












Regenerative medicine in lower limb reconstruction Review

Figure 5. Masquelet technique to reconstruct a tibial defect. Clinical photographs demonstrating Masquelet technique: (A) bone
defect > 15 cm; (B) healthy wound following debridement; (C) cement spacer inserted into the defect; (D) biological-induced membrane
formed around the cement spacer; (E) autologous bone graft; and (F) autologous bone graft inserted into the defect, contained by the
induced membrane.

noted. This finding was markedly different to experiences prior to the introduction of BMP-7 and has led the
investigators to abandon the additional application of BMP-7 [63]. Attempts to reduce the volume of cancellous
bone graft required during the Masquelet procedure have also been described; a case series using absorbable
gelatin sponges in the medullary canal suggested favourable outcomes [70]. As acknowledged by the authors, longer
term follow-up is required and additionally a randomized control trial to compare outcomes between this new
technique and standard practice would be valuable. A recent retrospective study comparing Ilizarov bone transport
to Masquelet technique, for reconstruction of infected bone defects, concluded that Ilizarov methods were superior
when deformity correction was required, whereas Masquelet may be preferential in short bones or in periarticular
defects [71]. The number of case series reporting on the Masquelet technique are comparatively few, with each center
adapting the technique resulting in a combination of different fixation modalities, different bone graft compositions
and different postoperative managements leading to heterogeneous patient cohorts that are difficult to compare [68].

Regenerative augmentation
Osteogenic potential: cell-based treatments

Cellular treatment strategies that are used in orthopedics include BMAC, which contains a fraction of mononuclear
cells including osteoprogenitor cells and the use of RIA systems that harvest cells from the medullary canal of
long bones. Both techniques aim to harvest a population of skeletal stem cells from the bone marrow to provide
an osteogenic graft material. Percutaneous BMAC injections have been used for a number of different clinical
indications: tibial nonunion [72], osteoarthritis [73], avascular necrosis [74], osteonecrosis [75] and DO [57,76,77]. In a
tibial nonunion case series, BMAC injection was used to obtain a union rate of 95%, and an important correlation
between higher colony forming unit–fibroblastic count and decreased time to union was demonstrated [72]. All of
these studies aim to use the presence of skeletal stem cells to promote enhanced healing and repair; however, as
these reports represent small clinical series rather than randomized control trials, their impact, to date, has been
limited.

Induced pluripotent stem cells (iPSCs) are derived from adult somatic cells reprogramed to a pluripotent state [78].
The advantages of iPSCs include a personalized renewable pluripotent cell source without the ethical concerns and
restrictions associated with embryonic stem cells [79]. Applications of iPSCs are varied and new concepts continue to
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emerge from this developing field, including in vitro disease modeling, drug development and organ development,
which are all areas of intense research. The ability to reprogram a somatic cell creates the potential for an individual’s
own cells to be used for patient specific tissue regeneration and individualized treatments, which holds great interest
in regenerative medicine. However, there are concerns regarding the immunogenicity of iPSCs [80], as well as
potential mutations in gene expression and DNA methylation. It is thought that genetic variations that have been
detected in iPSCs are due to the somatic cell itself, rather than the induction process [81]. This raises concern as the
patient’s cell source may contain unknown mutations that could become harmful in a clonal iPSC population. A
handful of clinical cases using iPSCs exist, although, at the time of writing, none related to bone regeneration [82,83].

Autologous blood derived growth factors have also been investigated in isolation, such as PDGF, and in the
form of PRP. PRP contains a number of chemotactic and mitogenic growth factors to promote healing (PDGF,
IGF, FGF, TGF, VEGF and EGF) [84]. There has been an increase in the number of studies and clinical trials using
growth factors and mesenchymal stem cells. However, due to the heterogeneity in study design, cell characterization
and reporting measures, it is difficult to draw meaningful conclusions. To rectify this, a suggested checklist has been
developed to standardize reporting measures and enable comparisons across studies, which will improve evaluations
of their efficacy [85].

Osteoinduction: bone morphogenic proteins

In 1965, Urist discovered a bone autoinductive agent, later termed bone morphogenic protein, crucial in bone
healing and development [86]. BMPs enhance recruitment of skeletal progenitor cells and promote osteogenic
differentiation by encoding a ligand of the TGF-β superfamily, which subsequently activates the SMAD family
transcription factors that regulate gene expression, potently influencing osteoblastic proliferation [87]. There are
two commercially available BMP formulations that are in use in clinical practice. rhBMP-2 (dibotermin alfa;
Infuse/InductOs R© Medtronic BioPharma B.V., Harleen, Netherlands) and rhBMP-7 (OP-1 Implant/OP-1 Putty,
Stryker, MI, USA), which are licenced for the management of open tibial diaphyseal fractures and for single level
lumbar spinal fusion (www.medicines.org.uk).

Freidlaender et al. found comparable results between patients treated with BMP-7 compared with autograft for
tibial nonunion [88]. Further encouraging results followed the BESTT study (BMP-2 Evaluation in Surgery for
Tibial Trauma), which demonstrated a significant risk reduction by 44% of secondary surgery for nonunion in the
treatment cohort using rhBMP-2 in a large study of 450 patients [23]. In a clinical study comparing BMP-7 with
PRP application in the treatment of long bone nonunion at various sites, BMP-7 was also found to be superior [89].
There is an on-going need for randomized control trials to evaluate the effect of BMPs as an additive agent in
conjunction with other surgical techniques such as grafting with autologous bone. Most of the published literature
describes small patient cohorts, without control groups, making it difficult to draw concrete conclusions.

Novel ‘off licence’ applications of BMPs have been reported as experimental procedures. For example, BMP-7 was
applied to bone mineral blocks in conjunction with autologous bone marrow to reconstruct a mandibular defect.
The BMP-7 was used to induce heterotopic bone formation within a titanium mesh case which was implanted in
a patient’s latissimus dorsi for maturation, followed by a subsequent successful free bone–muscle flap [90].

Although there is significant interest in the role of BMPs to augment skeletal repair and fusion, a plethora
of adverse effects have been reported, which has led to concern and, subsequently, a more cautious approach to
the uptake of BMPs in clinical practice [91]. The adverse effects including life-threatening swelling with airway
compromise [92], heterotopic ossification [93] and osteolysis [94]. These side effects are thought to be due to the
supraphysiological dose of BMP in the current preparations [91]. Therefore, techniques to localize the target area
of the BMP and reduce the dose are currently areas of intense investigation [95] in order to optimize dosage and
delivery.

Osteoconduction: matrix & biomaterials

There are vast numbers of extracellular matrix products available commercially, both decellularized and cellularized.
Decellularized bone matrix products can be obtained as putties, pastes, granules, powders, gels, sponges and chips,
with or without carrier substances such as bovine collagen, according to the clinical scenario and surgical preference.
An in-depth discussion of decellularized bone matrix products and the relevant considerations for selecting a product
are reviewed elsewhere [96]. Viable allografts or cellularized bone matrix are an interesting development to offer
osteogenic, osteoinductive and osteoconductive properties in a graft material. Viable allografts contain mesenchymal
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stem cells within an extracellular matrix, some with the addition of angiogenic growth factors. However, the current
evidence to evaluate their use is limited to a few small case series and industry funded studies.

Given the disadvantages of autograft and allogenic grafting option, there is a clinical pressure to fabricate suitable
engineered biocomposite replacements [97]. Bioactive ceramics, including hydroxyapatite, tricalcium phosphate,
bioactive glass and calcium silicate, have all been investigated due to their capacity to promote bony on-growth.
Hydroxyapatite is commonly used as a surface coating on orthopedic implants to enhance osseointegration.
However, as materials in isolation, they are brittle and not suitable to withstand mechanical load [98], which is vital
in the management of CSDs.

Three-dimensional printing of scaffold materials can create reproducible biomimetic scaffolds using a range of
different materials including hydrogels, polydimethylsiloxane, polycaprolactone, polyurethane and some metals,
such as tantalum or titanium custom implants. There are also exciting developments in the refinement of bioinks
enabling 3D cell printing [99–101]. The limitations of additive manufacturing techniques relate to the damage to cells
that occurs during the printing process, which affects cell viability and proliferation. An additional issue is the often
lack of internal porosity in the materials unless specifically manufactured, which consequently inhibits the delivery
of nutrients to the cells. This is increasingly relevant as the size of the material increases, moving cells further away
from any nutrient source. Kang et al. present a novel technique describing an integrated tissue-organ printer that
can fabricate bone, cartilage and skeletal muscle. The printed tissue contained microchannels to facilitate nutrient
diffusion, which may contribute to their high cell viability (91%) and their observation of neoangiogenesis around
the printed tissue in vivo [102]. Although these approaches hold tremendous potential for the future, to date, studies
are limited to in vitro and small animal in vivo investigations. As such, additive manufacturing applications are still
some years from routine clinical translation as patient treatments.

Conclusion
Bone tissue loss remains a significant clinical challenge in orthopedics, impacting on a range of clinical scenarios
including trauma, limb reconstruction, tumor excision and revision arthroplasty [97]. It is recognized that for
optimal bone formation and bone healing four key elements, as highlighted by The Diamond Concept are pivotal:
an osteoconductive scaffold; osteogenic cells; growth factors; and an appropriate mechanical environment [5]. This
principle is applicable from simple fracture healing through to complex limb reconstruction strategies. A challenge
within the field is a lack of robust clinical evidence in the form of randomized control trials, to draw firm conclusions
with regard to specific treatment strategies for lower limb reconstruction. Critically, much of the reported literature
relates to small case series, case reports and observational studies, which is understandable, given the clinical cases
are rare [103]. Furthermore, the management strategies utilized often involve highly specialized procedures and
usually a surgeon has preference for one particular technique due to their training exposure or surgical ethos. Thus,
it remains difficult to directly compare the outcomes for each technique as there are a number of variables in play.
Consequently, each patient case requires an individualistic approach rather than standardization of care.

There are several avenues of research within regenerative medicine that offer significant value to lower limb
reconstruction surgery. The enhanced delivery of osteoinductive molecules within a biomimetic scaffold to improve
target localization and clinical efficacy as well enhanced stem cell strategies are at the forefront for clinical translation.
Furthermore, the field of orthopedics is receptive to emerging computer-based technologies, with the development
of computer aided design and computer aided manufacturing to fabricate patient-specific implants, as well as
custom designed instrumentation and 3D models to facilitate pre-operative planning in complex clinical cases [104–

106]. Bespoke titanium cages have been 3D printed to successfully salvage nonreconstructable defects [106,107].
Individualized 3D printed scaffold materials combined with bone grafting have already been successfully utilized
in titanium constructs [107,108]. Progression of this technique using patient-tailored cellular printing methods to
engineer patient-specific grafts custom designed for a specific bone defect with the capacity to provide a mechanically
stable environment offer exciting new vistas to address central elements of limb reconstruction and advance the
future of limb reconstruction.

Future perspective
Bone tissue loss in orthopedics is a complex clinical challenge. Bone tissue is a vascularized osteogenic environment
which also provides mechanical support. Currently, there is no single engineered material that addresses all these
various elements. Combined tissue engineering strategies utilizing 3D-printed biomaterials primed with osteogenic
stem and progenitor cells are an exciting prospect as these offer innovative reproducible biomaterials with the
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capacity to integrate with the host tissue. However, it is essential that any biomaterial is developed with attention
to the mechanical functionality if they are to be successfully translated into clinical practice, particularly in the
management of CSDs.

Lower limb reconstruction cases are rare, each with different challenges in terms of biological, mechanical and
host issues. Individualized treatment strategies are required to tackle each case and this is likely to extend into the
future with personalized iPSC therapy to deliver the host’s own reprogramed stem cells to enhance the healing
potential. Further extrapolation of individualized medicine would be through genomic profiling enabling gene
targeted therapies in patients with poor biological potential.

Executive summary

Clinical need
• Trauma to a limb can result in soft tissue and bone loss.

• Reconstruction techniques have been developed to preserve limbs and avoid amputation.

• Regenerative medicine strategies are needed to augment surgical techniques and enhance bone healing.
Lower limb reconstruction surgeries
• Bone grafting and skeletal fixation is often the hallmark procedure; however, large bone defects may not be

amenable to this approach.

• Distraction osteogenesis uses mechanical stress to promote bone formation over a prolonged period of time and
has a high incidence of complication.

• Induced membrane Masquelet technique has shown promising outcomes; however, Masquelet requires a
two-stage operation and outcomes are not reliable.

Regenerative medicine strategies
• Stem cell and growth factor therapies are gaining popularity but need standardized reporting measures to

enable critical evaluation in clinical studies.

• Bone morphogenic proteins have been implemented in clinical practice to induce bone healing; however, off
licence use has led to serious adverse side effects.

• Biomaterials encompass a range of scaffolds and products for bone tissue engineering. None as yet provide the
ideal solution for limb reconstruction; however, 3D-printed reproducible biomimetic scaffolds with
osteoinductive agents are promising.
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