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Abstract5

There are currently over 100,000 merchant ships operating globally. To reduce emissions requires

predicting and benchmarking the power they use. This is relatively straightforward for calm con-

ditions but becomes almost impossible in larger waves. Design power predictions for ships in

weather are typically derived by applying a ‘margin’ onto a reference ‘calm water power’. This

is of questionable accuracy as the techniques available to estimate these ‘margins’ are inaccurate.

To improve the accuracy and flexibility of such predictions this paper investigates the use of neu-

ral networks. For this, 27 months of continuous monitoring data are used from 3 vessels of the

same design, sampled every five minutes. Multiple network sizes are considered and evaluated to

determine the quantity and quality of data required for predictions. A key aspect is determining

network architectures optimised not just for accuracy, but that give close relationships between

the input variables and shaft power. Predictions are compared to the results of a regression, the

conventional tool to determine shaft power from measured full-scale data from ships. The predic-

tions from this network are similar in accuracy to those of standard practices, with an error less

than 10%, but the scope for further improvements is large.

Keywords: Machine Learning, Shaft Power Prediction, Function approximation, Physics-based6

learning, Artificial Neural Networks7

1. Introduction8

It is estimated that 90% of the world’s trade is seaborne, due to the efficiency of shipping as a9

mode of transport. Despite this efficiency, the sheer volume of trade means that global shipping10

is responsible for 3.1% of anthropogenic CO2 emissions [20], equivalent to those of a major indus-11
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trialised economy such as Germany or Japan. Despite this shipping is presently outside of the12

United Nations Framework Convention on Climate Change (UNFCCC [25]) commitments to re-13

duce emissions. Implementation of an effective energy efficiency management (SEEMP [15]) plan14

for a vessel, as mandated by IMO, requires benchmarking of its fuel usage. Therefore prediction of15

fuel consumption, based on its power requirement, is extremely valuable. Accurate prediction of16

a ship’s power requirement in different weather conditions is difficult using traditional methods17

based on model tests and/or numerical analysis [18]. Even more sophisticated methods, such as18

fitting high frequency operational data with regression curves [11] or comparing to design speeds19

to produce a weather margin [10] [16], struggle to give accurate predictions which would allow20

vessels to determine the penalties for travelling a given route.21

Traditional techniques for power prediction at the design stage rely on computational analysis22

of the added resistance due to waves, or on towing tank tests at model scale, see Molland et al23

[18]. Much of the operational ship performance analysis is presently based on measured data,24

and focuses on trying to obtain an accurate regression curve fit to the power-speed relationship25

in calm water to provide a baseline performance [3]. It has advantages in its simplicity, but is26

time consuming and concentrates purely on the relationship between speed and power, ignoring27

fluctuations for weather. As it is the industry standard it is chosen as a means of comparison28

between the developed method and those in regular use for analysing ship performance. In order29

to derive such a regression fit, it is common to filter out performance data in waves above a certain,30

arbitrary, height. A choice must also be made on whether to derive the curve for the remaining31

data set, or whether to also filter for draught and vessel trim. It is extremely difficult to analyse32

ship performance data in waves using such methods shown by Lakshmynarnyanana[11], where33

the nature of the regression relationship is not known a priori. Th artificial neural network method34

(ANN) allows the possibility of deriving a method of predicting ship power based on all of the35

underlying physical parameters. This predictive model may be used in performance analysis as36

well as having the capability to be used for weather routing and deriving design margins for future37

ships.38

Recorded data has historically been used for similar estimations, through use of the ‘noon39

report’ of the ship’s position, wind speed, estimate of sea state and daily fuel consumption taken40
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at noon each day during operation. This type of analysis requires a large number of voyages before41

the required quantity of data can be collated and also suffers from the averaging inherent in using42

one data point to represent the operation and weather conditions from a 24hr period. These reports43

are also reliant on observation and subject to human error. Despite these drawbacks noon reports44

are currently used to monitor vessel status and operational efficiency. Recent improvements in45

the ability to collect, store and transmit data allows for analysis of these different variables at46

a much higher frequency. The extra data can be combined with recent advances in forecasting47

environmental conditions using hindcast models to provide improved predictions. Dinham-Peren48

and Dand[4] highlight the potential benefits and some of the problems with using these data to49

derive performance benefits.50

Beyond Dinham-Peren and Dand[4] there are a few other recent attempts to predict ship per-51

formance from data measured more frequently. These papers utilise a range of techniques, e.g.52

Trodden et al.[24], Aldous et al. [1] and Lu et al.[16]. Trodden et al.[24] investigated a method53

for associating segments of a data-stream with its corresponding ship activity to find the fuel54

efficiency; the method utilises a number of filtering techniques to determine the activity being55

performed. To validate the methodology, results from the data analysis of speed over ground56

are compared to fuel consumption data measured under sea-trial conditions and found to be in57

close agreement. The analysis of this paper utilises one month’s worth of data, constituting 43,14358

data-points. Aldous et al.[1] categorises the relevant sources of uncertainty in performance mea-59

surement. A sensitivity analysis conducted on the sources of uncertainty highlights the relative60

importance of each. The two major data acquisition strategies, continuous monitoring and noon61

reporting, are compared, using 9570 data points, after filtering, taken over 370 days. It was found62

that the number of observations in the data set has a significant effect on uncertainty, with more63

data reducing the uncertainty, with the observations taken at either 15 mins (continuous monitor-64

ing) or 24 hrs (noon reports). Lu et al.[16] looked at a semi-empirical addition to the method of65

Kwon[10] to estimate the ship’s added resistance considering the specific ship type under varying66

draughts, speeds, encounter angles, sea states, fouling effect and engine degradation conditions.67

Despite these attempts to utilise some of the available data there are limited attempts to apply68

soft computing or machine learning techniques on data from operational measurements. This is69
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despite the use of Artificial Neural Networks (ANN) in a number of other marine applications, Jain70

and Deo [9] review the use of neural networks in ocean engineering. They show that the majority71

of applications of neural networks in ocean engineering are to predict natural variables in specific72

locations (wind speed and direction, wave height - Hu et al[6] and tide - Lee and Jeng[13]), but that73

there is some use for predicting non-natural variables like predicting ship parameters - Islam[8]74

and vessel location - Zissis et al [26]. The majority of papers reviewed by Jain and Deo [9] are75

simple supervised feed-forward networks with one or two hidden layers and a low number of76

inputs (with a few exceptions Makarynskyy [17] and Huang et al [7]).77

Notable exceptions – applying soft computing to operational measurements - include Pedersen78

and Larsen [21], Besikci et al. [2] and Radonjic and Vukadinovic[23]. Pedersen and Larsen[21]79

also used an Artificial Neural Network approach to ship power prediction, looking at predictions80

over 10min periods, they used a Bayesian learning scheme. Four variables were investigated;81

ship speed, relative wind speed and direction, air temperature and sea water temperature. The82

sampling time was every 1 second, but these measurements were inconsistent, sometimes with83

gaps of more than 10 seconds; power and speed were updated at a different time period, every84

13 seconds. Samples with excessive variance in the heading were excluded. The relative error of85

the predictions was less than 2.7% for the mean propulsive power over 10 min periods. This was86

seen to be significantly better than empirical or data-driven methods based on towing tank tests87

(e.g. Holtrop[5]). Besikci et al. [2] predict the fuel consumption of a vessel but use data from ‘noon88

reports’. The parameters considered for fuel prediction are ship speed, revolutions per minute89

(RPM), mean draft, trim, cargo quantity on board, wind and sea effects, in which output from90

the ANN is fuel consumption. Only 233 points of data are used with the best prediction being91

reached with 12 neurons in one hidden layer which provides better performance than multiple92

regression analysis. Artificial Neural Networks have also been used to predict power for two93

boats by Radonjic and Vukadinovic[23] but the data used was from full scale trials, not measured94

from day to day use of a ship. Their results only concentrated on the ship speeds effect on power95

so predicting ship performance in weather is not possible from this model. The data used to train96

their networks includes vessel specifications such as length to beam ratio, this means a network97

trained on one vessels data will never be able to be used on another vessel, a vital application98
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of this method. Importantly the focus of all of these approaches, marine or non-marine, is on99

the accuracy of the power prediction, but there is limited evidence of understanding how physics100

dependant these models are.101

There are currently limited efforts to use machine learning tools to predict ship power from102

real data, those that do use only a few input parameters. The focus for the available attempts is on103

the accuracy of prediction rather than the relationship between inputs and outputs, which will be104

vital to make the most of these tools. This paper presents an application of machine learning tools105

on measured ship data to predict shaft power in a range of ship and sea conditions. The focus106

will be on creating networks which approximate the relationships between inputs and outputs,107

physics-based, and not solely on the accuracy of the results, like much of the literature. Of the108

six well documented applications of neural networks to ship propulsion prediction, five ([2] [21]109

[14] [22] [23]) use one hidden layer with less than 50 neurons. A two layer neural network has110

also been applied [23], although the number of neurons in the layers is not specified. Previous111

studies refer to whether a function can be found that gives high accuracy, this does not necessarily112

imply the network will easily be able to find the real representation as many networks suffer113

from poor extrapolation [9], perhaps indicating that they have not found the real representation.114

Shallow networks can memorise data but are poor at generalisation, deeper networks are capable115

of learning features at various levels of abstraction [19] allowing explicit development of areas of116

the network to handle the weaker relationships between inputs and outputs. This can improve117

model generalisation [12] and so it is proposed that the use of larger networks will improve the118

ability to extrapolate beyond the available input data by becoming more physics-based. Guidance119

is given on the quantity of data required for this type of analysis and the type of architecture120

required to give a balance between accuracy while retaining a basis in the underlying physics121

of the ship’s behaviour. The developed method is compared to a regression used on the same122

dataset, to highlight the differences in the machine learning methods and potential areas where123

current models might be improved. A method capable of determining the influence of weather on124

ship power performance allows its use in both weather routing and in providing a correction from125

measured data in a range of conditions back to a calm water, or reference, condition. The latter126

may provide more data for analysis of a range of ship operational and design effects, Dinham-127
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Peren and Dand[4].128

2. Artificial Neural Networks129

Artificial Neural Networks are collections of neurons that are grouped into layers with weighted130

connections, with a simple representation shown in Figure 1. Each neuron is connected to other131

neurons in the network and, each connection carries a unique weighting.A neuron has at least one132

input from other neurons and a single output which is multiplied by the weighting associated with133

a given connection, providing inputs to the next neurons in the chain. Explicitly, for one neuron134

with N inputs, let {xi} be the inputs into the neuron and {wi} the weights on the connections,135

where i ∈ I = {0, ..., N − 1}. A bias input, x0, is also included which is permanently set to either136

1 or 0 with a corresponding variable weight value w0 and an output y. As data is received a neu-137

ron receives input values from the neurons it is connected to and the activation of the neuron a is138

computed,139

a =
∑
i∈I

wixi. (1)

The output of the neuron is y = f(a), where f is the activation function, which is selected by140

the user from a range of pre-determined functions, in this study a sigmoid activation function is141

used. The data was split with 70% used to train the network, 15% to test the final network with142

and the other 15% was used for ‘validation’, which is a standard split for these applications. There143

are a number of different types of neural network but here a back propagation neural network is144

used that may be divided into 4 broad steps and a brief summary is given:145

Step 1: Hyperparameter Selection146

The accuracy of the network is dependent on a number of key variables, the main ones are the147

number of hidden layers and neurons. As the number of units increases more complex relation-148

ships can be modelled by the network; the selected variables are shown in table 1 .149

Step 2: Training150

The training is performed using Backpropogation and scaled conjugate gradient, before which151

the weights are randomly initialised to between 0 and 1. These outputs are compared to their152
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corresponding measured shaft power to calculate an error. Backpropogation then occurs to im-153

prove the accuracy of the net, where the weights connecting the neurons are changed based on the154

error between the estimate and actual result. This is repeated and as the weights are continually155

changed, scaled conjugate gradient descent is used to recognise that a set of weights, as close as156

possible to the optimal set, has been found. This is performed for all of the training data. The157

process is then repeated for the specified number of epochs, unless the error criterion is reached158

first.159

Step 3: Validation160

Validation is performed during the training process to see if it can terminate early as the net-161

work is already suitably trained - this saves time and prevents overfitting. The error is calculated162

at the end of each epoch for the testing and validation set, if the validation error increases for 5163

consecutive epochs then training is prematurely stopped. A mean square error goal of 0.001 was164

set to stop training as an additional control to ensure there was a limit on the computational time165

but this goal was never reached.166

Step 4: Verification – Testing167

Once the training process has finished, testing of the net occurs. To do this the ‘untouched’ test-168

ing data is run though the network, no backpropogation occurs, the outputs are then compared to169

the measured power and the average absolute percentage error is calculated. Large networks with170

many layers and neurons can overfit a dataset by becoming too sensitive to specific datapoints,171

having a low training error but a high test error. There is also a danger of having too few layers or172

neurons in a network, underfitting can occur where both training and testing error are high as the173

network fails to model the basic relationships within the data. Before testing, a systematic hyper-174

parameter tuning was performed showing that increasing the number of epochs provides limited175

improvements to the accuracy as the stopping criterion meant that the full number of epochs was176

seldom used . Automatic stopping after 5 epochs of increasing validation error seemed to pro-177

vide limited improvements to the accuracy and the values used seem to provide a good balance178

between accuracy and computational cost.179
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3. Data Description180

The data used for training the network in this study are from three large merchant vessels of181

the same design (‘sister ships’) from January 2014 to February 2016, with a varying number of182

months of data from each vessel.183

Most of the vessel movement is repeated routes with occasional variations to the standard,184

thus covering a large range of geographic locations and recorded weather conditions. The total185

number of months worth of data is around 27, totalling 120,758 datapoints. Data is recorded once186

every 5 minutes on board for each variable apart from wave height which is hindcast weather187

data. Variables that were available for the training of the neural network are:188

• GPS ship speed (knots)189

• ship speed through the water (knots) (Speed Log)190

• wave height (m)191

• true wind speed (m/s)192

• apparent wind direction (degrees)193

• draught (m)194

• trim (m)195

• heading (degrees)196

Training data was used to predict the shaft power (KW) of the vessels. Shaft power is the

product of the shaft torque (T ) and its angular velocity (ω) which can also be expressed in terms

of the RPM of the engine (N ).

Shaft power = Tω

=
2πNT

60

Shaft power is the measure of how much power the engine transmits to the propeller via the197

shaft. Measuring this allows the calculation of the engine efficiency and is a more direct measure198
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of power required by the vessel than the quantity of fuel used (where the engine performance199

affects the resulting power).200

The data used shows high variance as the vessels operate in a range of conditions. This is201

substantially beyond the variation seen in many other power prediction applications such as for202

wind turbines or road vehicles. This can be seen in the coefficients of variation for the data; the203

wind speed, wave and shaft power all have coefficients of variation around 0.5 – 0.6 whereas GPS204

and Log speed have a coefficient of variation of 0.3.205

The variation in the data is apparent in Figure 2 as a boxplot is drawn for all the shaft powers206

recorded at each speed. Figure 2 shows that there is a trend to the majority of the data with the207

mean power being approximately proportional to the cubic of the speed. The middle, darker,208

boxes are bounded by their upper and lower quartiles - meaning they contain half the datapoints209

for each plot. Most of the data is in the 14-20 knot range, with the higher values 16 and above210

having the highest densities. Lower or higher values than this have a lower density of data, and211

a lower variance. From around 11knots of ship speed upwards there is a variance of shaft power212

nearly half the range of observed shaft power. Ship speeds from 8-11knots show even higher213

variance of shaft power around two thirds the range. It demonstrates the difficulty in creating a214

relationship between the input variables, such as speed, and power. Much of the data fits these215

simplified relationships, as speed is so dominant, but will give inaccurate results at other points216

due to the variation caused by other factors.217

Figure 3 shows the wind direction histogram and the average wind speed encountered. It218

shows that the majority of the time the vessel is facing the apparent wind nearly head on, meaning219

the vessel is traveling faster than any wind influence or that the vessel is traveling into a head220

wind. The average wind speed over each interval shows little variation.221

The vessels operate in either a loaded or ballast condition. Therefore the draught tends to be222

around one of two values, figure 4 shows the split at around 0.45 of the maximum draught values.223

Trim, unlike draught, can be altered by the captain at any time, but it tends to be kept at one of 8224

main values with a normalised value of 0.8 dominating.225
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3.1. Feature Selection226

From the available 8 variables feature selection was performed to ensure the best results from227

training. If too many variables which are poorly correlated to the output variable are used a228

network can suffer from overfitting. However, not using a variable which includes relevant in-229

formation not present in any other variable, will reduce the accuracy of the trained network. In230

addition, a focus of this research is ensuring a good correlation between input variables and out-231

puts, so using only those with a strong influence on the power helps to provide a more direct232

correlation.233

The Spearmans Rank correlation coefficient is used to evaluate correlation between the possible234

input variables. As figure 5 shows; speed from GPS and speed from the log have the highest235

correlation with shaft power, but as expected they also have high correlations with each other,236

showing a high level of redundancy between the variables. In this case speed from the GPS was237

chosen as the only speed variable as it has the higher correlation to shaft power. Wind speed,238

draught and wave height were all chosen as variables as they have between 0.5-0.1 correlation with239

shaft power, so have some effect on the shaft power. Trim shows little correlation with shaft power,240

but -0.42 correlation coefficient with draught. As the relationship between draught and trim is241

uncertain - both variables were included for training to see if any new information regarding this242

relationship could be found.243

The final list of variables used for training after feature selection is:244

• GPS ship speed (knots)245

• wave height (m)246

• true wind speed (m/s)247

• apparent wind direction (degrees)248

• draught (m)249

• trim (m)250
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3.2. Data Processing251

Filtering is applied to the data to remove wind speeds above 40knots, removing 74,775 data252

points (from 120,758 to 45,983). The effects of this filtering are shown in figure 4 where all the253

variables retain their distribution shape, just with reduced frequencies of data, apart from wind254

speed which loses its tail. It is interesting to note that there is more variation in the speeds the ship255

travels at than would be expected.256

The final data selected includes all times when the ship is docked, manoeuvering or otherwise257

stationary. There were also periods where one variable would be constant for an unlikely length258

of time; it was decided these were due to malfunctions of the equipment. If the shaft power,259

ship speed, wind speed or wind direction stayed constant for more than a short period the whole260

section would be removed from the dataset, as it was assumed to be an error in the recording.261

Also, all of the time steps when the ship was not moving were removed - that is ship speed was262

equal to 0. This would leave all low, or manoeuvering, speeds, which were included to maximise263

the quantity of data available to train the network.264

Finally, the apparent wind information was converted to true wind speed and true wind angle265

with the equations 2 and 3.266

Vtrue =
√
V 2
app + V 2

ship − 2VappVship (2)

267

α = arccos
Vapp cosβ − Vship√

V 2
app + V 2

ship − 2VappVship
(3)

4. Neural Network Parameters268

As powering requirements for ships in waves have not been investigated using machine learn-269

ing techniques before, it is important to provide guidance on the quality and quantity of data270

required for this application and the optimal network architecture. This section aims to provide271

an idea for the number of hidden layers and neurons required to provide an accurate assessment272

in this application. Studies have suggested that 1 hidden layer is sufficient to produce accurate273

results [22] for this type of data. However, larger networks have been shown to have a number of274
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advantages over shallow networks including feature abstraction, allowing explicit consideration275

of lower order terms which will allow better approximation of the relationships between variables276

with lower correlations in Figure 5, and better generalisation capabilities [12]. So, larger networks277

are explored to investigate how well differently sized trained networks reflect the input-output278

relationship. A range of 1 – 5 hidden layers are selected to test this hypothesis, each with between279

1 and 100 neurons in each layer.280

4.1. Numbers of Neurons281

Figure 6 and table 2 show the percentage error in a net of varying numbers of layers for 1, 50282

and 100 neurons on the test set, except where 5 hidden layers are used and 150 neurons are also283

investigated.284

The results show that error decreases as both numbers of layers and numbers of neurons in-285

crease, this is not surprising as the larger complexity of the network allows for a higher-order fit286

to the data. In figure 6, 100 neurons and 50 neurons create approximately the same error for the287

numbers of layers tested. The computational time to train the network increases substantially with288

increasing neurons and layers meaning that if 50 and 100 neurons produce similar results then it is289

more efficient to use the lower number of neurons; 50 neurons are thus selected for further studies.290

It appears that an accuracy of 7-9% is easy to achieve using a basic network and limited treatment291

of the data. However, it is also important to understand the relationship between these results and292

the input variables.293

4.2. Numbers of Layers294

The dependence of the performance of the network on the number of hidden layers is inves-295

tigated. To help with this the testing and training error for different numbers of layers is docu-296

mented in table 2; it shows that 3 hidden layers create the lowest average error for both testing297

and training. The percentage error for 4 hidden layers is greater than that for 3, but the error298

reduces again for 5 hidden layers. For 2-4 hidden layers the simulations show a training error299

slightly lower than testing error but not significantly which implies that they are not starting to300

overfit the data. However, in the case where there are 5 hidden layers this difference is already301

starting to increase, suggesting that at this stage the network is starting to overfit but this does not302
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appear to be statistically significant. For one hidden layer the error is larger for both the training303

and testing data and it is suggested this is because the data is underfitted. Larger quantities of304

data should allow a larger number of hidden layers to be used.305

To look for signs of over or underfitting, and to determine whether the relationship between306

the input variables and the power are based on physicsal laws, or whether the neural network307

provides a function which produces a low error but gives a "black box" approximation which308

works but is not related to the real world relationship between inputs and outputs. To see the309

variation of the shaft power prediction for each variable the following process was followed:310

1. Train the network,311

2. set all but one value to be constant, the mode,312

3. cycle the remaining variable from its minimum to maximum recorded values,313

4. run the new dataset through the trained network.314

Figures 7 - 11 are representations of the relationship between speed and draught corresponding315

to the networks in table 2. The draught and speed are selected as representative of the other316

variables, which show similar trends. The shaft power is normalised to preserve the confidentiality317

of the data.318

At 1 hidden layer (figure 7), the speed-power graph shows a curve that is starting to represent319

the expected behaviour, which is that as ship speed increases shaft power output increases in a320

non-linear fashion, suggesting the relationships within this data are not too complex as a network321

with one layer can identify the relationship. The expectation would be that shaft power will in-322

crease approximately as the cube of the ship speed, but with variations about this trend caused323

by wave interference between bow and stern wave patterns, e.g. [18]. Variations in draught and324

trim will affect the bow and stern wave patterns which will have an effect on the powering of the325

vessel as well.326

At 4 hidden layers (figure 10) the simulations show signs of overfitting, particularly in figure327

10 b) where at around 11m draught a sharp change of gradient suggests erroneous extreme data328

points are skewing the trend, this is not shown in the accuracy of the training and testing data.329

5 layers (figure 11) show similar signs of overfitting to 4 layers, and so larger numbers of hidden330
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layers were not investigated. However, neither the percentage errors nor figures of the relation-331

ships between the input variables and power show definitive overfitting and due to the size of the332

data being used to train these networks a larger network would be needed to show this clearly.333

Since a network with 1 layer appears to be under-fitting and a network with 4 or 5 layers show334

some signs of overfitting, the network that best captures the relationships in these data appear to335

be a 2 or 3 layered network which are used in the further investigations.336

Simulations with multiple neurons, for the same number of hidden layers, are shown in figure337

12 and figure 13. The aim is to select a number of layers that is robust to the number of neurons,338

giving similar trends at each simulation, as this implies the network is better at consistently iden-339

tifying fundamental relationships in the data. It can be seen that the repeatability of the network340

is better for inputs that the power is more sensitive to, the speed correlates highly with the power341

and the resulting speed-power curve shows robustness to the network architecture. To develop342

physics-based networks it is the less sensitive variables that should be concentrated on.343

Figure 12 a) and figure 13 a) show similar repeatability and distinct predictions although figure344

13 a) does appear to be slightly more reliable. When looking at figure 12 b) and figure 13 b) it345

appears that the figure 12 b) is mapping the same curve each time, with some small difference,346

though there is some variance in how deep the trough at a draught of 4-8m is.347

For figure 13 b) the results for 30 and 100 neurons per hidden layer have an extra peak at348

draughts of 7-9m which are not seen in any other simulation, this is a sign that the network is349

beginning to overfit the data or approximating an unrealistic function. This implies that 2 hidden350

layers produce more reliable results compared to 3 hidden layers. Even taking into account the fact351

that table 2 show a 3 layered network as having a lower error than a 2 layered network, figures352

13 b) and 12 b) show that overfitting is already starting to occur at 3 layers for the relationship353

between individual variables and the output, therefore the network was chosen to have 2 hidden354

layers.355
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5. Accuracy and Reliability of the Net356

5.1. Accuracy: Neural Net vs Regression357

Having determined the accuracy and provided guidance on the neural network architecture358

using a "black box" assessment, the curves will be assessed to determine how much the trends in359

the variables are based on physical relationships, i.e. reflect the behaviour of the ship. Regression360

is currently the accepted practice in naval architecture to calculate ship speed-shaft power curves361

for calm waters from operational data, and prediction in weather is based on regression analysis362

of model testing [3].363

Therefore, the relationships from regression are compared with simulations from the neural364

networks on the same dataset, shown in figure 14. The data are divided into wind ‘bins’ and a365

curve is created unique to that condition from a regression. When creating the simulation using366

the neural net the wind speed variable is altered to the relevant wind condition. For the three367

compared wind conditions the two methods, regression and neural networks, map similar rela-368

tionships until 17 knots of ship speed.369

For ship speeds below 17 knots there is a good correlation between the predictions from the370

neural network and the regression. At ship speeds higher than 17 knots the regression continues371

to show an increase in shaft power, whereas the neural network tends to flatten. This ‘dropping372

off’ occurs at the point at which less data are available and the neural network predicts shaft373

power based on the data it has seen, therefore predicting power can no go higher than what it has374

seen previously. The network predicts that the power or speed will not go much higher than the375

largest recorded value of power in the dataset. The ship does not often operate at speeds above376

17knots, which stretches to beyond the designed maximum speed, and so it is less important for377

the analysis. The tailing off and unpredictability shown in figure 14 is explored further in the next378

sections.379

5.2. Repeatability of analysis380

Multiple identical simulations are replicated in order to check the reliability of the network,381

illustrated in figures 15 and 16. The only change between each simulation is the randomly selected382

70% of the data that is used to train the network. A reliable network should map the same line383
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each time, and this is a good indicator that it is the true relationship between the variable and the384

output. Figure 15 a) shows good repeatability for most ship speeds apart from the higher range385

from 18 knots and above. One of the simplest explanations for this is that these ships do not spend386

much time travelling at speeds above 18 knots, therefore less data for these regions leads to less387

reliable predictions. As well as the simulations giving different results, there is also a drop in388

power which suggests that the higher ship speeds require less shaft power, which does not reflect389

the behaviour seen by vessels. In figure 9 (a) the predicted powering is higher for 0 knots than 5390

knots, this behaviour is hard to explain in terms of expected vessel behaviour, so is most likely an391

example of the poor extrapolation of the network. Figure 2 shows the low quantity of data in this392

region.393

To verify this hypothesis figure 15 b) is a histogram of the recorded ship speed data to give394

a reference of where the majority of the data lies. To quantify the reliability of the network at395

different ship speeds figure 15 c) shows the variation between the 5 simulations at any point i.e.396

the more variation between the simulations, the less reliable the prediction is. Figure 15 shows that397

the peaks in the histogram correspond directly to troughs in the ‘range’ line and the simulations in398

15 a) are more repeatable . This shows that more data gives more accurate and reliable predictions,399

an unsurprising correlation, but more importantly that above 18 knots of ship speed the lack of400

data means less reliable and more importantly less accurate predictions. This means that with the401

current dataset, predictions for ship speed above 18 knots should not be considered, but since this402

is above standard operating conditions it is not a problem. However, the same issues occur at the403

lower end of the data set and predictions in these regions might be more valuable, and perhaps404

improvement in this region would reduce the average error of the prediction to below 8%.405

To ensure this phenomenon was not purely observed for the ship speed variable, and therefore406

the "drop off" and difference in simulations was caused by lack of data at extremities rather than407

some other reason, the same plots were created for the wind speed, figure 16, where the results408

are consistent with the earlier analysis. However, there is a larger variation in these simulations,409

indicating that the power prediction is less sensitive to this variable. Whilst the prediction of410

the power appears to be good in areas, and there is a relationship between the simulation and the411

behaviour of the vessel, in more extreme conditions the neural network prediction does not appear412
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to be accurate or repeatable. It is assumed that results skew the accuracy of the overall analysis413

and therefore the prediction accuracy of the vessel in waves can drop below 8% assuming a longer414

time period for data collection.415

5.3. Quantity of data vs Error in the Net416

With the current 2 layer, 50 neuron network an error of around 8% is common. Figure 17 shows417

that as the amount of data increases, which has been randomly sampled from across the 27 months418

worth of data provided, the error decreases.419

This low error shows that the network is reliable and accurate to predict shaft power for the420

majority of weather conditions and also shows that the network parameters are correct for the421

nature of the data it is being trained on. This also implies that a ship only needs to be at sea for422

2 months to produce accurate results. However, this is misleading because the data used to train423

the network is randomly sampled from the total 27 months, meaning this will most likely include424

a larger spread of conditions than if the months were sampled as consecutive whole months.425

For figure 18, multiples of months are sampled whole and consecutively, i.e. the data used for426

the first point in figure 18 is the first 288 datapoints in the database, equating to the first days’427

worth of information. For figure 18, the third datapoint on the graph, which represents 3 days’428

worth of information, should be an average of 20 simulations. However, one of the simulations429

produced a highly erroneous error of over 2000%, although this does not change the conclusions430

drawn from this figure, including this number in the average meant that the value was around431

1000% and made figure 18 impossible to read. For this reason the 2000% error was taken out of432

the average for this datapoint. For the same reason of making the figure more legible the scale433

is capped at 270% when the upper bounds for the error bars for the first 4 datapoints are in fact434

higher than this. This means the network (and ship) is exposed to a small range of conditions and435

therefore cannot predict accurately the shaft power for the conditions it has not yet been exposed436

to. This means the percentage error is initially large and although it does decrease quickly as more437

data is available and used to train the network, the network is not exposed to nearly as wide a438

range of conditions as through random sampling. As such, the error is significantly higher, taking439

more than 3 months to drop below 20%. Figure 17 and 18 only show up to 3 months of data, this440
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is because after this point the decrease in error from 3 – 27 months is regular and slow, giving a441

final error of 7.8%. Including all 27 months obscures the initial curve so the values after 3 months442

have not been included to aid clarity.These two figures, 17 & 18, show that the quantity of data can443

be relatively low to achieve an acceptable accuracy, but that the important thing is that the data444

contains a good range of conditions to allow accurate prediction. In both figures 17 and 18 the445

points are averages over 20 simulations and the error bars show maximum and minimum error in446

the 20 simulations.447

It is important to note that as the number of months in figure 18 increases beyond 3 the error448

continues to decrease and by the time nearly all of the data is used the error has dropped to around449

8% - the same as in figure 17. The point at which the error converges for the method used in figure450

18 is based purely on when in the 27 recorded months of data the ship encountered sufficient range451

of conditions. This is a function of the routes the ships operate and the time of year they are in452

different locations.453

6. Discussion454

Monitoring ship performance in order to improve efficiency and reduce fuel consumption is455

becoming more important to tackle emissions from shipping. Using data measured from vessels456

in operation to establish baseline performance, track changes over time, improve routing and im-457

prove design power margins is challenging. Noon report data is insufficient in quantity to allow458

this quickly and – given the 24 hour reporting frequency – does not readily allow performance in459

different weather conditions to be established accurately. Continuous monitoring data holds more460

promise, but most present methods of analysis rely on heavily filtering the data, typically resulting461

in only 10% of the data set being retained. This tendency towards calm water predictions result462

in requiring many months of data to establish performance baselines and changes and no insight463

into performance in waves.464

Neural networks have rarely been used for predicting shaft power in marine vessels. In this465

case, the three regression-based speed curves normally used for this application can be replaced by466

one neural network trained off of the same training data. The neural network opens possibilities467

to easily create similar curves for analysis for these lesser understood variables.468
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Predictions from the neural network are consistent for ranges where there is a high quantity469

of data and it is shown that extreme ranges of ship speed and wind speed produce less consistent470

predictions. Collecting more data will ensure more data in the extreme ranges which would aid471

prediction. An alternative is to ‘manufacture’ more extreme data by looking at the small amount472

of extreme data already present and use machine learning tools or simulation tools, like computa-473

tional fluid dynamics, to generate more datapoints.474

The results from this study are compared with other similar attempts to predict vessel power-475

ing with neural networks in table 3. The other comparable papers use significantly less training476

data and smaller, shallower, networks. It is noted that both provide better accuracy but it is dif-477

ficult to draw too many conclusions from this, as the measurement errors of each data set are478

unknown. Previous studies pre-filtered their data to remove transient periods where the ship is479

manoeuvring in or out of port and bucketed datasets to remove the effect of some variables which480

are assumed to be the reason for the lower variance in the data. Pedersen [21] split their dataset481

into 4 datasets which are used to train 4 models separately, further decreasing the number of data-482

points for training and the range of conditions experienced within that dataset. The networks are483

only tested within the ranges of their training data so no extrapolation is observed. It may be that484

changing the frequency of data collection or filtering, like is seen in the other applications, would485

improve this prediction accuracy but in addition networks are selected to provide a physics-based486

assessment of the data and this may also reduce the accuracy. Error is being estimated for con-487

ditions that rarely occur and reducing the range should increase the accuracy of the prediction,488

essentially only allowing prediction in conditions where there is sufficient data to do so.489

Including the rotational speed of the engine (RPM) as an additional variable in the network490

may further improve its accuracy. For a given vessel, propeller and operational condition (draught,491

trim, etc.) in calm water, there is a unique relationship between vessel speed and RPM. In waves,492

however, the varying torque on the propeller will change the RPM for vessel speed and power.493

This therefore provides an additional variable related to the influence of sea state on speed and494

power.495

The extent to which this network represents the physics of ship performance is open to debate.496

As concluded, the network predictions are accurate and the figures shown in the paper follow497
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patterns which can be considered logical. However, for some of the variables used to train the498

neural network there is little knowledge of how they affect ship powering, for example draught499

and trim. It is known that draught and trim have a significant influence on the ship powering500

but the effects of changes in draught and trim separately are still uncertain. Figure 5 shows that501

trim and draught are more correlated than any other two input variables although both have low502

correlation with shaft power, suggesting the underlying relationships between these variables are503

more complicated than standard regressions can identify. It can also be seen in figure 5 that the504

ship speed has the highest correlation with shaft power, this confirms what can be seen in figures505

15 and 16 as speed has the best repeatability of all variables. This shows that the more correlated a506

variable is to the shaft power, that the model approximates a relationships between the variables507

and produces an output that is more physics-based. Those variables with a weaker correlation are508

more liable to be approximated in a manner that favours accuracy.509

Ideally comparison to results produced through either scale-model testing in a towing tank,510

or physics-based computational models of performance such as computational fluid dynamics,511

would provide complete validation of the adopted approach. However, such results are not read-512

ily obtained without considerable expense, or in the case of simulation are of questionable accu-513

racy in their own right.514

7. Conclusions515

This study applies artificial neural networks to continuous monitoring data for three sister516

merchant vessels, acquired during normal operational service. It is critical in a ship performance517

monitoring application to retain a representative relationship between input variables and out-518

puts, whilst also achieving the highest possible prediction accuracy. Most applications of neural519

networks in this field to date lack attention to understanding the relationships between input and520

output. This study suggests an approach that is suitable for both of these aims; to ‘fit’ underlying521

relationships without prior knowledge of them and to attain a high prediction accuracy. In this522

case the network that is best for accuracy shows a similarly good response in terms of mapping the523

relationships for each variable and performing as well as equivalent regression methods. How-524

ever, these relationships are strongest in relation to the variables that correlate best with the power,525
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while those that the power is less sensitive to are not as well mapped. Further work is required to526

better define whether the functions mapped by the neural network echo the physical relationships527

between inputs and outputs. Selecting or training for these networks will improve their transfer528

learning abilities, including extrapolation, as the response will be physics-based, meaning that the529

input-output combination, or similar, need not have been available in training.530

The results show that a simple backpropogation neural network with 2 layers and 50 neurons531

in each layer can predict the power with an accuracy of 8% and shows good repeatability of the532

relationships between the input variables and the measured shaft power. Such a network may be533

capable of providing a baseline for performance monitoring across a wide range of environmental534

conditions, thus allowing faster decision-making. The method may therefore also be of use in535

improving weather routing and establishing a power margin for newbuilds.536

Figure 1: A neural network with 2 hidden layers and 3 neurons in each layer
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Table 1: Selected hyperparameters

Hyperparameter Value

Number of epochs 1000

Goal 0.001

Maximum number of 100

validation failures

Performance function mean squared

error

Training algorithm scaled conjugate

gradient

Early stopping patience 5

Figure 2: Box plots for every recorded value of shaft power at each recorded speed
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Figure 3: Wind direction histogram and average wind speed in each histogram bin

Figure 4: Histograms of all variables before and after filtering
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Figure 5: Heatmap of the Spearmans’ rank correlation coefficient between all variables.
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Figure 6: Plot showing number of hidden layers vs percentage testing error
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Table 2: Table showing test and training error of various sized networks.

Layers Neurons Training Testing

Error(%) Error(%)

1 1 14.42 14.31

1 50 10.36 10.44

1 100 10.54 10.76

2 1 14.17 14.11

2 50 8.96 9.13

2 100 8.69 8.65

3 1 13.99 14.01

3 50 7.83 7.86

3 100 7.77 7.91

4 1 14.35 14.33

4 50 8.70 8.74

4 100 8.26 8.27

5 1 13.95 13.94

5 50 7.86 7.98

5 100 8.23 8.30

5 150 7.83 8.02
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(a)

(b)

Figure 7: Simulation with 1 hidden layer and 1 neuron a) isolated speed and b) isolated draught
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(a)

(b)

Figure 8: Simulation with 2 hidden layers and 50 neurons a) isolated speed and b) isolated draught
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(a)

(b)

Figure 9: Simulation with 3 hidden layers and 50 neurons a) isolated speed and b) isolated draught
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(a)

(b)

Figure 10: Simulation with 4 hidden layers and 50 neurons a) isolated speed and b) isolated draught
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(a)

(b)

Figure 11: Simulation with 5 hidden layers and 150 neurons a) isolated speed and b) isolated draught
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(a)

(b)

Figure 12: Simulations with 2 hidden layers and a range of neurons, a) speed, b) draught
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(a)

(b)

Figure 13: Simulations with 3 hidden layers and a range of neurons, a) speed, b) draught



7 CONCLUSIONS 34

(a)

(b)

(c)

Figure 14: Neural network compared to a regression predicting ship speed for a) high wind speeds (20-30 knots), b) mid

wind (10-20 knots) speeds and c) calm water (0-10 knots)
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(a)

(b)

(c)

Figure 15: Repeatability of power prediction from ship speed for a) prediction, b) histogram of ship speeds and c) variation

between simulations
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(a)

(b)

(c)

Figure 16: Repeatability of power prediction from wind speed for a) prediction, b) histogram of wind speeds and c) varia-

tion between simulations
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Figure 17: Randomly sampled months of data vs percentage error.

Figure 18: Consecutively recorded months of data vs percentage error.

Coefficient of Variation Frequency Quantity Network Relative

Ship speed Powering of Data Size Error(%)

LNG dataset 0.3 0.59 5 mins 45,983 3L 50N 7.8

Pedersen [21] 0.006 0.001 10 mins 679 1L 5-10N 2.7

Bal Besikci [2] 0.26 24 hours 233 1L 12N 6

Table 3: The coefficients of variation for ship speed and powering and quantity of data in the Shell dataset compared to

other datasets used for neural network applications
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