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Abstract
It is desirable, in many applications, to minimise the acoustic scattering from an object when it is subject to
an incident sound field. Active Vibration Control (AVC) has been demonstrated in many applications, and
can effectively reduce an unwanted disturbance signal using control sources. However, when attempting to
attenuate the acoustic scattering from an object, it is not straightforward to measure, and therefore control,
the scattered component of the sound field directly. In this paper, the effect that AVC has on the scattered
acoustic field has been investigated for a hollow, non-rigid cylinder via a series of numerical simulations.
The cylinder is excited by an acoustic plane wave incident from a single direction and the AVC system
uses an array of accelerometers and an array of structural actuators to control the vibration. As expected,
significant reductions in the structural velocity are predicted. The effect of AVC on the acoustic scattering is
then investigated, and it is shown that, at resonance, the scattered sound power is reduced by over 5dB.

1 Introduction

Active control has now been demonstrated and applied to many applications, and has been shown to be effec-
tive at reducing a range of different disturbance signals with the introduction of secondary control sources. In
the case of active acoustic cloaking, the disturbance signal to be minimised is the scattered sound pressure,
as shown in Figure 1, which could be controlled using either structural or acoustic control sources. This
has been demonstrated numerically by Eggler [1] and Cheer [2], who present results using computational
models that predict significant reductions in the acoustic scattered field over a fairly wide frequency range by
using secondary acoustic sources [2], and secondary structural sources [1]. However, the performance of an
active control system is dependent on the measured disturbance signal, and in the case of acoustic cloaking
it is not possible to measure the scattered component of the sound field directly in real-time. Therefore it is
challenging to minimise acoustic scattering directly,
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Figure 1: A schematic diagram of a microphone measuring a sound field including scattering.



Friot et al [3] have predicted and demonstrated a potential solution to this scattered field detection problem,
with the development of an active control system that was two concentric rings of microphones surrounding
the scattering object. The correlation between each ring was used to determine the incident signal from the
scattered signal. This performs very well in the computer simulation at low frequencies, with reductions in
the scattered field of an order of magnitude; however it is less effective at higher frequencies. The model
was validated with a simple 1D experiment in a duct, and over 20dB of attenuation was achieved in the scat-
tered pressure between 100Hz and 700Hz. Friot et al went on to implement a three dimensional single-tone
control system based on this theory [4] with a parallelepiped scattering object, and achieved reductions in
the scattered field of between 5dB and 20dB.

Although Friot et al were able to demonstrate a cloaking capability, the system required a large number
of microphones positioned remotely from the structure to accurately distinguish the incident and scattered
pressure waves, which may not always be practical to implement. Han et al [5] eliminate the need for the
second ring of error sensors by modelling the transfer function between the scattered pressure and the total
pressure with a computational model. They then use the simulated transfer function to estimate the scattered
component of the microphone signals, which is then used as the disturbance signals for the active control
system. The structure was implemented in a laboratory experiment using a spherical scatterer, and an 8dB
attenuation in the scattered pressure was demonstrated.

It should be noted that Han’s experiments were using simplified 1D active control systems, and only corrected
for reflective scattering (reducing scattering in the opposite direction to the propagation of the incident wave).
They did not attempt to reduce refractive scattering (scattering ‘downstream’ of the scattering object). They
were also only excited by a single tone, single direction incident wave. In practice, there is an interest in con-
trolling the scattering due to uncorrelated disturbance sources at multiple positions over a broad bandwidth
and this would significantly deteriorate performance.

To attempt to overcome some of the practical limitations of directly controlling scattering, the effect of active
vibration control on the acoustic scattering from a controlled body is investigated in this paper. The benefit
of this method is that real-time adaptive active vibration control has been more extensively investigated
and demonstrated, and has now matured into a robust and regularly used real-world solution to vibration
problems [6, 7, 8, 9]. Initially, the development of a numerical model to predict the vibro-acoustic properties
of a flexible cylinder will be discussed. A modal analysis will be carried out to identify the eigenfrequencies
and mode shapes of the cylinder, before the structural response of the cylinder to an incident acoustic plane
wave is modelled. The acoustic scattered field is calculated, and a formulation for the total acoustic scattered
power is used at each frequency to compare the magnitude of the acoustic scattering to the magnitude of
the structural response. Single tone active vibration control is simulated, and the effect that this has on the
scattered acoustic field is predicted.

2 Numerical Model of Structural-Acoustic Coupled System

The COMSOL Multiphysics package has been used to model the structural-acoustic response of of a flexible
hollow cylinder. The Boundary Element Method (BEM) was used to model the incident plane wave, whilst
the Finite Element Method (FEM) was used to model structural vibration through the cylindrical shell, and
acoustic propagation within the internal cavity of the cylinder. The use of BEM to model the incident and
scattered acoustic waves in the external fluid significantly reduced the computational cost of solving the
model when compared to FEM. This advantage is minimal for small problem sizes, however, therefore the
interior volume of the cylinder was modelled using FEM so as to mesh well with the solid shell and therefore
minimise the amount of BEM/FEM coupling required.



2.1 Model Description
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Figure 2: Cylinder Geometry

A steel cylindrical shell of thickness 6.4mm, length 1.4m and radius 0.11m has been modelled, and the ge-
ometry is shown in Figure 2. The internal volume of the cylinder was filled with air, and the the external fluid
in which the cylinder was placed was also air. Acoustic propagation through both the internal and external air
domains was modelled, as was structural vibration through the steel domain, with both physics being fully
coupled to allow for the transfer of energy between acoustic and structural excitations. The structure was
excited by a single incident acoustic plane wave, propagating from the θ = 45 φ = 45 direction, as shown
in Figure 3.
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Figure 3: Schematic diagram showing the direction of the incident acoustic plane wave, in both plan view
and front projection.

The model was meshed using free tetrahedral elements over the cylindrical shell, with a minimum of 6 ele-
ments per wavelength. This mesh density was selected as a result of a convergence study, which showed that
6 elements per wavelength was sufficient to obtain reliable results. The external air domain does not require
meshing due to the use of BEM rather than FEM.

2.2 Modal Analysis

It is well known that the structural response of the cylinder will be greatest when it is excited at a reso-
nance, and the work by Bobrovnitskii [10] and Williams [11] shows that the acoustic scattering of a structure



may also increase around these resonant frequencies. To identify the frequencies at which this will occur,
an eigenfrequency analysis was conducted using the implemented numerical model. The modal frequen-
cies, and corresponding mode shapes, were calculated and used to inform further analysis on the structural
response of the cylindrical shell. The identified eigenfrequencies below 1kHz are shown in Table 1; axisym-
metric, repeated modes have only been included once but are indicated by bold typeface.

An analytical model of a rigid walled cylindrical acoustic cavity was also solved [12] to indicate the eigen-
frequencies of such a system. These results were used to distinguish whether the frequencies identified in
the numerical model were caused by acoustic cavity modes, or structural modes. This has also been noted in
Table 1.

Figure 4 displays the mode shapes of a selection of the modes identified in Table 1, which result in the
largest structural response. As before, axisymmetric, repeated modes have only been included once but are
identified by bold typeface.

Eigenfrequency (Hz) Cause
122 Cavity Mode
245 Cavity Mode
353 Structural Mode
367 Cavity Mode
490 Cavity Mode
512 Structural Mode
548 Structural Mode
612 Cavity Mode
735 Cavity Mode
858 Cavity Mode
860 Structural Mode
915 Cavity Mode
923 Cavity Mode
947 Cavity Mode
948 Structural Mode
980 Cavity Mode
981 Structural Mode
985 Cavity Mode

Table 1: Modal frequencies below 1kHz, and whether they are caused by acoustic or structural resonances.
Bold font represents an axisymmetric repeated mode.

The output from this modal analysis provides an indication of at which frequencies the structural velocity
will be at a maxima, and therefore, at which frequencies acoustic scattering will potentially be most sig-
nificant. These frequencies will be the most important to acoustic cloaking applications. The mode shapes
shown in Figure 4 also assist in the future implementation of AVC, as they provide physical insight into
which positions on the cylinder will be the most efficient for placement of accelerometers and actuators for
the control of a particular mode.

2.3 Structural Response to an Acoustic Excitation

The vibro-acoustic model has been solved over a fine frequency sweep from 100Hz to 1kHz. At each fre-
quency point the squared radial velocity when excited by a single incident plant wave has been integrated
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Figure 4: A selection of the modal frequencies and corresponding mode shapes of the cylinder. Frequencies
in bold indicate that mode is a repeated axisymmetric mode.

over the cylindrical shell to calculate the resultant Kinetic Energy. This is shown in Figure 5, along with
dashed vertical lines marking the eigenfrequencies calculated previously. It can be seen that there are 6
dominant resonances in the structure which, when compared to the mode shapes shown in Figure 4, all cor-
respond to structural bending or acoustic breathing modes of the cylinder. The largest resonance is at 548Hz,
and corresponds to the first acoustic bending mode of the cylinder.
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Figure 5: Kinetic energy of the cylinder as a function of frequency, when excited by an acoustic plane wave
from θ = 45 φ = 45. Dashed vertical lines identify the frequencies of the modes of the cylinder.



2.4 Scattered Acoustic Response

The results presented above describe the structural response to an acoustic excitation. Now, the effect that
this has on the acoustic pressure field will be investigated. To begin with, the computational model was
solved at the four highest magnitude resonance frequencies identified in Figure 5. In each case the total
acoustic pressure field pt has been plotted over a 1m × 1m grid with the cylinder marked in black and the
angle of incidence marked with an arrow, as shown in Figure 6. These plots show that the presence of the
cylinder is generating two types of acoustic scattering: acoustic reflections and acoustic shadowing, espe-
cially at the 548Hz mode.
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Figure 6: Predicted acoustic pressure field when the cylinder is excited by an incident plane wave at 353Hz,
512Hz, 548Hz and 860Hz. The angle of incidence of the plane wave is marked.

To further investigate the effect of the cylinder on the acoustic field, the scattered acoustic field ps can be
defined as the difference between the incident acoustic field pinc, and the total acoustic field pt:

ps = pt − pinc. (1)

The scattered acoustic pressure field has been calculated and plotted in a similar way to Figure 6, as shown
in Figure 7. Whilst the total acoustic pressure plots in Figure 6 show the strongest effect on the total field
at the 548Hz mode, the scattered acoustic pressure plots in Figure 7 clearly shows acoustic scattering at all
four frequencies, with the reflected wave propagating away from the cylinder (in the positive x direction)
and an area of high scattering immediately behind the cylinder, where its presence creates a shadowing effect.
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Figure 7: Predicted acoustic scattering when the cylinder is excited by an incident plane wave at 353Hz,
512Hz, 548Hz and 860Hz. The angle of incidence of the plane wave is marked.

To accurately assess how the acoustic scattering is affected by resonances within the cylinder, and to further
benchmark the performance once active vibration control is implemented, the acoustic scattered powerWscat

is calculated as an integral of the scattered sound pressure over a far-field sphere enclosing the cylinder:

Wscat =

∫
S

∣∣p2s∣∣
2ρ0c0

. (2)

As in Figure 5, this was computed and plotted over a range of frequencies. A similar process was carried out
on a rigid cylinder model to provide a comparison. The resulting scattered power for the rigid and flexible
cylinder models is shown in Figure 8, along with zoomed in plots that focus on the two main resonances
of interest. It can be seen from Figure 8 that the acoustic scattering behaviour of both the rigid and flexible
cylindrical shells are almost identical except for when the cylinder is excited at the 548Hz or 860Hz modes,
at which points there are clear resonances in the scattered acoustic field, as shown in the two lower subplots.
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Figure 8: Total acoustic scattered power as a function of frequency, when excited by a plane wave from
θ = 45 φ = 45. The bottom plots are zoomed in on two different frequency ranges to display the resonances
of interest.

The results presented in Figure 8 are consistent with the analytical results shown by Bobrovnitskii [10], where
the rigid cylinder behaves similarly to the flexible cylinder except at specific resonance peaks. Although the
peak in the graph presented in [10] is at approximately ka = 0.4 whereas the peak presented in Figure 8 is
at ka ≈ 1.1, it should be noted that Bobrovnitskii’s model was based on an external fluid of water rather
than air. The effect of fluid loading on the cylinder will decrease the frequency of the structural resonances,
therefore these results are still consistent.

3 Active Vibration Control

Figure 8 shows the scattered sound power spectra from the numerical model discussed above, for both a rigid
and flexible scatterer. It has been discussed previously how the key difference is the presence of peaks in the
scattered field of the flexible scatterer, caused by structural resonances within the cylindrical shell. This is
further supported by the presentation of rigid scattering results by Williams [11] and Scandrett [13], both of
which show consistently smooth scattering plots without the presence of sharp peaks. For many applications,
it is likely to be these sharp peaks that cause the most coloration to the measured sound, rather than the
smooth scattering curve caused by a rigid scatterer. Active vibration control can be used with accelerometers
providing the error signal and structural actuators acting as control sources, in order to minimise the structural
vibration of the cylinder. An Active Vibration Control system has thus been simulated within the framework
of the numerical model, using accelerometers and control actuators attached to the surface of the cylinder.

3.1 Force-Sensor Configuration

An array of 97 velocity sensors and an array of 23 control forces have been defined over the surface of the
cylinder, as shown in Figure 9. The response from each control force to every velocity sensor was firstly



calculated, leading to the construction of the plant matrix of complex transfer impedances G.

Velocity Sensors Control Forces

Figure 9: Location of the control forces and error sensors on the surface of the cylinder. Each control force
acts inwards in the normal direction, whilst arrows mark the normal direction of each velocity sensor.

3.2 Active Vibration Control Formulation

The vector of velocities at the structural error sensors, e, can be expressed as the linear superposition of the
velocities due to the incident acoustic field, d, and those due to the control actuators, which can be expressed
as Gf where f is the vector of control forces. This gives the vector of error signals as

e = d+Gf . (3)

The vector of forces that minimises the sum of the squared error signals is then given by [14]

fopt = −
(
GHG+ βI

)−1
GHd. (4)

The suitable selection of the regularisation parameter β facilitates a trade-off between performance and
robustness; this will be considered below.

3.3 AVC Tuning & Performance

Using the equations and source/sensor positions discussed above, single tone active vibration control has
been simulated for a range of frequencies between 100Hz and 1kHz. The effect of regularisation will first
be investigated and optimised, before the predicted structural performance of the AVC system is presented.
Finally, the effect that this has on the scattered field will be discussed.



3.3.1 Selection of the Regularisation Parameter

To investigate the effect of regularisation, the AVC model has been solved with increasing values of regular-
isation from β = 1 × 10−10 to β = 1 × 1010. In each case, the condition number of the matrix inversion(
GHG+ βI

)−1 has been calculated, which relates to the robustness of the system, and the achieved atten-
uation in structural velocity of the cylindrical shell has also been calculated. These are shown in Figure 10.
As expected, it can be seen that high levels of regularisation result in a well conditioned inversion, however
achieve limited attenuation. A value of β = 1× 10−2 has been marked with a vertical red line, and provides
a low condition number whilst maintaining reasonable attenuation performance of the AVC system, thus
reaching a reasonable tradeoff between performance and robustness.
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Figure 10: Condition number of matrix inverse, and achieved attenuation in structural acceleration, with
varying amounts of regularisation at 354Hz, 512Hz, 548Hz and 860Hz. β = 1 × 10−2 is marked with a
vertical red line.

3.3.2 Active Vibration Control Performance

Using Equations 3 and 4, as well as the matrix G, the vector d and a value of β = 1× 10−2, optimal control
forces were calculated at each frequency. The resulting structural response before and after control is then
shown in Figure 11. From these results it can be seen that a significant reduction in the structural velocity
across the entire frequency range has been achieved. The structural velocity is reduced at every frequency,
with the active vibration control effectively eliminating the resonance peaks completely. Although the struc-
ture is still vibrating, the magnitude of vibration is reduced sufficiently that it can be compared to a rigid
body - that is, the velocity is close to zero.
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Figure 11: Kinetic energy before and after active vibration control

Using Equation 2, the acoustic scattered power has been computed before and after active vibration control,
and these results are presented in Figure 12, along with the scattered sound power due to a rigid cylinder.
From these results it can be seen that the scattered sound power for the flexible body before control shows
significant peaks in the response, however these are attenuated by the AVC system and after control are
consistent with a rigid cylinder.
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Figure 12: Acoustic scattered power before and after active vibration control, and for a rigid scatterer. The
bottom plots are zoomed in on two different frequency ranges to display the resonances of interest.



4 Conclusions

This paper has investigated the effect of AVC on the acoustic scattering from a cylindrical scattering body.
A numerical model of a flexible hollow cylindrical shell has been implemented and an eigenfrequency anal-
ysis has been carried out to identify the resonance frequencies of the cylinder, and to plot the corresponding
mode shapes. Subsequently, the modelled cylinder was excited by an acoustic plane wave, and the resulting
structural and acoustic responses were investigated.

Active vibration control was implemented on the cylindrical surface, reducing the structural velocity of the
cylinder over a wide frequency band, but having significant effect when the cylinder is excited at resonance.
The effect of this on the acoustic scattered field was investigated, and it was found that by implementing
AVC the behaviour of the flexible cylinder converged to that of a rigid cylinder. The total acoustic scattered
power was reduced by over 5dB when the cylinder was excited at its first bending mode. The amount of
regularisation used in the calculation of optimal filters was investigated.

Although the structure has not been acoustically cloaked as it is still causing acoustic scattering, it no longer
has resonances in the scattered field and therefore the detectability of the scattered field has been signifi-
cantly reduced. For many applications (measurement microphones attached to a solid body, for example),
full acoustic cloaking may not be necessary, and this reduction in sharp peaks in the scattered field may be
sufficient.
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