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Supplementary Note 1: Multipole decomposition 

The relative radiating power of the multipole moments is calculated with the general 

expression: 
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that is derived to the 5th order of (1/c) in harmonic excitation ~exp(iωt). The terms in the 

expression are scattered power by: electric dipole, magnetic dipole, the interference 

between the electric and toroidal dipoles, toroidal dipole, electric quadrupole, magnetic 

quadrupole, and the correction due to the interference between the magnetic dipole and the 

first-order mean-square radius of the magnetic dipole distribution. 

 

The multipole moments are calculated from the current density distributions given by 

Radescu and Vaman. By integrating over the charge density (r)  or current density (r)J  

distribution with the unit cell, we are able to compute the multipoles in Cartesian coordinate 

as: 
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Here, we use 3 [r J] { }d r r        to represent 3 3[r J] [r J]d r r d r r         for 

simplicity and clarity by exchanging the subscripts of the two terms and α, β, γ = x, y, z. 

 

Supplementary Note 2: Interaction energy analysis 

We start from the basic Lagrangian in Eq. 1. The interaction term, amongst other things 
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describes the interactions between the TASRs in the metamaterial. Such interaction will be 

linear in excitation amplitude of each meta-molecule, and since we choose to describe the 

excitation of the whole metamaterial with a single dynamic variable 𝑋, the interaction term 

of the Lagrangian will be quadratic in excitation amplitude. The most general form is 

∫ 𝑑3𝑟(𝜌𝜙 − 𝑨. 𝑱)
𝑖𝑛𝑡𝑒𝑟−𝑟𝑒𝑠𝑜𝑛𝑎𝑡𝑜𝑟

=
𝛼𝑋2

2
+

𝛽𝑋𝑋̇

𝜔0
+

𝑋̇2

2𝜔0
2 . tt is then easy to show that 

Lagrangian in Eq. 1 with such interactions will lead to equation of motion: 

𝑋̈ = −Ω2𝑋,    Ω = √
𝜔0

2 + 𝛼

1 −
𝛾

𝜔0
2

≈ 𝜔0 + (𝛼 + 𝛾)/2𝜔0 
S2.1 

Next we consider the interaction terms in details. Figure 1 shows that each TASR of the 

metamaterial can be represented as two kinds of electric dipole, and one kind of magnetic 

dipole. We therefore compute the interaction term of the Lagrangian by considering the 

dipole-dipole interactions between the resonators of the metamaterial. 

 

The current density of a static electric dipole is 𝜌 = −∇.  𝒑𝛿(3) (1995 J. Phys. A: Math. 

Gen. 28 4565), with this the interaction between two electric dipoles becomes (static 

approximation):  

∫ 𝑑3𝑟(𝜌𝜙)
𝑖𝑛𝑡𝑒𝑟−𝑇𝐴𝑆𝑅

=  𝒑𝟏. 𝑬𝟐 =
3( 𝒓̂.𝒑𝟏)( 𝒓̂.𝒑𝟐)−𝒑𝟏.𝒑𝟐

4𝜋𝜖0𝑟3  S2.2 

 

where 𝒑𝟏 and 𝒑𝟐  are the two electrical dipole moments and  𝒓̂ is the vector connecting 

them. Without loss of generality we can assume that 𝒑 = 𝒂(𝒑)𝑋  (where 𝒂(𝒑)  is the 

polarizability constant), then:  

𝛼 = 𝛼0 ∑
3( 𝒓̂𝒊𝒋.𝒂(𝒑)

𝒊)(𝒓̂𝒊𝒋.𝒂(𝒑)
𝒋)−( 𝒂(𝒑)

𝒊.𝒂(𝒑)
𝒋)

4𝜋𝜖0𝑟𝑖𝑗
3𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙𝑠 𝑖,𝑗   S2.3 
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Similarly for magnetic dipole the current density is  𝑱 = 𝛁 × 𝑐𝒎𝛿(3)  

− ∫ 𝑑3𝑟𝑨. 𝑱 = −𝑐𝒎𝟏 . 𝑩𝟐 =
3( 𝒓̂.𝒎𝟏)( 𝒓̂.𝒎𝟐)−𝒎𝟏.𝒎𝟐

4𝜋𝜖0𝑟3   S2.4 

 

Magnetic dipoles are related to current density, the rate of change of charge density, 

whereas electric dipoles are related to charge density, it follows 𝒎 = 𝒂(𝒎)𝑋̇/𝜔0, and  

𝛾 = 𝛾0 ∑
3( 𝒓̂𝒊𝒋.𝒂(𝒎)

𝒊)(𝒓̂𝒊𝒋.𝒂(𝒎)
𝒋)−𝒂(𝒎)

𝒊.𝒂(𝒎)
𝒋

4𝜋𝜖0𝑟𝑖𝑗
3𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙𝑠 𝑖,𝑗   S2.5 

 

The above analysis only considered the dipole-dipole interactions between the TASRs. Yet 

the actual excitations induced in TASR by the incident light can be significantly more 

complex, requiring more multipole terms. Due to sub-wavelength size of the TASRs such 

extended multipole treatment is only necessary when considering the field scattered by 

TASRs at distance comparable to TASR size. tn practice, this implies that high-order 

multipole treatment is only necessary for nearest-neighbor interactions. To account for this 

we introduce an extra frequency shift Ω𝑛𝑒𝑎𝑟. The full expression for the resonant frequency 

of the metamaterial thus becomes: 

𝑋̈ = −Ω2𝑋,    Ω = √
𝜔0

2 + 𝛼

1 −
𝛾

𝜔0
2

≈ 𝜔0 +
(𝛼 + 𝛾)

2𝜔0
+ Ω𝑛𝑒𝑎𝑟 

S2.6 

 

Supplementary Note 3: Phase of electric and toroidal dipole 
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Figure S1. The retrieved phase information of electric and toroidal dipole for 

scenario S4. We see the opposite phase of electric and toroidal dipoles. 

 

Supplementary Note 4: Sample fabrication and measurements 

 

 

Figure S2. Measured Fano resonance frequencies of S1 to S4. (a) Measured transmission 

spectra of S1 to S4. The comparison of Fano resonance frequency of S1 to S4 obtained 

from experimental and simulated spectra. 
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The five samples were fabricated using the conventional flow of photolithography and 

thermal metallization. In the photolithography process, we performed the spin coating of 

photoresist, exposure under UV light with the predesigned mask and the development to 

get the complimentary photoresist pattern on the wafer. The samples would be finalized by 

the step of metallization and lifting off of the remaining photoresist through dissolving in 

acetone. 

A fiber laser based terahertz time-domain spectroscopy system was used to measure the 

transmission spectra of the metamaterial samples and the reference (intrinsic silicon) in dry 

nitrogen atmosphere. The time-domain waveform was obtained on the basis of the time-

resolved amplified voltage which is proportional to the amplitude of terahertz pulse. 

Fourier transform was performed to obtain the frequency domain spectra with both 

amplitude and phase information. The transmission amplitude spectra ( )t %  and phase 

spectra ( )   are calculated by ( ) ( ) ( )Sam Reft t t  % % %  where ( )Samt %  is the complex 

transmission signal of samples and ( )Reft %  is the signal of reference, respectively. As 

shown in Figure S2a, we can clearly resolve the Fano resonance shift using the 

experimental setup, and the frequency shift exactly follows the simulated trend as shown 

in Figure S2b. An overall blueshift of experimental frequencies relative to simulations is 

due to difference in material parameters and other capacitive and inductive effects in 

experiments that were ignored in simulations. 

 

Supplementary Note 5: Dipole-dipole interactions in S2 and S4 

Here we illustrate that TASR-to-TASR dipole interactions in the case of S2 and S4 
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metamaterials (Figures 2b and 2d respectively) suggest that resonant frequency of S4 

metamaterial should be higher than that of S2.  

 

Figure S3. Multipole analysis of metamaterials with supercells (S1-S4) consisting 

of four TASRs. The configurations of the horizontal electric dipoles (Px) and out-of-

plane magnetic dipole (Mz) for the case of four supercells with four unit cells (S1-S4) 

at Fano resonance. The first column shows supercells consisting of quad-TASR, 

whereas the dipole plots in columns 2 and 3 show 2×2 supercells, which translate to 

4×4 TASRs, in order to highlight emerging patterns. We denote the distance between 

the TASRs as Δ in our calculations. 

 

As discussed in the main paper, at trapped mode resonance, the response of a single TASR 

can be approximated by a vertical and horizontal electric dipole as well as out-of-plane 
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magnetic dipole (see Figure 1). The vertical electric dipole in all cases couples to incident 

radiation, and thus its orientation will be the same in all TASR (since the metamaterial is 

excited by uniform plane wave at normal incidence). What matters, therefore is the 

orientation of horizontal electric and out-of-plane magnetic dipoles, shown in Figure S3. 

tn case of metamaterials S2 and S4, the relative orientation of magnetic dipoles is the same 

up to 90-degree rotation, thus the only difference (for dipole-dipole interactions) is in the 

horizontal electric dipoles. 

 

The S2 metamaterial corresponds head-to-tail orientation of horizontal electric dipoles 

within each row (low interaction energy), whilst S4 has head-to-head and tail-to-tail 

orientation within rows (high energy). Within each column S2 has alternating orientation 

of electric dipoles (low energy), whilst S4 has uniform orientation of electric dipoles in 

each column (high energy). Therefore, the dipole-dipole interaction energy in S4 should be 

higher than in S2 suggesting that its resonant energy should be higher (i.e. high 𝛼 implies 

high Ω  in Equation 2, given the same 𝜔0  and 𝛾 ), but in experiments we observe the 

opposite effect, suggesting that the response of TASR metamaterials is dominated by 

nearest-neighbor interactions (Ω𝑛𝑒𝑎𝑟 overrides 𝛼). 

 

Supplementary Note 6: Optimization of asymmetry  
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Figure S4. Resonance performance of individual Fano resonances in S1, S2, S3, and S4 with 

different degree of asymmetry. (a) The evolution of resonance energy shifting. The Fano 

resonance evolution of (b) quality factor and (c) magnitude. (d) The FOM evolution of the 

individual Fano resonance. 

 

The asymmetric TASR also provides another degree of freedom to tailor the scattering 

strength by changing the resonator asymmetry degree characterized by the parameter d. 

The lower asymmetry (smaller d) would give rise to a weaker scattering by the electric 

dipole and thus a sharper resonance with lower resonant intensity (characterized by the 

peak to dip intensity of the resonance). We have investigated the performance of the Fano 

resonances with the supercells by varying d from 5 μm to 20 μm. As shown in Figure S4a, 

we could observe the evolution of the individual resonance energy levels for different 

supercell arrangements S1, S2, S3 and S4. The overall resonance energy decreases with a 
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larger asymmetry degree which is ascribed to the weakened scattered power originating 

from the decreased power of magnetic dipole (spin) by the individual resonator. The other 

features to characterize the resonance properties are the quality factor and resonance 

intensity. As shown in Figure S4b, the destructive interference between electric and toroidal 

dipole in S4 clearly enhance the Q factor by suppressing the radiative losses. The resonance 

intensity is also important for applications in order to record the spectral signature, and it 

is the scattered power of electric dipole that dominates the intensity of the Fano resonance. 

Therefore, the larger asymmetry would give rise to the stronger resonance intensity due to 

the stronger electric dipole as shown in Figure S4c. However, some real applications would 

require both high quality factor and large resonance intensity, and thus we estimate the 

tradeoff between these two parameters. We introduce the parameter, Figure of Merit (FOM), 

to describe the tradeoff that is defined as FOM Q I  , where Q is the value of quality 

factor and ΔI is the Fano resonance intensity. As shown in Figure S4d, S4 provides the best 

performance due to the destructive interference between toroidal and electric dipole 

enabling a much improved Q factor. 

 

Supplementary Note 7: Experiment limitations 

1. We ignored the dispersion of metal and applying a DC value (3.56×107 S/m) for 

aluminum in simulations. This would not be a problem when the radiative loss of the 

resonator array is relatively large, for example in S1 to S3, where we could observe the 

similar values of Fano quality factors between simulations and experiments. In the 

reference (Adv. Opt. Mater. 4 (3), 457-463, 2016), it was experimentally demonstrated that 

a DC value of metal excellently reproduces the real experimental scenario in terahertz 



11 
 

regime. However, when it comes to an extreme scenario in S4 where the radiative loss is 

largely suppressed, the weak Ohmic loss from the metal plays a crucial role in determining 

the Fano lineshape. In order to keep consistency, we used the same DC conductivity and 

simulation approach to simulate all the samples, and this would lead to the difference 

between simulation and experiment for S4. 

2. We assumed an infinite resonator array by applying the periodic boundary condition in 

simulations, however, in real experiments, finite resonators (~1,5000 resonators) were 

probed by the terahertz beam with a beam spot of 3.5 mm diameter in the beam waist. 

Although less radiation loss would be expected with more coherent resonators excited 

(Phys. Rev. Lett. 104, 223901 (2010)) due to the coherent resonance nature of Fano 

resonance, the number of excited resonators was enough for the quality factor to be 

saturated with weak radiation loss. However, fabrication defects were inevitable which 

would largely increase the radiation loss, thus resulting in a relative low quality factor in 

experiments. 

3. The loss of materials in the metamaterial system also affects the spectral quality. 

Although intrinsic material losses were considered in simulations to better reproduce the 

exact experimental scenario, inevitable scattering losses (conductivity) due to rough 

surface of metal resonators and substrates (loss tangent) will largely affect the spectral 

quality, especially for high quality factor resonance mode (Adv. Opt. Mater. 4 (3), 457 

(2016)). Although we used the high-resistivity silicon (>5,000 Ohm-cm) as substrate and 

aluminum (σ = 3.56×107 S/m) to fabricate the resonators in order to ensure low material 

losses in experiments, the scattering loss due to surface roughness reduces quality factor of 
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the measured spectra, resulting low resolution of the modes of S1 to S3 in the spectrum of 

S5. 

 

Supplementary Note 8: Equivalence to Ising model 

Here we will use the formalism of Hamiltonian mechanics to establish an analogy between 

the TASR metamaterial driven at Fano resonance, and the tsing model. The interaction part 

of the Hamiltonian for the tsing model is (D. V. Shroeder, “Thermal Physics” 2000, by 

Addison Wesley Longman): 

1 * ,

N N

Is i

i j

ji

i

H B s J s s


      S8.1 

where sums run over N particles. Above B is the applied magnetic field, 𝑠𝑖 = ±1 /2 is 

projection of the spin along the z-axis, μ is the magnetic dipole moment of a particle, and 

J is the coupling parameter that encodes the energy between neighboring  particles. The ‘*’ 

in the second sum denotes that it sums interactions of the nearest neighbors only. 

 

Next, we consider the TASR metamaterial at Fano resonance. Each TASR is represented 

by a single dynamic variable xi and is associated with a simple harmonic oscillator with 

resonant frequency (ω0). The metamaterial is placed into an electromagnetic cavity, which 

supports even- and odd-parity electromagnetic plane-waves, described by the vector 

potential variables Ae and Ao respectively. Here we assume that electromagnetic waves of 

only one frequency (ω), and one polarization ( 𝒙̂) are involved, and that waves propagate 

along the z-axis. The electric (E) and magnetic (B) fields are then given by: 

𝑬𝒄𝒂𝒗 = 𝒙̂(−𝐴̇𝑒 sin 𝑘𝑧 + 𝐴̇𝑜 cos 𝑘𝑧)  S8.2 
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𝑩𝒄𝒂𝒗 = 𝒚̂𝑘(𝐴𝑒 cos 𝑘𝑧 + 𝐴𝑜 sin 𝑘𝑧) S8.3 

With some standard manipulations one can show that the Hamiltonian for the metamaterial 

cavity system must be: 

2 2 2

0
0

2 2 2 2 2 2

( )
2

1
( ( ) )
2

i i
i ij i j ij i j ij i j

i i i j

e e o o o o

M

e

M

e

p x
H ax A x x x p p p

P A P A A F A F 


  






    

     

  
 S8.4 

where 𝑃𝑒,𝑜  are conjugate momenta of 𝐴𝑒,𝑜 . Constants 𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝜁𝑖𝑗  describe interactions of 

TASR loops with each other. Constants 𝜎 is related to the size of the considered cavity. The 

effect of the incident THz-waves is accounted for by the external driver terms: 𝐹𝑒 and 𝐹𝑜.  

 

Clearly, the second and third terms of the Hamiltonian above map directly into the standard 

tsing model. The incident radiation now takes the role of the applied magnetic field in the 

original tsing model. The change in temperature in the case of TASR metamaterial 

corresponds to change of geometry, whilst the microstates correspond to the different 

collective modes supported by the metamaterial under plane-wave excitation. For any 

specific geometry, under plane-wave illumination, the TASR metamaterial can support 

several collective excitations (corresponds to microstates) with certain amplitude 

(corresponds to probability amplitude). 

 

Order parameter 

Order parameter is often a starting point for the analysis of a thermodynamic system. tt is 

commonly a number that is zero in one phase of the system and becomes nonzero as the 

phase of the system changes. tn tsing model, the order parameter is the magnetization per 
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spin of the system (C. Kittel, “Thermal Physics”, 1980, W. H. Freeman; Second edition 

edition). Here we shall suggest a suitable order parameter analogue for the TASR 

metamaterial. 

tn principle, by analogy with tsing model, the order parameter for TASR metamaterial 

should be related to the excitations of individual TASRs, however such excitations can only 

be observed in near-field measurements (due to sub-wavelength size of the metamaterial 

lattice). A more suitable parameter for far-field observations is the coherence area of the 

reflected light (J. W. Goodman “Statistical Optics” 2000 JOHN WtLEY  &  SONS, tNC). 

Coherence area can be thought of the area of the source, here TASR metamaterial (in 

reflection), that radiates as a plane-wave source. tf all the TASRs of the metamaterial 

oscillate in phase, the coherence area of the emitted light will include all of metamaterial. 

tf all the TASRs in the metamaterial oscillate randomly, coherence area will be minimized. 

Since, the coherence area of the light reflected by the metamaterial will depend on the 

coherence area of the input light, we propose the following order parameter: 

𝜂 = (𝒜𝑟 − 𝒜𝑖)/𝑝2  S8.5 

where 𝒜𝑟  is the coherence area of the reflected light, 𝒜𝑖   is the coherence area of the 

incident light and 𝑝2 is the metamaterial unit cell area. Clearly the order parameter has to 

be measured with spatially incoherent incident light, and will depend chiefly on the 

geometry of the sample rather than the properties of incident radiation. We note in passing 

that a somewhat similar experiment has already been conducted on TASR-like 

metamaterials which display cooperative resonant response. tn (V. A Fedotov, J. Wallauer, 

M. Walther, M. Perino, N. Papasimakis and N. t. Zheludev, “Wavevector Selective 

Metasurfaces and Tunnel Vision Filters”, Light: Sci. App. 4, e306 (2015)) such 
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metamaterial was used to rectify the wavefront of the incident radiation, by filtering out 

components of the incident light which did not correspond to normally incident plane wave 

radiation. 

 

Entropy 

Due to linearity of Maxwell’s equations, and due to discrete nature of the metamaterial (i.e. 

each unit cell is finite in size), the equations of motion of the TASR metamaterial can 

always be recast into the form of a matrix equation: 

(
𝑥̈1

𝑥̈2

⋮
) = 𝑴. (

𝑥1

𝑥2

⋮
) + 𝒃  S8.6 

where matrix 𝑴 contains information on dynamics of the system (resonant frequencies, 

strength of coupling between individual TASRs etc), whilst vector 𝒃, would contain the 

boundary conditions and the external driver. We will assume that harmonic solution does 

exist and that, therefore vector 𝒃  lies in the space spanned by the 𝑁𝑏  orthonormal 

eigenvectors of  𝑴 (𝑁𝑏 ≤ 𝑁; where 𝑁 is the number of unit cells in the metamaterial). The 

number of accessible modes in the metamaterial will therefore be 𝑁𝑏. One can use this to 

get entropy of the excitation in the TASR metamaterial: 

𝑆 = −𝑘𝑏 ∑ 𝑝𝑞log
𝑁𝑏
𝑞=1 𝑝𝑞  S8.7 

where 𝑘𝑏 is the Boltzmann constant. The sum above runs over the accessible orthonormal 

eigenstates of matrix 𝑴. The ‘probability’ of each eigenstate corresponds to the ratio of the 

energy in the given eigenstate compared to full energy stored at the metamaterial. 

 

Thermodynamic energy 
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Another quantity necessary for the thermodynamic analogy is thermodynamic energy 

stored in the system (𝑈). The actual electromagnetic energy captured by the metamaterial 

is not suitable since it would depend on the intensity of the incident radiation, whilst other 

quantities we have defined thus far do not. 

tn defining the entropy we have assumed that the response of the metamaterial will be 

decomposable into 𝑁𝑏  orthogonal eignemodes, which will operate as harmonic oscillators. 

tt is relatively simple to prove that given two simple harmonic oscillators described by 

Hamiltonians: 

𝐻𝑖=1,2 =
𝑝𝑖

2

2
+ 𝜔𝑖

2 𝑥𝑖
2

2
  S8.8 

The time-averaged energy stored in them, i.e. the time-average of the Hamiltonian, will be 

〈𝐻𝑖〉 = 𝜔𝑖
2〈𝑥𝑖

2〉 . Thus assuming that the amplitude of oscillations of the two harmonic 

oscillators is equal, the oscillator storing more energy would be the one with higher 

resonant frequency, and the scaling is 〈𝐻𝑖〉 ∝ 𝜔𝑖
2 . We therefore propose to define the 

thermodynamic energy as: 

𝑈 ∝  Ω2  S8.9 

where Ω is the frequency of the Fano resonance. This approach agrees with the results in 

the Supplementary Note 2, where the strength of coupling between different TASRs, i.e. 

the magnitude of the interaction energy, has been shown to affect the resonant frequency 

of the Fano resonance. 

 

Temperature 

The temperature of our analogue of the tsing model can then be defined through the entropy 

and energy. Conventionally, the temperature is related to these two quantities through (C. 
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Kittel, “Thermal Physics”, 1980, W. H. Freeman; Second edition edition): 

1

𝑇
= (

𝜕𝑆

𝜕𝑈
)

𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑒𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
  S8.10 

tn case of TASR metamaterial, it follows that the “temperature” should be: 

𝜃𝑇𝐴𝑆𝑅 = 𝜅 (
𝜕𝑆

𝜕Ω2)⁄ = −𝑘𝑏𝜅 (
𝜕 ∑ 𝑝𝑞log

𝑁𝑏
𝑞=1 𝑝𝑞

𝜕Ω2 )⁄   S8.11 

where 𝜅 is a constant with suitable units, 𝑆 is entropy and Ω is the resonant frequency of 

the Fano mode. Since 𝜃𝑇𝐴𝑆𝑅 is related to changes in resonant frequency of the metamaterial, 

it must be related to the physical configuration of the TASR metamaterial, i.e. change in 

“temperature” can only be achieved through change in geometry or change in ambient 

refractive index.  Unlike with order parameter the quantities required for 𝑇𝑇𝐴𝑆𝑅 should be 

measured under plane-wave illumination in order to effectively engage the Fano mode. 

 

 

Supplementary Note 9: Quantitative comparison of interactions in TASR supercell 

metamaterials  

Arguments relying on interaction energy have played a large role in our discussion in this 

work. Here we shall provide a simple way of quantifying the interaction energy. tn line 

with standard notions, we take the full time-averaged energy of the time-harmonic 

electromagnetic system as (assuming unit relative permeability):  

     2 23 * * 3 1

0 0

1 1

2 2
rU d r E D H B d r E H              S9.1 

The interaction energy of the metamaterial is the part of the energy that depends on the 

distance between the unit cells. By simulating the response of the metamaterials and 

integrating (numerically) the expression in Eq. S9.1, and using the polynomial series in 
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unit cell size (period of a single resonator, p), one can get the series:   

1 2 3 42 3 4

1 1 1 1
...

p
U U U U U U

p p p p
        S9.2 

where 
p

U  is the average of the interaction energy for the considered unit cell sizes. The 

electromagnetic field due to dipoles, both electric and magnetic, decays as 1st -3rd power 

with the interaction distance. One can therefore define the dipole-dipole interaction energy 

as: 

1 2 32 3

1 1 1
dipoleU U U U

p p p
    S9.3 

and the nearest-neighbor interaction energy as the remaining part: 

nn dipolep
U U U U    S9.4 

That is, the nearest-neighbor interaction energy will be the ‘error’ in fitting (
p

U U ) with 

power series  1 2 32 3

1 1 1
U U U

p p p
  . 

Having introduced the theory, we now move to numerical results. tn order to estimate the 

range of interaction energy, we performed the simulations of S4 by changing the unit cell 

size p from 75 μm to 85 μm with step size of 1 μm. The full energy (S9.1) for metamaterials 

with different unit cell sizes is shown in Figure S5. 
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Figure S5. The procedure for finding the energy U. (a)-(b) show the combined unit cell of 

the TASR. The energy is obtained by integrating Eq. S9.1 over the volume, shown by the 

shaded area in (b). The volume fills the whole unit cell and stretches for a full free-space 

wavelength along the third dimension. (c) Shows the simulation results of the energy 

obtained for different periods (p), for the TASR metamaterials. 

 

The dipole and nearest-neighbor interaction energy was obtained in the following fashion. 

First, the time-averaged energy in the metamaterial, as a function of the reciprocal 

metamaterial period p from 75 μm to 85 μm with step size of 1 μm, was numerically 

simulated as shown in Figure S5c. Cubic fit to the simulated energy with different lattice 

periods was performed to obtain U1, U2, and U3 using Eq. S9.3. These coefficients were 

then used to obtain the dipole interaction energy (Udipole) for the representative 
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metamaterial period of p=80 μm. Finally, the dipole and the nearest-neighbor interaction 

energy was computed using the chosen period and the polynomial fitting coefficients, 

according to Eq. S9.3 and S9.4. The nearest-neighbor interaction energy acts as the ‘error’ 

in fitting (
p

U U ) with power series  1 2 32 3

1 1 1
U U U

p p p
  . The interaction energy for 

the dipole and nearest-neighbor is shown in Figure S6. As one can see, the nearest-neighbor 

interactions turn out to be of the same order as the dipole interactions.  

 

Figure S6. The interaction energy for dipole (a) and nearest-neighbor (b) interactions as 

defined in Eq. S9.3 and Eq. S9.4 for single resonator spacing at p=80 μm. 

 


