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Abstract— This paper provides an overview of various opti-
mization formulations that can lead to improved fuel economy
for a series hybrid electric vehicle (HEV). The relevance and
improvement to the current state-of-the-art are discussed. The
formulated optimal control problems (OCP) consist of two
individual optimization challenges: vehicle speed optimization
and powertrain power-split optimization. These OCPs can be
merged leading to a practical and global problem, where all
the aspects are optimized simultaneously for a prescribed route
and traveling time. Alternatively, the global problem can be
approximated by solving individual OCPs, one for each aspect,
in steps and combined a posteriori. The optimal solutions
in each case are investigated and compared by simulation
examples to expose the trade-off between optimality of fuel
economy achieved by global optimization and reduction in
computational complexity and hence practicality of the two-
step solution approximation.

I. INTRODUCTION

Increasing concerns on global environmental pollution
lead to the electrification of the automotive industry. The
fuel economy of a hybrid electric vehicle (HEV) may be
enhanced as with conventional vehicles by improving effi-
ciency in two aspects: a) “tank-to-vehicle” efficiency (e.g.
powertrain efficiency and energy recovery during braking),
and b) “vehicle-to-miles” efficiency both by design (reduc-
tion of vehicle mass, aerodynamic drag and tyre friction)
and more efficient driving (eco-driving). In the literature on
HEV fuel efficiency optimization a) is usually formulated
as an energy management problem, where the power-split
of multiple energy sources is optimized to minimize overall
fuel consumption. From a control perspective, b) is primarily
addressed by optimizing driving speed in terms of energy ef-
ficiency. Both a) and b) are discussed in this paper as well as
the advantages and difficulties of simultaneous optimization
of a) and b) as compared to the conventional approach of
individual optimization of these aspects. The focus of the
paper is on the series HEV architecture, nevertheless the
ideas that will be presented also have relevance to other
architectures.

The problem of finding the optimal driving speed of a
conventional vehicle in terms of fuel efficiency for a given
route has been investigated in the literature. The pulse and
glide (PnG) strategy has been proved to be the most energy
efficient driving strategy for car-following and free-driving
scenarios [1]. The PnG includes a rapid acceleration at the

B. Chen and S. A. Evangelou are with the Dept. of Elec-
trical and Electronic Engineering at Imperial College London, UK
(boli.chen10@ic.ac.uk, s.evangelou@ic.ac.uk).

R. Lot is with the Dept. of Engineering and the Environment at the
University of Southampton, UK (roberto.lot@soton.ac.uk).

This research was supported by the EPSRC Grant EP/N022262/1.

beginning until the vehicle reaches its maximum speed,
followed by a period of coasting to a low speed, where
the pattern can be repeated. Nevertheless, the PnG may
be not optimal for HEVs, which allow energy recovery by
regenerative braking. The powertrain energy management
(EM) control for a given vehicle speed profile is one of the
main challenges that have emerged with the appearance of
HEVs, which include multiple energy sources as opposed
to the single source of conventional vehicles. Numerous
EM strategies, from rule-based to optimization-based, have
been proposed in the literature [2], [3], [4], [5], [6], [7].
Optimization-based EM strategies represent the most com-
monly used benchmarking methods as the optimal or sub-
optimal solutions are guaranteed in most cases. The control
problem in this category is usually formulated as an optimal
control problem (OCP), which is then solved by standard
optimization techniques [8], [9], [10], [11]. One of the main
drawbacks of the EM optimization methodologies is that they
require a priori the knowledge of the entire drive cycle, which
is practically unavailable.

The idea of simultaneous optimization of both speed and
power-split is recently proposed by the authors in [12],
where the overall fuel consumption is minimized for a given
drive mission, specified in terms of the path and the desired
traveling time. Compared to the existing energy management
approaches, this joint optimization strategy removes the need
of knowing a priori the driving cycle, which is practically
unavailable. Also, it is expected to achieve better optimal
solutions in contrast with conventional speed optimization
methods because of the inclusion of the hybrid powertrain
model. However, the computation complexity is increased
when both aspects are jointly optimized. An in-depth dis-
cussion of the benefit and challenges of the simultaneous
optimization strategy is still missing. The present study aims
to fill the gap by examining the gain in terms of fuel economy
and the sacrifice in terms of computational efficiency of the
joint OCP.

The paper is structured as follows. Section II introduces
the main problem to be studied and the possible OCPs
that can be formulated. Driving speed optimization is ad-
dressed in Section III. In Section IV, energy management
optimization of the series HEV is investigated. Simultaneous
optimization of both aspects are addressed in Section V, and
Section VI draws some concluding remarks.

II. PRELIMINARIES AND PROBLEM STATEMENT

The vehicle model studied in this work represents a
general-purpose passenger car and consists of a series hybrid
powertrain architecture as shown in Fig. 1 (details of the
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Fig. 1. Block diagram of the series HEV powertrain used in this work.

powertrain model will be introduced in Section IV-A). The
main parameters of the vehicle are listed in Table I [13]. In

TABLE I
VEHICLE MAIN CHARACTERISTICS

symbol value description
m 1500 kg vehicle mass
fR 0.01 tyre rolling resistance coefficient
fD 0.47 aerodynamics drag coefficient
Qmax 5 Ah battery capacity
Rb 0.2056 Ω battery internal resistance
ηr 0.96 efficiency of the rectifier
ηdc 0.96 efficiency of the DC-DC converter
ηi 0.96 efficiency of the inverter
ηt 0.97 efficiency of the transmission
N 16 gear ratio of the transmission

this study, the vehicle is requested to drive only for 1 km on a
straight and flat road with specified traveling time T to high-
light the differences between different optimization methods,
since an arbitrary path can be treated as the combination of
multiple straight segments [12]. Road traffic is not considered
in this work, thus the vehicle speed is not constrained by the
behavior of other vehicles and infrastructure.

It is clear that the aforementioned joint optimization
approach (OCP-Joint) can be adopted to find most effi-
cient vehicle speed and power-split (between the engine
and battery) jointly. Instead of OCP-Joint, the concerned
problem also can be divided into two sub-problems: 1)
driving speed optimization (OCP-S); 2) energy management
optimization (OCP-EM), which can be solved individually in
successive steps by conventional approaches and combined a
posteriori, yielding a counterpart strategy (OCP-Split), which
is compared to OCP-Joint in Fig. 2. In the upcoming sections,
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Fig. 2. Optimization problems formulated in this paper for a series HEV.

these two optimization problems, including the sub-problems

will be formulated as OCPs in the following form to show
the connections and to perform further comparisons:

minimize
u

J(x,u) (1a)

subject to:
d

dt
x = f (x,u, t) (1b)

ψ (x,u, t) ≤ 0 (1c)
b (x(0),x(T )) = 0, (1d)

where J(x,u) is given by:

J(x,u) =

∫ T

0

L(x,u, t) dt+ φ(x(T )) (2)

The vector x represents the system state vector, which
evolves according to the differential equation ẋ = f(x,u, t),
and the vector u represents a control input.

The OCPs formulated in this paper are solved in the Mat-
lab environment by GPOPS-II software [14], where an OCP
is approximated as sparse nonlinear programming problem
(NLP), and then solved by the NLP solver IPOPT.

III. DRIVING SPEED OPTIMIZATION (OCP-S)

The problem of finding the energy efficient driving speed
of a conventional vehicle for a given route has already been
investigated in the literature. The PnG has been proved to be
the optimal driving strategy for traditional vehicles in various
driving conditions. In this section, the existing non-hybrid
vehicle speed optimization method is extended to the hybrid
vehicle case by considering energy recovery during braking,
even if the precise characteristics of the power-train are not
considered. The focus is instead on the driving resistance
forces, which are mainly due to tire friction FR = fRmg
and aerodynamic drag resistance FD = fDv

2, where m and
v are the vehicle mass and longitudinal speed respectively.
The vehicle longitudinal dynamics are characterized by:

m
d

dt
v = (Fv − FR − FD) (3)

where Fv is the driving force, which is positive during
traction (when the energy is transferred from the power-train
to the vehicle) and negative during braking. If we define
the energy recovery factor ρ ∈ [0, 1] as the ratio between
regenerative braking power and the total braking power, the
energy dissipation function becomes:

J =

∫ T

0

{
Fv Fv ≥ 0

ρFv Fv < 0
v dt =

∫ T

0

max(ρFv, Fv) v dt

(4)



In particular, the case ρ = 0 corresponds to a conventional
power-train, while ρ = 1 indicates that all braking energy is
recovered as in a highly hybridized or fully electric vehicle.
Since the speed is not known a priori, it is necessary to
define the vehicle mission in terms of the traveled distance
s, which has to be added to the system states. Finally, to
ensure smooth vehicle motion and to avoid unrealistic jerky
maneuvers, the vehicle is controlled in terms of the first
derivative of driving force Fv . In conclusion, the state space
model (1b) is:

d

dt

 s
v
Fv

 =

 v
1
m (Fv − FR − FD)

mjv

 . (5)

and has three states x = (s, v, Fv) and one input u = jv .
The possible maneuvers are constrained by (1c) as follows:

vFv ≤ Pv,max , (6a)
−jv,max ≤ jv ≤ jv,max , (6b)

v ≤ vmax . (6c)

where the total input power is bounded according to the
individual power limits of the engine and the batter branches
(introduced in later on in Section IV-A), and jv is bounded
within ±1m/s3. Moreover, the driving speed may be con-
strained by a legal limit vmax.

Finally, the problem is completed by the following bound-
ary conditions (1d):

s(0) = 0 , s(T ) = L
v(0) = 0 , v(T ) = 0
Fv(0) = 0 , Fv(T ) = 0

(7)

where L = 1× 103 m is the length of the route. The vehicle
is assumed static at the beginning and end of the mission for
ease of comparison, thus the boundary conditions of v and
Fv are set to 0.

In the following simulation examples, the vehicle is re-
quested to accomplish the 1 km mission with prescribed
traveling time T = 72 s (i.e., average speed 50km/h). The
speed limit is assumed to be much higher than the average
speed in the first instance, therefore the speed is not restricted
by any upper limit in order to present the fully optimal
driving speed in each case. In Fig. 3, the optimal speed
profiles obtained by solving OCP-S for different ρ are shown.
As it can be noticed, when ρ = 0, the most fuel-efficient
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Fig. 3. Optimal speed profiles of OCP-Joint and OCP-S with different ρ
for a 1km straight road.

driving speed starts from a rapid acceleration to a maximum
velocity, after that the vehicle mildly decelerates by coasting
for a considerable time to a relatively low speed, at which
point intensive braking is applied to stop the vehicle. Such
driving behavior coincides with the PnG strategy found for
conventional vehicles. However, more braking is allowed
at the end of the mission as ρ increases, which allows
more energy to be recovered. Conversely, the peak speed
at the beginning drops as ρ increases to satisfy the requested
average speed. When ρ = 1, the optimal solution suggests
the driver to accelerate to a cruise speed value, then to stay
at this speed until the destination approaches, as drivers nor-
mally do. In conclusion, without energy recovery eco-driving
requires pulse and glide, which is not natural and difficult to
be implemented by drivers because the proper identification
of the maximum speed point and the braking point requires
a lot of anticipation. On the contrary, energy recovery does
not only reduce fuel consumption, but also allows the driver
to drive regularly without behavioral adaptation.

IV. POWERTRAIN ENERGY MANAGEMENT
OPTIMIZATION

A. Powertrain model

This work uses the series powertrain model described in
[12]. This dynamic model captures the essential physical
characteristics of each individual component including power
losses while keeping the overall model reasonably simple
and appropriate for numerical optimization. As can be seen
in Fig. 1, the powertrain of the vehicle comprises three
branches: the propulsion load (PL), the primary source of
energy (PS) and the secondary source of energy (SS). The PL
is an inverter driven permanent magnet synchronous motor
(PMSM), which is mechanically connected to the wheels of
the car via the transmission. The PS consists of an engine-
generator unit (EGU) and a three-phase rectifier. In particular,
the EGU comprises a 1.8L petrol internal combustion engine
(ICE), mechanically connected to a PMS generator (PMSG).
The SS contains a lithium-ion battery and a bi-directional
DC-DC converter. It allows energy recovery either by the
PS or by regenerative braking, which conveys braking power
through the transmission up to the battery. Mechanical brakes
are applied directly to the wheels for deceleration, with
the corresponding power converted into heat dissipation. To
fulfill the desired vehicle speed and acceleration, the power
from the PS, the SS, and mechanical brakes are mixed in a
specified mode determined by an optimal EM strategy that is
designed for fuel consumption minimization. In the following
subsections, the model will be briefly introduced from one
branch to another.

1) Primary source: The dynamics of the ICE (e.g., engine
speed, air mass flow rate) are much faster than the dynamics
of interest in the present work, such as powertrain energy
flow and battery state-of-charge (SoC) variation. Therefore,
it is reasonable to model the engine branch by a quasi-static
modeling approach where both the engine and generator are
defined in terms of an efficiency map as a function of speed
and torque, while the rectifier is simply modeled as a constant
efficiency factor. Since the engine, generator, and rectifier



0000 0 0 0 0
0.1 0.1

0.1 0.1
0.2

0.2
0.2

0.20.25
0.25

0.25

0.25

0.28
0.28

0.28

0.28

0.3

0.3

0.3

0.31

0.31

0.315

1000 1500 2000 2500 3000 3500 4000 4500 5000

0

50

100

150

Fig. 4. Engine-Generator-Rectifier combined efficiency ηps. The torque-
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are connected in series, the overall branch efficiency ηps is
obtained by multiplying their single efficiencies and it is
depicted in figure 4. Therefore, the engine fuel mass rate
may be expressed as follows:

d

dt
mf =

1

QHV

Pr

ηps(ωe, τe)
(8)

where Pr is the PS output power, QHV is gasoline lower
heating value, and ωe and τe are engine speed and torque
respectively.

2) Secondary source: The dynamic of the battery is
governed by:

d

dt
SoC =

ib
Qmax

. (9)

where ib denotes the battery current, assumed positive during
the discharge phase and SoC is the state-of-charge, i.e. the
ratio of actual battery charge to its capacity. For a charge
sustaining battery management, the battery SoC is limited
within 50% – 80% and in this range it is acceptable to assume
a constant open circuit voltage: Voc = 300V. Based on the
internal resistance electrical model [15], the battery closed
circuit voltage is approximated by Vb = Voc − Rbib. Then,
the battery efficiency is defined as:

ηb =

(
Pbl

Vocib

)sign(Pbl)

=

(
Voc −Rbib

Voc

)sign(Pbl)

(10)

where Pbl = ibVb represents battery output power. The
battery voltage is amplified by the DC/DC converter that
is modeled as a constant efficiency term ηdc. Therefore,
the bi-directional power conversion of the battery branch is
described by:

Pb = ηsign(Pb)
ss Pbl = ηsign(Pb)

ss ibVb (11)

where Pb is the battery power on the DC link side, ηss =
ηbηdc is the overall efficiency of the battery branch. (11) is
solved with respect to ib and the solution

ib(Pb) =
η
sign(Pb)
ss Voc −

√
η
2 sign(Pb)
ss V 2

oc − 4Pbη
sign(Pb)
ss Rb

2η
sign(Pb)
ss Rb

(12)
is applied to reformulate (9), leading to the differential
equation of SoC with respect to Pb.

3) Inverter, electric motor and transmission: The PS
power Pr and the SS power Pb are merged at the DC link,
yielding Ppl that is turned into AC power Pi by the bi-
directional inverter. By analogy to the AC-DC rectifier, the
inverter is also modeled as a constant efficiency factor ηi. The
power flow through the DC-link and inverter is described by:

Pi = η
sign(Pr+Pb)
i (Pr + Pb) = η

sign(Ppl)
i Ppl . (13)

The PMS motor/generator offers bi-directional energy
conversion, when it works as a motor, the electric power
Pi is converted into mechanical power Pm for propulsion.
Conversely, Pm is transformed into Pi when it works as a
generator. The efficiency map of the PMS motor/generator
is shown in Fig. 5, based on which the efficiency of each
operating point can be determined by load torque τlm and
angular speed ωm of the PMS machine.
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The PMSM drives the wheels via a transmission system
with a fixed ratio N , such that

ωm = Nv . (14)

The bi-directional power flow through the transmission is
modeled by:

Pt = η
sign(Pm)
t Pm . (15)

with ηt a constant efficiency factor. Combing all three
components of the PL branch, the overall efficiency of PL is
defined as: ηpl = ηiηmηt, which is a function of v and Pt.
It is worth noting that Pt = vFv when Fv ≥ 0 and when
Fv ≤ 0, Pt is a fraction of vFv because of the mechanical
brakes.

B. Engine management optimization

The fact that the ICE is mechanically decoupled from the
vehicle wheels, allows the ICE to be control independently
of the vehicle speed. The problem here is to identify the
best operating point of the EGU in terms of speed and torque
that maximizes branch efficiency for given power demand Pr

[12], [13]. The locus of such torque-speed operating points is
shown on the efficiency map Fig. 4, along which the engine
fuel mass rate mf only depends the primary source power



output Pr, and in this case the dependency is nearly linear
so equation (8) can be converted into:

d

dt
mf = qf0 +

Pr

QHV αf
(16)

qf0 = 0.12 g/s is the fuel mass rate to keep the engine idle
and αf = 0.34 is the coefficient of power transformation.

C. Powertrain power-split optimization (OCP-EM)

For a given speed profile, Fv is uniquely determined by
(3). To find the powers Pr, Pb provided by the primary and
secondary sources which minimized fuel consumption, the
cost to be minimized is

J = mf (T ) (17)

and the state space model is:

d

dt


mf

SoC
Fr

Fb

 =


qf0 + vFr/(QHV αf )
−ib(vFb)/Qmax

mjr
mjb

 (18)

where Fb, Fr are the power Pb, Pr associated forces,
ib(vFb) is given in (12) and jerk decision variables u =
[jr, jb]

T have been introduced for a smoother operation as
mentioned previously in Section III.

The following equality and inequality constraints complete
the problem:

vFr + vFb ≥ vFv η
sign(−Fv)
pl (19a)

−jb,max ≤ jb ≤ jb,max (19b)
−jr,max ≤ jr ≤ jr,max (19c)

0 ≤ vFr ≤ Pr,max (19d)
SoCmin ≤ SoC ≤ SoCmax (19e)

Pb,min ≤ vFb ≤ Pb,max (19f)

The equality constraint (19a) is proposed to reflect the power
balance at DC-link:

vFr + vFb = Pt η
sign(−Fv)
pl .

More specifically, when Fv ≥ 0, Pt = vFv , and the resulting
equality constraint vFr + vFb = vFv η

sign(−Fv)
pl is naturally

equivalent to (19a) because vFr+vFb is minimized to reduce
the overall fuel consumption. On the other hand, it is evident
that (19a) is also valid when Fv < 0, as Pt > vFv in this
case. (19b) and (19b) are imposed with jb,max = jr,max =
1m/s3 for smooth operation analogous to jv introduced in
OCP-S. To keep the powertrain components operated inside
their admissible range, (19d)-(19f) are needed. In this work,
we let SoCmin = 0.5, SoCmax = 0.8 to ensure the battery is
closely charge sustained throughout the mission. Moreover,
Pr,max = 75 kW, Pbmin = −15 kW and Pbmax = 30 kW,
which account for the various losses from the energy sources
to the DC-link.

Finally, the problem is completed by the following bound-
ary conditions:

SoC(0) = 0.65, SoC(T ) = 0.65, (20a)
Fb(0) = 0, Fb(T ) = 0, (20b)
Fr(0) = 0, Fr(T ) = 0, (20c)
mf (0) = 0 (20d)

where SoC is assumed at the beginning to be at the middle of
the allowed SoC range. To cancel the equivalent fuel caused
by the non-zero differences between and initial and terminal
conditions of SoC, Fb and Fr, (20a)-(20c) are employed.

To solve OCP-EM, it is necessary to introduce a specific
speed profile, which essentially defines Ppl to be fulfilled.
For the sake of further comparison, we feed the OCP-EM
optimal speed profiles produced by OCP-S (see the OCP-
Split shown in Fig. 2). For example, the optimal solutions
driven by ρ = 0 and ρ = 1 are reported in Fig. 6. It
is illustrated that following the profiles obtained by OCP-
S requests very high power withdrawal from both energy
sources for very short duration. In contrast with the case
ρ = 1, where both engine and battery provide small amount
of power persistently to balance the tyre and aerodynamics
drag resistance losses during the cruising period, both energy
sources are nearly off to let the vehicle glide down to a lower
speed when ρ = 0. Eventually, less braking power is needed
to stop the vehicle, removing the need for using substantial
mechanical braking power, which is totally wasted.
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V. JOINT OPTIMIZATION (OCP-JOINT)

The joint optimization aims to solve OCP-S and OCP-EM
simultaneously and globally, considering a single OCP that
simply merges OCP-S and OCP-EM formulated previously.
The objective is minimize mf (T ) by finding the decision
variables u = [jv, jb, jr]

T and the vehicle speed v that is
the consequence of u. Next, OCP-Split that consecutively
combines OCP-S and OCP-EM is utilized to benchmark the



OCP-Joint in terms of optimal fuel economy and computa-
tional burden.

As demonstrated in Fig. 3 and 6, the optimized vehi-
cle speed of OCP-Joint appears to be different from any
solution from OCP-S. The optimal solution of OCP-Joint
applies much slower acceleration and deceleration because
of the inclusion of transmission losses, by which high power
transmission is penalized. As a consequence, the power
flow and SoC profile solved by the joint optimization are
very different from the results obtained by OCP-Split. In
particular, the formulation of OCP-Joint makes it possible
to take more advantages of the battery, thus the mechanical
brake is minimized during the braking phase.

Overall, the vehicle fuel economy greatly benefits from
the joint optimization. As can be seen in Fig. 7, the fuel
economy delivered by the OCP-Joint is 4.75L/100km, that
saves approximately 5.5% fuel usage as compared to the best
behaved OCP-Split parametrized by ρ = 0.5. The benefit of
OCP-Joint increases as ρ diverges from 0.5, which may be
the case closest to the average energy recovery factor solved
by the joint optimization among the choices of ρ. Noticeably,
the greatest disparity appears when ρ = 1, by which the
OCP-Split lags about 13.3% in terms of fuel economy.
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Table II shows the average computation time required by
the OCP-Joint and the OCP-Split, respectively. The requested

TABLE II
AVERAGE COMPUTATION TIME REQUIRED BY THE OCP-SPLIT AND THE

OCP-JOINT. THE CPU USED FOR COMPUTATION IS INTEL XEON

E5-1650, 3.5 GHZ.

Average running Time [s]
OCP-Joint 34.63
OCP-Split 15.88

computation time of OCP-Joint is doubled in comparison to
the OCP-Split, although it offers overall better performance
than the OCP-Split. As the complexity of the problem
increases by involving more practical aspects, for example,
road gradient and traffic influence, the OCP-Joint may easily
become unfeasible, while in that case OCP-Split could be a
computationally efficient alternative.

VI. CONCLUDING REMARKS

The operation of HEV can be optimized in several aspects
to reduce fuel consumption. This paper summarizes possible

optimization problems that can be formulated in the con-
text of HEVs with the series powertrain architecture. The
concerned optimization problems are formulated as OCPs
with the aim of solving a practical and global problem
with the drive mission defined in terms of traveling time
and route characteristics, which are easily available from a
navigation system. The two-step optimization scheme that
collects two conventional optimization strategies respectively
for vehicle speed and energy management, is utilized to
benchmark the approach that optimizes both aspects jointly.
It is demonstrated that the joint optimization improves the
fuel economy by 6%-14% as compared to the two-step
counterpart at the expense of nearly doubled computation
time.
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