Elsevier Editorial System(tm) for Arthroscopy: The Journal of Arthroscopic and Related Surgery Manuscript Draft

Manuscript Number: ARTH-17-809R2

Title: Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior cruciate ligament (ACL) reconstructions

Article Type: Original Article

Corresponding Author: Dr. David C Flanigan, MD

Corresponding Author's Institution: The Ohio State University

First Author: Joshua S Everhart, MD, MPH

Order of Authors: Joshua S Everhart, MD, MPH; Alex C DiBartola, MD; Devendra Dusane, PhD; Robert A Magnussen, MD, MPH; Christopher C Kaeding, MD; Paul Stoodley, PhD; David C Flanigan, MD

Abstract: Purpose: To determine whether bacterial DNA will be detectable via polymerase chain reaction (PCR) in torn graft tissue at time of revision anterior cruciate ligament reconstruction (ACLR).

Methods: A total of 31 consecutive revision ACLR cases from one center were recruited from 2014-2016. No patients had clinical signs of infection on presentation. Torn graft tissue was obtained in revision cases and subjected to clinical culture and PCR analysis with a universal bacterial primer. Fluorescent microscopy was utilized to confirm presence of a biofilm. Negative controls samples were obtained of water open to air on the field and excess primary ACLR graft tissue as well as torn native ligament to evaluate for PCR positivity due to environmental contamination.

Results: Clinical cultures were positive (coagulase negative staphylococcus) in one revision case (3%, 1/31). Bacterial DNA was detectable in most revision ACLR cases 27/31 (87.0%) and there was a low rate of PCR positivity in negative control samples of water open to air (0%, 0/3), excess primary ACLR graft tissue after passage (20%, 1/5) or native torn ligament (20%, 1/5). Bacterial biofilm presence on failed graft tissue as well as monofilament suture was visually confirmed with fluorescent microscopy.

Conclusions: Bacterial DNA is frequently present in failed ACLR grafts, with high rates of DNA detection by PCR but low culture positivity.

Level of Evidence: Level IV, case series

Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior cruciate ligament (ACL) reconstructions

Everhart, Joshua S MD MPH¹

DiBartola, Alex C MD MPH¹

Dusane, Devendra PhD²

Magnussen, Robert A MD MPH^{1,3}

Kaeding, Christopher C MD^{1,3}

Stoodley, Paul PhD^{1,2}

Flanigan, David C MD^{1,3}

¹Department of Orthopaedics, The Ohio State University Wexner Medical Center

²Department of Microbial Infection and Immunity; The Ohio State University

³ Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center

Short title: Bacterial DNA in failed ACLR

Disclosures: The authors received no funding for this study and report no conflicts of interest.

This project was approved by the Biomedical Institutional Research Board of The Ohio State University.

Correspondence:

David C. Flanigan, MD Jameson Crane Sports Medicine Institute The Ohio State University Wexner Medical Center 2835 Fred Taylor Dr, Columbus, OH 43202 Phone: (614) 293-3600 Fax: (614) 293-2910 david.flanigan@osumc.edu

1	Abstract
	ADSUACI

2	Purpose: We hypothesize that To determine whether bacterial DNA will be detectable via
3	polymerase chain reaction (PCR) in torn graft tissue at time of revision anterior cruciate
4	ligament reconstruction (ACLR) at higher rates than in primary ACLR graft tissue.
5	
6	Methods: A total of 31 consecutive revision ACLR cases and 5 primary ACLR controls from
7	one center were includedwere-recruited from 2014-2016. No patients had clinical signs of
8	infection on presentation. Torn graft tissue was obtained in revision cases and and torn native
9	ligament as well as excess hamstring autograft was obtained in primary ACLR controls.
10	Samples were subjected to clinical culture and , PCR analysis with a universal bacterial
11	primer., and fFluorescent microscopy was utilized to confirm presence of a biofilm. Negative
12	controls samples were obtained of water open to air on the field and excess primary ACLR
13	graft tissue as well as torn native ligament to evaluate for PCR positivity due to
14	environmental contamination.
15	
16	Results: Clinical cultures were positive (coagulase negative staphylococcus) in one revision
17	case (3%, 1/31). Bacterial DNA was detectable in most revision ACLR cases 27/31 (87.0%)
18	and there was a low rate of PCR positivity in negative control samples of water open to air
19	(0%, 0/3), excess primary ACLR graft tissue after passage (20%, 1/5) or native torn ligament
20	(20%, 1/5). and less commonly 1/5 (20%) in primary ACL autograft controls (p=0.002, Chi-
21	square test); staphylococcal-Bacterial biofilm presence on failed graft tissue as well as
22	monofilament suture was visually confirmed with fluorescent microscopy. A trend toward
23	higher bacterial DNA concentrations was observed with prior autograft (median 19
24	ng/sample range 0-101) vs. allograft (median 13 ng/sample range 0-21; p=0.13, Wilcoxon
25	rank sum).

- 26
- 27 Conclusions: Staphylococcal Bacterial DNA is frequently present biofilms are present on in
- 28 failed ACLR grafts, with high rates of DNA detection by PCR but low culture positivity.
- 29 There is likely bacterial colonization of many failed ACLR grafts, though the causal
- 30 relationship between graft colonization and failure remains unclear.
- 31 Level of Evidence: Level <u>HHIV</u>, therapeutic studycase series
- 32 Key words: bacterial biofilm; revision ACL reconstruction; failed ACLR

33

34

35	Introduction	
36	Clinically significant postoperative infection related to anterior cruciate ligament	
37	reconstruction (ACLR) is a rare occurrence, with two recent studies showing rates between	
38	0.49% and 1.7%. ^{1,2} <u>A large case series by Gobbi et al. reported an incidence of post-</u>	
39	operative infection of 0.37% after 1850 ACLRs, and an accompanying literature review of 16	
40	studies reporting on 35,795 ACLRs had a pooled mean infection rate of 0.68% (range 0.14-	
41	<u>2.6%).</u> ³	[
42	-Staphylococcus species are by far the most common causative organisms. ¹ Septic arthritis	Ċ
43	following ACLR commonly presents with a fever and modest local signs of infection as well	
44	significantly elevated inflammatory markers, particularly synovial fluid white blood cell	
45	count. ¹ Judd et al. report that clinically evident intra-articular infections after ACLR	
46	presented with elevated serum ESR (mean 67) CRP (mean 14) and markedly elevated	
47	synovial fluid WBC counts (mean 52,000). ⁴	
48	Failure following primary ACLR remains a significant problem. A 2011 systematic	
49	review of level 1 studies reported rates of primary ACLR failure of 7.2% for patellar tendon	
50	autografts and 15.8% for hamstring tendon autografts. ⁵ Despite extensive study of graft	
51	failure, the mechanism of graft failure remains poorly understood. Traumatic re-injury,	
52	infection, and technical error have all been suggested to play a role. ⁶ Recent work by Hiller	
53	et al suggests there may be bacterial colonization of these ruptured grafts in the absence of	
54	clinical symptoms. ⁷ Colonization of the ACL reconstruction graft or materials used for	
55	fixation such as suture, interference screws and other fixation devices with low virulence	
56	bacteria could cause graft tissue attenuation without overt clinical symptoms and predispose	
57	patients to ACL graft failure.	
58	While clinically apparent infection post-ACLR is rare, subclinical bacterial	

59 colonization of orthopaedic graft material have shown colonization rates as high as 23%,⁸ In

Formatted: Font: (Default) Times New Roman, 12 pt

60	other procedural fields, biofilms are noted to be frequently present in certain culture-negative
61	soft tissue lesions; Bjarnsholt et al. demonstrate biofilms on 7/8 of culture negative long-
62	lasting nodules after soft tissue filler injections. ⁹ Colonization and biofilm formation with low
63	virulence organisms such as P. acnes is now a well-recognized entity in the shoulder
64	literature. Millet et al. published a case series of patients with P. acnes post-operative
65	shoulder infections with presented no clinical signs of infection other than pain. ¹⁰ Hou et al.
66	performed a case-control study of patients presenting for revision arthroplasty with positive
67	versus negative P. acnes cultures, and the culture positive group was more likely to have
68	glenoid sided loosening and a soft tissue membrane between the humeral component and
69	endosteum. ¹¹ In 2015, Hiller et al. demonstrated presence of bacteria in failed ACL grafts
70	and found significantly different species specific markers when comparing failed ACLR
71	grafts to control ACLs removed during arthroplasty. ⁷
72	Polymerase chain reaction (PCR) is a highly sensitive method for detecting bacterial
73	DNA present in very low concentrations and detecting species that cannot be reliably
74	cultured in a clinical laboratory. When investigating low virulence bacteria or bacteria that
75	reside within a biofilm, this This is a useful screening method for detecting bacterial DNA in
76	settings that would otherwise likely be culture-negative, such as low virulence bacteria.
77	bacteria with fastidious growth requirements, and bacteria that are quiescent within a biofilm.
78	The purpose of this study is to determine whether bacterial DNA will be detectable via
79	polymerase chain reaction (PCR) in torn graft tissue at time of revision anterior cruciate
80	ligament reconstruction (ACLR). We hypothesize that bacterial DNA will be detectable via
81	PCR in torn graft tissue at time of revision ACL reconstruction at higher rates than in primary
82	ACL reconstruction graft tissue.
	C

84 Methods

85 *Recruitment*Sample size estimation and recruitment

86	Institutional review board approval was obtained prior to patient enrollment. There
87	isare no <i>a priori</i> data available to determine the prevalence of bacterial DNA in failed ACL
88	reconstructions as detected by conventional PCR methods. The only prior report of bacterial
89	assessment by molecular methods was by, Hiller et al. who detected bacteria in 8/10 samples
90	via a hybrid PCR-mass spectroscopy assay $\frac{7}{46}$ The sensitivity of bacterial PCR assays can
91	vary depending on the specimen being analysed ¹² as well as the PCR protocol that is utilized
92	including the specific primers and number of cycles applied. Ryu et al. report a rate of PCR
93	positivity of 78% from sonicate fluid but only 16% from tissue from the same cohort of
94	infected total knee arthroplasty patients. ¹² Assuming our rate of detection could potentially
95	be low with our specific PCR protocol when applied to samples from patients in the absence
96	of obvious clinical infection symptoms, we estimated that 28 revision cases would be
97	required to detect a 20% prevalence with a 15% margin of error and alpha =0.05.
98	A total of 31 consecutive revision ACL reconstructions and 5 primary ACL
99	reconstruction controls (all hamstring autograft) from one center from 2014-2016 were
100	included (Table 1). Inclusion criteria included presentation with a ruptured ACL graft
101	necessitating revision reconstruction. There were no age requirements for study participation.
102	Exclusion criteria included any prior history of deep or intraarticular knee infection. All
103	patients within the study period met criteria for inclusion and consented to participate.
104	Institutional review board approval was obtained prior to patient enrollment. Among revision
105	cases, 23-<u>25</u> (64<u>81</u>%) had an autograft <u>and , 5-6 (1419</u>%) had an allograft, and 3 (9.3%) had
106	an unknown graft placed during the prior ACL reconstruction (Table 1). Among revision
107	cases, tThe time from the previous reconstruction to graft failure was a median of 5.4 years
108	(range, 105 days-20.6 years). All patients were treated by one of three sports-medicine
109	fellowship trained surgeons within a single academic medical center practice. No patients had

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt, Italic Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

110	clinical signs of infection as demonstrated by clinical exam. Additionally, no included	
111	patients had elevated serum inflammatory markers. Synovial aspirate was not routinely	
112	performed on first time revisions, but patients presenting for a second or third revision ACL	
113	reconstruction or those who had ever had a history of post-operative knee infection did	
114	undergo pre-operative aspiration and were all found to have normal synovial fluid white	
115	blood cell counts.	
116		
117	Sample procurement and clinical testing	
118	For revision cases, tissue biopsies of the from the tendon graft were obtained from the	
119	femoral tunnel, intraarticular segment, and tibial tunnel. A set of instruments previously	
120	unused during the procedure were utilized for sample procurement. A portion of the sample	
121	from each of the three sites (tibial tunnel, intra-articular, and femoral tunnel) were sent to the	
122	clinical microbiology lab for routine aerobic, anaerobic, and fungal cultures as well as gram	
123	stain. The remaining portion was kept for later PCR analysis.	
124		
125	Selection of negative control samples	Format
126	Prior studies have suggested that environmental contamination in the operating room	
127	can frequently result in positive bacterial PCR of air samples in what was otherwise	
128	considered sterile cases. ¹³ We also believe there is a potential for contamination from skin	Format New Ro
129	flora during tissue handling or passage of instruments through arthroscopic portals. Several	Format New Ro
130	sources of control specimens were therefore selected to evaluate the rate of positivity due to	Format New Ro
131	environmental contamination for our specific PCR assay in conditions typically seen	
132	throughout an ACL reconstruction procedure. We obtained a portion of The-intra-articular	
133	torn native ligament -as well as excess hamstring tendon graft after passage and tibial tunnel	
134	interference screw placement from 5 primary ACL reconstructions; we selected these	

Formatted: Font: Italic

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

135	samples from primary ACLR cases to evaluate for positive results from skin flora after soft	
136	tissue handling or instrument passage through portals while also eliminating the possibility of	
137	cross-contamination from the torn graft in revision ACLR cases. Finally, samples of sterile	
138	water left open to air throughout revision cases (n=3) were tested to evaluate for positive	
139	results due to air contaminants.	
140		
141	was obtained immediately following the initial diagnostic arthroscopy. As PCR is very	
142	sensitive, control specimens were used to confirm that PCR positivity of failed ACLR grafts	
143	is not simply due to operating room contamination or ubiquitous presence of small amounts	
144	of bacteria during ACL reconstructions in general. For primary ACL reconstruction controls,	
145	a portion of the torn native ACL as well as excess tendon graft were removed and transferred	
146	to a specimen container with instruments previously unused during the procedure. The graft	
147	was fixed within the tibial tunnel with a bioabsorbable interference screw; the excess graft	
148	outside of the tibial interference screw was collected after graft passage and fixation. The	
149	intra-articular torn native ligament was obtained immediately following the initial diagnostic	
150	arthroscopy. Clinical cultures were not obtained on primary ACL reconstructions.	Fo
151		
152	PCR analysis and microscopy	
153	A PCR analysis was performed with a universal bacterial primer (16S rRNA gene) on	
154	all tissue samples using a previously described protocoll by an experienced laboratory	
155	researcher. ¹⁴ The forward primer 27F 5'-AGAGTTTGATCMTGGCTCAG-3' as described	
156	by Lane et al. ¹⁵ and 907R reverse primer 5'-CCGTCAATTCMTTTRAGTTT-3' as described	
157	by Muyzer et al. ¹⁶ were used. The PCR was performed in 25-µL reactions containing 50 nmol	
158	each of two primers and 23 μ L of PCR supermix (Invitrogen). The reactions received 1- μ L of	
159	DNA preparation as template. The PCR was performed with 30 cycles of 94°C for 30 s, 55°C	

Formatted: Font color: Auto

160	for 30 s and 72°C for 1 min followed by a hold sequence at 4°C. Aliquots taken from
161	reactions at the final cycle were electrophoresed on 1.2% agarose gel at 20 volts/cm for 30
162	min and stained with $1-\mu g/mL$ ethidium bromide, added to the agarose.
163	All specimens were subjected to DNA purification using MoBio Laboratories Inc.
164	PowerSoil [®] DNA Isolation Kit. To facilitate DNA extraction, the samples were pulverized
165	per the kit recommendations. We were unable to obtain a dry weight of the graft tissue to
166	standardize the amount of tissue utilized. Additionally, the physical characteristics of the torn
167	graft tissue itself added substantial variability to the degree to which the sample could be
168	pulverized by the PCR kit-recommended method . Therefore, reporting of the amount of
169	bacterial DNA detected via PCR is limited to qualitative reporting (present versus absent)
170	rather than quantitative reporting (-limited to semi-quantitative reporting of nanograms per
171	sample (rather than nanograms bacterial DNA per unit weight of tissue graft).
172	To confirm the presence of bacteria in a biofilm state, a revision ACLR tissue
173	specimen was subjected to dual fluorescent staining with SYTO59 for nucleic acids and
174	WGA-alexa488 for extracellular polysaccharide. Imaging was obtained for both soft tissue as
175	well as recovered inert material (suture and fixation devices) and interpreted by a researcher
176	with expertise in orthopaedic biofilms.
177	
178	Statistical analysis
179	Data was analyzed using a standard statistical software program (STATA 12.1,
180	StataCorp, College Station, TX). Differences between demographic groups with respect to
181	bacterial colonization rates were determined by student's t test or Fisher's exact test. Non-
182	parametric testing (Wilcoxon rank-sum) was used as appropriate for variables with non-
183	normal distribution. The associations between bacterial colonization and number of revisions,

184	and time to failure of the previous reconstruction were assessed via ANOVA or Pearson	
185	correlation.	
186		
187	Results	
188	Presence of bacterial DNA	
189	Bacterial DNA was detectable in torn graft tissue in most revision ACL cases 27/31	
190	(87.0%, n=27/31). There was a low rate of positive PCR results among control specimens,	
191	indicating a low rate of positivity due to environmental contamination from air or skin flora.	
192	A total of 0% (0/3) of sterile water samples left open to air throughout revision cases and	
193	20% of native ligament (1/5) and excess tendon graft samples (1/5) from primary ACLR	
194	cases were PCR positive; both positive native ligament and graft control samples were from	
195	the same patientand less commonly 1/5 (20%, both hamstring graft and native ligament	
196	specimens from the same patient were positive) in primary ACL controls (p=0.002, Fisher's	
197	exact test) (Table 2).	
198	*	Formatted: Indent: First line: 0 cm
199	Bacterial culture and fluorescent microscopy	Formatted: Font: Italic
200	One revision patient (3%, 1/31) had positive aerobic bacterial cultures (coagulase	
201	negative staphylococcal species) and was treated with IV antibiotics per the	
202	recommendations of an infectious disease specialist. This patient did not have antecedent	
203	clinical signs or symptoms of infection.	
204	Microscopy confirmed the presence of bacterial biofilms on failed ACLR grafts.	
205	Staphylococcal Bacterial biofilms were identified on both soft tissue portions of the	
206	specimens (Figure 1) as well as monofilament suture material (Figure 2).	
207		
208	Association between bacterial DNA load, graft type, and time to failure	

209	Median bacterial DNA concentration in torn grafts at time of revision ACL was low at
210	18 ng/sample (range 0-101) (Table 2) with a trend toward higher concentrations found among
211	revision patients with prior autograft (median 19 ng/sample range 0-101) vs. allograft
212	(median 13 ng/sample range 0-21) used at time of the previous ACL reconstruction (p=0.13,
213	Wilcoxon rank sum). There was no association between bacterial DNA concentration and
214	time to failure (p=0.75, R-square=0.00) or number of prior ACL reconstructions (p=0.63, R-
215	square=0.01).
216	
217	Discussion
218	The results of the current study confirm the hypothesis that bacterial colonization is
219	often present on torn ACLR graft tissue and less commonly present on torn native ligament
220	or primary ACLR hamstring tendon autograft. The lack of antecedent clinical symptoms,
221	delayed time to failure (median 5.4 years) and low clinical culture positivity rate indicate that
222	these bacteria are primarily present in a biofilm state. The degree to which biofilm formation
223	contributes to graft attenuation or loss of fixation following ACL reconstruction is unclear.
224	Polymerase chain reaction (PCR) is a useful technology for investigating bacterial
225	colonization or infection in orthopaedic surgeries, though caution must be taken when
226	comparing results between analyses as substantial variability is introduced by the sample
227	collection and preparation methods as well as technical aspects of the PCR assay itself. As
228	demonstrated by Ryu et al., PCR positivity rates can vary widely depending on the source
229	specimen even in cases of confirmed infection; in their study of infected knee arthroplasties,
230	tissue samples had low PCR sensitivity but sonicated fluid had high sensitivity ¹² . The specific
231	protocol utilized in our study appears to be useful in the setting of evaluating soft tissue
232	bacterial colonization, as we had a high positivity rate of case samples but a low positivity
233	rate from environmental contamination of negative controls. Our high PCR positivity rate of

234	ruptured ACLR graft tissue (87%) is in contrast to Ryu et al. who report a low tissue PCR
235	positivity rate (16%) from infected knee arthroplasties; this discrepancy may be in large part
236	due to may be due to differences in sample preparation. We pulverised our tissue samples
237	which likely greatly enhanced DNA extraction, whereas the study by Ryu et al. did not
238	employ any method of tissue mechanical treatment to facilitate DNA extraction.
239	Non-adherent, planktonic (free-floating) bacteria tissue are the primary culprit in
240	acute infections due to production of a large amount of virulence factors and resulting
241	clinically significant infectious symptoms (Figure 3). ¹⁷ Patients with deep infections after
242	ACLR present with symptoms early after surgery and are usually culture positive ¹ , consistent
243	with infection due to planktonic bacteria. ¹⁷ However, there is evidence that bacteria can
244	switch phenotype early-on from a planktonic state to a biofilm state, ¹⁷ which we believe may
245	occur in an unknown percentage of ACLR's (Figure 3). ¹⁷ If this occurs, bacteria in a biofilm
246	state have far less interaction with surrounding host tissue and may remain undetected or
247	years: $\frac{18}{27}$ thi The presence of bacterial biofilms within the surgical site is highly
248	underestimated in orthopaedics due to reliance on clinical cultures as a primary diagnostic
249	tool. ¹⁹ Several studies of culture-negative surgeries for fracture nonunion or revision
250	arthroplasty have shown high rates of bacterial DNA as well as direct visualization of
251	bacteria with microscopy. ²⁰⁻²²
252	The results of the current study as well as Hiller et al. ⁷ indicate bacteria are frequently
253	present in failed ACLR graft tissue in a biofilm state (Figure 3). It does not provide evidence
254	for a causative link between bacterial colonization and graft failure after ACL reconstruction,
255	though it does provide sufficient data to support further experiments on the topic. By
256	establishing the presence of bacteria, there is justification for further work regarding
257	characterization of any potential biofilms (where do they occur?) and DNA sequencing to
258	determine whether the bacterial "community" affects clinical behavior. Hiller et al. report that

the bacterial species present in torn ACLR grafts are distinct from those found in ACL tissue
at time of total knee arthroplasty,⁷ though the effect of these distinct communities on the
surrounding tissue has yet to be determined. Further research is needed to determine the
degree to which biofilms on ACL grafts affect clinically relevant parameters such as failure
rates.

264 There is some evidence of increased incidence of post-operative infection after ACL 265 reconstruction performed with autograft vs. allograft. Katz et al report an incidence of 266 clinically significant post-operative infection after ACL reconstruction of 1.2% after use of autograft and 0.6% after use of allograft.²³ Maletis et al. further distinguished between types 267 of autograft and found that hamstring autograft has an incidence of infection of 0.61% versus 268 0.07% for bone patella tendon bone (BPTB) autograft or 0.27% for allograft.²⁴ In our study, 269 we did observe a trend toward higher bacterial concentrations among cases in which autograft 270 271 was utilized during the prior ACL reconstruction. Though not directly proven, the reduction 272 of infection rates by Vertullo et al. after pre-soaking hamstring autograft in vancomycin solution²⁵ suggests that higher infection rates with hamstring autograft may in part be due to 273 274 higher bacterial loads on the graft at time of fixation. 275 Interestingly, we found evidence of <u>a bacterial a staphylococcal</u> biofilm on 276 monofilament suture material (Figure 1) (Figure 2). Biofilms have been associated with sutures from clinical specimens previously in an infected total knee revision¹⁴ as well as in 277 surgical site infections in hernia repair.²⁶ However, these were all braided sutures. In vitro 278 279 studies suggest that braided sutures are more prone to biofilm colonization than monofilament sutures^{27, 28}; however, our data suggest that monofilament sutures should not 280

- 281 be discounted as a possible nidus for an infecting biofilm.
- 282
- 283 Limitations

284	There were several limitations to the current study. Due to variations in torn graft	
285	tissue structural properties and the inability to obtain an accurate dry weight of the sample,	
286	substantial variability was introduced in the initial tissue steps required for bacterial DNA	
287	extraction. This did not affect our ability to detect whether bacterial DNA was present though	
288	it did limit our ability to assess concentration of bacterial DNA-(it was reported semi-	
289	quantitatively as nanograms per sample in this study rather than nanograms per unit volume).	
290	Our choice of control samples (primary ACL reconstruction cases) effectively controlled for	
291	environmental contamination in the operating room as a source of bacterial DNA; the one	
292	positive control sample (1/5, 20%) is control samples that did have positive PCR results were	
293	likely due to contaminating bacterial DNA from surgical instruments and fluids as well as	
294	patient skin. However, use of a primary ACLR hamstring autograft control does not we could	
295	not control for the possibility of ubiquitous bacterial colonization of sites of previous soft	
296	tissue transosseous grafts about the knee. Therefore, w Ψ cannot determine with the current	
297	study design whether bacterial DNA is equally as prevalent on intact ACL reconstruction	
298	grafts.	
299	<u>Conclusions</u>	Form
300	Staphylococcal b Bacterial DNA is frequently present in failed ACLR grafts, with	
301	high rates of DNA detection by PCR but low culture positivity. iofilms are present on failed	
302	ACLR grafts, with high rates of DNA detection by PCR but low culture positivity. There is	
303	likely bacterial colonization of many failed ACLR grafts, though the causal relationship	
304	between graft colonization and failure remains unclear.	
305		

Formatted: Indent: First line: 0 cm

306 **References**

307	1.	Schollin-Borg M, Michaelsson K, Rahme H. Presentation, outcome, and cause of
308		septic arthritis after anterior cruciate ligament reconstruction: a case control study.
309		Arthroscopy. 2003;19:941-947.
310	2.	Binnet MS, Basarir K. Risk and outcome of infection after different arthroscopic
311		anterior cruciate ligament reconstruction techniques. Arthroscopy. 2007;23:862-868.
312	3.	Gobbi A, Karnatzikos G, Chaurasia S, Abhishek M, Bulgherhoni E, Lane J.
313		Postoperative Infection After Anterior Cruciate Ligament Reconstruction. Sports
314		Health. 2016;8:187-189.
315	4.	Judd D, Bottoni C, Kim D, Burke M, Hooker S. Infections following arthroscopic
316		anterior cruciate ligament reconstruction. Arthroscopy. 2006;22:375-384.
317	5.	Reinhardt KR, Hetsroni I, Marx RG. Graft selection for anterior cruciate ligament
318		reconstruction: a level I systematic review comparing failure rates and functional
319		outcomes. Orthop Clin North Am. 2010;41:249-262.
320	6.	Kaeding CC, Aros B, Pedroza A, et al. Allograft Versus Autograft Anterior Cruciate
321		Ligament Reconstruction: Predictors of Failure From a MOON Prospective
322		Longitudinal Cohort. Sports health. 2011;3:73-81.
323	7.	Hiller NL, Chauhan A, Palmer M, et al. Presence of bacteria in failed anterior cruciate
324		ligament reconstructions. SpringerPlus. 2015;4:460.
325	8.	Ketonis C, Barr S, Adams CS, Hickok NJ, Parvizi J. Bacterial colonization of bone
326		allografts: establishment and effects of antibiotics. Clin Orthop Relat Res.
327		2010;468:2113-2121.
328	9.	Bjarnsholt T, Tolker-Nielsen T, Givskov M, Janssen M, Christensen LH. Detection of
329		bacteria by fluorescence in situ hybridization in culture-negative soft tissue filler
330		lesions. Dermatol Surg. 2009;35 Suppl 2:1620-1624.

Formatted: Font: (Default) Times New Roman, 12 pt, English (United States), Do not check spelling or

- 331 10. Millett PJ, Yen YM, Price CS, Horan MP, van der Meijden OA, Elser F.
- 332 Propionibacterium acnes infection as an occult cause of postoperative shoulder pain: a
 333 case series. *Clin Orthop Relat Res.* 2011;469:2824-2830.
- 334 11. Hou C, Gupta A, Chen M, Matsen FA. How do revised shoulders that are culture
- positive for Propionibacterium differ from those that are not? *J Shoulder Elbow Surg.*2015;24:1427-1432.
- Ryu SY, Greenwood-Quaintance KE, Hanssen AD, Mandrekar JN, Patel R. Low
 sensitivity of periprosthetic tissue PCR for prosthetic knee infection diagnosis. *Diagn Microbiol Infect Dis.* 2014;79:448-453.
- Edmiston CE, Seabrook GR, Cambria RA, et al. Molecular epidemiology of microbialcontamination in the operating room environment: Is there a risk for infection?
- 342 *Surgery*. 2005;138:573-579; discussion 579-582.
- 343 14. Swearingen MC, DiBartola AC, Dusane D, Granger J, Stoodley P. 16S rRNA analysis
 344 provides evidence of biofilms on all components of three infected periprosthetic knees
 345 including permanent braided suture. *Pathog Dis.* 2016;74.
- Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, eds. *Nucleic acid techniques in bacterial systematics*. New York: Wiley, 1991;125-175.
- 348 16. Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of
- 349 Thiomicrospira species and their identification in deep-sea hydrothermal vent samples
- 350 by denaturing gradient gel electrophoresis of 16S rDNA fragments. *Arch Microbiol.*
- 351 1995;164:165-172.
- 352 17. Valle J, Solano C, García B, Toledo-Arana A, Lasa I. Biofilm switch and immune
- 353 response determinants at early stages of infection. *Trends Microbiol.* 2013;21:364-
- 354 371.

355	18.	Costerton JW, Montanaro L, Arciola CR. Bacterial communications in implant
356		infections: a target for an intelligence war. Int J Artif Organs. 2007;30:757-763.
357	19.	Costerton JW, Post JC, Ehrlich GD, et al. New methods for the detection of
358		orthopedic and other biofilm infections. FEMS Immunol Med Microbiol.
359		2011;61:133-140.
360	20.	Gallo PH, Melton-Kreft R, Nistico L, et al. Demonstration of Bacillus cereus in
361		orthopaedic-implant-related infection with use of a multi-primer polymerase chain
362		reaction-mass spectrometric assay: report of two cases. J Bone Joint Surg Am.
363		2011;93:e85.
364	21.	Stoodley P, Nistico L, Johnson S, et al. Direct demonstration of viable
365		Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J
366		Bone Joint Surg Am. 2008;90:1751-1758.
367	22.	Palmer MP, Altman DT, Altman GT, et al. Can we trust intraoperative culture results
368		in nonunions? J Orthop Trauma. 2014;28:384-390.
369	23.	Katz LM, Battaglia TC, Patino P, Reichmann W, Hunter DJ, Richmond JC. A
370		retrospective comparison of the incidence of bacterial infection following anterior
371		cruciate ligament reconstruction with autograft versus allograft. Arthroscopy.
372		2008;24:1330-1335.
373	24.	Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT.
374		Incidence of postoperative anterior cruciate ligament reconstruction infections: graft
375		choice makes a difference. Am J Sports Med. 2013;41:1780-1785.
376	25.	Vertullo CJ, Quick M, Jones A, Grayson JE. A surgical technique using presoaked
377		vancomycin hamstring grafts to decrease the risk of infection after anterior cruciate
378		ligament reconstruction. Arthroscopy. 2012;28:337-342.

379	26.	Kathju S, Nistico L, Melton-Kreft R, Lasko LA, Stoodley P. Direct demonstration of	
380		bacterial biofilms on prosthetic mesh after ventral herniorrhaphy. Surg Infect	
381		(Larchmt). 2015;16:45-53.	
382	27.	Fowler JR, Perkins TA, Buttaro BA, Truant AL. Bacteria adhere less to barbed	
383		monofilament than braided sutures in a contaminated wound model. Clin Orthop	
384		Relat Res. 2013;471:665-671.	
385	28.	Henry-Stanley MJ, Hess DJ, Barnes AM, Dunny GM, Wells CL. Bacterial	
386		contamination of surgical suture resembles a biofilm. Surg Infect (Larchmt).	
387		2010;11:433-439.	
388 389 390	.		Formatted: Font: (Default) Times New Roman, 12 pt

Table 1. Clinical data

	Revision cases (n=31)	
Ago	Mean 28.2 years SD 11.9	
Age	Wean 20.2 <u>years</u> 5D 11.9	
Gender	18 (58%) <u>Male</u>	
<u>Male</u>	· · · ·	
<u>Female</u>	13 (42%) Female	
Number of prior ACL reconstructions	·	
Failed primary ACLR	Failed primary ACLR: 24 (77%)	
Failed 1 st revision ACLR	Failed 1 st revision ACLR: 6 (19%)	
Failed 2 nd revision ACLR	Failed 2 nd revision ACLR: 1 (3%)	
Graft used during previous ACLR		
Autograft	Autograft: 23-25 (8174%)	
Allograft	Allograft: 5-6 (19 16 %)	
	Unknown: 3 (10%)	
Time to failure	Median 5.4 years	
•	Range 105 days-20.6 years	
Mechanism of failure		
Acute contact reinjury,	3 (10%)	
Acute non-contact reinjury		
Chronic insufficiency with no specific	5 (16%)	
recalled injury.		
recured injury		

1		
1	Formatted	.
(Formatted	(
1	Formatted	
1	Formatted	<u> </u>
1	Formatted	(
1	Formatted	
1	Formatted	(
(Formatted	
(Formatted	.
l	Formatted	(
l	Formatted	.
ĺ	Formatted	(
ĺ	Formatted	.
ĺ	Formatted	(
(Formatted	
(Formatted	
(Formatted	(
l	Formatted	
l	Formatted	
l	Formatted	(
l	Formatted	
l	Formatted	(
(Formatted	.
(Formatted	
(Formatted	(
l	Formatted	(
l	Formatted	(
l	Formatted	.
	Formatted	(
ļ	Formatted	<u> </u>
	Formatted	(
	Formatted	(
ĺ	Formatted	(
ĺ	Formatted	<u> </u>
	Formatted	(
ĺ	Formatted	(
	Formatted	<u> </u>
ĺ	Formatted	(
	Formatted	<u> </u>
	Formatted	(
	Formatted	(.
	Formatted	(.
	Formatted	(.
	Formatted	(
ĺ	Formatted	.

396 397

Table 2. PCR and clinical culture results

Patient number	Detectable bacterial DNA	Positive culture growth	
Revision ACL patients	27 <u>/31</u> (87%) Yes	1/31 (3%)	
	4 <u>/31</u> (13%) No		
Failed primary ACLR	21/24 (88%)	0/24 (0%)	
1 st revision ACLR	<u>5/6 (83%)</u>	1/6 (17%)	
2 nd revision ACLR	<u>1/1 (100%)</u>	0/1 (0%)	
Allograft during	5/6 (83%)	1/6 (17%)	
prior ACLR			
Autograft during	22/25 (88%)	0/25 (0%)	
prior ACLR			
Acute contact re-	<u>2/3 (67%)</u>	0/3 (0%)	
njury			
Acute non-contact	<u>20/23 (87%)</u>	1/23 (4%)	
reinjury			
Chronic insufficiency	5/5 (100%)	0/5 (0%)	
with no specific			
recalled injury			
Failure within 15	8/10 (80%)	0/10 (0%)	
months of ACLR			
Failure 16 months-5	10/11 (91%)	1/11 (9%)	
years after ACLR			
Failure 6 or more	8/9 (89%)	0/9 (0%)	
years after aclr<u>ACLR</u>			
Primary ACL controls	1 (20%) Yes	N/A (no cultures on	
	4 (80%) No	controls)	

398 399 Formatted (.. Formatted (... Formatted (... Formatted <u>(.</u> Formatted <u>..</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted (.. Formatted (... Formatted **(**.. Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (.. Formatted **(**.. Formatted (... Formatted (... Formatted (... Formatted Formatted <u>(.</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted ... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted <u>.</u>. Formatted (.. Formatted (... Formatted (... Formatted <u>(.</u> Formatted (... Formatted (... Formatted <u>..</u> Formatted (..

Formatted: Font: (Default) Times

New Roman, 12 pt

400	Figure	Legend

401 Figure 1. Fluorescent staining of a torn graft at time of revision ACLR. The red stain (SYTO59) represents nucleic acids and the green stain (WGA-alexa488) is for extracellular 402 403 matrix. Scale bars are provided. Left: A portion of tendon graft (labeled host cells) and 404 adjacent clusters of bacteria (white arrows). Right: A cluster of bacteria within a biofilm. The 405 green polysaccharide around the red bacterial nucleic acid is a hallmark feature of a 406 staphylococcal bacterial biofilm. 407 Figure 2. Fluorescent staining of monofilament suture with adherent bacterial biofilm (white 408 arrows) recovered from the femoral tunnel at time of revision ACLR (scale bar provided). 409 The red stain (SYTO59) represents nucleic acids and the green stain (WGA-alexa488) is for extracellular polysaccharide. The green polysaccharide around the red bacterial nucleic acid 410 is a hallmark feature of a staphylococcal-bacterial biofilm. 411 412 Figure 3. Conceptual diagram of the role of environmental bacterial contamination in ACL 413 reconstructions. Deep infection following ACLR is rare (around 1%) and is caused by 414 planktonic bacteria with early, clinically significant symptoms. An unknown proportion of 415 ACLR grafts are colonized with environmental bacteria that switch early on to a biofilm 416 phenotype-and do not cause clinical symptoms. The relationship between biofilm formation 417 and ACLR failure rates is currently unknown. 418

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

ICMJE Form for Disclosure of Potential Conflicts of Interest

Section 1. Identifying Information

- 1. Given Name <u>Alex</u> 2. Surname <u>DiBartola</u>
- 3. Are you the corresponding author? Yes ____ No_X_
- 4. Effective Date _____6/26/17

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

* This means money that your institution received for your efforts on this study.

† Use this section to provide any needed explanation.

Section 3. Relevant financial activities outside the submitted work

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy
- _X _No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity __ Comments____
- 3. Employment
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 4. Expert testimony
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 5. Grants/grants pending
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 7. Payment for manuscript preparation
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 8. Patents (planned, pending or issued)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 9. Royalties
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section 4. Other relationships

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

The International Committee of Medical Journal Editors

The ICMJE Disclosure of Potential Conflicts of Interest Form was adopted by *Arthroscopy: The Journal of Arthroscopic and Related Surgery* along with 17 other leading orthopaedic journals at the 2011 annual meeting of the American Academy of Orthopaedic Surgeons.

ICMJE Form for Disclosure of Potential Conflicts of Interest

Section 1. Identifying Information

1. Given Name <u>Devendra</u> 2. Surname <u>Dusane</u>

3. Are you the corresponding author? Yes $_$ No_X_

4. Effective Date _____6/26/17

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†____

* This means money that your institution received for your efforts on this study.

† Use this section to provide any needed explanation.

Section 3. Relevant financial activities outside the submitted work

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy
- _X _No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity __ Comments____
- 3. Employment
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 4. Expert testimony
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 5. Grants/grants pending
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 7. Payment for manuscript preparation
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 8. Patents (planned, pending or issued)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 9. Royalties
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Section 4. Other relationships

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

The International Committee of Medical Journal Editors

The ICMJE Disclosure of Potential Conflicts of Interest Form was adopted by *Arthroscopy: The Journal of Arthroscopic and Related Surgery* along with 17 other leading orthopaedic journals at the 2011 annual meeting of the American Academy of Orthopaedic Surgeons.

ICMJE Form for Disclosure of Potential Conflicts of Interest

Section 1. Identifying Information

1. Given Name Joshua 2. Surname Everhart

3. Are you the corresponding author? Yes ____ No_X_

4. Effective Date _____6/26/17____

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†____

* This means money that your institution received for your efforts on this study.

† Use this section to provide any needed explanation.

Section 3. Relevant financial activities outside the submitted work

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy
- _X _No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity __ Comments____
- 3. Employment
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 4. Expert testimony
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 5. Grants/grants pending
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 7. Payment for manuscript preparation
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 8. Patents (planned, pending or issued)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 9. Royalties
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

** For example, if you report a consultancy above there is no need to report travel related to that consultancy on this line.

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

The International Committee of Medical Journal Editors

Section 1. Identifying Information

1. Given Name <u>David</u> 2. Surname <u>Flanigan</u>

3. Are you the corresponding author? Yes <u>X</u> No__

4. Effective Date _____6/26/17

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

* This means money that your institution received for your efforts on this study.

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy

__No _X_Yes, money paid to you ___Yes, money paid to institution* Name of entity_<u>Sanofi, Smith &</u> <u>Nephew</u>__Comments____

3. Employment

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

4. Expert testimony

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

- 5. Grants/grants pending
- X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

7. Payment for manuscript preparation

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

8. Patents (planned, pending or issued)

```
X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments____
```

9. Royalties

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

The International Committee of Medical Journal Editors

Section 1. Identifying Information

1. Given Name <u>Christopher</u> 2. Surname <u>Kaeding</u>

3. Are you the corresponding author? Yes $_$ No_X_

4. Effective Date _____6/26/17____

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

* This means money that your institution received for your efforts on this study.

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy
- _X _No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity __ Comments____
- 3. Employment
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 4. Expert testimony
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 5. Grants/grants pending
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 7. Payment for manuscript preparation
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 8. Patents (planned, pending or issued)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 9. Royalties
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

The International Committee of Medical Journal Editors

Section 1. Identifying Information

1. Given Name <u>Robert</u> 2. Surname <u>Magnussen</u>

3. Are you the corresponding author? Yes $_$ No_X_

4. Effective Date _____6/26/17

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

* This means money that your institution received for your efforts on this study.

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy
- _X _No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity __ Comments____
- 3. Employment
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 4. Expert testimony
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 5. Grants/grants pending
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 7. Payment for manuscript preparation
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 8. Patents (planned, pending or issued)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 9. Royalties
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

>>>>>>>>>>>

The International Committee of Medical Journal Editors

Section 1. Identifying Information

1. Given Name <u>Paul</u> 2. Surname <u>Stoodley</u>

3. Are you the corresponding author? Yes ____ No_X_

4. Effective Date _____6/26/17____

5. Manuscript Title <u>Bacterial deoxyribonucleic acid (DNA) is often present in failed revision anterior</u> <u>cruciate ligament (ACL) reconstructions</u>

Section 2. The Work Under Consideration for Publication

Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc...)?

Complete each item by typing an X in answer yes or not and completing the information requested if an answer is Yes. If you have more than one relationship, add lines.

1. Grant

_X _No ___Yes, money paid to you _ _Yes, money paid to institution* Name of entity_ __ Comments†___

2. Consulting fee or honorarium

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

3. Support for travel to meetings for the study or other purposes

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

4. Fees for participation in review activities such as data monitoring boards, statistical analysis, end-point committees, and the like

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

5. Payment for writing or reviewing the manuscript

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

6. Provision of writing assistance, medicines, equipment, or administrative support

_X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments†___

7. Other

X_No ____Yes, money paid to you ____Yes, money paid to institution* Name of entity____ Comments†____

* This means money that your institution received for your efforts on this study.

- 1. Board membership
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 2. Consultancy
- _X _No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity __ Comments____
- 3. Employment
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 4. Expert testimony
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 5. Grants/grants pending
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 6. Payment for lectures including service on speakers bureaus
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 7. Payment for manuscript preparation
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 8. Patents (planned, pending or issued)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 9. Royalties
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 10. Payment for development of educational presentations
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 11. Stock/stock options
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 12. Travel/accommodations/ meeting expenses unrelated to activities listed**
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____
- 13. Other (err on the side of full disclosure)
- _X_No ___Yes, money paid to you ___Yes, money paid to institution* Name of entity___ Comments____

Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?

_X_No other relationships/conditions/circumstances that present a potential conflict of interest

____Yes, the following relationships/conditions/circumstances are present (explain below):

>>>>>>>>>>>

The International Committee of Medical Journal Editors