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Abstract

Traditional clustering methods focus on grouping subjects or (dependent) vari-
ables assuming independence between the variables. Clusters formed through these
approaches can potentially lack homogeneity. This article proposes a joint clustering
method by which both variables and subjects are clustered. In each joint cluster (in
general composed of a subset of variables and a subset of subjects), there exists a
unique association between dependent variables and covariates of interest. To this
end, a Bayesian method is designed, in which a semi-parametric model is used to
evaluate any unknown relationships between possibly correlated variables and covari-
ates of interest, and a Dirichlet process is utilized to cluster subjects. Compared to
existing clustering techniques, the major novelty of the method exists in its ability to
improve the homogeneity of clusters, along with the ability to take the correlations
between variables into account. Via simulations, we examine the performance and
efficiency of the proposed method. Applying the method to cluster allergens and sub-
jects based on the association of wheal size in reaction to allergens with age, we found
that a certain pattern of allergic sensitization to a set of allergens has a potential to
reduce the occurrence of asthma.
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1 Introduction

The work presented in the article was motivated by an epidemiological effort to study

patterns of wheal sizes in reaction to different allergens at different ages and how those

patterns are associated with asthma risk. There exist various allergens in our daily lives

such as pollens or peanuts. Being sensitized to an allergen increases the probability of

asthma incidence. Some people are allergic to certain allergens but never develop asthma,

while others experience asthma incidence at certain ages. In addition, asthma remissions

are observed. It is postulated that asthma incidence and asthma remission are linked to

particular allergic sensitization patterns at different ages. Specifically, there is a desire to

sort out whether there exist groups of subjects such that in each group their reaction to

certain allergens was different from their reaction to other allergens, and also different from

subjects in other groups. A cluster analysis is commonly taken as an attempt to achieve

such a goal. This type of analyses has become increasingly popular in areas of epidemio-

logical research and genetic or epigenetic studies to identify patterns of clinical phenotypes

of different health outcomes, or genetic/epigenetic patterns potentially associated with an

outcome of interest.

Classical methods for cluster analysis generally focus on clustering subjects or variables

(e.g., allergens) but not both. Non-parametric approaches such as the k-means and hi-

erarchical methods are commonly utilized to cluster subjects. These methods detect the

homogeneity in subjects, but not in variables. To achieve both, before conducting clus-

ter analyses, some studies perform principal component analyses (PCA) or factor analyses

(FA) on the variables to identify inherent homogeneity. The advantage of PCA and FA

is their ability to address the interdependence between phenotypes. However, they cannot

explain any external variable effects, such as time effects, on the formation of patterns.

This is crucial when there is a need to explore patterns in variables, e.g., changes of allergic

sensitization with ages (natural history).

The concept of biclustering has been more recognized recently. It was dated back to

the 1970’s (Hartigan, 1972), and later implemented to explore gene expression/microarray

data (Cheng and Church, 2000). The biclustering scheme simultaneously clusters two-

dimensional gene expression data and tries to optimize a pre-specified objective function.
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There are two main classes of biclustering algorithms: systematic search algorithms and

stochastic search algorithms, while each class of algorithm has several different ways to be

implemented (Freitas et al., 2013). Various biclustering tools and methods are available:

bicluster analysis in R (Kaiser and Leisch, 2008), BiVisu (Cheng et al., 2007), GEMS (Wu

and Kasif, 2005), BicOverlapper (Santamaŕıa et al., 2008), e-CCC-Biclustering (Madeira

and Oliveira, 2009), parametric Bayesian BiClustering model (BBC) (Gu and Liu, 2008), as

well as non-parametric Bayesian methods (Meeds and Roweis, 2007; Lee et al., 2013). The

existing biclustering concept in these works considers the coherence of rows and columns in

the data. Since the technique is not model-based, it is restricted to profiles in the variables

and external variables do not have any contribution to the evaluation of similarity between

different variables. Furthermore, some biclustering methods perform cluster analyses on

the rows and columns separately, and do not simultaneously consider the interrelationship

between the rows and columns. Most importantly, in our application (i.e., sensitization

to allergens), sensitization measures are dependent, e.g., a person allergic to cat dander

is likely to be allergic to dog dander as well. However, existing methods overlook the

correlations between the clustering variables, which can potentially cause mis-clustering.

In this article, we propose a probabilistic clustering method, denoted as joint clustering,

which takes into account the correlations between variables (e.g., sensitization measures)

and the interrelationship between variables and subjects. The clusters are formed by consis-

tent associations between a variable (or a “dependent variable”) and covariates of interests

among a subset of subjects for a set of variables. Each joint cluster is composed of a certain

numbers of variables and a subset of subjects. To evaluate possibly non-linear associations

between variables and covariates, a semi-parametric model via penalized splines (Eilers and

Marx, 1996) is used. To cluster variables, an indicator variable is introduced for cluster

assignment. To cluster subjects, a Dirichlet process mixture model is applied. The pro-

posed joint clustering method has the ability to produce homogeneous clusters composed

of a certain number of subjects sharing common features in the relationship between some

variables and covariates.

The remainder of the article is organized as follows. Section 2 introduces the model

of joint clustering under the Bayesian framework and settings for the priors. The full
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conditional posteriors, detailed procedure and approach of joint clustering are also described

in this section. We demonstrate and evaluate the performance of the proposed method in

Section 3 through simulations. The proposed approach is then applied to analyze allergic

sensitization data. We cluster subjects and allergens based on associations of wheal sizes in

reaction to allergens with age. This is discussed in Section 4. We summarize our methods

and findings and discuss limitations in Section 5.

2 The Method

We consider the following joint (two-dimensional) clusters which are illustrated in Figure 1.

To ease the presentation, we dissect the unified clustering process into two parts. In part

1, variables are clustered; and in part 2, subjects within each variable cluster are further

clustered to form refined clusters, where the correlations between the variables are taken

into account. We then combine parts 1 and 2 and lay out the joint clustering scheme.
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Figure 1: Illustration of joint clusters. In total 6 clusters and the numbers are joint cluster

indices.

2.1 Clustering the Variables

We cluster variables based on agreement in relationships between variables and covariates of

interest. Assume in total n subjects and K variables are under consideration for clustering.
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For subject i, i = 1, · · · , n, let yi = (yi1, . . . , yiK) denote the measures of K variables. Let

M denote the number of clusters formed by the variables (M ≤ K), and D be an M ×K

0-1 matrix such that the kth column contains M−1 zeros and one element with the number

1 indicating which cluster the kth variable (k = 1, 2, . . . , K) belongs to. The value of M

will be determined via grid search, which is further discussed in Section 2.4. For a given

M , elements in the mth row of D, m = 1, · · · ,M , inform which variables are in cluster m.

We formulate the variable clustering procedure into the following:

yi,m|Dm. = Q(xi,βi,m) + εTi,m, (1)

where yi,m = (yi,(1), . . . , yi,(km))
′ is a vector of variables in variable cluster m, xi is a vector

of covariates potentially associated with yi,m, βi,m describes the association of yi,m with xi

in cluster variable m for subject i, and εTi,m follows a multivariate normal distribution with

mean 0 and covariance matrix Σm. The covariance Σm informs the strength of correlations

between the variables in cluster m. Based on the property of homogeneity in a cluster (as-

suming variables are properly transformed when necessary), the variances of the variables

in one cluster are assumed to be the same, i.e., the diagonal elements are the same. For

formulation simplicity, we also assume that variables in different variable clusters are inde-

pendent. In the simulations, we demonstrate the robustness of this assumption. Function

Q(·) is a vector function which describes the relationship between variables and covariates

of interest xi. We use semi-parametric models to model this relationship. Specifically,

penalized splines (P-Splines) are applied (Eilers and Marx, 1996) due to its use of low rank

bases. In order to achieve the smoothness, second order P-Splines is used. For one covariate

xi,

Q(x,βi,m) = aim,1xi + aim,2x
2
i +

g∑
l=1

bim,l(xi − zl)
2
+,

where g is the number of knots, βm = (aim,1, aim,2, bim,1, . . . , bim,g)
′ is of length (g + 2)

representing coefficients for the P-Splines for the mth cluster, zl’s are the spline knots, and

(xi − zl)+ =

0, if xi 6 zl,

xi − zl, if xi > zl.

We writeXi = (xi, x
2
i , (xi−z1)

2, . . . , (xi−zg)
2)′, which gives Q(xi,βi,m) = X ′

iβi,m. Since the

dependent variables are multivariate, we write Xi = Xi ⊗ 1km . Where ⊗ is the Kronecker

5



product; 1km is a row vector of dimension km composed of 1’s. Knots can be chosen

to be evenly spaced between the range of xi (Ruppert et al., 2003). As for the number

of knots (g), it has been demonstrated that a large number of knots is not necessary

(Baladandayuthapani et al., 2005; Ruppert et al., 2003). In our study, we use 10 knots in

simulations as well as in the real data application.

A Bayesian approach is applied to infer the variable clusters. The following lists the

prior distributions of D.k,Σm, and hyper-parameters, where D.k denotes the kth column of

D representing which cluster the kth variable belongs to.

D.k|π ∼ Multinomial(1,π),

π|ζ ∼ Dirichlet(ζ1M),

ζ ∼ p(ζ) =
1

2
if 0 < ζ ≤ 1, and

1

2
ζ−2 if ζ > 1,

Σm|(S, ν) ∼ InvWishart(S, ν), (2)

where π = (π1, . . . , πM) gives the probabilities that the kth variable is in each of the M

clusters. We choose a Dirichlet distribution for the prior of π. The distribution of hyper-

prior ζ in π is chosen following the suggestion of Good (1965). The parameter Σm is the

variance-covariance matrix of ϵi,m and an inverse Wishart distribution is selected as its

prior distribution. The choice of hyper-prior parameters S and ν controls the variation

in Σm for cluster m. To avoid non-necessary difficulty in differentiating different variable

clusters, we take S = 1
2
I with I standing for identity matrix and select ν such that the

prior mean of Σm is moderate on the diagonal. The prior distribution of βi,m is discussed

in the next section due to its involvement in subject clustering.

2.2 Clustering the Subjects

The subjects within each variable cluster are further grouped such that each group reflects

a different relationship between variables and covariates of interest. We can follow what is

done in the clustering of variables, i.e., introducing an indicator matrix and determining

the number of subject clusters within each variable cluster via grid search. Doing so will

significantly increase computing burden. To ease the computing complexity, we propose to

use the Dirichlet process to fulfill the goal of clustering subjects. The Dirichlet process has
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the ability to detect clusters without the need of defining a particular parameter for the

number of clusters as done under the multinomial setting. Specifically, we assume that the

prior distribution of βi,m is generated from a Dirichlet process,

βi,m|G ∼ G,

G ∼ DP(G0, λ),

G0|σ2
0 ∼ N (0, σ2

0I),

σ2
0|(a, c) ∼ InvGamma(a, c),

where βi,m|G are independent given G, and DP(G0, λ) represents the Dirichlet process with

a measure having concentration λ and proportional to the base distribution G0 ∼ N (0,Σ0)

with Σ0 = σ2
0I. The prior of βi,m conditional on β−i,m, the coefficients with βi,m excluded,

is a mixture distribution

βi,m

∣∣∣β−i,m ∼ 1

n− 1 + λ

∑
j ̸=i

δβi,m
(βj,m) +

λ

n− 1 + λ
G0,

where j = 1, · · · , n, j ̸= i, δβi,m
(βj,m) is a point mass concentrated at a single point where

βi,m = βj,m (i.e., δβi,m
(βj,m) = 1 if βi,m = βj,m, j ̸= i), and λ is the concentration parameter.

As for now, we assume λ is known and discuss its selection in Section 2.4.

For the hyper-prior parameters a and c, they are assumed to be known and selected to

achieve vague priors. In particular, we set a = c = 0.5, assuming unit-information prior

based on the suggestion by Kass and Wasserman (1995).

2.3 Joint Clustering

When clustering variables and subjects jointly, we combine Sections 2.1 and 2.2 to meet

this need,
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yi,m|(βi,m, D,Σm) ∼ N
(
X ′

iβi,m,Σm

)
,

βi,m|G ∼ G, G ∼ DP(G0, λ),

G0|σ2
0 ∼ N (0, σ2

0I),

σ2
0|(a, c) ∼ InvGamma(a, c),

D.k|π ∼ Multinomial(1,π),

π|ζ ∼ Dirichlet(ζ1M),

ζ ∼ p(ζ) =
1

2
if 0 < ζ ≤ 1, and

1

2
ζ−2 if ζ > 1,

Σm|(S, ν) ∼ InvWishart(S, ν),

with settings for hyper-parameters S, ν, a, and c defined in Sections 2.1 and 2.2.

2.4 Posteriors Computing

Markov chain Monte Carlo (MCMC) simulations, specifically the Gibbs sampler with

Metropolis-Hastings steps, are implemented to generate observations from full conditional

posterior distributions, which are then used to infer the parameters of interest. In the

following, we list the conditional posterior distributions.

For parameters related to clustering the dependent variables, we have the following

conditional posterior distributions,

π
∣∣∣(D, ζ) ∼ Dirichlet(D.k + ζ),

where ζ is a vector with all components equal to ζ.

D.k

∣∣∣yi,m,βi,m,Σm,π ∼ Multinomial(1,π0),

π0m ∝ p(yi,m|(βi,m, D.k,Σm))p(D.k|π),m = 1, · · · ,M,

i = 1, · · · , n, (3)

where sampling of D.k and π0m depends on the coefficients in variable cluster m for subject

i, βi,m. The conditional posterior distribution of ζ is not in a standard form and to sample

ζ, we apply the Metropolis-Hastings algorithm and take the log-normal distribution as the

proposal distribution.
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The conditional posterior distributions in the procedure of further clustering subjects

within each variable cluster include the conditional posterior distribution of βi,m. Assuming

the data are exchangeable (Neal, 2000), we have:

βi,m

∣∣∣(β−i,m,yi,m) ∼
∑
j ̸=i

qi,jδ(βj,m) + riHi,

where

qi,j = b
1

n− 1 + λ
(2π)−

km
2 |Σm|−

1
2

exp
[
− 1

2
(yi,m −Xiβj,m)

′Σ−1
m (yi,m −Xiβj,m)

]
,

ri = b
λ

n− 1 + λ
(2π)−

km
2 |Σm|−

1
2 |Σ0|−

1
2 |Σβi,m

|
1
2

exp
[
− 1

2
y′
i,mΣ

−1
m yi,m +

1

2
y′
i,mΣ

−1
m XiΣβi,m

X ′
iΣ

−1
m yi,m

]
,

Σβi,m
= (X ′

iΣ
−1
m Xi + Σ−1

0 )−1,

Hi ∼ N
(
Σβi,m

(X ′
iΣ

−1
m yi,m),Σβi,m

)
,

where b is a normalizing constant. To sample βi,m, we implement Algorithm 2 summarized

in Neal (2000), initially proposed by Bush and MacEachern (1996). Related conditional

posteriors implemented in this Algorithm are discussed in Appendix A. Other conditional

posterior distributions involved in the clustering procedure are for Σm and Σ0:

Σm

∣∣∣(Y,βi,m) ∼ InvWishart
( n∑

i=1

(yi,m −X ′
iβi,m)(yi,m −X ′

iβi,m)
′ + S, n+ ν

)
,

Σ0[j]
∣∣∣(Y,βi,m) ∼ InvGamma

(
a2 +

n(2 + g)

2
, c2 +

n∑
i=1

βi,m[j]
)
,

where Σ0[j] denotes the jth diagonal element in Σ0, and βi,m[j] is the jth component of

βi,m. A Gibbs sampler will then be used to sample from the aforementioned conditional

posterior distributions. Details of the sampling procedure are outlined in Appendix B.

Now we turn to the selection of the concentration parameter λ in the Dirichlet process.

This parameter controls the distribution of βi,m over the number and sizes of clusters. If λ

is large, the prior assigns distributions that are close to the base distribution. If we have

prior knowledge on the number of clusters, we can pre-specify λ based on such knowledge.
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For instance, we can set λ small assuming that the number of subject clusters is substan-

tially smaller than the sample size. This assumption is realistic and does not lose generality

in many real applications. However, it is noteworthy that simply pre-specifying the concen-

tration parameter can potentially increase misclassifications. Antoniak (1974) also noted

that a caution is needed when choosing too small values for λ. A prior distribution for λ,

e.g., a gamma distribution, is suggested in some earlier studies, but sensitivity of the pos-

terior inferences of λ to its prior choice has been discussed in various applications (Dorazio

et al., 2008; McAuliffe et al., 2006). Doss (2008) indicates that parameter λ is typically

the most difficult to estimate or defend as a fixed value. Different approaches have been

proposed to infer or estimate λ. For instance, both McAuliffe et al. (2006) and Dorazio

et al. (2008) adopted a numerical approach based on the work of Liu (1996) to estimate λ.

However, our simulations (results not shown) indicate that this approach has the risk of

under estimating λ. Kyung et al. (2010) also noted that the choice of λ based on Dorazio

et al. (2008) may be far from the truth due to the possibility of flat likelihood of λ. Other

approaches determining the concentration parameter have also been proposed, e.g., Doss

(2008, 2012) and Kyung et al. (2010). Knowing the pros and cons of all these developed

methods, to avoid a potential bias and to reduce complexity in the process of inferring λ,

in this article, we decide to choose λ by maximizing the joint posterior likelihood.

To determine the number of variable clusters, M , we optimize the deviance information

criterion (DIC) (Spiegelhalter et al., 2002). That is, we run the clustering process for a set

of different M values and choose the results showing the smallest DIC. The final number

of joint clusters is decided by identifying an iteration with “least-squares distance”, a

procedure adapted from Dahl (2006). Details are given in Appendix C.

3 Simulation Study

This section, via simulations, demonstrates the proposed method, assesses its sensitivity

with respect to large variations in data and dependence between variable clusters, and

compares the method with existing approaches. The program for the proposed method is

written in R and available to readers of interest.
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3.1 Settings

We generate 100 Monte Carlo (MC) replicates, with each of sample size 400 and having 10

dependent variables, and one covariate xi generated from a uniform distribution between

1 and 6. The 10 variables are grouped into 3 clusters and within each variable cluster, the

subjects are further clustered. Following is the setting of the clusters and the associations

defined for each cluster:

• Cluster 1, E(yij) = 6 + 5 sin(0.2π(xi − 1)) for i = 1, . . . , 250 and j = 1, . . . , 5

• Cluster 2, E(yij) = −5− 5 cos(0.2π(xi − 3.5)) for i = 251, . . . , 400 and j = 1, . . . , 5

• Cluster 3, E(yij) = 10− 0.8xi for i = 1, . . . , 200 and j = 6, 7, 8

• Cluster 4, E(yij) = −5− 3 exp
(
0.4(xi − 1)

)
for i = 201, . . . , 400 and j = 6, 7, 8

• Cluster 5, E(yij) = 15 + 4 log
(
0.4(xi − 0.8)

)
for i = 1, . . . , 180 and j = 9, 10

• Cluster 6, E(yij) = −2 + 0.1xi for i = 181, . . . , 400 and j = 9, 10

In total, we have 6 joint clusters with each cluster having a specific association between

y and x for a subset of subjects. The distribution of random errors is assumed to be

multivariate normal with mean 0 and the following variance-covariance matrices for the

three variable clusters

Σ1 =



1 −0.25 0 0 0

−0.25 1 −0.5 0 0

0 −0.5 1 0 0

0 0 0 1 0.3

0 0 0 0.3 1


,Σ2 =


1 0.1 −0.4

0.1 1 −0.1

−0.4 −0.1 1

 ,

Σ3 =

 0.6 −0.25

−0.25 0.6

 .

The patterns of the 6 clusters are displayed in Figure 1. We denote this simulation

design as Scenario 1. To assess the quality of clustering, we record the number of joint

clusters, accurate rate calculated based on pairwise agreement of clustering (such that pairs
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[i, j] ([subject, variable]) and [i′, j′] are in one cluster), sensitivity (Se=TP/(TP+FN)), and

specificity (Sp=TN/(TN+FP)) with respect to a specific cluster, where “TP” denotes true

positives (correct cluster identification), “FN” false negatives, “TN” true negatives, and

“FP” false positives.

3.2 Results

We discuss findings from the fully Bayesian sampling scheme discussed in Section 2.4 such

that D
(t)
.k is sampled from the distribution in (3). In total, g = 10 evenly spaced knots are

taken in the P-Splines. For the selection of concentration parameter λ of a given M , we use

grid search by maximizing the posterior likelihood. Smaller values of λ are preferred as they

are in expectation corresponding to parsimonious clusters (smaller numbers of clusters).

This grid search is applied to a randomly selected data set from the 100 MC replicates,

and 2,000 MCMC iterations are run with 1,000 MCMC iterations from one chain after

1,000 burn-in iterations used to estimate the parameters and calculate the joint posterior

likelihood for that randomly selected data set. A value of λ that maximizes the posterior

likelihood is then taken for all the remaining MC replicates. After λ determined for each

M , for each MC replicate, supported by potentially fast convergence of MCMC chains, we

run two MCMC chains with 1,000 iterations each chain for each MC replicate with 300

iterations as burn-in, the next 300 for the determination of the average clustering matrix,

and the last 400 iterations for inferences.

Figure 2 demonstrates patterns of the posterior likelihoods with respect to different

values of λ at given values of M . For instance, taking concentration parameter λ = 1.0 at

M = 3 maximizes the likelihood. Our additional simulations (results not shown) demon-

strate that taking λ in the neighbors of maximization point for a given M gives similar

posterior inferences on clusters and parameters.

After λ is determined for each M , the final value of M for each MC replicate is deter-

mined by minimizing DICs. The pattern of DICs for each M across the 100 MC replicates

are given in Figure 3. Out of 100 MC replicates, 73 replicates are optimized at M = 3 vari-

able clusters. For the numbers of joint clusters among these 73 MC replicates, the median

is 6 and a 95% empirical interval is [6, 8]. The sensitivity and specificity of the joint clus-
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Figure 2: Joint posterior log-likelihood v.s. λ (simulation scenario 1). a) M = 3, b) M = 4.

tering process with respect to the true clustering evaluated based on pairwise agreements

are listed in Table 1 (in the columns named “Scenario 1”). Overall, high sensitivities and

specificities are observed, indicating the effectiveness of the proposed method.

To illustrate the fitting performance of the proposed joint clustering method, we choose

results from one data set. The fitted curves for all clusters are shown in Figure 4 along with

the true curves. The fitted curves are all close to the true curves except slight deviation

at two ends of the curves. This is further reflected by the 95% empirical posterior interval

bands.

3.3 Further Assessment of the Method

In the above analysis, we demonstrated the robustness of the method via sensitivity and

specificity with respect to different cluster patterns. In this section, via simulations, we

evaluate the impact of large variation in data on the quality of clustering, assess the sensi-

tivity on the independence assumption between variable clusters, and compare the proposed

method with existing competing methods.
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Figure 3: Box plots of DICs v.s. different numbers of variable clusters (M) (simulation

scenario 1).

Impact of large variation. To assess this impact, we increase the values of variance

components in the covariance matrices for the three variable clusters from {1, 1, 0.6} to

{5, 6, 6}, respectively. Other settings are kept the same as before. We denote this simulation

scenario as Scenario 2. Table 1 summarizes the sensitivities and specificities across 100 MC

replicates (the column indicated by “Scenario 2”). The sensitivities and specificities are

not severely impacted by the substantially increased variations in the data. The lowest

average sensitivity occurs for joint cluster 1 but is still higher than 0.90, indicating high

sensitivity in most MC replicates. However, the standard deviations are larger than those

under Scenario 1, implying increased uncertainty potentially due to larger variations in the

data.

Sensitivity on the independence assumption between variable clusters. In the previous

simulations, all the MC replicates are simulated such that variables between different vari-

able clusters are independent, which follows the assumption of the proposed method. To

demonstrate whether the method is sensitive to this assumption, we generated 100 MC
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Table 1: The average sensitivity and specificity for the pre-specified 6 joint clusters with

D
(t)
.k sampled from (3). SD: Standard Deviations.

Scenario 1 Scenario 2 Scenario 3

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Cluster Mean (SD)

1 0.980 (0.141) 0.997 (0.027) 0.959 (0.197) 0.994 (0.039) 0.990 (0.100) 1.000 (0.000)

2 0.994 (0.047) 0.992 (0.049) 0.992 (0.047) 0.981 (0.076) 0.999 (0.011) 0.996 (0.037)

3 0.998 (0.023) 1.000 (0.000) 0.980 (0.141) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

4 0.990 (0.100) 1.000 (0.000) 0.980 (0.141) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

5 0.999 (0.001) 0.999 (0.000) 0.990 (0.100) 0.999 (0.000) 0.990 (0.100) 0.999 (0.000)

6 0.994 (0.053) 1.000 (0.000) 0.996 (0.011) 0.999 (0.010) 0.994 (0.044) 0.999 (0.010)

replicates such that all the variables are correlated and the correlation between every two

consecutive variables is defined as 0.6|i−j|, i, j = 1, · · · , 10. The variance of each variable is

set at 1. The sensitivity and specificity statistics across the 100 MC replicates are summa-

rized in Table 1 (the column indicated by “Scenario 3”). The results all show high average

sensitivities and specificities and are comparable to those in Table 1 under Scenario 1. The

slightly increased sensitivity and specificity for some clusters is likely due to the increased

homogeneity in the variables, which benefits the quality of clustering.

Comparing with existing methods. Currently, there is no method available that can

jointly cluster variables and subjects with effect from external variables incorporated. Ex-

isting biclustering methods do not take the contribution of external variables into account.

To fulfill the goal of comparison and demonstrate the effectiveness of the proposed method

even in the situation of no external covarites, we generate 100 MC replicates with each of

sample size 400 and having 10 dependent variables. The 10 variables are grouped into 3

clusters and within each variable cluster, the subjects are further clustered. Following is

the setting of the clusters and the associations defined for each cluster:

• Cluster 1, E(yij) = 6 for i = 1, . . . , 250 and j = 1, . . . , 5

• Cluster 2, E(yij) = −5 for i = 251, . . . , 400 and j = 1, . . . , 5

• Cluster 3, E(yij) = 10 for i = 1, . . . , 200 and j = 6, 7, 8
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Figure 4: The fitted curves vs true curves for all clusters.

• Cluster 4, E(yij) = −8 for i = 201, . . . , 400 and j = 6, 7, 8

• Cluster 5, E(yij) = 15 for i = 1, . . . , 180 and j = 9, 10

• Cluster 6, E(yij) = −2 for i = 181, . . . , 400 and j = 9, 10
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In total, we have 6 joint clusters. The distribution of random errors is assumed to

be multivariate normal with mean 0 and variance-covariance matrix composed of three

diagonal blocks for each of the three variable clusters, Σ1 = I5,Σ2 = I3,Σ3 = 0.6I2, where

the subscript of I stands for the dimension of the identity matrix.

For the competing methods, we consider two commonly used bicluster approaches. One

approach is proposed by Cheng and Church (2000) (BCCC), which identifies biclusters

formed by genes and conditions by minimizing mean squared residues calculated based

on mean expression levels, and the other is developed by Prelić et al. (2006) (BCBimax)

utilizing a fast divide and conquer approach via a binary inclusion-maximal biclustering

algorithm. These and other existing biclustering methods allow data points to be in more

than one biclusters, while our proposed joint clustering method is mutually exclusive for

the cluster assignment. We apply the proposed method and the two competing methods

(BCCC and BCBimax) to the 100 MC replicates and summarize the findings by use of

sensitivities and specificities. The results are shown in Table 2. Since this set of simulated

data do not consider associations of the variables with external variables, as expected,

sensitivities and specificities from the proposed methods are all high with small variations

across different MC replicates; in Table 2, only the means of sensitivities and specificities

from the proposed method are listed. For BCCC and BCBimax, besides means, we included

more detailed information on the distribution of sensitivities and specificities, i.e., mean,

median, and 95% empirical intervals. The BCCC method, in general, gives reasonable

sensitivity and specificity, but is inferior to the proposed method. The BCBimax method,

on the other hand, provides sensitivity comparable to the proposed method, but have a

high risk to sacrifice specificity substantially. This is potentially due to the ambiguity

in the clustering process of these biclustering methods, which may cause difficulty in the

interpretation of findings.

4 Real Data Analysis

We apply the proposed method to measures of wheal sizes in reaction to 11 allergens on

972 children aged 4, 10, or 18 years, to identify joint clusters of allergens and subjects

based on associations of wheal sizes with age. The data are extracted from a longitudinal
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Table 2: Comparison of the average sensitivity for the pre-specified 6 joint clusters of the

proposed method, BCCC and BCBimax. EI: empirical interval

Sensitivity

Proposed BCCC BCBimax

Cluster Mean Mean Median 95% EI Mean Median 95% EI

1 0.999 0.713 0.712 (0.702,0.72) 0.990 1 (1,1)

2 0.999 0.997 1 (0.957,1) 0.990 1 (1,1)

3 0.998 0.891 0.890 (0.877,0.900) 0.990 1 (1,1)

4 0.999 0.748 0.750 (0.717,0.755) 0.990 1 (1,1)

5 0.999 0.990 0.989 (0.975,1) 0.950 1 (0.5,1)

6 0.997 0.680 0.682 (0.652,0.686) 0.765 0.8 (0.447,0.857)

Specificity

1 0.999 0.674 0.675 (0.655,0.681) 0.288 0.291 (0.291,0.291)

2 0.999 0.770 0.769 (0.766,0.779) 0.244 0.246 (0.246,0.246)

3 0.998 0.632 0.631 (0.617,0.639) 0.234 0.235 (0.235,0.235)

4 0.999 0.692 0.691 (0.689,0.705) 0.234 0.235 (0.235,0.235)

5 0.999 0.607 0.607 (0.594,0.614) 0.117 0.118 (0.082,0.153)

6 0.998 0.664 0.663 (0.661,0.678) 0.096 0.099 (0.067,0.125)
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study cohort aiming to investigate the history of asthma. Details of the cohort is discussed

elsewhere (Hide et al., 1996). Without loss of generality, we standardized the data before

analyzing to avoid potential bias in clustering caused by heterogeneous scale.

We follow the same procedure as in simulations to choose λ and M . The only difference

is that for the selected M , we ran two longer MCMC chains with each chain of 15,000

iterations. The results presented in the article are based on one chain, of which 6,000

iterations are used for burn-in, 4,500 iterations to calculate the average clustering matrix,

and posterior inferences are drawn from the remaining 4,500 iterations.

Figure 5 indicates that the smallest distance occurs at 6 joint clusters, including 3

allergen clusters (M = 3) and subjects are further grouped within each allergen clus-

ter. Specifically, 2 subject clusters are in allergen cluster {Alternaria, Cladosporium, Cod,

Peanut, Egg, Milk, and Soya}, 2 subject clusters for allergen Grass, and 2 subject clusters

in allergen cluster {Cats, Dogs, House dust mite} (Figure 6). The clustering of allergens

is as expected; food allergens and fungi with food as their major sources are clustered

together (Alternaria, Cladosporium, Cod, Peanut, Egg, Milk, and Soya), indoor allergens

are clustered together (Cats, Dogs, House dust mite), and allergen grass represents outdoor

allergens. In these 6 joint clusters, wheal sizes in clusters 2, 4, and 6 are all small and do not

show a clear pattern over time. In the remaining joint clusters, the wheal sizes are generally

larger, but temporal patterns vary between clusters (Figure 6). For allergens Alternaria,

Cladosporium, Cod, Peanut, Egg, Milk, and Soya, wheal sizes first increases with age and

then becomes roughly stable over time (cluster 1), for allergen Grass, a convex pattern is

observed with a pattern of slow increase at a later age in adolescence; for allergens Cats,

Dogs, and House dust mite, the wheal sizes at earlier ages decreases slightly and then shows

a faster increase afterwards.

Sizes of the wheals reflect a potential severity of allergic sensitization (atopy) and atopy

is linked to asthma. We further examined the percentages of subjects in each joint cluster

who ever had asthma and linked the percentages to the identified joint cluster patterns.

The prevalence of asthma ever in each joint cluster is recorded in Table 3. Although this is

not a longitudinal analysis, the findings indicate that clusters showing increased wheal sizes

with respect to food and food-related allergens at an earlier age (joint cluster 1) or a larger
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Figure 5: The Euclidean distances between cluster assignment matrix and the average

clustering matrix at each of the 4,500 iterations. In the figure, (6, 7.93) refers to the

minimum distance being 7.93 (scaled by 10,000) with 6 clusters. This is the smallest

distance across all possible clusters.

increase at a later age against indoor allergens during adolescence (joint cluster 5) are likely

to have more subjects with asthma. However, the percentage is decreased by more than

10% if wheal sizes against outdoor allergens decrease at an earlier age before adolescence

and are roughly stable at a later age (joint cluster 3). We postulate that promoting atopy

remission during the transition period of adolescence has a potential to reduce acquisition

of asthma and promote remission of asthma.

5 Conclusion and Discussion

We proposed a joint clustering method in a Bayesian framework to probabilistically identify

clusters composed of variables (such as measures of sensitization to allergens) and subjects.
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Figure 6: The temporal patterns of wheal sizes of the 6 joint clusters. Solid lines are the

fitted curves. The dotted lines provide empirical 95% confidence bands. The time in the

X-axis represents standardized ages.
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Table 3: Sizes of each identified cluster and proportions of asthma at age 18 years in

each cluster. Allergen cluster A: Alternaria, Cladosporium, Cod, Peanut, Egg, Milk, Soya.

Allergen cluster B: Grass. Allergen cluster C: Cats, Dogs, House dust mite.

Allergen clusters

A B C

Joint cluster index; size; % of asthma

1; 13; 61.5 3; 161; 49.7 5; 66; 59.1

2; 959; 27.0 4; 811; 23.1 6; 903; 25.0

In each cluster, there exists a unique association between a subset of variables and covariates

of interest, and such an association is described by a semi-parametric model. Penalized

splines are implemented to estimate the associations due to its low rank bases and ability

to capture linear and non-linear effects. The joint clustering strategy clusters variables and

subjects simultaneously, and takes into account potential dependence among variables.

Overall, the proposed methods can effectively identify the joint clusters with high sensi-

tivity and specificity. We also demonstrated that the method is robust against large varia-

tions in the data and has the ability to handle dependence between and among variables. A

comparison with two commonly used biclustering methods supports the effectiveness of the

proposed method. We applied the method to sensitization measures and identified subsets

of allergens as well as patterns of wheal size over time that may play an important role

in the occurrence of asthma, which provides a significant insight into the understanding of

allergic diseases and their relation to atopy.

The proposed methods are ready to be applied to other types of statistical models with

multiple response variables which have different associations with a covariate or covari-

ates of interest, for instance, logistic regressions or log-linear models. In addition, it can

be directly applied to analyze other types of data. One example will be to, in genetic

or epigenetic studies, jointly cluster genes and subjects based on an association of DNA

methylation or gene expression levels with measures of environmental exposures; the joint

cluster patterns can then be linked to health outcomes, e.g., allergic diseases or cancer.

The methods have some limitations that warrant a discussion. The joint clustering strat-
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egy identifies subject clusters within each dependent variable cluster instead of completely

allowing dependent variable cluster sizes vary for different subject clusters. Our ongoing

work is exploring this more flexible clustering scheme, which will have the potential to

further improve the homogeneity in the clusters. In addition, the use of semi-parametric

regressions via P-Splines instead of regular linear regressions can substantially increase the

number of parameters to be inferred, especially in the situation of a large number of co-

variates. In situations like this, features represented by different variables may need to be

detected first before applying the method.

Appendix

A. Algorithm for Sampling βi,m

To sample βi,m, we implement Algorithm 2 summarized in Neal (2000), initially proposed

by Bush and MacEachern (1996), in which all subjects are assigned to some clusters and

the Gibbs sampling process becomes more efficient by drawing only those βc,m that are

currently associated with some subjects. The conditional posterior of ci is

if c = cj for some j ̸= i : P (ci = c
∣∣∣c−i, Y,β)

= b
n−i,c

n− 1 + λ
(2π)−

km
2 |Σm|−

1
2 exp

[
− 1

2
(yi,m −Xiβj,m)

′Σ−1
m (yi,m −Xiβj,m)

]
,

P (ci ̸= cj for all j ̸= i
∣∣∣c−i, Y,β)

= b
λ

n− 1 + λ
(2π)−

km
2 |Σm|−

1
2 |Σ0|−

1
2 |Σβi,m

| 12

exp
[
− 1

2
y′
i,mΣ

−1
m yi,m + 1

2
y′
i,mΣ

−1
m XiΣβi,m

X ′
iΣ

−1
m yi,m

]
,

(4)

where c−i denotes all cj for j ̸= i; n−i,c is the number of cj for j ̸= i that are equal to c; β

represents the set of βc,m currently associated with at least one observation.

The posterior for βc,m is

βc,m

∣∣∣(yi,m,Σm, D, c) ∼ N
(
(

n∑
i=1

X ′
iΣ

−1
m Xi + Σ−1

0 )−1
∑
ci=c

X ′
iΣ

−1
m yi,m,

(
∑
ci=c

X ′
iΣ

−1
m Xi + Σ−1

0 )−1
)
.
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B. Sampling Procedure and Determination on the Number of

Joint Clusters

In the following, we summarize the process of joint clustering. At iteration (t),

1. For the kth variable, draw π from the Dirichlet distribution, π
∣∣∣(D(t−1)

.k , ζ(t−1)), and

ζ(t) from its conditional posterior distribution via the Metropolis-Hastings algorithm.

2. Draw D
(t)
.k from the distribution of D.k

∣∣∣(yi,m,β
(t−1)
i,m ,Σ

(t−1)
m ,π(t)) given in (3).

For each variable cluster, we apply the Dirichlet Process to cluster subjects. For subject

i, i = 1 . . . n.

3. Draw c
(t)
i by distribution given by (4), where the state of c is {c(t)1 , . . . , c

(t)
i−1, c

(t−1)
i+1 , . . . , c

(t−1)
n }

4. Draw Σm from Σm

∣∣∣(Y,β(t−1)
i,m ), where β

(t−1)
i,m = β

(t′−1)
i,m with β

(t′−1)
i,m being the coefficients

at the latest iteration t′ − 1 such that variables form the same cluster m; if cluster

m is unique up to iteration t, that is, β
(t−1)
i,m does not exist. In this case, to initiate

the sampling of cluster m, we assume no subject clusters in variable cluster m, i.e.,

βi,m = βm = (am,1, am,2, bm,1, . . . , bm,g) for all i. We set β
(t−1)
i,m = β

(t−1)
m with β

(t−1)
m

sampled from

βm

∣∣∣(Y, σ2, σ2
m,Σm, D) ∼ N

(
(

n∑
i=1

X ′
iΣ

−1
m Xi + V −1)−1

n∑
i=1

X ′
iΣ

−1
m yi,m,

(
n∑

i=1

X ′
iΣ

−1
m Xi + V −1)−1

)
,

and σ2
m

∣∣∣βm ∼ InvGamma(a1+
g
2
, c1+

1
2

∑g
l=1 b

2
m,l), where V = V (σ2, σ2

m) is a diagonal

matrix with entries σ2 and σ2
m. This is concluded by assuming prior distributions

βm|(σ2, σ2
m, D) ∼ N

(
0, V (σ2, σ2

m)
)
and σ2

m|(a1, c1) ∼ InvGamma(a1, c1) with a1 =

c1 = 0.5, where σ2 is the variance of am,1 and am,2 in βm and assumed to be known

and large (σ2 = 100), and σ2
m is the variance of bl’s in βm.

Draw β
(t)
c,m currently associated with at least one subject (β

(t)
i,m = β

(t)
c,m) for all ci = c.

24



5. Draw a new value for β
(t)
c,m from the posterior distribution based on the prior G0 and

all observations currently associated with latent class c, βc,m

∣∣∣(Y,Σm, D, c).

6. For each component of Σ0, draw from Σ0[j]
∣∣∣(Y,β(t)

i,m).

C. Determining the Number of Joint Clusters

The final number of joint clusters is decided by identifying an iteration with “least-squares

distance”, a procedure adapted from Dahl (2006):

1. After the MCMC burn-in, continue the MCMC simulations for an additional B iter-

ations. Let A denote an n×n×K matrix. The (i, j, k)th entry of A is the proportion

of iterations such that subjects i and j (i, j = 1, ..., n) for the kth variable are in the

same cluster. The matrix A is referred as an averaged clustering matrix.

2. Continue to run an additional D0 iterations of the MCMC simulations. For each

iteration,

(a) form an n×n×K matrix composed of indicators of clustering for that particular

iteration. For instance, if subjects i and j for the kth variable are in one cluster,

then the (i, j, k) entry is 1; otherwise, it is zero.

(b) Calculate the Euclidean distance between the matrix formed above and the

averaged clustering matrix A.

3. Sort the Euclidean distances obtained from the D0 iterations, and the final selection

on the number of joint clusters is in favor of simpler clusters and relatively small

Euclidean distances.
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