The University of Southampton
University of Southampton Institutional Repository

High throughput optimisation of functional nanomaterials and composite structures for resistive switching memory

High throughput optimisation of functional nanomaterials and composite structures for resistive switching memory
High throughput optimisation of functional nanomaterials and composite structures for resistive switching memory
The Semiconductor industry is investigating high speed, low power consumption, high-density memory devices that can retain their information without power supply. Resistive Random Access Memory (ReRAM) is one of the most attractive candidates as an alternative to conventional flash memory devices due to of its simple metal-insulator-metal (MIM) structures. A compositional gradient of thin film materials produced by the simultaneous combination of elements provides a powerful tool for the combinatorial synthesis of materials. It was applied here to control the composition, structure and morphology of materials in composite devices of ReRAM. This allows the systematic high throughput screening of the intrinsic properties of the materials, as well as the high throughput optimisations of composite thin films that mimic memory device structures. Therefore, the focus of this project is to develop a novel capacitor for ReRAM application. We present here details of the preparation technique and the screening methodologies of this approach by applying the synthesis to various phases of titania, for which there is an extensive literature, as a prelude to the screening of more complex systems. Inert Pt electrodes and active Cu electrodes were deposited on TiO2 as top electrodes using different mask sizes (50 micron and 250 micron). The bottom electrode is Si/ SiO2/ TiO2/ Pt (SSTOP) was constant throughout this project. TiO2 was prepared using evaporative physical vapour deposition (PVD) with a variation of thickness between 10 nm and 300 nm on SSTOP. The synthetic conditions were chosen to produce TiO2 oxygen stoichiometric and sub-stoichiometric amorphous, anatase and rutile materials. The oxides have been fully characterised by X-Ray Diffraction (XRD), X-ray Photo electron Spectroscopy (XPS), Raman Spectroscopy, Four Point Probe (4pp) and Atomic Force Microscopy (AFM). The electrical screening was carried out on capacitor-like structures produced using 250 micron diameter top electrodes deposited using a 14 x 14 array contact mask. Current-Voltage (I-V) measurements were conducted employing a variety of current compliances (IC). The typical I-V switching of the unipolar mode (both state in one polarity) was achieved on all titania phases, whereas the bipolar mode (each state in different polarity) was achieved only on the amorphous phase. The resistance differences between High Resistance State (HRS) and Low Resistance State (LRS) were clearly identified in each system. It was observed that for all the devices investigated, a lower forming field was required on the thicker layer of the active switching layers. Devices with copper electrodes, and composite devices with sub-stoichiometric titania adjacent to the stoichiometric titania could be formed at lower voltages and electric fields. The results obtained here confirm the feasibility of the high-throughput approach to optimise functional nanomaterials and composite device structures for resistive switching memory application.
University of Southampton
Alsaiari, Mabkhoot Abdullah
18f01e16-2828-4819-b544-22286b8c2f66
Alsaiari, Mabkhoot Abdullah
18f01e16-2828-4819-b544-22286b8c2f66
Hayden, Brian
aea74f68-2264-4487-9d84-5b12ddbbb331

Alsaiari, Mabkhoot Abdullah (2018) High throughput optimisation of functional nanomaterials and composite structures for resistive switching memory. University of Southampton, Doctoral Thesis, 195pp.

Record type: Thesis (Doctoral)

Abstract

The Semiconductor industry is investigating high speed, low power consumption, high-density memory devices that can retain their information without power supply. Resistive Random Access Memory (ReRAM) is one of the most attractive candidates as an alternative to conventional flash memory devices due to of its simple metal-insulator-metal (MIM) structures. A compositional gradient of thin film materials produced by the simultaneous combination of elements provides a powerful tool for the combinatorial synthesis of materials. It was applied here to control the composition, structure and morphology of materials in composite devices of ReRAM. This allows the systematic high throughput screening of the intrinsic properties of the materials, as well as the high throughput optimisations of composite thin films that mimic memory device structures. Therefore, the focus of this project is to develop a novel capacitor for ReRAM application. We present here details of the preparation technique and the screening methodologies of this approach by applying the synthesis to various phases of titania, for which there is an extensive literature, as a prelude to the screening of more complex systems. Inert Pt electrodes and active Cu electrodes were deposited on TiO2 as top electrodes using different mask sizes (50 micron and 250 micron). The bottom electrode is Si/ SiO2/ TiO2/ Pt (SSTOP) was constant throughout this project. TiO2 was prepared using evaporative physical vapour deposition (PVD) with a variation of thickness between 10 nm and 300 nm on SSTOP. The synthetic conditions were chosen to produce TiO2 oxygen stoichiometric and sub-stoichiometric amorphous, anatase and rutile materials. The oxides have been fully characterised by X-Ray Diffraction (XRD), X-ray Photo electron Spectroscopy (XPS), Raman Spectroscopy, Four Point Probe (4pp) and Atomic Force Microscopy (AFM). The electrical screening was carried out on capacitor-like structures produced using 250 micron diameter top electrodes deposited using a 14 x 14 array contact mask. Current-Voltage (I-V) measurements were conducted employing a variety of current compliances (IC). The typical I-V switching of the unipolar mode (both state in one polarity) was achieved on all titania phases, whereas the bipolar mode (each state in different polarity) was achieved only on the amorphous phase. The resistance differences between High Resistance State (HRS) and Low Resistance State (LRS) were clearly identified in each system. It was observed that for all the devices investigated, a lower forming field was required on the thicker layer of the active switching layers. Devices with copper electrodes, and composite devices with sub-stoichiometric titania adjacent to the stoichiometric titania could be formed at lower voltages and electric fields. The results obtained here confirm the feasibility of the high-throughput approach to optimise functional nanomaterials and composite device structures for resistive switching memory application.

Text
Final thesis - Version of Record
Restricted to Repository staff only until 31 July 2021.
Available under License University of Southampton Thesis Licence.

More information

Published date: April 2018

Identifiers

Local EPrints ID: 422863
URI: http://eprints.soton.ac.uk/id/eprint/422863
PURE UUID: 99962656-4609-4736-86f3-338ae88cb170
ORCID for Brian Hayden: ORCID iD orcid.org/0000-0002-7762-1812

Catalogue record

Date deposited: 07 Aug 2018 16:30
Last modified: 14 Mar 2019 01:55

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×