 6.5: Perpendicular distance between position fix and a link. 

The probabilistic approach gives the most reliable solution compared to other methods. 

It differs from the geometrical and topological approach in the criteria used for selecting the 

network link. Rather than using mathematical distances or angles in selecting the link, a statistical 

test is used [153, 310, 311].  The approach attempts to improve the quality of map matching 

through better accounting for some of the uncertainty in position estimates. The kind of methods 

include probabilistic techniques such as Kalman filter, Particle filter, Hidden Marcov models, etc. 

for positioning and few of these techniques are discussed earlier in Chapter 2, Section 2.3. 

In practise, it uses probability inferences to determine the likelihood of a particular location 

given that prior location vector array has already been detected. The calibration data including 

initialization is considered as a part of priori conditional probability distribution by the algorithm 

to determine the likelihood of a particular location occurrence [50, 54]. 

The MURE map matching algorithm has also been designed based on the principles of 

probabilistic map matching. In practise, MURE algorithm computes the probability of a 

pedestrian to be present on a particular link on a map. A full probabilistic treatment of map 
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matching in indoor localization can result in multiple discrete location distributions at nearby 

points in the indoor network map provided the indoor map is designed in form of network with 

nodes and links. A Multiple Uncertain Route Engine (MURE) algorithm is designed to keep track 

of these.  

For a pedestrian moving in a two-dimensional space a one dimensional pedestrian 

displacement – measured via step counting and stride length estimation algorithm, may be 

coupled with a measurement of heading to estimate a fully two-dimensional path [312]. However, 

most indoor environments do not afford pedestrians free movement in a two-dimensional space, 

rather they are constrained to walk along corridors and into out of rooms. In this case it can be 

convenient to describe the pedestrian’s location as a positon on a network, because paths through 

a network are inherently one-dimensional. An additional benefit of the network representation is 

that ‘features’ of the network may be detected and used to help to locate the pedestrians and limit 

error growth. For e.g. [62, 313] showed that by detecting turnings as a ‘feature’ error growth can 

be bounded. A complication of the network representation arises from the fact that pedestrians 

are constrained to be on one of a number of discrete edges of the network.  

This discretization does not immediately lend itself to the use of the Gaussian distribution 

and the Kalman filter, which are powerful tools for dynamic localization in continuous space. In 

particular, if there is an ambiguity over which edge a pedestrian is located on, a single unimodal 

probability distribution is not suitable to represent the position of the pedestrian.  

In this case we propose that the pedestrian’s location should be represented by a discrete 

set of continuous one dimensional distributions, where each distribution has an existential 

probability. To achieve this we propose an extension to the Kalman filter to keep track of multi-

modal discontinuous probability distributions in a network map. We have named this approach 

the ‘multiple uncertain routes engine’ (MURE). Complete details of the algorithm is discussed 

later in Section 6.3.4.2.  

6.2 Related work 

Indoor version of the probabilistic map matching algorithm using particle filter has been 

developed by [295, 299, 314, 315]. Nammoon and Youngok [314] introduced a map aided PDR 

scheme using an INS embedded in smartphone. The step based PDR was used to determine the 

successive positions of a pedestrian that were later projected onto the network map using a particle 

filter based map matching. The particles were updated at every step based on estimated step 

distance and orientation. While those particles that exceeded the reference thresholds of corridor 

width were degenerated, however if at any position along the way the sum of the total particle 

weight was lower than a reference value of valid particle, the particles were regenerated at that 

position. 
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Kaiser et al. [295] proposed the use of an angular probability density function for weighting 

particles within the particle filter. In this work, wall crossing constraints were not the only 

constraint. First, the particles were weighted according to their direction with respect to an angular 

movement model, derived from complete mapping of a building. Second, particles, which crossed 

walls were naturally de-weighted in this model. An important assumption for the developed 

system was that the corridors are considered to be narrow Performance of the methods were not 

considered in scenarios of open areas and when using maps with no internal wall constraints. 

In [299, 315] Bao and Wong introduced step counting based dead reckoning algorithm 

which utilizes map matching. In [315] the tracked path is mapped to a nearby known corridor. It 

presumes that a pedestrian tends to walk along a quasi-straight line when they are in a corridor. 

Once this walk pattern is detected and there is a nearby corridor, the estimated location is mapped 

to the corridor, and the step direction and the sensor’s orientation is calibrated by the known 

corridor’s direction. To reduce the dependency on corridors, in [299] an improved particle filter 

is proposed. The improved PF underlines the uncertainty in the step direction estimation. The 

particles with the wrong direction estimation are more likely to be the ones with the wrong 

location estimation and gets eliminated by map constraints.  The improved particle filter takes 1/6 

of the CPU time compared to the traditional particle filter. Although the improved particle 

algorithm provides reliable results with less CPU cost, the algorithm at all times need to maintain 

a minimum number of 100 particles and moreover, the algorithm necessitates a dense map 

constraint environment with corridors. 

In addition to these studies there are several other studies too that have used the 

probabilistic map matching for positioning via particle filter [28, 316]. The basic idea of 

probabilistic map matching using particle filter is generally the same. A set of particles are used 

to represent the posterior density of the unknown position which are distributed over the digital 

building plan. If a particle collides with a wall, it is excluded from the Monte Carlo simulation 

[210] where walls represent an impassable obstacles. A significant drawback of this approach is 

that in any case they require evaluation of particles over feasible map region which is a 

computationally expansive process [317].  

To overcome this, [317] propose a Kalman filter enabled map matching. Map is segmented 

into polygons with feasible and infeasible areas. If in any case the Kalman filter estimates lie 

outside feasible areas then map constraints are applied as a measurement to the Kalman filter. By 

properly choosing the measurement covariance, the Kalman estimate is refined to satisfy the map 

constraints and the corresponding covariance matrix is updated accordingly. The map matching 

procedure is effective when the feasible set is smaller than infeasible set. Also, the map matching 

procedure exhibits a delay of up to few seconds in updating the position estimate.  
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Attia et al. [280] however use geometric map matching to position a pedestrian. A network 

map is designed in form of node and links. Whenever the pedestrian’s dead reckoning trail of 

estimated locations gets close to points placed on links, all the candidate links close to that 

estimated locations are selected. The final link is computed by the heading difference between 

the estimated heading of the pedestrian and the heading of candidate links. The link with the 

smallest heading difference is considered to be the actual link. After the actual link is determined, 

the estimated position is projected onto the final link by point to curve map matching.  The results 

showed a remarkable drop of 4.41 m in mean positioning error from unmatched to the matched 

trajectory however it was not clear as to how the map matching algorithm would select the final 

link when several candidate links are close together. 

6.3 Smartphone based PDR system aided with map 

The block diagram of smartphone based PDR positioning system aided with map is illustrated in 

Figure 6.6. It is composed of five parts: 1) Building a geospatial data model 2) A feature (corner) 

detection algorithm 3) The MURE algorithm 4) Smartphone based PDR system and 5) Updating 

stride lengths. The accelerometer and gyroscope samples are again filtered according to equation 

4.1 (see Chapter 4, Section 4.1). The filtered accelerometer samples are fed to the smartphone 

based PDR system.  The filtered gyroscope samples are used to detect the corner features. The 

implicit position information from PDR system, the geospatial data model; represented in a form 

of topological map and feature (corner) detection module are fused together to estimate the 

relative position of the pedestrian. In case corner features are detected the stride lengths are 

updated, and the information is fused via MURE map matching algorithm. The following 

subsections describe the system architecture in detail. 
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Figure 6.6: Block diagram of the smartphone based PDR positioning system aided with map. 

6.3.1 Feature (corner) detection 

The process flow diagram of the feature (corner) detection algorithm is illustrated in Figure 6.7. 

It. utilizes the gyroscope measurements – that have been passed through a low pass filter for 

sensing the change in heading direction and applies a simple thresholding measurement to detect 

a turning. As mentioned by El-Gohary et al. [318]. 

“A turn is considered to be detected when a sufficiently high angular velocity is measured 

by the gyroscope. This high velocity should be visible in the gyroscope output before the walking 

direction has changed significantly.”  

A threshold limit of 0.6 rad/s is set on the magnitude of angular velocity measurements to 

identify a corner turning according to the equation 6.1.  

|θ̇z | =  {
≥ 0.6 rad s⁄ , pedestrian taking turn         

< 0.6 rad s⁄ , pedestrian walking straight
   

(6.1) 

where θ̇z is the smartphone’s angular velocity along the axis perpendicular to the ground. 

The threshold was set by analysing the angular velocity measurements (from gyroscope) of ten 

pedestrians from a walk of length 20 m over the straight path.  The absolute mean during the 

straight path varies from 0.04 rad/s to 0.11 rad/s with 95% confidence interval in between –0.3 

rad/s to 0.3 rad/s (see Table 6.2). Therefore a threshold value of magnitude much higher than the 

maximum deviation value was selected to detect turns. 
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Subjects Absolute mean (rad/s) 95% confidence level (rad/s) 

1 0.04 -0.11 to 0.12 

2 0.05 -0.15 to 0.15 

3 0.08 -0.22 to 0.22 

4 0.05 -0.13 to 0.15 

5 0.04 -0.12 to 0.12 

6 0.06 -0.18 to 0.18 

7 0.09 -0.22 to 0.22 

8 0.11 -0.30 to 0.30 

9 0.06 -0.14 to 0.14 

10 0.08 -0.28 to 0.28 

Table 6.2: Angular velocity measurement profile for 10 subjects during the straight walk of 

length 20 m. 

   Once a turn is detected the sign of the angular velocity measurements determines whether 

the turn is right or left turn as illustrated in Figure 6.7. If θ̇z is positive, a left turn is detected, 

otherwise a right turn is detected as illustrated in Figure 6.8. This very simple turning detection 

algorithm was suitable for this work – where all the turnings in the tested network maps were 90° 

turns. In maps containing turnings of different angles the authors would recommend to replace 

this algorithms with a more discriminatory approach, for e.g. as described in [316, 319]. 

 

 

Figure 6.7: Flowchart of feature detection algorithm. 
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Figure 6.8:  Turns and straight walks detected using the gyroscope senor's signal. 

6.3.2 PDR system 

The system architecture of the smartphone based PDR system is illustrated in Figure 6.9. Basic 

architecture is similar to the previously developed PDR system (see Chapter 4, Section 4.1), with 

some modifications. The data from inertial sensors are filtered according to equation 4.1 (see 

Chapter 4, Section 4.1). The filtered accelerometer signal is forwarded to an activity classification 

module that recognizes whether the pedestrian is walking or at rest. If the pedestrian is walking, 

their footstep rate is estimated using the step rate estimation algorithm and this is converted into 

a position displacement via the stride length estimation. These modules are discussed below. 

 

Figure 6.9: Pedestrian dead reckoning (PDR) architecture. 
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Step Rate estimation 

Again, in this chapter we use FFT based step rate estimation technique (see Chapter 4, Section 

4.1.1.3 for details) for calculating the step counts taken by a pedestrian over a particular time 

interval. As mentioned before (see Chapter 4, Section 4.1.1.3), the window length is a critical 

parameter. It determines the resolution in time and frequency domain. It should neither be too 

long nor too small. In practise, it should be long enough to achieve a good frequency spectrum 

estimate, but short enough to capture a local change in the periodicity of the signal. So, in the 

previous chapter we selected a window size of 1 second (20 samples). This was sufficient to detect 

the footsteps of selected group of pedestrians; who were asked to walk ‘normally’ and at ‘variable 

speeds’. However, it was our belief that the performance of algorithm would improve with 

increase in window size. Also, as mentioned in [266],  the performance of FFT algorithm 

improves by increasing the window size.  

So, we designed a FFT window such that its size N increased gradually over the time scale 

of every 2 s until 10 s and subsequently, it slides over the complete time scale (as illustrated by 

equation 6.2). The footsteps were counted and updated at every 2 s.  

N = {
t,           if t <= 10 s       

10s, if t > 10 s              
 

(6.2) 

where t is the time scale of 2 s. To investigate this fact, we selected a group of twenty 

volunteers who were asked to walk freely (without constraint) on a straight pathway of length 25 

m. The subjects were provided with smartphone (HTCZ710e) and Smart Glasses simulator (see 

Figure 5.3, Chapter 5, Section 5.2). Also, they were asked to keep the smartphone flat and 

stationary (with screen facing towards ceiling) on their hands during walking. While the scenarios 

do not represent realistic user behaviour in all cases, we decided to limit the complexity of the 

problem in order to obtain an initial proof of concept. The foot step error statistics is evaluated 

and compared for the two scenarios (FFT window size of 1 s and 10 s) in Table 6.3. It is 

determined in terms of the relative mean absolute error (RMAE) percentage via equation 4.11 (see 

Chapter 4, Section 4.2.1) and 95 % confidence level. 

Scenarios Window size (s) 𝐑𝐌𝐀𝐄(%) 95% confidence 

level (%) 

Smartphone handheld 1 3.82 -2.48 to 7.18 

 10 1.15 -2.12 to 5.48 

Smart Glasses simulator 1 4.24 -2.39 to 8.01 

 10 1.45 -2.95 to 5.85 

Table 6.3: Comparison of foot step error characteristics over a FFT window size of 1s and 10s. 
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The results confirm our belief. This can be observed with the smaller  

RMAE(%) and lesser spread of 95% confidence level for a sliding window size of 10 seconds 

(200 samples) with 80% overlap. This can be attributed because of the fact that when a pedestrian 

moves irregularly their motion is characterised by high values of variance in a short period of 

time [320]. As a result, shorter window frames are not able to effectively determine the actual 

step rate of the pedestrian.  

Stride length estimation 

Based on the findings from previous chapter (see Chapter 4, Section 4.3), we recollected that the 

Weinberg stride length model [275] performed better in comparison to the other off-the-shelf 

stride length estimation models. This can be attributed because of the dependence on heuristic 

parameter ‘k’, that fitted the selected data set of a group of pedestrians relatively better than 

others. However, if the group is relatively large one-size-fit-all model will produce large errors 

for people with more extreme walking characteristics [139]. Also, the position error can continue 

to grow if the initial conditions are not assumed correctly [243].  

To consider this fact and to reduce the dependency on heuristic parameter ‘k’, the Weinberg 

stride length model is fused with the linear Kalman filter to estimate the relative position of the 

pedestrian in 1D using equation 2.6 (see Chapter 2, Section 2.2.4.1). We specifically selected 

linear Kalman filter because it is computationally light (less number of parameters involved) and 

can be implemented on different platforms [181] including memory constrained devices. This is 

detailed in the following section.   

6.3.3 Kalman filter (KF) 

Figure 6.10 illustrates the process flow diagram of the implemented filter, with centre portion of 

the filter representing the fundamental structure of the KF algorithm.  
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Figure 6.10: Flow diagram of the implemented KF. 

The main steps of the integrated KF are as follows; let x be the position of the pedestrian 

along the link and ẋ be their velocity. Then the state vector xt is defined according to 

xt = [
x
ẋ
]      (6.3) 

The associated covariance matrix Pt is initialized using equation 6.4. 

Pt = [σ
2 0
0 σ2

]                                                                                            (6.4) 

So, the system model of implemented filter at time t is formulated as follows:  

xt+1 = A xt  + wt (6.5) 

where A is the state transition matrix, defined as follows: 

A =  [
1 δt
0 1

]  (6.6) 

which simply implied that the pedestrian will continue walking at their constant speed and 

wt denotes the system noise with zero mean, white and Gaussian distributed such that 

wt ~ N(0, Qt)     (6.7) 
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 Qt is the covariance matrix of system noise and determined experimentally. δt is the time 

step of 2 seconds. The only measured quantity is the velocity of the pedestrian  ẋ which is 

calculated by using equation 6.8. 

 ẋ =  μ ∗ SL (6.8) 

where μ  is the step rate, as determined by the step rate estimation algorithm (see Section 

6.3.2) and SL is the stride length estimated via Weinberg Stride length model. Therefore the 

measurement vector reduces to a scalar zt. This is given as follows:  

zt =  μ ∗ SL (6.9) 

The measurement model relates the measured velocity to the modelled velocity according 

to equation 6.10.  

zt = H xt  +  vt (6.10) 

 where H is the state to measurement matrix, computed as follows: 

H =  [0 1]   (6.11) 

and vt is the measurement noise which is modelled as zero mean, white and Gaussian 

distributed. This is defined as follows: 

vt ~ N(0, Rt)    (6.12) 

where Rt  is the covariance matrix of measurement noise and is determined experimentally. 

A,H,Q and R and thus applied in the standard linear Kalman filter algorithm to compute the 

updated state and covariance matrix x̂t+1 and P̂t+1. The main steps of implemented Kalman filter 

algorithm (refer Figure 6.10) are detailed as follows:  

 Initialization 

The initialization stage starts by estimating the state vectors x̂t  and its corresponding 

error covariance matrix Pt. In the model, it is assumed that the pedestrian is at rest 

on start. Therefore, initial state vector x̂0 and its corresponding error covariance 

matrix P0 are defined as follows 

x̂0 =  [
0
0
] (6.13) 

P0 = [σ
2 0
0 σ2

] (6.14) 

where σ is a constant. Considering the initial state to be close to the actual state, 

therefore the value of σ was selected to be a small value equal to 0.1. 

 Prediction 

The prediction stage, predicts how the estimate x̂t will vary from the past time (t −

1) to the current time  t. There are two steps involved in the prediction stage  

x̂t
− =  Ax̂t−1 (6.15) 
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Pt
− = A Pt−1A

T + Q (6.16) 

Here  x̂t−1 is the previous best estimate at time (t − 1)  with the corresponding 

covariance denoted by Pt−1. x̂t
− is the predicted state at time t with the 

corresponding covariance denoted by Pt
−. 

 Measurement update 

This is final stage of the KF algorithm. It estimates the state x̂t based on the 

measurement zt. There are three steps involved in this stage 

 Kt = Pt
−HT(HPt

−HT + R)−1 (6.17) 

x̂t = x̂t
− + Kt(zt − Hx̂t

−) (6.18) 

Pt = Pt
− − KtHPt

−  (6.19) 

Here Kt is the Kalman gain at time t. It is used to determine the weighting of 

the measurement information in updating the state estimates. 

After estimating the relative position, the position estimates are refined by applying the 

map based positioning technique. The detail of map based positioning technique is discussed next. 

6.3.4 Map Based positioning technique 

It is well known that map based positioning techniques have been used to improve the localization 

performance of road motor vehicle navigation systems. This is primarily because the motor 

vehicle navigation is a relatively constrained process that follows set patterns of the road geometry 

[291]. In contrast, the pedestrian navigation is a less constrained process [139]. Pedestrians can 

walk forward, backward, move upstairs and downstairs, and can change the direction at any time. 

Additionally, the road networks are sparsely designed. However, the building floorplans are 

squeezed to fit several rooms in the available space. Therefore this map based positioning 

technique is designed keeping in note of these two factors. In particular, the ‘less constrained’ 

motion of pedestrian and second, the ‘widely’ available floorplans. The details of map based 

positioning technique is as follows, it consist of two parts:  (1) Building a geospatial data model 

and (2) Map matching  

6.3.4.1 Building a geospatial data model 

The geospatial data model was designed in the form of a network map such that the main 

characteristic of human made indoor environments namely the parallelism and perpendicularity 

between the walls  were preserved in the estimated features. It was presumed that an access to the 

building’s floorplan (see Figure 6.11) was provided. The features of map can include the 

following [313]: walkable pathways, corridors, rooms, height change, staircases, point of 

interests, etc. Many other elements can be added to the list. However, this choice totally depends 

on the individual’s discretion [70]. The designed network map is composed of the following 
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elements: passageways, corridors, doors, dead ends and point of interests as illustrated in Figure 

6.12; represented by a set of nodes and links. 

 

Figure 6.11: Floor plan for the level 3, Building 22 of the University campus. 

 

Figure 6.12: Geospatial data model for the level 3, Building 22 of the University campus. The 

markings (01, 02 ... and 30) indicate the node numbers and the blue lines interconnecting them 

represent links. 

A link is modelled as a straight line, defined by two nodes. The links correspond to the 

corridors, passageways and walkable pathways for this research work. A node is modelled as a 

point where a user deviates from a straight path in the network or a point where one or several 

link ends (see Section 6.1.1). It corresponds to the junctions and to the point of interests in building 

(e.g. offices, rooms, etc.) for this research work. Each link in the network map is bidirectional. It 

has two nodes (start node and end node), a unique identification number (IdNumber) and 
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information concerning the access privileges. The nodes are georeferenced by a set of coordinates 

and an identifier (IdNumber).  

This whole conceptual framework of links and nodes is stored in the form of Extensible 

Markup Language (XML) Schema as illustrated in Figure 6.13. This conceptual framework of 

XML Schema is parsed into the MATLAB software. The MATLAB software transforms the 

XML Schema into the implementation model of Network map.  

<Link IdNumber="14:04"> 
 <startNode>14</startNode> 

 <endNode>04</endNode> 

     <access>1</access> 

</Link> 

<Node IdNumber="14"> 
 <X>9.0</X> 

 <Y>4.4</Y> 

</Node> 

<Node IdNumber="04"> 
 <X>9.0</X> 

 <Y>0.0</Y> 

</Node> 

Figure 6.13: XML Schema for a particular link and its respective nodes. 

Although it is not assumed that a pedestrian navigating this map would perfectly follow the 

paths shown in form of network links (see Figure 6.12), it is however assumed that snapping the 

pedestrian’s position to the network links will be sufficient for indoor localization purposes.   

6.3.4.2 Map matching algorithm – MURE 

The multiple uncertain routes engine (MURE) algorithm is based on the linear Kalman filter, but 

extends the representation of a pedestrian’s position to support multiple discrete Gaussian 

probability distributions at different points in the network, where each distribution has an 

existential probability and all existential probabilities sum to unity. 

This framework allows MURE to deal with potential ambiguity over which link a 

pedestrian has taken from a given node. The corner detection algorithm – described above (see 

Section 6.3.1) – is very useful for discriminating whether the pedestrian has turned left, right or 

straight-on at a node. However uncertainty may still arise in scenarios where there are for e.g. two 

nodes with available left turns close together and it is unclear which turn the pedestrian has taken 

(see Figure 6.14). In this case it makes sense to split the pedestrian’s position into discrete 

distributions one on each candidate link. Furthermore at a later point in the journey one of these 

distributions may be ruled out – for e.g. by detecting a corner where none is available. In this case 

the distribution is merged, meaning that it is discarded and the weight of its existential probability 

is distributed among the remaining distributions. The policy for splitting and merging is the 

fundamental algorithm of MURE algorithm. It is described next.   
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Figure 6.14: Gaussian component gets split into two neighbouring links when a 'left' corner is 

detected. 

In practice each discrete probability distribution is represented by a software agent and each 

agent runs the MURE algorithm. A process flow diagram for the algorithm is illustrated in Figure 

6.15. 
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Figure 6.15: Process flow diagram of MURE map matching algorithm 

In the event that a corner is detected the MURE algorithm checks all nodes that are within 

a truncated region of the current position distribution for candidate corners. The size of the 

truncation is a parameter that may be selected by the designer, in this study we select ±1σ. In the 

case that more than one candidate link is present a splitting operation occurs. In the case that no 

candidate links are present a merging operation occurs. 

Splitting 

Upon splitting, the old (parent) position distribution is discarded and new (child) position 

distributions are initialized at the beginning of each of the candidate links. The initial standard 

deviation of the distribution is a constant parameter that may be selected by the designer according 

to the response speed of corner detection. In this work an empirically determined initial standard 
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deviation of ± 0.7 meters was used. For each child distribution a new agent is created running its 

own MURE algorithm and Kalman filter (described in the previous Section 6.3.3). This re-

initialization of the standard deviations of the child distributions accomplishes two things: 

1. It is the ‘map-matching’ element of the MURE algorithm, reflecting the fact that we know 

that the pedestrian is near a corner and can reduce the error accordingly. 

2. It effectively stops and restarts the Kalman filter at this point thus overcoming the 

problems of discontinuities in state. 

The final step of the splitting process is to assign an existential probability to each of the child 

distributions. The existential probability is estimated using a heuristic method where the assigned 

probability is proportional to the probability density value of the old distribution at the location 

of the node where the corner turning event took place. For each child distribution i ∈ m the 

existential probability Pi
e′ is calculated by using equation 6.20. 

Pi
e′ =  

f(di)

∑ f(di)
m
i=1

∗ Pe  (6.20) 

where Pe is the existential probability of the parent distribution and f(di) is the value of 

Gaussian probability density function at the position (di) of the node connecting to the link on 

which i is located. The f(di) is calculated by using equation 6.21. 

f(di) =  
1

σ√2π
exp (−

(x̅−di)
2

2σ2
)  (6.21) 

where x̅ and σ are, respectively the mean and the standard deviation of the parent 

distribution. Finally, please note that the case where there is only one corner turning possibility 

within the truncated parent distribution. In that case it may be considered a degenerate case of 

splitting and the procedure above holds for this case too, hence it is not represented explicitly in 

Figure 6.14. 

Merging 

In the scenario that a corner is detected but there are no corresponding candidate links then 

a merging operation takes place. The agent and their position distribution are discarded and the 

existential probabilities of all other agents representing the pedestrian (i ∈ n) are recalculated 

according to equation 6.22. 

Pi
e′ =  

Pi
e

∑ Pi
en

i=1

  (6.22) 

A merging operation will also take place in the case where an agent’s position exceeds the 

link length by a margin greater than the size of the truncated position distribution but no straight 

on link is available and no corner turning movement is detected (see Figure 6.16). 
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Figure 6.16: Gaussian component gets merged over the candidate link when next straight link 

are not observed. (A) Gaussian component before merging and (B) Gaussian component after 

merging 

6.3.5 Updating stride length 

The stride length is pseudo-constant – it does not change while the Kalman filter is running but it 

may be updated at points in the MURE algorithm where the Kalman filter is re-started, for e.g. 

upon a corner detection.   

For a given agent a good estimate of how far they have walked between corner features 

may be obtained, as this distance is encoded in the map. Combining this distance with the 

integrated estimates of step count allow us to infer a stride length. However due to the presence 

of errors in step counting it is pragmatic to update the stride length using a naïve Bayes’ filter 

[147, 254] given by the following equations: 

dSL =  β ∗ d + (1 − β) ∗ d′ (6.23) 

SL =  dSL SC′⁄  (6.24) 

Here d is the mapped distance between corner features. d′ is the estimated distance 

travelled by a pedestrian at the point of corner detection. SC′ is the estimated number of steps at 

the point of corner detection. β is a constant and determined experimentally. In this work we used 

0.97. That is, heavily weighted towards the mapped distance. 

 

 

1

1

tx

1

1
tx

(A) Gaussian component before merging (B) Gaussian component after merging 

1

1
tx



Chapter 6: Map aided PDR 

142 

 

6.4 Experimental setup & results 

In order to validate the performance of map aided smartphone based PDR positioning algorithm, 

a set of experiment was performed over two different indoor settings. The settings were selected 

in two different buildings of the university campus such that routes followed by pedestrian in one 

setting was longer than the other as illustrated in Figure 6.17 and Figure 6.18. 

 

Figure 6.17: Indoor floor plan of the level 3, Building 22 of the university campus. Route 

followed by the pedestrian is shown in blue line. Pedestrian starts from point A in link 01:11 

and stops at point B in link 15:25.The orange squares represent the two corners observed by 

pedestrian. 
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Figure 6.18: Indoor floor plan of the level 4, Building 176 of the university campus. Route 

followed by the pedestrian is shown in blue line. Pedestrian starts from point A at node 301 and 

stops on point B at node 411.The orange squares represent the two corners observed by 

pedestrian. 

It was assumed that the starting point was known a-priori. Figure 6.17 represents the indoor 

floor plan of level 3, Building 22 of the university campus. Pedestrian was asked to start their 

walk from point A (represented by a green square) along the link 01:11. After walking a length 

of 3.1 m, pedestrian was further asked to take a right turn towards link 11:12. They walked 13.7 

m straight along this pathway. On reaching node 15, the pedestrian was asked to take a left turn 

towards link 15:25 and to walk along this link until the marked point B (represented by a red 

square). The measured distance along this link until the marked point B was 7.2 m. Figure 6.18 

represents the indoor floor plan of level 4, Building 176 of the university campus. Pedestrian was 

asked to start their walk from point A (represented by a green square) towards the node 371 along 

a straight pathway (301-371) of length 21 m. Then at this point pedestrian was asked to take a left 

turn towards link 371:372. Following this, pedestrian was asked to follow this straight pathway 

(371-375) until the node 375. The length of this straight pathway (371-375) was measured to be 

20.8 m. On reaching the node 375, pedestrian was finally asked to take a left turn towards link 

375:364 and to walk until point B (represented by red square) along the straight pathway 375-

411. The length of this walked straight pathway was measured to be 19.7 m. 

For each setting, volunteer pedestrians were selected (selection criteria and ethics 

documentation are in Appendix B). Each pedestrian was again given a smartphone – HTCZ710e 

and Smart Glasses simulator (see Chapter 5, Section 5.2). The experiments were focussed on 

analysing the two different scenarios as illustrated previously (see Figure 5.3) – smartphone 

handheld and Smart Glasses simulator. The pedestrians were asked to walk normally and to count 

the number of steps during the whole walk. The prescribed route was free of obstacles. Table 6.4 

contains data about the participants in the experiments. There was no restriction on the type of 

footwear. Each participant had different footwear. In level 3, Building 22 indoor setting, five of 

the women wore medium heeled sandals, two of the men wore slippers and the remaining wore 

sports shoes. While in the other indoor setting, eight of the women wore medium heeled sandals, 

six of the men wore slippers, three of the men wore boots and the remaining wore sports shoes. 
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 Level 3, Building 22 indoor 

setting 

Level 4, Building 176 indoor 

setting 

Number of subjects 20 (14 men and 6 women) 50 (40 men and 10 women) 

Distance 24.0m 61.5m 

Age 18 – 40  18 – 40  

Weight  45kg – 90 kg 45kg – 100kg 

Height 1.55m – 1.81m 1.55m – 1.81m 

Repetitions per 

subject 

1 1 

Table 6.4: Conditions of the conducted series of experiment. 

6.4.1 Step counter 

As discussed earlier (see Section 6.3.2), we use the FFT based step rate estimation technique to 

count the number of footsteps. The footstep detection error statistics are evaluated in terms of the 

relative mean absolute error (RMAE) percentage via equation 4.11 (see Chapter 4, Section 4.2.1) 

and 95% confidence level percentage, as illustrated in Table 6.5 and Table 6.6. Table 6.5 

illustrates the error characteristics for first indoor setting i.e. level 3, Building 22 and Table 6.6 

illustrates the error characteristics for second indoor setting i.e. level 4, Building 176. The step 

count error for all test subjects during the complete walk is shown in Figure 6.19 and Figure 6.20. 

The step count error is evaluated by equation 4.10 (see Chapter 4, Section 4.2.1).  Figure 6.19 

illustrates the step count error histograms of the pedestrians for the first indoor setting. Figure 

6.20 illustrates the step count error histograms of the pedestrians for the second indoor setting.  

 

Test Scenarios 𝐑𝐌𝐀𝐄 (%)  95% confidence level (%) 

Smartphone handheld 3.10 -3.2 to 9.4 

Smart Glasses Simulator 4.12 -4.92 to 13.16 

Table 6.5: Comparison of error characteristics for the two scenarios: (A) smartphone handheld 

and (B) Smart Glasses simulator in the first indoor setting i.e. level 3, Building 22. 
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Test Scenarios 𝐑𝐌𝐀𝐄 (%) 95% confidence level (%) 

Smartphone handheld 1.44 -0.86 to 3.74 

Smart Glasses Simulator 1.95 -1.42 to 5.39 

Table 6.6: Comparison of error characteristics for the two scenarios: (A) smartphone handheld 

and (B) Smart Glasses simulator in the second indoor setting i.e. level 4, Building 176. 

 

Figure 6.19: Histogram of the step count error for the two scenarios (A) smartphone handheld 

and (B) Smart Glasses simulator for the first indoor setting i.e. level 3, Building 22. 
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Figure 6.20: Histogram of the step count error for the two scenarios (A) smartphone handheld 

and (B) Smart Glasses simulator for the second indoor setting i.e. level 4, Building 176. 

A similar behavior is observed – as detailed in Chapter 5, Section 5.2.1, the step counter 

performance is relatively poor for Smart Glasses simulator in comparison to the smartphone 

handheld.  This can be attributed because of the fact that the when a smartphone is placed on hand 

it is directly attached to the body, and also cautiously as well continuously stabilized by the 

pedestrian throughout the walk. So, as a result of which the high frequency vibrations and noises 

get damped. In comparison, the smartphone attached to the Smart Glasses simulator undergoes 

several events of wobbling throughout the walk. This is likely due to the weight and fit of the 

helmet that may not be an issue for real smart glasses. As a result, there are several instances 

which cause the smartphone to move and, to detect false and miss steps. Thus, the step counter 

accuracy substantially degrades for Smart Glasses simulator. 

Furthermore, it is noted from Figure 6.20 that the step count error is greater than 2 steps 

for a single walk for both scenarios - smartphone handheld and Smart Glasses simulator. This was 

a special case when a pedestrian was almost doing brisk walking. So, it was expected to have high 

step count error. As detailed earlier in Chapter 4, Section 4.2.1 when pedestrian moves briskly 

they shake their body more. As a result more false step detection occurs and subsequently, this 

causes the performance of the step rate estimation algorithm to be reduced. 
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The ratio of missing and falsely detecting steps can however vary depending on the 

different scenarios [139] . Again in this investigation (as earlier, see Chapter 5, Section 5.2.1), the 

ratio of missing steps is slightly more in comparison to the over estimating of footsteps for Smart 

Glasses simulator. However the number of pedestrians who have overstepped in the case of Smart 

Glasses simulator is greater than 20% of the total number of pedestrians in either of the two indoor 

settings (see Figure 6.19 and Figure 6.20). This behavior is significant. Since, it illustrates the fact 

that the helmet fit is unstable.  

6.4.2 Position error 

In this section we present an analysis of the experimental data, looking specifically at the error 

growth between corner detections. Here we restrict our analysis to the software agents that are on 

the correct path, regardless of their existential probability. An analysis of existential probability 

is given in the subsequent Section 6.4.3. 

To examine position error growth, the estimated distance travelled was compared to the 

mapped distance between the starting point of the route and point of interests (POIs), which 

include each of the corners along the route and the end of the route. In case of the corners, the 

estimated distance used was the estimation at the point of corner detection but prior to the 

correction in position being applied by MURE. 

Statistics for position error at each POI in both locations were calculated over all 

participants using equation 5.1 (see Chapter 5, Section 5.2.2). These are visualized in a Box & 

Whisker Plot [321] in Figure 6.21 and Figure 6.22. The limits of the box indicate the interquartile 

range with the median marked inside the box. The whiskers indicate the total range, not including 

outliers, which - if present - are marked with plus symbols. The corresponding numerical data 

from Figure 6.21 are given in Table 6.7 and the numerical data from Figure 6.22 are given in 

Table 6.8. The absolute mean error (ME) and 95% confidence level taken over all participants 

and POIs, are given in Table 6.9 and Table 6.10 for the two settings.   

The prescribed routes in both settings contain three POIs (see Figure 6.17 and Figure 6.18) 

– the first corner, the second corner and the end point. In level 3, Building 22 the first corner is at 

a distance of 3.1 m from starting, the second corner is at a distance of 16.8 m from starting and 

the end point is at a distance of 24 m from starting. While in level 4, Building 176 the first corner 

is at a distance of 21.0 m from starting, the second corner is at a distance of 41.8 m from starting 

and the end point is at a distance of 61.5 m from starting. 

It is expected that the position error should gradually reduce with the increase in number of 

corner features (as opposed to the standard PDR where error increases monotonically), as a result 

of MURE algorithm. The results depict the same as illustrated by the two figures – Figure 6.21 

and Figure 6.22 and the two tables – Table 6.7 and Table 6.8.  The results show that position error 
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drifts gradually from the first corner to the second corner. This behaviour can be observed by the 

increase in dispersion over 50 percentile region (see Table 6.7 and Table 6.8 for the exact values) 

from the first corner to the second corner. On the contrary, the drifts in position error decreases 

with the second corner feature. This behaviour can be observed by the reduction in scatter of 50 

percentile region from the second corner to the end point in the two scenarios – smartphone 

handheld and Smart glasses simulator.  

 

Figure 6.21: Box and whisker plot of the position error at three POIs for the first indoor setting 

– level 3, Building 22, before Kalman filter is reset. 
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Values 

(m) 

First corner feature Second corner feature End point 

 Smart 
Glasses 

simulator 

Smartphone 
hand held 

Smart 
Glasses 

simulator 

Smartphone 
hand held 

Smart 
Glasses 

simulator 

Smartphone 
hand held 

Maximum 0.13 0.19 4.72 3.81 3.65 3.26 

Median 0.05 0.05 1.9 1.6 1.2 0.76 

Minimum 0 0 0.06 0.1 0.09 0.04 

1st 

quartile 

0.02 0.03 0.65 1.1 0.50 0.36 

50th 

percentile 

0.04 0.07 2.51 2.25 1.50 1.38 

3rd 

quartile 

0.06 0.1 2.76 3.35 2.0 1.74 

Table 6.7: Comparison of the position error for the two scenarios (A) Smartphone handheld 

scenario and (B) Smart Glasses simulator scenario at three POIs for the first indoor setting – 

level 3, Building 22, before Kalman filter is reset. 
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Figure 6.22: Box and whisker plot of the position error at three POIs for the second indoor 

setting – level 4, Building 176, before Kalman filter is reset. 

Values 

(m) 

First corner feature Second corner feature End point 

 Smart 

Glasses 
simulator 

Smartphone 

hand held 

Smart 

Glasses 
simulator 

Smartphone 

hand held 

Smart 

Glasses 
simulator 

Smartphone 

hand held 

Maximum 8 6.1 8.04 7.29 6.24 4.2 

Median 1.54 1.27 2.03 1.26 1.45 1.0 

Minimum 0 0 0 0 0 0 

1st quartile 0.7 0.69 0.64 0.6 0.8 0.5 

50th 
percentile 

2.1 1.25 2.88 2.66 2.1 1.0 

3rd quartile 2.8 1.94 3.52 3.26 2.9 1.5 

Table 6.8: Comparison of the position error for the two scenarios (A) Smartphone handheld 

scenario and (B) Smart Glasses simulator scenario at three POIs for the second indoor setting – 

level 4, Building 176, before Kalman filter is reset. 
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Also notice how in Figure 6.21 the size of the error roughly corresponds with the distance 

between POIs (in Figure 6.22 the distance between POIs is approximately constant), thus the 

growth in position error is weakly bounded by the maximum distance between corner features in 

the map. On comparing the derr at end points over the two scenarios, it is observed that the mean 

absolute position error is less than 2.1 m in either of the two scenarios for the two indoor settings. 

However, the 95% confidence level is significantly less for the smartphone handheld scenario 

(see Table 6.9 and Table 6.10). This behaviour is likely to happen, as mentioned earlier (see 

Chapter 5, Section 5.2.2) due to the fact that, pedestrian continuously tries to stabilize his hand 

during the walk. As a result, the hand held smartphone actually yield more reliable step length 

estimates than its head-mounted counterpart. The mean absolute position error (MAE) is 

computed according to equation 5.2 (see Chapter 5, Section 5.2.2).  

 Scenarios MAE (m) 95% confidence level (m) 

Smartphone handheld 1.16 -3.06 to 3.14 

Smart Glasses simulator 1.36 -4.1 to 2.6 

Table 6.9: Error characteristics at the end point for the two scenarios (A) Smartphone handheld 

scenario and (B) Smart Glasses simulator scenario for the first indoor setting i.e. level 3, 

Building 22. 

 Scenarios MAE (m) 95% confidence level (m) 

Smartphone handheld 1.25 -3.16 to 3.32 

Smart Glasses simulator 2.05 -5.20 to 5.60 

Table 6.10: Error characteristics at the end point for the two scenarios (A) Smartphone 

handheld scenario and (B) Smart Glasses simulator scenario for the second indoor setting i.e. 

level 4, Building 176. 

6.4.3 Map matching evaluation 

In this section the splitting and merging operations of the MURE algorithm are illustrated in 

Figure 6.23 and Figure 6.24. Each visualize the entire journey for a single experimental run by a 

participant in – respectively - the building 22 map and the building 176 map. At two second 

intervals the position of each agent representing the pedestrian is plotted as a point indicating the 

mean position and an ellipse visualising the 1σ uncertainty in position. In the walk visualised in 

Figure 6.23 there is a single splitting operation. In the walk visualised in Figure 6.24 there are 

two splitting operations and two merging operations. 
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Figure 6.23: Trajectory of a pedestrian when the smartphone was handheld. Pedestrian starts at 

a point represented by green square along link 01:11 and stops at a point represented by red 

square in link 15:25. They walk along the path shown in magenta dashed line. The red dots 

represent the mean positions at lapse of every 2s. The black ellipses around every red dot 

represent the  1σ uncertainty region associated with the estimated pedestrian’s position. 
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Figure 6.24: Trajectory of a pedestrian for the two scenarios: (A) smartphone handheld and (B) 

Smart Glasses simulator. Pedestrian starts at a point represented by green square and stop at a 

point represented by red square. They walk along the path shown in magenta dashed line. The 
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red dots represent the mean positions at lapse of every 2s. The black ellipses around every red 

dot represent the 1σ uncertainty region associated with the estimated pedestrian’s position. 

With reference to Figure 6.23 at the start of the walk the pedestrian is represented by a 

single agent with existential probability pe = 1. Notice how around the first right hand turn the 

size of the 1σ region of uncertainty shrinks due to the corner detection. However, because there 

is no ambiguity over which link the pedestrian has taken splitting does not occur. The uncertainty 

grows as the pedestrian proceeds down the corridor and at node 15 the pedestrian takes a left turn. 

However due to the size of the region of uncertainty in position it is ambiguous whether the 

pedestrian turned left at node 14, 15 or 16. Thus there is a splitting operation and three new agents 

are created located on each of the three candidate links. In this case the existential probability of 

the true link (15:25) is  pe = 0.4. The other two links have  pe = 0.37 and  pe = 0.23 

respectively. At the end of the walk all three agents are still active so the final location of the 

pedestrian is ambiguous.   

 The Figure 6.24 depicts the trajectory of a pedestrian in the second indoor setting – level 

4, Building 176 for the two scenarios (A) Smartphone handheld and (B) Smart Glasses simulator. 

It illustrates both splitting and merging operations. Initially the pedestrian is represented by a 

single agent with existential probability  pe = 1. The pedestrian makes a left turn at node 371, 

but due to ambiguity in position there is a splitting operation resulting in three new software 

agents. The agent on the true link (371:372) has existential probability  pe = 0.1, which is in fact 

the lowest value of all three agents but still the algorithm traces the pedestrian. This emphasizes 

the importance of the MURE strategy of tracking multiple uncertain routes simultaneously.  

At the point in Figure 6.24 labelled  C′ two of the extant agents encounter a T-junction 

topology where a corner turning motion must be made to proceed. However as no corner turning 

is detected – the pedestrian is walking straight on – these two agents are merged. The existential 

probability of the single remaining agent is now  pe = 1.  

A similar scenario plays out when the pedestrian next makes a left turn at node 375. Here 

a splitting operation generates two new agents. When one of the agents arrives at the point labelled 

K in Figure 6.24 there is a T-junction but no turn is detected hence this agent is merged into the 

remaining single agent at point W. At the end of the walk there is a single agent with  pe = 1. 

 The two journeys described in Figure 6.23 and Figure 6.24 are single runs of a single 

participant and each of the other runs by different participant had different splitting and merging 

behaviours. To capture some of this variations Figure 6.25 and Figure 6.26 illustrates the 

existential probabilities along different links over different participants. Figure 6.25 illustrates 

sample values of existential probability relating to the left turn made by pedestrians at node 15 in 

Figure 6.17. The values of existential probability for agents that travelled along the true link 
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(15:25) are shown in (approximately) the middle of this plot and the values for agents that 

travelled down other adjacent links (e.g. 16:26) are shown arranged along the x-axis in their 

topologically relative position. 

 Figure 6.26 shows exactly the same thing for the left turn that occurs at node 371 in Figure 

6.18 (plot A: smartphone handheld and plot B: Smart Glasses simulator) and the left turn that 

occurs at node 375 in Figure 6.18 (plot C: smartphone handheld and plot D: Smart Glasses 

simulator). Over all these tests, there was always an agent with some existential probability on 

the correct link, that is, tracking was never lost.  The existential probability is highest along the 

actual walked link (after the splitting takes place on detection of a corner feature) in more than 

70% of pedestrian walks (runs) whether the smartphone was handheld or attached to a Smart 

Glasses simulator i.e. link 15:25 for the first indoor setting and link 371:372 after splitting takes 

place at the first corner for the second indoor setting and link 375:364 after splitting takes place 

at the second corner for the second indoor setting.  

 There is some evidence of systematic error in the PDR algorithm because in 95% of cases 

the estimated distance travelled was underestimated at a corner detection. This implies that either 

the stride length algorithm or the step rate algorithms (or both) are slightly underestimating. Also, 

it is observed that although the splitting of Gaussian component takes place at 1σ the existential 

probabilities can potentially cover up all the nearby links including the actual walked link. This 

behaviour is significant.  Since it ascertain the fact that 1σ cut off is sufficient enough for selecting 

the actual walked link after the detection of corner feature and projecting the pedestrian’s position 

onto multiple candidate links.  
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Figure 6.25: Variation of existential probabilities along different links after splitting takes place 

on detection of a corner feature (second i.e. node ‘15’, see Figure 6.17 for details) for 20 

pedestrial walks (runs) in the first indoor setting i.e. level 3, Building 22 for two scenarios (A) 

Smart Glasses simulator and (B) smartphone handheld. 
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Figure 6.26: Variation of existential probabilities along different links after splitting takes place 

on detection of a corner feature – node ‘371’ and node ‘375’ (see Figure 6.18 for details) for 50 

pedestrial walks (runs) in the second indoor setting i.e. level 4, Building 176. The headings (A) 

and (B) represent the variation of existential probabilities for the two scenarios – (A) 

smartphone handheld and (B) Smart Glasses simulator along the first corner – node ‘371’. 

While the headings (C) and (D) represent the variation of existential probabilities for the two 

scenarios – (C) smartphone handheld and (D) Smart Glasses simulator along the second corner 

– node ‘375’. 
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correct path for a given run. This metric – the map matching ratio – was calculated for each 

experimental run according to the following equation.  

Map matching ratio =  
∑ pri

M
i=1  

M
  

(6.25) 

where pri is the estimated existential probability of the pedestrian on the Mth walked 

pathway. The minimum and maximum values recorded in each setting are given in Table 6.11.  

Values Smartphone handheld Smart Glasses simulator 

 1st indoor 

setting 

2nd indoor 

setting 

1st indoor 

setting 

2nd indoor 

setting 

Minimum map matching 

ratio 

0.73 0.85 0.72 0.80 

Maximum map matching 

ratio 

0.81 0.94 0.8 0.92 

Table 6.11: Map matching ratio for the two scenarios – smartphone handheld and Smart 

Glasses simulator in the two indoor settings – first indoor setting (level 3, Building 22) and 

second indoor setting (level 4, Building 176). 

It can be observed that the map matching ratio is almost similar in both the scenarios – 

smartphone handheld or Smart Glasses simulator, as expected. However, the map matching ratio 

is slightly better in the second indoor setting in comparison to the first indoor setting even though 

this involved a longer walk in a more complex map. This can be attributed because of the 

occurrence of two key map matching characteristics – splitting and merging in the second indoor 

setting.  The results confirm the efficacy of MURE map matching algorithm i.e. it can provide a 

logical solution to successfully estimate the position of a pedestrian and locate the pathways taken 

by a pedestrian, provided the pathways are described as links and nodes.  

6.5 Summary 

In this chapter, we focussed on the usage of ‘maps’ to counter the positioning drifts (reported in 

the earlier chapter, see Chapter 4). A map matching technique – MURE, has been designed in this 

context (based on our knowledge and understanding) and tested indoors. It is different from the 

previous map matching techniques that snap the estimated position to the nearest pathways based 

on the proximity of the trajectory to the elements of the network map [280, 307]. The basic idea 

of MURE map matching algorithm is based on the linear Kalman filter but extends the 

representation of a pedestrian’s position to support multiple discrete Gaussian probability 

distributions at different points in the network map, where each distribution has an existential 

probability and all existential probabilities sum to unity.  

Based on nodes and links defined in a network map, MURE map matching initially 

searches for the turning corner feature. On detection of a turning corner feature, the Gaussian 
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distribution gets split into candidate links, provided all nodes are within truncated region of the 

current position distribution. Following this at a later point in the journey one of these 

distributions may be ruled out – for e.g. by detecting a corner where none is available. In this case 

the distribution is merged, meaning that it is discarded and the weight of its existential probability 

is distributed among the remaining distributions. This process of splitting and merging continues 

throughout the journey.   

 An important shortcoming reported in the previous chapter (see Chapter 4) was the 

dependence on the heuristic parameter ‘k’ for the estimation of the stride lengths. So we 

formulated this problem in a linear perspective on the data fusion part. Specifically, we integrated 

the information from Weinberg stride length model and information from geospatial data model 

(see Section 6.3.4.1) using Kalman filter (see Section 6.3.3 and Section 6.3.4.2). We have again 

investigated two scenarios (as earlier detailed in the previous chapter, see Chapter 5) – smartphone 

handheld and Smart Glasses simulator over the two indoor settings – level 3, Building 22 and 

level 4, Building 176. The main findings of this chapter are as follows: 

 As earlier (see Chapter 5, Section 5.2.1), the step count error for a Smart Glasses 

simulator is relatively high in comparison to the smartphone handheld scenario (see 

Figure 6.19 and Figure 6.20) for the two indoor settings. This can be attributed because 

of the fact that they don’t experience the damping effect means they experience high 

frequency vibration and noises. This can make signal processing activity like step 

detection more difficult. As a result performance of step counter algorithm degrades. 

 The mean absolute position error is less than 1.26 m for smartphone handheld scenario 

where as it is less than 2.1 m in the smart glasses simulator scenario for the two indoor 

settings. However, 95% confidence level is relatively less when the smartphone is 

handheld. This behaviour is likely to happen because the pedestrian continuously tries 

to stabilize his hand during the walk. As a result, the hand held smartphone actually yield 

more reliable step length estimates than its helmet mounted counterpart in a Smart 

Glasses simulator. 

 The minimum map matching ratio is greater than 0.70 for both the scenarios – 

smartphone handheld or Smart Glasses simulator in the two indoor settings.  This 

behaviour is significant. Since, it ascertains that the path estimated by MURE map 

matching algorithm is actually the true path in more than 70% of the pedestrial walks. 

Moreover, in the second indoor setting the map matching ratio is slightly higher in 

comparison to the first indoor setting. This can be attributed because of the occurrence 

of two key map matching characteristics – splitting and merging in the second indoor 

setting.   
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These results have a substantial practical significance since the estimated level of positioning 

performance would certainly be useful in situations like emergency operations, search and rescue 

operations, indoor tracking, etc. However, there are some limitations. These are as follows: 

 Path has less complexities: The selected path in the two indoor settings have less 

complexities. Neither the selected path have obstacles (such as pedestrians) nor are 

staircases considered. Moreover, the selected paths have only 900 turns. Considering the 

fact that the indoor geometry is complex, it is possible that the turns are less than 900. Or 

there are several intersecting turns.  

 Gaussian component is arbitrarily cut off at 1σ: The Gaussian distribution associated with 

pedestrian’s position is arbitrarily truncated at ±1σ on detection of the corner feature in 

MURE map matching algorithm. Although, it is assumed that truncation at ±1σ can 

suffice the purpose, considering the fact that existential probabilities may grow as 

pedestrian traverses over the network. However, there is a trade-off between this 

truncation and how aggressively modelled error grows (governed by 𝑄 and 𝑅 in the 

Kalman filter).  

Additionally, it is also possible that there are larger gaps between corner features. This can 

potentially result in the growth of position errors. Therefore, in order to reduce the growth of these 

errors we have investigated the performance of our MURE map matching algorithm by placing 

the artificial landmarks at some distances. The will be discussed in the next chapter.   
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7. Chapter 7: Landmark aided PDR 

The previous chapters have given us the building blocks for a low cost positioning system suitable 

for use in an infrastructure free indoor environment by a pedestrian. In particular, the Chapter 3 

investigated whether it is possible to position an individual (toy vehicle) on an infrastructure free 

environment by means of a case study, carried on an artificial test bed – Scalextric. The Chapter 

4 focussed on analysing the inertial sensor measurements recorded from smartphone sensors to 

detect the occurrence of footsteps and indirectly estimating stride lengths of pedestrians. A 

significant drawback of the proposed stride length models was the presence of drift errors and the 

dependence of heuristic parameter ‘k’. Also, the position of smartphone was dictated to the 

pedestrians throughout the experiments to keep it straight and flat such that the orientation of 

pedestrian relative to the smartphone is static. However, at times this was not true because of 

sudden obstacles or glitches. Therefore, a more realistic scenario was investigated by means of 

Smart Glasses simulator in the Chapter 5 to consider this assumption valid. The other 

shortcomings were dealt in Chapter 6. Particularly, the developed smartphone based PDR 

positioning system was aided with maps in Chapter 6 to reduce the drift errors and dependence 

on heuristic parameter ‘k’.  

Experimental results showed interesting performance (For the smartphone handheld 

scenario, the mean absolute position error was 1.25 m with 95% confidence level in the region -

3.16 to 3.32 m at end points. On the contrary, when the smartphone was attached to the Smart 

Glasses simulator, mean absolute position error was 2.05 m with 95% confidence level in the 

region -5.20 to 5.60 m at end point), considering the corners are separated by a distance of 

approximately 21 m. However, it is still possible that the corners are further far apart.  This may 

cause the positioning errors to further grow.  

 Therefore this chapter provides a reference implementation of the artificial landmarks – 

Quick response (QR) codes placed at fixed distance apart (approximately 20 m) to reduce these 

positioning errors by means of proximity detection method (see Chapter 2, Section 2.2.1.1); while 

utilising the previous indoor setting for this investigation (level 4, Building 176). It is to be noted 

that although QR codes are not actually desirable in an actual application, it is here used as a proof 

of concept i.e. growth in position errors can substantially be reduced by utilising the landmarks 

(for e.g. QR codes) commonly present in the environment in addition to the corner features 

provided the features (QR code landmarks and corner features) are present at close distances 

(approximately 10 m). From the literature review (see Chapter 2, Section 2.2.5) it is clear that 

[177], “Landmarks are stationary, distinct, and salient objects or places, which serve as cues for 

structuring and building a mental representation of the surrounding area. Any object can be 

perceived as a landmark if it is unique enough in comparison to the adjacent items.” 
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Two key advantages of the landmark based positioning in perspective of the pedestrians 

are as follows [322, 323]: 

1) It makes the pedestrian sure that they are on the correct route, since they can see the very 

landmark which may be a part of their navigational instruction. 

2) It provides an attractive means of self-orientation. Particularly at decision points, these 

landmarks play a vital role in orienting the pedestrian to the right direction. 

The basic principles of map aided PDR also apply to the landmark aided PDR [165]. 

However, it differs from the map aided PDR in the sense that maps can only serve to constraint 

the pedestrian geometrically whereas landmarks can potentially serve as a reference point in case 

when estimating the relative position of pedestrian [324]. To begin with, the chapter details about 

the designed smartphone based PDR positioning system aided with the maps and landmarks in 

Section 7.1. Section 7.2 presents the experimental setup and results obtained from the smartphone 

based PDR system aided with map and landmarks. Finally, Section 7.3 summarizes the key 

findings of this chapter. 

7.1 Smartphone based PDR system aided with map and landmarks 

The block diagram of smartphone based PDR positioning system aided with map and landmark 

database is detailed in Figure 7.1. It is composed of seven parts: 1) Building a geospatial data 

model 2) A feature (corner) detection algorithm 3) The MURE algorithm 4) Smartphone based 

PDR system 5) Updating stride lengths 6) Landmark database and 7) Landmark matching. The 

accelerometer and gyroscope samples are again filtered according to equation 4.1 (see Chapter 4, 

Section 4.1). The filtered accelerometer samples are fed to the smartphone based PDR system.  

The filtered gyroscope samples are used to detect the corner features. The implicit position 

information from PDR system, the geospatial data model; represented in a form of topological 

map and feature (corner) detection module are fused together via MURE algorithm to estimate 

the relative position of the pedestrian. Further corrections are then applied by the stored landmark 

database using landmark matching algorithm to get the refined position estimate. In case corner 

features are detected the stride lengths are updated, and the information is fused by the MURE 

algorithm.  

As illustrated above, the basic working of modules associated with the  smartphone based 

PDR positioning system aided with map and landmark database is similar to the previous chapter 

(see Chapter 6, Section 6.3) except addition of two new modules namely landmark database and 

landmark matching algorithm. Therefore, the following subsections will describe the working of 

these two new modules in detail.  For the working of other modules refer Chapter 6, Section 6.3. 
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Figure 7.1: Block diagram of the smartphone based PDR positioning system aided with map 

and landmark. 

7.1.1 Landmark based positioning 

Over the past few decades landmark based positioning has been significantly used by pedestrians 

to self-orient themselves and to navigate through different (indoor and outdoor) environments. 

However, most of the prior works have primarily focussed on using landmarks as direction cues 

[325, 326]. This landmark based positioning technique uses landmarks, particularly artificial 

landmarks in the form of QR codes to not only assure the pedestrian about the correct pathway to 

the destination but also improve the positioning accuracy of the positioning system by calibrating 

the positioning system on sensing proximity to landmarks. The novelty of this approach is that it 

utilizes the human as a sensor to detect proximity to the landmarks. There are two main paradigms 

of the landmark based positioning. These are as follows: 

1. Landmark selection and building landmark database 

2. Landmark matching algorithm 

7.1.1.1 Landmark selection and building landmark database 

The basic criteria of visualising a landmark is that, in principle it should ensure that it is able to 

distinguish itself from nearby objects [177]. In general, a landmark's salience is considered to 

result from visual, semantic and structural properties, accompanied by its advance visibility [327, 

328]. However, it is still an open question, which features of an object are the most essential to 

assess its suitability for serving as a landmark [329]. Our landmark is selected and designed in 

form of 2D codes – Quick response (QR) codes (see Figure 7.2) based on these four features [166, 

179]: 
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 Visual clarity: The landmark is designed in form of a 2D code such that it appears visually 

distinct to the passer-by from the nearby objects. Special consideration is given to its 

façade area (contrast to nearby surroundings) and shape.  

 Human friendliness: The data is encoded in form of 2D code following ISO/IEC 18004 

standard [330]. It is one of the most widely used 2D codes in the world that can be read 

even by ordinary mobile phones.  

 Robustness: The QR codes are robust. Primarily, these can sustain damage and can 

continue to function even when a part of the QR code image is obscured. 

 High productivity: The QR codes can be effectively generated by numerous software or 

services available freely (no cost incurred) online. These can be printed even by the 

lowest quality printers.  So potentially anyone can make this landmark code.  

  

Figure 7.2: An example of the landmark code – QR code. It consist the following information: 

(a) link in which it is placed: 331:341 (provided the building floor plan is represented in form of 

network map) (b) previous interconnecting link: 321:331 (c) next interconnecting link: 341:351 

(d) relative position of the QR code from the starting point: 9.0 m and (e) a unique QR code 

identifier number: LW3001  

A QR code is a two-dimensional machine readable symbol consisting of an array of black 

and white squares (see Figure 7.2). It was invented in 1994 by Denso Wave Corporation [331]. 

The primary advantage of QR codes in comparison to the other linear symbols is that it can store 

high density of data (approximately 100 times more) while requiring less processing (reading) 

time [331]. 

 These designed QR codes are pasted onto the wall and pillar of the building at measured 

distances at a height of 1.2 m from the ground. The whole conceptual framework of QR codes is 

stored in form of Extensible Markup Language (XML) schema as illustrated in Figure 7.3, which 
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can be represented diagrammatically in Figure 7.4. Here the QR code is placed on link 331:341, 

the next interconnecting link is 341:351 and the previous interconnecting link is 321:331.   

Each QR code consists of the following information: a unique identification number 

(IdNumber), link in which it is placed (mLink), previous interconnecting link (pLink), next 

interconnecting link (nLink) and the relative position of QR code from the starting point (relPos).  

<QRFeature number="LW3001"> 
   <pLink>321:331</pLink> 

   <mLink>331:341</mLink> 

   <nLink>341:351</nLink> 

   <relPos>9.0</relPos> 

  </QRFeature> 

Figure 7.3: XML Schema for a particular QR code 

 

Figure 7.4: Diagrammatic representation of the setup of a particular QR code – LW30001, refer 

Figure 7.2.  

7.1.1.2 Landmark matching algorithm 

The landmark matching algorithm is an extension to the MURE algorithm. The MURE 

framework in principle, detect corner features to deal with potential ambiguity amongst the links 

a pedestrian has taken from a given node. Uncertainty may arise in scenarios where there are, for 

e.g. two nodes with available left or right turns close together and in this case it makes sense to 

split the pedestrian’s position into discrete distributions one on each candidate link. Furthermore 

at a later point in the journey one of these distributions are ruled out – for e.g. by detecting a 

corner feature where none is available. In this case the distribution is merged. However, if the 

corners are potentially absent or present over the long distances the ambiguity in distributions 

may persist. In that case it makes sense to use the landmarks e.g. QR code to rule out the 

distributions i.e. enable merging.   

A process flow diagram for the algorithm is illustrated in Figure 7.5. A map of landmarks 

is stored in a database. So when a pedestrian passes through these QR codes (placed at requisite 

distances from the starting point) the entries are updated by clicking the TimeStamp Button and 

331 341 351

QR code

Link
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the following QR code identifier number button (see Figure 7.6). This registers the point of time 

a pedestrian observes a particular code. Once the entries are updated, the time of occurrence of 

these landmarks is compared with the parallel time running in the smartphone. If it matches, the 

position error is reset by updating the stride lengths and existential probabilities are merged.   

 

Figure 7.5: Process flow diagram for the landmark matching algorithm. 

 

Figure 7.6: Screenshot of the modified SensorData application 
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specific and depends on the response speed of the pedestrian. This re-initialization of the standard 

deviation accomplishes two things: 

 It is the ‘map-matching’ element of the MURE algorithm, reflecting the fact that we know 

that the pedestrian is near a landmark and can reduce the error accordingly. 

 It serves as a direction cue to the pedestrian, confirming the pedestrian that they are on 

the true path 

In practise, it is equally possible that when a pedestrian clicks a timestamp button on 

observation of a particular QR code they may be slightly ahead, behind or just opposite to the QR 

code.  For a given agent a good estimate of how far they have walked between landmarks may be 

obtained, as this distance is encoded in the landmark database. Combining this distance with the 

integrated estimates of step count allow us to infer a stride length. However due to the presence 

of errors in step counting it is pragmatic to update the stride length using a naïve Bayes filter 

given by the following equations [254]: 

dSL =  β ∗ d + (1 − β) ∗ d′ (7.1) 

SL =  dSL SC′⁄  (7.2) 

Here 𝑑 is the mapped distance from origin of journey to landmarks. d′ is the estimated 

distance travelled by a pedestrian at the point of landmark observation. SC′is the estimated number 

of steps at the point of landmark observation. 𝛽 is a constant and equal to 0.97. That is, heavily 

weighted towards the mapped distance. 

Merging 

In the case when landmarks are observed, the agent and their position distribution are discarded 

and the existential probabilities of all other agents representing the pedestrian (𝑖 ∈ 𝑛) are 

recalculated according to the equation 7.3. 

Pi
e′ =  

Pi
e

∑ Pi
en

i=1

  (7.3) 

where Pi
e is the existential probability of the parent distribution.  

7.2 Experimental setup & results 

In order to validate the performance of map aided, and artificial landmark aided smartphone based 

PDR positioning algorithm a set of experiment was performed. We selected the same indoor 

setting (particularly second indoor setting, considering the corner features were distantly 

separated – approximately 21 m) and the same volunteer participants were approached as in the 

previous chapter (see Chapter 6, Section 6.4). Refer Figure 7.7 for details about the indoor setting. 

The path was however inlaid with QR codes this time. Participants were again asked to walk on 

a typical route – 301-371-375-411. Pedestrian started walking from point A (represented by a 

green square) towards the node 371 along a straight pathway (301-371) of length 21 m. Then at 
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this point pedestrian was asked to take a left turn towards link 371:372. Following this, pedestrian 

was asked to follow this straight pathway (371-375) until the node 375. The length of this straight 

pathway (371-375) was measured to be 20.8 m. On reaching the node 375, pedestrian was finally 

asked to take a left turn towards link 375:364 and to walk until point B (represented by red square) 

along the straight pathway 375-411. The length of this walked straight pathway was measured to 

be 19.7 m approximately. The landmark (QR) codes were placed at requisite distances from the 

starting point. In total, three QR codes were placed along the complete route at strategic locations.  

The pedestrians were further asked to click the TimeStamp button and unique code 

identifier button on SensorData app (see Figure 7.6) when passing through any of these QR codes. 

This registered the point of time when a pedestrian observed a particular QR code. Information 

about the QR code and the timestamp was logged in a csv file which was stored in smartphone’s 

external memory (SD card). It was later analysed by the developed Java framework.   

 

Figure 7.7: Geospatial model for the fourth level of Building 176 in the University campus. The 

markings (301, 311 ... and 411) indicate the node numbers. The green square depicts the starting 

point of the walk, and the red square depicts the end point of the walk. The orange square 

depicts the 3 QR codes observed by the pedestrian along the walk. The violet square depicts the 

2 corners observed by the pedestrian along the walk.   

 Again this time (as referred in the previous chapter, see Chapter 5, Section 5.2) the 

experiment was focussed on analysing two different scenarios (see Figure 5.3) – smartphone 

handheld and Smart Glasses simulator. Each pedestrian was given a smartphone (HTC Z710e) to 

handheld and a Smart Glasses simulator for the complete walk. The pedestrians were asked to 
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walk normally. It was presumed that there was no obstacle during the whole walk and secondly, 

the initial conditions were known a-priori. The subjects were similar to the previous chapter (see 

Chapter 6, Section 6.4), therefore other conditions of the experiment were also similar i.e. eight 

of the women wore medium heeled sandals, six of the men wore slippers, three of the men wore 

boots and the remaining wore sports shoes. Table 7.1 summarizes the conditions of conducted 

series of experiment. 

Conditions Values 

Number of subjects 50 (40 men and 10 women) 

Distance 61.5 m 

Weight 45kg – 100kg 

Height 1.55 m – 1.81 m 

Repetitions per subject 1 

Table 7.1: Conditions of the conducted series of experiment. 

7.2.1 Position error 

The distance travelled is calculated by summing up the estimated step length of every counted 

footstep (estimated from the step counter algorithm see Chapter 6, Section 6.3.2; the performance 

of step counter algorithm was similar as in the previous chapter since the participants were same). 

This estimated distance is then compared against the actual distance at known point of interests 

(POIs) to compute the position error derr (according to equation 5.1, see Chapter 5, Section 5.2.2).  

 The variation of position error at different POIs is visualised as a Box & Whisker Plot (see 

Chapter 6, Section 6.4.2 for complete details). There are six POIs in the selected route (see Figure 

7.7) – two corners, end point and three QR codes.  The distance to these POIs is measured offline 

– first corner is at a distance of 21.0 m from starting, the second corner is at a distance of 41.8 m 

from starting and the end point is at a distance of 61.5 m from starting. The QR codes are placed 

at distances 9 m, 30 m and 46 m from the starting point.  

Figure 7.8 illustrates the variation of position error at six POIs. A similar behaviour is 

observed as seen in the previous chapter (see Chapter 6, Section 6.4.2). In particular, the drift in 

positioning error appears to gradually reduce with the increase in number of corner features and 

QR codes for the two scenarios – smartphone handheld and Smart Glasses simulator (see Table 

7.2 for the exact values). This can also be confirmed by observing the decrease in dispersion over 

the 50 percentile region from Figure 7.8. Another interesting characteristic observed from Figure 

7.8 is that the performance of smartphone handheld scenario is relatively better in comparison to 

the Smart Glasses simulator. This behaviour is similar to the previous chapter (see Chapter 6, 
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Section 6.4.2). It can be explained with the same reasoning as detailed earlier (see Chapter 6, 

Section 6.4.2) that is pedestrian continuously tries to stabilize his hand during the walk. As a 

result, the hand held smartphone actually yields more reliable step length estimates than its head 

mounted counterpart in a Smart Glasses simulator.  

 

Figure 7.8: Box and whisker plot of the position error using corner features and QR codes at six 

POIs – first corner, first QR code, second corner, second QR code, third corner, third QR code 

and end point, before Kalman filter is reset. 

 

 



Chapter 7: Landmark aided PDR 

171 

 

Values 

(m) 

1
st
 QR code 1

st
  corner feature 2

nd
 QR code 2

nd
 corner feature 3

rd
 QR code End point 

 Smart  

Glasses  
simulat

or 

Smartphon

e  
handheld 

Smart  

Glasses  
simulato

r 

Smartphon

e  
handheld 

Smart  

Glasses  
simulato

r 

Smartphon

e  
handheld 

Smart  

Glasses  
simulato

r 

Smartphon

e  
handheld 

Smart  

Glasses  
simulato

r 

Smartphon

e  
handheld 

Smart  

Glasses  
simulato

r 

Smartphon

e  
handheld 

Maximum 3.38 1.6 3.52 3.6 5.5 4.1 5.56 2.92 4.54 4.4 3.23 2 

Median 0.5 0.4 1 1 1.1 0.9 1.2 0.8 1 1.1 0.9 0.7 

Minimum 0 0 0.08 0.04 0.05 0.01 0 0.05 0.05 0 0 0 

1st 

quartile 

0.16 0.2 0.45 0.51 0.44 0.5 0.48 0.41 0.57 0.6 0.36 0.3 

50th 

percentile 

0.79 0.45 1.07 1.11 1.46 1.52 1.54 1.29 0.97 0.91 1.12 1 

3rd 

quartile 

0.95 0.65 1.52 1.62 1.9 2.02 2.02 1.7 1.54 1.51 1.48 1.30 

Table 7.2: Comparison of position error using corner features and QR codes at six POIs – first corner, first QR code, second corner, second QR code, third 

corner, third QR code and end point for the two scenarios (A) smartphone handheld and (B) Smart Glasses simulator, before Kalman filter is reset. 
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On comparing the position error with the earlier test case (i.e. considering only the corner 

enabled map matching see Chapter 6, Section 6.4.2., Figure 6.22), it is observed that the 

performance of smartphone aided with both QR codes and corner features is more balanced and 

robust in comparison to its counterpart. This is illustrated by the presence of lesser number of 

outliers and the smaller dispersion over the 50 percentile region in Figure 7.8 at three POIs – first 

corner, second corner and end point in comparison to the similar points in Figure 6.22. The exact 

numbers can be observed from Table 6.8 and Table 7.2 respectively.  

It is also observed that the mean absolute position error is less than 1 m for this test case in 

the two scenarios (see Table 7.3) – smartphone handheld and Smart Glasses simulator. Even the 

95% confidence level is comparatively less for this test case in either of the two scenarios (see 

Table 7.3). This behaviour is as expected. Since the corner features, in corner enable map 

matching test case are distantly separated. Therefore, the positioning error gets accumulated 

overtime. In comparison, on the second test case the positioning error is significantly reduced by 

updating SLs (according to equations 7.1 and 7.2, see Section 7.1.1.2) derived from the measured 

ground truth at shorter intervals on the observation of either QR codes or corner features and the 

uncertainty (1σ) associated with pedestrian’s relative position x̂t is significantly reduced to ±0.7 

m on observation of these features. This results in resetting the Kalman filter at shorter intervals 

(see Section 7.1.1.2 for details). This restricts the growth of position error, and improves the 

overall accuracy of positioning system. The mean absolute error (MAE) is derived according to 

equation 5.2 (see Chapter 5, Section 5.2.2 for the exact formula). 

Values (m) Smart Glasses simulator Smartphone handheld 

 Corner only Corner & QR 

code  

Corner only Corner & QR 

code 

MAE  2.05 0.98 1.25 0.80 

95% confidence level -5.20 to 5.60 -2.69 to 2.47 -3.16 to 3.32 -2.0 to 2.0 

Table 7.3: Comparison of position error at end point for the two test cases: (A) only the corner 

enabled map matching (readings referred in Table 6.10 are again illustrated here for the sake of 

completeness and readability) and (B) both QR codes and corner features included, in the two 

scenarios – smartphone handheld and Smart Glasses simulator. 

7.2.2 Map and landmark matching evaluation 

The performance of map aided and, artificial landmark aided smartphone based PDR positioning 

algorithm is also analysed graphically. The key characteristic of MURE map matching algorithm 

is ‘splitting’ and ‘merging’ (see Chapter 6, Section 6.3.4.2). While the key characteristic of map 
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aided and, artificial landmark aided smartphone based PDR positioning algorithm is resetting of 

position error at shorter intervals in addition to splitting and merging of the Gaussian component 

associated with pedestrian’s position. Figure 7.9 illustrates the trajectory of a pedestrian for the 

two scenarios (A) Smartphone handheld and (B) Smart Glasses simulator considering both QR 

codes and corner features are included in the indoor setting. 
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Figure 7.9: Trajectory of a pedestrian for the two scenarios: (A) smartphone handheld and (B) 

Smart Glasses simulator considering both QR codes and corner features are included in the 

indoor setting. Pedestrian starts at a point represented by green square and stop at a point 

represented by red square. They walk along the path shown by magenta dashed line. The red 

dots represent the estimated positions at lapse of every 2s. The black ellipses around every red 

dot represent the 1σ uncertainty region associated with the estimated pedestrian’s position. 

It is observed that the graphical performance of map aided and, landmark aided algorithm 

is quiet similar to the earlier test case discussed in the last chapter (using only the corner enable 

map matching, see Figure 6.24). Initially the pedestrian is represented by a single agent with 

existential probability pe = 1. The pedestrian makes a left turn at node 371, but due to ambiguity 

in position there is a splitting operation resulting in two new software agents. The agent on the 

true link (371:372) has highest existential probability pe = 0.9 and pe = 0.82 for the two 

scenarios – smartphone handheld and smart Glasses simulator respectively. 

At the point in Figure 7.9 labelled 𝐶′ two of the extant agents encounter a T-junction 

topology where a corner turning motion must be made to proceed. However as no corner turning 

is detected – the pedestrian is walking straight on –these two agents get merged. The existential 

probability of the single remaining agent is now pe = 1 and remains 1 throughout.    

On the contrary, in the earlier test case (see Figure 6.24), the splitting operation again takes 

place at the second turning corner resulting in two new software agents. These agents got merged 

when one of the agent arrives at labelled point K where there is a T junction and no turn is detected 

hence the agents get merged into a single remaining agent at point W. This is unlikely for this 

case. Considering the fact that there are more number of features (QR codes and corner features) 

along the route of a pedestrian. So as a result of this, the pedestrian’s position uncertainty (1σ) 

does not grow as fast as in the former case. Hence, the area to which splitting takes place 

tentatively remains smaller for this test case. Therefore, as a result of this the software agent 

ideally has higher pealong the actual walked route and even does not splits after the pedestrian 

encounters a turning at node 375. 

The map matching ratio is computed according to equation 6.25 (see Chapter 6, Section 

6.4.3). It is observed that the map matching ratio for even the worst case is greater than 0.84 for 

the two scenarios (see Table 7.4) – smartphone handheld and Smart Glasses simulator. This 

behaviour can primarily be attributed due to the occurrence of the two key phenomena in MURE 

map matching algorithm – splitting and merging (as detailed earlier in the Chapter 6, Section 

6.3.4.2). This again confirms the aforementioned fact (see Chapter 6, Section 6.4.3) i.e. the MURE 

map matching algorithm is sufficiently enough to provide a logical solution to estimate the 
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position a pedestrian and the path taken by a pedestrian, provided the map is described as links 

and nodes.  

Values Smartphone handheld Smart Glasses simulator 

 Only corners Corner & 

QR codes 

Only 

corners 

Corner & 

QR codes 

Minimum map matching ratio 0.85 0.89 0.80 0.84 

Maximum map matching ratio 0.94 0.99 0.92 1 

Table 7.4: Map matching ratio for the two test cases (A) only the corner enabled map matching 

(readings referred in Table 6.11 are again illustrated here for the sake of completeness and 

readability) and (B) both QR codes and corner features included, in the two scenarios – 

smartphone handheld and Smart Glasses simulator. 

Nevertheless, on comparing the map matching ratio with the earlier test case – only the 

corner enabled map matching (see Table 7.4), it is observed that that the map matching ratio is 

slightly higher for the this test case. This behaviour can be explained with the same reasoning as 

above i.e. because of the presence of QR codes in mid of the corner features, the 1σ standard 

deviation associated with pedestrian’s  position does not grow as fast as in the former case. As a 

result of which the area to which splitting occurs on observation of a corner feature practically 

remains smaller. Subsequently, this improves the overall existential probability (as illustrated in 

Figure 7.10) of an agent on a particular link. Also, the presence of QR codes serve as an additional 

landmark to initiate the map matching process of merging.  

The two journeys described in Figure 7.9 are single runs of a single participant and each of 

the other runs by different participant had different splitting and merging behaviours. To capture 

some of this variation Figure 7.10 illustrates the existential probabilities along different links over 

different participants. 
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Figure 7.10: Existential probabilities of agents along different links after splitting takes place 

on detection of a corner feature – node ‘371’ and node ‘375’ (see Figure 66 for details) for 50 

pedestrial walks using both corner features and QR codes. The headings (A) and (B) represent 

the existential probabilities of agents for the two scenarios – (A) smartphone handheld and (B) 

Smart Glasses simulator after the first turning at node 371. While the headings (C) and (D) 

represent the existential probabilities of agents for the two scenarios – (C) smartphone handheld 

and (D) Smart Glasses simulator along the second turning at node 375. 

Figure 7.10 illustrates sample values of existential probability relating to the left turn made 

by pedestrians at node 371 and node 375 in Figure 7.7 for the two scenarios – smartphone 

handheld and Smart Glasses simulator. The values of existential probability for agents that 

travelled along the true link 371:372 after left turn occurs at node 371 are shown in 
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(approximately) the middle of the plot (A) and plot (B) for the two scenarios respectively and the 

values for agents that travelled down other adjacent links (e.g. 361:362, 391:392, etc.) are shown 

arranged along the x-axis in their topologically relative position. Plot (C) and plot (D) represent 

the variation of existential probability for agents after left turn occurs at node 375 for the two 

scenarios respectively. The link 375:364 is the true link taken up by an agent after the left turn 

occurs at node 375 whereas the other links – 374:363, 373:362 and 371:361 are perpendicularly 

separated links from the actual link. The link 397:382 is the link following the actual link 375:364, 

while link 454:444 is the link parallel to the link 397:382. 

As expected the values of existential probability for agents that travelled along extreme 

links (i.e. link 331:332 for the first turning corner and link 371:361 for the second turning corner) 

is least, approximately zero and the values of existential probability for agents that travelled along 

links closer to the true links is higher with the highest along the true links taken up by an agent.  

However, in comparison to the earlier test case (see Figure 6.26) the existential probability for 

agents is significantly higher (closer to 1) in the true link over 50 pedestrial walks. This can be 

attributed because of the same reasoning as detailed above i.e. the area to which splitting of 

Gaussian component takes place on detection of the corner feature is significantly less for this 

test case.  

Also, it is to be noted that there is always an agent with some existential probability on the 

correct link, that is, tracking is never lost. In addition it is noted that the least existential probability 

for an agent on the true link is greater than 0.84 in 95% of the pedestrial walks for the two 

scenarios. 

7.3 Summary 

In this chapter, we focussed on the usage of artificial landmarks (QR codes) for positioning. These 

landmarks were used in addition to the corner features, occurring naturally for positioning. A 

landmark based positioning technique has been designed in this context.  The uniqueness of this 

approach lies in the fact that it utilizes the human as a sensor to detect proximity to landmarks. 

The basic idea of landmark based positioning involved two key paradigms. First it involved 

building a geospatial database i.e. augmenting the physical space with landmarks and selecting 

the landmark. Second it involved landmark matching i.e. resetting the accumulated positioning 

error to minimum on sensing proximity to landmarks by humans. The key findings of this chapter 

are as follows:  

 The mean position error is relatively less when the smartphone is handheld in comparison 

to the Smart Glasses simulator (see Table 7.3). This behaviour is likely to happen because 

of the fact that pedestrian continuously tries to stabilize his hand during the walk. As a 
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result, the hand held smartphone actually yield more reliable step length estimates than 

its helmet mounted counterpart in a Smart Glasses simulator.  

 The performance of smartphone aided with both QR codes and corner features is more 

balanced and robust, in comparison to smartphone aided with corner features only (see 

Figure 6.22 and Figure 7.8).This behaviour is likely to happen since, the QR codes 

ascertains the pedestrian of its position and moreover, serve as an additional cues to its 

destination.  

 The existential probability of an agent along the true link is greater than 0.84 in more than 

95% of pedestrial walks for the two scenarios (see Table 7.4, considering both splitting 

and merging phenomena takes place in the MURE map matching algorithm) – 

smartphone handheld and Smart Glasses simulator. This behaviour is significant. Since, 

it ascertains that the likelihood of the path estimated by the algorithm is the actual path 

followed by pedestrian is greater than 0.84.    

 The map matching ratio is significantly higher when the smartphone aided with both QR 

code and corner features are considered in comparison to the smartphone aided with 

corner features only (see Table 7.4). This behaviour can be attributed because of the fact 

that the presence of QR codes in mid of the corner features limits the rate of growth of 

uncertainty (1σ) associated with pedestrian’s position. Consecutively, the area to which 

splitting occurs on observation of corner feature practically remains smaller. Hence, this 

results in the improvement of the existential probability of a pedestrian on a particular 

link. 

These results confirm the consistency of positioning algorithm (as previously observed in the 

last chapter, see Chapter 6, Section 6.4) to locate pedestrians and moreover, provide an alternative 

means to reduce the growth of position errors if corner features are distantly separated. However, 

there are some limitations. These are as follows: 

 Choice of sensors: The precision of employing humans as a sensor to log in the time at 

which they observe the QR code is not very good. Since, many a times they forgot to 

click the TimeStamp button on the SensorData application (see Figure 7.6) when they 

passed across landmarks and, also at times they reported of clicking the TimeStamp 

button far off from the actual landmark.   

 Dependence on landmarks: The landmarks (QR codes) are artificially designed and 

selected, based on their saliency and visual characteristics. This is subsequently attached 

to the scene at strategic locations. This requires time and manual effort.  

Also, QR code based landmarks affect the ‘user experience’. So ideal to minimize their usage 

i.e. use corner features as much as possible. However, QR codes are an effective tool to solve the 
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problem of many routes in MURE map matching algorithm. Methods to address these limitations 

and inaccuracies will be discussed in the chapter ‘Conclusion and Future Work’. The next chapter 

however discusses how this study complements the existing body of research. 
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8. Chapter 8: Discussion 

In this chapter we firstly compare the performance of developed systems with the evidence 

available in the literature and secondly we describe the suitability of the developed algorithms for 

practical implications by industry. 

8.1 Performance comparison with the other systems 

Chapter 3 and Chapter 6 presented evidence on the performance of various map and landmark 

aided PDR positioning systems using smartphones or an independent IMUs as a sensing unit. The 

most significant capability of our system is to offer accurate logical positioning and tracking 

performance. A comparative summary of the existing map aided PDR systems and landmark 

aided PDR systems along with our system developed in this research study is presented in Table 

8.1 and Table 8.2.   

System Accuracy (𝐱̅) Precision (𝐱̅ ± 𝟐𝛔 ) Placement 

Attia et al. [280] 7.12 m Unspecified Hand 

Nammoon and  
Youngok [314] 

4.19 m 0.19 m to 8.19 m Hand 

Bao and Wong  
[299] 

0.75 m 0.4 m to 1.2 m Trouser pocket 

Li et al. [316] 1.5 m  -7.1 m to 10.1 m Hand and pocket 

Xiao et al. [28] 2 m – 4 m 97% of the cases, converges within an 
error less than 3 m for distances less 

than 60 m 

Hand 

Our system 1.25 m -3.16 m to 3.32 m Hand 

2.05 m -5.20 m to 5.6 m helmet mounted 

Table 8.1: Performance comparison for the map aided PDR systems using smartphones as a 

sensing unit. 
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System Accuracy (𝐱̅) Precision (𝐱̅ ± 𝟐𝛔 ) Placement  Cost 

Mulloni et al. 
[180] 

Unspecified, 
Depends on the 

marker density. 

Unspecified Hand Prior mapping cost of 
less than a minute for a 

single marker.  

Fallah et al. 
[189] 

1.85 m -3.63 m  to 7.33 m  Hand 2000 USD + prior 
mapping cost of 3 days.  

Wang et al. [62] 1.69 m Unspecified Hand and 
pocket 

Cost of Wi-Fi 
infrastructure + prior 

training needed. 

Our system 0.80 m -2.0 m to 2.0 m handheld Prior mapping cost of 
less than 30 s, for a 
single QR code. 

0.98 m -2.69 m to 2.47 m Helmet 
mounted 

Table 8.2: Performance comparison for the landmark aided PDR systems using smartphones as 

a sensing unit. Mapping cost is related to the time needed to augment the environment with 

landmarks. 

The system developed by Bao and Wong [299] localized pedestrian accurately to 0.75 m 

with precision ranging from 0.4 m to 1.2 m; this was based on calibrating location as well as step 

direction and sensor’s orientation. In comparison, when they calibrated only the locations the 

average error over twenty trials was 0.95 m which was slightly ahead of our approach.   

The performance of map aided PDR system developed in this study is better than most of 

the existing map aided PDR systems (with respect to accuracy and precision) reported in the 

literature and equals to systems using costly infrastructures and multimodal fingerprinting [25, 

97]. This performance can be attributed because of the developed MURE map matching algorithm 

and step length estimation technique.  The landmark aided PDR system developed in this study 

is an extension to the developed map aided system. Its performance is much superior in 

comparison to existing landmark aided PDR systems (with respect to accuracy, precision and 

cost).  

The MURE algorithm including its extension landmark matching algorithm is lightweight 

in both running time and memory usage because it neither stores transition matrices nor performs 

expensive matrix operations as in [332]. For a normal pedestrian tracking application, the 

processing time for each step should be less than 800 ms. Meanwhile, the memory limit for a 

single application on an Android platform is 20 MB. Any algorithm with requirements exceeding 

these limits is not suitable for pedestrian tracking [28, 255]. Although, the developed algorithms 

in this study are currently offline, therefore we are not sure about the RAM usage however 
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practical size of the application (Java software stack and smartphone sensor application) is 3.0 

MB. This is lesser in comparison to the other commercial software applications [333, 334].  

The minimum map matching ratio is 0.73 that is a measure to identify the correct link over 

which pedestrian has walked. This ratio can be even equal to 0.99 when aided with landmarks – 

QR codes.  This demonstrates the applicability of our algorithm for tracking applications. This 

practically outperforms the existing map matching algorithms [280, 296]. 

8.2 Suitability of the developed algorithms 

The research has developed a map aided smartphone based PDR positioning system and, a map 

and landmark aided smartphone based PDR positioning system. The positioning capability of 

these systems relied on map-matching algorithm – MURE and its extension – a landmark 

matching algorithm that are the key contributions of this research study.  To estimate the 

pedestrian’s position continually, the data was collected from inertial sensors embedded in a 

smartphone at every 50 ms.  The validation of the developed algorithms were carried out on two 

different floors of two different buildings by more than 70 different subjects. This is one of the 

very few comprehensive investigations that have ever been performed. Marschollek et al.  [335] 

did a detailed study with over 200 test subjects however their major focus was to analyse the 

performance of pedometer. This provides evidence of the reliability and transferability of the 

algorithms.  

The developed algorithms are potentially lightweight, therefore they can be easily 

implemented on memory constraint devices. Further position computation can directly be carried 

on devices itself thus privacy of users can also be maintained. The developed algorithms have 

high potential to be implemented by industry for tracking applications as these both algorithms 

are easy to implement, reliable, transferable and lightweight.  

The key benefit of this research is mainly enhancement of indoor positioning systems to 

support a range of location-based services including indoor pedestrian tracking. 
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9. Chapter 9: Conclusion and future works 

This thesis concludes that it is possible to logically localize a pedestrian using the information 

from inertial sensors embedded in a smartphone with minimum usage of infrastructure or none at 

all.  As per the objective of this research work to investigate how the information from smartphone 

sensors can be used to provide reliable, accurate, low cost logical localization. This research work 

provides a reference implementation for developing such a positioning solution. Several 

objectives were formulated in Chapter 1. Table 9.1 gives a brief description of each of the 

objectives and the corresponding chapters in which they were achieved or addressed. 

 

Objective Method/Description Chapter 

To critically asses different existing 
indoor positioning technologies, systems, 

and combinations of those. 

Literature review:  

(1) Positioning technologies and methods 

(2) Commercial products 

(3) Sensor fusion  

2 

Analyse the performance characteristics 
of smartphone embedded sensors. The 
focus was be primarily towards inertial 

sensors. 

Characterised the systematic and non-
systematic errors. 

3 

Understand whether the positioning is 
possible using  smartphone embedded 

INS. 

A case study was performed on an 
artificial test bed 

3 

Understanding the movement pattern of 
pedestrians, since the unconstrained 

movement of pedestrians is often varied. 

(1) Multimodal data from inertial sensors 
was investigated in time and frequency 

domain. 

(2) Various stride estimation techniques 
were applied to detect footsteps and 

estimate stride lengths 

(3) Performance evaluation 

4 

To develop a map database for indoor 
localization.  

(1) Indoor floor plan was designed in form 
of geospatial data model.  

(2) The data model composed of the 
following elements: passageways, 

corridors, doors, dead ends and point of 
interests; represented by a set of nodes and 

links. 

6 

To develop an intelligent sensor fusion 
technique for merging the multimodal 

data from inertial sensors.  

Using Kalman filter, multimodal data 
from inertial sensors was integrated 

6 
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To develop a map matching algorithm for 
projecting the position fix from sensor 

fusion technique into the map database of 

studied region. 

(1) MURE algorithm 

(2) Performance evaluation 

6 

To develop a landmark matching 
algorithm for projecting the position fix 
from sensor fusion technique into the map 

database of studied region while 

integrating the knowledge of artificial 

landmarks present in the route. 

(1) Build landmark database 

(2) Landmark matching algorithm 

(2) Performance evaluation 

7 

Compare the developed map matching 
algorithm and landmark matching 

algorithm. 

(2) Performance revaluation 

 

7 

Table 9.1: Research objectives 

Chapter 5 was not listed in the Table 9.1; it described a helmet mounted PDR system which 

was subsequently used in later chapters for evaluation of the performance of various algorithms.   

At the start of this thesis, we noted that amongst all the indoor localization research studies 

and commercial products there was none of the positioning solution that had deep penetration into 

the society (e.g. GPS for outdoor positioning). On finding the reasons, we concluded that there 

were several limitations: (1) most of the available positioning solutions needed some or the form 

of infrastructure that required investments from owner or builder, (2) reliability, (3) privacy, (4) 

logical localization and (5) importantly, accuracy and cost trade off.  

To overcome these limitations, we performed several experiments and carried out different 

investigations. 

We used low energy inertial sensors, readily available maps and QR codes to keep the cost 

as low as possible. In addition we used algorithms e.g. Kalman filter that can be easily ported into 

memory constraint devices which have low computation cost. To ensure user privacy, we used 

secured systems to store the multi-modal data collected from inertial sensors during pedestrial 

walking. Also, prior verbal consent was taken for storing the pedestrian’s sensory data from the 

smartphones.  

The first investigation, we performed was a case study on an artificial testbed – Scalextric 

track. The principal behind this work was to show how the ‘low cost smartphone embedded INS’ 

system can be used for positioning in an infrastructure free environment. Results show that 

positioning is possible, that also, using only the single inertial sensor. Position error does not grow 

with time, unlike other traditional inertial positioning techniques [140]. The case study was 

performed in a control environment – Scalextric track. While in real scenario, the building floor 
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plan is not as detailed as an artificial test bed and moreover, the gait of pedestrian is far different 

from the locomotion pattern of a toy vehicle. 

To understand the movement of pedestrians, a detailed investigation was performed in time 

and frequency domain over the multimodal data from inertial sensors. Various off-the-shelf stride 

estimation techniques (footstep detection techniques and stride length estimation models) and 

traditional heading estimation algorithm were applied onto the data from inertial sensors 

embedded in a smartphone. Results showed that FFT based step rate detection algorithm 

outperformed the other footstep detection techniques whereas Weinberg stride length model 

performed better in comparison to the other off-the-shelf stride length estimation models. Average 

percentage heading error was less than 11% in corners. 

A major focus of this research was to identify the logical location of a pedestrian. We 

proposed a novel probabilistic map matching technique – MURE to identify the logical location 

of a pedestrian.  Like any other map matching technique, it counters the positioning drifts 

introduced because of the pedestrian dead reckoning however uniqueness lies in the fact that it 

utilises a basic Linear Kalman filter but extends the representation of a pedestrian’s position to 

support multiple discrete Gaussian probability distributions at different points in the network. The 

network is designed in form of a geospatial data model with specific attributes moulded for 

navigation and tracking applications. The fundamental idea behind MURE map matching 

algorithm is based on detection of a corner feature that initiates the process of merging and 

splitting.  

The algorithm is tested on two different smartphone orientations – smartphone handheld 

and smartphone helmet mounted, on two different floors of two different buildings. Results 

indicate an average absolute error less than 2.1 m in either of the two smartphone orientations 

with 95% confidence level lesser for the smartphone handheld scenario over the two indoor 

settings. We extracted an overall metric – map matching ratio, for evaluating the performance of 

MURE algorithm by calculating the average existential probability over the sampled positions of 

agents that are located on the correct path for a given run.  

We found that minimum map matching ratio was greater than 0.70 for both the scenarios 

in the two indoor settings.  Also, in the second indoor setting the map matching ratio was slightly 

greater in comparison to the first indoor setting. To improve the accuracy and more importantly, 

to reduce the dependency on corner features we proposed a novel landmark matching algorithm. 

The algorithm extends MURE algorithm. It resets the position error and, initiates the 

process of merging. Only when a pedestrian observes a landmark that is stored in the landmark 

database. In addition, the time of occurrence of the landmark matches with the corresponding 

time running in the smartphone. To validate the performance of algorithm experiments were 
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performed and results were compared with the earlier test case i.e. map aided smartphone based 

PDR positioning system. Results showed that performance of smartphone aided with both 

landmarks (QR codes) and corner features was more balanced and robust. In addition the average 

absolute error and 95% confidence level was marginally less using this technique. This also 

indicates that it is possible to achieve the similar accuracy levels using only the corner features 

provided corners are not distantly separated.  We further found that map matching ratio was 

significantly greater using this approach in comparison to the previous map matching approach 

in either of the two scenarios. 

It is to be noted that although QR codes have been used for this research work to add 

redundancy and make experiments more robust however in actual application this would rarely 

be used. Since, it affects the user experience. Section 9.1 highlights some of the advantages and 

disadvantages of the essential technologies developed in this research work. Section 9.2 gives 

directions for the future work. Finally, Section 9.3 presents some of the potential applications of 

this research work. 

9.1 Advantages and disadvantages of the key technologies 

During this research work, we have identified and developed technologies that can be helpful in 

locating the pedestrians accurately and reliably under variable conditions. The advantages and 

disadvantages of some of the technologies developed during this research work are as follows: 

i. Feature (corner) detection: The gyroscope sensor was primarily used to identify the 900 

turnings (see Chapter 6, Section 6.3.1). These turnings were considered as corner features 

for this research work to limit the growth of position errors. A significant advantage of 

this technology is that it can bound the error growth in INS. Another advantage of this 

technique is that it works with the existing sensors while prohibiting the user from any 

other additional costs of building the database or clicking a TimeStamp button on 

observing QR codes. On the downside, the technology works best in parallel with map 

matching. Therefore, it necessitates the area to be properly mapped. Furthermore, the 

technology has been tested only in simple environments so its robustness is still required 

to be proved in complex building structures.  

ii. Smart Glasses simulator: A scenario similar to the smart glasses has been emulated by 

means of Smart Glasses simulator (see Figure 5.3), and tested indoors on different 

settings. The results were particularly negative. It has however highlighted the fact that 

handheld devices naturally damp high frequency vibrations which is helpful for signal 

processing. On the contrary, poor fit of the helmet leads to a poor simulation of smart 

glasses. This further resulted in under performance of the Smart Glasses simulator.      
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iii. Multiple uncertain routes engine (MURE): The MURE (see Chapter 6, Section 6.3.4.2) 

is designed based on a probabilistic framework to estimate and predict the position of a 

pedestrian on a particular link in a map. In particular, it extends the Kalman filter to enable 

multiple discrete Gaussian probability distributions to model pedestrian’s location in a 

map. The two essential characteristics of MURE technology is ‘splitting’ and ‘merging’. 

These together can manage link ambiguity in networks where position accuracy is low in 

relation to the length of links. As demonstrated knowledge of the network structure helps 

to reduce ambiguity through merging (see Chapter 6, Section 6.3.4.2) as the journey 

proceeds. However, it is not clear how multiple discrete Gaussian distributions may be 

presented to a ‘layman user’ on a smartphone without causing confusion. 

iv. Landmark (QR code) based positioning: The landmark based positioning technique (see 

Chapter 7, Section 7.1.1) is designed such that it uses landmarks to not only assure the 

pedestrian about the correct pathway to the destination but also it improves the 

positioning accuracy of the positioning system (especially, by calibrating the positioning 

system on sensing the proximity to landmarks). The key advantage of this technology is 

that it utilizes the human as a sensor rather than just as an actuator. Another advantage of 

this technology is that it instantly removes the ambiguity in position generated due to 

splitting of the Gaussian component (caused as a result of MURE). However, it puts a 

burden on the user in clicking the TimeStamp button on sensing the proximity to 

landmarks and additionally, it affects the user experience on observing the QR codes at 

some intervals.   

9.2 Future work 

Evidence gathered throughout this research work has shown that, in principle it is possible to 

envision a positioning system that can provide accurate, reliable, low cost logical indoor 

localization of the pedestrians with minimal usage of infrastructures.  Nevertheless, the research 

findings led to new questions and requirements for system improvement. These emergent issues 

are considered as future research directions. 

 Sensors choice 

The research was limited to use of INS embedded in smartphone. The perennial problem 

of using inertial sensors is that it employs a DR approach and therefore growth in errors 

is unbounded. Moreover, it needs an initial starting point, otherwise results are often 

unreliable [139]. By employing corner enabled map matching and alternatively 

landmarks in form of QR codes, we managed to achieve positioning with a bounded error 

(no drift). However, it was presumed throughout this research work that the starting point 
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was known. This may not be always valid e.g. when a pedestrian is in mid of a crowded 

art gallery or a museum. Therefore, supplying the starting position would be a problem. 

 In such a case it is recommended to use built in light sensor and pressure sensor 

embedded in smartphone to determine the position of a pedestrian in respective floor 

level. The pressure sensor can determine the floor level as previously done by Xia et al. 

[336]. While light sensor could determine the position of a pedestrian based on the light 

intensity of surrounding [28]. Another constraint reported in Chapter 7 was that many a 

times pedestrian forgot to click the TimeStamp button on the SensorData application 

when they passed across landmarks. So it is recommended to use built in cameras [177] 

in the smartphone to sense the proximity to landmarks. 

 Orientation 

Throughout this research work, it has been presumed that orientation of the smartphone 

relative to pedestrian is fixed either handheld or as Smart Glasses simulator. Although it 

is viably true that a large portion of the pedestrians hold their smartphone in hands [274], 

particularly in wrists, yet the position of wrists significantly changes from rest to 

swinging of hands or hand upheld to an arbitrary position. As a result the orientation of 

smartphone also changes. This principally means that the reported position is different 

from the actual position because of the change in smartphone’s coordinate system  

relative to global coordinate system (see Figure 3.2) [337]. It is therefore recommended 

to use the smartphone’s built in orientation sensor or rotation matrix [338] to compute the 

actual orientation of device in global coordinate system. 

 Features and landmarks 

As illustrated in the Chapter 6 and Chapter 7, the positioning solution is highly reliant on 

recognising corner features and landmarks. In Chapter 6, map aided PDR positioning 

solution recognises corner features present in the indoor environment via gyroscope 

sensor that are subsequently matched to the corners in network map. Similarly in Chapter 

7, landmarks (QR codes) are recognised by pedestrians that are subsequently matched to 

the landmark database. As mentioned before (see Chapter 7, Section 7.1.1.1) these 

landmarks are easy to design, inexpensive and offer easiness to the pedestrians in 

recognising them yet attaching to the scene is a labour intensive process.  

As a result their usage should be minimised, instead naturally occurring features (or 

landmarks) in the environment should be used. As stated by Wang et al. [62] corners are 

not only the features that may exist in the indoor environment. Other features may include 

stairways, elevators and closed doorways which in principle may be detected by the 

accelerometer or magnetic sensor that can be used to position a pedestrian. Subbu et al. 
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[339] have identified the magnetic signatures of ferromagnetic materials by magnetic 

sensor embedded in smartphone to position a pedestrian in the map corresponding to 

those materials in the physical world. 

 Importing the developed Java application into smartphone framework 

At present positioning is done offline, pedestrian walks on a typical route indoors. The 

smartphone based inertial application collects and stores data in SD card. This is later 

analysed in the Java framework to estimate the pedestrian’s position. The whole process 

involves significant amount of time. Instead it would be better if the whole Java based 

framework is present in the smartphone itself, as previously done in some of the research 

studies [226, 316]. Importantly, a pedestrian loads the map of a building from 

application’s database stored in his/her smartphone. Then following this, the application 

locates pedestrian’s position on the go.   

As a matter of fact the developed Java based application is designed in perspective 

of memory constraint devices, involving usage of INS, map and human centric approach 

to sense proximity to landmarks. The usage of radio based signals is avoided that 

significantly drain the smartphone’s battery rapidly [340]. 

 Comparison with the Smart Glasses 

In this research work, we investigated a scenario to emulate the smart glasses (e.g. Google 

glass) via Smart Glass simulator. The smartphone was attached to a bicycle helmet in a 

way such that it can emulate the true scenario of smart glasses (see Figure 5.2). Although 

results appear to be negative in comparison to the smartphone handheld scenario, yet it 

would be interesting to investigate that how the sensors embedded in actual smart glasses 

position the pedestrian accurately and reliably in varied indoor settings.   

Due to the limited resources and time constraints, it is not tested however it can be 

useful to take up in the future. 

9.3 Potential applications 

Few of the potential applications that require accuracy less than 1.5 m and can be supported by 

the developed algorithms are as follows:  

 Room/warehouse/event planning and indoor tracking 

If real-time solutions help mobile users navigate and find objects indoors, then post-

processing the movements can be studied to improve indoor environments and workflow. 

This is very useful in large warehouses where workers have to get goods from large 

buildings and load them to trucks. Placement of goods can be organized in a more 

efficient way by indoor moment processing and analysing. 
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 Analysing movements of people in big festivals, concerts, fairs and conferences can 

help in better organizing these events. In case people get lost in these events then the 

designed algorithms can be of potential help in tracking their position. 

 Tourism  

It often happens that when a tourist (especially children and old people) travels into a 

museum or art galleries, they get involved in gazing souvenirs and paintings kept across 

different rooms in a building at different floor levels. As a result they often get lost and 

moreover forget the path from which they came in. Although signposts are often available 

at the end of corridor yet those are significantly tricky and boring to understand [341]. In 

such a scenario the designed algorithms can be a potential help in recognising their 

location and planning their path backwards. 

 Search and rescue 

In a search and rescue mission, it is essential for a rescuer to know their position and 

importantly know the position of their hostage. Significantly, the geometries of building 

can be complex and it is a possibility that they may get lost in their mission. This can 

potentially risk their lives and the lives of hostages too. In such a scenario the designed 

algorithms can be a potential help to them in recognising their location and planning their 

path backwards to bring hostages along with them. 
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Appendix B 

ERGO application form – Ethics form 

All mandatory fields are marked (M*). Applications without mandatory fields completed are 

likely to be rejected by reviewers. Other fields are marked “if applicable”. Help text is provided, 

where appropriate, in italics after each question. 

1. APPLICANT DETAILS 

1.1 (M*) Applicant name: Shashank Kumar Gupta 

1.2 Supervisor (if applicable): Dr. Simon Box & Dr. R.E. Wilson 

1.3 Other researchers/collaborators (if 

applicable): Name, address, email, telephone  

2. STUDY DETAILS 

2.1 (M*) Title of study: Investigate the techniques and algorithms that can be 

ubiquitously employed, for low cost indoor 

infrastructure free localization. 

2.2 (M*) Type of study (e.g. 

Undergraduate, Doctorate, 

Masters, Staff): 

Doctorate 

2.3 i) (M*) Proposed start date: 04/01/2013 

2.3 ii) (M*) Proposed end date: 03/03/2016 

 

2.4 (M*) What are the aims and objectives of this study? 

1. Investigating the data fusion techniques to pin point the location of the pedestrian based on 

the contextual information collected by several sensors in the smartphone. 

2. Understanding the movement of the pedestrian. 

3. Development of an algorithm for continuous localization of the pedestrian.  
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2.5 (M*) Background to study (a brief rationale for conducting the study): 

Location based services are becoming an indispensable part of our life. The wide adoption of 

satellite based positioning - Global Positioning System (GPS) has solved the problem of 

outdoor localization for a wide range of scenarios. Unfortunately, satellite based positioning is 

not possible indoors because of weak radio signals and loss of the direct line of sight from the 

satellites. Therefore, significant efforts have been motivated towards finding a practical 

solution for indoor localization. 

 Despite significant efforts, results vary in characteristics, performance and cost. They 

either need an expensive infrastructure deployment or have specialised hardware needs, or have 

low accuracy. Moreover, there is always an accuracy and cost trade-off. As a result of this, 

there is not a single ubiquitous indoor positioning solution available.  

           In regards to this, the research would investigate the techniques and algorithms that can 

be ubiquitously employed, for low cost indoor infrastructure free localization. 

 

2.6 (M*) Key research question (Specify hypothesis if applicable): 

This research study would try to answer to key questions: 

The majority of available indoor positioning solutions are dependent on some form of 

infrastructure or hardware needs. This can possibly be reduced by developing innovative 

algorithms that utilize the natural features present in the environment to position the pedestrian, 

instead of relying on any form of infrastructure or specialized hardware needs. These natural 

features can be such as stair case, elevators, corners etc. So one of the main research question 

that this study would answer is that, Is it possible to position a pedestrian indoors using only 

the natural features present in environment, with minimal or no hardware usage?.  

             Recently smartphones have redefined the notion of mobile computing platforms. These 

phones are not just constrained to voice communication. Most of these phones are embedded 

with rich set of sensors such as accelerometers, microphones, magnetometers, camera etc. that 

can support localization and moreover they are ubiquitous and affordable by all. As a result the 

second key question that this study would address is that, What is the variability in the 

performance of proposed navigation technology across a representative population of 

smartphone users?. 
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2.7 (M*) Study design (Give a brief outline of basic study design) Outline what approach is 

being used, why certain methods have been chosen. 

In order to localize the pedestrian indoors, it is required that localization technology is 

infrastructure free, accurate, reliable, ubiquitous and cost effective. Based on these needs, a 

detailed review of the state-of-art of localization techniques and available products that can 

support localization is done. It is noted that recently smartphones have redefined the notion of 

mobile computing platforms. These phones are not just constrained to voice communication. 

Most of these phones are embedded with rich set of sensors such as accelerometers, 

microphones, magnetometers, camera etc., and have cellular connectivity including Wi-Fi and 

GPS that can provide localization. Also, these are affordable by all. As a result this research 

utilises smartphones for positioning. 

 Technologies such as Wi-Fi have been effectively used for positioning pedestrians 

indoors in the recent past [1]. However, they need the deployment of Wi-Fi beacons and 

moreover the radio map varies with the change in physical conditions. This makes it non-

preferable for the general purpose indoor localization. The other technology that has been 

effectively used for positioning pedestrian indoors is dead reckoning [2]. It involves the usage 

of inertial sensors - accelerometers and gyroscopes. A key advantage of this technology is that 

it offers ‘autonomy’ to pedestrian positioning. On contrary, the inertial sensors suffer from drift 

errors when integrated over time. As a result, this research focusses on designing innovative 

positioning solution using the inertial sensors embedded in smartphone while reducing the 

drifts to minimum. The key idea is that to recognise the pedestrian’s stride using the 

accelerometer signal and their heading via gyroscope sensor embedded in smartphone. 

Methods such as peak detection [3], zero crossing [2], Fourier transform [4], etc. would be 

investigated to recognise the pedestrian’s footsteps. The stride length would be estimated using 

methods such as Weinberg stride length model [5], Scarlett model [6], etc. and the pedestrian’s 

heading shall be determined using gyroscope. To reduce the drifts methods such as map 

matching [7] would be employed and moreover, the data from various sensors shall be fused 

by techniques like Kalman filter [8].   

[1] O. Costilla-Reyes and K. Namuduri, "Dynamic Wi-Fi Fingerprinting Indoor Positioning 

System," in International Conference on Indoor Positioning and Indoor Navigation, 2014. 

[2] S. Beauregard and H. Haas, "Pedestrian dead reckoning: A basis for personal 

positioning," in Proceedings of the Third Workshop on Positioning, Navigation and 
Communication, 2006, pp. 27-35. 

[3] A. Ali and N. El-Sheimy, "Low-Cost MEMS-Based Pedestrian Navigation Technique 
for GPS-Denied Areas," Journal of Sensors, 2013. 
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[4] L. Tan and J. Jiang, Digital signal processing: fundamentals and applications: Academic 

Press, 2013. 

[5] H. Weinberg, "Using the ADXL202 in pedometer and personal navigation applications," 
Analog Devices AN-602 application note, 2002. 

[6] J. Scarlett, "Enhancing the performance of pedometers using a single accelerometer," 
Application Note, Analog Devices, 2007. 

[7] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, "Current map-matching algorithms 
for transport applications: State-of-the art and future research directions," Transportation 

Research Part C: Emerging Technologies, vol. 15, No. 5, pp. 312-328, 2007. 

[8] M. S. Grewal and A. P. Andrews, Kalman filtering: theory and practice using MATLAB: 
Wiley. com, 2011. 

3. SAMPLE AND SETTING 

3.1 (M*) How are participants to be approached? Give details of what you will do if 

recruitment is insufficient. If participants will be accessed through a third party (e.g. children 

accessed via a school) state if you have permission to contact them and upload any letters of 

agreement to your submission in ERGO. 

Any person who is capable to walk is the participant of this research. In order to carry out this 

research, we will advertise in the faculty for participants (particularly aged greater than 18 

years) familiar with using a smartphone.  Since, it is an exploratory research involving 

predictive data analysis we will restrict the number of participants to 20. If in case we feel the 

participants are less or the collected data is insufficient we will re-advertise in the faculty.   

 

3.2 (M*) Who are the proposed sample and where are they from (e.g. fellow students, 

club members)? List inclusion/exclusion criteria if applicable. NB The University does not 

condone the use of ‘blanket emails’ for contacting potential participants (i.e. fellow staff 

and/or students).It is usually advised to ensure groups of students/staff have given prior 

permission to be contacted in this way, or to use of a third party to pass on these requests. 

This is because there is a potential to take advantage of the access to ‘group emails’ and the 

relationship with colleagues and subordinates; we therefore generally do not support this 

method of approach. If this is the only way to access a chosen cohort, a reasonable 

compromise is to obtain explicit approval from the Faculty Ethics Committee (FEC) and also 

from a senior member of the Faculty in case of complaint. 
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Any person who is capable to walk is the participant of this research. In order to carry out this 

research, we will advertise in the faculty for participants (particularly aged greater than 18 

years) familiar with using a smartphone. The advertisement will be done by sticking leaflets in 

the faculty. It is expected that the participants would generally be students and staff members. 

 

3.3 (M*) Describe the relationship between researcher and sample (Describe any 

relationship e.g. teacher, friend, boss, clinician, etc.) 

None 

 

3.4 (M*) Describe how you will ensure that fully informed consent is being given: 

(include how long participants have to decide whether to take part) 

Based on the participant information i.e. verbal consent, it can be said that they fully approve 

of carrying on the data collection work. In total, the data collection would be taking less than 

10 minutes. 

4. RESEARCH PROCEDURES, INTERVENTIONS AND MEASUREMENTS 

4.1 (M*) Give a brief account of the procedure as experienced by the participant (Make 

clear who does what, how many times and in what order. Make clear the role of all assistants 

and collaborators. Make clear total demands made on participants, including time and travel). 

Upload any copies of questionnaires and interview schedules to your submission in ERGO. 

Initial contact to surveyors about data collection. During the data collection, participant walks 

on the designated route indoors (selected such that it has least number of obstacles) two times, 

while carrying smartphone in their hands. In total, the experiment takes less than 10 minutes. 

The participant is asked to follow the instructions shown in the attached 'Instruction set form' 

5. STUDY MANAGEMENT 

5.1 (M*) State any potential for psychological or physical discomfort and/or distress? 

None 
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5.2 (M*) Explain how you intend to alleviate any psychological or physical discomfort 

and/or distress that may arise? (if applicable) 

N/A 

 

5.3 Explain how you will care for any participants in ‘special groups’ (i.e. those in a 

dependent relationship, vulnerable or lacking in mental capacity) (if applicable)? 

N/A 

 

5.4 Please give details of any payments or incentives being used to recruit participants (if 

applicable)? 

N/A 

 

5.5 i) How will participant anonymity and/or data anonymity be maintained (if 

applicable)? 

Two definitions of anonymity exist: i) Unlinked anonymity - Complete anonymity can only be 

promised if questionnaires or other requests for information are not targeted to, or received 

from, individuals using their name or address or any other identifiable characteristics. For 

example if questionnaires are sent out with no possible identifiers when returned, or if they are 

picked up by respondents in a public place, then anonymity can be claimed. Research methods 

using interviews cannot usually claim anonymity – unless using telephone interviews when 

participants dial in. ii) Linked anonymity - Using this method, complete anonymity cannot be 

promised because participants can be identified; their data may be coded so that participants 

are not identified by researchers, but the information provided to participants should indicate 

that they could be linked to their data. 

Unlinked anonymity - the data collected from participants is stored in form of codes, that are 

randomly chosen. 
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5.5 ii) How will participant confidentiality be maintained (if applicable)? Confidentiality 

is defined as the non-disclosure of research information except to another authorised person. 

Confidential information can be shared with those who are already party to it, and may also 

be disclosed where the person providing the information provides explicit consent. 

The study is an investigative research that will use exploratory data analysis and predictive data 

analysis on the collected data, no inference of any form or to any individual is intended. 

Moreover, the data collected from the participants is is stored in the form of random codes. 

Therefore, looking at the codes it cannot be interpreted whoes data it is. This would further 

assure the confidentiality to the participants. 

 

5.6 (M*) How will personal data and study results be stored securely during and after the 

study? Researchers should be aware of, and compliant with, the Data Protection policy of the 

University. You must be able to demonstrate this in respect of handling, storage and retention 

of data. 

The research complies with the Data Protection Act. All data collected by pedestrians will be 

stored in password secured computers. It will be treated confidentially and will remain 

anonymous in all research output. 

 

5.7 (M*) Who will have access to these data? 

Researchers directly involved in this study only. 

 

N.B. – Before you upload this document to your ERGO submission remember to: 

1. Complete ALL mandatory sections in this form 

2. Upload any letters of agreement referred to in question 3.1 to your ERGO submission 

3. Upload any interview schedules and copies of questionnaires referred to in question 4.1 

 

Selection criteria – Participant Information Sheet 

Study Title: 

Investigate the techniques and algorithms that can be ubiquitously employed, for low cost indoor 

infrastructure free localization. 
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Researcher: Shashank Kumar Gupta 

Ethics number: 16756 

  

Please read this information carefully before deciding to take part in this research. If you 

are happy to participate then only we may proceed. 

 

What is the research about? 

As per the survey conducted by National Human Activity Pattern Survey [1], almost 80% of the 

time we spend indoors, either in offices, museums or shopping complexes, etc. But still there is 

not a single viable commercial indoor positioning solution that is reliable, fast, accurate and robust 

such as GPS for outdoors.  

Therefore, this research project as a part of my Ph.D., would investigate the techniques 

and algorithms that can be ubiquitously employed for localization of the pedestrians indoors. This 

may help in developing a viable commercial indoor positioning solution in near future. 

 

[1] N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, et al., 

"The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to 

environmental pollutants," Journal of exposure analysis and environmental epidemiology, vol. 

11, pp. 231-252, 2001. 

 

Why have I been chosen? 

We are looking for participants who spend time indoors, in essence everyone. At the current 

moment this research is focussed towards pedestrians only.  

 The data collected from pedestrian’s walks will help me in developing a robust positioning 

algorithm; that can be a useful asset for my research.   

 

What will happen to me if I take part? 

If a person takes part, he/she will be explained the instructions in less than 2 minutes. Following 

this, the data collection would be taking less than 10 minutes.  

It will be an independent choice of theirs whether they want to get involved or not, and 

no follow up would be needed. 

  

Are there any benefits in my taking part? 

The results of this study will help to provide knowledge about innovative techniques that can be 

utilised by industries in developing technologies for indoor positioning. Or alternatively, it can 

also be utilised in designing a commercial viable indoor positioning application. 

 

 

Are there any risks involved? 

‘Privacy’, however private information about the pedestrian walking characteristics, derived from 

the collected data will not be shared to anyone. Moreover, it will be stored in the password secured 

computers. 

 

Will my participation be confidential? 



Appendix B 

200 

 

Yes the participation of the pedestrian will remain be confidential, and will be anonymised in all 

outputs from this project.  

 

What happens if I change my mind? 

In any case, and at any point of the time he/she can withdraw from this survey and the data that 

they have provided shall be deleted.  

 

What happens if something goes wrong? 

In the unlikely case of concern or complaint about participating in this study, you can contact, 

Research Governance officer (c/o: Miss Trudi Bartlett) (Phone: 02380598848, Id:  

rgoinfo@soton.ac.uk) 

 

Where can I get more information? 

For more details about this project or concerning any queries relevant to the project, please contact 

me (Shashank Gupta) by email s.k.gupta@soton.ac.uk.  
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