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Abstract— An efficient high-dimensional codebook design is
conceived for sparse code multiple access (SCMA) systems.
This generalized technique has the compelling benefit that its
power-efficiency is monotonically increased with its dimension-
ality. A striking further practical benefit is that this increased
power-efficiency is achieved without increasing the per-symbol
detection complexity.

I. INTRODUCTION

In order to support large-scale connectivity in the forth-
coming fifth generation mobile communication networks,
non-orthogonal multiple access (NOMA) techniques may be
advocated. As an important NOMA candidate, the sparse
code multiple access (SCMA) technique has attracted re-
markable attention in recent years.

In more detail, in order to support more users than
the number of chips in a code division multiple access
(CDMA) system, we have to sacrifice the spreading code’s
orthogonality, which results in a rank-deficient system. A
compelling compromise was struck between the robust-
ness and complexity in a rank-deficient CDMA system by
Hoshyar et al. [1] upon combining their novel low-density
signature (LDS) scheme with the message passing algorithm
(MPA) of [2]. The LDS scheme relies on beneficial user-
specific sparse spreading sequences, which is synonymous
with designing a good signature matrix1 in conjunction
with the conventional phase-shift keying (PSK) modulation
scheme. However, as reported in [3], incorporating a more
sophisticated constellation design into the LDS system has
the potential of significantly improving the power-efficiency
without increasing the detection complexity, which results in
the SCMA scheme. Naturally, the specific choice of both the
signature matrix and of the modulation constellation become
a pair of critical factors that dominate the performance of a
SCMA system. The joint optimization of these two factors
constitutes part of the “SCMA codebook design” process.

For example, Yang et al. [4] focused their attention on the
signature matrix design, while Bao et al. [5], [6] concen-
trated their research efforts on the constellation design. As
a further advance, Zhou et al. [7] and Peng et al. [8] aimed
for the joint design of these two factors. However, to the
best of our knowledge, no publications are available in the
open literature on the “high-dimensional” SCMA codebook
design.

Against this background and inspired by [9], the above-
mentioned pair of design factors are beneficially replaced
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1The signature matrix is constituted by employing every user-specific
sparse spreading sequence as one of its column.

by a single design factor by designing a “decimal signa-
ture matrix”, which simplifies our codebook design pro-
cess. More explicitly, a high-dimensional codebook design
concept is proposed for SCMA systems, which consti-
tutes a generalized technique of monotonically increasing
the power-efficiency upon increasing the signature-matrix
dimensionality by invoking “Latin Rectangular” matrices
as our “decimal signature matrix”. Finally, this bneficial
monotonically increased power-efficiency improvement is
achieved without substantially increasing the system’s per-
symbol detection complexity.

The rest of this paper is organized as follows. Our
system model is introduced in Section II, while our SCMA
codebook design is discussed in Section III. Finally, several
SCMA codebook design examples obeying the proposed
design guidelines are provided in Section IV, where their
performance is also characterised.

II. SYSTEM MODEL

As mentioned in Section I, we focus our attention on
the down-link of a SCMA system. The entire network is
portrayed in Fig. 1. Consequently, during a SCMA down-
link transmission block, a binary user-specific signature of
su =

[
s1
u, s

2
u, . . . , s

Ω
u

]T
, sωu ∈ (0, 1) is assigned by the Base

Station (BS) to the uth active mobile user (MU) for the sake
of spreading the modulated symbol of the uth MU over all
the available channel-resources. The number of orthogonal
channel-resources (CR) assigned to the SCMA down-link,
such as the time-slots or sub-carriers, is denoted by Ω.
However, owing to the sparsity of su, only N of the entire
set of Ω CRs are actually occupied by the uth MU, i.e. the
number of nonzero elements within the signature su is only
N , which may be significantly lower than Ω.

Then, we invoke an N -dimension constellation cu =[
c1u, c

2
u, . . . , c

N
u

]T
for representing a codeword pertaining to

the user-specific SCMA codebook Cu of the uth MU, i.e.
we have cu ∈ Cu.

Accordingly, the above spreading process invoked for the
uth MU at the BS can be formulated as

xu = ∆0cols

[
diag

(
su
)]
cu, (1)

where the operation ∆0cols
[
A
]

omits all the zero-columns2

of the matrix A, hence we have ∆0cols

[
diag

(
su
)]
∈ CΩ×N

and xu ∈ CΩ×1. The operation diag(B) casts the vector B
to a diagonal matrix.

Then, the BS superimposes all the temporary codewords{
xu
}U
u=1

for generating the final modulated symbol, which
will be broadcast from the BS and written as

2Herein, the column which only has zero-valued elements is termed as
a zero-column.
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Fig. 1: System model of the SCMA downlink spanning
a single transmission block, where the SCMA encoding
process implemented at the BS is visualized. A configuration
of N = 2,Ω = 4, U = 6,Mu = 4 is adopted as an example.

fam =

√√√√√
∑U
u=1 Pu

E

(∥∥∥∑U
u=1 xu

∥∥∥2
) ,

x = fam

U∑
u=1

∆0cols

[
diag

(
su
)]
cu. (2)

In the first row of (2), the amplification factor fam is
introduced for constraining the average power of the final
modulated symbols to the total available power of all the U
MUs, where Pu represents the available power allocated to
the uth MS and E

(
·
)

represents the expectation operation.
On the other hand, during the same SCMA down-link

transmission block, the associated signal vector received by
the uth MU is given by

yu = hu · x + nu, (3)

where hu =
[
h1
u,h

2
u, . . . ,h

Ω
u

]T
, its element hωu denotes

the channel impulse response experienced by ωth channel
resources employed in this down-link transmission. Then,
nu =

[
n1
u,n

2
u, . . . ,n

Ω
u

]T
is the complex-valued additive

white Gaussian noise (AWGN) vector imposed on the uth

MU, whose elements obey an independent and identical
distribution of CN (0, σ2). Moreover, “·” in (3) represents
an element-wise multiplication.

III. SCMA CODEBOOK DESIGN

The final modulated Ω-dimensional symbol x given in
(2) carries all the information intended for the down-link
MU population. The properties of the SCMA down-link
transmission will be substantially affected by the particular
construction of x. Hence, we regard the alphabet of x,

namely X , as the eventual codebook of the SCMA down-
link transmission. With this spirit in mind, we observe
in (2) again that, the critical factors determining X can
be intuitively categorized into two aspects: a) the set of
user-specific signatures

{
su
}U
u=1

; b) the set of user-specific
SCMA codebooks

{
cu
}U
u=1

.
In order to holistically characterise the effects of the

entire user-specific signature set
{
su
}U
u=1

, as well as to
adapt it to the message passing algorithm, the concept of
the signature matrix S =

[
s1, s2, . . . , sU

]
was introduced

in both the LDS scheme [1] and in the SCMA scheme
[3]. According to (2), the down-link codebook could be
constructed by first distributing the non-zero elements across
this signature matrix S. Then, each M -ary user-specific
codebook Cu is simply generated based on a classical M -
ary PSK constellation, where the N -fold Cartesian product
of the mth PSK symbol itself is directly employed as the
mth codeword of Cu. In fact, this is right the strategy
employed by LDS schemes to construct their user-specific
codebooks. For the sake of convenience, a user-specific
codeword of this codebook is represented as cu-LDS. Then,
the classical M -ary PSK constellation is regarded as the
“mother constellation”. By contrast, if more sophisticated
lattice based constellations are employed for generating the
user-specific codebooks, we arrive at the SCMA scheme.
Hence, in general, a SCMA user-specific codeword could
be regarded as a LDS codeword multiplied by a specific
N -dimensional generator vector of gu as follows

cu = gu · cu−LDS. (4)

Then upon substituting (4) into (2), a codeword of the
SCMA codebook is rewritten as

x = fam

U∑
u=1

∆0cols

[
diag

(
su
)]

[gu · cu−LDS] ,

= fam

U∑
u=1

∆0cols

[
diag

(
ŝu
)]
cu−LDS, (5)

where the new decimal spreading sequence ŝu encapsulates
the impact of gu, which is imposed by consecutively re-
placing the N nonzero elements of su by the N elements
of gu. For example, if su = [0, 1, 1, 0]T , gu =

[
g1
u, g

2
u

]T
,

then we have ŝu =
[
0, g1

u, g
2
u, 0
]T

. After defining the deci-
mal spreading sequence ŝu, we further invoke the decimal
signature matrix of Ŝ = [ŝ1, ŝ2, . . . , ŝU ] .

Observe in (5) that the decimal signature matrix Ŝ ∈
CΩ×U is capable of encapsulating all the critical factors3

that dominate the performance of a SCMA down-link code-
book X . As a benefit, we no longer have to simultane-
ously conceive both the binary signature matrix S and the
user-specific codebooks

{
cu
}U
u=1

. Instead, we equivalently
transform the SCMA codebook design to the design of a
better decimal signature matrix.

3Please bear in mind that cu−LDS is simply a N-fold Cartesian product
of a conventional modulation symbol, e.g. a QPSK symbol.
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A. High-Dimensional Design

According to lattice theory [10], higher coding and shap-
ing gains become possible by increasing the dimensionality
of the lattice based modulation constellation. This ten-
dency was explicitly witnessed in [11, Fig.2-5]. The SCMA
down-link codebook X may also be viewed as a multi-
dimensional constellation. Hence, it inspires us to increase
the dimensionality of the SCMA down-link codebook X
to be designed. On the other hand, let η be the normalized
user-load of a SCMA system, which is characterised4 by
the ratio of η = U

Ω [3]. Hence, at a fixed η, increasing
the dimensionality of X is equivalent to proportionally
enlarging the size of the decimal signature matrix Ŝ.

For example, in the original SCMA codebook designs
of [3], [12], a binary signature matrix having 4 rows and
6 columns is utilized for illustration. Most of the ensuing
literature on the subject of SCMA codebook design [4], [5]
inherited this 4 × 6 configuration as their signature matrix
size. By contrast, we proposed to extend the size of the
decimal signature matrix Ŝ, e.g. to 6 × 9, or further to
8×12, and so on for the sake of achieving improved coding
and shaping gains. At the receiver, the signature matrix
of a SCMA system will be employed as the parity check
matrix (PCM) in the associated message passing detection
algorithm. This detection process is extremely similar to that
of a LDPC code. According to the principles of designing
a good LDPC code [13] , a large PCM size will facilitate
constructing a good Tanner graph, which results in a high
girth and a high minimum Hamming distance. This also
implies that extending the size of the SCMA signature
matrix improves its performance.

B. Low Complexity Design

The potential benefits introduced in Section III-A mo-
tivate us to employ a high-dimensional SCMA codebook
design, which is equivalent to employing a large signature
matrix. However, recall that the number of columns in the
signature matrix is identical to that of the MUs involved
in a SCMA down-link transmission block. Hence a larger
signature matrix implies that more information bits have
to be carried by a SCMA down-link transmission block.
Consequently, the detection complexity is increased.

In more detail, if the message passing algorithm proposed
in [1], [3] is employed again as our detection algorithm, the
detection complexity becomes proportional to

C ∝ O
(
Ω · df ·

[
Mdf

]
+ U · dv · [M ]

)
, (6)

where df denotes the weight of a function node involved in
the MPA, which equals to the number of nonzero elements
in a row of the signature matrix. Furthermore, dv denotes
the weight of a variable node, which equals to the number
of nonzero elements in a column of the signature matrix.

The average computational complexity required by de-
tecting an information symbol of a single MU is termed as

4It is assumed in this paper that a single layer, i.e. a single column of
the signature matrix is assigned to a MU.

the “complexity per user”. Based on this definition and on
the relationship of Ω · df = U · dv , we have

Cper−user ∝ O
(
dv ·

[
Mdf

]
+ dv · [M ]

)
. (7)

According to (7), it is clear that upon fixing df and dv ,
as well as satisfying dv

df
= Ω

U , the “complexity per user”
remains the same, while we simultaneously increase the
number of rows and columns of the signature matrix by
the same factor.

During our design, we firstly specify a small signature
matrix, which has a regular weight distribution, such as that
of the 4 × 6 signature matrix used in [3], [12]. Then, its
weight distribution will be adopted again in the dimension-
extension procedure introduced in Section III-A for the sake
of fixing the detection complexity to make a fair comparison.

C. “Latin Rectangular” Matrix Based Signature Design

In Sections III-A and III-B, we have specified how
to configure both the size and weight distribution of the
signature matrix. Then, the principle of constructing a good
LDPC PCM, which attempts to avoid low-girth cycles in the
associated Tanner graph is relied upon again for determining
the locations of the nonzero elements within the signature
matrix. Hence the last step of completing the design of the
decimal signature matrix Ŝ is that of assigning the specific
value of its every nonzero element. This process is termed
as “signature labelling”.

Fortunately, we find that the signature labelling method
proposed in [9], which was again inherited in [7], [14]
adapts very well to our high-dimensional decimal signature
matrix. In more detail, the value of each nonzero element
in Ŝ will always be taken from a finite complex-valued set
A = {ak, k = 0, 1, . . . , df − 1}, where ak is calculated as
follows

ak = exp

(
j

2π

P
k

)
, P = M · df . (8)

In (8), M is the specific number of symbols included in
the “mother constellation” of (4). Then, while assigning the
value of {ak}

df−1
0 to the nonzero elements of Ŝ, it obeys

the “Latin Rectangular” principle5 of [9].

D. Guideline and Example of Our Design

Our high-dimensional SCMA codebook design method
introduced before is concisely summarized as follows:

1 Assume that the size of our decimal signature matrix
is initialized to Ŝ ∈ CΩ×U , where the user-load of the
SCMA system and the weight distributions are fixed to
η, df , dv , respectively. The relationship of η = U

Ω =
df
dv

should be satisfied.
2 We construct a length U (dv, df )−regular LDPC

parity-check matrix, where the low-girth cycles have
been omitted. Then, the positions of nonzero elements

5If a matrix obeys the properties that a) all of its rows or columns are
uniquely distinguishable from each other; b) any nonzero element of this
matrix will no longer occur more than once in the same row or column,
we say that this matrix has a “Latin Rectangular” form [15].
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in this parity-check matrix are copied to our signature
matrix Ŝ.

3 A set of specific values {ak}
df−1
0 is calculated accord-

ing to (8), which is assigned to the nonzero elements
of Ŝ. This “signature labelling” process should obey
the “Latin Rectangular” principle.

4 If a higher power-efficiency is required, we could
further extend the size of Ŝ by a factor of k, and
then repeat the previous Steps 1-3 again for generating
a new decimal signature matrix of Ŝ′ ∈ CΩ·k×U ·k.
During this construction procedure of Ŝ′, if the param-
eters of η, df , dv remain fixed to their previous value,
the user-load capability and detection complexity per
symbol of the SCMA system will not be impaired.

For instance, according to the above design guidelines,
if we want to enhance the power-efficiency of our SCMA
system, we can rely on extending the size of Ŝ from 4× 6
to 6 × 9, and then further to 8 × 12. If the normalized
user-load is fixed to η = U

Ω = 150%, the resultant decimal
signature matrices are given in (9)-(10). Observe in (9)-(10)
that according to the “low-complexity design” principle of
Section III-B, the weight distribution of Ŝ4,6 results in df ≡
3, dv ≡ 2, which is adopted again for constructing Ŝ6,9 and
Ŝ8,12. Then, implanting the appropriately chosen nonzero
elements in these positions of Ŝ4,6, Ŝ6,9 and Ŝ8,12 allows
us to avoid girth-4 cycles in their Tanner graphs. Finally,
according to the “signature labelling” principle introduced
in Section III-C, we have a0 = 1, a1 = exp

(
j π6
)
, and

a2 = exp
(
j π3
)
, when considering a conventional QPSK

constellation as the “mother constellation”. Explicitly, the
matrices given in (9)-(10) are all “Latin-Rectangular” ma-
trices.

IV. SIMULATION RESULTS

The SCMA codebook design principles of Section III are
now employed in our simulations for the construction of
the decimal signature matrices Ŝ. Then, we expect that the
resultant performance would indeed reflect the benefits of
our codebook design.

The network of Fig 1 is considered in our simulations.
Since we focus our attention on the SCMA codebook design,
we will invoke neither channel coding nor sophisticated
power allocation. Again, MPA-based SCMA detection sim-
ilar to that of [1] is used at the receiver by each MU. The
transmit power is uniformly shared amongst the U MUs.
All other simulation parameters are listed in Table I.

The symbol error probability (SEP) achieved by employ-
ing different decimal signature matrices Ŝ is quantified in
Fig.2, where we firstly consider AWGN channels. Explicitly,
increasing the dimensionality of Ŝ by obeying the guidelines
stated in Section III is capable of attaining a constant
performance gain. For example, a round 0.5 dB performance
gain is attained at the SEP target of 10−4 upon replacing
Ŝ4,6 by Ŝ6,9, and then, an additional 1 dB performance gain
is achieved by further extending Ŝ6,9 to Ŝ8,12.

A similar phenomenon is observed again in Fig.3 for
uncorrelated Rayleigh fading channels upon assuming per-
fect channel state information, where the same signature

Number of MUs 6→ 9→ 12
Orthogonal

4→ 6→ 8Channel Resources
Normalized User-Load η = 1.5
Weight Distribution df = 3, dv = 2
Signature Matrix “Latin-Rectangular”
Channel Model AWGN or Rayleigh

Number of Samples 2 · 106
Transmission Blocks

SNR Pu/N0

Mother Constellation QPSK
Detection Algorithm MPA

TABLE I: System Parameters

Fig. 2: SER vs SNR performance of employing different
dimensionality signature matrices of Ŝ over AWGN chan-
nels, while using the parameters of Table I. Furthermore,
the performance of a single-user system employing classic
QPSK modulation is also shown.

matrices and the SCMA detection algorithm used in Fig.2
are adopted.

Finally, the impact of increasing the dimensionality of Ŝ
on the computational complexity of the detection process
is visualized in Fig.4, where the number of multiplications
required for detecting a single information symbol is em-
ployed as our complexity metric. Observe in Fig.4 that the
system complexity associated with a signature matrix Ŝ is
always reduced upon increasing the SNR value, because the
log-likelihood ratio (LLR) values generated during the MPA
will exceed the predefined threshold in fewer iterations.
Hence the MPA procedure will be completed by invoking
fewer iterations. Furthermore the system complexity remains
near-constant upon increasing the dimensionality of the
associated signature matrix from 4 to 8. This result is in
line with our previous complexity analysis formulated in
(7). Hence, by jointly assessing the experimental results of
Fig.2 and Fig.4, we may claim that the proposed scheme is
capable of improving the power-efficiency of SCMA without
increasing its detection complexity 6.

6In the down-link transmission, the other users’ information symbols
{sk}Uk=1,

k 6=u

are discarded at the uth MU. In this context, the power gain

of the proposed scheme is obtained at the cost of linearly increasing the
system’s complexity.
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Ŝ4,6 =

 0 a0 a2 0 a1 0
a2 0 a0 0 0 a1
0 a1 0 a2 0 a0
a1 0 0 a0 a2 0

 , Ŝ6,9 =


0 0 a0 0 0 0 a1 0 a2
0 a2 0 a1 0 0 a0 0 0
0 0 a1 a2 0 a0 0 0 0
a1 0 0 0 a2 0 0 0 a0
a2 0 0 0 0 a1 0 a0 0
0 a1 0 0 a0 0 0 a2 0

 , (9)

Ŝ8,12 =



0 0 0 a0 a2 0 0 0 0 0 0 a1
0 0 0 a2 0 0 0 a0 0 0 a1 0
a1 a2 0 0 0 0 0 0 0 a0 0 0
0 a1 0 0 0 0 a2 0 0 0 0 a0
0 0 0 0 0 a0 0 0 a1 a2 0 0
0 0 a0 0 a1 a2 0 0 0 0 0 0
0 0 0 0 0 0 a0 a1 a2 0 0 0
a0 0 a1 0 0 0 0 0 0 0 a2 0


. (10)

Fig. 3: SER vs SNR performances upon employing
different-dimensionality signature matrices of Ŝ over uncor-
related Rayleigh fading channels. The perfect channel state
information is assumed and the parameters of Table I are
used. Furthermore, the performance of a single-user system
employing classic QPSK modulation is also shown.

Fig. 4: The computational complexity per detected symbol
vs SNR in an AWGN communication scenario using the
parameters of Table I. Observe that the complexity remains
unaffected by the size of Ŝ.

V. CONCLUSION

Recursive decimal signature matrix construction was pro-
posed for SCMA systems. Explicitly, a high-dimensional
low-complexity “Latin-Rectangular” matrix based signature
design was conceived, which exhibited an SNR-gain upon
increasing the size of the signature matrix without increasing
the per-symbol detection complexity.

REFERENCES

[1] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel Low-Density

Signature for Synchronous CDMA Systems Over AWGN Channel,”
IEEE Transactions on Signal Processing, vol. 56, pp. 1616–1626,
April 2008.

[2] T. J. Richardson and R. L. Urbanke, “The Capacity of Low-
Density Parity-Check Codes under Message-Passing Decoding,”
IEEE Transactions on Information Theory, vol. 47, pp. 599–618,
Feb. 2001.

[3] H. Nikopour and H. Baligh, “Sparse Code Multiple Access,” in
Proceedings of IEEE 24th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications, PIMRC,
pp. 332–336, Sept. 2013.

[4] Z. Yang, J. J. Cui, X. F. Lei, Z. G. Ding, P. Z. Fan, and D. G. Chen,
“Impact of Factor Graph on Average Sum Rate for Uplink Sparse
Code Multiple Access Systems,” IEEE Access, vol. 4, pp. 6585–6590,
Oct. 2016.

[5] J. C. Bao, Z. Ma, Z. G. Ding, G. K. Karagiannidis, and Z. L. Zhu,
“On the Design of Multiuser Codebooks for Uplink SCMA Systems,”
IEEE Communications Letters, vol. 20, pp. 1920–1923, Oct. 2016.

[6] J. C. Bao, Z. Ma, M. A. Mahamadu, Z. L. Zhu, and D. G. Chen,
“Spherical Codes for SCMA Codebook,” in Proceedings of 2016
IEEE 83rd Vehicular Technology Conference, pp. 1–6, May 2016.

[7] Y. Zhou, Q. Yu, W. Meng, and C. Li, “SCMA Codebook Design
Based on Constellation Rotation,” in Proceedings of 2017 IEEE
International Conference on Communications, pp. 1–6, May 2017.

[8] J. Peng, W. Chen, B. Bai, X. Guo, and C. Sun, “Joint Optimization of
Constellation With Mapping Matrix for SCMA Codebook Design,”
IEEE Signal Processing Letters, vol. 24, pp. 264–268, Mar. 2017.

[9] J. van de Beek and B. M. Popovic, “Multiple Access with Low-
Density Signatures,” in Proceedings of Global Telecommunications
Conference, GLOBECOM, pp. 1–6, Nov. 2009.

[10] F. Oggier and E. Viterbo, “Algebraic Number Theory and Code
Design for Rayleigh Fading Channels,” in Foundations and Trends
in Communications and Information Theory, The Netherlands: Now
Publishers Inc., vol. 1, pp. 333–415, 2004.

[11] J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore, “Good
Lattice Constellations for Both Rayleigh Fading and Gaussian Chan-
nels,” IEEE Transactions on Information Theory, vol. 42, pp. 502–
518, Mar. 1996.

[12] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh,
“SCMA Codebook Design,” in Proceedings of IEEE 80th Vehicular
Technology Conference, VTC2014-Fall, pp. 1–5, Sept. 2014.

[13] N. Bonello, S. Chen, and L. Hanzo, “Construction of Regular Quasi-
Cyclic Protograph LDPC Codes Based on Vandermonde Matri-
ces,” IEEE Transactions on Vehicular Technology, vol. 57, pp. 2583–
2588, July 2008.

[14] G. H. Song, X. B. Wang, and J. Cheng, “Signature Design of
Sparsely Spread Code Division Multiple Access Based on Superposed
Constellation Distance Analysis,” IEEE Access, vol. 5, pp. 23809–
23821, Oct. 2017.

[15] L. Mirsky, “Transversal Theory,” New York, Academic Press, 1971.


