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1 Introduction

Causality in econometrics typically relies on economic theory to justify the direction of causality

between variables and to inform empirical testing of the causal hypotheses. In many situations,

however, there is no relevant theoretical foundation for determining the causal ordering between

variables that appear to be jointly determined. In these instances an empirical view of the

concept of causality based on Granger (1969, 1988) has enjoyed widespread use. The popularity

of Granger causality stems in part from the fact that it is not specific to a particular structural

model but depends solely on the stochastic nature of variables, with no requirement to delimit

some variables as dependent variables and others as independent variables.

In an early study of Granger causality in multiple time series models Newbold and Hotopp

(1986) used a vector autoregressive moving average system with lag orders selected by informa-

tion criteria to determine a fixed parameter system in which the tests were conducted. Since

that early study it is has become well known that, among other things, testing for Granger

causality is sensitive to the time period of estimation. Original contributions by Thoma (1994)

on the use of a forward expanding window for Granger causality testing method, and by Swan-

son (1998) on a rolling window version prompted interest in the problem of dealing with the

time-varying nature of causal relationships in economics. See, for example, subsequent studies

by Psaradakis et al. (2005), Balcilar et al. (2010) and Arora and Shi (2016). This paper revisits

the issue of time-varying Granger causality testing from the perspective of the recent literature

for detecting and dating financial bubbles (Phillips et al., 2011; Phillips and Yu, 2011; Phillips

et al., 2015a,b; Leybourne et al., 2007). A new recursive test is proposed following the work of

Phillips et al. (2015a,b) in the context of real-time detection of financial bubbles. The procedure

involves intensive recursive calculations of the relevant test statistic, which in the current setting

is a Wald test for Granger causality, in a backward expanding sample sequence in which the

final observation of all samples is the (current) observation of interest. Inference regarding the

presence of Granger causality for this observation rely on the supremum taken over the values of

all the test statistics in the entire recursion. This procedure is therefore called a recursive evolv-

ing algorithm and its performance is thoroughly investigated and compared with the forward

recursive and rolling window algorithms.

The time-varying Granger causality tests can be translated into a test for the joint signif-

icance of a subset of the model parameters against the alternative of these parameters being
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significant over either the whole or a fraction of the sample period. Two papers of significant rel-

evance are Rossi (2005) and Rossi (2013), which propose several tests for parameter restrictions

taking potential parameter instability into consideration in a more general content. Impor-

tantly, the forward, rolling and recursive evolving procedures utilize only historical information

and hence could serve as real-time monitoring devices for causality. The methods proposed by

Rossi (2005), however, are ex-post testing procedures, which require estimating model param-

eters for each segment of the sample. Due to this particular requirement in constructing the

tests, they cannot identify breaks occurring towards the end of the sample period – the primary

interest of real-time identification. This method is, therefore, not used for comparative purposes

in this paper.

Asymptotic distributions under the null hypothesis of no Granger causality in a stationary

system1 are derived for the subsample Wald statistic for forward and rolling window versions of

the test and the subsample sup Wald statistic for the recursive evolving window procedure. Limit

theory under the assumption of homoskedasticity is provided first. To take potential influences of

conditional heteroskedasticity2 into account, heteroskedastic consistent versions of the Wald and

sup Wald statistics are proposed. The asymptotic distributions of these test statistics are then

derived under the assumption of conditional heteroskedasticity of unknown form. The major

result for practical work that emerges from this limit theory is that the robust test statistics

have the same pivotal asymptotics under homoskedasticity and conditional heteroskedasticity.

From an empirical perspective the many extensively studied problems in this area include:

(i) the money-income relationship (Stock and Watson, 1989; Thoma, 1994; Swanson, 1998;

Psaradakis et al., 2005); (ii) the energy consumption and economic output relationship (Stern,

2000; Balcilar et al., 2010; Arora and Shi, 2016); and (iii) the detection of changes in patterns

of systemic risk (Billio et al., 2012; Chen et al., 2014). The present paper employs change de-

tection algorithms to investigate the causal relationship between the yield curve spread and real

economic activity in the United States over the period 1980 - 2015. Of particular importance

to the current research is the finding in the empirical literature that the predictive relationship

between the slope of the yield curve and macroeconomic activity has not been constant over time

1 For the analysis of a possibly integrated system, see Shi et al. (2018). Simulation results suggest that
deviations from the stationarity assumption (or the presence of integrated variables in the system) may result in
a loss of power in the testing procedures.

2 The presence of conditional heteroskedasticity in financial and macroeconomic data series has been well
documented in the literature. See, for example, Engle and Bollerslev (1986); Bollerslev (1987); Nelson (1991);
Elder (2004); Yogo (2004).
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(Haubrich and Dombrosky, 1996; Dotsey et al., 1998; Stock and Watson, 1999; Estrella et al.,

2003; Chauvet and Potter, 2005; Giacomini and Rossi, 2006; Benati and Goodhart, 2008; Chau-

vet and Senyuz, 2016; Chinn and Kucko, 2015; Hamilton, 2011). The test procedures developed

here provide a natural mechanism for causal detection that allows such temporal fragilities in

causal relationships to be captured through intensive subsample data analysis.

The paper is organized as follows. Section 2 reviews the concept of Granger causality and de-

scribes the forward expanding window, rolling window, and the new recursive evolving Granger

causality tests. Section 3 gives the limit distributions of these test statistics under the null

hypothesis of no causality and assumptions of homoskedasticity and conditional heteroskedas-

ticity. The focus of the present paper is on developing the new real-time causal identification

procedure, and proofs are given in a Supplement (Shi et al., 2018). Section 4 reports the results

of simulations investigating performance characteristics of the various tests. In Section 5, we

use the three procedures, to investigate the causal relationship between the yield curve spread

and real economic activity in the United States over the last three decades. Section 6 concludes.

Robustness checks are provided in the supplement.3

2 Identifying Changes in Causal Relationships

The unrestricted VAR(p) may be written as

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt, (1)

or in multivariate regression format simply as

yt = Πxt + εt, t = 1, ..., T (2)

where yt = (y1t, y2t)
′, xt =

(
1,y′t−1,y

′
t−2, · · · ,y′t−p

)′
, and Π2×(2p+1) = [Φ0,Φ1, . . . ,Φp]. Let

Π̂ be the ordinary least squares estimator of Π, Ω̂ = T−1
∑T

t=1 ε̂tε̂
′
t with ε̂t = yt − Π̂xt, and

X′ = [x1, ...,xT ] be the observation matrix of the regressors in (2). The Wald test of the

restrictions imposed by the null hypothesis that y2t does not cause y1t in Granger’s sense, or

H0 : y2t 9 y1t, has the simple form

W =
[
R vec(Π̂)

]′ [
R
(

Ω̂⊗
(
X′X

)−1
)

R′
]−1 [

R vec(Π̂)
]
, (3)

3Data and Matlab code for the simulations and the empirical application are available for download from
http://www.ncer.edu.au/data/data.jsp.
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where vec(Π̂) denotes the (row vectorized) 2 (2p+ 1)×1 coefficients of Π̂ and R is the p×2(2p+1)

selection matrix. Each row of R picks one of the coefficients to set to zero under the non-causal

null hypothesis. In the present case these are the p coefficients on the lagged values of y2t in

equation (2). Under the null hypothesis and assumption of conditional homoskedasticity, the

Wald test statistic is asymptotically χ2
p, with degrees of freedom corresponding to the number of

zero restrictions being tested. See, for example, Granger and Newbold (1986), for more details.

As indicated in the introductory remarks, there is an ample reason to expect causal relation-

ships to change over time, because of changes in economic policy, regulatory structure, governing

institutions, or operating environments that impinge on the variables y1t and y2t. In these cir-

cumstances, testing that is based on the entire sample using a statistic like (3), averages the

sample information and inevitably destroys potentially valuable economic intelligence concern-

ing the impact of changes in policy or structures. Testing for Granger casualty in exogenously

defined subsamples of the data does provide useful information but does not enable the data to

reveal the changes or change points. Consequently, the ultimate objective is to conduct tests

that allow the change points to be determined (and hence identified) endogenously in the sample

data.

Thoma (1994) and Swanson (1998), respectively, suggest using forward expanding and rolling

window Wald tests to detect changes in causal relationships. It is convenient to work in terms

of sample fractions in the following exposition. Let f be the (fractional) observation of interest

and f0 be the minimum (fractional) window size required to estimate the model. For the Thoma

procedure, the starting point of the regression (f1) is fixed on the first available observation. As

the observation of interest f moves forward from f0 (the minimum required for the regression)

to 1, the regression window size expands (fractionally) from f0 to 1 and hence the test arising

from this approach is referred to as a forward expanding window Wald test. The Swanson rolling

procedure, by contrast, keeps the size of the regression window (fw) constant in the sequence of

regressions. As the observation of interest (f and hence the terminal point of the regression f2)

rolls forward from f0 to 1, the starting point follows accordingly, maintaining a fixed distance

from f2. A significant change in causality is detected when an element of the Wald statistic

sequence exceeds its corresponding critical value, so that the origination (termination) date of a

change in causality is identified as the first observation whose test statistic value exceeds (goes

below) its corresponding critical value.

Drawing from the recent literature on dating multiple financial bubbles (Phillips et al.,

5



2015a,b), this paper suggests an additional test that is based on the supremum norm (sup) of a

series of recursively evolving Wald statistics that are calculated as follows. For each (fractional)

observation of interest (f ∈ [f0, 1]), where f0 is again the minimum sample size to accommodate

the regression, the Wald statistics are computed for a sequence of backward expanding samples.

As above, the end point of the sample sequences is temporarily fixed at the latest observation

under study f = f2 and evolves forward from this point. However, the starting points of the

sample sequences used in these regressions extend backwards from f1 = (f2 − f0) all the way

to the first observation (represented by the sample fraction 0). The Wald statistic obtained

for each subsample regression (using observations over [f1, f2] with a sample size fraction of

fw = f2−f1 ≥ f0) is denoted byWf2 (f1) and the sup Wald statistic (up to the latest observation

corresponding to f = f2) is defined as

SWf (f0) = sup
(f1,f2)∈Λ0,f2=f

{Wf2 (f1)} ,

where Λ0 = {(f1, f2) : 0 < f0 + f1 ≤ f2 ≤ 1, and 0 ≤ f1 ≤ 1− f0} for some (given) minimal

sample size f0 ∈ (0, 1) in the regressions. We call this procedure the recursive evolving pro-

cedure. Unlike the rolling window approach, this procedure allows variation in the window

widths fw = f2 − f1 ≥ f0 used in the regressions.

Both the forward expanding and rolling window procedures are special cases of the new

procedure: the forward expanding window has f1 = 0 fixed and sets f = f2; the rolling window

has fixed window width fw = f2 − f1 = f0 (assuming the rolling window width is fixed to f0)

and window initialization f1 = f2 − f0. Importantly, all three procedures rely only on past

information and can therefore be used for real-time monitoring at the present observation f .

The added flexibility obtained by relaxing f1 allows the procedure to search for the optimum

starting point of the regression for each observation (in the sense of finding the largest Wald

statistic). This flexibility accommodates re-initialization in the subsample to accord with (and

thereby help to detect) any changes in structure or causal direction that may occur within the

full sample.

Let fe and ff denote the origination and termination points in the causal relationship. These

are estimated as the first chronological observation whose test statistic respectively exceeds or

falls below the critical value. In a single switch case, the dating rules are giving by the following
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crossing times:

Forward : f̂e = inf
f∈[f0,1]

{f :Wf (0) > cv} and f̂f = inf
f∈[f̂e,1]

{f :Wf (0) < cv} , (4)

Rolling : f̂e = inf
f∈[f0,1]

{f :Wf (f − f0) > cv} and f̂f = inf
f∈[f̂e,1]

{f :Wf (f − f0) < cv} , (5)

Recursive Evolving : f̂e = inf
f∈[f0,1]

{f : SWf (f0) > scv} and f̂f = inf
f∈[f̂e,1]

{f : SWf (f0) < scv} ,

(6)

where cv and scv are the corresponding critical values of the Wf and SWf statistics. The

origination and termination dates are estimated in a similar fashion when there are multiple

switches in the sample period. We search the origination and termination dates of episode i

with i ≥ 2 in the sample ranges of
[
f̂i−1f , 1

]
and

[
f̂ie, 1

]
, respectively.

3 Asymptotic Distributions

The notation introduced in the previous section is now used for the general n dimensional

multivariate case of (2), which allows both for changing coefficients in subsamples of the data

and for changing (fractional) sample sizes in the asymptotic theory.

Let ‖·‖ denote the Euclidean norm, ‖.‖p be the Lp-norm so that ‖x‖p = (E ‖x‖p)1/p , and

Ft = σ {εt, εt−1..} be the natural filtration. Consider a n × 1 vector of dependent variables yt

whose dynamics follow a VAR(p) given by

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt, (7)

with constant coefficients over the subsample t = bTf1c, . . . , bTf2c, where b·c is the floor func-

tion. The sample size in this regression is Tw = bTfwc where fw ∈ [f0, 1] for some fixed

f0 ∈ (0, 1).

Assumption (A0): The roots of
∣∣In − Φ1z − Φ2z

2 − · · · − Φpz
p
∣∣ = 0 lie outside the unit circle.

Under assumption A0, yt has a simple moving average (linear process) representation in

terms of the past history of εt

yt = Φ̃0 + Ψ (L) εt,

where Ψ (L) =
(
In − Φ1L− Φ2L

2...− ΦpL
p
)−1

=
∑∞

i=0 ΨiL
i with ‖Ψi‖ < Cθi for some θ ∈

(0, 1) and Φ̃0 = Ψ (1) Φ0. The model can be written in regression format as

yt = Πf1,f2xt + εt, (8)
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in which xt =
(
1,y′t−1,y

′
t−2, · · · ,y′t−p

)′
and Πf1,f2 = [Φ0,Φ1, . . . ,Φp].

The ordinary least squares (or Gaussian maximum likelihood with fixed initial conditions)

estimator of the autoregressive coefficients is denoted by Π̂f1,f2 and defined as

Π̂f1,f2
n×(np+1)

=

 bTf2c∑
t=bTf1c

ytx
′
t

 bTf2c∑
t=bTf1c

xtx
′
t

−1

.

Let k = np + 1 and let π̂f1,f2 ≡ vec
(

Π̂f1,f2

)
denote the (row vectorized) nk × 1 coefficients

resulting from an ordinary least squares regression of each of the elements of yt on xt for a

sample running from bTf1c to bTf2c given by

π̂f1,f2 =
[
π̂1,f1,f2 π̂2,f1,f2 . . . π̂n,f1,f2

]′
,

in which π̂i,f1,f2 =
[∑bTf2c

t=bTf1c yitx
′
t

] [∑bTf2c
t=bTf1c xtx

′
t

]−1
. It follows that

π̂f1,f2 − πf1,f2 =

In ⊗
bTf2c∑
t=bTf1c

xtx
′
t

−1  bTf2c∑
t=bTf1c

ξt

 , (9)

where πf1,f2 denotes the population coefficient of π̂f1,f2 and ξt ≡ εt ⊗ xt. The estimator of

the residual variance matrix is Ω̂f1,f2 = T−1
w

∑bTf2c
t=bTf1c ε̂tε̂

′
t, where ε̂′t = [ε̂1t, ε̂2t, . . . , ε̂nt] and

ε̂it = yit − x′tπ̂i,f1,f2 . The final factor
∑bTf2c

t=bTf1c ξt on the right side of (9) may be interpreted

as the simple composition of functionals
∑bTf2c

t=1 ξt −
∑bTf1c−1

t=1 ξt of the partial sum process
1√
T

∑bTrc
t=1 ξt defined on the product space D [0, 1]nk. This interpretation is useful in developing

limit theory for statistics based on the recursively evolving regression coefficients π̂f1,f2 .

The primary concern is the distribution of the Wald statistic for testing causality under

the null hypothesis. In this instance, the coefficient matrix Πf1,f2 is constant for the entire

sample [f1, f2]. The null hypothesis for the causality test falls in the general framework of linear

hypotheses of the form H0 : Rπf1,f2 = 0, where R is a coefficient restriction matrix (of full row

rank d). Given (f1, f2), the usual form of the Wald statistic for this null hypothesis is

Wf2 (f1) = (Rπ̂f1,f2)′

R

Ω̂f1,f2 ⊗

 bTf2c∑
t=bTf1c

xtx
′
t

−1R′


−1

(Rπ̂f1,f2) . (10)
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3.1 Homoskedasticity

Under the assumption of homoskedasticity, the innovations are stationary, conditionally ho-

moskedastic martingale differences satisfying either of the following two conditions.

Assumption (A1): {εt,Ft} is a strictly stationary and ergodic martingale difference sequence

(mds) with E (εtε
′
t|Ft−1) = Ω a.s. and positive definite Ω.

Assumption (A2): {εt,Ft} is a covariance stationary mds with E (εtε
′
t|Ft−1) = Ω a.s., positive

definite Ω, and supt E ‖εt‖
4+c <∞ for some c > 0.

Lemma 3.1 Given the model (7), under assumption A0 and A1 or A2 and the null (main-

tained) hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all (fractional) subsamples

(f1, f2) ∈ Λ0 we have

(a) π̂f1,f2 →a.s. πf1,f2 = π,

(b) Ω̂f1,f2 →a.s. Ω,

(c)
√
T (π̂f1,f2 − πf1,f2)⇒ [In ⊗Q]−1

[
B (f2)−B (f1)

fw

]
,

where B is vector Brownian motion with covariance matrix Ω⊗Q, where Q =E (xtx
′
t) > 0, and

π̂f1,f2 and Ω̂f1,f2 are the least squares estimators of πf1,f2 and Ω = E (εtε
′
t). The co-domain

of the limit in (c) is the subspace D (Λ0) of the Skorohod space D [0, 1]nk equipped with the

uniform metric. The finite dimensional distribution of the limit in (c) for fixed f2 and f1 is

N
(
0, 1

fw
Ω⊗Q−1

)
.

From part (c) and for fixed (f1, f2) the asymptotic covariance matrix of
√
T (π̂f1,f2 − πf1,f2)

is f−1
w

(
Ω⊗Q−1

)
, which is dependent on the fractional window size fw. The limit in (c) may be

interpreted as a double indexed process with parameters (f1, f2) ∈ Λ0 that is linearly dependent

on the single indexed stochastic process B. The proof of Lemma 3.1 (c) uses an argument in

which a standardized version of the estimation error (9) is written as an indexed composition

of continuous functionals of the partial sum process X0
T (·) := 1√

T

∑bT ·c
t=1 ξt which satisfies the

weak convergence X0
T (·)⇒ B(·) on the product Skorohod space D [0, 1]nk. This representation

in terms of a continuous functional facilitates the asymptotic development of further continuous

functionals such as the sup Wald statistic in the following proposition where the parameters

(f1, f2) ∈ Λ0.

9



Proposition 3.1 Under A0 and A1 or A2, the null hypothesis Rπf1,f2 = 0, and the main-

tained null of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples, the subsample Wald

process and sup Wald statistic converge weakly to the following limits

Wf2 (f1)⇒

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
(11)

SWf (f0)⇒ sup
(f1,f2)∈Λ0,f2=f

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
(12)

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restric-

tions (the rank of R) under the null.

The limit process that appears in (11) is a quadratic functional of Wd (·). Its finite dimen-

sional distribution for fixed f1 and f2 is χ2
d, whereas the sup functional that appears in (12)

involves the supremum of a continuous functional taken over (f1, f2) ∈ Λ0 of the stochastic

process X0
T (·).

Consider a simple alternative hypothesis of causality with a structural break such that

yt =

{
Πxt + εt, if t1 ≤ t ≤ te
Π∗xt + εt, if te < t ≤ t2

(13)

where te = bTfec is the break point. Let π ≡ vec (Π) and π∗ ≡ vec (Π∗). We assume that

Rπ = 0 and Rπ∗ = g > 0, i,e. the causality is switched on at te. Notice that model (13)

collapses to model (8) under the null when te = t2. Under the data generating process of (13)

assuming te < t2, the ordinary least squares estimator π̂f1,f2 becomes

π̂f1,f2 =

In ⊗ bTf2c∑
t=bTf1c

xtx
′
t

−1  bTf2c∑
t=bTf1c

ξt

+

In ⊗ bTf2c∑
t=bTf1c

xtx
′
t

−1 In ⊗ bTfec∑
t=bTf1c

xtx
′
t

π +

In ⊗ bTf2c∑
t=bTfec

xtx
′
t

π∗

 . (14)

We can show that under the assumptions of A0 and A1 or A2, the ordinary least squares

estimator in (14) converges to a weighted average of π and π∗ such that

π̂f1,f2 →a.s π̄f1,f2 ≡ π (fe − f1) + π∗ (f2 − fe) .
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The error variance estimator Ω̂f1,f2 →a.s. Λ + Ω, where Λ depends on the break location fe

and the coefficients π and π∗. This shows that the least squares estimates π̂f1,f2 and Ω̂f1,f2 are

inconsistent under the alternative of parameter instability, as in Rossi (2005, 2013). Under the

alternative Rπ = 0 and Rπ∗ = g > 0, it follows that the test statistics Wf2 (f1) and SWf2 (f1)

have order Op(T ) and diverge, in contrast to the well-defined limit distributions that apply

under the null as given in Proposition 3.1. Following similar arguments to those in Phillips

et al. (2015b), the break date (or the causality origination date) estimator f̂e can be shown to

be consistent provided that the critical values have order greater than Op(1) and smaller than

Op(T ). A full investigation of the asymptotic behavior of the test statistics under the alternative

and the consistency of the causality dating algorithm will be provided in later work on a separate

paper.

3.2 Conditional Heteroskedasticity of an Unknown Form

In this subsection, the impact of conditional heteroskedasticity on the limiting distributions of

the standard Wald and sup Wald statistics is investigated. The conditional heteroskedasticity

case requires the following additional assumption.

Assumption (A3): {εt,Ft} is an mds satisfying the following conditions:

(i) εt is strongly uniformly integrable with a dominating random variable ε that satisifies

E
(
‖ε‖4+c

)
<∞ for some c > 0;

(ii) T−1
∑T

t=1 E (εtε
′
t|Ft−1)→a.s. Ω where Ω is positive definite with elements Ω = (Ωij) ;

(iii) T−1
∑T

t=1 E
(
ε2
i,t|Ft−1

)
εt−s →a.s. 0 and T−1

∑T
t=1 E (εi,tεj,t|Ft−1) εt−sε

′
t−s →a.s. Γ

(i,j)
s for

i, j = 1, · · · , n and s ≥ 1.

Strong uniform integrability is commonly assumed in cases of conditional and unconditional

heterogeneity (see, for instance, Phillips and Solo (1992), Remarks 2.4(i) and 2.8 (i) and (ii)).

Assumption A3 implies that {εt} is serially uncorrelated, unconditionally homoskedastic if

E (εtε
′
t) = Ω for all t (and hence covariance stationary in that case), but is otherwise potentially

conditionally heteroskedastic. A3 allows, among other possibilities, stable ARCH or GARCH

errors. Note that A3(i) is equivalent to assuming that

sup
t

E ‖εt‖4+c <∞ for some c > 0,
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a condition that is often used in work involving heteroskedasticity (see, for example, Boswijk

et al. (2016); Patilea and Räıssi (2012); Bodnar and Zabolotskyy (2011). A3(iii) is required

for Lemma 3.3(b), and is similar to the condition used by Hannan et al. (1972), Theorem 2),

Gonçalves and Kilian (2004), and Boswijk et al. (2016) for the univariate case.

Lemma 3.2 Under A0 and A3, for all f2, f1 ∈ [0, 1] and f2 > f1,

(i) T−1
w

∑bTf2c
t=bTf1c εt →a.s 0,

(ii) T−1
w

∑bTf2c
t=bTf1c εtε

′
t →a.s Ω,

(iii) T−1
w

∑bTf2c
t=bTf1c εtε

′
s →a.s 0,

(iv) T−1
w

∑bTf2c
t=bTf1c xtε

′
t →a.s 0,

(v) T−1
w

∑bTf2c
t=bTf1c xtx

′
t →a.s Q, where Q is defined as

Q ≡
[

1 1′p ⊗ Φ̃′0
1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′0 + Θ

]
with Θ =

∞∑
i=0

 ΨiΩΨ′i · · · Ψi+p−1ΩΨ′i
...

. . .
...

ΨiΩΨ′i+p−1 · · · ΨiΩΨ′i

 .
In view of the covariance stationarity of εt, Lemma 3.2 holds for all possible fixed fractions of

data with (f1, f2) ∈ Λ0. However, this is not in general true under global covariance stationary

(Davidson, 1994) or nonstationary volatility settings, where the right hand side of the statements

in Lemma 3.2 may depend on f1 and f2.

Recalling that ξt ≡ εt⊗xt, partial sums of the time series {ξt} continue to obey a martingale

invariance principle under A0 and A3, as in Theorem 3 of Brown et al. (1971). This invariance

result relies on the validity of the two standard conditions given in Lemma 3.3 below.

Lemma 3.3 k Under A0 and A3, the mds {ξt,Ft} satisfies the following Lindeberg and stability

conditions:

(a) For every δ > 0

1

T

T∑
t=1

E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

}
p→ 0, (15)
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(b) T−1
∑T

t=1 E {ξtξ′t|Ft−1} →a.s Σ, where Σ =
{
Σ(i,j)

}
i,j∈[1,n]

with block partitioned elements

Σ(i,j) =

[
Ωij 1′p ⊗ ΩijΦ̃

′
0

1p ⊗ ΩijΦ̃0 Ip ⊗ ΩijΦ̃0Φ̃′0 + Ξ(i,j)

]
and

Ξ(i,j) ≡
∞∑
i=0


ΨiΓ

(i,j)
h+j+iΨ

′
i · · · Ψi+p−1Γ

(i,j)
h+j+iΨ

′
i

...
. . .

...

ΨiΓ
(i,j)
h+j+iΨ

′
i+p−1 · · · ΨiΓ

(i,j)
h+j+iΨ

′
i

 .
Under Lemma 3.3, partial sums of {ξt} satisfy X0

T (·) := 1√
T

∑bT ·c
t=1 ξt ⇒ B(·), so that

1√
T

bTf2c∑
t=bTf1c

ξt ⇒ B (f2)−B (f1) . (16)

The limit in (16) is a linear functional of the vector Brownian motion B with covariance matrix

Σ.

Lemma 3.4 Under A0 and A3,

(a) π̂f1,f2 →a.s. πf1,f2 ,

(b) Ω̂f1,f2 →a.s. Ω,

(c)
√
Tw (π̂f1,f2 − πf1,f2) ⇒ f

−1/2
w V−1 [B (f2)−B (f1)], where V = In ⊗ Q and B is vector

Brownian motion with covariance matrix Σ.

(d) T−1
w

∑bTf2c
t=bTf1c ξ̂tξ̂

′
t →a.s. Σ, where ξ̂t ≡ ε̂t ⊗ xt−1.

In the presence of conditional heteroskedasticity, the Wald and sup Wald statistic have non-

standard, non-pivotal asymptotic distributions as detailed in the following result.

Proposition 3.2 Under the assumption of conditional heteroskedasticity of unknown form (A0

and A3), the null hypothesis Rπf1,f2 = 0, and the maintained hypothesis of an unchanged

coefficient matrix Πf1,f2 = Π for all subsamples, the subsample Wald and sup Wald statistics

have the following limits

Wf2 (f1)⇒

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′
AB−1A′

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
,
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SWf (f0)⇒ sup
(f1,f2)∈Λ0,f2=f

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′
AB−1A′

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
,

where Wd is vector Brownian motion with covariance matrix Id, A = Σ1/2V−1R′, and

B = R (Ω⊗Q) R′.

The presence of conditionally heterogeneous errors affects the limit behavior of the standard

Wald statistic, which no longer has the simple limit distribution (11). In consequence, use of

the limit theory (12) for the sup Wald statistic may lead to invalid and distorted inference. A

pivotal version of the statistic is obtained by suitable asymptotic covariance matrix estimation.

3.3 Heteroskedasticity consistent test statistics

The heteroskedasticity consistent version of the Wald statistic is denoted byW∗f2 (f1) and defined

as

W∗f2 (f1) = Tw (Rπ̂f1,f2)′
[
R
(
V̂−1
f1,f2

Σ̂f1,f2V̂
−1
f1,f2

)
R′
]−1

(Rπ̂f1,f2) , (17)

where V̂f1,f2 ≡ In ⊗ Q̂f1,f2 with Q̂f1,f2 ≡ 1
Tw

∑bTf2c
t=bTf1c xtx

′
t, and Σ̂f1,f2 ≡ 1

Tw

∑bTf2c
t=bTf1c ξ̂tξ̂

′
t with

ξ̂t ≡ ε̂t ⊗ xt. The corresponding heteroskedasticity consistent sup Wald statistic is

SW∗f (f0) := sup
(f1,f2)∈Λ0,f2=f

{
W∗f2 (f1)

}
.

As discussed following Lemma 3.1 and Proposition 3.1, for the purpose of deriving asymptotics

the statistics Wf2 (f1) and W∗f2 (f1) may be treated as functionals (indexed by the sample frac-

tions (f1, f2)) of the stochastic process X0
T . The sup statistics SW∗f (f0) and SWf (f0) are then

composite functionals of X0
T . In the Online Supplement this approach to the asymptotic theory

uses the continuity of these functionals and the weak convergence X0
T (·)⇒ B(·) to establish the

limit theory.

Note that under the homoskedasticity assumption of A1 or A2, the limit of the matrix Σ̂f1,f2

that appears in the heteroskedastic consistent Wald statistic (17) would be given by Ω⊗Q and

the asymptotic covariance matrix would simplify as follows

V̂−1
f1,f2

Σ̂f1,f2V̂
−1
f1,f2

→a.s (In ⊗Q)−1 (Ω⊗Q) (In ⊗Q)−1 = Ω⊗Q−1.

In this case, therefore, the heteroskedastic consistent test statistics, W∗f2 (f1) and SW∗f (f0),

reduce to the conventional Wald and sup Wald statistics of Wf2 (f1) and SWf (f0).
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Proposition 3.3 Under the assumption of either homoskedasticity (A0 and A1 or A2) or

conditional heteroskedasticity of unknown form (A0 and A3), the null hypothesis Rπf1,f2 = 0,

and the maintained hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples,

the subsample heteroskedastic consistent Wald and sup Wald statistics converge weakly to the

following limits

W∗f2 (f1)⇒

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
,

SW∗f (f0)⇒ sup
(f1,f2)∈Λ0,f2=f

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
,

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restric-

tions (the rank of R) under the null.

The limit theory shows that the robust test statistics remain unchanged for both scenarios –

homoskedasticity and conditional heteroskedasticity. The asymptotic distributions are the same

as those of the Wald process and sup Wald statistic under the assumption of homoskedasticity,

given in equations (11) and (12).

4 Simulation Experiments

There is significant evidence to suggest that Wald tests suffer from size distortions in small

samples (Guilkey and Salemi, 1982; Toda and Phillips, 1993, 1994). This section therefore

reports a series of simulation experiments designed to assess the finite sample characteristics of

the forward, rolling and recursive evolving causality tests proposed in Section 2. The prototype

model used in the simulation experiments is the bivariate VAR(1) model:

DGP :

[
y1t

y2t

]
=

[
φ11 φst
0 φ22

] [
y1t−1

y2t−1

]
+

[
ε1t

ε2t

]
(18)

where ε1t and ε2t are i.i.d. N (0, 1). Assumption A0 requires |φ11| < 1 and |φ22| < 1. For

simplicity, the causal channel from y1 to y2 is shut down. Parameter φst controls the strength

of the causal path running from y2t to y1t. Under the null hypothesis of no causality, φst = 0.

Under the alternative hypothesis, causation runs from y2t−1 to y1t from observation bfeT c to

bffT c. Let st be a causal indicator that takes the value unity for the causal period and zero
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otherwise such that

st =

{
1, if bfeT c ≤ t ≤ bffT c
0, otherwise

.

The autoregressive coefficient φst equals φ12st.

Initial values of the data series (y11 and y21) are set to unity. The lag length p in the

regression model is fixed at one. The rolling window test procedure uses a window length

taken to be the minimum window size, f0. The experiments are repeated 1,000 times for each

parameter constellation. We report the sizes (probability of rejecting at least one true null

hypothesis) and powers (probability of rejecting at least one false null hypothesis) of the three

procedures under various parameter constellations.

To address the multiplicity issue of recursive testing,4 the bootstrap method proposed in Shi

et al. (2018) is used. Suppose the sample size of the bootstrapped data series is τb and τ0 = bTf0c.
The standard residual bootstrap test statistics of the forward, rolling and recursive evolving

algorithms are, respectively,
{
Wb

1,t

}499

b=1
,
{
Wb
t−τ0,t

}499

b=1
, and

{
SWb

t(τ0)
}499

b=1
with t = τ0, · · · , τb.

The maximum value of the test statistic sequences is calculated such that

Forward (Thoma): Mb
1,t = max

t∈[τ0,τb]

(
Wb

1,t

)
,

Rolling (Swanson): Mb
t−τ0,t = max

t∈[τ0,τb]

(
Wb
t−τ0,t

)
,

Recursive evovling (PSY): SMb
t(τ0) = max

t∈[τ0,τb]

(
SWb

t(τ0)
)
.

(19)

The critical values of the forward, rolling and recursive evolving procedures are, respectively, the

95% percentiles of the
{
Mb

1,t

}499

b=1
,
{
Mb

t−τ0,t(τ0)
}499

b=1
, and

{
SMb

t(τ0)
}499

b=1
sequences. Therefore,

the probability of having at least one false positive detection over the sample period τb is 5%.

4.1 Empirical Sizes and Powers

Table 1 reports the size (left panel) and power (middle and right panels) of the three procedures

with different specifications of the persistence parameters {φ11, φ22}, the minimum window size

f0, and the sample size T . It is apparent in these results that the empirical size of all the

procedures does not vary with the settings of the minimum window f0 and the sample size T .

4The multiplicity issue refers to the well-known fact that the probability of making a Type I error rises with
the number of hypotheses in a test. For all three approaches, the test statistic is compared with its corresponding
critical value for each observation starting from bTf0c to T , so that the number of hypotheses tested over the
sample period equals T − bTf0c+ 1.
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Importantly, the empirical sizes of all three tests are close to nominal (5%) in most settings.

This outcome shows the effectiveness of the bootstrap procedure in dealing with the multiplicity

issue.5 There is one exception. When {φ11, φ22} = (0.5, 0.8), the empirical size for the rolling

and recursive evolving procedures is close to twice the nominal size, while the size distortion

for the forward algorithm is less severe. Unreported simulations suggest similar levels of size

distortion for all three procedures when either one of the two autoregressive coefficients moves

closer to unity. We conjecture that this size distortion is caused by the induced local-to-unity

property (Phillips, 1987) of the data series in such cases. Interestingly and importantly for

empirical practice, when the VAR model (1) is augmented by one lag as in Shi et al. (2018), the

empirical size of all the procedures under these parameter settings becomes close to the nominal

size. This finding accords with known limit theory for subset testing in nonstationary VARs

with augmented lags and merits further investigation in future work.

Table 1: The empirical sizes and powers of the testing procedures. The parameter setting under
the alternative is: fe = 0.5 and D = 0.2.

Size Power (φ12 = 0.5) Power (φ12 = 0.8)
Forward Rolling Recursive Forward Rolling Recursive Forward Rolling Recursive
(Thoma) (Swanson) (PSY) (Thoma) (Swanson) (PSY) (Thoma) (Swanson) (PSY)

(φ11, φ22): f0 = 0.24 and T = 100
(0.5,0.5) 0.07 0.08 0.08 0.18 0.40 0.39 0.35 0.71 0.71
(0.5,0.8) 0.08 0.10 0.12 0.26 0.54 0.56 0.39 0.81 0.81
(-0.5,0.8) 0.05 0.05 0.05 0.29 0.49 0.53 0.48 0.79 0.81
(0.5,-0.8) 0.04 0.03 0.04 0.29 0.50 0.56 0.48 0.87 0.86

bTf0c: T = 100 and (φ11, φ22) = (−0.5, 0.8)
18 0.06 0.04 0.05 0.27 0.38 0.45 0.44 0.70 0.77
24 0.05 0.05 0.05 0.29 0.49 0.53 0.48 0.79 0.81
36 0.06 0.06 0.06 0.34 0.51 0.54 0.53 0.77 0.77

T : f0 = 0.24 and (φ11, φ22) = (−0.5, 0.8)
100 0.05 0.05 0.05 0.29 0.49 0.53 0.48 0.79 0.81
200 0.06 0.05 0.06 0.45 0.67 0.81 0.69 0.96 0.99
300 0.04 0.06 0.06 0.60 0.74 0.93 0.87 0.99 1.00

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped critical values of the

statistics defined in (19).

For the calculation of empirical powers in Table 1, the causality (from y2t → y1t) switches

on in the middle of the sample (fe = 0.5) and the relationship lasts for 20% of the sample with

5Unreported simulation results show that the forward, rolling and recursive evolving procedures are significantly
over-sized when asymptotic critical values are used. The empirical sizes are, respectively, 9%, 16% and 19% for
the forward, rolling and recursive evolving procedures when T = 100, (φ11, φ22) = (−0.5, 0.8), and f0 = 0.12.
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termination at ff = 0.7. The causal strength φ12 is 0.5 in the middle panel and 0.8 in the right

panel. In Table 2, we fix the causal strength (i.e., φ12 = 0.8) and the persistence parameters (i.e.,

(φ11, φ22) = (−0.5, 0.8)) and investigate the impact of causal characteristics (the causal duration

D and the location of the causal episode fe) on the empirical powers. The results reported in

Tables 1 and 2 show that, at least for the DGPs considered in this simulation exercise, the

recursive evolving procedure has the highest power. The power advantage of the recursive

evolving procedure is most obvious when the causal strength is moderate and the sample size is

relatively large. For example, when φ12 = 0.5, the power of the recursive evolving algorithm is

14% (19%) higher than that of the rolling window procedure when T = 200 (T = 300).

Table 2: The impact of causal characteristics on empirical powers of the testing procedures.
The persistent parameters (φ11, φ22) = (−0.5, 0.8), causality strength φ12 = 0.8, the minimum
window f0 = 0.24, and T = 100.

Causality Duration D Causality Location fe
fe = 0.5 D = 0.2

D = 0.1 D = 0.2 D = 0.3 fe = 0.3 fe = 0.5 fe = 0.7
Forward 0.23 0.48 0.70 0.61 0.48 0.38
Rolling 0.35 0.79 0.95 0.81 0.79 0.79
Recursive 0.38 0.81 0.98 0.83 0.81 0.80

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped critical values of the

statistics defined in (19).

Furthermore, for all three algorithms, the power increases with the strength of the causal

relationship φ12, the sample size T , and the duration of the causal relationship D. The powers

increase slightly when the data becomes more persistent (i.e., φ22 rises form 0.5 to 0.8). There

is no obvious changes in the powers when the persistent parameters change signs. The power of

the forward procedure is higher when the change in causality happens early in the sample. By

contrast, the location of the switch does not have an obvious impact on the performance of the

rolling and recursive evolving algorithms.

The power of the forward procedure increases with the minimum window f0. For both the

rolling and recursive evolving algorithms, powers of these two procedures increase as f0 rises

from 0.18 to 0.24 but remain roughly the same or slightly lower when f0 expands further to

0.36. This is consistent with our expectation that the additional observations in the minimum
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window increase power only when they contain additional information of the causal relationship.6

In practice the optimal choice of f0 will depend on the strength and duration of the causal

relationship and hence will be episode specific. At a minimum, f0 needs to be large enough to

ensure that there are enough observations to initiate the regression.

4.2 The Heteroskedastic-consistent Tests

We consider two forms of conditional heteroskedasticity, namely, a GARCH(1,1) model and a

stochastic volatility (SV) model, both of which are standard in the literature (Shephard, 1996;

Gonçalves and Kilian, 2004; Deo, 2000; Cavaliere et al., 2014). The GARCH model is

εit = h
1/2
it vit with vit ∼i.i.d N(0, 1),

hit = α0 + α1ε
2
it−1 + β1hit−1.

As in Gonçalves and Kilian (2004), different levels of volatility persistence are considered, given

by α1 +β1 = {0.5, 0.95, 0.99}. The unconditional volatility of the residual is normalized to unity.

The stochastic volatility model is

εit = ηit exp(hit),

hit = λhit−1 + 0.5vit,

where (ηit, vit) ∼i.i.d N(0, diag(σ2
v , 1)). The model parameters (λ, σv) are set to be either

(0.951, 0.314) or (0.936, 0.424) as in Shephard (1996) and Gonçalves and Kilian (2004).7

The sizes and powers of the heteroskedastic consistent tests under the DGP of (18) and

with the above two specifications of conditional heteroskedasticity are reported in Table 3. The

persistence parameters are (φ11, φ22) = (−0.5, 0.8). The minimum window size f0 = 0.24. We

set the sample size T = 100 and φ12 = 0.8 in the left panel. In the right panel, we consider the

case with a moderate causal strength φ12 = 0.5 and sample size T = 200.

The general conclusion from Table 3 is that the heteroskedastic-consistent tests behave very

much like the those in the homoskedastic case. For the DGPs and the types of causal switching

considered here, it appears that the recursive evolving procedure provides overall best perfor-

mance. The results remain largely unchanged for all the different parameter settings of the

GARCH and SV models.
6Recall that the duration of the causality episode is 0.2. When the minimum window f0 exceeds that duration,

the regression contains a mix of causal and non-causal observations.
7They are obtained by matching the SV model to real exchange rate data (Shephard, 1996).
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Table 3: The empirical performance of the heteroskedastic consistent tests under the null DGP
with conditional heteroskedasticity of GARCH(1,1) and stochastic volatility. The parameter
settings are: (φ11, φ22) = (−0.5, 0.8), f0 = 0.24, fe = 0.5, and D = 0.2.

T = 100, φ12 = 0.8 T = 200, φ12 = 0.5
Forward Rolling Recursive Forward Rolling Recursive
(Thoma) (Swanson) (PSY) (Thoma) (Swanson) (PSY)

Size
GARCH
α1 = 0.05, β1 = 0.45 0.06 0.05 0.05 0.06 0.05 0.06
α1 = 0.05, β1 = 0.90 0.05 0.04 0.05 0.06 0.05 0.05
α1 = 0.05, β1 = 0.94 0.05 0.04 0.05 0.06 0.05 0.05
Stochastic Volatility
λ = 0.951, σv = 0.314 0.05 0.06 0.06 0.03 0.05 0.05
λ = 0.936, σv = 0.424 0.04 0.06 0.06 0.04 0.05 0.05

Power
GARCH
α1 = 0.05, β1 = 0.45 0.34 0.70 0.71 0.32 0.53 0.65
α1 = 0.05, β1 = 0.90 0.34 0.69 0.71 0.33 0.54 0.64
α1 = 0.05, β1 = 0.94 0.33 0.69 0.70 0.33 0.54 0.62
Stochastic Volatility
λ = 0.951, σv = 0.314 0.18 0.61 0.63 0.19 0.57 0.62
λ = 0.936, σv = 0.424 0.19 0.60 0.62 0.23 0.58 0.63

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped critical values of the

statistics defined in (19).

5 Causality, the Yield Curve Slope and Real Economy Activity

The slope of the yield curve, defined as the difference between zero-coupon interest rates on

three-month Treasury bills and 10-year Treasury bonds, is a potentially important explanatory

variable in the prediction of real economic activity (Harvey, 1988). Empirical evidence of the

ability of the slope of the yield curve to forecast macroeconomic activity, including real economic

growth or recessions, was provided in the 1980s and 1990s for several countries (Stock and

Watson, 1989; Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998; Dotsey et al., 1998;

Estrella and Mishkin, 1997; Plosser and Rouwenhorst, 1994). More recent work in the context

of predicting real activity and recessions suggests that the slope of the yield curve still retains

its predictive power (Estrella, 2005; Chauvet and Potter, 2002; Ang et al., 2006; Wright, 2006;

Estrella and Trubin, 2006; Rudebusch and Williams, 2009; Kauppi and Saikkonen, 2008).

While most of the early literature focused on the ability of the yield curve to predict real
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activity, it is reasonable to conjecture that feedback effects from real activity to monetary policy

and therefore to the yield curve (Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1997;

Estrella, 2005; Huse, 2011). Consequently a substantial body of empirical work in this area has

been conducted in terms of VAR models (Ang and Piazzesi, 2003; Evans and Marshall, 2007;

Diebold et al., 2006), which provides ample precedence to support the use of VAR models to

establish the direction of Granger causality in these macroeconomic relationships.

In the present application a four-variable VAR model is used to test for changes in Granger

causal relationships between the slope of the yield curve and the macroeconomy using United

States data. The variables included are an proxy for real economic activity (yt), inflation (πt),

the monetary policy interest rate (it), and the yield curve spread (St). The decision to use a

four-variable VAR model means that the curvature (or bow) of the yield curve is omitted from

the model. There have been attempts to devise theoretical links between the curvature of the

yield curve and the macroeconomy (Dewachter and Lyrio, 2006; Modena et al., 2008; Mönch,

2012); but there is little evidence to support the nature of the relationship. In view of the

ambivalent evidence, it was decided not to include the curvature in the VAR.

5.1 Data

Real economic activity is proxied by the annual growth rate of (real) industrial production.

Inflation is measured from the core consumer price index and calculated as log differences (mul-

tiplied by 1200). The policy rate is measured using the effective Federal funds rate. Term

spread is defined as the difference between the three-month Treasury bill rate and the 10-year

government bond rate. All the data are obtained from the Federal Reserve Bank of St. Louis

FRED8 at the monthly frequency. The data start from January 1980 to March 2015 (T = 423).

The data are plotted in Figure 1. The left panel plots the annualized growth rate of indus-

trial production (left axis) and inflation (right axis). The right panel plots the Federal funds

rate and the slope of the yield curve. Official NBER recession periods that coincide with the

sample period, namely 1980:M01-M07,1981:M07-1982:M11,1990:M07-1991:M03, 2001:M03-M11

and 2007:M12-2009:M06 are marked in grey. Industrial production falls sharply during reces-

sions. After the 2008-2009 recession, the growth rate of industrial production rebounds quickly

and is relatively stable until the end of the sample. Inflation fluctuates around the 2% level and

shows a persistent decline towards the end of the sample period, consistent with the deflation-

8Website: wwww.research.stlouisfed.org/fred2/.
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Figure 1: Time series plots of real economic activity and inflation (left panel) and the Fed-
eral funds rate and the slope of the yield curve (right panel) in the United States. Also
shown are official NBER recession periods shaded in grey, namely, 1980:M01-M07,1981:M07-
1982:M11,1990:M07-1991:M03, 2001:M03-M11 and 2007:M12-2009:M06. The vertical lines mark
the generally accepted dates of the onset of an inverted yield curve given by 1980M11, 2000M08
and 2006M08, respectively.
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(b) Federal fund rate and term spread
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ary conditions prevalent in the United States economy after the Global Financial Crisis and the

movement of the Federal funds rate to the zero lower bound.

Since the yield curve is typically upward sloping, the slope factor, defined as the difference

between the zero-coupon interest rates on three-month Treasury bills and 10-year Treasury

bonds, usually takes a negative value. Steeper yield curves are represented by lower values of

the slope factor. If the yield curve becomes inverted then the slope factor will be positive and

the dates of the onset of an inverted yield curve are shown by vertical lines. Notable instances

are in 2000 (when a recession followed) and in 2006 (when the inverted yield curve was not

immediately followed by a recession). A final feature of Figure 1b is the settling of the effective

funds rate at zero for the latter part of the sample period after 2009Q1, the zero lower bound

period of monetary policy.

In estimating the VAR and implementing tests of Granger causality, the lag order is assumed

the same for all subsamples and selected using the Bayesian information criteria (BIC) for the

whole sample period with a maximum potential lag length 12. The selected lag order is three.

When implementing the recursive testing procedure the minimum window size is f0 = 0.2,

which contains 84 observations. This constant window size is also used for the rolling procedure.

The critical values are obtained from bootstrapping based on (19) with 499 replications. The
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empirical size is 5% and is controlled over a three-year period.9

A sensitivity analysis is conducted using a minimum window size of f0 = 0.25 and with

empirical sizes controlled over a two year period. Additionally, we repeat the empirical analysis

using quarterly output gap as a proxy for real economy activity. These results are collected in

the online supplement (Shi et al., 2018).

5.2 Yield Curve Slope to Real Economic Activity

The time-varying Wald test statistics for causal effects from the slope of the yield curve to real

economic activity, along with their bootstrapped critical values, are displayed in Figure 2. The

three rows illustrate the sequences of test statistics obtained from the forward recursive, rolling

window and recursive evolving procedures, respectively, while the columns of the figure refer to

the two different assumptions of the residual error term (homoskedasticity and heteroskedastic-

ity) for the VAR. Sequences of the test statistics start from December 1986, the shaded areas

are the NBER recession periods, vertical lines are the dates of the onset of an inverted yield

curve and the dates of causal episodes are also shown.

Panels (a) and (b) of Figure 2 indicate that the test statistics of the predictive power of

the slope of the yield curve for real economic activity are always below their critical values at

the end of the sample period in March 2015. Consequently, the null hypothesis of no Granger

causality from the yield curve slope to the industrial production over the whole sample period

cannot be rejected. This result highlights the danger of using Wald tests of Granger causality

indiscriminately over the full sample period. The fact that slope of the yield curve has little

predictive power towards the end of the sample is to be expected given that this period is

characterised by interest rates at the zero lower bound. The relative lack of information encoded

in the slope of the yield curve during this period, therefore, is bound to have a significant

distorting influence on inference based on the entire sample.

An even stronger result is provided by the forward recursive Wald test (both homoskedastic

and heteroskedastic) of causality to the effect that there is no causal relationship (or change

in the causal relationship) between the slope of the yield curve and real economic activity at

all over the entire sample period. This conclusion appears to be at odds not only with our

priors but also with all existing evidence of the usefulness of the slope of the term structure in

9 We estimate the VAR model under the null with the whole sample and simulate 84 + 36 = 120 observations
for each bootstrapped sample. The same critical value is applied to all tests over the sample period.
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predicting real economic activity.

Figure 2: Tests for Granger causality running from the yield curve slope to the growth rate of
industrial production. The shaded areas are the NBER recession periods, the vertical lines are
the dates of the onset of an inverted yield curve and causal periods are shown in text.
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(b) Forward - Heteroskedasticity
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(c) Rolling - Homoskedasticity
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(d) Rolling - Heteroskedasticity
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(e) Recursive Evolving - Homoskedasticity
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(f) Recursive Evolving - Heteroskedasticity
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By contrast, the rolling and recursive evolving procedures (panels (c) to (f) of Figure 2)
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paint a different picture from that of an unequivocal failure to reject the null hypothesis of

no predictability. Instead, a far more dynamic causal relationship between the slope of the

yield curve and real economic activity is revealed. Furthermore, the difference between the

homoskedastic and heteroskedastic tests is quite obvious for the rolling and recursive evolving

procedures. Under the homoskedastic assumption, the rolling window procedure does not find

any episodes of causality running from the yield curve slope to the growth rate of industrial

production over the entire sample period; and the recursive evolving procedure detects one

episode occurred in November 1998, lasting for one month. By contrast, the heteroskedastic-

consistent tests find stronger evidence of causality. Under the heteroskedastic assumption, both

the rolling and recursive evolving procedures detect one episode in 1998, which starts in October

1998 and ends in November 1998 (March 1999) according to the rolling (recursive evolving)

procedure. The duration suggested by the recursive evolving algorithm is longer than that from

the rolling procedure.

The heteroskedastic-consistent recursive evolving algorithm detects an additional episode

in 2009, starting in April and terminating in July. This difference in these empirical results

highlights the efficacy of the recursive evolving algorithm and the importance of taking the

potential heteroskedasticity in the data into consideration when conducting Granger causality

tests.

5.3 Real Economic Activity to the Yield Curve Slope

Figure 3 displays the time-varying Wald test statistics for causal effects running from real eco-

nomic activity to the slope of the yield curve. The first interesting feature of the results reported

in panels (a) and (b) of Figure 3 is that a simple Granger causality test based on the entire

sample would suggest no evidence against the null hypothesis of no causality. Casual inspection

of the other graphics in this figure would suggest that the unambiguous conclusion of no causal

relationship from economic activity to the slope of the yield curve would be understating the

balance of evidence.

The second conclusion to emerge from these results is that the empirical findings are sensitive

to the assumptions made about the variance of the VAR errors. The most dramatic discrepancy

is in the recursive evolving algorithm Figure 3 (e) and (f), where there is dramatic decrease in

the causality episodes when using the heteroskedastic-consistent version of the test.10 Our third

10Consequently, we focus on the heteroskedastic-consistent tests for sensitivity analysis presented in the online
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Figure 3: Tests for Granger causality running from the growth rate of industrial production to
the yield curve slope. The shaded areas are the NBER recession periods, the vertical lines are
the dates of the onset of an inverted yield curve and causal periods are shown in text.
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(b) Forward - Heteroskedasticity
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(c) Rolling - Homoskedasticity
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(d) Rolling - Heteroskedasticity
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(e) Recursive Evolving - Homoskedasticity
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(f) Recursive Evolving - Heteroskedasticity
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observation is that, just as in the case when testing causality running from the slope of the

supplement.
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yield curve to real economic activity, the recursive evolving procedure detects more episodes of

causality than the forward and rolling algorithms. The forward procedure suggests no causality,

despite strong rejection of the null hypothesis by the other two methods over the period of

2012-2015. The recursive evolving method also detects an episode in 1989-1991, running from

1989:M03 to 1991:M12.

The results obtained from this empirical examination of causal links between the slope of

the yield curve and real economic activity suggest that the recursive evolving algorithm is most

able to detect causal changes. This result is consistent with the lessons from the simulation

experiments and from the results reported in the Online Supplement when quarterly data is

used for the empirical application.

6 Conclusion

The recursive evolving test procedure introduced here provides a mechanism for detecting and

dating changes in Granger causal relationships. The approach uses sequences of the supremum

norm of Wald statistics. Variants of the test that are robust to departures from homoskedasticity

are also examined. Limit distributions of the tests are obtained and shown to have simple forms

that are amenable to computation for the purpose of providing critical values. The recursive

evolving procedure is compared to forward recursive and rolling window tests. The simulation

findings indicate that the recursive evolving approach has superior change detection performance

among the three methods in finite sample exercises with the models considered here.

The tests are used to investigate causal relationships between the slope of the yield curve and

real economic activity (proxied by either the output gap or industrial production) using United

States data over 1980-2015. The empirical application builds on earlier findings in the literature

concerning bidirectional causal effects between the yield slope on real economic activity. The

results are consistent with much of the earlier literature. But their most striking feature is the

fact that causal relationships show considerable sensitivity to the subsample period. They reveal

how endogenous detection of switches in causal effects can provide useful insights about how

the nature of the macroeconomic impact of the yield curve slope can change over time. But

they also point to fragilities that can arise in the indiscriminate application of the tests over

arbitrarily chosen subsamples.
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