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Abstract

Factorial characters of each of the classical Lie groups have recently been
defined algebraically as rather simple deformations of irreducible characters.
Each such factorial character has been shown to satisfy a flagged Jacobi-Trudi
identity, thereby allowing for its combinatorial realisation in terms of first a
non-intersecting lattice path model and then a tableau model. Here we pro-
pose algebraic definitions of factorial Q-functions of the classical Lie groups
and translate these definitions into combinatorial realisations in terms of non-
intersecting lattice path and primed shifted tableaux models. By way of some
justification of our chosen definitions, it is then shown that our factorial Q-
functions satisfy Tokuyama-type identities and relate some special case of these
to other identities that have appeared in the literature.

1 Introduction

In the last 15 years, Tokuyama identities [41] have been the subject of intense research
activity, with a host of papers appearing from both a number theoretic and a combi-
natorial perspective (see for example [30, 9, 11, 1, 2, 3, 12, 5, 29]).Recent interest has
focused on extending these results to the factorial domain (e.g. [4, 15], among others),
and we advance this pursuit by continuing our recent work [16] on factorial characters
of the classical Lie groups, defining corresponding factorial Q-functions and deriving
Tokuyama identities that involve these characters.

Before introducing our definition of factorial Q-functions for the classical groups
and embarking on their study, it is instructive to prepare the ground with a summary
of the definitions and some properties of factorial characters of these groups.

Let n ∈ N be fixed. Let x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn) with xi = x−1
i

for i = 1, 2, . . . , n, and let λ = (λ1, λ2, . . . , λn) be a partition of length `(λ) ≤ n. Then
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each of the classical groups G = GL(n,C), SO(2n + 1,C), Sp(2n,C), and O(2n,C)
possesses a finite dimensional irreducible representation V λ

G of highest weight λ whose
character may be denoted by chV λ

G (z) where z is a suitable parametrisation of the
eigenvalues of the group elements of G, namely x, (x,x, 1), (x,x) and (x,x), respec-
tively. Equivalently, these characters may be identified with irreducible characters
gλ(z) of the corresponding Lie algebras g = gl(n), so(2n + 1), sp(2n), and o(2n),
where each parameter xi in z is to be interpreted as a formal exponential eεi of a
Euclidean basis vector εi in the weight space of the Lie algebras g. Accordingly we
may write

chV λ
GL(n,C)(x) = glλ(x) ; chV λ

SO(2n+1,C)(x,x, 1) = soλ(x,x, 1) ;

chV λ
Sp(2n,C)(x,x) = spλ(x,x) ; chV λ

O(2n,C)(x,x) = oλ(x,x) . (1.1)

Explicit formulae for these characters gλ(z) as ratios of determinants are well
known, see for example [25, 6]. The passage to factorial characters gλ(z|a) involves
an infinite sequence of factorial parameters a = (a1, a2, . . .) and is effected by replacing
non-negative powers xki and xki by factorial powers:

(xi|a)k =

{
(xi + a1)(xi + a2) · · · (xi + ak) if k > 0;

1 if k = 0,
(1.2)

(xi|a)k =

{
(xi + a1)(xi + a2) · · · (xi + ak) if k > 0;

1 if k = 0,
(1.3)

in a manner explained for each g in [16]. If we introduce hgm(z|a) = g(m)(z|a) for
all m ≥ 0 with hgm(z|a) = 0 for m < 0, then it has been shown that each factorial
character satisfies a flagged Jacobi-Trudi identity of the form

gλ(z|a) =
∣∣hgλj−j+i(z(i)|a)

∣∣ , (1.4)

where the precise definition of z(i) for each g is given in Theorem 4.
These results amount to a factorial generalisation of the flagged Jacobi-Trudi for-

mulae for characters of the classical Lie groups first provided by Okada [31]. Inspired
in part by preliminary presentations [14, 15] of the results given here, Okada [32]
has also obtained by slightly different means not only the same flagged Jacobi-Trudi
identities, but also flagged dual Jacobi-Trudi and unflagged Giambelli identities for
all the factorial characters gλ(z|a).

Generating function techniques have been used in [16] to interpret each term
contributing to hgm(x|a) as a suitable weighted sequence of edges constituting a path
in a g-dependent lattice. Each determinant of (1.4) may then be evaluated as a
signed sum of contributions from n-tuples of such lattice paths that can be reduced
to a sum over n-tuples of non-intersecting lattice paths by means of the Lindström-
Gessel-Viennot Theorem [24, 7, 8]. Moreover, for each g, a bijective correspondence
between such n-tuples and tableaux leads to a combinatoral realisation of factorial
characters of the form

gλ(z|a) =
∑
T∈T gλ

2ζ(T )
∏

(i,j)∈Fλ
wgt(Tij) , (1.5)
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with the sum taken over a set T g of tableaux T consisting of arrays of entries in a
Young diagram F λ of shape λ. The entries, taken from alphabets appropriate to each
g, are subject to a variety of conditions such as the semistandardness condition that
applies in the gl(n) case. The sets T g coincide with familiar sets of classical group
tableaux [25, 21, 22, 40]. Here wgt(Tij) is the factorial weight of the entry Tij at
position (i, j) in F λ and generally takes the form of (xk + a`) and (xk + a`) for some
k and `. The factor 2ζ(T ) is peculiar to the o(2n) case.

In order to go further and arrive at appropriate Tokuyama-type identities for all
such characters, analogous to those obtained already for the factorial gl(n) case [4, 13],
it is necessary to generalise classical Schur Q-functions [35, 38] not only from the
general linear case to that of the other classical Lie groups, but also to factorial ver-
sions of these. In the case of gl(n), factorial Schur Q-functions were introduced by
Ivanov [18, 19] based on an algebraic definition due to Okounkov but given a com-
binatorial interpretation by Ivanov in terms of primed shifted tableaux. However,
these factorial Q-functions are not general enough for our purposes since they do not
involve enough independent parameters to encompass the non-factorial Q-functions
that were introduced in [11]. These were defined in terms of primed shifted tableaux
for both the gl(n) and sp(2n) cases, and were shown to give rise to Tokuyama type
identities by purely combinatorial arguments. Here, in Section 3, we go further by
defining factorial Q-functions Qg

λ(w; z|a) for each g. This is done algebraically in
terms of determinants whose elements are simple multiples of supersymmetric fac-
torial q-functions qgm(w; z|a), which are themselves defined by means of generating
functions. These algebraic definitions of Qg

λ(w; z|a) and qgm(w; z|a) are converted into
combinatorial expressions in Section 4 by following the same procedure as that used
for gλ(z|a) and hm(z|a) in [16], that is proceeding by way of a lattice path model,
as introduced in the non-factorial gl(n) case by Okada [30], and bijections this time
between `(λ)-tuples of non-intersecting lattice paths and sets Pgλ of primed shifted
tableaux P of shifted shape SF λ with λ a strict partition, of length `(λ) all of whose
parts are distinct. This culminates in our first main result, namely Theorem 13 which
takes the form:

Qg
λ(w; z|a) =

∑
P∈Pgλ

∏
(i,j)∈SFλ

wgt(Pij) . (1.6)

The conditions on P ∈ Pgλ are provided for each g, and the weight, wgt(Pij), of each
entry Pij is tabulated1.

The original Tokuyama identity [41] expressed a sum over suitably weighted strict
Gelfand-Tsetlin patterns, indexed by strict partitions λ = µ+δ with µ a partition and
δ = (n, n − 1, . . . , 1), as a product of a deformation of Weyl’s denominator formula
for gl(n) and the Schur function sµ(x). When the strict Gelfand-Tsetlin patterns
are translated into the language of tableaux they coincide with those shifted primed
tableaux P ∈ Pgl(n)

λ having no primed entries on the main diagonal. Allowing for

1We take this opportunity to point out that in [14] entries Pij = 0, aj−i and a horizontal edge
were omitted from the three empty boxes in the last row of (6.2), and in Figure 6 the tableau entry
0 should have been given a weight a2 rather than 1 − a2 and associated with a horizontal rather
than a diagonal edge in LP (P ).
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this, in our current notation Tokuyama’s formula is none other than the identity

Qgl
λ (x; tx|0) =

∏
1≤i≤j≤n

(xi + txj) glµ(x|0) , (1.7)

where tx = (tx1, tx2, . . . , txn) and 0 = (0, 0, . . .).
Subsequently numerous Tokuyama-type identities have appeared in the litera-

ture, including those appropriate to other classical Lie groups. In particular, in the
sp(2n) case a symplectic Tokuyama identity exactly analogous to (1.7) has been de-
rived [9, 10] within various intimately related settings, namely those of primed shifted
tableaux, strict Gelfand-Tsetlin patterns, alternating sign matrices and square ice
models. Bijective tableaux based proofs of both the gl(n) and sp(2n) Tokuyama-type
identities were provided in [11] in which the parametrisation was generalised through
replacing tx by y. Equivalent generalisations in the gl(n) case have been obtained
by Brubaker et al. [1, 2] in a quite different manner through the application of the
Yang-Baxter equation to the partition functions, Z(SΓ

λ ) and Z(S∆
λ ), of a six-vertex

square ice model assigned different Boltzmann weights. Further extensions of this
approach by Brubaker and Schultz [3] have led to the conclusion that the partition
functions, Z(Mλ), of six-vertex ice models, Mλ, corresponding to gl(n), so(2n+ 1),
sp(2n) and so(2n) are each divisible by a deformation, Z(Mδ), of the corresponding
Weyl denominator, where λ = µ + δ. While in the cases gl(n) and sp(2n) these re-
sults are Tokuyama-type identities, in the sense that the quotient Z(Mλ)/Z(Mρ) is
a trivial multiple of the irreducible character of gl(n) and sp(2n) of highest weight µ,
the same is not the case for so(2n+ 1) or so(2n), where in the case of so(2n+ 1) this
quotient has been shown to be a certain sum of irreducible characters of gl(n) [13]. On
the other hand Friedberg and Zhang [5] have succeeded in deriving a Tokuyama-type
identity appropriate to so(2n+1) involving a quotient that is an irreducible character
of so(2n+ 1). They did so by working in a Gelfand-Tsetlin framework and using an
inductive formula for the Whittaker coefficients of an appropriate Eisenstein series.
In fact, using as they do the metaplectic cover of so(2n + 1) their result applies not
only to ordinary characters of highest weight λ, with λ a partition, but also to spin
characters of highest weight λ, with the parts of λ all half odd integers in our basis.

In a quite different approach, the factorial Schur Q-functions that were introduced
by Ivanov [18, 19] enabled Ikeda, Mihalcea and Naruse [17] to derive rather easily a
special case, namely t = 1, of the following factorial version of Tokuyama’s identity:

Qgl
λ (x; tx|a) =

∏
1≤i≤j≤n

(xi + txj) glµ(x|a) . (1.8)

Within the context of a six-vertex ice model based on free-fermionic Boltzmann
weights and the use of the Yang-Baxter equation an equivalent result involving fac-
torial characters of gl(n) was derived for its partition function by Bump, McNamara
and Nakasuji [4]. Again within the context of a free-fermion model Motegi [29] has
derived for its wavefunction under certain boundary conditions an analogous result
involving factorial sp(2n) characters, using arguments introduced by Ivanov [20] in
the non-factorial case. The precise result (1.8) was derived in [13] by quite differ-
ent means using a definition of Qgl

λ (x; y|a) in terms of the primed shifted tableaux
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P ∈ Pglλ . We are now in a position to generalise this to the case not only of sp(2n)
but also of so(2n+ 1) and o(2n), treating all cases in a uniform manner.

This is done in Section 5, where it is shown that for each strict partition λ = µ+δ
with δ = (n, n − 1, . . . , 1) and µ a partition of length `(µ) ≤ n, our definitions
of factorial characters and Q-functions are such that they satisfy a Tokuyama-type
identity. The derivation is algebraic and leads to our second main result, Theorem 14,
which for all g takes the form:

Qg
λ(w; z|a) = Qg

δ(w; z) gµ(w; z|a) (1.9)

where Qg
δ(w; z) is a simple product of factors independent of the factorial parameters

a.
In view of what follows, it is convenient to point out here that, unless otherwise

stated, we not only let

x = (x1, . . . , xn),y = (y1, . . . , yn),x = (x1, . . . , xn),y = (y1, . . . , yn), (1.10)

but also let

x(d) = (xd, . . . , xn),y(d) = (yd, . . . , yn),x(d) = (xd, . . . , xn),y(d) = (yd, . . . , yn), (1.11)

for 1 ≤ d ≤ n.
Following Macdonald [26] it is also useful to introduce here the shift operator τ

defined in such a way that

τ ra = (ar+1, ar+2, . . .) for any integer r and any a = (a1, a2, . . .) . (1.12)

This necessarily extends the sequence a = (a1, a2, . . .) of factorial parameters to a
doubly infinite sequence (. . . , a−2, a−1, a0, a1, a2, . . .).

2 Ordinary and factorial characters

The first of our characters, glλ(x), in (1.1) is none other than the Schur polynomial
sλ(x) which has a well known definition as a ratio of alternants [25, 27]. Thanks to
Weyl’s character formula for the corresponding Lie algebras each of the characters
gλ(x) can be expressed in a similar form [6]:
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Definition 1 For any partition λ = (λ1, λ2, . . . , λn) of length `(λ) ≤ n let

glλ(x) =

∣∣∣xλj+n−ji

∣∣∣∣∣xn−ji

∣∣ ; (2.1)

soλ(x,x, 1) =

∣∣∣xλj+n−j+1/2
i − xλj+n−j+1/2

i

∣∣∣∣∣∣xn−j+1/2
i − xn−j+1/2

i

∣∣∣ ; (2.2)

spλ(x,x) =

∣∣∣xλj+n−j+1
i − xλj+n−j+1

i

∣∣∣∣∣xn−j+1
i − xn−j+1

i

∣∣ ; (2.3)

oλ(x,x) =
η
∣∣∣xλj+n−ji + x

λj+n−j
i

∣∣∣
1
2

∣∣xn−ji + xn−ji

∣∣ with η =

{
1
2

if λn = 0;

1 λn > 0.
. (2.4)

where all the determinants, both here and hereafter, are n× n, and we have specified
in each case the element in the ith row and jth column.

As anticipated in the Introduction, the factorial characters gλ(z|a) of the classical
Lie algebras g are obtained from gλ(z) by replacing various xki and xki by (xi|a)k and
(xi|a)k, respectively. This amounts to the adoption of the following definition [16]:

Definition 2 For any partition λ = (λ1, λ2, . . . , λn) of length `(λ) ≤ n and any
a = (a1, a2, . . .) let

glλ(x|a) =

∣∣ (xi|a)λj+n−j
∣∣

| (xi|a)n−j |
; (2.5)

soλ(x,x, 1|a) =

∣∣∣x1/2
i (xi|a)λj+n−j − x1/2

i (xi|a)λj+n−j
∣∣∣∣∣∣x1/2

i (xi|a)n−j − x1/2
i (xi|a)n−j

∣∣∣ ; (2.6)

spλ(x,x|a) =

∣∣xi(xi|a)λj+n−j − xi(xi|a)λj+n−j
∣∣

|xi(xi|a)n−j − xi(xi|a)n−j |
; (2.7)

oλ(x,x|a) =
η
∣∣ (xi|a)λj+n−j + (xi|a)λj+n−j

∣∣
1
2
| (xi|a)n−j + (xi|a)n−j |

with η =

{
1
2

if λn = 0;

1 λn > 0.
. (2.8)

where each (xi|a)k and (xi|a)k with k ≥ 0 is defined by (1.2) and (1.3) as appropriate.

The definition (2.5) is that of Macdonald [27] for factorial Schur functions, and the
others have been drawn up as rather natural generalisations of this that all have the
merit of reducing to the classical non-factorial characters if one sets a = 0 = (0, 0, . . .).
In each case the denominators are independent of a and coincide with the Weyl
denominators of (2.1)-(2.4).

To establish flagged Jacobi-Trudi identities for these factorial characters use was
made in [16] of the special one part partition cases hgm(z|a) = g(m)(z|a) whose defini-
tion by means of generating functions took the form:
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Definition 3 For any integer m let

hglm(x|a) = [tm]
n∏
i=1

1

1− txi

n+m−1∏
j=1

(1 + taj) ; (2.9)

hoom(x,x, 1|a) = [tm] (1 + t)
n∏
i=1

1

(1− txi)(1− txi)

n+m−1∏
j=1

(1 + taj) ; (2.10)

hspm(x,x|a) = [tm]
n∏
i=1

1

(1− txi)(1− txi)

n+m−1∏
j=1

(1 + taj) ; (2.11)

heom(x,x|a) = [tm]



(
1

1− tx1

+
1

1− tx1

− δm0

) m∏
j=1

(1 + taj) if n = 1 ;

(1− t2)
n∏
i=1

1

(1− txi)(1− txi)

n+m−1∏
j=1

(1 + taj) if n > 1 .

(2.12)

Then for m = 0 we have hgl0 (x|a) = hoo0 (x,x, 1|a) = hsp0 (x,x|a) = heo0 (x,x|a) = 1,
while for m < 0 we have hglm(x|a) = hoom(x,x, 1|a) = hspm(x,x|a) = heom(x,x|a) = 0.

In terms of these we have [16]

Theorem 4 (Flagged factorial Jacobi-Trudi identities) For any partition λ =
(λ1, λ2, . . . , λn) and any a = (a1, a2, . . .) we have

glλ(x|a) =
∣∣∣hglλj−j+i(x(i)|a)

∣∣∣ ; (2.13)

soλ(x,x, 1|a) =
∣∣∣hooλj−j+i(x(i),x(i), 1|a)

∣∣∣ ; (2.14)

spλ(x,x|a) =
∣∣∣hspλj−j+i(x(i),x(i)|a)

∣∣∣ ; (2.15)

oλ(x,x|a) =
∣∣∣heoλj−j+i(x(i),x(i)|a)

∣∣∣ , (2.16)

This leaves us in a position to introduce in the next Section factorial Q-functions
defined by determinants somewhat resembling those appearing in the above flagged
factorial Jacobi-Trudi type identities, but dependent on two sequences of parameters
z and w, as well as the factorial parameters a, and with the various hgm(z|a) of
Definition 3 replaced by certain qgm(w; z|a) that are once again defined by means of
generating functions.

3 Factorial q-functions and Q-functions

To discuss Q-functions we move into the realm of supersymmetric functions. Just as
the complete homogeneous functions hglm(x) and their factorial counterparts hglm(x|a)
played an essential role in our discussion of characters and factorial characters, so
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here an essential role is played by the supersymmetric functions qglm(x; y) and their
factorial generalisations qglm(x; y|a). These and their counterparts for the orthogonal
and symplectic groups are defined for our required range of parameters by means of
generating functions in t as follows:

Definition 5 For x = (x1, x2, . . . , xr), y = (y1, y2, . . . , ys), x = (x1, x2, . . . , xr), y =
(y1, y2, . . . , ys), with r ≥ s, and a = (a1, a2, . . .) and each integer m let

qglm(x; y|a) = [tm]

∏s
j=1(1+tyj)

∏m+r−s−1
k=1 (1+tak)∏r

i=1(1−txi)
; (3.1)

qoom (x,x; y,y, 1|a) = [tm]
(1+t)

∏s
j=1(1+tyj)(1+tyj)

∏m+r−s−1
k=1 (1+tak)∏r

i=1(1−txi)(1−txi)
; (3.2)

qspm (x,x; y,y|a) = [tm]

∏s
j=1(1+tyj)(1+tyj)

∏m+r−s−1
k=1 (1+tak)∏r

i=1(1−txi)(1−txi)
; (3.3)

qeom (x,x; y,y|a) = [tm]
(1− t2)

∏s
j=1(1 + tyj)(1 + tyj)

∏m+r−s−1
k=1 (1 + tak)∏r

i=1(1− txi)(1− txi)
+ a1a2 · · · am δr,s+1 , (3.4)

where a1a2 · · · am = 0 for m ≤ 0. For m = 0 we have qgl0 (x; y|a) = qoo0 (x,x; y,y, 1|a) =
qsp0 (x,x; y,y|a) = qeo0 (x,x; y,y|a) = 1, while for all m < 0 we have qglm(x; y|a) =
qoom (x,x; y,y, 1|a) = qspm (x,x; y,y|a) = qeom (x,x; y,y|a) = 0.

As usual each factorial q-function reduces to a corresponding non-factorial q-
function through setting ak = 0 for all k. With these definitions the gl factorial
q-function qglm(x; y|a) is clearly supersymmetric [37] in the sense that it is symmetric
with respect to independent permutations of x1, x2, . . . , xr and y1, y2, . . . , ys, and it is
independent of z if we set xi = z = −yj for any i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , s}.
Similarly, the orthogonal and symplectic factorial q-functions are Weyl supersymmet-
ric in the sense that they are symmetric with respect to independent permutations of
x1, x2, . . . , xr and y1, y2, . . . , ys, invariant under the interchange of any xi with xi or
of any yj with yj, as well as being independent of z if we set either xi or xi equal to
z and either yj or yj equal to −z for any i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , s}.

In what follows it is the case r = s+1 that is of particular relevance, as will become
apparent through the following definition of factorial Q-functions, each indexed by a
strict partition, where a partition is said to be strict if and only if its non-zero parts
are distinct.
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Definition 6 For any strict partition λ of length `(λ) ≤ n and a = (a1, a2, . . .):

Qgl
λ (x; y|a) =

∑
d

∣∣∣ (xdi+ydi) qglλj−1(x(di); y(di+1)|a)
∣∣∣ ; (3.5)

Qoo
λ (x,x; y,y,1|a) =

∑
d

∣∣∣ (xdi+ydi+xdi+ydi) qooλj−1(x(di),x(di); y(di+1),y(di+1),1|a)
∣∣∣ ;

(3.6)

Qsp
λ (x,x; y,y|a) =

∑
d

∣∣∣ (xdi+ydi+xdi+ydi) qspλj−1(x(di),x(di); y(di+1),y(di+1)|a)
∣∣∣ ;
(3.7)

Qeo
λ (x,x; y,y,1|a) =

∑
d

∣∣∣ (xdi+ydi+xdi+ydi) qeoλj−1(x(di),x(di); y(di+1),y(di+1)|a)
∣∣∣ ,
(3.8)

where each determinant is `(λ)× `(λ) and each sum is over all d = (d1, d2, . . . , d`(λ))
such that 1 ≤ d1 < d2 < · · · < d`(λ) ≤ n.

In order to arrive at combinatorial realisations of these factorial Q-functions it
is helpful to express each of them as far as possible in terms of qglm(w; z|a) for some
w = (w1, w2, . . . , wr) and z = (z1, z2, . . . , zs) with r = s+ 1, as in the following:

Lemma 7 For any strict partition λ of length `(λ) ≤ n:

Qgl
λ (x; y|a) =

∑
d

∣∣∣ (xdi+ydi) qglλj−1(x(di); y(di+1)|a)
∣∣∣ ; (3.9)

Qoo
λ (x,x; y,y, 1|a) =

∑
d

∣∣ (xdi+ydi) qglλj−1(x(di),x(di), 0; y(di+1),y(di), 1|a)

+ (xdi+ydi) q
gl
λj−1(x(di+1),x(di), 0; y(di+1),y(di+1), 1|a)

∣∣; (3.10)

Qsp
λ (x,x; y,y|a) =

∑
d

∣∣ (xdi+ydi) qglλj−1(x(di),x(di); y(di+1),y(di)|a)

+ (xdi+ydi) q
gl
λj−1(x(di+1),x(di); y(di+1),y(di+1)|a)

∣∣; (3.11)

Qeo
λ (x,x; y,y|a) =

`(λ)∑
k=0

((
δk0 + (−1)`(λ)−ka1a2 · · · aλk−1(1− δk0)

)
×
(∑

d

∣∣ (xdi+ydi) qglκ(k)j −1
(x(di),x(di), 0, 0; y(di+1),y(di), 1,−1| a)

+ (xdi+ydi) q
gl

κ
(k)
j −1

(x(di+1), x(di), 0, 0; y(di+1), y(di+1), 1,−1|a)
∣∣ )),

(3.12)

where κ(0) = λ and κ(k) for 1 ≤ k ≤ `(λ) is the partition obtained from λ by deleting
the part λk and adding a final part 1.
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Proof: The first of these is just (3.5). To verify the validity of the symplectic case it
suffices to note that that for 1 ≤ d ≤ n

(xd + yd + xd + yd) q
sp
m (x(d),x(d); y(d+1),y(d+1)|a)

= [tm] ((xd+yd)(1+tyd)+(xd+yd)(1−txd))
∏n

j=d+1(1+tyj)(1+tyj)
∏m

k=1(1+tak)∏n
i=d(1−txi)(1−txi)

= (xd+yd) q
gl
m(x(d),x(d); y(d+1),y(d)|a) + (xd+yd) q

gl
m(x(d+1),x(d); y(d+1),y(d+1)|a) .

In the odd orthogonal case it the follows in the same way that

(xd + yd + xd + yd) q
oo
m (x(d),x(d); y(d+1),y(d+1), 1|a)

= [tm] ((xd+yd)(1+tyd)+ (xd+yd)(1−txd))
(1+t1)

∏n
j=d+1(1+tyj)(1+tyj)

∏m
k=1(1+tak)

(1−t0)
∏n

i=d(1−txi)(1−txi)
= (xd+yd) q

gl
m(x(d),x(d), 0; y(d+1),y(d), 1|a) + (xd+yd) q

gl
m(x(d+1),x(d), 0; y(d+1),y(d+1), 1|a) ,

where the factor (1+t) in the qoom -function has been written in the form (1+t1)/(1−t0)
in order to preserve the condition r = s+ 1 in the pair of qglm-functions.

The even orthogonal case is rather different because of the term a1a2 · · · am ap-
pearing in (3.4). As a result the determinants appearing in our definition (3.8) of
Qeo
λ (x,x; y,y|a) can be written in the form∣∣∣ (xdi+ydi+xdi+ydi) qeoλj−1(x(di),x(di); y(di+1),y(di+1)|a)

∣∣∣
=

`(λ)∏
i=1

(xdi+ydi+xdi+ydi)
∣∣Qi,λj−1 + Aλj−1Qi,0

∣∣ ,
where for typographical convenience we have set

Qi,m = [tm]
(1− t2)

∏n
j=di+1

(1 + tyj)(1 + tyj)
∏m

k=1(1 + tak)∏n
i=di

(1− txi)(1− txi)
,

and
Am = a1a2 · · · am for m > 0 with A0 = 0 .

Since Aλj−1 is independent of the row number i and Qi,0 = 1 for all i we have

∣∣Qi,λj−1 + Aλj−1Qi,0

∣∣ =
∣∣∣Q

i,κ
(0)
j −1

∣∣∣+

`(λ)∑
k=1

(−1)`(λ)−kAλk−1

∣∣∣Q
i,κ

(k)
j −1

∣∣∣ , (3.13)

where κ(0) = λ and in the summation over k the kth column of the determinant with
elements Qi,λk−1 has been replaced by a column whose elements are all Aλk−1Qi,0.
The common factor Aλk−1 has then been extracted before permuting columns to move
the column of elements Qi,0 = 1 to the rightmost position. This involves `(λ) − k

column interchanges and has the effect of replacing labels λj − 1 by κ
(k)
j − 1 for

all j = 1, 2, . . . , `(λ). Then once again using the identity (xd + yd + xd + yd) =
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(xd + yd)(1 + tyd) + (xd + yd)(1− txd) and rewriting (1− t2) in the form (1 + t1)(1 +
t(−1))/(1− t0)(1− t0) it can be seen that

(xdi+ydi+xdi+ydi)Qi,m = (xdi+ydi) q
gl
m(x(di),x(di), 0, 0; y(di+1),y(di), 1,−1|a)

+ (xdi+ydi) q
gl
m(x(di+1),x(d+i), 0, 0; y(di+1),y(di+1), 1,−1|a) .

Resinserting the factors (xdi + ydi +xdi + ydi) back into the determinants on the right
hand side of (3.13) and using this last identity completes the proof of (3.8).

It might be remarked here that in the case of a partition λ with λ`(λ) = 1 (3.13)
reduces to ∣∣Qi,λj−1 + Aλj−1Qi,0

∣∣ =
∣∣Qi,λj−1

∣∣ . (3.14)

This is because Aλ`(λ)−1 = A0 = 0 and Qi,λ`(λ)−1 = Qi,0 = 1 so that the rightmost
`(λ)th column of the determinant on the left is a column of 1s. Subtracting Aλj−1

times this column from the jth column for each j < `(λ) eliminates all the dependence
on Am leaving just the determinant on the right. This can also be seen by noting on
the right of (3.13) that κ(k) is a partition of the form (. . . , 1, 1) for 0 < k < `(λ). In
such a situation the determinant

∣∣Q
i,κ

(k)
j −1

∣∣ has two equal columns and must vanish.

The term with k = `(λ) also vanishes since Aλ`(λ)−1 = 0 leaving just the single term

involving κ(0) = λ, as claimed in (3.14). �

In order to exploit Lemma 7 to construct combinatorial models of our factorial Q-
functions it is necessary to express each of the qglm functions appearing in (3.9)-(3.12)
in a more amenable form. This can be done by means of the following:

Lemma 8 Let x(d) = (xd, xd+1, . . . , xn) and y(d+1) = (yd+1, yd+2, . . . , yn) for 1 ≤ d ≤
n with y(n+1) = 0. Then for all a = (a1, a2, . . .) and integer m > 0

qglm(x(d); y(d+1)|a) =
∑

1≤̇i1≤̇i2≤̇···≤̇im≤̇2n−2d+1

(wi1±a1)(wi2±a2) · · · (wim±am) , (3.15)

with w = (w1, w2, . . . , w2n−2d+1) = (xd, yd+1, xd+1, yd+2, xd+2, . . . , yn, xn) and the no-
tation ≤̇ indicates a weakly increasing order that allows factors (wi ± a`) = (xk + a`)
or (yk − a`) to appear according as wi = xk or yk, with several factors of the form
(xk + a`)(xk + a`+1) · · · allowed, but at most one factor (yk − a`) for each k.

Proof: For 1 ≤ d ≤ n and m > 0 it is helpful to introduce

fm(x(d); y(d+1)|a) =
∑

1≤̇i1≤̇i2≤̇···≤̇im≤̇2n−2d+1

(wi1±a1)(wi2±a2) · · · (wim±am) , (3.16)

with the same interpretation as that given to the right hand side of (3.15). In the
case m = 1 this yields

f1(x(d); y(d+1)|a) =
n∑
k=d

(xk +a1) +
n∑

k=d+1

(yk−a1) = (xd+a1) +
n∑

k=d+1

(xk +yk) , (3.17)
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while for m > 1 we have the recurrence relation

fm(x(d); y(d+1)|a) = (xd+a1)fm−1(x(d); y(d+1)|τa)

+
n∑

k=d+1

(xk+a1)fm−1(x(k); y(k+1)|τa) +
n∑

k=d+1

(yk−a1)fm−1(x(k); y(k+1)|τa),(3.18)

as can be seen by considering all possible initial factors (wi1 ± a1).
It only remains to show that qglm(x(d); y(d+1)|a), as defined through (3.1), satisfies

both (3.17) and (3.18). In the case m = 1, expanding in powers of t gives

qgl1 (x(d); y(d+1)|a) = [t]

∏n
j=d+1(1 + tyj)

∏m
k=1(1 + tak)∏n

i=d(1− txi)
= a1 + xd +

n∑
k=d+1

(xk + yk) ,

as required. While for m > 1 we have

qglm(x(d); y(d+1)|a) = [tm]

∏n
j=d+1(1 + tyj)

∏m
k=1(1 + tak)∏n

i=d(1− txi)

= [tm]

(
1 +

t(xd + a1)

1− txd

) n∏
j=d+1

1 + tyj
1− txj

m∏
k=2

(1 + tak)

= (xd + a1)qglm−1(x(d); y(d+1)|τa)

+ [tm]

(
1 +

t(xd+1 + yd+1)

1− txd+1

) n∏
j=d+2

1 + tyj
1− txj

m∏
k=2

(1 + tak)

= (xd + a1) qglm−1(x(d); y(d+1)|τa) + (xd+1 + yd+1) qglm−1(x(d+1); y(d+2)|τa)

+ [tm]

(
1 +

t(xd+2 + yd+2)

1− txd+2

) n∏
j=d+3

1 + tyj
1− txj

m∏
k=2

(1 + tak)

= · · ·

= (xd + a1) qglm−1(x(d); y(d+1)|τa) +
n∑

k=d+1

(xk + yk) q
gl
m−1(x(k); y(k+1)|τa) ,

where advantage has been taken of the fact that [tm]
∏m

k=2(1 + tak) = 0. Then by the
simple expedient of setting (xk + yk) = (xk + a1) + (yk − a1) it can be seen that this
takes the same form as our required recurrence relation (3.18), thereby completing
the proof of (3.15). �

4 Primed shifted tableaux and factorial Q-functions

The passage from Schur functions to Schur Q-functions can be effected by replacing
tableaux by primed shifted tableaux [42, 34]. We replicate this in the factorial setting
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by expressing our factorial Q-functions in terms of certain primed shifted tableaux.
To this end we first define shifted Young diagrams.

Each strict partition λ of length `(λ) ≤ n specifies a shifted Young diagram SF λ

consisting of rows of boxes of lengths λi for i = 1, 2, . . . , `(λ) left adjusted to a diagonal
line. This is exemplified in the case λ = (6, 4, 3) by

SF 6531 =

This allows us to define various primed shifted tableaux.

Definition 9 [42, 34] Let Pglλ be the set of all primed shifted tableaux P of shape λ
that are obtained by filling each box of SF λ with an entry from the alphabet

{1′ < 1 < 2′ < 2 < · · · < n′ < n}

in such a way that: (Q1) entries weakly increase from left to right across rows; (Q2)
entries weakly increase from top to bottom down columns; (Q3) no two identical
unprimed entries appear in any column; (Q4) no two identical primed entries appear
in any row.

Definition 10 [11] Let Pspλ be the set of all primed shifted tableaux P of shape λ
that are obtained by filling each box of SF λ with an entry from the alphabet

{1′< 1 <1
′
<1<2′<2<2

′
<2 < · · · < n′ < n < n′ < n}

in such a way that the conditions (Q1)-(Q4) are satisfied together with: (Q5) at

most one of {k′, k, k′, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 11 Let Pooλ be the set of all primed shifted tableaux P of shape λ that are
obtained by filling each box of SF λ with an entry from the alphabet

{1′ < 1 < 1
′
< 1 < 2′ < 2 < 2

′
< 2 < · · · < n′ < n < n′ < n < 0′ < 0}

in such a way that the conditions (Q1)-(Q5) are satisfied, together with: (Q6) the
entries 0′ and 0 do not appear on the main diagonal.

Definition 12 Let Peoλ be the set of all primed shifted tableaux P of shape λ that are
obtained by filling each box of SF λ with an entry from the alphabet

{1′ < 1 < 1
′
< 1 < 2′ < 2 < 2

′
< 2 < · · · < n′ < n < n′ < n < 0′ < 0 < 0

′
< 0 < ∅′ < ∅}

in such a way that the conditions (Q1)-(Q5) are satisfied, together with: (Q7) the
entries 0′, 0, 0

′
, 0, ∅′ and ∅ do not appear on the main diagonal; and (Q8) the entry

∅′ also does not appear on the neighbouring (second) diagonal.
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In the case λ = (6, 5, 3) each of these types of shifted primed tableaux is illustrated
as follows for gl(4), sp(8), so(9) and so(8) from left to right

1′ 1 2′ 2 3′ 4
2 3′ 3 3

4′ 4 4

1 1 2′ 2
′ 3′ 3

2′ 2 3 4′

4′ 4 4

1 1 2′ 2
′ 3 0

2
′

2 3 0′

4′ 0′ 0

1 1 2′ 3 0
′

0
2′ 2 0 ∅′

4′ ∅ ∅
(4.1)

Our factorialQ-functions can be expressed in terms of these primed shifted tableaux
by means of the following:

Theorem 13 For a = (a1, a2, . . .), a0 = 0, and any strict partition λ of length
`(λ) ≤ n,

Qg
λ(w|a) =

∑
P∈Pgλ

∏
(i,j)∈SFλ

wgt(Pij) (4.2)

where Pij is the entry in the ith row and jth column of SF λ, with Qg
λ(w|a) and the

weight wgt(Pij) of each entry given by

g Qg
λ(w|a)

gl Qgl
λ (x; y|a)

oo Qoo
λ (x,x; y,y, 1|a)

sp Qsp
λ (x,x; y,y|a)

eo Qeo
λ (x,x; y,y|a)

and

Pij wgt(Pij) Pij wgt(Pij)
k xk + aj−i k′ yk − aj−i
k xk + aj−i k

′
yk − aj−i

0 aj−i 0′ 1− aj−i
0 aj−i 0

′ −1− aj−i
∅ aj−i ∅′ −aj−i

(4.3)

It is clear that for these factorial Q-functions the dependence on the factorial
parameters a is simpler than it is for factorial characters as given in [16] since the
factors in (4.3) are all of the form wk ± aj−i with the subscript on a completely
independent of that on w.

The case Qgl
λ (x; y|a) has been introduced and studied elsewhere [13]. The special

case Qgl
λ (x; x| − a) obtained by setting y = x and a = −a coincides with the general-

ized Q-function Qλ(x|a) introduced by Ivanov [18, 19] and studied further by Ikeda,
Milhalcea and Naruse [17]. If one further sets a = 0 one recovers the combinatorial
primed shifted tableaux formula [42, 34, 38, 30] for the original Schur Q-functions
Qλ(x).

In order to establish the above combinatorial expressions for our factorial Q-
functions in terms of primed shifted tableaux we follow the method of Okada [30]
first to construct lattice path models based directly on the determinantal formulae
for factorial Q-functions given in Lemma 7, and then to exploit the bijective corre-
spondences between sets of `(λ)-tuples of non-intersecting lattice paths and the above
sets of primed shifted tableaux. Thanks to Lemma 8 we are in position to embark on
the proof of Theorem 13 as follows.

Proof: Case gl(n). Here we introduce a rectangular lattice augmented by pairs of
curved edges. As usual we adopt matrix coordinates (k, `) for lattice points with
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k = 1, 2, . . . , n and ` = (0, 1, . . . , λ1). For example, if n = 4 and λ = (6, 4, 3) the
lattice takes the form:

P1

P2

P3
Q3 Q2 Q1

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

(4.4)

On this lattice the (i, j)th term of the determinant

Qgl
λ (x; y|a) =

∑
d

∣∣∣ (xdi + ydi) q
gl
λj−1(x(di); y(di+1)|a)

∣∣∣ (4.5)

may be represented by the sum of all possible suitably signed and weighted continuous
lattice paths from the starting point Pi = (di, 0) to the end point Qj = (n, λj).

We associate two initial curved edges with the factor (xdi + ydi): one a concave
downward edge carrying weight xdi+a0 and the other a concave upward edge carrying
weight ydi−a0. Here the parameter a0 is both arbitrary and redundant since the sum
of both contributions is required. However, it is notationally convenient to include it
in our edge weighting, while remembering that it may be ignored or set to 0 at any
time.

The horizontal and diagonal edges are associated with qglλj−1(x(di); y(di+1)|a) whose

expansion is given in Lemma 8 by (3.15) with m = λj − 1: each horizontal edge with
right hand end at (k, `) carries weight xk + a`−1 and each diagonal edge with right
hand end at (k, `) carries weight yk − a`−1. As usual, the vertical edges necessary to
make each lattice path continuous all carry weight 1. Then the product of all such
horizontal, diagonal and vertical edge weights on a given path gives a summand of
qglλj−1(x(di); y(di+1)|a).

The expansion of each determinant specified by d in (4.5) therefore involves a
signed sum of weighted `(λ)-tuples of lattice paths PiQπ(i) for i = 1, 2, . . . , `(λ),
with Pi = (di, 0) and Qπ(i) = (n, λπ(i)), and the sum is taken over all permutations
π ∈ S`(λ). The sign factor is just sgn(π). Then thanks as usual to the Lindström-
Gessel-Viennot Theorem [24, 7, 8] the only surviving contributions to the expansion
of each determinant are those arising from `(λ)-tuples of non-intersecting lattice paths
PiQi for i = 1, 2, . . . , `(λ) for which π is the identity element.

Furthermore, the set of all non-intersecting `(λ)-tuples of lattice paths from fixed
starting points Pi = (di, 0) to fixed end points Qi = (n, λi) for i = 1, 2, . . . , `(λ) is
in bijective correspondence with the set of all primed shifted tableaux P ∈ Pglλ as
specified in Definition 9 but with diagonal entries Pii = di or d′i for i = 1, 2, . . . , `(λ).
The required bijective correspondence is such that edges with labels xk + a`−1 or
yk−a`−1 on the path PiQi map to entries k or k′ having weights xk+a`−1 or yk−a`−1

in the `th position of ith row of P .
A typical non-intersecting `(λ)-tuple of lattice paths LP and the corresponding

primed shifted tableau P are illustrated below, along with both the lattice path edge
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labels and tableau entry weights, with the redundant parameter a0, which in any case
does not survive the sum over all such primed shifted tableaux, set equal to 0.

LP =

P1

P2

P3
Q3 Q2 Q1

a1 a2 a3 a4 a5a0
y1, x1

y2, x2

y3, x3

y4, x4

y1
x1+a1

y2−a2
x2+a3

y3−a4

x4+a5

x2 y3−a1
x3+a2 x3+a3

y4
x4+a1 x4−a2

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

P =
1′ 1 2′ 2 3′ 4

2 3′ 3 3
4′ 4 4

wgt(P ) =

y1 x1+a1 y2−a2 x2+a3 y3−a4 x4+a5

x2 y3−a1 x3+a2 x3+a3

y4 x4+a1 x4+a2

(4.6)
The nature of the map from LP to P described above implies that the ith row of P
has length λi with entries satisfying (Q1) and (Q4). When these rows are combined
to form a primed shifted tableau P of shape λ it can be seen that the non-intersecting
condition implies the conditions (Q2) and (Q3). The map is clearly invertible and
these conditions (Q1)-(Q4) on P are necessary and sufficient for the corresponding
`(λ)-tuple to be non-intersecting. This completes the proof of (4.2) in the gl case
with weights as given in the top line of the right hand table in (4.3).

Case sp(2n). In the symplectic case we have

Qsp
λ (x,x; y,y|a) =

∑
d

∣∣ (xdi+ydi) qglλj−1(x(di),x(di); y(di+1),y(di)|a)

+ (xdi+ydi) q
gl
λj−1(x(di+1),x(di); y(di+1),y(di+1)|a)

∣∣, (4.7)

so that our alphabet is extended to include not only xk and yk, but also xk and yk
for k = 1, 2, . . . , n. To accomodate this the underlying lattice takes the typical form:

P1

P2

P3

Q3 Q2 Q1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

(4.8)
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The four curved edges emanating from each starting point Pi = (di, 0) correspond to
the four possibe pre-factors xdi , ydi , xdi and ydi multiplying one or other of the qglλj−1

terms.
Lattice paths are then constructed just as in the gl(n) case, but taking into account

the extended alphabet. A typical `(λ)-tuple LP of non-intersecting lattice paths is
as shown below in the case n = 4, `(λ) = 3, d = (1, 2, 4) and λ = (6, 4, 3), where once
again we have for simplicity set a0 = 0 in specifying weights.

LP =

P1

P2

P3

Q3 Q2 Q1

a1 a2 a3 a4 a5a0
y1, x1

y2, x2

y3, x3

y4, x4

y1, x1

y2, x2

y3, x3

y4, x4

x1

x1+a1

y2−a2

y2−a3

x3+a4 x3+a5

x2
x2+a1

x3+a2

y4−a3

y4
x4+a1

x4+a2

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

P =
1 1 2′ 2

′ 3 3

2 2 3 4′

4′ 4 4

wgt(P ) =

x1 x1+a1 y2−a2 y2−a3 x3+a4 x3+a5

x2 x2+a1 x3+a2 y4−a3

y4 x4+a1 x4+a2

(4.9)
This figure also includes the corresponding primed shifted tableau P ∈ Pspλ obtained in
the same way as in the gl(n) case by reading off from each lattice path the consecutive
entries in each row and adjusting the rows to the shifted shape λ. The bijective
correspondence between `(λ)-tuples LP of non-intersecting lattice paths and primed
shifted tableau P ∈ Pspλ is such that edges with labels (xk + a`−1), (yk − a`−1),

(xk+a`−1) and (yk−a`−1) on the path PiQi map to entries k, k′, k and k
′
, respectively,

in the `th position of ith row of P . This applies, in particular to the case of the entries
on the main diagonal of P which are associated with one or other of the four types
of curved edge in LP , three of which have been illustrated in the above example. It
is clear from this association that condition (Q5) applies to P , while the remaining
conditions (Q1)-(Q4) are an immediate consequence of the non-intersecting nature
of the paths in LP . This completes the proof of (4.2) in the sp case with weights as
given in the top two lines of the right hand table in (4.3).

Case o(2n+ 1). In the odd orthogonal case we have

Qoo
λ (x,x; y,y, 1|a) =

∑
d

∣∣ (xdi+ydi) qglλj−1(x(di),x(di), 0; y(di+1),y(di), 1|a)

+ (xdi+ydi) q
gl
λj−1(x(di+1),x(di), 0; y(di+1),y(di+1), 1|a)

∣∣. (4.10)
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The only difference from the symplectic case is the further extension of the alphabet
to include additional entries 0 and 1. To deal with this one just extends the underlying
lattice through the addition of single row of lattice points as indicated below:

P1

P2

P3

Q3 Q2 Q1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

(4.11)

As in the sp(2n) case a typical `(λ)-tuple LP of non-intersecting lattice paths is as
shown below in the case n = 4, `(λ) = 3, d = (1, 2, 4) and λ = (6, 4, 3), where the
additional 0 and 1 in the alphabet lead to contributions to the weight of the form
0 + a`−1 and 1− a`−1, respectively, but always with ` > 1.

LP =

P1

P2

P3

Q3 Q2 Q1

a1 a2 a3 a4 a5a0
y1, x1

y2, x2

y3, x3

y4, x4

1, 0

y1, x1

y2, x2

y3, x3

y4, x4

x1

x1+a1

y2−a2

y2−a3

x3+a4

1−a5

y2

x2+a1

x3+a2

1−a3

y4

1−a1
0+a2

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

P =
1 1 2′ 2

′ 3 0′

2
′

2 3 0′

4′ 0′ 0

wgt(P ) =

x1 x1+a1 y2−a2 y2−a3 x3+a4 1−a5

y2 x2+a1 x3+a2 1−a3

y4 1−a1 a2

(4.12)
This time we have a bijective correspondence between `(λ)-tuples LP of non-intersecting
lattice paths and primed shifted tableau P ∈ Pooλ such that edges with labels xk+a`−1,
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yk − a`−1, xk + a`−1,yk − a`−1, 0 + a`−1 and 1− a`−1 on the path PiQi map to entries

k, k′, k, k
′
, 0 and 0′, respectively, in the `th position of ith row of P . As in the

symplectic case the conditions (Q1)-(Q2) apply to P , while the remaining condition
(Q6) reflects the fact that the weights 0 + a`−1 and 1 − a`−1 only arise in cases for
which ` > 1. This is a consequence of the fact that the lattice has no curved edges
attached to its bottom line, which is due in turn to the fact that the only pre-factors
to the qglλj−1 terms in (4.10) are xdi , ydi , xdi and ydi . This completes the proof of (4.2)
in the oo case with weights as given in the top three lines of the right hand table in
(4.3).

Case o(2n). In the even orthogonal case we have

Qeo
λ (x,x; y,y|a) =

`(λ)∑
k=0

((
δk0 + (−1)`(λ)−ka1a2 · · · aλk−1(1− δk0)

)
×
(∑

d

∣∣ (xdi+ydi) qglκ(k)j −1
(x(di),x(di), 0, 0; y(di+1),y(di), 1,−1| a)

+ (xdi+ydi) q
gl

κ
(k)
j −1

(x(di+1), x(di), 0, 0; y(di+1), y(di+1), 1,−1|a)
∣∣ )). (4.13)

Clearly, one immediate difference from the odd orthogonal case is the further extension
of the alphabet to include a second entry 0 and a new entry −1. This may be dealt
with by adding an additional horizontal line of lattice points to the foot of our odd
orthogonal lattice. However, the second difference arises from the necessity of coping
not only with the case k = 0 for which κ(0) = λ, but also with those cases k > 0
which involve factors (−1)`(λ)−ka1a2 · · · aλk−1 and partitions κ(k) obtained, it will be
recalled, from λ through the deletion of its kth part and adding a final part 1.

In our usual example with n = 4, `(λ) = 3, d = (1, 2, 4) and λ = (6, 4, 3),
this implies that our sum over k yields contributions arising from κ(0) = (6, 4, 3),
κ(1) = (6, 4, 1), κ(2) = (6, 3, 1), κ(3) = (4, 3, 1) weighted by factors 1, a1a2, −a1a2a3 and
a1a2a3a4a5. respectively. It will be noted that these contributions can be accounted
for in terms of shifted diagrams by weightings of the form:

λ = κ(0) : κ(1) :
−a4 a5

−a3

a1 a2

κ(2) : −a3

a1 a2

κ(3) :
a1 a2

(4.14)

which involve the deletion of continuous strips of boxes from the shifted shape λ
starting at the foot of the second diagonal and ending at the right hand end of each
row, and weighting them by consecutive entries a1, a2, . . . with a factor of (−1)Closi
for each row that they cover except the lowest.
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In anticipation of all this we use a lattice of the form:

P1

P2

P3

Q3 Q2 Q1

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

(4.15)

where it should be noted that a diagonal edge has deliberately been omitted at the
lower left hand corner, and we refer to this lattice (4.15) as being punctured.

A typical `(λ)-tuple LP of non-intersecting lattice paths is as shown below in the
case n = 4, `(λ) = 3, d = (1, 2, 4) and λ = (6, 4, 3), where the addition of the pairs
0, 0 and 1,−1 to the alphabet leads to contributions to the weight of the form 0+a`−1,
0 + a`−1 and 1 − a`−1,−1 − a`−1, respectively, but always with ` > 1, while entirely
new contributions to the weights of the form a`−1 and −a`−1 owe their origin to the
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distinction between λ and κ(k).

LP =

P1

P2

P3

Q3 Q2 Q1

a1 a2 a3 a4 a5a0
y1, x1

y2, x2

y3, x3

y4, x4

y1, x1

y2, x2

y3, x3

y4, x4

1, 0

−1, 0

0, 0

x1

x1+a1

y2−a2

x3+a3

−1−a4
0+a5

y2

x2+a1

0+a2

−a3

y4

a1 a2

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

•

P =
1 1 2′ 3 0

′
0

2
′

2 0 ∅′
4′ ∅ ∅

wgt(P ) =

x1 x1+a1 y2−a2 x3+a3−1−a4 0+a5

y2 x2+a1 0+a2 −a3

y4 a1 a2

(4.16)
This example corresponds to a contribution to the even orthogonal character arising
from a k = 2 summand of (4.13) involving κ(2) = (6, 3, 1) and a multiplicative factor
of −a1a2a3. We can indeed choose to deal with all such terms by adding to our
alphabet two more symbols ∅ and ∅′ carrying weights a`−1 and −a`−1. This almost
amounts to replacing the right hand side of (4.13) by the expression(∑

d

∣∣ (xdi+ydi) qglλj−1(x(di),x(di), 0, 0, ∅; y(di+1),y(di), 1,−1, ∅′| a)

+ (xdi+ydi) q
gl
λj−1(x(di+1), x(di), 0, 0, ∅; y(di+1), y(di+1), 1,−1, ∅′|a)

∣∣ ). (4.17)

The only impediment to this is our deliberate omission of the diagonal edge in the
lower left hand corner of the lattice (4.15). That this omission is necessary can be
seen by noting that if this were not the case then the standard interpretation of the
expression (4.17) as a sum over `(λ)-tuples would include not only LP as above, but
also a new diagram LP ′ differing only in the P3Q3 lattice path edges in the lower left
hand corner with

a1

• •

• •
replaced by −a1

• •

• •
.

Such terms would mutual cancel by virtue of replacing the weight a1 by −a1. It is
to avoid such cancellations that our lattice has been punctured, and when translated
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into the language of primed shifted tableaux P ∈ Peoλ this leads to the condition
(Q8). As usual, the non-intersecting nature of our `(λ)-tuples implies and is implied
by conditions (Q1)-(Q4), while (Q5) and (Q7) are a simple consequence of the
four options available for the first edge of each path PiQi. Thus we have a bijective
correspondence between the non-intersecting path `(λ)-tuples on the punctured lattice
(4.15) and the primed shifted tableaux P ∈ Peoλ .

However, the use of our enlarged alphabet as in (4.17) gives rise to additional
terms not encountered in the use, more properly, of (4.13). For example, the above
path P1Q1 could reach Q1 along alternative routes in which its final two edges are
replaced either by a single diagonal edge or by a vertical edge followed by a horizontal
edge, as shown below:

a5

• •

• •
or −a5

• •

• •
.

The corresponding contributions to the weight would be −a5 and a5, respectively,
resulting in mutual cancellation. This cancellation is common to all terms other
than those corresponding to some partition κ(k) and can perhaps best be seen by
considering the corresponding primed shifted tableaux. In our above example this
would involve replacing the rightmost entry 0 of P by ∅′ and ∅, respectively, as shown
schematically below where all entries other than ∅′ and ∅ are suppressed.

P =
∅′

∅′
∅ ∅

wgt(P ) =
−a5

−a3

a1 a2

P =
∅

∅′
∅ ∅

wgt(P ) =

a5

−a3

a1 a2

(4.18)
The cancellation arises if and only if the boundary strip consisting of all entries ∅′ and
∅ is not continuous or does not start at the second box of the final row. In all such
cases the first box in each continuous segment may contain an entry ∅′ or ∅, of weight
−a`−1 or a`−1 with ` > 1, resulting in the required cancellation. We should stress
once again that, as a consequence of our punctured lattice hypothesis and condition
(Q8), the cancellation does not arise in the case of a continuous boundary strip
starting in the second box of the final row. It might also be noted that if this box is
empty, that is to say λ`(λ) = 1, then any boundary strip consisting of entries ∅′ and ∅
commences with a box whose entry may be either ∅′ or ∅, leading to a cancellation of
contributions. In such a case the only contributions to (4.13) are those arising from
κ(0) = λ, as pointed out earlier in the derivation of (3.14).

These observations are sufficient to establish the validity of (4.2) in the even
orthogonal case with weights as given in the right hand table of (4.3). In the light of
this discussion, as an alternative to condition (Q8) applying to P ∈ Peoλ one might
equally well use the condition (Q9): any entries ∅′ and ∅ must form a continuous
boundary strip starting at the second box in the final row with an entry ∅.

22



For the sake of summarising the situation, for each g and given n, `(λ), d and λ,
the bijective correspondence between `(λ)-tuples of non-intersecting lattice paths PiQi

for i = 1, 2, . . . , `(λ) and the shifted primed tableaux P ∈ Pgλ we offer the following
tabulation of the nature of the lattice path edges corresponding to all possible primed
shifted tableaux entries Pij, along with their corresponding weights wgt(Pij).

g Pii wgt(Pii) r Pii wgt(Pii) r
gl k xk • • k k′ yk • • k

oo, sp, eo k xk •
• 2k−1 k′ yk •

• 2k−1

oo, sp, eo k xk
•
• 2k k

′
yk

•
• 2k

g Pij, i<j wgt(Pij) r Pij, i<j wgt(Pij) r

gl k xk+aj−i • • k k′ yk−aj−i
•
•

k

oo, sp, eo k xk+aj−i • • 2k−1 k′ yk−aj−i
•
•

2k−1

oo, sp, eo k xk+aj−i • • 2k k
′

yk−aj−i
•
•

2k

oo, eo 0 aj−i • • 2n+1 0′ 1− aj−i
•
•

2n+1

eo 0 aj−i • • 2n+2 0
′ −1− aj−i

•
•

2n+2

eo ∅ aj−i • • 2n+3 ∅′ −aj−i
•
•

2n+3

(4.19)
The rightmost end point of each edge is at lattice point (r, c), with row r as specified
in the table and column c = j − i + 1. The start and end points of each path are
specified for each of our lattices as follows

g Pi Qi

gl (di, 0) (n, λi)
oo (2di − 1

2
, 0) (2n+ 1, λi)

sp (2di − 1
2
, 0) (2n, λi)

eo (2di − 1
2
, 0) (2n+ 3, λi)

(4.20)

and each path is completed by the insertion of vertical edges of weight 1.
This precise specification of the bijective correspondence as above completes the

proof of Theorem 13. �

5 Factorial Tokuyama identities

Here we restrict ourselves to the case for which λ = µ + δ where µ is a partition of
length `(µ) ≤ n and δ = (n, n − 1, . . . , 1) so that λ is a strict partition of length
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`(λ) = n. In such case the sums over d appearing in Theorem 13 reduce to a single
term corresponding to the only possible case d = (1, 2, . . . , n). Moreover, each of
the surviving determinants factorises, to yield the following factorial Tokuyama type
identities.

Theorem 14 Let λ = µ+δ with δ = (n, n−1, . . . , 1) and µ a partition of length `(µ) ≤
n. Then for any x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and a = (a1, a2, . . .)

Qgl
λ (x; y|a) =

∏
1≤i≤j≤n

(xi + yj) sµ(x|a) ; (5.1)

Qoo
λ (x,x; y,y, 1|a) =

∏
1≤i≤j≤n

(xi + yj + xi + yj) soµ(x,x, 1|a) ; (5.2)

Qsp
λ (x,x; y,y|a) =

∏
1≤i≤j≤n

(xi + yj + xi + yj) spµ(x,x|a) ; (5.3)

Qeo
λ (x,x,y,y|a) =

∏
1≤i≤j≤n

(xi + yj + xi + yj) oµ(x,x|a) . (5.4)

Proof: For notational convenience, before embarking on the proof it is helpful to
make use of the following special r = s+ 1 cases of Definition 5.

Definition 15 For all 1 ≤ p ≤ q ≤ n and all integers m let

f glm,p,q,n(x; y|a) = qglm(x(p); y(q+1)|a) ; (5.5)

f oom,p,q,n(x,x; y,y, 1|a) = qoom (x(p),x(p); y(q+1),y(q+1), 1|a) ; (5.6)

f spm,p,q,n(x,x; y,y|a) = qspm (x(p),x(p); y(q+1),y(q+1)|a) ; (5.7)

f eom,p,q,n(x,x; y,y|a) = qeom (x(p),x(p); y(q+1),y(q+1)|a) . (5.8)

In the special case p = q = d these definitions are such that

f glm,d,d,n(x; y|a) = qglm(x(d); y(d+1)|a) ; (5.9)

f oom,d,d,n(x,x; y,y, 1|a) = qoom (x(d),x(d); y(d+1),y(d+1),1|a) ; (5.10)

f spm,d,d,n(x,x; y,y|a) = qspm (x(d),x(d); y(d+1),y(d+1)|a) ; (5.11)

f eom,d,d,n(x,x; y,y|a) = qeom (x(d),x(d); y(d+1),y(d+1)|a) . (5.12)

In the case p = d, q = n they reduce to

f glm,d,n,n(x; y|a) = hglm(x(d)|a) ; (5.13)

f oom,d,n,n(x,x; y,y, 1|a) = hoom(x(d),x(d), 1|a) ; (5.14)

f spm,d,n,n(x,x; y,y|a) = hspm(x(d),x(d)|a) ; (5.15)

f eom,d,n,n(x,x; y,y|a) = heom(x(d),x(d)|a) . (5.16)
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The last case comes about because

f eom,d,n,n(x,x; y,y|a) = (a1a2 · · · am)δdn + [tm]
(1− t2)

∏m+n−d
k=1 (1 + tak)∏n

i=d((1− txi)(1− txi))

= [tm]

(
δdn(1− δm0) +

(1− t2)∏n
i=d((1− txi)(1− txi))

)m+n−d∏
k=1

(1 + tak)

= [tm]



(
1

1− txn
+

1

1− txn
− δm0

) m∏
j=1

(1 + taj) if n = d ;

(1− t2)
n∏
i=d

1

(1− txi)(1− txi)

n+m−d∏
j=1

(1 + taj) if n > d ,

= heom(x(d),x(d)|a) .

Finally, for 1 ≤ p < q ≤ n and all m

f glm,p,q−1,n(x; y|a)− f glm,p+1,q,n(x; y|a) = (xp + yq)f
gl
m−1,p,q,n(x; y|a) ; (5.17)

f oom,p,q−1,n(x,x; y,y, 1|a)− f oom,p+1,q,n(x,x; y,y, 1|a)

= (xp + yq + xp + yq)f
oo
m−1,p,q,n(x,x; y,y, 1|a) ; (5.18)

f spm,p,q−1,n(x,x; y,y|a)− f spm,p+1,q,n(x,x; y,y|a)

= (xp + yq + xp + yq)f
sp
m−1,p,q,n(x,x; y,y|a) ; (5.19)

f eom,p,q−1,n(x,x; y,y|a)− f eom,p+1,q,n(x,x; y,y|a)

= (xp + yq + xp + yq)f
eo
m−1,p,q,n(x,x; y,y|a) . (5.20)

Proof of Theorem 14: If we now focus, for example, on the symplectic case (5.3)
and start by using (3.7) in the case `(λ) = n then, as we have said, the sum over d
is restricted to a single term with di = i for i = 1, 2, . . . , n. It follows that

Qsp
λ (x,x; y,y|a) =

n∏
i=1

(xi+yi+xi+yi)
∣∣∣ f spλj−1;i,i,n(x,x; y,y |a)

∣∣∣ , (5.21)

where we have extracted a common factor (xi + yi + xi + yi) from the ith row for
i = 1, 2, . . . , n, and used (5.11). Then, by the repeated subtraction of successive rows
from one another and using (5.19) we have∣∣∣f spλj−1;i,i,n(x,x; y,y |a)

∣∣∣ =
∏

1≤i<j≤n

(xi+yj+xi+yj)
∣∣∣ f spλj−1−n+i;i,n,n(x,x; y,y |a)

∣∣∣ .
(5.22)

We are now in a position to use (5.15) which leads directly to

f spλj−1−n+i;i,n,n(x,x; y,y |a) =
∣∣∣hspλj−(n−i+1)(x

(i),x(i)|a)
∣∣∣

=
∣∣∣hspµj−j+i(x(i),x(i)|a)

∣∣∣ = spµ(x,x|a) , (5.23)
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as required to complete the proof of (5.3). The final steps exploit the fact that
λj = µj + n − j + 1 for j = 1, 2, . . . , n, as well as the symplectic factorial flagged
Jacobi-Trudi identity of Theorem 4. The other results (5.1), (5.2) and (5.4) can be
established in exactly the same way. �

6 Closing remarks

Our results are based heavily on the Definitions 3 and 5 of hgm(z|a) and qgm(w; z|a)
in terms of generating functions that are manifestly symmetric and supersymmetric,
respectively, but these symmetries are not always evident in our main results. For
example, in Theorem 4 we have chosen to express the result in terms of a particular
choice of flag, namely one for which x(i) = (xi, xi+1, . . . , xn) with x(1) ⊃ x(2) ⊃
· · · ⊃ x(n) and x(i)\x(i+1) = xi for i = 1, 2, . . . , n − 1 and x(n) = xn. However,
the overall symmetry with respect to permutations of x means that the results are
independent of this particular choice of flag. In particular one might equally well
define x(i) = (x1, x2, . . . , xi) and adopt a flag x(1) ⊂ x(2) ⊂ · · · ⊂ x(n) with x(1) = x1

and x(i)\x(i−1) = xi for i = 2, 3, . . . , n.
This freedom of choice is particularly important when it comes to labelling rows

in our non-intersecting lattice path and primed shifted tableaux models of factorial
Q-functions based on the use of the supersymmetric functions qglm(x; y|a). We have
chosen to interweave the unprimed and primed elements associated with x and y,
respectively, and work with an alphabet 1′ < 1 < 2′ < 2 < · · · < n′ < n as used in this
context by Macdonald [27] and Ivanov [18, 19]. But following Molev [28], for example,
we might have tried to use the alphabet 1 < 2 < · · · < n < 1′ < 2′ < · · · < n′ as
he did in defining factorial supersymmetric functions. Similar variations of alphabets
might be applied to all our models of factorial Q-functions, but each such variation
poses a different weighting problem which we will not address here.

Our determinantal definitions of factorial Q-functions were chosen to fit along-
side the flagged Jacobi-Trudi expressions for factorial characters. In the special case
y = x each of then can be expressed, perhaps more conventionally, as the t = −1
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specializaton of a Hall-Littlewood polynomial:

Qgl
λ (x; x|a) =

2`(λ)

vglλ

∑
w∈W gl

n

w

( n∏
i=1

(xi|τ−1a)λi
∏

1≤i<j≤n

1 + xjxi
1− xjxi

)
; with a0 = 0

(6.1)

Qoo
λ (x,x; x,x,1|a) =

2`(λ)

vooλ

∑
w∈W oo

n

w

( n∏
i=1

(xi|τ−1a)λi

×
n∏
i=1

1 + x2
i

1− x2
i

∏
1≤i<j≤n

(1 + xjxi)(1 + xjxi)

(1− xjxi)(1− xjxi)

)
with a0 = 1 ; (6.2)

Qsp
λ (x,x; x,x|a) =

2`(λ)

vspλ

∑
w∈W sp

n

w

( n∏
i=1

(xi|τ−1a)λi

×
n∏
i=1

1 + x2
i

1− x2
i

∏
1≤i<j≤n

(1 + xjxi)(1 + xjxi)

(1− xjxi)(1− xjxi)

)
with a0 = 0 ; (6.3)

Qeo
λ (x,x; x,x|a) = 2n

∑
w∈W oo

n

w

( n∏
i=1

((xi + xi)(xi|a)λi−1χ(λi > 1) + xi χ(λi = 1) + 1χ(λi = 0))

×
∏

1≤i<j≤n

(1 + xjxi)(1 + xjxi)

(1− xjxi)(1− xjxi)

)
if λn > 0 ; (6.4)

Qeo
λ (x,x; x,x|a) =

2`(λ)

veoλ

∑
w∈W eo

n

w

( n∏
i=1

((xi + xi)(xi|a)λi−1χ(λi > 1) + xi χ(λi = 1) + 1χ(λi = 0))

×
∏

1≤i<j≤n

(1 + xjxi)(1 + xjxi)

(1− xjxi)(1− xjxi)

)
if λn = 0 . (6.5)

where χ(P ) is the truth function for any proposition P , and W g
n is the Weyl group of

the Lie algebra g and

vgλ =
∑

w∈W g,λ
n

(−1)`(w) where W g,λ
n = {w ∈ W g

n : w(λ) = λ } .

The identity (6.1) follows from [19], while (6.3) has been established in [33]. The
corresponding identity (6.2) follows immediately from (6.3) by noting from (3.2) and
(3.3) that if one extends the poduct over (1 + tak) to include an additional factor
(1 + ta0) in the latter, then one recovers the former by setting a0 = 1 and the latter
by setting a0 = 0. In the case (6.4) with λn > 0 we are dealing with an irreducible
character of o(2n) that is the sum of two irreducible characters of so(2n). This is
why the relevant Weyl group is that of o(2n + 1), allowing any number of xi’s to
be replaced by xi. In this case W oo,λ

n is just the identity and vλ(t) = 1. On the
other hand in the case of (6.5) with λn = 0 the irreducible character of o(2n) remains
irreducible on restriction to so(2n). It follows that the relevant Weyl group is that
of so(2n), allowing only even numbers of xi’s to be replaced by xi’s. The remaining
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factors ((xi + xi)(xi|a)λi−1χ(λi ≥ 1) + xi χ(λi = 1) + 1χ(λi = 0)) have been inserted
only on the basis of computer based checks for all n ≤ 3 and all strict partitions λ
with λ1 ≤ 5.

Each of the expressions in Theorem 13 in the form of a sum over determinants may
be expressed directly as Pfaffian following, for example, the prescription for dealing
with non-intersecting lattice paths from a selection of fixed starting points to fixed
set of end points in [39]. This has been done already in the case of the factorial
Q-function of gl(n) in [19, 17] and of sp(2n) in [33], all by algebraic means. Such
Pfaffian expressions offer another opportunity to derive Tokuyama-type identities.
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