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Abstract: We propose and experimentally demonstrate wideband and continuously tunable 
fractional-order photonic Hilbert transformers (FrHT). These are realized by a single 
apodized planar Bragg grating within a high-birefringence planar substrate. The fractional 
order of the FrHT is continuously tuned and precisely controlled by changing the polarization 
state of the input light. The experimental characterization demonstrates an operating 
bandwidth up to 120 GHz with amplitude ripples below 3 dB. The optical phase shift 
response is directly measured to verify the proposed tuning property, demonstrating transform 
orders of around 1, 0.7, and 0.5. This approach is simple, stable, and compact compared to 
other existing methods and has great potential in the fields of ultrafast all-optical signal 
processing. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, 
and DOI. 

OCIS codes: (070.1170) Analog optical signal processing; (230.7390) Waveguides, planar; (070.6020) Continuous 
optical signal processing; (350.2770) Gratings. 
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1. Introduction 

Integrated microelectronic circuits have penetrated into every aspect of the field of signal 
processing, particularly in optical fiber telecommunication systems. Nevertheless, there is 
increasing exploration of all-optical signal processing due to the unprecedented large 
bandwidth and fast operating speed. One route uses integrated optical chips to realize 
photonic Hilbert transforms (PHTs) or Fractional Hilbert Transforms (FrHTs) [1] that can be 
applied to single sideband modulation or the image edge filtering [2]. The fractional order of 
Hilbert transformers have provided additonal functionality as they offer control over the 
phase of a signal, and the signal can be interpreted or encoded [2,3]. These are of particular 
importance in the field of microwave photonics where processing bandwidths above tens of 
GHz are extremely challenging. 

There have been various endeavours to realize FrHT systems, these include Fiber Bragg 
Gratings (FBGs) [4,5], silicon-nitride ring resonators [6], phase-shifted gratings in silicon 
waveguides [7] and photonic crystal nano-cavities [8]. Several tunable FrHT structures have 
also been reported, including FBG-based interferometric fiber systems [9], micro-ring 
resonators (MRR) [10] and the InP-InGaAsP integrated ring structure [11]. The fiber-based 
interferometric systems in [9] allow around 75 GHz (0.6 nm) tunable FrHT operation but 
require additional separation of the two polarizations hence suffering complexity and poor 
stability. Likewise, the MRR devices in [10] allow approximately 25 GHz (0.2 nm) tunable 
FrHT but require tight fabrication accuracy and delicate control of the MMR. The 
reconfigurable ring structure devices in InP-InGaAsP substrates [11] provide excellent and 
multifunctional optical processing, including integrator, fractional differentiator as well as 
around 50 GHz (0.4nm) bandwidth FrHT, but confront considerable fabrication challenges as 
well as relatively high cost. 

In this paper, a simple, wideband and direct route to realize continuously tunable FrHT is 
proposed and demonstrated with a germano-borosilicate planar substrate. Compared with 
other existing FrHT devices and systems, this device has benefits of operating bandwidth over 
100 GHz, the widest to our knowledge, ultrafast processing capability, a simple compact 
configuration as well as low cost. A novel structure merely including a polarization rotator 
and a single silica-on-silicon Bragg grating is employed to realize the continuously tunable 
FrHT. The high-birefringence (Hi-Bi) chip is obtained with 5 × 10−4 birefringence. By simply 
changing the incident polarization angle, the ratio of transformed TE-mode signal and non-
transformed orthogonal TM-mode signal is precisely controlled, constructing and giving the 
tunable fractional order processing. Furthermore, the TE/TM mode phase matching condition 
along the waveguide channel is investigated, to avoid the magnitude degradation and 
cancelation. In the experiments, a large 120 GHz bandwidth and ≤3 dB ripple amplitude 
responses are achieved and π, 0.7π, and 0.5π phase shift responses in the frequency domain 
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are directly measured. The temporal impulse intensity waveforms are also analyzed with 
measured data. This kind of FrHT devices has strong potential in applications of secure 
communication systems. 

2. Theory analysis 

2.1 Operation principle 

The original definition of HT is given by the convolution of input signal x(t) and 1/πt 
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where ( )[ ]x tΗ  is the output of the input x(t) after an ideal conventional Hilbert transform. 

The Fourier transform of the kernel of conventional HT is given by 

 ( ) ( ) ,H jsgnω ω= −  (2) 

where ω is the angular frequency and sgn(ω) is the sign function. It is acknowledged that 
the fractional HT, i.e. FrHT, is a weighed sum of the conventional HT signal and the original 
signal [1,2], given by 

 ( ) ( ) ( ) ( )cos sin ,FrH Hω ϕ ϕ ω= +  (3) 

where φ = ρ*π/2 and ρ is defined as the fractional order of FrHT. When ρ is equal to 1, the 
FrHT becomes exactly the conventional HT. The theoretical responses of HT and FrHT in the 
frequency domain are presented in Fig. 1. 

 

Fig. 1. (a) Theoretical complex responses of HT (solid) and FrHT (dashed); (b) amplitude and 
(c) phase responses of HT (solid) and FrHT (dashed). 

2.2 Device concept 

By definition, the Hi-Bi integrated waveguide has intrinsic birefringence such that an 
integrated Bragg grating has two distinct responses for the TE/TM modes which enables the 
tuning of the order of the PHT in a compact waveguide structure. The proportions of TE and 
TM mode light can be controlled by rotating the polarizing maintaining (PM) launch fiber. 
Due to the birefringent effect of the planar waveguide material, the TE mode spectral 
response, given by the apodized Bragg grating, is shifted compared with that of the TM mode. 
By choosing the specific operating zone in the spectrum, only the TE mode (or TM mode) 
goes through the Hilbert transformation, while the other ratio of orthogonal mode stays non-
transformed. Hence, by manipulating the launched polarization state the fractional order of 
the PHT signal can be tuned. The use of a polarizer in this device clearly requires a fixed 
polarization input, therefore polarization fluctuations would lead to intensity noise. The 
schematic diagram of the proposed device and the fractional HT process is demonstrated in 
Fig. 2. 
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where Δneff is the effective refractive index difference between TE mode and TM mode, 
also defined as birefringence, L is the extra waveguide for phase matching, λ is the optical 
carrier wavelength, e.g. 1550 nm in this work, and m is an integer number. 

 

Fig. 4. Comparison between phase-matched (blue solid lines) and phase-mismatched (red 
dashed lines) scenarios: (a) the frequency amplitude and (b) temporal impulse response of a 
0.7 order FrHT. The red region shows the available bandwidth for tunable FrHT operation. 

The phase matching effect in frequency amplitude and temporal impulse response for a 
0.7 order FrHT is investigated and shown in Fig. 4, with phase-matched scenario (blue solid 
line) and phase-mismatched scenario (red dashed line). This device has a finite operation 
bandwidth, as shown in the red region in Fig. 4(a) and its degraded temporal impulse 
response is illustrated in Fig. 4(b). To achieve the phase-matching condition, the phase 
compensation is obtained by deliberate design of the propagation length along the waveguide. 
We have fabricated 16 identical waveguides with different extra propagation lengths, L, and 
observed the preeminent phase matching condition in the fifth waveguide in the experiment. 
The experimental tests afterwards have taken into consideration of phase-matching issue. 

3. Device fabrication and characterization 

After theoretical analysis and simulation, a series of experiments were conducted to realize 
and verify the tunable FrHT properties. 

To obtain a wide operation bandwidth, a large separation of TE and TM mode is required. 
For this work a Hi-Bi silica-on-silicon platform was developed. The commercial-grade 
process, flame hydrolysis deposition (FHD), is used to fabricate the silica glass layers. This 
process has traditionally been used to produce Arrayed Waveguide Gratings (AWGs) and as 
such has comparable mechanical and thermal stability. These are comprised of a 
photosensitive core and index-matched over-cladding layers deposited on a thermally 
oxidized silicon wafer. Meanwhile, photosensitivity and high-birefringence is achieved by 
controlling the doping process of germanium and boron, while the hydrogen loading is used 
to further increase the photosensitivity [12]. 

Both orthogonal polarization mode (TE and TM) are utilized in this work. The reduced 
germanium and boron dopants of the planar core layer, with respect to the over- and under-
cladding, causes a mismatch in the layers’ thermal-expansion properties [13]. The mismatch 
causes stress in the layers and results in an intrinsic birefringence [14]. The dopants, and 
hence the birefringence, can be precisely controlled by the precursor flow rates, similar to that 
used in optical fiber fabrication. Our prior work has demonstrated that the birefringence 
uniformity of our layers is < 1 x 10−6 [15]. The resulting tension between the layers also leads 
to chip bow. In the experiment, around 10 μm of vertical variation was observed when using 
the 40 mm long chips. This bow can cause misalignment during direct UV grating writing 
(DGW) [16] and can consequently produce weak gratings. In this work we avoid this problem 
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by using a small area (2 mm range) within a 20 mm long chip. For longer devices 
compensation of this chip bend could be achieved by additional vertical translation of the 
sample during the UV writing process. 

The key fabrication technique, the direct UV grating writing (DGW), is a technique that 
can define both the waveguides and Bragg gratings simultaneously based on the UV 
photosensitivity of the hydrogen-loaded FHD samples and guarantee the uniform effective 
refractive index during the process. More detailed information of the DGW technique can be 
found in the literature [16]. This DGW implementation in the Hi-Bi has also been reported to 
realize integrated heralded single-photon sources [12,15]. 

4. Results and discussion 

4.1 Characterization setup 

Characterization of the tunable FrHT has been demonstrated experimentally. An amplified 
spontaneous emission (ASE) light source operating in the telecommunications C-band (1530-
1570 nm) is used to monitor the device reflection spectral response, as shown in the Fig. 5. 
After passing through the 3 dB coupler and the polarizer, the input light is polarized and 
propagates through the polarization maintaining fiber (PMF) into the Hi-Bi PHT grating 
while the other port of the coupler is terminated. The reflected light propagates back into the 
optical spectrum analyzer (OSA, AQ6317B) for spectral magnitude analysis. Meanwhile, by 
using an optical vector network analyzer (OVA 5000, Luna) connected with the fiber 
polarizer, the grating amplitude, group delay and phase shift is completely characterized in a 
single wavelength scan. The interrogation of fractional orders is done with a calibrated fiber 
rotator (HFR007, Thorlabs), which was obtained by detecting TE mode intensity when 
changing the polarization angle. The calibration data showed in the inset of Fig. 5 indicate 
that it is possible to continuously and periodically tune the angle of launch of the polarization 
in this experimental setup. 

 

Fig. 5. Experimental setup of the characterization system and the planar chip layout; Inset: 
calibration curves of the fiber rotator. The triangle points show the rotating angle φ and 
corresponding fractional order ρ, with 0°, 30°, 45° and 90°. Abbreviations: ASE: amplified 
spontaneous emission light source. OSA; optical spectrum analyzer. CPU; computer. OVA: 
optical vector network analyzer. SMF: single mode fiber. PMF: polarization maintaining fiber. 

Here, 16 identical Hi-Bi PHT grating waveguides with different extra waveguide lengths, 
L, (from 1 mm to 2.5 mm, with 100 μm separation between waveguides) are written in a 
single chip, as schematically shown in Fig. 5. By shifting and coupling to different 
waveguides across the chip, the optimized waveguide with phase-matching condition could 
be observed and selected. By using this characterization setup, the measured data are 
presented and analyzed in the following sections. 
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Fig. 8. Calculated transformed pulse waveform of (a) ρ≈0.7 FrHT (b) ρ≈0.5 FrHT. Input 
Gaussian pulse (black dotted lines); Calculated FrHT output pulses of the presented device 
(blue solid lines); Ideal FrHT output pulses (red solid lines). 

5. Conclusion 

In conclusion, a 120 GHz wide bandwidth and continuously tunable integrated fractional 
order photonic Hilbert transformer is proposed and experimentally demonstrated, offering 
stability and simplicity, as well as relatively low cost compared with other existing methods. 
By changing the incident angle of polarization to control the TM transformed portion and TE 
non-transformed portion, the tunable order FrHT is achieved. A birefringence of 5 × 10−4 
silica-on-silicon planar substrate was developed. The Hi-Bi sample deposition, grating 
fabrication and device characterization are thoroughly presented. The 1, 0.7 and 0.5 order 
FrHT has been successfully realized and tested. The experimental results with amplitude and 
phase responses infrequency domain and temporal intensity responses are completely 
analyzed and agree soundly with the ideal simulation. By investigating higher birefringence 
waveguides, it will be possible to make devices with even wider operating bandwidths for use 
as microwave photonic filters. This integrated tunable FrHT is promising for future 
implementations in ultrafast all-optical signal processing. 
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