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Abstract

There are two different empirical likelihood approaches for complex sampling de-
signs: the “pseudo-empirical likelihood” introduced by Chen and Sitter (1999) and
the “unequal probability empirical likelihood” approach proposed by Berger and Tor-
res (2014, 2016). Both approaches are described and reviewed critically. We do not
pretend to give an exhaustive account of all the applications of empirical likelihood
in survey sampling. This paper is an extended version of Berger (2018b).
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1 Introduction

We consider a “design-based approach”; that is, we assume that survey variables are vectors
of constants (Neyman, 1938). The design-based approach is often considered in survey
sampling theory, because it gives a non-parametric distribution free inference, which does
not rely on distributional assumptions about the variables of interest.

We use standard notation; that is, we have a finite population U = {1, . . . , N} of N
units. A vector of constant variables yi ∈ Rdy is measured for each unit i in a sample
S ⊂ U . The sampling design specifies the random selection of S within U . Populations are
often stratified into H non-overlapping groups U1, . . . , Uh, . . . , UH called strata; such that
∪Hh=1Uh = U . Stratified sampling consists in selecting independent samples Sh from each
Uh. We assume that Sh is a sample of nh units selected with unequal selection probabilities
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πi. We assume that nh are given constants. The overall sample and sample size are
S = ∪Hh=1Sh and n =

∑H
h=1 nh. First, we consider single-stage designs. Then, we shall

show how empirical likelihood can be used with multi-stage designs. Unit non-response is
another important feature of survey data. We will also show how empirical likelihood can
accommodate unit non-response.

Godambe (1966) showed that under the design-based approach, the likelihood function
cannot be used for inference, because this function is flat. As solution to this problem,
Hartley and Rao (1968) showed that an empirical likelihood function can be used instead.
Owen (1988), Qin and Lawless (1994) developed the properties of this approach under a
semi-parametric framework (see also Owen, 2001). Most of the recent developments of
empirical likelihood in survey sampling can be classified into two groups: Berger and Tor-
res’s (2016) unequal probability empirical likelihood approach and Chen and Sitter’s (1999)
pseudo-empirical likelihood approach (see also Wu and Rao, 2006). There is also Chen and
Kim’s (2014) population-empirical likelihood approach based on Poisson sampling, which
will not be covered in this paper.

Customary approach in survey sampling focus on estimating totals, with well-defined
variance estimators. However, for more complex parameters, linearisation is often needed
for variance estimation. Linearisation consists in approximating a non-linear parameter
by a total of a linearised variable, which depends on parameters, which need to be es-
timated. In fact, linearisation is essentially based on inference about totals. There is no
unified linearisation approach, since different linearisation approaches have been developed.
Bootstrap is also used for variance estimation. However, asymptotic theory of bootstrap is
restricted to simple settings. Its properties are often limited to means, and solely based on
simulations. Jackknife is another approach which is closely related to linearisation. The
primary purpose of variance estimates is to construct confidence intervals. Empirical likeli-
hood tackles the problem of measuring the precision of an estimator from a different angle.
It focuses on confidence intervals which can be easier to obtain than variance estimates.
Empirical likelihood does not rely on linearisation, even when the parameter of interest is
not linear. The point estimator does not need to be normally distributed. It can handle
nuisance parameters, which are often treated as constants with standard approaches.

We consider a large class of parameters defined by estimating equations. Let θU ∈ Rdθ

be an unknown population parameter which is defined as the solution to∑
i∈U

e(yi, θ) = 0, (1)

where e(yi, θ) ∈ Rde (de > dθ) is a known function which defines θU . For example, θU
can be the coefficients of a generalised linear regression model, a mean, a total, a quantile,
etc. Under a design-based approach, the parameter θU is a vector of unknown population
values.
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2 Unequal probability empirical likelihood approach

Berger and Torres’s (2012; 2014; 2016) “empirical log-likelihood function” is defined by

`max(θ) := max
pi: i∈S

{
`(p) : pi > 0,

∑
i∈S

pi
πi
e(yi, θ) = 0,

∑
i∈S

pizi =
−→n
n

}
, (2)

where

`(p) :=
∑
i∈S

log(pi),

zi :=
(
zi1, . . . , zih, . . . , ziH

)>
,

zih :=

{
1 if i ∈ Uh,
0 otherwise,

−→n :=
∑
i∈S

zi =
(
n1, . . . , nh, . . . , nH

)>·
The zi are stratification variables and −→n is the strata allocation.

The key feature of (2) is the stratification constraint
∑

i∈S pizi = −→n n−1, which is not
motivated by moment conditions. This constraint is used to account for the sampling
design. We also have that the constraint involving the parameter contains the standard
sampling weights π−1i . Other approaches incorporate the information about the design
within `(p) (see Section 3). The function (2) reduces to Owen’s (1988) empirical log-
likelihood function when we have a single stratum and πi = n/N , ∀i ∈ U . The advantage
of (2) is that it can be used as a standard likelihood function for design-based inference.

The “maximum empirical likelihood estimator” θ̂ is defined as the vector which max-
imises `max(θ). Berger and Torres (2016) showed that θ̂ is also the solution to the sample
estimating equation ∑

i∈S

π−1i e(yi, θ) = 0· (3)

For example, when θU is a population mean, we have e(yi, θ) = yi − θNn−1πi and θ̂ is the
Horvitz and Thompson’s (1952) estimator. Hence, this estimator is a maximum empirical
likelihood estimator. Traditional point estimators can be re-derived under the empirical
likelihood framework. The key advantage is the self-normalising property which can be
used for testing and model building.

The function (2) can be used for testing, by using the profile likelihood principle, or the

self-normalisation property. Suppose we wish to test H0 : θ
(1)
U = θ

(1)
0 , against Ha : θ

(1)
U 6=

θ
(1)
0 , where θ

(1)
U ∈ Rd

θ(1) is a sub-parameter of θU ; that is, θU = (θ
(1)>
U , θ

(2)>
U )>. Oǧuz-Alper

and Berger (2016) showed that under H0,

r̂(θ(1)) := 2
{
`max(θ̂)−max

θ
(2)
U

`max(θ)
}

d−−→ χ2
d
θ(1)
, if θ(1) = θ

(1)
0 , (4)
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under with replacement stratified sampling, as n→∞, where χ2
d
θ(1)

denotes a χ2-distribution

with dθ(1) degree of freedom and θ = (θ(1)>, θ(2)>)>. Extensions to without-replacement
sampling are given in Section 2.3. The function r̂(θ(1)) is an empirical likelihood ancillary

ratio statistics. Thus, the p-value of the test H0 : θ
(1)
U = θ

(1)
0 is given by

p-value :=

∫ ∞
r̂(θ

(1)
0 )

χ2(x) dx, (5)

where χ2(x) is the density of the χ2-distribution with dθ(1) degree of freedom. Inverse testing

can be used to construct confidence intervals, when θ
(1)
U is unidimensional (dθ(1) = 1); that

is, the α-level confidence interval of a scalar θ
(1)
U is

ci(θ
(1)
U ) :=

{
θ(1) : r̂(θ(1)) 6 χ2

1(α)
}
,

where χ2
1(α) is the upper α-quantile of the χ2-distribution with one degree of freedom.

Note that r̂(θ(1)) is a convex non-symmetric function with a minimum at θ(1) = θ̂(1). This
interval can be found by using any root search method. This involves calculating r̂(θ(1))
for several values of θ(1). An algorithm to compute (4) can be found in Oǧuz-Alper and
Berger (2016, Appendix).

The ancillary statistics r̂(θ(1)) can be also used for model building, when comparing

two nested models. In this case, θU = (θ
(1)>
U , θ

(2)>
U )> is the parameter of the full model and

θ
(2)
U is the parameter of the reduced model. The p-value (5) gives the significance of the

relative fit.

Remark 2.1. Berger and Torres (2016) and Oǧuz-Alper and Berger (2016) used a different
parametrisation based upon mi := npiπ

−1
i ; that is,

Lmax(θ) := max
mi: i∈S

{∑
i∈S

log(mi) : mi > 0,
∑
i∈S

mie(yi, θ) = 0,
∑
i∈S

miπizi = −→n
}
· (6)

By substituting mi by npiπ
−1
i within (6), we obtain Lmax(θ) = `max(θ) +

∑
i∈S log(nπ−1i ).

Note that the quantity
∑

i∈S log(nπ−1i ) does not depend on θ and mi. Therefore (2) and (6)
give the same maximum empirical likelihood estimate. Straightforward algebra shows that
the same function (4) is obtained by using (2) or (6). The empirical log-likelihood function
(6) may be more suitable in a survey sampling context, because the mi are scale-loads which
are estimated by the weights π−1i within (3). However, we prefer using (2) in order to
simplify the comparison with other empirical likelihood approaches.

2.1 Side information

Consider a different parameter ϕU ∈ Rdϕ , which denotes some “side information” assumed
known without sampling error, and such that∑

i∈U

f(yi, ϕU) = 0, (7)
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where f(yi, ϕU) ∈ Rdf (df > dϕ) is a known vector-function, which is often called “auxiliary
information” in the survey sampling literature (e.g. Deville and Särndal, 1992; Lesage,
2011). For example, the most common situation in practice is to know a set of totals,
means or proportions from large external censuses or surveys. Examples can be found in
Imbens and Lancaster (1994), Berger and Torres (2016) and Oǧuz-Alper and Berger (2016).
Side information is the core of survey sampling theory (e.g. Kott, 2009). It can also be
found in the mainstream empirical likelihood literature (Owen, 1991, 2001, §3.10) and in
econometrics (Imbens and Lancaster, 1994).

Obviously, it will not be necessary to estimate ϕU because it is known. We shall treat
ϕU as a vector of constants, not as a parameter to estimate. The idea is to combine θU and
ϕU to improve the precision of θU . Let ψU := (θ>U , ϕ

>
U)> be the unique solution to∑

i∈U

g(yi, θ, ϕ) = 0, (8)

where

g(yi, θ, ϕ) :=
{
e(yi, θ, ϕ)>, f(yi, ϕ)>

}> ∈ Rdg (dg > dθ), (9)

with e(yi, θ, ϕ) defined as in (1). Now, we write e(yi, θ, ϕ) as a function of ϕ, because it
may indeed depend on ϕ, as in Example 2.1 below. Note that (8) implies (7).

Example 2.1. Suppose we wish to fit a logistic regression model with a known success
rate in the population. In this case, yi = (x>i , δi)

>, where xi is some covariates and δi is
the (dependent) binary variable specifying the successes and failures. Suppose that ϕU =
N−1

∑
i∈U δi is known. The estimating functions are

e(yi, θ, ϕ) = x>i δi − x>i exp(x>i θ)
{

1 + exp(x>i θ)
}−1

,

f(yi, ϕ) = δi − ϕ·

With side information, Berger and Torres’s (2016) “empirical log-likelihood function” is
defined by

`max(θ, ϕU) := max
pi: i∈S

{
`(p) : pi > 0,

∑
i∈S

pi
πi
g(yi, θ, ϕU) = 0,

∑
i∈S

pizi =
−→n
n

}
· (10)

It can be shown that the “maximum empirical likelihood estimator” θ̂ which maximises
(10), is also the solution to ∑

i∈S

m̂i(ϕU) e(yi, θ, ϕU) = 0,

where m̂i(ϕU) are the empirical likelihood weights defined by

m̂i(ϕU) := n p̂i(ϕU)π−1i , (11)

p̂i(ϕU) := n−1
{

1 + η(ϕU)>ci(ϕU)π−1i
}−1

,
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ci(ϕU) :=
{
f(yi, ϕU)>, πiz

>
i

}>·
Here, η(ϕU) is a Lagrangian parameter which is such that∑

i∈S

m̂i(ϕU) ci(ϕU) =
(
0>,−→n >

)>·
A modified Newton-Raphson algorithm (e.g. Polyak, 1987) can be used to compute η(ϕU).
Oǧuz-Alper and Berger (2016) showed that the self-normalisation property holds; that is,
(4) holds after replacing `max(θ) replaced by `max(θ, ϕU). Hence, (10) can be used for
testing, confidence intervals and model building.

2.2 Empirical likelihood versus calibration

Empirical likelihood should not be viewed as a particular case of calibration (Deville and
Särndal, 1992). Calibration relies on auxiliary information. On the other hand, empirical
likelihood can be used without auxiliary information. However, the calibration property
indeed holds with the empirical likelihood weights m̂i(ϕU) because the constrain within
(10) and (9) imply ∑

i∈S

m̂i(ϕU) f(yi, ϕU) = 0·

This property is the consequence of the maximisation of (2) and the fact that ϕU is con-
stant. Here, calibration is a property which is the results of a maximum likelihood principle.
In survey sampling literature, calibration is viewed from a different angle. It is mainly a
weighting procedure, rather than the consequence of the maximisation of likelihood func-
tion.

Calibration relies on a distance function between the sampling weights π−1i and the
calibrated weights (Deville and Särndal, 1992). This function is only used for weighting
and does not serve any other purpose, other than obtaining cosmetically acceptable weights.
The distance function is also disconnected from the mainstream statistical theory. With
empirical likelihood, we have an objective function `(p), rather than a distance function,
because `(p) does not depend on πi. This function is related to the likelihood principle in
mainstream statistics. This function is used for point estimation, for tests and confidence
intervals.

Empirical likelihood is based on a likelihood principle based on a maximisation of an
objective function. This gives point estimates and an ancillary statistics (4). Calibration
is just a procedure to obtain weights satisfying a given constraint. It is worth noticing
that the first works related to calibration (Hartley and Rao, 1969; Owen, 1991; Imbens and
Lancaster, 1994) are linked with likelihood principles.

2.3 Large sampling fractions and sampling without-replacement

The self-normalising property (4) is based on sampling with-replacement or sampling
without-replacement with negligible sampling fraction n/N , since with and without-replacement
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sampling are equivalent when n/N is negligible. In this section, we show how empirical
likelihood can be extended to accommodate non-negligible sampling fractions and sampling
without-replacement. This approach is limited to single stage sampling. An extension to
large sampling fraction with multi-stage sampling can be found in Berger (2018a).

The approach of Section 2.1 can still be used for point estimation, but the property
(4) does not hold. A solution is to use Berger and Torres’s (2016) “penalised empirical
likelihood function”, which is defined by

˜̀
max(θ, ϕU) := max

pi: i∈S

{˜̀(p) : pi > 0,
∑
i∈S

νi
πi
g(yi, θ, ϕU) = 0,

∑
i∈S

νizi =
−→n
n

}
,

where

˜̀(p) :=
∑
i∈S

log(pi)− n
∑
i∈S

pi + n,

νi := piqi−ψi are penalties, with qi := (1−πi)
1/2 , ψi := (qi−1)n−1. Note that νi is a function

of pi. The qi are Hájek’s (1964) finite population corrections. Under without-replacement
stratified sampling and Hájek’s (1964) asymptotic framework, Berger and Torres (2016)
showed that under H0 : θU = θ0, we have that

r̃(θ, ϕU) := 2
{˜̀

max(ϕU)− ˜̀max(θ, ϕU)
}

d−−→ χ2
dθ
, if θ = θ0, (12)

where

˜̀
max(ϕU) := max

pi: i∈S

{˜̀(p) : pi > 0,
∑
i∈S

νi
πi
f(yi, ϕU) = 0,

∑
i∈S

νizi =
−→n
n

}
·

Berger (2016) extended this Section’s approach to Rao et al.’s (1962) sampling design with
large sampling fraction. Tests and confidence regions can be derived from (12).

2.4 Multi-stage sampling

Berger (2018a) showed how empirical likelihood can be modified to accommodate multi-
stage sampling and non-response, when the primary sampling units (PSUs) are sampled
with unequal probabilities. The sample of PSUs can be stratified. Side information at
PSU-level or at a lower level can be taken into account. The key assumption is a negligible
sampling fraction at PSU-level.

The idea is to use a “PSU-level empirical likelihood function”, which can be found in
Berger (2018a). We not give the actual expression of this function, because the notations
are heavy due to the multi-stage structure of the design. Berger (2018a) gives the regularity
conditions under which the PSU-level empirical likelihood ratio statistics is ancillary as in
(4). In Berger (2018a), this empirical likelihood approach is applied to a logistic model
based on the 2006 PISA survey data (OECD, 2006) for the United Kingdom. The empirical
likelihood p-value (as in (5)) can be significant when näıve p-values are not significant.
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This assumption of negligible sampling fraction can be relaxed, but there is a price
to pay. Berger (2018a) showed how empirical likelihood can be modified to obtain an
ancillary empirical log-likelihood ratio statistic likelihood under multi-stage sampling with
large sampling fraction. Unfortunately, this involves calculating an adjustment factor based
on variance estimates. In Berger (2018a), a simulation study suggests that the effect of this
factor is small. Non-adjusted confidence intervals based on the PSU-level version of (4)
gives more conservative intervals, and even better coverages than the approach involving
an adjustment factor. Thus, this suggests that the more conservative confidence intervals
based on (4) may be preferable.

2.5 Unit non-response

Non-response is another important aspect which is covered by Berger (2018a). In order
to simplify the notation, we now consider a single-stage sampling. The general approach
involving multi-stage sampling and non-response can be found in Berger (2018a). Response
propensities can be used to adjust for missing data. This involves adding an additional
non-response constraint to the empirical likelihood function. Adding the non-response
constraint is equivalent of modifying the function (9); that is, (9) needs to be replaced by

g(yi, θ, λ, ϕ) :=
{
riPi(λ)−1e(yi, θ, ϕ)>, ξ>i {ri − Pi(λ)}, f(yi, ϕ)>

}>
,

where ri = 0 if the unit i is missing and ri = 1 otherwise. Here,

Pi(λ) := Ψ−1(ξ>i λ),

where Ψ−1 : R→ (0, 1] is the inverse of a link function Ψ (e.g. logit, probit, complementary
log-log). The vector λ is a non-response parameter and ξi denotes (non-missing) variables,
which defines the non-response mechanism. The function Ψ may describe re-weighting
classes, when the ξi are dichotomous variables describing categories. In this case, Pi(λ̂)
reduces to response rates. For point estimation, the sample estimating equation (3) reduces
to ∑

i∈S

m̂i(ϕU)
ri

Pi(λ)
e(yi, θ, ϕU) = 0, (13)∑

i∈S

m̂i(ϕU) ξ>i {ri − Pi(λ)} = 0· (14)

The quantities riPi(λ)−1 are “propensity-score adjustments”. The non-response parame-
ter λ is estimated from (14), which is the weighted estimating equation of a generalised
linear model. The parameter θU is estimated from the equation (13), which includes the
propensity-scores riPi(λ)−1.

Berger (2018a) showed that the independence between the response mechanism and
the sampling design implies that the empirical log-likelihood ratio statistic likelihood (4)
is ancillary and does not need to be adjusted for missing data. It is common practice
to treat the estimated response propensities as deterministic within variance estimators.
This may lead to shorter confidence intervals. Since the empirical log-likelihood ratio
statistic likelihood possesses the self-normalising property, the confidence intervals reflect
the estimation of these propensities.
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3 Pseudo-empirical likelihood

Chen and Sitter’s (1999) developed a different empirical likelihood approach called “pseudo-
empirical likelihood” (see also Wu and Rao, 2006; Rao and Wu, 2009). For simplicity, non-
response is not considered in this Section. The “pseudo-empirical log-likelihood function” is
defined by

Lmax(θ, ϕU) := max
pi: i∈S

{
L(p) : pi > 0,

∑
i∈S

pi g(yi, θ, ϕU) = 0,
∑
i∈S

pizi = 1H

}
, (15)

where 1H is the H × 1 unit vector,

L(p) := n
∑
i∈S

φi
πi

log(pi), φi :=
1

N

H∑
h=1

Nh

N̂h

zih,

Nh :=
∑

i∈U zih, N̂h :=
∑

i∈S zihπ
−1
i . The function (15) is not an empirical likelihood

function, because L(p) is different from `(p). This is the reason why the approach is
called “pseudo-empirical likelihood”. The function L(p) is adjusted to take the design into
account. The πi are incorporated within L(p) and φi takes into account of the stratifica-
tion. The stratification constraint

∑
i∈S pizi = 1H is also different from the stratification

constraint
∑

i∈S pizi = −→n n−1 used within (2).
Chen and Sitter (1999) showed that the “maximum pseudo-empirical likelihood estima-

tor”, which maximises Lmax(θ, ϕU), is the solution to

Ê(θ, ϕU) :=
∑
i∈S

ŵi(ϕU) e(yi, θ, ϕU) = 0, (16)

where ŵi(ϕU) are the pseudo-empirical likelihood weights which are different from (11) (see
Berger, 2018b, for an expression for ŵi(ϕU) using this paper’s notation). Hence, maximum
pseudo-empirical likelihood and empirical likelihood estimates are different. However, sim-
ulation studies in Berger and Torres (2016) shows that the differences are usually negligible,
as long as the same side information is used.

The main issue with the pseudo-empirical likelihood approach is that the pseudo-
empirical log-likelihood ratio statistic likelihood is not ancillary. To solve this problem,
Wu and Rao (2006) proposed to multiply this statistics by a “design effect”. However, we
will see that this also bring other issues. Suppose that dθ = de = 1; that is, we have a
scalar parameter θU . Let θ̂ be the maximum pseudo-empirical likelihood estimator. Wu
and Rao (2006) showed that under H0 : θU = θ0, we have that

r̂(θ, ϕU)PEL :=
2
{
Lmax(θ̂, ϕU)− Lmax(θ, ϕU)

}
Deff(θ0, ϕU)

d−−→ χ2
1, if θ = θ0, (17)

where Deff(θ0, ϕU) is called the “design effect” and is given by

Deff(θ0, ϕU) := Var{Ê(θ0, ϕU)}VarSRS{Ê(θ0, ϕU)}−1· (18)
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Here, Ê(θ0, ϕU) is defined by (16), when de = 1. The quantity Var{Ê(θ, ϕU)} is the

variance under the sampling design and VarSRS{Ê(θ, ϕU)} is the variance under simple
random sampling. This design effect is a population value that would need to be estimated.
We refer to Wu and Rao (2006), for more details about the estimation of (18).

Pseudo-empirical likelihood can be applied in principle to any complex sampling designs,
because the design effect takes the complexity of the design into account. Note that the
approach of Section 2 covers most of the designs used in practice. The property (4) is
limited to multi-stage design with small sampling fractions. The property (12) holds for
single stage design with large and small sampling fractions, under Hájek (1964) asymptotic
framework.

The function (17) has the disadvantage of relying on variance estimates, which can
be tedious to compute under complex sampling. The estimation of the design effect adds
some additional variability that may affect the convergence of r̂(θU , ϕU)PEL towards the
χ2 distribution. Berger and Torres (2016) showed via a series of simulation that coverages
of confidence intervals obtained from (4) and (12) are closer to the nominal value, than
coverages obtained from (17).

The main disadvantage of pseudo-empirical likelihood is that (17) is based on a scalar
parameter (dθ = de = 1). It cannot be used with multidimensional parameters, because

the design effect has to be scalar; that is, Ê(·) and the variances have to be unidimensional.
Thus, the pseudo-empirical log-likelihood ratio statistic likelihood cannot be used for multi-
dimensional regression parameters. It is recommended to use a traditional approach based
on linearised variances estimates computed from (16) and use pseudo-empirical likelihood
as a method to derive calibrated weights. This has modest advantages over traditional ap-
proaches. The key advantage of empirical likelihood is the self-normalising property which
does not hold with pseudo-empirical likelihood for multidimensional parameters. On the
other hand, the self-normalising property holds with multidimensional parameters under
the approach of Section 2.
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