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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES
School of Chemistry

ADVANCED OPTIMAL CONTROL METHODS FOR SPIN SYSTEMS

by David L. Goodwin

Work within this thesis advances optimal control algorithms for application to
magnetic resonance systems. Specifically, presenting a quadratically convergent
version of the gradient ascent pulse engineering method. The work is formulated
in a superoperator representation of the Liouville-von Neumann equation.

A Newton-grape method is developed using efficient calculation of analytical
second directional derivatives. The method is developed to scale with the same
complexity as methods that use only first directional derivatives. Algorithms to
ensure a well-conditioned and positive definite matrix of second directional derivat-
ives are used so the sufficient conditions of gradient-based numerical optimisation
are met.

A number of applications of optimal control in magnetic resonance are investig-
ated: solid-state nuclear magnetic resonance, magnetisation-to-singlet pulses, and
electron spin resonance experiments.
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Û(T ) time propagator over the interval [0, T ] §§2, 7

ρ̂1,2 2 non-interacting, uncorrelated

subsystems

= ρ̂2⊗ρ̂2 §2

ρ̂1,2,...k k non-interacting, uncorrelated

subsystems

= ρ̂2⊗ρ̂2⊗· · ·⊗ρ̂k §2
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Preface

Do not think that what is hard for you to master is humanly impossible;
but if a thing is humanly possible, consider it to be within your reach.

– Marcus Aurelius, Meditations IV

Resources

The main resource used within this thesis is the Spinach software library{I} [130],
developed by Ilya Kuprov, Hannah Hogben, Luke Edwards, Matthew Krzystyniak,
Peter J. Hore, Gareth T.P. Charnock, Dmitry Savostyanov, Sergey Dolgov, Liza
Sutarina, and Zenawi Welderufael.

The majority of numerical simulation in this work was completed with Matlab
2016-2017a/b. All random numbers were seeded with rng(1) from within a Matlab
session, unless otherwise stated.

Esr spectroscopy measurements were performed in the Centre for Advanced esr
(CAESR) in the Department of Chemistry, University of Oxford, using a Bruker
BioSpin EleXSys II E580 spectrometer operating with a SpinJet arbitrary wave-
form generator (awg) that is based on a SPDevices SDR14 PCI board, with a
0.625 ns time base. Samples were held at 85 K in a Oxford Instruments CF935O
cryostat under a flow of cold N2 gas, controlled by an Oxford Instruments Mercury
instrument temperature controller. At X-band, the Bruker Biospin ER4118-MD5-
W1 resonator was used, which is a sapphire dielectric resonator of dimensions

{I}Available at www.spindynamics.org

xxi

www.spindynamics.org
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5 mm ID, 10 mm OD and 13 mm height, that was overcoupled for pulsed meas-
urements to a Q-value of about 200. At Q-band the resonator was a ER5107D2
of typically 80-100 MHz bandwidths.

Photoexcitation of the oop-eseem sample was accomplished with a Continuum
Shurlite Nd:YAG emitting a 7 ns laser pulse at the 3rd harmonic of 1064 nm,
355 nm, at a rate of 10 Hz, attenuated with a λ/2 plate and finally depolarized
to a 1 mJ pulse energy. The beam was found to match the 5 mm cryostat win-
dow and was not further focused on the sample. Synchronisation of the laser
and oop-eseem measurement involved using the E580 console PatternJet board
user-defined channel as an external trigger to the Stanford Research DG645 delay
generator.

The author acknowledges the use of the iridis High Performance Computing Fa-
cility, and associated support services at the University of Southampton, in the
completion of some parts of this work.

This report was typeset by the author using LATEX and the TEX mathematical
typesetting system of Donald Knuth{I}, and vector graphics were generated with
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§ 1

Introduction

In fact, the mere act of opening the box will determine the state of the
cat, although in this case there were three determinate states the cat could
be in: these being Alive, Dead, and Bloody Furious.

– Terry Pratchett, Lords and Ladies

The subject of this thesis is optimal control and its aim is advancing existing meth-
ods of optimal control for spin systems of magnetic resonance. A novel method
with improved convergence properties will be presented with a focus on computa-
tional efficiency and avoiding numerical problems. The computationally expens-
ive task of calculating the exponential of a matrix will be reviewed and concluded
with particularly useful numerical efficiencies which decrease simulation time. The
thesis will be completed by investigating realistic applications of optimal control
solutions, including methods to overcome experimental limitations.

Many descriptions of optimisation use the analogy of hiking in a mountainous
terrain to highlight the character of numerical optimisation. The goal of the
hiking experience could be to get to the highest peak within a range of mountains,
or descend to the lowest altitude. The first of these goals is finding the maximum
altitude within the landscape, and the second is finding the minimum; here we
optimise the altitude as a function of the coordinates. Although this analogy is
easy to relate to, it is not a good example of optimisation: In navigating the
mountain we have a map and possibly a compass, more importantly we have a
clear view of the mountain and can pick our path to a visible peak; we know the
easiest path to the maximum on the outset. Furthermore, the mountain range
has many peaks – an initial path may only find a low-lying peak which becomes
apparent from the summit.
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Example of numerical optimisation

A better example is to follow that of Isaac Newton, finding the roots to a simple
polynomial function of a single variable, f(x). Assuming the function is well be-
haved, smooth with no discontinuities, the maximum and minimum should reside
in places where the gradient of the function is equal to zero. As a first step in
finding these solutions is to use an algorithm to find iteratively better estimates to
the roots of a function, the places where f(x) = 0: This algorithm is known as the
Newton-Raphson method (also known as the Newton method) and is attributed
to Isaac Newton [222] and Joseph Raphson [248]:

xn+1 = xn −
f(xn)
f ′(xn)

where f(xn) if the function of a real variable xn at the iteration n. f ′(xn) = df
dx

∣∣∣
xn

is the tangent to the function f(x) at xn. It is instructive to show the algorithm
with an example{I}. For the function f(x) = 1

3x
3 − x + 1, the tangent to the

function can be found analytically by differentiation.

However, the aim is not to find the roots of the function, the aim is to find the
roots of the derivative of the function: the place where the gradient is = 0{II}.
Substituting this into the previous equation we find an iterative algorithm to find
the extrema of a function f(x):

xn+1 = xn −
f ′(xn)
f ′′(xn)

where the second derivative, the derivative of the gradient is f ′′(xn) = d
dx

df
dx

∣∣∣
xn

=
d2 f
dx2

∣∣∣
xn

evaluated at xn. The Newton-Raphson method can be used to find these
roots to the gradient of the function, and the method is shown for the function
f(x) = 1

3x
3 − x+ 1 in Fig. 1.1.

The algorithm converges to an extremum at x = +1; within an acceptable level
of accuracy at 4 iterations and further than the machine precision{III} after 5
iterations. Notice that starting from a guess x0 < 0 converges to a minimum at
−1, a starting guess of x0 = 0 will be undefined at the first iteration, and a starting

{I}The function used by Newton in his original example [222] was f(x) = x3 − 2x+ 5.
{II}Pre-dating Isaac Newton’s and Gottfried Leibniz’ work on calculus, in the middle of the
seventeenth century, de Fermat’s work in analytical geometry used tangents to show that at the
extreme points of various curves, the gradient becomes zero.
{III}this is floating-point arithmetic, also referred to as eps, is about 16 decimal places on a 64-bit
computer
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3 x3 − x + 1 tangent to f(x)

y = f ′(x) = x2 − 1 tangent to f ′(x)

Figure 1.1: Finding a minimum of a function using tangents of the gradient
from an initial trial point. a the function f(x) = 1

3x
3− x+ 1 and its gradient

x2 − 1 with two extremal solutions at x = ±1. b First iteration: An initial
guess to the extrema at x = 2. The tangent to the gradient shows where to look
for a better point, at x = 1.25. c Second iteration: tangent of the gradient
at x = 1.25, finding a better point at x = 1.025. d Iterations shown as the
tangents on the functional, converging closer to a tangential solution with zero
gradient.

guess x0 > 0 converges to a maximum at +1. The reason is clearly seen with a
graphical representation of the algorithm in Fig. 1.1.

Example of control theory

Optimal control theory is more subtle. Although optimisation is a part of op-
timal control theory, the functional of the optimisation is more than navigating
an n-dimensional space. Control theory separates the controllable and uncontrol-
lable physics of the system, allowing the controllable physics to become part of
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1 Initial state 2 Target state

3 Control A − 30◦ 4 Control B + 30◦ 5 Control C + 90◦

6 Control A − 30◦, B + 30◦, C + 30◦ 7 Control C + 60◦

Figure 1.2: Diagram of a robot manipulator control task. Upper row is the
control task of taking the manipulator from 1 an initial state to 2 a defined
target state. Central row shows a control strategy, moving each control motor in
turn, 3 , 4 , then 5 . Lower row shows an efficient control strategy, allowing
all control motors to be moved simultaneously where possible, 6 , then a final
single control 7 . Assuming all motors move at the same speed, the control
strategy of the lower low takes 60% of the time it takes the central row control
task.

the optimisation functional, and the uncontrollable physics of the system become
inherent “drift”.

A classical example of a control theory is shown in Fig. 1.2, where the task of
taking a robot manipulator from an initial position to a target position can be
more efficient if control theory is used. The robot manipulator in Fig.1.2 has three
degrees of freedom, three controllable motors to position the grippers. The easiest
way to control the robot manipulator is to move each pivot in turn, controlling
each motor to the desired final position in turn. However, if motors are allowed to
be controlled simultaneously, the task is performed quicker. This can be viewed
as an application of control theory, although simplistic, reducing the amount of
time the control task takes.
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A proper use of control theory would take into account the weight of each section of
the manipulator, the weight of any potential load at the end of the manipulator, the
surrounding environment, and ensuring movement of the manipulator is smooth
with motors started slowly and finishing slowly. This information, the physics, is
easily programmed into a robot manipulator which performs repetitive tasks.

The task of finding the most efficient, the most optimal, controls to move from
the initial state to the target state is the task of optimal control.

§ 1.1 Thesis Outline

Chapter 1
An introduction to optimal control, broadly reviewing the literature of the
last fifteen years, where optimal control methods have been applied to the
area of magnetic resonance. The review focuses on the optimal control
method know as grape, but includes a number of other methods also used
for optimal control, some well established and some newer.

Chapter 2
This chapter will give an overview of magnetic resonance theory. It will form
a particularly theoretical chapter that will be referred to in later chapters,
and also serve the purpose of setting out mathematical formalisms that are
used in the software toolbox Spinach – the software used in all numerical
simulation within this thesis.

Chapter 3
A presentation of the grape method in the context of magnetic resonance.
The chapter starts from the mathematical area of numerical optimisation,
progressing through control theory to optimal control theory. The grape
method in this thesis uses a superoperator algebra representation of the
Liouville-von Neumann equation and the mathematical derivations of the
chapter are all in the context of this formalism.

Chapter 4
Work developed by the author for this thesis and published in [108]: ad-
vancing the grape method from the previous best superlinearly convergent
method [86] to quadratic convergence. The method presented is shown to
scale linearly with a similar computational complexity to previous methods.
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The Newton-grape method, unique work for this thesis, will be presented
along with well established numerical procedures to avoid predicted singu-
larities in the second-order optimal control method. Convergence analysis
will be shown for simulations of magnetic resonance pulse experiments using
this optimal control method.

Chapter 5
The matrix exponential is far from a trivial mathematical operator. This
chapter reviews a number series methods from the “nineteen dubious ways
to compute the exponential of a matrix” [211, 212], giving recommendation
on which method to use for simulation in magnetic resonance systems – the
method used in the software toolbox Spinach. The chapter then goes on to
present work unique to this thesis, published in [107], of analytical second
directional derivative for the grape method. §§4, 5 set out the focus of this
thesis – the Newton-grape method of optimal control.

Chapter 6
An overview of popular quadratic penalty methods is presented, optimal
control of phase in an amplitude-phase representation of control pulses, and
smoothed and shaped pulse solutions with application to finding smooth and
robust pulses to generate the singlet state.

Chapter 7
This chapter sets out the application of optimal control to solid-state nmr,
simulating the optimisation algorithm over the crystalline orientations in a
powder sample, and also for magic angle spinning experiments. The chapter
builds to finding optimal control pulses to excite the overtone transition in
an hmqc-type experiment.

Chapter 8
Work on optimal control in the area of electron spin resonance is far from
trivial – the pulses sent through the spectrometer are not the same shape
as those seen by the sample. This is not a problem for shapes that do
not vary rapidly – but optimal control pulses tend to be very specific, with
high frequency components that are very specific to the outcome of the
experiment. To investigate this, a real-time feedback control loop is set up
and experiments are optimised in a brute-force way. Experimental results
are shown for Hahn echo experiments with shaped pulses produced from this
type of real-time feedback loop.
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Chapter 9
Summary of main findings of the thesis.

The remainder of this introductory chapter will outline a survey of published
literature in the area of optimal control. Although not extensive in its applications,
the story of the development of optimal control theory in the context of finding
optimal pulses for magnetic resonance systems is fully considered. The reader is
directed to a more detailed perspective of modern optimal control theory in the
report Training Schrödinger’s cat: Quantum optimal control: Strategic report on
current status, visions and goals for research in Europe [98].

§ 1.2 Early optimal control

Optimal control theory in magnetic resonance started at a similar time to hard-
ware implementation of arbitrarily shaped pulses [283,303]. Although not optimal
control theory in itself, numerical optimisation was used to design highly selective
excitation pulses [197] and population inversion pulses [326]. A simple approach
was to minimise the square of the difference between an ideal signal and a measured
signal,

min
pulse shape

(
Ideal Signal−Measured Signal

)2

using a Nelder-Mead simplex method [220] varying parameters describing a shaped
pulse [197]. This approach to optimisation will be revisited in §8.

The development of appropriate hardware, and the early successes of experiments
using non-rectangular pulses, led researchers to explore the use of optimal control
theory to design “better” pulses for magnetic resonance experiments. Selective
excitation problems using numerically designed π/2 and π pulses used optimal con-
trol theory to solve Bloch equations{I} with a piecewise constant approximation
of an arbitrary pulse shape [43]. The optimisation metric used was defined as a
minimum-distance measure between the current magnetisation vector and a de-
sired magnetisation vector, then solving a Lagrange equation to find an optimum.
Later, a modification to the minimum-distance measure to include a measure of
adiabaticity gave adiabatic and band selective pulse shape solutions [253].

In magnetic resonance systems an ensemble of spins is manipulated to achieve a
desired ensemble state by the application of unitary operations [73]. Investigation

{I}Bloch equations describe magnetisation of isolated spins.
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into the controllability of quantum systems showed that, given a defined initial
state and enough pulsing time, any eigenstate of the system can be populated
when ˆ̂Hx and ˆ̂Hy controls are available, and their commutators with the drift
span the active space [141]{I}.

§ 1.3 Analytical optimal control

One of the first successful applications of optimal control theory in nmr used
an existing deuterium decoupling pulse sequence [264] as an initial guess to a
gradient-based numerical optimisation algorithm [189]. The optimisation metric
was defined by the eigenvalues and eigenvectors of the propagator from an average
Hamiltonian. The analytical derivatives of the linear operators [2] used for the
gradient-based optimisation were derived for a piecewise constant approximation
of an arbitrary pulse sequence.

Using a method developed for laser spectroscopy [142, 327], analytical design of
optimal unitary operations for use in nmr proved to be a difficult task for com-
plicated, coherence-order selective experiments [313, 314]. However, the maximal
unitary bounds on general nmr polarisation transfer experiments were shown to
to be much larger than the apparent limits of nmr polarisation transfer using
state-of-the-art experiments of that time [99,313]. The search for solutions nearer
to these bounds, finding pulsed solutions to give better experimental results, and
the search for solutions at these bounds, would become the work of the following
decade.

Given that a system is controllable and can be steered from one defined state to
another [141], optimal solutions must exist. With the aim of designing optimally
short pulses, to minimise the effects of relaxation, unitary transforms are found
analytically by separating out a Lie subgroup corresponding to controllable op-
erations, then deducing pulses from the unitary operator [152]. Pulses with the
shortest possible time were found for coherence transfer experiments in heteronuc-
lear two-spin systems [152] and linear three-spin systems [153].

{I}Unitary operations, ˆ̂Hx controls, and ˆ̂Hy controls will be introduced in §2
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§ 1.4 Broadband optimal pulses

Optimal control pulses can be designed to be broadband, robust to resonance
offsets, by simulating the optimal control algorithm over a range of offsets [287].
These pulses are called Broadband Excitation By Optimised Pulses (bebop). Fur-
ther to this, pulses designed by bebop were designed to have a shorted duration
and less power [288].

A similar method was used to create Broadband Inversion By Optimised Pulse
(bibop) [159]. This optimal control problem is simulated over a range of control
pulse power levels – creating pulses robust to miscalibration. Allowing only the
phase of the pulses to vary, keeping a constant amplitude, allows pulses designed
with bebop to be calibration-free [286,289].

§ 1.5 Gradient based optimal control

The original paper setting out the theory for Gradient Ascent Pulse Engineering{I}

(grape) followed the work on analytical optimisation [152] - setting out an elegant
base for Newton-type optimisation methods applied to quantum systems [154].
The essence of the method involved discretising the system into slices of time, each
with a constant Hamiltonian [43], and splitting the system into an uncontrollable
drift Hamiltonian, and control operators with associated amplitude constants. The
validity of the approximation defines the validity of grape. Along with similar
methods, the measure to maximise – to make the highest possible value – is the
overlap between two states termed the fidelity of the two states [99]:

max
pulse shape

〈
Target State

∣∣∣∣ Current State
〉

The angled brackets, 〈 · | · 〉, are a formal definition of the overlap between two
vectors, denoting the inner product{II} of the desired Target state vector and
the simulated Current state of the system.

Following its publication in 2005, grape immediately found applications in cre-
ating broadband pulses designed with bebop, as any optimal control method

{I}also termed Gradient Assisted Pulse Engineering
{II}The inner product, 〈 · | · 〉, is a generalisation of the scalar product between two vectors. In
this context, | · 〉 is a row vector and 〈 · | is a column vector, using the Dirac bra-ket notation [55].
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should, to systems requiring robust excitation pulses – pulses that are tolerant
to miscalibration of the nominal pulse power. The grape method of optimal
control can easily be modified to find broadband pulse excitation with tolerance
to radio-frequency (B1) miscalibration/inhomogeneity [158]. Although the system
and optimal control task are simple, transferring longitudinal magnetisation of
an uncoupled spin to transverse magnetisation, the example shows the possible
flexibility of grape, where rectangular pulses alone would fail to be adequately
robust.

Transferring a single initial to final magnetisation component, point-to-point state
transfer, may not entirely describe an adequate desired final state of the sys-
tem [159, 160]. Simple point-to-point{I} optimal control solutions can be used
within the framework of finding universal rotation pulses, required for mixing or
refocusing pulses [198]. Universal rotation pulses are solutions to problems where
each of the three magnetisation vectors of the Bloch equation must have a defined
rotation [200,277]. When these universal rotations are the target state of a grape
simulation, the resulting pulse shapes are found to exhibit symmetry around the
centre of the pulse [157]. Designing universal rotation pulses to be robust is called
Broadband Universal Rotation By Optimised Pulses (burbop) [134,135,285].

The cpmg sequence (Carr-Purcell-Meiboom-Gill [39,208]), useful in investigation
of relaxation rates{II}, was redesigned with grape resulting in universal rotations.
This application extended the cpmg robustness to a larger range of static B0 res-
onance offsets and B1 pulse power miscalibration [21]. Robust shaped pulses,
intended to be direct replacements for hard π/2 and π pulses, were designed using
the grape method [226]. Furthermore, broadband optimal solutions for hetero-
nuclear spin systems can be designed to compensate for coupling evolution over the
duration of a pulse shape, with the strategy of using a point-to-point optimisation
with its time reversal for finding universal rotation pulses [70].

Spin systems simulated with grape speed up calculation of coherence transfer in
larger spin and pseudospin chains [276]. Further to this, a method of using grape
with partitioned subsystems used to describe a large spin system proves effective
in finding optimal control solutions for very large spin systems [255]. The long-
range state transfer can be improved with the temporary occupation of higher
order states for larger systems [155].

{I}also termed state-to-state problems; these define an initial state and a target state each as
single, or linear combination of, members of the basis set
{II}Relaxation is called decoherence in some literature
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Pulses produced by grape may be difficult to implement on real hardware. Hard-
ware constraints may interpolate a shape to a smooth realisation of pulses, rather
than the square pulses produced by the grape method. Smooth, shaped pulses
can be produced as analytic functions with a modification to the fidelity func-
tional [284]. Alternatively, this hardware constraint can be accounted for in sim-
ulations by increasing the discretisation of time evolution above that of the dis-
crete control pulses [216], using experimentally obtained transfer matrices within
grape [20], or by employing a feedback control loop after a designed pulse se-
quence is implemented [69].

§ 1.5.1 Solid-state nuclear magnetic resonance

When nmr is performed on a solid powder, the anisotropic spin interactions result
in large line broadening of the spectrum. Spinning the sample at the magic angle{I}

relative to the static B0 axis averages out many of these interactions, resulting
in sharper spectral line shapes [73]. This method is termed mas (Magic Angle
Spinning), and can be useful for investigating dipolar and quadrupolar systems
[90].

In the same year as the publication of the grape method, it found application to
solid-state mas nmr, accounting for anisotropic components of spin interactions,
sample spinning and specifically addressing problems of B1 inhomogeneity [322]
within simulation. Design of pulses robust to hardware miscalibration of B1 aver-
ages the grape method over a range of B1 power levels, in effect, performing a
grape simulation at each power level, then averaging the fidelities and the gradi-
ents [322]. A range of chemical shift offsets can be treated in a similar way to
B1 miscalibration [286]. Chemical shift offsets, B1 inhomogeneity, and dispersion
from powder averaging, can also be simulated with the grape framework [310],
in this case using effective Hamiltonians. A combination of optimal control pulses
and average Hamiltonian theory can be used to analyse and then remove unwanted
second and third order coupling terms produced by optimal control solutions [18].

A method of solid-state nmr can take advantage of the Overhauser effect [233] to
transfer polarisation from unpaired electrons to nearby nuclei, in a method termed
dnp (Dynamic Nuclear Polarisation). The framework to control dnp systems [113]
is set out in [150, 207], and simple dnp systems can be handled with grape to
give optimal solutions [129] in the presence of relaxation [244]. Optimal control

{I}the magic angle is θmagic = arccos 1√
3 = 54.7◦
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proves useful in combining incoherent and coherent transfer schemes, investigated
in a system of one electron and two nuclear spins [243].

Again in the context of solid-state nmr, optimal pulses found use in experiments
with labelled proteins [119, 146]. Biomolecular samples, where high power con-
trol pulses can overheat the sample, dictate the need for low power pulse solu-
tions. These can be designed with grape by penalising high power pulse solu-
tions [147, 223], and can be extended to 2H− 13C cross-polarisation mas experi-
ments [328]. The quadratic power penalty is also used in calculating optimal pulses
for conversion of parahydrogen induced longitudinal two-spin order to single spin
order [27], and in designing robust pulses for transfer of magnetisation to singlet
order [178]. Further radio frequency power and amplitude restriction are investig-
ated for broadband excitation pulses [162].

Methods of simulating solid-state mas to find optimal control pulses will be given
in §7 and an overview of useful penalty methods used in conjunction with grape
will be given §6.

§ 1.5.2 Nuclear magnetic resonance imaging

A useful application of nmr in medicine is non-invasive, macroscopic imaging of
the human body [73]. Termed mri (Magnetic Resonance Imaging), the method
uses magnetic field gradients to record a projection of proton density such that
resonant frequencies are a linear functions of spatial coordinates [179]. Extending
grape into an average optimisation over an ensemble of Hamiltonians can com-
pensate for the dispersion in the system dynamics in mri simulations [156,192].

When radio-frequency pulse durations are similar to relaxation rates of quadru-
polar nuclei, as in the case of mri applications, previous work on optimal control
with mas [322] fails to be relevant. This was investigated, resulting in a novel
method of using grape [183]. The idea is to find optimal solutions with grape
for long total pulse duration, then decreasing the total pulse duration but using the
same shape. When the total pulse duration was reduced to less than the inverse of
the quadrupolar frequency, the resulting pulse shapes were simple, resembling two
discrete pulses separated by a delay. Results from that work showed an increase
in signal intensity of a spin−3/2 central transition while suppressing its satellite
transitions. In the context of mri, this is useful in separating the signal of 23Na
in cartilage from that of free 23Na within the image. Although found by optimal
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control, the solutions to the problem indicated simple pulse shapes that do not
need optimal control [184]. Further investigation proved optimal control theory
found its use in designing robust pulses [185], where simple pulse shapes could
not. Robust pulses were designed with grape to excite the central transition
of arbitrary spin−3/2 systems with static powder patterns [230]. Dft (Density
Functional Theory){I} calculations can be used to predict the necessary interac-
tion parameters for these grape simulations [232], giving a very general approach
to numerically finding optimal control pulses.

A practicable realisation of an efficient optimal control algorithm for mri purposes
should be fast, working in a small window of time, to be able to take patient
specific distortions into account. The optimisation should be performed as the
patient waits in the instrument, and timing is critical – should the patient move
during the optimal control simulation, the distortions also change and the optimal
control solution becomes ineffective [319]. Furthermore, advanced arrangements of
control coils used in modern mri{II} need to be taken into account when designing
optimal pulses [205]. In comparison to conventional adiabatic pulses, optimal
control pulses can achieve similar results with reduced sar{III} [186] and within
local and global sar limits [317,318].

§ 1.5.3 Quantum information

The research area of quantum information processing is based using two-level
quantum systems, and can be thought of as extending the language of classical
computation to these quantum bits [224, 332]. Just as the language of classical
computation is based on circuitry and logic gates, so too is the area of quantum
information processing. The difference between classical bits and quantum bits is
that quantum bits can exist in a superposition of the classical binary states.

Although optimal control was applied to the area of quantum information before
the advent of grape, and there have been many applications of optimal control
to this area, this review is intended to show applications of grape to magnetic
resonance systems – specifically to ensembles of spins{IV}. As such, only a modest

{I}a popular computational method to investigate electronic structure.
{II}the arrangement is called pTX (parallel transmission), and can have an arrangement of up
to 6 control coils, rather the the conventional 2 in mri.
{III}Patient safety guidelines have strict limitations on sar (specific-absorption-rate) – local hot-
spots of temperature, due to the distribution of sar when using pTX, will be different for every
patient and every scan.
{IV}Magnetic resonance on single spins is an emerging area, but beyond the scope of this work.



14 Introduction

number of applications of grape to this area will be mentioned; those the author
judges general enough to have use in optimal control of an ensemble system in
magnetic resonance.

Compared with the previous best methods for control of superconducting two-level
systems, grape can achieve lower information leakage, higher fidelity, and faster
gates [294]. A strategy for reducing information leakage entails using an extra
control channel, proportional to the derivative of the main control, within grape
[217]. A chain of 3 coupled superconducting two-level systems can use grape to
reduce unwanted “crosstalk” between the two outer two-level systems, so mediating
transfer in a serial manner [114]. High fidelity spin entanglement can be achieved
with universal rotations designed with grape, demonstrated experimentally for
nitrogen-vacancy centres in diamond [56].

The robust nature of grape has been shown to be tolerant to errors in pulse
length and off-resonance pulses for nitrogen-vacancy centres in diamond [56,257],
atomic vapour ensembles [271], and design of fault tolerant quantum gates using
a modified grape optimisation update rule [225, 267]. Time optimal solutions
[152] giving the minimal pulse length to achieve high fidelity transfer of Ising
coupled cluster states are verified with grape simulated at different pulse lengths
[76], with exponential falloff below a threshold pulse length [155]. Realistic pulse
implementation can be accounted for in the form of power and rise-time limits
[75]. Optimal grape solutions for these realistic pulses are realised by averaging
optimisation over individual detunings of resonance frequencies (with longitudinal
magnetisation control), with optimal pulses using only a single x-magnetisation
control.

Although the grape method is designed for closed systems, in the case of coupling
to an environment the method was advanced to open non-Markovian [249], and
open Markovian systems [277]. Control pulses that maximise transfer starting
with a high-temperature thermal ensemble are automatically optimal for lower-
temperature initial ensembles [324]. Further, the control landscape of an open
system is similar to a large closed system [335] and there is evidence that noise
can be suppressed with control [6].
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§ 1.5.4 Electron spin resonance

The particularly challenging application of optimal control to esr (Electron Spin
Resonance){I} includes the problem of the pulse response function of the microwave
setup – the pulses seen by the sample differ from those sent to the pulse shaping
hardware. The transfer matrix (response function) may be measured either by
adding an antenna to the resonator [293], or by using a sample with a narrow
esr line to pick up the intensity of each spectral component [145]. Quasi-linear
responses, such as the phase variation across the excitation bandwidth in nutation
frequency experiments, can be described with additional transfer matrices [58].
Once measured, the transfer matrix can be used within an optimal control al-
gorithm to transform pulse shapes before trajectory time evolution is calculated,
then be used to design broadband esr excitation pulses [293].

This relatively new area of applying optimal control pulses to esr systems will be
investigated in §8, finding a complimentary approach to those mentioned in the
previous paragraph.

§ 1.6 Modified methods

Effective Hamiltonian methods [310] and the grape algorithm [154] have showed
great success in finding optimal control solutions. However, more powerful al-
gorithms have the potential to take full advantage of optimal control. Further
modifications of the grape method spawned two useful optimal control methods,
optimal tracking and cooperative pulses.

§ 1.6.1 Optimal tracking

Optimal tracking is a modified grape method that takes an input control field
that will approximate a desired output trajectory rather than a state [221]. Hetero-
nuclear decoupling is an example of a limitation of the original grape algorithm.
The control problem involves taking a system to a desired intermediate state then

{I}also termed epr (Electron Paramagnetic Resonance). Esr is used in this thesis to avoid
conflict with the quantum mechanics term “epr-pair” derived from the Einstein-Podolsky-Rosen
thought experiment [71]
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back to the original state. In this context, defining the cost functional as the over-
lap between the initial and final states is not enough, since the initial and desired
final states are the same – the system may simply do nothing and produce a max-
imal overlap while not penetrating the intermediate state. As an extension of the
grape algorithm, optimal tracking [221] propagates the system to an intermediate
desired state while simultaneously propagating backward from the final state to
this desired intermediate state – so ensuring that the initial and final states are
always the same. Optimal tracking used for heteronuclear decoupling sequences,
with linear offset-dependent scaling factors, can encode chemical shift correlations
from an indirect dimension [266,337].

§ 1.6.2 Cooperative pulses

Cooperative pulses take into account multi-pulse experiments, generalising the ex-
perimental method of phase cycling and cooperatively compensating for each pulse
imperfection [24]. By generalising the grape method, it can be applied to broad-
band and band-selective experiments [24], quantum filter type experiments [25],
and pseudo-pure state preparation in the context of quantum information pro-
cessing [329].

§ 1.7 Other optimal control methods

Krotov type methods are algorithms of optimal control [163] that were developed
in parallel to the grape method reviewed above. The methods were successfully
developed for application to laser spectroscopy [301] and general two-level quantum
systems [338]. Krotov methods recursively find pulses necessary to perform a
state-transfer problem by solving the Lagrange multiplier problem [240]. The
algorithm was recently formulated in the context of magnetic resonance [207] and
is an alternative to grape. It was further developed to a hybrid type method,
including a quasi-Newton character to improve convergence [72]. The total pulse
time of this method can be critical in finding high fidelity solutions to optimal
control problems, and a characteristic threshold must be passed to find these
solutions using Krotov type methods [36]. Krotov based methods can appear
unattractive in that they need a seemingly arbitrary constant in the form of a
Lagrange multiplier – and although the constant is the same for similar systems,
any new system needs investigation to find its own Lagrange multiplier.
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The crab (Chopped Random Basis) algorithm shows promise in finding optimal
control solutions to many-body problems [35, 59]. Specifically, the method lends
itself to tensor-network descriptions of the system, also known as time-dependent
density matrix renormalisation group [269] or the tensor train formalism [262] –
an almost approximation-free description. An extension of the algorithm avoids
local extrema by reformulating pulse bounds [247]. Pulse shapes are described by
Fourier harmonics and these become the variables of optimisation. Calculating the
gradient elements in this formalism was expected to be prohibitively expensive,
therefore the method uses a gradient-free optimisation method such as the Nelder-
Mead simplex method [220]. A further modification includes gradient calculations
in the goat method (Gradient Optimisation of Analytical controls) [199] giving
improved convergence.

A method for efficiently calculating gradients will be presented in §5.

§ 1.8 Numerical computation

A number of public software packages include functionality to perform optimal
control calculations for magnetic resonance problems. A selection is listed below:

Dynamo [200,275]
Using Matlab, includes grape, Krotov, and hybrid methods for quantum
optimal control simulations of open and closed systems.

QuTiP [138,139]
Using Python, includes the grape and crab algorithms using l-bfgs and
Nelder-Mead algorithms, respectively.

Simpson [13]
The release of the magnetic resonance simulation package simpson pro-
gressed to include optimal control in the form of the grape method [309,
311]. Includes the ability to simulate liquid- and solid-state nmr, mri, and
quantum computation. Simpson is coded in C with the Tcl scripting inter-
face.

Spinach [130]
In the context of optimal control, Spinach solves the Liouville-von Neumann
equation using state-space restriction techniques in an irreducible spherical
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tensor basis using Matlab. Grape-l-bfgs [86] and Krotov methods were
included before the author became involved in the project{I}.

The first systematic look at the algorithmic complexity of the grape algorithm
[154] was published in [111]. Efficient implementation would take advantage of
inherent parallelisation of the grape algorithm. The bottleneck in computation
was identified as performing a matrix exponential – a number of approaches to
numerically compute this were compared: scaling and squaring based on the Padé
approximation and series expansion with either the Taylor expansion or Chebyshev
polynomials [10, 278].

The obvious way to create a gradient for a gradient ascent algorithm is to define
it by a central finite-difference approximation – however, for anything but small
systems, this gives a computationally expensive calculation{II} – making optimal
control of larger systems impractical. The need for analytic gradients is paramount
for any gradient ascent method to become useful in larger systems [169]. Based
on an auxiliary matrix formalism, analytic gradient elements can be calculated by
taking the exponential of a 2×2 triangular block matrix, with the drift Hamiltonian
on the diagonal and the control operator on the off-diagonal [81].

A Quasi-Newton optimisation of grape, using the `-bfgs algorithm, was de-
veloped to make full use of the gradient history to give second-order derivative
information and improve convergence to superlinear [86]. A Newton-Raphson
root finding approach, using the conditioned Jacobian matrix of first-order partial
derivatives as a least-squares optimisation problem [84], improved convergence to
quadratic for a chain of five coupled two-level systems using two controls. The
Jacobian matrix is also used in Krylov-Newton methods for closed spin systems,
showing impressive convergence without calculation of a full Hessian [41].

Many examples in the literature above, when simulating high dimensional spin
systems, produce optimal control solutions which can be described to appear like
“noise”. Trajectory analysis of the “noisy” pulse sequence evolution shows an un-
derlying order to the spin dynamics [167], and a time-frequency representation of
the pulse shapes reveals underlying patterns which are not apparent in a conven-
tional Cartesian representation of pulses [161].

{I}The Spinach software package is used and developed by the author of this document.
{II}A two point finite difference requires two functional evaluations, a four point requires four
etc. whereas an analytic gradient would require one functional evaluation by definition.
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§ 1.9 Summary

Optimal control has become a useful tool in exploring the limits of, among other
technologies, magnetic resonance spectroscopy and imaging. The design of pulsed
magnetic resonance experiments with either composite pulses, shaped pulses, or
adiabatic pulses has shown improvement when designed with optimal control meth-
ods.

The grape method of optimal control has become one of the leaders in its field
for finding computationally efficient solutions, able to find state-of-the-art pulse
sequences for large and complicated spin systems. Furthermore, pulse sequences
produced can be made robust to experimental variability.

In addition to becoming an indispensable tool of chemical spectroscopy, the emer-
ging area of optimal control of mri shows promise in reducing medical costs at the
same time as increasing diagnostic abilities. And it is this last point that becomes
the motivation of the work presented in this thesis – finding more accurate op-
timal control solutions with decreased computational complexity – with the vision
of large, highly parallel computational infrastructure installed at medical facil-
ities, real-time, bespoke optimal control solutions will become affordable. With
reduced experiment time on the expensive apparatus, and increased throughput:
the dream of scientific facilitators working in business and finance will become
more real.





§ 2

Magnetic Resonance Theory

A youth who had begun to read geometry with Euclid, when he had learnt
the first proposition, inquired, “What do I get by learning these things?”
So Euclid called a slave and said “Give him three pence, since he must
make a gain out of what he learns.”

– Joannes Stobaeus, Physical and Moral Extracts

Optimal control can be thought of as the study of controlling a system to find an
optimally desired solution. A formal definition of optimal control will be given in
§3, culminating in the grape method. §1 was a review of published literature on
the subject of optimal control applied to magnetic resonance systems. Normally,
when studying magnetic resonance systems, an ensemble of particle spins are
manipulated to give molecular information of how these spins interact with one
another.

Magnetic resonance spectroscopy classically uses rectangular pulses of electromag-
netic radiation to manipulate spins located within a static magnetic field. Non-
rectangular shaped pulses are also used in magnetic resonance with a review given
in [89]. The idea of applying optimal control to magnetic resonance is to optimise
desired experimental outcomes with respect to the pulse shape.

This chapter will introduce features of magnetic resonance theory that will be
used within this thesis. Much of this chapter is taken from standard textbooks on
quantum mechanics [7,175,209,300], nuclear magnetic resonance (nmr) [1,73,131]
and electron spin resonance (esr) [33, 279].
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§ 2.1 Angular momentum

Angular momentum in quantum mechanics can be derived from many starting
points. Here, the starting point is the Schrödinger equation and Euclidean geo-
metry.

§ 2.1.1 Schrödinger’s equation

In 1926 Erwin Schrödinger formulated the famous Schrödinger equation [273] in an
attempt to find solutions to a Hamiltonian equation using Louis de Broglie’s wave-
particle duality [29]. The Hamiltonian, Ĥ, is an energy operator which dictates
dynamics in the equation of motion of that system in the form of a Hamiltonian
equation. If |Ψ(t)〉 describes the state of a system at a particular time t, then the
time-dependent Schrödinger equation is

∂

∂t

∣∣∣Ψ(t)
〉

= −iĤ
∣∣∣Ψ(t)

〉
(2.1)

It is common to measure energy eigenvalues in angular frequency units within the
area of magnetic resonance, and the usual factor of ~ is therefore dropped from
Eq. (2.1). The state |Ψ(t)〉 can be expanded to a complete orthonormal basis

∣∣∣Ψ(t)
〉

=
n∑

i=1
ci(t)

∣∣∣Ψi

〉
, i = 1, 2, . . . , n (2.2)

where the time dependence is now described with the coefficients ci(t) of the
complete orthonormal basis states Ψi. This basis spans a Hilbert space of dimension
n.

§ 2.1.2 Euclidean principle of relativity

Quantum mechanics is built on the principle that space is subject to the laws of
Euclidean geometry – and that space itself is isotropic and homogeneous. This
assumption is called the Euclidean principle of relativity. A physical interpretation
is – in the absence of external fields and perturbations the effect of moving a phys-
ical system, such as experimental apparatus, should not result in measurements
that depend on the location or orientation of the experiment. Or more precisely;
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a translation or rotation of the coordinate system should not change the Hamilto-
nian describing the energy of particles within the system. The Hamiltonian is
invariant under rotation and translation.

For a rotation operation denoted by R̂ the mapping of a state vector Ψ to Ψ′ is
∣∣∣Ψ
〉
7→ R̂

∣∣∣Ψ
〉

=
∣∣∣Ψ′
〉

⇒
〈
Ψ
∣∣∣R̂†ĤR̂

∣∣∣Ψ
〉

=
〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

(2.3)

This relation must hold for any state vectors, and therefore R̂ must commute with
the system Hamiltonian Ĥ

R̂†ĤR̂ = Ĥ ⇒ R̂−1ĤR̂ = Ĥ ⇒
[
Ĥ, R̂

]
= 0 (2.4)

Using the Schrödinger Eq.(2.1), and the measurement of an observable{I} property
of the system being its expected value{II} – the following relation can be derived

− i
〈

Ψ
∣∣∣∣
[
Ĥ, R̂

]∣∣∣∣Ψ
〉

= 0 (2.5)

showing the conservation of the observable property associated with the rotation
R̂.

§ 2.1.3 Orbital angular momentum

The property conserved for the above rotation, from the assumption of isotropic
space, is angular momentum . The quantum mechanical angular momentum op-
erator, L̂, is analogous to its classical vector counterpart [174]

L̂ = r̂ × p̂ = r̂ × ~
i
∇, ∇ ,




∂
∂x
∂
∂y
∂
∂z


 (2.6)

The Cartesian components of the angular momentum operator can be derived by
considering infinitesimal rotations giving

iL̂x =
(
y
∂

∂z
− z ∂

∂y

)
, iL̂y =

(
z
∂

∂x
− x ∂

∂z

)
, iL̂z =

(
x
∂

∂y
− y ∂

∂x

)
(2.7)

{I}An Hermitian operator that possesses a complete set of eigenfunctions is an observable.
{II}The expected value of an hermitian operator is

〈
Ψ
∣∣Â
∣∣Ψ
〉
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where the constant unit of ~ is dropped, as is normal in the subject of magnetic
resonance. The solution to a differential equation for the infinitesimal rotation ϕ
is

d
dϕR̂(ϕ) = −iL̂zR̂ ⇒ R̂(ϕ) = e−iL̂zϕ (2.8)

This can be extended to show all rotation operators are exponentials of the angular
momentum operators, and the angular momentum operators are the basis of the
Lie algebra corresponding to the Lie group of rotations. By inspection of Eq.(2.7),
the following commutation relations can be formed:

iL̂x =
[
L̂y, L̂z

]
, iL̂y =

[
L̂z, L̂x

]
, iL̂z =

[
L̂x, L̂y

]
(2.9)

where the commutator of two elements a and b defines a Lie algebra, with [a, b] =
ab− ba. The square of the angular momentum, the modulus, can be constructed
from the angular momentum operator components:

L̂2 = L̂2
x + L̂2

y + L̂2
z (2.10)

and this operator, called the Casimir operator, does commute with each of the
angular momentum operators

[
L̂2, L̂x

]
= 0,

[
L̂2, L̂y

]
= 0,

[
L̂2, L̂z

]
= 0 (2.11)

A convenient set of non-Hermitian operators, named the raising and lowering
operators, can be defined in terms of L̂x and L̂y

L̂+ = L̂x + iL̂y, L̂− = L̂x − iL̂y (2.12)

with the following commutation relations involving L̂z
[
L̂+, L̂−

]
= 2L̂z,

[
L̂z, L̂+

]
= L̂+,

[
L̂z, L̂−

]
= −L̂− (2.13)

§ 2.1.4 The uncertainty principle

Given an Hermitian operator L̂, representing an observable property of the system
in a state

∣∣∣Ψ
〉
; the uncertainty in a measurement of that observable property can



Angular momentum 25

be represented as a standard deviation [330]:

∆L̂ =
√〈

L̂2
〉
−
〈
L̂
〉2

=
√〈

ψ
∣∣∣L̂2

∣∣∣ψ
〉
−
〈
ψ
∣∣∣L̂
∣∣∣ψ
〉2

(2.14)

Heisenberg’s uncertainty principle [122] states that for two hermitian operators:

∆Â∆B̂ >
~
2

∣∣∣∣∣

〈[
Â, B̂

]〉∣∣∣∣∣
[
Â, B̂

]
= ic (2.15)

where c is a constant. This can be seen with angular momentum operators applied
to the Heisenberg uncertainty relation in atomic units, where ~ = 1:

∆L̂x =
√〈

L̂2
x

〉
−
〈
L̂x
〉2

∆L̂y =
√〈

L̂2
y

〉
−
〈
L̂y
〉2

⇒ ∆L̂x∆L̂y >
1
2

∣∣∣∣∣

〈[
L̂x, L̂y

]〉∣∣∣∣∣ = 1
2

∣∣∣∣
〈
L̂z
〉∣∣∣∣ (2.16)

The angular momentum operator components do no commute with each other.
This indicates that all components of angular momentum cannot be simultaneously
defined, unless all equal zero – which sets it apart from linear momentum{I}.
However, the modulus of the angular momentum, the Casimir operator, can have
a definite value at the same time as each component of the angular momentum
and is therefore simultaneously observable.

§ 2.1.5 Spherical polar coordinates

The three Cartesian components of the angular momentum operators can be ex-
pressed in a spherical polar coordinate system, more natural than a Cartesian
coordinate system when considering rotations from §2.1.2. Depicted in Fig. 2.1,

{I}The result obtained by considering infinitesimal translations and the homogeneity of space,
would give relations for the linear momentum operator.
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x = r sin θ cosϕ
y = r sin θ sinϕ
z = r cos θ

r =
√
x2 + y2 + z2

ϕ = arctan y
x

θ = arccos z√
x2 + y2 + z2

Figure 2.1: Diagram of a spherical coordinate system in relation to a Cartesian
coordinate system.

their formulation is:

L̂x = −i
(
− sinϕ ∂

∂θ
− cosϕ cot θ ∂

∂ϕ

)
(2.17)

L̂y = −i
(

cosϕ ∂

∂θ
− sinϕ cot θ ∂

∂ϕ

)
(2.18)

L̂z = −i ∂
∂ϕ

(2.19)

Similarly, the transform of the Casimir operator to spherical polar coordinates
gives

L̂2 = − 1
sin2 θ

∂2

∂ϕ2 −
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
(2.20)

The simultaneous eigenvalues of L̂2 and L̂z are

L̂2
∣∣∣Y m
` (θ, ϕ)

〉
= `(`+ 1)

∣∣∣Y m
` (θ, ϕ)

〉

L̂z
∣∣∣Y m
` (θ, ϕ)

〉
= m

∣∣∣Y m
` (θ, ϕ)

〉





` ∈ N
m = −`,−`+ 1, . . . , `

(2.21)

where the normalised, simultaneous eigenfunctions of the Casimir operator, L̂2,
and the z−projection operator, L̂z, are the spherical harmonics

Y
m
` (θ, ϕ) = (−1)

m+|m|
2

√√√√√2`+ 1
4π

(
`−

∣∣∣m
∣∣∣
)
!

(
`+

∣∣∣m
∣∣∣
)
!
P
m
`

(
cos θ

)
eimϕ (2.22)

P
m
` (ξ) =

(
1− ξ2

)|m|
2 d|m|

dξ|m| P̀ (ξ) (2.23)
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where P̀ (ξ) are the Legendre polynomials which can be defined by the formula

P̀ (ξ) = 1
2``!

d`

dξ`
[(
ξ2 − 1

)̀ ]
(2.24)

` is the total momentum quantum number, m is the projection quantum number,
` ∈ N,m = −`,−`+1, . . . , `.

Following Eqs. (2.17), (2.18) the transform of raising and lowering operators to
spherical polar coordinates are

L̂+ = eiϕ
( ∂
∂θ

+ i cot θ ∂
∂ϕ

)

⇒ L̂+

∣∣∣Y m
`

〉
=
√
`(`+ 1)−m(m+ 1)

∣∣∣Y m+1
`

〉
(2.25)

L̂− =− eiϕ
( ∂
∂θ
− i cot θ ∂

∂ϕ

)

⇒ L̂−
∣∣∣Y m
`

〉
=
√
`(`+ 1)−m(m− 1)

∣∣∣Y m−1
`

〉
(2.26)

The raising and lowering operators perform operations that increment and decre-
ment the magnetic quantum number m.

§ 2.1.6 Intrinsic angular momentum

In dealing with the subject of magnetic resonance the idea of intrinsic angular
momentum (as opposed to orbital angular momentum discussed above), termed
spin, must first be introduced [236,312]. The most direct evidence for this spin is
the Stern-Gerlach experiment, proposed by Otto Stern [295]: Silver atoms are sent
in a focused beam through an non-uniform magnetic field, B0 [93]. Classically, the
atoms should give a continuous trace, between +µ and −µ, when they emerge from
the magnetic field. However, observation of the emerging atoms shows a number of
distinct traces, rather than the expected continuous trace, spaced equally between
+µ and −µ. Conventionally, µ is considered to be the magnetic moment of the
particle. A diagram of the experiment is shown in Fig. 2.2.

This is attributed to the two spin states of atoms within the incident beam – spin
up and spin down. The “up” and “down” could also be termed +1 and −1, or α
and β. The nomenclature is only to indicate that there is a quantised property
of the silver atoms, having two states which become physically separated in the
presence of an external magnetic field.
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Figure 2.2: Schematic diagram of the Stern-Gerlach experiment showing a
beam of silver atoms split by an inhomogeneous magnetic field. The classical
picture of this experiment would show a continuous, rather than discrete, trace
on the photographic plate.

This spatial splitting of the wave functions describing the silver atoms must be
included in addition to, and independent of (commuting with), the spatial co-
ordinate description of the wave function. The discrete spin variable describing
the splitting in the Stern-Gerlach can take two values{I}, +1 or −1.

Spin degrees of freedom can be split from the spatial degrees of freedom, forming
a spinor : ∣∣∣Ψ(~r, s)

〉
=
∑

n,k

∣∣∣Ψn(~r )
〉
⊗
∣∣∣Ψk(s)

〉
(2.27)

The spin part of the this construct can be described by a pair of orthogonal vectors
projecting onto the two discrete values of the spin,

χ =

c+1/2

c−1/2


 = c+1/2


1

0


+ c−1/2


0

1


 = c+1/2

∣∣∣α
〉

+ c−1/2

∣∣∣β
〉

(2.28)

which must be normalised, requiring χ†χ = |c+1/2
|2 + |c−1/2

|2 = 1. In the case of
a spin-1/2 particle, this basis can be used for describing the two spin eigenstates
of the Stern-Gerlach experiment. Without derivation, we make the assertion that
the spin quantum number can have 2s+ 1 values, and for a spin-1/2 particle these
values are s = ±1/2. This imposes the condition that s = 0, 1

2 , 1,
3
2 , 2, . . ..

{I}for a spin-1/2 particle, which is the case for silver atoms
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In analogy to orbital angular momentum, for intrinsic angular momentum a matrix
representation can be formulated with raising and lowering operators to move
between the |α〉 and |β〉 states

Ŝ+

∣∣∣α
〉

=
∣∣∣0
〉
, Ŝ+

∣∣∣β
〉

=
∣∣∣α
〉
, ⇒ Ŝ+ =


0 1

0 0


 (2.29)

Ŝ−
∣∣∣α
〉

=
∣∣∣β
〉
, Ŝ−

∣∣∣β
〉

=
∣∣∣0
〉
, ⇒ Ŝ− =


0 0

1 0


 (2.30)

and with analogy to orbital angular momentum, the raising and lowering operators
can be formulated in terms of Ŝx and Ŝy:

Ŝ+ =Ŝx + iŜy, Ŝ− = Ŝx − iŜy (2.31)

The Cartesian operators can be constructed from the raising and lowering operat-
ors, and by requiring the eigenvalues of the z-component to be the allowed values
of spin ±1/2, giving

Ŝx = Ŝ+ + Ŝ−
2 , Ŝy = Ŝ+ − Ŝ−

2i ,
Ŝz
∣∣∣α
〉

= +1
2

∣∣∣α
〉

Ŝz
∣∣∣β
〉

= −1
2

∣∣∣β
〉

Ŝx =1
2


0 1

1 0


 , Ŝy = 1

2


0 −i
i 0


 , Ŝz = 1

2


1 0

0 −1


 (2.32)

These are called the Pauli matrices of a spin-1/2 particle. It is easy to see that the
square of each of these operators is the same and proportional to the unit matrix,
1. Unlike orbital angular momentum, the square of spin is also proportional to
the identity

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = 1

41+ 1
41+ 1

41 = 3
41 (2.33)

For spin greater than 1/2, the matrix dimension becomes larger, and similar oper-
ators can be constructed e.g. for spin-1 particles:

Ŝx = 1√
2




0 1 0
1 0 1
0 1 0


 , Ŝy = 1√

2




0 −i 0
i 0 −i
0 i 0


 , Ŝz = 1

2




1 0 0
0 0 0
0 0 −1


 (2.34)

The commutation relations follow by inspection:
[
Ŝx, Ŝy

]
= iŜz

[
Ŝz, Ŝx

]
= iŜy

[
Ŝy, Ŝz

]
= iŜx

[
Ŝ2, Ŝ{x,y,z}

]
= 0 (2.35)
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§ 2.2 Irreducible representations
of the rotation group

Returning to the Euclidean principle of relativity, space is required to be isotropic
and homogeneous. The consequence is that when a state vector

∣∣∣Ψ
〉
undergoes a

rotation operation in space, R̂, all probabilities must be invariant. Mathematically,
this means that all inner products of two rotated states remain invariant

∣∣∣Ψ
〉
7−→ R̂

∣∣∣Ψ
〉

=
∣∣∣Ψ′
〉

(2.36)
∣∣∣∣
〈
Ψ′
∣∣∣Φ′
〉∣∣∣∣

2
=
∣∣∣∣
〈
Ψ
∣∣∣Φ
〉∣∣∣∣

2
(2.37)

for every pair of state vectors, Ψ and Φ. This mapping is called isometry and must
be reversible. A second rotation results only in a phase change [209]:

∣∣∣Ψ′′
〉

= eiϕ
∣∣∣Ψ′
〉

(2.38)

The transform of a sum of two vectors is equal to the sum of the transforms of
two vectors. It follows that [209]

〈
Ψ′′a
∣∣∣Ψ′′b

〉
+
(〈

Ψ′′a
∣∣∣Ψ′′b

〉)∗
=
〈
Ψa

∣∣∣Ψb

〉
+
(〈

Ψa

∣∣∣Ψb

〉)∗
(2.39)

Re
〈
Ψ′′a
∣∣∣Ψ′′b

〉
= Re

〈
Ψa

∣∣∣Ψb

〉

Im
〈
Ψ′′a
∣∣∣Ψ′′b

〉
= ±Im

〈
Ψa

∣∣∣Ψb

〉 (2.40)

⇒
(
λ
∣∣∣Ψ
〉)′′

= λ
∣∣∣Ψ′′

〉
(2.41)

(
λ
∣∣∣Ψ
〉)′′

= λ∗
∣∣∣Ψ′′

〉
(2.42)

where ∗ has been used here to denote the complex conjugate. Eqs. (2.39), (2.41)
are the properties of a linear operator, and Eq. (2.41) implies the transform is
unitary. A unitary transformation operator Û satisfies Û †Û = Û Û † = 1 and gives
a symmetry operation{I}, an important property of a rotation. Eq. (2.42) char-
acterises an antilinear operator, not considered in generating rotation operations,
which is important in describing a system under time reversal.

{I}A transformation that leaves the physics unaltered is called a symmetry operation, and a
symmetry operation applied to all eigenstates of a basis must leave the Schrödinger equation
invariant. This condition is satisfied if the system Hamiltonian, Ĥ, commutes with the transform:
[Ĥ, ÛR] = 0
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Spin does not rotate when a particle is rotated, but anisotropic interactions (see
§2.4) do rotate. To represent these rotations, the following complex Hermitian
matrices will become generators of the rotations

Ĵ1 ,




0 0 0
0 0 i

0 −i 0


 , Ĵ2 ,




0 0 i

0 0 0
−i 0 0


 , Ĵ3 ,




0 i 0
−i 0 0
0 0 0


 (2.43)

A rotation from a state |Ψ〉 to |Ψ′〉 can be expressed as a unitary operator, |Ψ〉 =
ÛR|Ψ′〉. From the generators in Eq. (2.43) and the rotation in Eq. (2.38), the
unitary rotation operators representing rotations through angles {α, β, γ} are

eiĴ1α =




1 0 0
0 cosα − sinα
0 sinα cosα




eiĴ2β =




cos β 0 − sin β
0 1 0

sin β 0 cos β


 (2.44)

eiĴ3γ =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1




Ĵ must satisfy the general commutation relations to give a well-defined transform:

[
Ĵi, Ĵj

]
= iεijkĴk, εijk =





1 ijk ∈
{

123, 231, 312
}

−1 ijk ∈
{

321, 213, 132
}

0 all else

(2.45)

where Ĵ is a rotation operator and i, j, k take the values 1, 2, 3 and represent
the Cartesian components x, y, z. Further to the unitary operator representing a
rotation in Eq. (2.44), we also require the same rotation at further 2π angles

ÛR = exp
[
− iĴ

(
ϕ+ 2πk

)]
= exp

[
− iĴϕ

]
exp

[
− iĴ2πk

]
(2.46)

where k is an arbitrary integer. The additional factor in Eq. (2.46) has the effect
of multiplying an eigenstate Y m

` by (−1)2km, where m is the magnetic quantum
number and the eigenvalue of an operator Ĵz.
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Xx′′

x
y

z = z′

x′

Y

z′′ = Z

y′ = y′′α

β

γ

α

β

γ

Figure 2.3: Euler angles: This rotation convention corresponds to 1 rotation
of angle α around the z-axis, 2 rotation of angle β around the y′-axis, 3
rotation of angle γ around the z′′-axis.

Any rotation R̂ operation in 3D can be described by three Euler angles{I}, shown
in Fig. 2.3, which represent three consecutive rotations by angles α, β, γ [7],

R̂(α, β, γ) =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1







cos β 0 − sin β
0 1 0

sin β 0 cos β







cosα − sinα 0
sinα cosα 0

0 0 1


 (2.47)

§ 2.3 Liouville-von Neumann equation

Magnetic resonance is concerned with ensemble averages of spin particles. Simply
describing the basis in a Hilbert space of §2.1.1 is not enough, and a more de-
scriptive, larger space must be constructed.

Given the initial state of the system, |ψ(0)〉, the solution to this Eq. (2.1) at a
future time T > 0 is

∣∣∣ψ(T )
〉

= exp(o)


− i

T∫

0

Ĥ(t) dt


∣∣∣ψ(0)

〉
(2.48)

{I}other rotation conventions exist, such are quaternions or directional cosine matrices, but
Euler angles are shown here for convenience.
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where exp(o)[. . . ] indicates a time ordered exponential [62, 63,73,300].

The density operator is a description of the state of a system ensemble

ρ̂(t) =
∑

i,j

pij
∣∣∣ψi(t)

〉〈
ψj(t)

∣∣∣ (2.49)

=
∣∣∣ψ(t)

〉〈
ψ(t)

∣∣∣ (2.50)

where pii are the associated probabilities for each state ψi(t), normalised so that
∑
i
pii = 1. The diagonal elements of ρ̂(t) are the probabilities of being in an

eigenstate of the Hamiltonian, and the off-diagonal elements of ρ̂(t) indicate a
superposition of states [73].

The equation of motion for the density operator can be found from the time-
dependent Schrödinger equation:

∂

∂t
ρ̂(t) = ∂

∂t

(∣∣∣ψ(t)
〉〈
ψ(t)

∣∣∣
)

=
(
∂

∂t

∣∣∣ψ(t)
〉)∣∣∣ψ(t)

〉〈
ψ(t)

∣∣∣
(
∂

∂t

〈
ψ(t)

∣∣∣
)

=− iĤ(t)
∣∣∣ψ(t)

〉〈
ψ(t)

∣∣∣+ i
∣∣∣ψ(t)

〉〈
ψ(t)

∣∣∣Ĥ(t)

=− i
(
Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)

)

Identifying the commutator, the equation of motion can be written as

∂

∂t
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
(2.51)

This is known as the Liouville-von Neumann equation. In a similar manner to
finding the solutions of Eq. (2.1) with Eq. (2.48), the solutions to Eq. (2.51) are

ρ̂(T ) = Û(T )ρ̂(0)Û−1(T ) (2.52)

where Û(T ) is the time propagator over a time interval [0, T ] defined by

Û(T ) = exp(o)


− i

T∫

0

Ĥ(t) dt

 (2.53)
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§ 2.3.1 Superoperator algebra

The transform in Eq.(2.52) can be represented as the multiplication of three n×n
matrices in the following schematic:




ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n

... ... . . . ...

ρn1 ρn2 · · · ρnn




=




Û
size: (n× n)







σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

... ... . . . ...

σn1 σn2 · · · σnn







Û−1

size: (n× n)




(2.54)

The same transform in Eq.(2.52) can also be written as a matrix-vector multiplic-
ation, numerically more appealing than the product of three matrices, by using
the linear transform of density matrix vectorisation:




ρ11

ρ21
...
ρn1

ρ12

ρ22
...
ρn2

...

ρ1n

ρ2n
...
ρnn




=




ˆ̂U

size: (n2 × n2)







σ11

σ21
...
σn1

σ12

σ22
...
σn2

...

σ1n

σ2n
...
σnn




(2.55)

The commutation relation in Eq. (2.51) can be represented as a matrix in itself,
called a superoperator, and transforms the Liouville-von Neumann equation into
a matrix-vector multiplication

∂

∂t
ρ̂ = −i ˆ̂Hρ̂ (2.56)

where the “double-hat” superoperator notation has been introduced, with the
Liouville superoperator acting on another operator defined as a commutation ˆ̂Hρ̂ =
[Ĥ, ρ̂], and is represented by a matrix of size n2 × n2. Using this superoperator
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representation Eq. (2.52) becomes

∣∣∣ρ(T )
〉

= exp(o)


− i

T∫

0

ˆ̂H(t) dt


∣∣∣ρ(0)

〉 ˆ̂H = 1⊗ Ĥ − Ĥ† ⊗ 1+ i ˆ̂R (2.57)

where ˆ̂R is the relaxation superoperator, describing damping and dissipations
effects, and 1 is the identity matrix{I}. The Liouville superoperator defined in
this way, as a direct product, allows interacting composite systems described in a
numerically efficient way.

Continuing from the spherical harmonics of §2.1.5, the vector space of Eqs.(2.21),
(2.25), (2.26) can be decomposed to (2` + 1)-dimensional subspaces, which are
invariant under rotation. Under a rotation, a state in the spherical polar coordinate
basis transforms as

R̂
∣∣∣Y m
`

〉
=

∑̀

m′=−`

∣∣∣Y m′

`

〉
D

(`)
m′m(α, β, γ) (2.58)

where the matrix D
(`)
m′m(α, β, γ) is the Wigner rotation matrix (Fig.A.1) with the

elements described by

D
(`)
m′m(α, β, γ) =

〈
Y
m′

`

∣∣∣R̂
∣∣∣Y m
`

〉
(2.59)

shown explicitly in §A. A rotation in one of these subspaces can be expressed by
an irreducible spherical tensor operator T̂`m in a matrix representation, which is
defined as [259]

R̂T̂`mR̂
−1 = ˆ̂RT̂`m =

∑̀

m′=−`
T̂`m′D

(`)
m′m(α, β, γ) (2.60)

where α, β, γ are Euler angles in Eq. (2.47). For the infinitesimal rotations used
in §§2.1.2, 2.1.3, Ĵ , Eq. (2.60) simplifies to

[
Ĵ, T̂`m

]
=

∑̀

m′=−`
T̂`m′

〈
Y
m′

`

∣∣∣Ĵ
∣∣∣Y m
`

〉
(2.61)

{I}The identity matrix, 1, is a matrix with ones on every diagonal element and zeros everywhere
else.
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giving an alternate form of Eqs. (2.21), (2.25), (2.26) as commutation relations
for the spherical tensor operator:

[
Ĵz, T̂`m

]
= mT̂`m (2.62)

[
Ĵ+, T̂`m

]
=
√
`(`+ 1)−m(m+ 1) T̂`m+1 (2.63)

[
Ĵ−, T̂`m

]
=
√
`(`+ 1)−m(m− 1) T̂`m−1 (2.64)

The single particle spherical tensor operators of rank-1 are

T̂00 = 1 (2.65)
T̂10 = L̂z (2.66)

T̂1±1 = ∓ 1√
2
L̂± (2.67)

The full list of irreducible spherical tensor operators is given in §A Fig. A.2.
Within the software toolbox Spinach [130], all rotations are active, meaning the
system is rotated and not the coordinates.

§ 2.3.2 Composite systems

The total wavefunction of two non-interacting uncorrelated subsystems is a direct
product of the subsystems{I}:

∣∣∣ψ1,2

〉
=
∣∣∣ψ1

〉
⊗
∣∣∣ψ2

〉
(2.68)

and the density matrices are

ρ̂1,2 =
∣∣∣ψ1,2

〉〈
ψ1,2

∣∣∣ =
(∣∣∣ψ1

〉〈
ψ1

∣∣∣
)
⊗
(∣∣∣ψ2

〉〈
ψ2

∣∣∣
)

= ρ̂2 ⊗ ρ̂2 (2.69)

For a system of k non-interacting uncorrelated subsystems, the system is described
by a chain of k direct products:

ρ̂1,2,...k = ρ̂2 ⊗ ρ̂2 ⊗ · · · ⊗ ρ̂k (2.70)
{I}Also called the Kronecker product.
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Similarly, when the angular momentum of a composite system is represented by a
direct product space, so to are the normalised simultaneous eigenvectors:

∣∣∣Y m1,m2
`1,`2

〉
=
∣∣∣Y m1
`1

〉
⊗
∣∣∣Y m2
`2

〉
(2.71)

and the state for n particles can be expressed with n direct products
∣∣∣Y m1,m2,...,mn

`1,`2,...,`n

〉
=
∣∣∣Y m1
`1

〉
⊗
∣∣∣Y m2
`2

〉
⊗ · · · ⊗

∣∣∣Y mn
`n

〉
(2.72)

which form the basis of this direct product space.

The operators for a multi-particle system are direct products, where the operator
of the kth subsystem occurs at the kth position in the direct product chain e.g.

Ŝ(k)
x = 1⊗1⊗· · ·⊗Ŝx⊗· · ·⊗1
Ŝ(k)
y = 1⊗1⊗· · ·⊗Ŝy⊗· · ·⊗1 (2.73)
Ŝ(k)
z = 1⊗1⊗· · ·⊗Ŝz⊗· · ·⊗1

where Ŝ(k)
{x,y,z} is the operator representing an x−,y−, or z− projection of spin on

the kth particle in the system of particles.

The Hamiltonians of two non-interacting uncorrelated subsystems must not al-
low the subsystems to affect each other, giving a composite Hamiltonian of two
subsystems as

Ĥ1,2 = Ĥ1⊗12 + 11⊗Ĥ2 (2.74)

where 1 is the identity operator.

In extending this description of spherical tensor operators to coupled particles,
Clebsch-Gordan coefficients can be used to couple two tensors of a given rank to
another rank [7]. The Clebsch-Gordan coefficients can be interpreted as a unitary
transformation from a linear combination of products of single particle operators
to two particle operators [73]. Two particle tensor operators, T̂ (12)

`m , from the single
particle operators T̂ (1)

`1m1
and T̂ (2)

`2m2
defined in this way are

T̂
(12)
`m =

∑

m1

C`1`2`m1m2m
T̂

(1)
`1m1

T̂
(2)
`2m−m1

(2.75)
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where C`1`2`m1m2m are Clebsch-Gordan coefficients. The two particle spherical tensor
operators of rank-2 are

T̂
(2)
2±2 = 1

2 L̂
2
± (2.76)

T̂
(2)
2±1 = ∓1

2
(
L̂zL̂± + L̂±L̂z

)
(2.77)

T̂
(2)
20 =

√
2
3
(
L̂2
z −

1
4
(
L̂+L̂− + L̂−L̂+

))
(2.78)

The full list of irreducible spherical tensor operators is given in §A Fig.A.3.

§ 2.4 The Spin Hamiltonian

Spin Hamiltonians are subject to three types of interactions, and can only have
three generic algebraic forms [73]:

Linear in the spin operators
−→ Interactions with the static magnetic field, B0, and the irradiated radi-
o/microwave frequency B1(t) field.

Bilinear in the spin operators
−→ Interactions between two spins.

Quadratic in the spin operators
−→ Indirect interactions e.g. with field gradient, interpreted as the interac-
tion of a spin and itself.

In generating the total Hamiltonian of a arbitrary spin system, it is useful to par-
tition the system into general parts corresponding to different physical processes

Ĥ = ĤZ + ĤNN + ĤNE + ĤEE + Ĥk (2.79)

Each of the split Hamiltonian parts represents the following interactions

ĤZ = Zeeman interactions
−→ Chemical shielding tensors and g-tensors.

ĤNN = Inter-Nuclear interactions
−→ J-couplings, quadrupolar interactions, dipolar interactions.
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ĤNE = Electron-Nuclear interactions
−→ Isotropic and anisotropic hyperfine couplings.

ĤEE = Inter-Electron interactions
−→ Exchange interaction, zero field splitting, dipolar interactions.

Ĥk = Microwave/Radiofrequency irradiation
−→ Irradiated pulses with amplitude and phase, or control pulses with as-
sociated amplitude coefficients.

In describing these interactions it is useful to introduce the notation for a vector
of spin operators, ~̂S, which contains the three Cartesian operators as elements,
ordered

(
Ŝx, Ŝy, Ŝz

)
.

§ 2.4.1 Zeeman Interactions

An applied external magnetic field, ~B induces an energy difference ∆E between
the quantised magnetic moment values, with the energy is given by

E = −~µ · ~B (2.80)

where ~B is the external magnetic field. For nucleons, this is the nuclear Zeeman
interaction, and for electrons, this is called the electron Zeeman interaction. Its
Hamiltonian is

ĤZ = ~̂S ·A· ~B =
(
Ŝx Ŝy Ŝz

)



axx axy axz

ayx ayy ayz

azx azy azz







Bx

By

Bz


 (2.81)

where the tensor A is the Zeeman interaction tensor. This is the coupling of the
spin dipole moment to the external magnetic field. Without any further interac-
tion, the Zeeman tensor reduces to the constant gµ

~ , where g is the g−factor and
µ is the nuclear magneton for nuclei and the Bohr magneton for electrons.

Chemical shielding tensor

The magnetic field also perturbs the electronic structure of the nucleus, with the
induced field δ ~B0. Using perturbation theory [209] gives the spin interaction from
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the contribution of δ ~B0 as

ĤCS = ~̂S ·δ · ~B =
(
Ŝx Ŝy Ŝz

)



δxx δxy δxz

δyx δyy δyz

δzx δzy δzz







Bx

By

Bz


 (2.82)

where δ is known as the chemical shielding tensor.

Electron g-tensor

A similar interaction to the perturbation from chemical shielding can be derived
for electrons. The energy operator for the electron dipole in an external magnetic
field is

ĤG = µB ~̂L·g · ~B =
(
L̂x L̂y L̂z

)



gxx gxy gxz

gyx gyy gyz

gzx gzy gzz







Bx

By

Bz


 (2.83)

where g is known as the g−tensor and the constant µB is the Bohr magneton.

§ 2.4.2 Inter-Nuclear Interactions

Inter-nuclear dipolar interactions

Treating nuclear spins as point magnetic dipoles, ~µ, the energy of the interaction
between two nuclear dipoles, ~µ1 and ~µ2 is

E = −~µ· ~B = −µ0

4π
3
(
~µ1 ·~r

)(
~r·~µ2

)
− r3

(
~µ1 ·~µ2

)

r5 (2.84)

where ~r is the vector that connects the dipoles, and the constant µ0 is the per-
meability of free space. Hamiltonian is for this interaction between two spins, ~̂S(1)

and ~̂S(2)

ĤDD = −µ0

4π
γ1γ2~
r5

(
3
(
~̂S(1) ·~r

)(
~r· ~̂S(2)

)
− r2

(
~̂S(1) · ~̂S(2)

))
(2.85)

where γ1 and γ2 are the magnetogyric ratios of the two spins.
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Spin-rotation coupling

Collections of particles have angular momentum, just as single particles do. A
magnetic induction is generated by a collection charges moving at velocity. Using
Eq.(2.81) and considering the motion of the nth charge with mass mn and angular
momentum operator ~̂Ln – the spin rotation coupling interaction is

ĤSR =
∑

k

γk ~B · ~̂Sk = −µ0

4π
∑

n,k

γkqn
mnr3

n

(
~̂Ln · ~̂Sk

)
(2.86)

where γk is the magnetogyric ratio of the kth nucleus and ~̂Sk are their spin operat-
ors. Evaluating the sum over the n moving charges, the spin-rotation Hamiltonian
is

ĤSR = −
∑

k

~̂L·Ak · ~̂Sk (2.87)

where Ak are spin-rotation coupling tensors.

Quadrupolar coupling

Nuclei with spin> spin−1/2 have non-spherical charge distribution, and the direc-
tion of this nuclear quadrupole moment is fixed, it interacts with the spin itself.

ĤQ = −eQ
2s(2s− 1)

~̂L·V · ~̂L = −eQ
2s(2s− 1)

(
L̂x L̂y L̂z

)



vxx vxy vxz

vyx vyy vyz

vzx vzy vzz







L̂x

L̂y

L̂z




(2.88)
where eQ is the quadrupole moment of the nucleus, s is the spin of the nucleus,
− eQ

2s(2s−1)V is the quadrupolar coupling tensor. Quadrupolar coupling only exists
for spin− 1 nuclei and higher.
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J-coupling

J-coupling is the scalar spin-spin coupling between two spins, after ignoring an-
isotropy, its Hamiltonian is

ĤJ =
(
L̂x L̂y L̂z

)



a 0 0
0 a 0
0 0 a







Ŝx

Ŝy

Ŝz




= a
(
L̂xŜx + L̂yŜy + L̂zŜz

)
= a

(
~̂L· ~̂S

)
(2.89)

where a is the scalar coupling strength.

§ 2.4.3 Microwave & Radiofrequency terms

These interactions are the most important to the area of optimal control – they
are the part of the Hamiltonian that can be directly controlled – all else is con-
sidered uncontrollable and is summed to a single drift Hamiltonian. Commonly
referred to as the time dependent B1(t) field, areas of magnetic resonance manip-
ulating nuclear spins use radiofrequency fields, and areas of magnetic resonance
manipulating electrons use microwave fields.

Optimal control, set out in §3, uses commonly control operators Ĥx and Ĥy with
their amplitude coefficients becoming the variables of an optimisation algorithm.
These amplitude coefficients relate directly to the pulse power in Hz, obtained
from pulse calibration on the instrument.

This interaction has the same form as the Zeeman interaction in Eq. (2.81)

Ĥ = −~̂Lk ·γk · ~Brf (t) (2.90)

It is normal to polarise the radiofrequency field, of frequency ω, with a phase
ϕ [73]:

~Brf = 2B1 cos
(
ωt
(
~ex cosϕ+~ey sinϕ

))
(2.91)

where ~ex and ~ey are the orthogonal unit vectors in the x and y directions. The
above equation can be decomposed into two counter-rotating components (one of
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which can be neglected with a high B0 field), giving the Hamiltonian as [73]{I}

Ĥk = −B1

1
2K∑

k=1
γk

(
L̂(k)
x cos

(
ωt+ ϕ

)
+ L̂(k)

y sin
(
ωt+ ϕ

))
(2.92)

and in the time-independent rotating frame, applying a rotation transform, gives:

Ĥ(k)
x = −B1γkL̂

(k)
x cosϕ (2.93)

Ĥ(k)
y = −B1γkL̂

(k)
y sinϕ (2.94)

{I}The factor in the sum of 1
2K will become apparent when discussing optimal control in detail,

but it is common to sum to the total number of control operators, usually 2× the number of
spins – it is kept here for consistency.





§ 3

Optimal Control Theory

“You know what charm is: a way of getting the answer yes without having
asked any clear question.”

– Albert Camus, The Fall

The focus of this thesis is advancing optimal control methods, specifically the
grape method [154]. Before this thesis progresses to present a novel optimal
control method in §4 and advances in efficiency of calculation within this method
in §5, the current chapter will present the theory of optimal control in the context
of the grape method.

The state of a magnetic resonance system can be controlled using a set of elec-
tromagnetic pulses, discrete or continuous in time. Design of these pulses may
prove difficult for control of complicated systems; numerical optimisation methods
can be used to find a maximum overlap between the desired state and the state
produced by the set of pulses, with the pulse schedule being the parameter of the
objective function in the optimisation problem.

The art of running an experiment to a given accuracy with minimal expenditure
of time and resources is known as optimal control theory. A simple interpretation
of optimal control theory is the application of numerical optimisation [17, 23, 79,
96, 229] to control theory [45, 92, 191, 246, 298]. This chapter will be divided into
two sections, firstly outlining gradient based numerical optimisation with Newton-
type methods, and secondly building a derivation of the optimal control method
grape.
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§ 3.1 Numerical optimisation

Continuing from §1 and the example of Newton’s root finding method adapted
to find the roots of an analytical gradient in Fig. 1.1, this section will formally
extend that idea to build a family of generalised optimisation algorithms called
Newton-type methods. An optimisation problem can be written as

min
c

{
J(c)

}
, c ∈ Rn (3.1)

finding a local minimum, and a transformation of the above problem can find a
local maximum:

−min
c

{
− J(c)

}
= max

c

{
J(c)

}
, c ∈ Rn (3.2)

The function J(c) is a scalar function of n variables called the objective function.
The maximisation problem of Eq. (3.2) was recast in the form of a minimisation
problem with a simple transform, and it seems sensible to consider only minim-
isation problems for the remainder of this section.

In this work an objective function should be a smooth function – one which is
continuously differentiate – that can be represented by a convergent power series
of terms calculated from the derivatives in the vicinity of a point i.e. a local
approximation. For a function of one variable, this is

J(c+ h) = J(c) + h

1!∇J(c) + h2

2! ∇
2J(c) + · · · =

∞∑

r=0

hr

r! ∇
rJ(c) (3.3)

where h is a small displacement to the vector c, and ∇rJ(c) is the rth order
derivative of the function J(c). This series is known as the many variable Taylor
series [201,302].

The gradient vector, ∇J(c), and the Hessian matrix, ∇2J(c), are introduced here.
These two definitions will be used extensively throughout the remainder of this
thesis and further explanation of their notation is required: ∇ is the gradient
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operator defined by

∇ ,
∣∣∣∇
〉
,




∂
∂c1
∂
∂c2...
∂
∂cn




c ∈ Rn (3.4)

which can be used to construct a Hessian operator ∇2:

∇2 ,
∣∣∣∇
〉〈
∇
∣∣∣ =




∂
∂c1

∂
∂c1

∂
∂c1

∂
∂c2

· · · ∂
∂c1

∂
∂cn

∂
∂c2

∂
∂c1

∂
∂c2

∂
∂c2

· · · ∂
∂c2

∂
∂cn... ... . . . ...

∂
∂cn

∂
∂c1

∂
∂cn

∂
∂c2
· · · ∂

∂cn

∂
∂cn




=




∂2

∂c2
1

∂2

∂c1∂c2
· · · ∂2

∂c1∂cn

∂2

∂c2∂c1

∂2

∂c2
2
· · · ∂2

∂c2∂cn... ... . . . ...
∂2

∂cn∂c1

∂2

∂cn∂c2
· · · ∂2

∂c2
n




(3.5)

A point in a vector space is denoted by a bold symbol, representing the coordinates
of that point e.g. c, where the superscript in parentheses denotes the specific
iteration, , of the optimisation. A direction is a line in the vector space Rn,
denoted with Dirac bra-ket symbols e.g.

∣∣∣c
〉
. A point that minimises or maximises

a function will be denoted with an asterisk, c∗, and is called a minimiser or
maximiser respectively{I}.

In describing optimisation problems, it will be useful to introduce two descriptions
of the objective function as a specified point: the slope and curvature, which are
defined at a point, c, as

slope ,
〈
∇J(c)

∣∣∣c
〉

curvature ,
〈
c
∣∣∣∇2J(c)

∣∣∣c
〉

At the minimiser of a smooth function, two observations hold{II}:

1 at the minimiser, the slope is zero

2 at the minimiser, the curvature is non-negative in all directions

{I}It is important to point out that it is only practicable to find a local minimiser, c∗, which
may not be a global minimiser.
{II}for example, see Fig. 1.1 d
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a Minimum b Maximum c Saddle

Figure 3.1: Types of stationary points, where the gradient is equal to zeros.
a shows the minimiser of the function x2 + y2, b shows the maximiser of the
function −x2−y2, and c shows the saddle point of the function x2−y2. Each
plot has a single point where the gradient is equal to zero.

The two observations of a point being a minimiser lead to the necessary conditions
for a local solution to a minimisation problem [79]. The first, that the slope is
zero at a minimiser is equivalent to

〈
∇J(c∗)

∣∣∣c
〉

= 0

=⇒ lim
c→c∗

∥∥∥∥∇J(c∗)
∥∥∥∥
∞

= 0 (3.7)

and is called the first-order necessary condition for a minimiser, and can be inter-
preted as requiring the gradient to be zero at a local minimiser. Fig.3.1 illustrates
the three different types of stationary points satisfy the first-order necessary con-
dition. Notice, only Fig.3.1 a shows a minimiser, and Fig.3.1 c has a point of
zero gradient that is not a minimiser or a maximiser. Fig. 3.1 shows by example
that Eq. (3.7) alone is not enough to identify a local minimiser.

The observation concerning curvature of the objective function at the minimiser
is required to identify a minimum. This observation is equivalent to

lim
c→c∗

〈
c
∣∣∣∇2J(c∗)

∣∣∣c
〉
> 0, ∀c (3.8)

and is called the second-order necessary condition for a minimiser, and can be
interpreted as requiring a positive semi-definite{I} Hessian matrix in the vicinity
of a local minimiser. However, a semi-definite matrix will become a problem when
an inverse of the Hessian is required. Numerically, it is useful to reformulate this

{I}A positive semi-definite matrix has all eigenvalues λ > 0
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last condition as

lim
c→c∗

〈
c
∣∣∣∇2J(c∗)

∣∣∣c
〉
> 0, ∀c 6= 0 (3.9)

which requires the Hessian matrix to be positive definite{I} in the vicinity of a local
minimiser. Eq. (3.7) together with Eq. (3.9) set out the sufficient conditions for
a local minimiser, and can be checked numerically. Returning again to Fig.3.1, it
is clear that Fig.3.1 a has positive curvature in all direction around the vicinity
of the minimiser, Fig. 3.1 b has negative curvature around the maximiser, and
Fig. 3.1 c as a mixture of positive and negative curvature around the saddle
point. These sufficient conditions for an optimal solution will be used extensively
in §4, and will be elaborated there.

§ 3.1.1 The gradient ascent method

In searching for an optimum, the desired minimum or maximum of an objective
function, a general strategy must be developed to find new points giving better ob-
jective function values. Two popular strategies are the restricted step methods{II}

and the line search method. This chapter will be concerned with the line search
method, and §4 will be concerned with restricted step methods.

An example of a strategy to perform a line search at an iteration  is

1 find a search direction d

2 find a search length, ε, to minimise or maximise J(c + εd) with respect to
ε.

3 set the new iteration, c+1 = c + εd.

Step 2 is an idealised solution called an exact line search, and is conceptually
useful but not practicable in a finite number of operations. The subproblem of
finding ε will be outlined in §3.1.4, for now it is sufficient to use the concept of an
exact line search.

{I}A positive semi-definite matrix has all eigenvalues λ > 0
{II}also known as the trust region methods.
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Line search methods introduce the search direction d, at an iteration . One
choice of search direction is that of the gradient. For minimisation, the search
direction should be antiparallel to the gradient, and for maximisation the search
direction should be parallel to the gradient:

minimisation, d = −∇J(c) (3.10a)

maximisation, d = ∇J(c) (3.10b)

Together with an adequate line search method, these two methods are called the
gradient descent method for minimisation and the gradient ascent method for max-
imisation. The update to the objective variable using a scaled step length found
from a line search is

minimisation : c+1 = c − ε∇J(c) (3.11a)

maximisation : c+1 = c + ε∇J(c) (3.11b)

These methods can also be used when no derivative information is available, al-
though less effective, by using an estimate of the derivatives:

∇J(c) =
J(c(1 + h))− J(c)

h
+O(h) (3.12a)

∇J(c) =
J(c(1 + h))− J(c(1− h))

2h +O(h2) (3.12b)

where h =
√

eps is a small perturbation to c. These two approximations of the
gradient are called finite difference approximations, Eq. (3.12a) is the forward dif-
ferences approximation, and Eq. (3.12b) is the central differences approximation.
In a similar way, the second derivatives can be approximated with finite differences
of the first derivatives. In addition to their use when no derivative information is
available, these approximations are also useful in checking derivative calculations
when derivative information is available.

§ 3.1.2 Newton’s Method

Considering that the linear approximation of a function, such as gradient des-
cent/ascent methods, will fail to differentiate between an extremum and a station-
ary point, as in Fig. 3.1, more is required in the form of the sufficient conditions



Numerical optimisation 51

already set out in Eq.(3.9). A useful model in numerical optimisation is the quad-
ratic model of the function to be optimised. Although the optimisation methods
should work on many functions, not just quadratic functions, in deriving the meth-
ods for optimisation the quadratic model has proved fruitful. Desirable properties
of this model are [79]:

1 Quadratic functions are smooth, with a well defined minimum.

2 A continuously differentiable function is locally well approximated by a quad-
ratic function near a minimum.

3 More accurate than a linear approximation of a function, as in gradient
descent/ascent methods, and higher derivative orders will likely be small.

4 Can be made invariant under linear transformation of variables{I}.

The aim of using a quadratic model of a function is to find its extremum in a
single iteration by analytically solving the model of the function to find its single
stationary point shown in Fig.3.1. Given an initial starting point of c0, a quadratic
model of the objective function at an extremum is a truncated Taylor series:

J(c∗) , J(c0 + δ) ≈ J(c0) +
〈
∇J(c0)

∣∣∣δ
〉

+ 1
2
〈
δ
∣∣∣∇2J(c0)

∣∣∣δ
〉

(3.13)

This equation is solved to find the vector δ required to step from the initial point
c0 to the extremum c∗. The solution is found when the derivative of Eq. (3.13),
with respect to the step δ, is equal to zero{II}:

d
dδ

J(c0 + δ) =
〈
∇J(c0)

∣∣∣+
〈
δ
∣∣∣∇2J(c0) =

〈
0
∣∣∣

=⇒
∣∣∣∇J(c0)

〉
+ ∇2J(c0)

∣∣∣δ
〉

=
∣∣∣0
〉

(3.14)

This gives two solutions: either
∣∣∣δ
〉

=
∣∣∣0
〉
which means the starting point is an

extremum, c0 = c∗; or the non-trivial solution
∣∣∣δ
〉

= −
[
∇2J(c0)

]−1∣∣∣∇J(c0)
〉

(3.15)

{I}An inductive proof of this property is given for Newton-like methods is given in [79].
{II}Eq. (3.14) requires the Hessian matrix to be symmetric, ∇2 = (∇2)†
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Specifically, this model is true for the function in Fig. 3.1 a , which has one
minimum and the function must be minimised. To be able to find the maximum
in Fig. 3.1 b , a small modification must be made to Eq. (3.13). There are now
two conditions, one is a minimisation condition that J(c∗) 6 J(c0) and the other
is the maximisation condition that J(c∗) > J(c0):

minimisation : J(c∗)− J(c0) 6 0 (3.16a)

maximisation : J(c∗)− J(c0) > 0 (3.16b)

Using the Newton step found in Eq. (3.15), these conditions lead to the search
directions ∣∣∣dNewton

〉
= −

[
∇2J(c)

]−1∣∣∣∇J(c)
〉

(3.17)

where the direction of ascent/descent is accounted for by a positive/negative def-
inite Hessian matrix. If a linear model of the objective function is used, the Taylor
series truncates after the gradient term in Eq. (3.13) and the update formulae
would be described by Eqs. (3.10a), (3.10b), the gradient descent/ascent methods
using an exact line search. Following the modification of the exact line search, a
Newton method using a line search method would modify the update rule to

∣∣∣c+1

〉
=
∣∣∣c
〉
− ε

[
∇2J(c)

]−1∣∣∣∇J(c)
〉

(3.18)

where ε is calculated with an appropriate line search method in §3.1.4. The final
case of using a Newton method to find (or avoid) the stationary point in Fig. 3.1
c is an important one, but left to §4.

§ 3.1.3 Quasi-Newton Methods

Although Newton’s method has attractive quadratic convergence properties, it
has the obvious disadvantage of needing a quadratic number of Hessian element
calculations. Moreover, the formulae for the Hessian elements must be supplied.
The disadvantages associated with a Hessian calculation can be avoided by using
a popular class of quasi-Newton methods. These methods are similar to Newton’s
method, except the Hessian is approximated by a symmetric, positive definite
matrix, H which is updated at every iteration with information from gradient
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calculations.

minimisation :
∣∣∣dqn

〉
= −

[
H
]−1∣∣∣∇J(c)

〉
(3.19a)

maximisation :
∣∣∣dqn

〉
= +

[
H
]−1∣∣∣∇J(c)

〉
(3.19b)

A procedure to update the Hessian approximation follows

1 set the current search direction
∣∣∣d
〉

= ±
[
H

]−1∣∣∣∇J(c)
〉

2 perform a line search to find a step length, ε, giving
∣∣∣c+1

〉
=
∣∣∣c
〉

+ ε
∣∣∣d
〉

3 update the Hessian approximation, H, with an appropriate method to give
a new approximation H+1

Maximisation and minimisation are accounted for with ±: maximisation with
positive direction; minimisation with negative direction, allowing a strictly positive
definite Hessian matrix.

A useful property of this procedure is that the Hessian approximation can use any
gradient information obtained in the line search. Without better information, it
is normal to set the initial Hessian approximation equal to the identity matrix
H0 = 1. An advantage of quasi-Newton methods over other methods, including
the conjugate gradient method [124, 177], is that the quasi-Newton iteration does
not need to be restarted periodically [79].

After repeated updating, the matrix H should approximate the Hessian matrix
∇2J(c), and one method to achieve this is to use the difference of gradients from
iteration to iteration. For brevity, the change in objective variable and the change
in gradient will be denoted by

∆c ,
(
c+1 − c

)
(3.20a)

∆g ,
(
∇J(c+1)− ∇J(c)

)
(3.20b)

Using a truncated Taylor series of the gradient, with a quadratic model of the
objective, an equation for the change in gradient can be derived:

∣∣∣∇J(c + εd)
〉

=
∣∣∣∇J(c)

〉
+ ∇2J(c)

∣∣∣εd
〉

+ . . .

=⇒
∣∣∣∆g

〉
= ∇2J(c)

∣∣∣∆c
〉

(3.21)
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Since the Hessian approximation is calculated after a line search as the final stage
of an iteration, H+1 correctly relates the gradient change in Eq. (3.21), giving

∣∣∣∆g
〉

= H+1

∣∣∣∆c
〉

(3.22)

which is known as the secant equation [229]. It maps the symmetric, positive-
definite Hessian to the gradient, which is only possible if

[
xk+1 − xk

]T [∇fk+1 −∇fk
]
> 0 (3.23)

This is known as the curvature condition and is satisfied for convex function [229].

Alternatively, the matrix approximating the inverse to the Hessian can be updated,
reducing the computational load{I}.

minimisation : dqn = −
[
I
]∣∣∣∇J(c)

〉
(3.24a)

maximisation : dqn = +
[
I
]∣∣∣∇J(c)

〉
(3.24b)

A similar procedure as above updates the approximation to the inverse-Hessian,
I, except the search direction does not involve an inverse of a matrix:

∣∣∣d
〉

=
±
[
H

]−1∣∣∣∇J(c)
〉
. Similarly, the change in gradient is used to approximate the

inverse-Hessian with ∣∣∣∆c
〉

=
[
I+1

]∣∣∣∆g
〉

(3.25)

which is known as the quasi-Newton condition [79].

Rank-1 Hessian update

Initial attempts to find a method of updating the Hessian approximation that
ensures its symmetry and satisfies Eq. (3.22), resulted in a method called the
symmetric rank-1 or sr1 method [30, 47]. A rank-1 symmetric matrix can be
constructed from the outer product of a real vector with itself,

∣∣∣u
〉〈

u
∣∣∣, giving the

symmetric rank-1 update to the Hessian approximation

Hsr1
+1 = Hsr1

 + a
∣∣∣u
〉〈

u
∣∣∣ (3.26)

{I}The inverse of a matrix is regarded as an expensive matrix operation that can be ill-defined
[106]
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where a is an arbitrary constant and
∣∣∣u
〉
is a vector to be determined. Substituting

the last equation into the secant equation, Eq. (3.22), gives

∣∣∣∆g
〉

= Hsr1


∣∣∣∆c
〉

+ a
[〈

u
∣∣∣∆c

〉]∣∣∣u
〉

(3.27)

The vector
∣∣∣u
〉
must be proportional to

∣∣∣∆g
〉
−Hsr1



∣∣∣∆c
〉
, with proportionality

absorbed into the arbitrary constant a, giving

∣∣∣∆g
〉
−Hsr1



∣∣∣∆c
〉

= a

[〈
∆c

∣∣∣
(∣∣∣∆g

〉
−Hsr1



∣∣∣∆c
〉)](∣∣∣∆g

〉
−Hsr1



∣∣∣∆c
〉)

(3.28)

This is satisfied for a if [229]

a =
sign

[〈
∆c

∣∣∣
(∣∣∣∆g

〉
−Hsr1



∣∣∣∆c
〉)]

[〈
∆c

∣∣∣
(∣∣∣∆g

〉
−Hsr1



∣∣∣∆c
〉)] (3.29)

and gives the only symmetric rank-1 update, satisfying Eq. (3.22), to be

Hsr1
+1 = Hsr1

 +

∣∣∣∆g−Hsr1
 ∆c

〉〈
∆g−Hsr1

 ∆c
∣∣∣

〈
∆g

∣∣∣∆c
〉
−
〈

∆c
∣∣∣Hsr1



∣∣∣∆c
〉 (3.30)

A similar derivation can be made to find a symmetric rank-1 update that satisfies
Eq. (3.25), giving an update rule for the inverse-Hessian approximation. Altern-
atively, a useful formula to use Eq. (3.30) to find a corresponding update rule
for the inverse-Hessian approximation is the Sherman-Morrison-Woodbury for-
mula [106]{I}. Using the formula for a rank-1 update amounts to the interchanges
H ←→ I and ∆g←→ ∆c, giving{II}

Isr1
+1 = Isr1

 +

∣∣∣∆c− Isr1
 ∆g

〉〈
∆c− Isr1

 ∆g
∣∣∣

〈
∆c

∣∣∣∆g
〉
−
〈

∆g
∣∣∣Isr1


∣∣∣∆g
〉 (3.31)

Eqs. (3.30), (3.31) both ensure any update is a symmetric matrix, however, the
update is not guaranteed to be positive definite [79, 229]. This drawback may

{I}Sherman-Morrison-Woodbury formula: [106]
(
A + UVT

)−1 = A−1 −A−1U
(
1+ VT A−1U

)−1VT A−1

with A ∈ Rn×n and both U,V ∈ Rn×k for 1 6 k 6 n. This shows a rank-k update to a matrix
gives a rank-k update to its inverse.
{II}This is a property of a self-dual formula.
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be alleviated by forcing a positive definite matrix with a method described in §4.
However, there is a second problem with Eqs.(3.30), (3.31), that the denominator
may vanish.

Rank-2 Hessian update

In an attempt to avoid the problems of using Eqs. (3.30), (3.31), a more flexible
Hessian update formula can be constructed be replacing the rank-1 update of
Eq. (3.26) with a rank-2 update

Hdfp
+1 = Hdfp

 + a
∣∣∣u
〉〈

u
∣∣∣+ b

∣∣∣v
〉〈

v
∣∣∣ (3.32)

Using the secant equation, Eq. (3.22), and substituting into this rank-2 update
gives ∣∣∣∆g

〉
= Hdfp



∣∣∣∆c
〉

+ a
[〈

u
∣∣∣∆c

〉]∣∣∣u
〉

+ b
[〈

v
∣∣∣∆c

〉]∣∣∣v
〉

(3.33)

There was only one symmetric rank-1 solution to Eq. (3.22), there are a family
of symmetric rank-2 update formulae which will be summarised at the end of this
section in a single equation of one variable, Eqs. (3.39a), (3.39b), for a Hessian
approximation and an inverse-Hessian approximation.

To start a derivation of the general rank-2 formulae Eqs. (3.39a), (3.39b) a set of
non-unique solutions to Eq.(3.33) are trialled, while ensuring the solutions satisfy
the curvature condition of Eq. (3.23):

∣∣∣u
〉

= Hdfp


∣∣∣∆c
〉
and

∣∣∣v
〉

=
∣∣∣∆g

〉
, giving

the arbitrary constants [79]

a = 1〈
∆c

∣∣∣Hdfp


∣∣∣∆c
〉 b = −1〈

∆g
∣∣∣∆c

〉 (3.34)

This gives one of two special cases to a general formula to compute the approxim-
ation to the Hessian matrix is [229], which in itself can be used as a rank-2 update
approximating a Hessian:

Hdfp
+1 = Hdfp

 +

1+

〈
∆c

∣∣∣Hdfp


∣∣∣∆c
〉

〈
∆g

∣∣∣∆c
〉




∣∣∣∆g
〉〈

∆g
∣∣∣

〈
∆g

∣∣∣∆c
〉

−



∣∣∣∆g
〉〈

∆c
∣∣∣Hdfp

 + Hdfp


∣∣∣∆c
〉〈

∆g
∣∣∣

〈
∆g

∣∣∣∆c
〉


 (3.35)
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The formula is called the dfp updating formula{I} and was originally published in a
technical paper [46,48] and later presented using Eq.(3.32) by Fletcher and Powell
[80]. Again, using the Sherman-Morrison-Woodbury formula [106], the update in
Eq. (3.35) can be transformed to update an inverse-Hessian approximation:

Idfp
+1 = Idfp

 −



Idfp


∣∣∣∆g
〉〈

∆g
∣∣∣Idfp
〈

∆g
∣∣∣Idfp


∣∣∣∆g
〉


+

∣∣∣∆c
〉〈

∆c
∣∣∣

〈
∆g

∣∣∣∆c
〉 (3.36)

In comparison to the sr1 updates in Eqs. (3.30), (3.31), the dfp updates in
Eqs. (3.35), (3.36) ensure a positive definite update, which can be proved with a
Cholesky factorisation{II} of Idfp

 . There still exists a drawback with these update
methods, that they need an accurate line search [79], which can become compu-
tationally expensive when gradient calculations are needed for a line search (see
§3.1.4).

Although the sr1 formulae in Eqs.(3.30), (3.31) are self-dual, it is obvious that the
dfp formulae in Eqs.(3.35), (3.36) are not. An important formula, called the bfgs
formula [31, 32, 78, 100, 280]{III}, can be constructed by observing Hbfgs

+1 Ibfgs
+1 = 1

and finding the dual formula of Eq.(3.36) by interchanging H ←→ I and ∆g←→
∆c:

Hbfgs
+1 = Hbfgs

 −



Hbfgs


∣∣∣∆c
〉〈

∆c
∣∣∣Hbfgs

〈
∆c

∣∣∣Hbfgs


∣∣∣∆c
〉


+

∣∣∣∆g
〉〈

∆g
∣∣∣

〈
∆c

∣∣∣∆g
〉 (3.37)

A bfgs update for an approximation to the inverse-Hessian can be found by trans-
forming this last formula with the Sherman-Morrison-Woodbury formula [106]:

Ibfgs
+1 = Ibfgs

 +

1+

〈
∆g

∣∣∣Ibfgs


∣∣∣∆g
〉

〈
∆c

∣∣∣∆g
〉




∣∣∣∆c
〉〈

∆c
∣∣∣

〈
∆c

∣∣∣∆g
〉

−



∣∣∣∆c
〉〈

∆g
∣∣∣Ibfgs
 + Ibfgs



∣∣∣∆g
〉〈

∆c
∣∣∣

〈
∆c

∣∣∣∆g
〉


 (3.38)

The bfgs update formulae are widely accepted to perform better than the dfp
formulae [79, 96, 229], requiring a line search with comparatively fewer inner iter-
ations.

{I}The method is commonly named after the authors Davidon, Fletcher, and Powell. It also
known as the variable metric algorithm.
{II}if a matrix A is positive definite, there exists a factorisation A = LL† where L is a lower
triangular matrix with real, positive diagonal elements. This is called a Cholesky factorisation
[106]
{III}named after the authors Broyden, Fletcher, Goldfarb, and Shanno
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The dfp and bfgs are both special cases for the general Broyden family rank-2
formulae [30]:

Hφ
+1 =

(
1− φ

)
Hdfp
+1 + φHbfgs

+1 (3.39a)

Iφ+1 =
(
1− φ

)
Idfp
+1 + φIbfgs

+1 (3.39b)

with φ ∈ [0, 1].

In considering the benefit of calculating the inverse-Hessian approximation of
Eqs. (3.36), (3.38), that there is no need to find the inverse of a matrix expli-
citly, there is a drawback – as will be pointed out in §4, the inverse-Hessian ap-
proximations do not allow the implementation of trust region methods and other
conditioning methods.

Limited memory quasi-Newton methods

Large optimisation problems may require Hessian approximations which are not
sparse and cannot be computed at a reasonable cost. Rank-1 and rank-2 updates
only add further vector information to the to the Hessian approximation, and
the end use of the Hessian information is to calculate a vector search direction.
Limited memory quasi-Newton methods [228] make use of a store of the m most
recent vectors used to describe the Hessian approximation – saving storage space
if m < n, where n is the number of objective function variables. The following
review of this class of methods is from [229]. As the `-bfgs (limited-memory
bfgs) method [34, 194] is a popular limited-memory quasi-Newton method in
optimal control [86] (and more compactly derived), the following derivation will
follow this update to the inverse Hessian approximation. Before proceeding, it will
be useful to present Eq. (3.38) in a product form [228]:

Ibfgs
+1 = V†Ibfgs

 V +

∣∣∣∆c
〉〈

∆c
∣∣∣

〈
∆g

∣∣∣∆c
〉 , V =


1−

∣∣∣∆g
〉〈

∆c
∣∣∣

〈
∆g

∣∣∣∆c
〉


 (3.40)

Considering that quasi-Newton methods are updates to the Hessian, or inverse-
Hessian approximation from vectors describing the change in objective function,
∆c, and the change in its gradient ∆g – a Hessian approximation at an iteration
 can be recursively calculated from a store of these vectors and the initial Hessian
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approximation at  = −m i.e. m iterations before the current iteration .

Ibfgs
 =




−m∏

k=−1
V†k


Ibfgs

−m




−1∏

k=−m
Vk




+ 1〈
∆g−m

∣∣∣∆c−m
〉



−m+1∏

k=−1
V†k



∣∣∣∆c−m

〉〈
∆c−m

∣∣∣




−1∏

k=−m+1
Vk




+ 1〈
∆g−m+1

∣∣∣∆c−m+1

〉



−m+2∏

k=−1
V†k



∣∣∣∆c−m+1

〉〈
∆c−m+1

∣∣∣




−1∏

k=−m+2
Vk




+ · · ·+ 1〈
∆g−1

∣∣∣∆c−1

〉
∣∣∣∆c−1

〉〈
∆c−1

∣∣∣ (3.41)

where the ordered products of Vk and its transpose V†k form ordered products.
This formula lends itself to a recursive algorithm to calculate the inverse-Hessian
approximation given a store of objective and gradient vectors. However, the
inverse-Hessian approximation Ibfgs

−m must still be stored, defeating the point of
the algorithm. The proposition of the limited-memory methods is to use a scaling
matrix I0, computed at each update [228]:

I0
 = 1

〈
∆c−1

∣∣∣∆g−1

〉

〈
∆g−1

∣∣∣∆g−1

〉 (3.42)

Further to a recursive algorithm to update the inverse-Hessian approximation, a
short-cut can be taken to update the search directional of Eqs. (3.19a), (3.19b)
directly. A popular `-bfgs method factors in the gradient to a two-loop recurs-
ive algorithm [194, 228] to give the search direction{I}. It should be noted that
the `-bfgs method is expected to perform badly when applied to ill-conditioned
problems, where the Hessian proper has a wide range of eigenvalues [229] and the
scaling matrix fails to be effective. This will be investigated in the context of
optimal control in §4.

To derive similar recursive update algorithms for other quasi-Newton methods is
not so neat because a similar product form of Eq. (3.40) has not been derived for
other Broyden class methods [229]. However, an “outer product” representation of
quasi-Newton methods is useful in deriving other limited-memory algorithms and
shows a compact form for general quasi-Newton methods. For the `-bfgs Hessian
approximation of Eq. (3.37), and using the diagonal scaling matrix H0 =

[
I0

]−1
,

{I}The `-bfgs two-loop recursive algorithm is the implementation in Spinach, and the one used
in all `-bfgs optimisations of this thesis
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this compact notation is [34]:

Hbfgs
 = H0 −

[
H0∆C ∆G

]

H0

〈
∆C

∣∣∣∆C
〉

L

L† −K



−1 
H0∆C†

∆G†


 (3.43)

where the stores of ∆c and ∆g are n×m matrices defined by

∆C ,
[
∆c−m ∆c−m+1 · · · ∆c−1

]
(3.44a)

∆G ,
[
∆g−m ∆g−m+1 · · · ∆g−1

]
(3.44b)

L is an m×m matrix defined by

(
L

)

p,q
,





〈
∆c−m−1+p

∣∣∣∆g−m−1+q

〉

0
p > q

p 6 q
(3.45)

and K is a diagonal m×m matrix defined by

K ,




〈
∆c−m

∣∣∣∆g−m
〉

0 · · · 0
0

〈
∆c−m+1

∣∣∣∆g−m+1

〉
· · · 0

... ... . . . ...
0 0 · · ·

〈
∆c−1

∣∣∣∆g−1

〉




(3.46)

The central matrix in Eq. (3.43) is of small size, 2m × 2m, when compared to
the number of optimisation variables, n: their factorisation requires negligible
amount of computation [229]. This `-bfgs method is an update to the Hessian
approximation, and so allows the implementation of Hessian conditioning methods.

Using the definitions above, an `-sr1 algorithm can be derived as [34]:

Hsr1
 = H0+

[
∆G−H0∆C

][
K+L+L†−∆C† H0∆C

]−1[
∆G −H0∆C

]†
(3.47)

Further compact notations can be derived for all the Broyden class of quasi-Newton
methods, for inverse-Hessian and Hessian approximations, allowing design of their
limited-memory algorithms [34].



Numerical optimisation 61

§ 3.1.4 Line search subproblem

This section will present criteria for an acceptable point using the scalar quantity
called the step length, mentioned in Eqs. (3.11a), (3.11b), (3.18), (3.21), deciding
how far to move along the search direction.

The linear approximation to a function in §3.1.1, and the quadratic approximation
to a function in §§3.1.2, 3.1.3, usually need more than their derived search direction
to find an acceptable point. Although the gradient based methods will step in the
correct direction, without a step length, the methods could wildly misjudge a
predicted extremum. Algorithms to find an appropriate step length are called line
search methods or inexact line search. The update to an objective variable at the
next iteration is

c+1 = c + εd (3.48)

where the search direction is calculated with a method chosen from Eqs. (3.10a),
(3.10b), (3.17), (3.19a), (3.19b), (3.24a), (3.24b). The line search subproblem can
be defined as a minimisation{I} problem in itself:

min
ε>0

J(c + εd) (3.49)

The exact minimisation defined by Eq. (3.49) is not required, and may not find
this solution in a finite number of iterations, only an approximation of ε is required
to progress the optimisation procedure.

In deciding if the approximation is acceptable, a number of conditions should be
tested. The first of these conditions is trivial, J(c+1) < J(c), and should be
accounted for with calculation of a search direction giving a descent direction:

〈
d
∣∣∣∇J(c)

〉
< 0 (3.50)

However, this alone does not guarantee convergence. There must be sufficient de-
crease in the slope,

〈
∇J(c)

∣∣∣c
〉
, of the objective along the search direction. Assum-

ing that an iterative algorithm produces calculated step lengths, ε, the acceptable
{I}A maximisation problem follows a similar definition

max
ε>0

J(c + εd)

The rest of this section will follow a minimisation problem, but a maximisation problem is easily
accounted for.
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step length should satisfy

Armijo
condition:

J(c + εd) 6 J(c) + κ1ε
〈
∇J(c)

∣∣∣d
〉
, κ1 ∈ (0, 1) (3.51)

for a pre-defined constant, κ1. This condition is known as the sufficient decrease
condition or the Armijo condition [8], and the constant is chosen to be small,
usually κ1 ∼ 10−4.

The condition of Eq. (3.51) will be satisfied for small ε, and the line search al-
gorithm may make insufficient progress by underestimating an acceptable step
length. In addition to the condition in Eq. (3.51), a condition known as the
Goldstein condition [104], ensures that the step length is not underestimated:

Goldstein
condition:

J(c + εd) > J(c) + (1− κ1)ε
〈
∇J(c)

∣∣∣d
〉
, κ1 ∈ (0, 1/2) (3.52)

where the bounds of κ1 are now more narrow than in Eq. (3.51).

An alternative to Eq. (3.52) in avoiding underestimation of the step length is to
account for curvature. This requires the gradient to be calculated at each step
length calculation but should give a much better estimation of Eq. (3.49). The
curvature condition [333,334] requires ε to satisfy

Curvature
condition:

〈
∇J(c + εd)

∣∣∣d
〉
> κ2

〈
∇J(c)

∣∣∣d
〉
, κ2 ∈ (κ1, 1) (3.53)

This ensures that the slope found during step length iteration, εj, is greater than
the slope at ε = 1. The constant κ2 is usually chosen to be relatively large for
quasi-Newton and Newton methods [229], κ2 ' 0.9, but should be reduced for
gradient descent methods, κ2 ' 0.1. Eqs. (3.51), (3.53) are known as the Wolfe
conditions [333,334].

The sufficient decrease condition stipulates that the decrease in J(c) must be
proportional to the step length and directional derivative. We can extend the weak
curvature condition of Eq. (3.53) to ensure that the step length is in the region
of a local minimum, ensuring the derivative in Eq. (3.53) is not too positive, by
using a strong curvature condition [333,334]:

Strong Wolfe
condition:

∣∣∣∣
〈
∇J(c + εd)

∣∣∣d
〉∣∣∣∣ > κ2

∣∣∣∣
〈
∇J(c)

∣∣∣d
〉∣∣∣∣, κ2 ∈ (κ1, 1) (3.54)
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This equation, together with Eq. (3.51), are known collectively as the strong
Wolfe conditions. These conditions are particularly effective when used in a quasi-
Newton method from §3.1.3.

Backtracking line search

Perhaps the most simple line search method is to iteratively reduce the step length
by a predefined factor until Eq. (3.51) is satisfied. This algorithm is called the
backtracking line search, and is useful when gradient calculations are accurate but
expensive. The iterative reduction of ε follows

εj+1 = βεj while J(εjd) > κ1

〈
∇J(c)

∣∣∣d
〉

(3.55)

where β ∈ (0, 1), continuing until Eq. (3.51) is satisfied, when ε → εj.The initial
step length is chosen as the Newton step, ε0 = 1, for quasi-Newton and Newton
methods. The initial step length can be chosen to be larger for gradient methods
and sometimes quasi-Newton methods to avoid small steps at the initial iterations
of an optimisation, far from an extremum{I}.

Bracketing & sectioning line search

A bracketing and sectioning line search starts with bracketing phase which contains
an interval of acceptable points, [a, b]. Once the bracket is identified, a sectioning
phase follows dividing the bracket to give a sequence of brackets, [ai, bi], where
their length tends to zero [79].

Assuming gradients are available and they are cheap to calculate{II}, the brack-
eting and sectioning line search can use the Wolfe conditions in Eqs. (3.51),
(3.53), (3.54).

The initial step in the bracketing phase would be choosing an initial step length,
usually this is the Newton-step ε0 = 1 as in the backtracking line search. Assuming
a lower bound on an acceptable point, Jmin, and a line search is restricted to the

{I}A suggestion in [229] is to set ε0 = 1∥∥∇J(c)
∥∥

∞
{II}It will be outlined later in this chapter, in §3.2.5, that gradients needed in optimal control
used in this thesis are particularly cheap to calculate, following at little extra cost to calculating
the required objective function value.
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interval (0, µ] where

µ =
Jmin − J(c)
κ1∇J(c)

(3.56)

a general procedure starting from J(c + ε0d) at an iteration (the optimisation
iteration  does not change during a line search) , set out in [79] is

1 Set j = 1.

2 Calculate J(c+ εjd), where 0 < εj 6 µ.

3 If J(c+ εjd) 6 Jmin,
terminate with exit message Boundary Jmin has been reached.

4 If J(c + εjd) > J(c + d) + εj∇J(c) or J(c + εjd) > J(c + εj−1d) go to
step 4 .I, else go to step 5 .

I. Then ai → εj−1 and bi → εj,
Bracket located – case 1 (Wolfe conditions).
Continue to Sectioning phase.

5 Calculate ∇J(c+ εjd).

6 If
∣∣∣∇J(c+ εjd)

∣∣∣ 6 −κ2∇J(c), terminate.

7 If
∣∣∣∇J(c+ εjd)

∣∣∣ > 0, go to step 7 .I, else go to step 8 .

I. Then ai → εj and bi → εj−1,
Bracket located – case 2 (Wolfe conditions).
Continue to Sectioning phase.

8 If µ 6 2εj − εj−1, go to step 8 .I, else go to step 8 .II.

I. Then εj+1 → µ.

II. Else choose εj+1 ∈ {2εj − εj−1,min (µ, εj + τ1(εj − εj−1))}.
Continue to Interpolation phase

9 j = j + 1, return to step 2 .
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Once a bracket has been identified the sectioning phase can begin:

1 Set k = j.

2 Choose εk ∈ {ak + τ2(bk − ak), bk − τ3(bk − ak)}.
Continue to Interpolation phase

3 Calculate J(c+ εkd).

4 If J(c+εkd) > J(c+d)+κ1εk∇J(c) or J(c+εkd) > J(c+akd), go to
step 4 .I, else go to step 5 .

I. ak+1 → ak and bk+1 → εk, go to step 9 .

5 Calculate ∇J(c+ εkd).

6 If
∣∣∣∇J(c+ εkd)

∣∣∣ 6 −κ2∇J(c),
terminate with an acceptable step length.

7 ak+1 → εk, go to step 9 .

8 If bk − ak)∇J(c+ εkd) > 0, go to step 8 .I, else go to step 8 .II.

I. bk+1 → ak.

II. bk+1 → bk.

9 k = k + 1, return to step 2 .

The constants τ1 > 0 and 0 < τ2 < τ3 6 1/2 are set as the following in Spinach:
Bracketing expansion factor τ1 = 3; Left bracket contraction factor τ2 = 0.1; Right
bracket contraction factor τ3 = 0.5.

It is common to include an interpolation phase, steps 8 .II, 2 , particularly within
the sectioning phase, to find a point close to a local minimiser. Here, a quadratic
or cubic polynomial if fitted to data from the acceptable bracket{I}.

{I}The work in this thesis uses a cubic polynomial interpolation.
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a Gradient Descent b Symmetric rank-1 update

c BFGS rank-2 update d Newton-Raphson

Figure 3.2: Comparison of gradient based optimisation methods on the Rosen-
brock function [252], with a backtracking line-search method. The optimisation
algorithms terminate when f(x) < 5 × 10−2. a – gradient descent method,
taking 376 iterations with 5101 functional evaluations. b – symmetric rank-1
update, taking 33 iterations with 185 functional evaluations. c – bfgs rank-2
update, taking 29 iterations with 78 functional evaluations. d – Newton-
Raphson method, taking 16 iterations with 43 functional evaluations.

§ 3.1.5 Comparison of Newton-type methods

A common test for optimisation methods is on the Rosenbrock function (1−x)2 +
100(y−x2)2 [252]. The function has one minimum at (1, 1), but the difficulty in its
minimisation is that the valley is very flat. Although it is easy to find the valley,
once there, optimisation usually converges slowly to the point (1, 1).

Fig.3.2 compares the convergence of the gradient descent method of Eq. (3.11a),
the Newton-Raphson method of Eq. (3.18), and two quasi-Newton method of
symmetric rank-1 update, Eq. (3.31), and the bfgs rank-2 update in Eq. (3.38).

It is clear that the gradient descent method performs badly, even when using
an analytical gradient. The convergence trajectory is seen zig-zagging in small
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steps on either side of the valley. It is clear that the gradient used in this way
is quite ineffective. The Newton-Raphson method performs the best, with an
analytic Hessian to use local curvature information in finding the best route down
the valley. The quasi-Newton methods also perform quite well, starting from a
gradient descent iteration, then being able to approximate the curvature within
the valley to find the best route, although taking smaller steps compared to the
Newton-Raphson method. Comparing the two quasi-Newton methods, the rank-
1 and rank-2 updates both have a similar trajectory iteration count, however,
the rank-1 update puts a greater load on the line search algorithm – needing more
than twice the amount of gradient evaluations to get similar curvature information
compared to the rank-2 update.

§ 3.2 Gradient Ascent
Pulse Engineering

The task of taking a quantum system from one state to another to a specified
accuracy with minimal expenditure of time and energy, with the emphasis on the
word minimal, is increasingly important in physics and engineering [154,159,227,
311].

Optimal control can be thought of as an algorithm; there is a start and a stop. in
the language of physics; a dynamic system with a initial state,

∣∣∣ρ0

〉
, and a desired

destination state,
∣∣∣σ
〉
. A solution should be found with a minimum of effort, an

optimal amount of effort. In forming a problem for use in a numerical optimisation
algorithm, the first step is to create a system model. Within this model the
controllable parameters are exposed then fed into an optimisation algorithm.

§ 3.2.1 Bilinear systems

The Hamiltonian of a practical nmr quantum system can be split into two parts
[152]: that which is beyond the control of the instrument and a control part that
measurement instrumentation can vary within certain limits.

ˆ̂H(t) = ˆ̂H0 + i ˆ̂R+
K∑

k=1
ck(t) ˆ̂Hk (3.57)
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Figure 3.3: Digram of the piecewise-constant approximation, for 20 equal
time slices of length ∆t. Pulses are performed simultaneously in the x and y

directions of the transverse magnetisation plane.

ˆ̂H0 is the Hamiltonian describing the internal part of the system called the drift or
free Hamiltonian, and ˆ̂Hk are the K parts of the Hamiltonian that can be changed
externally, called the controls, and ck(t) are their time-dependent coefficients. In
the case of magnetic resonance the instrumentally controllable subsystem consists
of radio frequency/microwave control fields defined in §2.4.3. ˆ̂R is the relaxation
superoperator characterising dissipation from the system, and has been separated
from ˆ̂H0 for convenience [103,166,250].

Systems with equations of motion that are linear both in the drift and controls [2],
as in Eq.(3.57), are known as bilinear control systems [274,275,291,336] in classical
control theory. Optimal control of the bilinear system in Eq. (3.57) is the task of
finding the time-dependent control amplitudes ck(t) – controlling the system with
their corresponding controls ˆ̂Hk, while under the influence of the time-independent
drift ˆ̂H0

{I} – taking the system from a defined initial state,
∣∣∣ρ0

〉
, to a desired final

state,
∣∣∣σ
〉
, a time T later.
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§ 3.2.2 Piecewise constant approximation

The evolution of a quantum ensemble is governed by the Liouville-von Neumann
equation (Eq. (2.51)). Using a column-wise vector representation of the density
operator, ρ̂, the Liouville-von Neumann equation has the general solution from
Eq. (2.57). With the separated Hamiltonian formalism of Eq. (3.57), this gives

∣∣∣ρ(T )
〉

= exp(o)


− i

T∫

0

(
ˆ̂H0 + i ˆ̂R+

K∑

k=1
ck(t) ˆ̂Hk

)
dt


∣∣∣ρ0

〉
(3.58)

An approximation of the integral in Eq. (3.58) can be made by assuming that
ck(t) are piecewise-constant [43,154], depicted in Fig.3.3; slicing the problem into
discrete time intervals to obtain control sequences

ck(t) −→ ck ,
(
ck(t1) ck(t2) · · · ck(tN)

)
, t1 < t2 < · · · < tN (3.59)

where the individual elements ck(tn) = ck,n are treated as continuous parameters.
With this approximation, the evolution of the system from a state ρ(t0) to ρ(tN)
is

∣∣∣ρ(tN)
〉

=



N∏

n=1
exp

[
− i

(
ˆ̂H0 + i ˆ̂R+

K∑

k=1
ck,n

ˆ̂Hk

)
∆t
]

∣∣∣ρ(t0)

〉
(3.60)

where the product must be time-ordered and the time interval ∆t. Time intervals
considered in the remainder of this thesis will be the same for each time slice,
although this is for convenience and not a restriction of the piecewise constant
approximation.

Although the physical arrangement of the control vector c is as K rows of control
sequences vectors, the design of an optimisation algorithm is simpler with a single
vector representing the many variables of its scale objective function. For this
reason, the control vector is concatenated to column vector when used within the

{I}Relaxation will be neglected in many of the derivations in this thesis. For convenience, it
will be considered an uncontrollable damping term. Although this is only an approximation, the
control of open systems is beyond the scope of this thesis.
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optimiser:

c =




c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

... ... . . . ...
cK,1 cK,2 · · · cK,N



7−→




c1,1

c2,1

...
cK,1

c1,2

c2,2

...
cK,2

...

c1,N

c2,N

...
cK,N




(3.61)

Although the order (k, n) is used here, the ordering is arbitrary and could equally
be ordered (n, k) as long as the vectorisation of the control amplitudes is consistent
within the optimiser.

§ 3.2.3 The Pontryagin maximum principle

To investigate the gradient that would be needed for numerical optimisation, in
§3.1, a principle from optimal control theory needs to be imposed, called the
Pontryagin maximum principle [92, 246]. It follows from the classical Lagrangian
mechanics [174], which introduces a Lagrangian, L(t, ρ(t), ρ̇(t)), – a function that
characterises the dynamics a system. In this case, the Lagrangian L is defined by
the variables of time t, the state of the system ρ(t), and the equation of motion
of the state ρ̇(t). Lagrangian mechanics is the calculus of variations, and so too is
optimal control.

The Pontryagin maximum principle sets an optimal control problem in a similar
formulation, with the modification of replacing the equation of motion with the
system controls, giving the Lagrangian as L(t, ρ(t), ck(t)) and the equation of mo-
tion depends on the controls. In addition to its Lagrangian formulation, optimal
control is also the application of mathematical optimisation, and its solutions are
set out by the conditions of Pontryagin maximum principle.
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Physical limitations of the instrumentation and constraints on control variable
are part of the optimal control problem, and should be formulated within the
problem [298]. In the context of magnetic resonance, the optimal control problem
is set out as [77, 176,287]:

max
c(t)

(
L
)
, L

(
c(t)

)
, J

(
ρ(T )

)
+

T∫

0

K
(
t, ρ(t), c(t)

)
dt (3.62)

where the scalar function J
(
ρ(T )

)
is a terminal cost depending only on the

final state of the system at a time T , and the integral of the scalar function
K
(
t, ρ(t), c(t)

)
is a running cost which depends on the controls and the state of

the system during the time interval [0, T ]. The controls, c(t), affect the equation
of motion of the system – the Liouville-von Neumann equation of Eq. (2.56)

d
dt
∣∣∣ρ(t)

〉
= −i




T∫

0

ˆ̂H
(
c(t)

)
dt


∣∣∣ρ0

〉
(3.63)

where ˆ̂H(t) can be separated as a bilinear system in Eq. (3.57).

In analogy to Lagrange multipliers of Lagrangian mechanics [174] a variable called
the adjoint state (also known as the costate) is introduced to solve the optimal
control problem. Without exploring the dry depths of Lagrangian mechanics, the
adjoint state will be introduced by example.

The formal mathematical description of the adjoint states will follow, but it is
useful to show an interpretation of their physical significance with an example of
state-to-state transfer in Fig.3.4. The state of the system at each time slice forms
a state trajectory over a time interval [0, T ], containing information of the basis
state population at each time increment. If propagated from a defined initial state∣∣∣ρ0

〉
with Eq. (3.75), the control pulses form a unique trajectory of the system

under the influence of the drift.

Fig. 3.4 shows a projection of the state of the system at each time interval onto
a representation of magnetisation population local to each spin. The aim is to
transfer magnetisation from one spin to the other in a coupled two-spin system
with calculated control pulses. It is easy to see the population gradually transfers
from one spin to the other over the time interval [0, T ].

The state trajectory is the trajectory formed by propagating the system from a
defined initial state under the effect of control pulses. The adjoint state also forms a
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Figure 3.4: An example of two state vector trajectories, and the correspond-
ing adjoint state trajectories. The state vector propagates forward in time from
the initial condition, under the influence of drift and calculated controls. The
adjoint state propagates backwards in time from the desired state, under the
influence of the time-reversed drift and controls. This example shows polarisa-
tion transfer from a hydrogen spin to a coupled carbon spin (140 Hz). The two
trajectories show polarisation local to each of the spins. In this case, nearly
80% of the polarisation has been transferred with calculated control pulses (not
shown).

trajectory, propagated under the influence of the same drift and the same controls.
However, the adjoint state is a propagation backwards in time from the desired
final state of the system. The adjoint state trajectory is the control problem in
reverse.

When an optimal trajectory is found, the state trajectory should end at the desired
final state, and the adjoint state should start at the defined initial state of the
system. This can be seen in Fig. 3.4, where an optimal trajectory has not yet
been found; there is a population difference between the adjoint state trajectory
and the state trajectory at times t = 0 and at times t = T . The adjoint state∣∣∣χ(T )

〉
=
∣∣∣σ
〉
, and the state

∣∣∣ρ(0)
〉

=
∣∣∣ρ0

〉
form the boundary conditions for the

optimal control problem.

The Pontryagin maximum principle requires a number of conditions to be met
for an optimal trajectory to be found. Just as in the area of numerical op-
timisation of §3.1, necessary conditions of the first and second derivatives must
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be met (Eqs. (3.7), (3.8)), in this case applied to the function called a pseudo-
Hamiltonian{I} [77, 176], derived from Eq. (3.62) and the adjoint state [92, 246]:

Hp

(
ρ(t), c(t)

)
,
〈
χ(t)

∣∣∣− i



T∫

0

ˆ̂H
(
c(t)

)
dt


∣∣∣ρ(t)

〉
+K

(
ρ(t), c(t)

)
(3.64)

The first and second order optimality conditions of Eqs. (3.7), (3.8), now become

∂Hp
∂c(t) = 0 (3.65a)

∂2Hp
∂c(t)2 > 0 (3.65b)

in the vicinity of a maximum. The Pontryagin maximum principle [246] also
requires consideration of the relationship between the state trajectory and the
adjoint state trajectory. These give the further necessary conditions

d
dt
∣∣∣χ(t)

〉
= − ∂Hp

∂ |ρ(t)〉 (3.66a)

d
dt
∣∣∣ρ(t)

〉
= ∂Hp
∂ 〈χ(t)| (3.66b)

which formally sets out the conclusions made in discussion of Fig. 3.4 above: as
the state trajectory approaches as maximum, the state trajectory as a time t = T

should completely overlap with the desired target state, and that the adjoint state
at a time t = 0 should overlap completely with the initial state of the system.

The formulation of Eq. (3.62) admits three types of optimal control problem [45,
298]: The Lagrange problem has only a running cost; The Mayer problem has only
a terminal cost; The Bolza problem both the running cost and the terminal cost
are included. The Mayer problem, where the final state of the system forms the
optimisation problem, will be the main consideration of this thesis until §6, when
control amplitude penalties are included in a Bolza problem.

For an unconstrained optimal control problem K = 0 [77] and the optimal control
problem reduces to one of the Mayer problem. The terminal cost J in Eq. (3.62)
will be the focus of the next section on fidelity measures.

{I}The term pseudo-Hamiltonian is introduced to distinguish it from Hamiltonians of quantum
mechanics. The pseudo-Hamiltonian is a canonical system and therefore it is a Hamiltonian
function [92,298]
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§ 3.2.4 Fidelity measures

Optimal solutions can be found numerically, by optimising fidelity – the overlap
between the final state of the system and the desired destination state [99,154,202].
The optimum of the fidelity functional J (c) with respect to the control sequences
ck(t) in Eq. (3.57), subjected to experimental constraints of feasible amplitudes
and frequencies, is calculated with optimal control theory [191,246]. For Hermitian
states, the fidelity function is

J0 ,
〈
σ
∣∣∣ρ(T )

〉
J0 ∈ [−1,+1] (3.67)

where angular bracket denotes column-wise vectorization of the corresponding
density matrix,

∣∣∣ρ(T )
〉
is the final state,

∣∣∣σ
〉
is the desired destination state. Find-

ing the optimal value of this inner product, is that of finding its maximum.

Non-Hermitian states can be accounted for with two further definitions of the
fidelity functional, either by using only the real part of the overlap in Eq. (3.67)

J1 , Re
〈
σ
∣∣∣ρ(T )

〉
J1 ∈ [−1,+1] (3.68)

or by using the modulus square{I} of the overlap in Eq. (3.67)

J2 ,
∣∣∣∣
〈
σ
∣∣∣ρ(T )

〉∣∣∣∣
2

J2 ∈ [0,+1] (3.69)

The definition of J1 allows the optimisation to span a space from that parallel to,
orthogonal to, and anti-parallel to σ. The definition of J2 is phase insensitive. For
the fidelity to have this physical meaning, the initial state and the system,

∣∣∣ρ0

〉
,

and the desired target state,
∣∣∣σ
〉
, should be be normalised.

In addition to these state-to-state definitions of fidelity, similar measures can be
designed for multi-state mapping:

Jur = 1
qmax

Re
( qmax∑

q=1

〈
σq
∣∣∣ρq(T )

〉)
(3.70)

{I}The modulus square of a complex valued vector is
∣∣v
∣∣2 = vv∗, where ∗ denotes the complex

conjugate.
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where σk define the desired state propagated in time from corresponding initial
states ρk(0) respectively. When Eq. (3.70) is averaged over 3 state-to-state prob-
lems, together completely characterising a rotation of the state in Cartesian co-
ordinates, the optimal control problem becomes a universal rotation in 3D e.g.

∣∣∣ρ1(0)
〉

= +
∣∣∣Lz

〉
−→ −

∣∣∣Lx
〉

=
∣∣∣σ1

〉
∣∣∣ρ2(0)

〉
= +

∣∣∣Lx
〉
−→ −

∣∣∣Lz
〉

=
∣∣∣σ2

〉
∣∣∣ρ3(0)

〉
= +

∣∣∣Ly
〉
−→ −

∣∣∣Ly
〉

=
∣∣∣σ3

〉

These 3 state-to-state problems can restated with a fidelity definition to find an
effective propagator [154] or an effective Hamiltonian [310] over the time period
of, and subject to, the control sequence. A measure of the distance between two
matrices can be defined by the the desired propagation over the total time period
[0, T ].

The fidelity definition for this desired effective propagator is

J3 , Re
〈 ˆ̂UD

∣∣∣ ˆ̂P(T )
〉

J3 ∈ [−1,+1] (3.71)

where ˆ̂UD = exp
(
− i ˆ̂HDT

)
is the desired effective propagator for the effective

Hamiltonian ˆ̂HD. In analogy to Eq. (3.69), the modulus square of this overlap is

J4 ,
∣∣∣∣
〈 ˆ̂UD

∣∣∣ ˆ̂P(T )
〉∣∣∣∣

2
J4 ∈ [0,+1] (3.72)

In Eqs. (3.71), (3.72), the overlap of two propagators is defined by the Frobenius
inner product as the trace of the operator product:

〈 ˆ̂UD
∣∣∣ ˆ̂P(T )

〉
, Tr

( ˆ̂U †D ˆ̂P(T )
)

(3.73)

Although not used in this thesis, the definitions of fidelity in Eqs. (3.71), (3.72)
are reported to avoid local minima which Eq. (3.70) encounter [154,310].

§ 3.2.5 Fidelity gradient

To make use of Newton-type methods of §3.1, a gradient of the fidelity functional
with respect to the control amplitudes is required. The first step to achieve this
is to expand the fidelity definitions in Eqs. (3.67)–(3.69). As a function of control
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amplitudes, the fidelity definitions become

J0(cn) =
〈
σ
∣∣∣ ˆ̂PN ˆ̂PN−1 · · · ˆ̂P2

ˆ̂P1

∣∣∣ρ0

〉
(3.74a)

J1(cn) = Re
〈
σ
∣∣∣ ˆ̂PN ˆ̂PN−1 · · · ˆ̂P2

ˆ̂P1

∣∣∣ρ0

〉
(3.74b)

J2(cn) =
∣∣∣∣
〈
σ
∣∣∣ ˆ̂PN ˆ̂PN−1 · · · ˆ̂P2

ˆ̂P1

∣∣∣ρ0

〉∣∣∣∣
2

(3.74c)

where the time propagator of Eq. (2.53) is now piecewise constant

ˆ̂Pn(cn) = exp
[
− i

(
ˆ̂H0 + i ˆ̂R+

K∑

k=1
ck,n

ˆ̂Hk

)
∆t
]

(3.75)

where the definition of the propagator at each time slice, n, is dependent on the
K control amplitudes in the vector array

cn =




c1(tn)
c2(tn)

...
cK(tn)




(3.76)

Once the controllable part of the Hamiltonian becomes parametrised, the variation
δJ /δ ˆ̂Hk becomes a gradient ∇J (derived in §5.3.1) in the parameter space and
the process of maximising J becomes an instance of a non-linear optimisation
problem for a continuous function in §3.1.

Elements of the gradient are the derivative of the fidelity functional with respect
to the control amplitudes ck,n. The only dependence of the fidelity on the control
amplitudes is in the propagator at that time slice, ˆ̂Pn – calculation of the time
propagator derivatives will be set out in §5.3.1.

Once the K×N propagator derivatives are calculated, they can be used to give the
derivative of the fidelity functional with respect to the control amplitude. From
the previous section §3.2.3, the fidelity at a time slice is the overlap, the inner
product, of state of the system and its adjoint state at that time slice.

The state trajectory can be calculated from one forward-time propagation, and the
adjoint trajectory from one backward-time propagation. The forward propagation
from ρ0 to ρn is ∣∣∣ρn

〉
= ˆ̂Pn · · · ˆ̂P2

ˆ̂P1

∣∣∣ρ0

〉
(3.77)
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and the backward propagation from σ to ρn+1 is
∣∣∣χn

〉
= ˆ̂P †n · · · ˆ̂P †N−1

ˆ̂P †N
∣∣∣σ
〉

(3.78)

Using Eqs. (3.62), (3.75), (3.77), (3.78) in the piecewise constant approximation
gives gradient elements of the fidelity functional, used for a gradient ascent method
[154] or a quasi-Newton method [86]:

∇J0(ck,n) = ∂J0

∂ck,n

=
〈
χn+1

∣∣∣∣
∂ ˆ̂Pn
∂ck,n

∣∣∣∣ρn−1

〉
(3.79a)

∇J1(ck,n) = ∂J1

∂ck,n

= Re
〈
χn+1

∣∣∣∣
∂ ˆ̂Pn
∂ck,n

∣∣∣∣ρn−1

〉
(3.79b)

∇J2(ck,n) = ∂J2

∂ck,n

= 2Re
〈
χn+1

∣∣∣∣
∂ ˆ̂Pn
∂ck,n

∣∣∣∣ρn−1

〉〈
ρn−1

∣∣∣∣σ
〉

(3.79c)

A particular strength of the grape method is that the gradient of the fidelity
functional has the same complexity as the fidelity functional [86, 94, 154, 287, 311]
and reduces to finding the derivative of a propagator at each time slice and for
each control. Calculation of these derivatives will be the focus of §5.

The elements of the gradient should be arranged as a vector of derivatives with
respect to control amplitudes, ck,n, for a control k) at a time steps n:

∇J (c) =




∇J (c1,1) ∇J (c1,2) · · · ∇J (c1,N)
∇J (c2,1) ∇J (c2,2) · · · ∇J (c2,N)

... ... . . . ...
∇J (cK,1) ∇J (cK,2) · · · ∇J (cK,N)



7−→




∇J (c1,1)
∇J (c2,1)

...
∇J (cK,1)
∇J (c1,2)
∇J (c2,2)

...
∇J (cK,2)

...

∇J (c1,N)
∇J (c2,N)

...
∇J (cK,N)




(3.80)
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and should be consistent with the arrangement of the control vector in Eq. (3.61).

During the forward-time propagation of the state ρ0 with the propagators in
Eq. (3.75), a trajectory of the system dynamics is produced. This can be stored
in an array of state vectors,

(
ρ0 ρ1 · · · ρN

)
, and used for trajectory analysis of

the controlled system dynamics [166].

§ 3.2.6 Algorithm

An effective optimisation should be preconditioned [229], which means that the
optimisation variables should not be too small or too large. For the grape method
this means that the control amplitudes should be normalised, requiring a nominal
power level to be separated from the control amplitudes

c→ pcc̃ (3.81)

where pc is a control power level

The grape algorithm can be summarised in the following way:

1 Define the system uncontrollable Hamiltonian ˆ̂H0, relaxation ˆ̂R, and control
operators ˆ̂Hk.

2 Set an initial state
∣∣∣ρ0

〉
, and target state

∣∣∣σ
〉
of the system.

3 Start with an initial guess{I} of control amplitudes, c̃. and nominal power
level pc with max |c̃| ≈ +1 and |min c̃| ≈ 0.

4 Call grape as the objective function and multiply the control amplitudes
by the nominal power level.

5 Propagate the system forward in time from
∣∣∣ρ0

〉
with the time propagators

in Eq. (3.75) and store the states at each time slice in Eq. (3.77)

6 Propagate the system backward in time from ρ0 with the complex conjugate
of the time propagators in Eq. (3.75) and store the states at each time slice
in Eq. (3.78)

{I}Can be a random guess
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7 Calculate gradient elements with Eq. (3.79b) and the stored states from
Eqs. (3.77), (3.78).

8 Multiply the gradient vector with pc and send back to the optimiser.

9 Update the control amplitudes with an update rule in Eq. (3.48).

10 Test termination conditions, and an optimal solution hasn’t been found,
return to step 4





§ 4

Hessian Calculations

“A man of genius makes no mistakes. His errors are volitional and are
the portals of discovery.”

– James Joyce, Ulysses

A method of optimal control, called grape, was reviewed in §3.2 with application
to magnetic resonance systems of quantum ensembles in §2. Applying rapidly con-
verging numerical optimisation methods of §3.1 to optimal control algorithms will
be the focus of this chapter. The Newton-Raphson version of grape (Newton-
grape) has the potential to achieve quadratic convergence, compared to the su-
perlinear convergence of state-of-the-art methods currently used in this area of
optimal control, as outlined in §1.

Scientific instruments used in many applications of quantum theory have reached
the limits of what is physically, legally or financially possible. Examples include
power deposition safeguards in mri instruments [49], sample heating thresholds
in biomolecular nmr spectroscopy [110] and the steep dependence of the cost of
superconducting magnets on the induction they generate [133]. Some limits, such
as the length of time a patient can be persuaded to stay inside an mri machine,
are psychological [260], but in practice no less real. In these time-constrained
situations faster convergence and greater code parallelisation, compared to other
quantum control algorithms in the grape family, have the prospect of giving
financial and medical benefits.

This chapter demonstrates that the Hessian of the grape fidelity functional is
unusually cheap, having the same asymptotic complexity scaling as the functional
itself. This leads to the possibility of using very efficient numerical optimisation
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a Diagonal b Off-diagonal
of block diagonal

c Block off-diagonal

Figure 4.1: Diagram of the block structure of the Hessian matrix (here, with
K = 4 and N = 5). a shows the diagonal proper, with

(
K × N) elements

calculated with Eqs. (4.5a)–(4.5c). b shows the off-diagonal elements within
the block diagonal, with

(
K(K−1)×N) elements calculated with Eqs. (4.6a)–

(4.6c). c shows the block off-diagonal elements of Eq.(4.4), with
(
K2×N(N−

1)
)
elements calculated with Eqs. (4.7a)–(4.7c).

techniques. In particular, the Newton-Raphson method with a regularised and
well-conditioned Hessian (§§4.2.1–4.2.3) is shown to require fewer system traject-
ory evaluations than any other algorithm in the grape family. The methods
presented in this chapter were published by Goodwin and Kuprov in [108] and are
implemented in Spinach v2.0 and later{I} and results are presented in §4.3.

§ 4.1 Fidelity Hessian

The Newton-Raphson method in §3.1.2 requires a Hessian matrix so that local
curvature information can be used to improve a search direction compared to a
gradient-based method. From Eq. (3.15), the Newton-step search direction of
an iteration  leads the update of the control amplitudes to maximise a fidelity
function

c(+1) = c() + ε
[
∇2J

(
c()

)]−1∣∣∣∣∇J
(
c()

)〉
(4.1)

where the step length is ε = 1 for a Newton-step, or with ε calculated with a line
search method, such as those in §3.1.4.

{I}Available at www.spindynamics.org.

www.spindynamics.org
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§ 4.1.1 Hessian structure

The fidelity Hessian with more than one control is a tensor, and should be ar-
ranged as a block matrix of N × N blocks of K × K matrices, consistent with
Eqs. (3.61), (3.80):

∇2J (c) ,




D2
1 D1,2 · · · D1,N

D2,1 D2
2 · · · D2,N

... ... . . . ...

DN,1 DN,2 · · · D2
N




(4.2)

where the matrices Dm,n are each of size K ×K. The block diagonals, depicted
in Fig. 4.1 a – b , are

D2
n ,




∂ 2J
∂c 2

1,n

∂ 2J
∂c1,n∂c2,n

· · · ∂ 2J
∂c1,n∂cK,n

∂ 2J
∂c2,n∂c1,n

∂ 2J
∂c 2

2,n

· · · ∂ 2J
∂c2,n∂cK,n

... ... . . . ...
∂ 2J

∂cK,n∂c1,n

∂ 2J
∂cK,n∂c2,n

· · · ∂ 2J
∂c 2

K,n




(4.3)

and the block off-diagonals depicted in Fig. 4.1 c are

Dm,n ,




∂ 2J
∂c1,m∂c1,n

∂ 2J
∂c1,m∂c2,n

· · · ∂ 2J
∂c1,m∂cK,n

∂ 2J
∂c2,m∂c1,n

∂ 2J
∂c2,m∂c2,n

· · · ∂ 2J
∂c2,m∂cK,n

... ... . . . ...
∂ 2J

∂cK,m∂c1,n

∂ 2J
∂cK,m∂c2,n

· · · ∂ 2J
∂cK,m∂cK,n




, n 6= m (4.4)

§ 4.1.2 Hessian elements

The second derivatives of the fidelity [5] have a similar form to the gradient ele-
ments in Eqs. (3.79a)–(3.79c), defined for the fidelity functional in Eqs. (3.67)–
(3.69). The second derivatives of the fidelity, with respect to a single time slice
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and a single control, are the diagonal elements of Hessian in Eq. (4.3), depicted
in Fig. 4.1 a , and their equations are:

∂ 2J0
∂c 2

k,n

=
〈
χn+1

∣∣∣∣
∂ 2 ˆ̂Pn
∂c 2

k,n

∣∣∣∣ρn−1

〉
(4.5a)

∂ 2J1
∂c 2

k,n

= Re
〈
χn+1

∣∣∣∣
∂ 2 ˆ̂Pn
∂c 2

k,n

∣∣∣∣ρn−1

〉
(4.5b)

∂ 2J2
∂c 2

k,n

= 2Re
〈
χn+1

∣∣∣∣
∂ 2 ˆ̂Pn
∂c 2

k,n

∣∣∣∣ρn−1

〉
(4.5c)

The off-diagonal elements of the block diagonal in Eq. (4.3), depicted in Fig. 4.1
b , are similarly defined:

∂ 2J0
∂ck,n∂cj,n

=
〈
χn+1

∣∣∣∣
∂ 2 ˆ̂Pn

∂ck,n∂cj,n

∣∣∣∣ρn−1

〉
(4.6a)

∂ 2J1
∂ck,n∂cj,n

= Re
〈
χn+1

∣∣∣∣
∂ 2 ˆ̂Pn

∂ck,n∂cj,n

∣∣∣∣ρn−1

〉
(4.6b)

∂ 2J2
∂ck,n∂cj,n

= 2Re
〈
χn+1

∣∣∣∣
∂ 2 ˆ̂Pn

∂ck,n∂cj,n

∣∣∣∣ρn−1

〉
(4.6c)

where j 6= k. The states
∣∣∣ρn−1

〉
and

∣∣∣χn+1

〉
are the forward and backward propag-

ated states respectively, from Eqs. (3.77), (3.78), and propagators are those in
Eq. (3.75).

The block off-diagonal elements in Eq. (4.4) have the useful relation in that they
require only first derivatives of the fidelity [5], which would have been calculated
previously in evaluating the fidelity gradient in Eqs. (3.79a)–(3.79c). The equa-
tions of the block off-diagonal Hessian elements in Eq. (4.4), depicted in Fig. 4.1
a , are

∂ 2J0
∂ck,n∂cj,m

=
〈
χn+1

∣∣∣∣
∂ ˆ̂Pn
∂ck,n

ˆ̂Pn−1 · · · ˆ̂Pm+1
∂ ˆ̂Pm
∂cj,m

∣∣∣∣ρm−1

〉
(4.7a)

∂ 2J1
∂ck,n∂cj,m

= Re
〈
χn+1

∣∣∣∣
∂ ˆ̂Pn
∂ck,n

ˆ̂Pn−1 · · · ˆ̂Pm+1
∂ ˆ̂Pm
∂cj,m

∣∣∣∣ρm−1

〉
(4.7b)

∂ 2J2
∂ck,n∂cj,m

= 2Re
〈
χn+1

∣∣∣∣
∂ ˆ̂Pn
∂ck,n

ˆ̂Pn−1 · · · ˆ̂Pm+1
∂ ˆ̂Pm
∂cj,m

∣∣∣∣ρm−1

〉
(4.7c)
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where n > m{I}.

Eqs. (4.5a)–(4.5c), (4.6a)–(4.6c), (4.7a)–(4.7c) show the Hessian has almost the
same numerical computational complexity scaling as the fidelity functional in
Eqs. (3.67)–(3.69) [5], just as the gradient does in Eqs. (3.79a)–(3.79c) [154].
This situation is highly unusual in non-linear optimization theory – Hessians are
normally so expensive that a significant body of work exists on the subject of
avoiding their calculation and recovering second derivative information in an ap-
proximate way from the gradient history [34,79,194,229]. The recent bfgs-grape
algorithm [86] is an example of such approach. The fact that the Hessian is rel-
atively cheap suggests Newton-Raphson type algorithms [79,229] with the control
sequence update rule of Eq. (4.1).

However, three logistical problems present themselves that must be solved before
the method becomes useful in practice:

1 Efficient calculation of second derivatives of the propagators in Eq. (3.75).
This problem will be considered in detail in §5.

2 Propagator derivative recycling between gradient elements in Eqs. (3.79a)–
(3.79c) and block off-diagonal Hessian elements in Eqs. (4.7a)–(4.7c), re-
quired for efficient scaling. Outlined in [107], the latency of the cache stor-
age device means that for small matrices it may be faster to recalculate the
function. A caching procedure becomes beneficial for larger matrices.

3 Regularisation and conditioning of the Hessian matrix in Eq. (4.1) is needed
to avoid the numerical difficulties associated with its inverse – a Hessian
matrix should be positive definite, from Eq. (3.9), and well-conditioned [79,
229]. This will be the main focus of the remainder of this chapter.

§ 4.1.3 Control operator commutativity

The full Hessian requires (K ×N) second-order propagator derivative evaluations
of Eqs. (4.5a)–(4.5c) and Fig. 4.1 a . It was pointed out that the block off-
diagonal second-order propagator derivatives of Eqs. (4.7a)–(4.7c) and Fig. 4.1

{I}If n < m then n and m are interchanged in Eqs. (4.7a)–(4.7c). If n = m + 1, there are no
propagators in between the two first-order propagator derivatives. If n = m + 2, there is one
propagator ˆ̂Pm+1 = ˆ̂Pn−1 in between the two first-order propagator derivatives.
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c are essentially free, having already been calculated with a gradient evaluation.
There is a further useful property of the Hessian matrix: that it should be real
and symmetric. Potentially, this can halve the number of calculations of the type
in Eqs. (4.6a)–(4.6c).

However, it is noted in [195, 211] that the additive law fails unless there is com-
mutativity:

etA etB = et(A+B), iff AB = BA (4.8)

=⇒ ∂ 2J
∂ck,n∂cj,n

= ∂ 2J
∂cj,n∂ck,n

, iff
[
Ĥk, Ĥj

]
= 0 (4.9)

The relation is only valid if the associated control operators commute with each
other. To ensure the Hessian matrix is symmetric{I} when condition of Eq. (4.9)
is not met, the following formula must be used

∇2J (cj,n, ck,n)

∇2J (ck,n, cj,n)





= 1
2


 ∂ 2J
∂ck,n∂cj,n

+ ∂ 2J
∂cj,n∂ck,n


, if

[
Ĥk, Ĥj

]
6= 0 (4.10)

which requires two second-order propagator derivative evaluations.

§ 4.2 Hessian Regularisation

Maximisation with Newton-Raphson and quasi-Newton methods relies on the ne-
cessary conditions for the truncated Taylor series approximation to be valid. This
was introduced using a local quadratic approximation of the objective function in
Eq. (3.13), restated here for the fidelity functional:

∆J = J
(
c(+1)

)
− J

(
c()

)
≈
〈
∇J

(
c()

)∣∣∣∣c
()
〉

+ 1
2

〈
c()

∣∣∣∣∇2J
(
c()

)∣∣∣∣c
()
〉

(4.11)

In addition to the gradient being zero in the vicinity of a stationary point c(∗),

lim
c→c(∗)

∥∥∥∥∇J
(
c(∗)

)∥∥∥∥
∞

= 0 (4.12)

{I}When a Hessian is not symmetric, its eigenvalues are not real.
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the second-order sufficient condition of Eq. (3.9) must also be true in the vicinity
of a stationary point:

lim
c→c(∗)

〈
c

∣∣∣∣∇2J
(
c(∗)

)∣∣∣∣c
〉
> 0, ∀c ∈ R(K·N) (4.13)

i.e. the Hessian must be positive definite near a stationary point c(∗). This is
evident from Eq. (4.1), in which a negative definite Hessian would result in a
step being performed down, rather than up, the corresponding gradient direction.
Furthermore, an indefinite Hessian is an indication of a saddle point, shown in
Fig. 3.1 c , which should be avoided during maximisation of the fidelity func-
tional. Forcing a Hessian to be a definite matrix ensures that steps are made that
avoid saddle points. Forcing a positive definite Hessian, as opposed to a negative
definite Hessian, ensures that a step is always made in the correct ascent/descent
direction.

A significant problem is that, far away from a stationary point, the Hessian is not
expected to be positive definite [85, 237–239, 251, 296]. Small Hessian eigenvalues
are also problematic because they result in overly long steps that can be detri-
mental because most fidelity functionals are not actually quadratic. A significant
amount of research has gone into modifying the Hessian in such a way as to avoid
these undesired behaviours [14–16,40,101,102,112,121,214,215,281].

§ 4.2.1 Cholesky factorisation

One fairly cheap way to work around an indefinite Hessian is to attempt Cholesky
factorisation [96], which exists for any invertible positive definite matrix [106]:

[
∇2J

]
= LLT (4.14)

⇒
[
∇2J

]−1
=
[
L−1

]T
L−1 (4.15)
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where L is a lower triangular matrix with positive diagonal elements and LT is
its transpose{I}. If a Cholesky factorisation finds solution, the Hessian is positive
definite. If a Cholesky factorisation fails, the Hessian is indefinite, and an identity
matrix may be used as a substitute for the Hessian, effectively reverting to a
gradient ascent step for any iterations that produce an indefinite Hessian [105].

The problem with this approach is that indefinite Hessians become more common
as the dimension of the problem increases, making the maximiser spend most of
the time in the gradient ascent mode and destroying any advantage of the second-
order method over simple gradient ascent – this technique is not recommended.

However, there is a further use of the Cholesky factorisation test for an indefinite
Hessian: an algorithm can be designed to iteratively test the Hessian, modifying
the Hessian at each stage. Using the Cholesky decomposition on a Hessian [96]
with a multiple of the unit matrix added [102,121,214,215]:

[
∇2J

]
+ σ1 = LLT, σ > 0 (4.16)

The choice of σ is made to produce a positive definite Hessian satisfying Eq.(4.13),
with the trial value

σ =





∥∥∥∥∇2J
∥∥∥∥

F
−min

[
∇2J

]

ii

∥∥∥∥∇2J
∥∥∥∥

F

min
[
∇2J

]

ii
< 0

min
[
∇2J

]

ii
> 0

(4.17)

chosen in that way because the Frobenius norm of the Hessian is an upper bound
on the largest absolute eigenvalue. The value of σ is increased iteratively until the
Cholesky decomposition succeeds [229] and the inverse Hessian may be obtained.

A benefits of this iterative Cholesky factorisation method are that an inverse Hes-
sian is automatically produced from Eq. (4.15), which is a simple task to compute
for invertible triangular matrices [106], and that the method avoids the expensive

{I}The argument of the Hessian has been dropped here, and for the rest of the chapter. It
should be assumed that within equations and definitions, the Hessian, gradient, and controls are
all of the same iteration, , unless stated otherwise:

∇2J
(
c())→ ∇2J

∇J
(
c())→ ∇J
c() → c
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operation of calculating an eigendecomposition, which is time-consuming for large
Hessian matrices.

§ 4.2.2 Trust Region Method

A more sophisticated workaround is to use the eigenvalue shifting method, also
called the trust region method, adapted from the Levenberg-Marquardt algorithm
[95,204]. Hessian eigenvalues may be computed explicitly [112]

[
∇2J

]
= QΛQ−1 (4.18)

where Λ is a diagonal matrix containing the eigenvalues of ∇2J and Q is the matrix
with columns of corresponding eigenvectors. A precise estimate can now be made
for the largest negative eigenvalue of the Hessian, and added to the diagonal matrix
of eigenvalues to reform the Hessian from this modified eigendecomposition:

[
∇2J

]

reg
= Q

(
Λ + σ1

)
Q−1, σ = max

(
0, δ − λmin

)
(4.19)

where λmin is the minimum eigenvalue of the Hessian, min(Λii). The arbitrary
positive value of δ is included to make the Hessian positive definite. The primary
problem with this method is that, for poorly conditioned or near-singular Hessian
matrices, the regularisation procedure destroys much of the curvature information
and the technique effectively becomes a combination of the Newton-Raphson and
gradient ascent methods. Formally, Eqs. (4.18), (4.19) do solve the step direction
problem, but practical testing indicates the convergence rate can fail to achieve
true quadratic convergence near a maximum.

§ 4.2.3 Rational Function Optimisation

A refined regularisation method, called rational function optimization [15,16,281],
does allow a modified Hessian to be a well-conditioned, positive definite matrix. It
replaces the truncated Taylor series in Eq. (4.11) with a [2/1] Padé approximant
[127,234], defined in §5.1.2, approximating as a rational function:

∆J =

〈
∇J

∣∣∣ c
〉

+ 1
2
〈
c
∣∣∣∇2J

∣∣∣ c
〉

1 +
〈
c
∣∣∣S
∣∣∣ c
〉 (4.20)
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This preserves the derivative information of Eq. (4.11), leaving the necessary con-
ditions unchanged, because the derivatives of

[
1 +

〈
c
∣∣∣S
∣∣∣c
〉]−1

give contributions
only through higher orders in c. The nature of the rational function means that
the asymptotes of ∆J and is gradients remain finite for c → ±∞, determined
by the Hessian and the symmetric scaling matrix S. The first-order necessary
condition for Eq. (4.12) gives the following eigenvalue equation:



[
∇2J

] ∣∣∣∇J
〉

〈
∇J

∣∣∣ 0




c
1


 = 2∆J


S 0

0 1




c
1


 (4.21)

Choosing a uniform scaling matrix S = α−2
1 [15], where 0 < α 6 1, reduces this

equation to 
α

2
[
∇2J

]
α
∣∣∣∇J

〉

α
〈
∇J

∣∣∣ 0




c/α
1


 = 2∆J


c/α
1


 (4.22)

Rational function optimisation proceeds in a similar way to eigenvalue shifting
methods described above, except the shifting is applied to the augmented Hessian
matrix. Defining the eigendecomposition of the augmented Hessian matrix as

[
∇2J

]aug
=

α

2
[
∇2J

]
α
∣∣∣∇J

〉

α
〈
∇J

∣∣∣ 0


 = QΛQ−1 (4.23)

a similar shifting formula to Eq. (4.19) can be used to ensure a positive definite
augmented Hessian matrix

[
∇2J

]aug

reg
= 1
α2 Q

(
Λ + σ1

)
Q−1, σ = max

(
0,−λmin

)
(4.24)

The top left corner block of the regularised augmented Hessian is then used for
the Newton-Raphson step [15,16,281] in Eq. (4.1).

§ 4.2.4 Hessian Conditioning

Motivated by the Wolfe conditions of Eqs. (3.51), (3.53), (3.54) [333,334], it may
be necessary to place restrictions on the search direction by excluding directions
near-orthogonal to the steepest ascent vector. This condition, called the angle
criterion, states that for any angle θ() between the search direction, ds, and the
gradient vector should be bounded away from orthogonality. Using the derivation
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set out by Fletcher [79], the critical angle is should be

θ() 6
π

2 − µ ∀ (4.25)

with µ > 0 and independent of , and the angle θ() is calculated as

cos
(
θ()

)
=

〈
∇J

(
c()

)∣∣∣∣c()
〉

∥∥∥∇J
(
c()

)∥∥∥
2
·
∥∥∥c()

∥∥∥
2

(4.26)

For Newton-type methods with a continuous gradient, using inexact line searches
of Eqs. (3.51), (3.53), (3.54), maximisation is bounded from above. This leads to
the conclusion that, as the change in fidelity tends to zero, ∆J → 0, then so does
the slope

〈
∇J

∣∣∣c
〉
→ 0. Two cases remain: either ∇J () → 0 or J () →∞ [79].

The condition number defined here as the ratio of its largest Hessian eigenvalue,
max(Λii), to the smallest Hessian eigenvalue, min(Λii):

ζ = λmax

λmin
(4.27)

The sufficient condition for ascent is that the Hessian is positive definite. This
gives a sufficient condition for the angle criterion of Eqs. (4.25), (4.26), requiring
the condition number of the Hessian matrix also to be bounded above. With the
inequalities

∥∥∥∇2J |∇J 〉
∥∥∥

2
6 λmax (4.28)

〈
∇J

∣∣∣∇2J
∣∣∣∇J

〉
> λmin

〈
∇J

∣∣∣∇J
〉

(4.29)

the sufficient condition for the angle criterion is

θ() 6
π

2 −
1
ζ() (4.30)

With this condition satisfied, the Armijo condition in Eq. (3.51) is also satisfied.
The methods that follow will ensure that the condition number of the Hessian
matrix is bounded so the above conditions are met.

The condition number of the Hessian should be bound; one way to achieve this
is to allow the scaling constant α in Eqs. (4.23), (4.24) to vary according to the
condition of the Hessian. The value of α is reduced until the condition number
becomes acceptable (nearer to α = 1, when the Hessian is well-conditioned), for
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example:

αr+1 = φαr while ζ >
1

3
√

eps
(4.31)

where eps is machine precision and α0 = 1. The cube-root of machine precision
reflects the allowable condition number for an acceptable cubic interpolation within
the sectioning phase of a line search in §3.1.4. The factor 0 < φ < 1 is used to
iteratively decrease the condition number of the Hessian – this is the method used
to condition the Hessian in the examples presented below. It should be noted that
a value φ > 1 may be used to increase the condition number of the Hessian when
it is very small and the inequality of Eq. (4.31) is reversed.

Quantum mechanics is rich in situations that produce very small values of Hessian
and gradient elements. Choosing α0 to be the value that would shift the smallest
eigenvalues to be above 1, giving a similar effect to choosing δ = 1 in Eq. (4.19),
accounts for optimisation problems that are inherently ill-conditioned in this way.
When the choice

α0 = 1√∣∣∣λmin
∣∣∣

(4.32)

is made, the augmented Hessian in Eqs. (4.23), (4.24) becomes

[
∇2J

]aug
=



1
λmin

[
∇2J

]
1√
λmin

∣∣∣∇J
〉

1√
λmin

〈
∇J

∣∣∣ 0


 = QΛQ−1 (4.33)

[
∇2J

]aug

reg
= λminQ

(
Λ + σ1

)
Q−1, σ = max

(
0,−λmin

)
(4.34)

Practical testing indicates that this combination of using initial scaling, then
accepting large condition numbers for the Hessian, allows the Newton-Raphson
method to avoid getting stuck at inflection points. The condition number would
grow to a large value around the inflection point and then shrink back when the
point has been avoided. Due to the tendency of the Hessian to increase condition
number as it approaches the maximiser, machine precision could eventually be-
come a limit to this type of conditioning. To avoid a slowdown at the final stages
of the optimisation, an upper bound is placed on the α parameter in Eq. (4.31) –
this guarantees that the terminal convergence is always quadratic.

In practice, at each optimisation step the function code attempts to compute the
Cholesky decomposition of Eq.(4.14). If that is successful then no regularisation is
needed, otherwise the function proceeds to regularise with the methods described
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above. Once the ascent direction and the initial step length are obtained from
Eq. (4.1) it is advantageous to perform a line search procedure.

§ 4.3 Convergence analysis

In comparing the performance of this Newton-Raphson optimal control, the fol-
lowing optimisation problems will be used{I}:

• State-to-state transfer over a scalar coupled hydrofluorocarbon fragment spin
system, as described in [108].

• State-to-state transfer in a quadrupolar 14N spin, transferring the population
between the T1,0 and T2,2 states of Eqs. (2.66), (2.76).

• Phase-modulated universal rotation pulses with a sine function amplitude
profile, and relaxation. The system is a chain of 101 non-interacting 13C
spins spread over 50 kHz.

For fair comparison, all optimisations are run a number of times from different
initial guesses{II}, allowing identification of the optimisation convergence charac-
teristics.

§ 4.3.1 Scalar coupled three-spin state-to-state
population transfer

This system consists of a hydrofluorocarbon fragment, as described in [108], with
spins 1H – 13C – 19F coupled in a linear chain, in a 9.4 tesla magnetic field. The
scalar coupling, J-coupling, is 140 Hz between 1H – 13C and −160 Hz between 13C
– 19F. Using Eq. (2.89), this gives the drift Hamiltonian of the system as

ˆ̂H0 = 280π
(
~̂L(H) · ~̂L(C)

)
− 320π

(
~̂L(C) · ~̂L(F)

)

= 280π
(
L̂(H)
z L̂(C)

z

)
− 320π

(
L̂(C)
z L̂(F)

z

)
(4.35)

to be used in Eq. (3.57).
{I}The templates for these optimal control simulations are included in Spinach–v2.0, down-

loadable from www.spindynamics.org
{II}Random numbers were seeded with rng(32) at the start of each convergence analysis, and
the same starting guesses were used for different methods of optimisation.

www.spindynamics.org
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a BFGS (Cholesky) b Newton (Cholesky)

c BFGS (trm) d Newton (trm)

e BFGS (rfo) f Newton (rfo)

Figure 4.2: Converged Hessian matrices, arranged N×K (opposite to Fig.4.1
to clearly see the time evolution of control channels, Ĥ(H)

x and Ĥ(H)
y , produced

by one of the random seeds in Figs. 4.6, 4.7. b Newton method almost give
a multiple of 1, a has structure – indicating an indefinite matrix from the
Newton method and a positive definite matrix from the Quasi-Newton method
(the bfgs method has a single iteration of the Cholesky regularisation).
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Figure 4.3: The six channel control pulse sequences producing the traject-
ories in Fig. 4.4. The pulses are a result of the Newton-grape optimisation,
which reached maximum fidelity, for a state-to-state transfer in a scalar coupled
hydrofluorocarbon fragment, transferring the population between the L̂(H)

z and
L̂

(F)
z states

The initial state is magnetisation population in the L̂(H)
z state in Liouville space,

and the desired target is the L̂(F)
z state, with both states normalised.

The total control pulse duration is 100 ms and the sequence is discretised to 50
equal time slices. The six control operators are ˆ̂H(H)

x , ˆ̂H(H)
y , ˆ̂H(C)

x , ˆ̂H(C)
y , ˆ̂H(F)

x ,
and ˆ̂H(F)

y . Each of the control power levels allowed is simulated with a nominal
power level of 10 kHz. The maximum fidelity achievable for this system is J1 = 1.
The results of one of these, fully converged, optimisations is depicted in Fig. 4.4,
showing the evolution of the correlation orders and polarisation at each spin over
the total pulse time. For completeness, the six control pulse sequences and are
shown in Fig. 4.3.

Three regularisation methods are compared for Newton-grape and bfgs-grape:

1 Comparison of the bfgs and inverse-bfgs method.
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Figure 4.4: Trajectories analysis for a state-to-state transfer, in a scalar
coupled hydrofluorocarbon fragment, transferring the population between the
L̂

(H)
z and L̂(F)

z states. a Local spin population. b Spin correlation order amp-
litude. The pulse sequence producing these trajectories has 6 control channels
and is shown in Fig. 4.3.

2 Newton-grape and bfgs-grape methods, using iterative Cholesky factor-
isation as a regularisation method. At least one iteration of the Cholesky
factorisation was forced for the bfgs method.

3 Newton-grape and bfgs-grape methods, using trm as a regularisation
method. The minimum eigenvalue of the Hessian is shifted with δ = 1 in
Eq. (4.19). At least one iteration of trm was forced for the bfgs method.

4 Newton-grape and bfgs-grape methods, using rfo as a regularisation
and conditioning method. The iterative conditioning bounds the Hessian to
ζ < 1 × 104 with φ = 0.9 in Eq. (4.31). At least one iteration of rfo was
forced for the bfgs method.

Newton-Raphson methods that need Hessian regularisation need a framework of
comparison to current leading [86] quasi-Newton methods. However, the `-bfgs
method does not store an explicit Hessian matrix, only calculating the resulting
search direction vector. For the use of testing regularisation methods, standard
bfgs methods will be used – which should give very similar convergence since the
`-bfgs and bfgs methods are both rank-2 updates [229].
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Figure 4.5: Comparison of bfgs updating the inverse Hessian, and bfgs
updating the Hessian approximation. Simulation was run multiple times, from
different initial guesses of control pulses. a Showing iterate count. b Showing
gradient calculation count.
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The dfp and bfgs methods perform a rank-2 update, commonly on the inverse
Hessian using Eqs. (3.36), (3.37), and with a defined positive definite inverse Hes-
sian approximation. However, regularisation methods of Eqs.(4.19), (4.23), (4.24)
may have other beneficial effects on the Hessian matrix; making the Hessian suf-
ficiently positive definite and well-conditioned. A fair comparison of regularised
Newton-Raphson methods should be with quasi-Newton methods which update
the Hessian proper with Eq.(3.37) with the same, forced, regularisation and condi-
tioning as the Newton-Raphson Hessian. Concentrating on the arguably superior
rank-2 update of the bfgs method, Fig.4.5 shows a comparison between the two
bfgs update formulas in Eqs. (3.37), (3.38).

The plots of Fig.4.5 clearly show there is no appreciable difference of performance
or computational cost in the bfgs Hessian update and the bfgs inverse-Hessian
update methods. This justifies the use of a bfgs Hessian update of Eq. (3.37) as
a benchmark of comparison using regularised and conditioned Hessian matrices.
Fig. 4.5 should be used as a benchmark for the current best grape method with
`-bfgs optimisation [86].

Correcting an indefinite Hessian with Cholesky factorisation

Initial testing of the Newton-Raphson method failed to proceed further than a
single iterate, failing to find a search direction based from an indefinite Hessian
matrix. Further to this, forcing a step along the direction of the Newton-step
shows the direction is not an ascent direction and an optimisation cannot proceed
based on violation of the Wolfe conditions.

An iterative Cholesky factorisation, of Eq. (4.14), can be used to correct the non-
ascent direction from an indefinite Hessian – forcing the positive definite property,
allowing a Newton-Raphson method to proceed. Results of this optimisation are
shown compared with the equivalent bfgs method, where at least one Cholesky
factorisation is forced, in Fig. 4.6. Both methods use a bracketing and sectioning
line search with cubic interpolation.

The convergence characteristics in Fig. 4.6 are not promising: linear convergence
at best. They show that an iterative Cholesky factorisation does allow the Newton-
Raphson method to proceed, finding an ascent direction, correcting an indefinite
Hessian. This also shows that regularisation is needed for the Newton-grape
method.
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Figure 4.6: Comparison of optimisation methods for state-to-state transfer
in a scalar coupled hydrofluorocarbon fragment, transferring the population
between the L̂(H)

z and L̂
(F)
z states (pulse and trajectory shown in Fig. 4.4):

Newton-grape and bfgs-grape methods are regularised with a Cholesky fac-
torisation (forced in the case of bfgs-grape). Both methods use a bracketing
and sectioning line search. a Comparing the iterations count. b Comparing
the gradient/Hessian calculation count.

However, the convergence for the Newton-Raphson method is not quadratic, re-
verting to the linear convergence of a gradient ascent method. Furthermore, there
is a heavy load on the line search, which is indicated by the large amount of
gradient calculations in Fig. 4.6 b .

Comparison of the Newton method to the bfgs method, both with a Cholesky
factorisation show that this method of regularisation quickly destroys any useful
information from the Hessian and the Hessian approximation – both methods ef-
fectively rely on the line search to make progress, with the second order information
only showing a vague ascent direction.

The iterative Cholesky factorisation reduces the Newton and bfgs methods to
a gradient ascent method, which is clearly not adequate for a Newton-Raphson
method in grape.

Although a Cholesky factorisation is not ideal for regularising a Hessian, it is a
cheap way to recognise an indefinite matrix. Within a finished Newton-Raphson
method product, the check of its positive definite property should be done with an
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attempted Cholesky factorisation: if it succeeds then no regularisation is required,
if not then the Newton-Raphson method should proceed to a more sophisticated
regularisation method.

Correcting an ill-conditioned Hessian with RFO & TRM

As indicated in §4.2.4, if the condition number of the Hessian is not bounded, a
search direction can get too close to the vector orthogonal to the gradient. One
method that can control the condition number is the trm of Eq. (4.19). Here, a
multiple of the identity matrix is added to the Hessian eigendecomposition, shifting
all eigenvalues to a defined level above zero. More specifically, making a shift to
λmin = 1 ensures that small eigenvalues do not inflate the condition number.

Results in Fig. 4.7 indicate, in addition to correcting for a non-ascent direction
and allowing a Newton-Raphson method to proceed, that a quadratic convergence
phase does occur in the vicinity of the maximiser. Comparison of a trm condi-
tioned bfgs method in Fig. 4.7 to that without trm in Fig. 4.5 show a slight
improvement in convergence, with 70% reduction in optimisation iterations and
a large saving in computational cost of 65% reduction in gradient calculations.
This indicates that a better search direction is produced with trm than without
it.

The conditioned Newton-Raphson method cannot be compared fairly with an
unconditioned Newton-Raphson method, and it must be inferred that trm has a
similar effect in finding a good search direction. When comparing the Newton-
trm with bfgs-trm in Fig. 4.7, the benefits of calculating an explicit Hessian
are evident, showing its expected quadratic convergence: Newton-trm approaches
its quadratic phase in about half the number of iterations and at about half the
calculation cost of bfgs-trm. However, there is a difference in the character of
the quadratic phase of the two methods, the Newton-Raphson method follows a
much steeper quadratic convergence, and the bfgs method follows a quadratic
convergence with a similar profile to that of bfgs without forced regularisation
and conditioning in Fig. 4.5.

The iteratively conditioned rfo method of Eqs. (4.33), (4.34) including scaling
of the Hessian with its corresponding gradient, is the final method compared in
Fig. 4.7. The Hessian condition number is bound below 104 (with φ = 0.9 in
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Figure 4.7: Comparison of optimisation methods for state-to-state transfer
in a scalar coupled hydrofluorocarbon fragment, transferring the population
between the L̂(H)

z and L̂
(F)
z states (pulse and trajectory shown in Fig. 4.4):

All methods use a bracketing and sectioning line search. a Comparing the
iterations count. b Comparing the gradient/Hessian calculation count.
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Figure 4.8: Hessian conditioning iterations for Newton-Raphson with rfo.
Showing how the number of conditioning iterations increases for both optim-
isation problems of Fig. 4.11 and Fig. 4.7; a as the optimisation iterations
increase, and b as the fidelity decreases.

Eq. (4.31)){I}. The need to increase the number of conditioning iterations as the
maximum is approached can clearly be seen in Fig.4.8, indicating that the Hessian
becomes more ill-conditioned the closer it gets to a maximum. The rfo methods
both outperform their trm counterparts in convergence and computational cost.
It should also be noted that the bfgs rfo has less computational cost compared
to the Newton-Raphson trm. This is because the self-scaling provided by the rfo
greatly reduces the strain on the line search algorithm. Essentially, rfo scales the
Hessian and gradient, which is usually performed within the line search giving a
smaller step size for a correspondingly large condition number of the Hessian.

The Newton-Raphson method with rfo regularisation and iterative conditioning
has 85% reduction in the computational cost of the current best bfgs method
in [86] (when comparing to Fig. 4.5), and has a predictable convergence (evident
from the small variance from the average convergence trajectories), with a reduc-
tion of 80% in optimisation iterations, compared to the bfgs method. Further

{I}Testing find a condition number bound of ζ < 104 particularly effective. The theoretical
bound of ζ < 3

√
eps ≈ 1.6 × 105 performs slightly worse in comparison, reaching quadratic

convergence a couple of iterations later than with ζ < 104.
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Figure 4.9: Step lengths for optimisations is Fig. 4.7, a as a function of
1− J1, and b as a function of iteration count.

information on the Hessian structure is depicted in Fig.4.2, indicating rfo regu-
larisation preserves more of the Hessian structure compared to other regularisation
methods.

Looking deeper into the line search, step lengths at each iterate show how the
Newton-Raphson method with rfo has the best convergence characteristics of
regularisation methods tested. Step lengths at each iterate for those simulations
in Fig.4.7 are shown in Fig.4.9. bfgs and inverse-bfgs methods without regular-
isation have the same spread of step-lengths at each iterate, just as they have the
same convergence characteristics in Fig. 4.5 (not shown here). The general trend
in all step length calculations of Fig. 4.9 is that they start small and converge to
ε = 1 near the maximiser.

Quadratic convergence is reached very quickly in 10 iterations for the Newton-
grape method with rfo. This is evident from Fig.4.9 b , where the step length
ε = 1 and remains there until a optimum is reached in (to the accuracy of eps){I}.

bfgs methods with regularisation have a similar shape in step length evolution
in Fig. 4.9 to bfgs method without regularisation. This improvement is seen
at the start of the step-length evolution, approximately the first ten iterations,

{I}The only time there is true quadratic convergence is when the step length has converged to
1 and remains 1 for the rest of the simulation. This is characteristic of the Newton-Raphson
method and is a good indication that Hessian calculations and regularisation calculations have
no errors - and the method is indeed a Newton-Raphson method proper.
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where step-lengths are larger than those of the bfgs methods without regularisa-
tion. The regularised bfgs methods then follow a similar shape to non-regularised
methods, having a similar rate of change per iterate. The conclusion here is that
regularisation does indeed improve the bfgs method, and this is through better
initial step lengths calculations.

It should be noted that when a Hessian calculation is made, there is no need for a
separate gradient calculation (see §5). The only gradient calculations needed for
the Newton-grape method are those during the line search, where no Hessian is
calculated. There is redundancy when the Newton-Raphson method reaches quad-
ratic convergence, when the step length is the Newton-step; a gradient calculation
must be made at the start of a line search to check that no line search is needed.
This accounts for the larger than expected calculation count in Fig.4.7 b . If this
redundancy can be removed, with a method that can switch the line search off
when it detects quadratic convergence – the gradient count for the Newton-grape
method with rfo would have between 10-20 fewer gradient calculations{I}.

§ 4.3.2 Quadrupolar spin state-to-state
population transfer

This system consists of a single spin− 1 14N in a 14.1 tesla magnetic field, with
coupling tensor of Eq. (2.88) in Hz

V = 2π




1 0 0
0 2 0
0 0 −3


 · 104 (4.36)

specifying the quadrupolar interaction, giving the drift Hamiltonian of the system
as

ˆ̂H0 = ~̂L·V · ~̂L (4.37)

to be used in Eq. (3.57).

The initial state is the irreducible spherical tensor operator T̂1,0 state of Eq.(2.66)
in Liouville space, and the desired target state is the T̂2,2 state of Eq. (2.76), with
both states normalised.

{I}There is no such switching method for the bfgs method because the Hessian update occurs
after the line search, whereas the Newton-Raphson method calculates a Hessian before a line
search.



Convergence analysis 105

0 25 50 75 100 125 150
0

π
2

π

3π
2

2π

time (µs)

P
ul

se
ph

as
e

(r
ad

ia
ns

)
a Pulse Sequence

0 25 50 75 100 125 150
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

time (µs)

C
oh

er
en

ce
am

pl
it

ud
es

b Coherence Orders

Phase on 14N Coherence order: 0 1 2

Figure 4.10: Results of a Newton-Raphson optimisation for a state-to-state
transfer in a quadrupolar 14N spin, transferring the population between the
T1,0 and T2,2 states (§A). The convergence characteristics for this optimisation
Fig. 4.11. a The phase modulated pulse sequence at the end of the optimisa-
tion. The amplitude profile is kept at a constant level of 4

√
2 × 104 Hz. b

Trajectory of the coherence order evolution during the control pulse sequence.

The total control pulse duration is 150 µs and the sequence is discretised to 100
equal time slices. Control operators are ˆ̂H(N)

x and ˆ̂H(N)
y operators, although the

optimisation variables are the pulse sequence phase. The transform for this is

cA =
√
c 2
x + c 2

y cϕ = atan2(cy, cx) (4.38)

During the optimisation, the control phase, cϕ is modified and the control amp-
litude, cA is kept at the constant level of

√
2 × 40 kHz.

The results of one of these, fully converged, optimisations is depicted in Fig.4.10,
showing the final phase modulated pulse sequence and the evolution of the co-
herence order over the total pulse time. The final fidelity reaches the maximum
bound of J1 = 1√

2 after 150 µs of pulsing.

Three optimisation methods were compared:

1 Newton-grape method using its Newton-step i.e. without a line search.
Hessian regularisation is performed with rfo, and iterative conditioning
bounds the Hessian to ζ < 1× 104 with φ = 0.9 in Eq. (4.31).
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Figure 4.11: Comparison of optimisation methods for state-to-state transfer
in a quadrupolar 14N spin, transferring the population between the T1,0 and T2,2
states (pulse and trajectory shown in Fig.4.10): Newton-grape method using
its Newton-step (i.e. without a line search); `-bfgs-grape using a bracketing
and sectioning line search; the gradient ascent method, also using a bracketing
and sectioning line search. a Comparing the iterations count. b Comparing
the gradient/Hessian calculation count.
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2 `-bfgs-grape using a bracketing and sectioning line search, with cubic in-
terpolation during the sectioning phase.

3 grape method (gradient ascent) using a bracketing and sectioning line
search, with cubic interpolation during the sectioning phase.

Fig. 4.11 compares the convergence of the three optimisation methods, plotting
1−
√

2 · J1 on a log scale to clearly see the convergence to the maximum fidelity
value of J1 = 1√

2 .

The Newton-grape performs well for this optimisation – without the need for
a line search, the method reaches quadratic convergence after a small number of
iterations and full quadratic convergence occurs in a small range of iterations,
15 − 20. Admittedly, this is an easy optimisation with only a single spin, and
the `-bfgs-grape method also performs well considering it only uses gradient
calculations. Furthermore, the `-bfgs-grape method rarely makes use of its
available line search, with its rank-2 update giving a Newton-like step length at
most iterations. The rank-2 update uses a gradient history to give its search
direction, and it should be expected that the algorithm gets better as it has a
longer history of gradients – after around 20 iterations in Fig. 4.11 a .

The benefit of using a Newton-step for the Newton-grape method, needing far
fewer gradient evaluations, becomes a small benefit considering that the `-bfgs-
grape method rarely uses the available line search. Furthermore, running the
same Newton optimisations with any line search method (not shown here) results
in the same – the method rarely uses a step length other than 1. The effect is to
double the number of gradient evaluations without any increase in the convergence
rate.

There are a few important uses of this test system. The first is that it shows the
calculated Hessian is the correct one, removing any doubt that it contains numer-
ical errors. The second is that it is a useful test to show how the condition number
inflates compared to the optimisation of the previous section §4.3.1. Fig. 4.8
compares the number of conditioning iterations to those of §4.3.1 – showing a
very different profile of how the condition number increases as the optimisation
progresses. The HCF system gradually increases its condition number, starting
from the first iteration, but the 14N system does not need any conditioning until
it reaches a certain fidelity, at which point the condition number increases expo-
nentially with the fidelity increase.
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Figure 4.12: Comparison of optimisation methods for a universal rotation
in 3D, on a 101 non-interacting spin− 1 13C spins, spread over 50 kHz. The
Hamiltonian includes relaxation with the T1/T2 approximation. Two methods
are compared: Newton-grape method using a bracketing and sectioning line
search; `-bfgs-grape using a bracketing and sectioning line search. a Com-
paring the iterations count. b Comparing the gradient/Hessian calculation
count.

§ 4.3.3 Universal rotation

This system consists of a 101 non-interacting spin− 1 13C spins, spread over
50 kHz, in a 14.1 tesla magnetic field. Relaxation is included in the form of
the T1/T2 approximation, keeping only the diagonal terms of the relaxation su-
peroperator. Longitudinal states, corresponding to ˆ̂Lz, relax with a rate of 10 Hz,
and the transverse states, corresponding to ˆ̂L±, relax at a rate of 20 Hz.

The initial and final states of the system are set as a universal rotation in 3D,
mentioned in §3.2.4:

∣∣∣ρ1(0)
〉

= +
∣∣∣Lz

〉
−→ −

∣∣∣Lx
〉

=
∣∣∣σ1

〉
∣∣∣ρ2(0)

〉
= +

∣∣∣Lx
〉
−→ −

∣∣∣Lz
〉

=
∣∣∣σ2

〉
∣∣∣ρ3(0)

〉
= +

∣∣∣Ly
〉
−→ −

∣∣∣Ly
〉

=
∣∣∣σ3

〉

The total control pulse duration is 5 ms and the sequence is discretised to 400
equal time slices. Control operators are ˆ̂H(C)

x and ˆ̂H(C)
y operators, although the
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optimisation variables are the pulse sequence phase in Eq. (4.38). During the
optimisation, the control phase, cϕ is modified and the control amplitude, cA is
kept constant as a shaped amplitude profile: 1/2(1 + sin(θ)), ∀ θ ∈ [0, π]. Pulses
are designed to be robust to B1 miscalibration by simulating over a range of
power levels between 3.75 kHz and 6.25 kHz. This is achieved by simulating
5 optimisations over the given range, then averaging their fidelity, gradient and
Hessian to be fed back to the optimisation algorithm.

As can be seen in Fig. 4.12, quadratic convergence is not reached. This may be
attributed to a solution not existing for this universal rotation, or that the Newton-
grape method may not perform well when finding robust solutions. Evidence
leans to the latter, where the `-bfgs-grape reaches a similar convergence after
an initial phase of fast convergence. Finding a solution robust over the given range,
in addition to finding a universal rotation pulse that works at each power level
in the range, seem too much for either algorithm to handle effectively. However,
the Newton-grape method did show a marginally quicker initial convergence,
although the number of gradient/Hessian calculations was similar. The tests on
this type of optimisation problem indicate further work is required to find a more
effective algorithm.





§ 5

Propagator Directional
Derivatives

“Learning does not make one learned: there are those who have knowledge
and those who have understanding. The first requires memory and the
second philosophy.”

– Alexandre Dumas, The Count of Monte Cristo

In a general context, magnetic resonance simulation frequently requires chained
exponential integrals of the form

t∫

0

dt1
t1∫

0

dt2 · · ·
tr−2∫

0

dtr−1

{
e(t−t1)A1 B1 e(t1−t2)A2 B2 · · ·Br−1 etrAr

}
(5.1)

where Ar and Br are square matrices. Examples include perturbative relaxation
theories [103, 164, 250], reaction yield expressions in radical pair dynamics [115,
140,306], average Hamiltonian theory [116], and pulsed field gradient propagators
in nuclear magnetic resonance [67]. Their common feature is the complexity of
evaluation: expensive matrix factorisations are usually required [1, 73,103].

The exponentiation of a matrix [172] is far from a trivial operation. The operation
was recognised as an important tool for solving differential equations [88] – optimal
control methods rely heavily on it. The literature review in §1 identified the
bottleneck in computation during the grape method as calculation of a matrix
exponential [10,86,111,278,311]. An outline of the grape method was presented
in §3, with the stages of forward/backward propagation Eqs.(3.75), (3.77), (3.78),
and calculation of propagator derivatives Eqs. (3.75), (3.79a)–(3.79c), requiring
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exponentiation of a matrix. The second-order derivatives of propagators used
to construct a Hessian matrix in §4 also require the exponentiation of a matrix
Eqs. (4.5a)–(4.5c), (4.6a)–(4.6c).

This chapter will introduce the matrix exponential in §5.1 and outline some of the
“nineteen dubious way to compute the exponential of a matrix” to compute this,
from the well cited work of Cleve Moler{I} and Charles Van Loan [211,212]. Much
of the work used in this chapter can be found in textbooks on computations of
matrix functions [106,127].

The derivatives required for grape are directional derivatives of the matrix ex-
ponential and these are defined in §§5.2.1, 5.3.2. With specific application to
optimal control [86,154,311], chained exponential integrals will be used to find to
analytic derivatives required by grape, with a novel technique presented §5.2.2
and algorithmic subtleties presented in §5.4 with a measure of how parallel the
algorithm is in §5.5.3 using propagator recycling in §5.5.

§ 5.1 The Matrix Exponential

The matrix exponential operation is not a trivial one [195] and approximations
must be used to numerically compute the matrix exponential within Matlab [3,
126]. Much of the material in this section is taken from derivations in [106, 127].
An indispensable resource, by Moler and van Loan [211,212] outlines an extensive
review, showing “nineteen dubious way to compute the exponential of a matrix”.

§ 5.1.1 Taylor series approximation

The Taylor series [302] has already been used to form the quadratic model used
as the basis of Newton-type methods of numerical optimisation in Eq. (3.3). The
Taylor series is also the first call in approximating the function of matrix, f(M),

{I}It is no coincidence that Cleve Moler was the inventor of Matlab and at the forefront of
research into numerical computation and matrix computations. He was also the doctoral advisor
of Charles Van Loan.
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and is obtained with the direct application of its scalar counterpart:

f(M) = f(z0) + ∇f(z0)
1!

(
M− z01

)
+ ∇

2f(z0)
2!

(
M− z01

)2
+ · · ·

=
∞∑

r=0

∇rf(z0)
r!

(
M− z01

)r
(5.2)

where ∇rf(z0) is the rth derivative of f at z0. More specifically, the MacLaurin
series [201], when z0 = 0 above, of the scalar exponential function translates
directly to the matrix exponential function of etM [172]:

etM = 1+ tM
1! + t2M2

2! + t3M3

3! + · · · =
∞∑

r=0

trMr

r! , M ∈ C(n×n) (5.3)

In computing the exponential of a matrix, the Taylor series above should be
summed to an appropriate number of terms, until adding another term with float-
ing point arithmetic does not alter the numbers stored in the computer. This
method is known to give bad results, even in the scalar case, when the series is
truncated too soon – when the approximation of what “does not alter the numbers”
is a large increment compared to eps [211]. The error bound on this truncation is
considered in more depth in [127,193,206].

The attraction of the Taylor series approximation, when truncated appropriately, is
that it only involves matrix multiplications. Furthermore, the computation of the
powers of a matrix Mr in Eq.(5.3) is made more efficient by expressing the matrix
power in a binary expansion [106] e.g. M13 requires 5 matrix multiplications:

M13 =
((

M2
)2
)2(

M2
)2

M

The Spinach [130] implementation of the matrix exponential uses a Taylor series
approximation with scaling and squaring (see §5.1.4 below), designed to preserve
sparsity, essential for large matrix dimensions – nmr systems are in the millions,
common in nmr [66]).

Spin Hamiltonians are guaranteed to be sparse in the Pauli basis [61,67,316] and
their exponential propagators are also sparse when ‖H∆t‖ < 1, if care is taken to
eliminate insignificant elements after each matrix multiplication in the scaled and
squared Taylor series procedure.
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§ 5.1.2 Padé approximation

A rational function approximation of a matrix is directly translated from that of
a scalar function to give

Rpq(M) =
[
Dpq(M)

]−1
Npq(M) (5.4)

where Npq and Dpq are polynomials in M of at most degree-p of Npq and q of Dpq.
The numerator polynomial is

Npq(M) =
p∑

k=0

(p+ q − k)!p!
(p+ q)!k!(p− k)!M

k (5.5)

and the denominator polynomial is

Dpq(M) =
q∑

k=0

(p+ q − k)!q!
(p+ q)!k!(q − k)!(−M)k (5.6)

When q = 0, the rational function approximation in Eq. (5.4) is the Taylor series
truncated to order-p.

If Rpq(M) ∈ R(p×q) and Dpq(0) = 1, the rational function approximation in
Eq. (5.4) is the [p/q] Padé approximant [234]. The exact expression for the Padé
approximation of the matrix exponential is [211,212]

etM = Rpq(tM) + (−1)q
(p+ q)!(tM)p+q+1

[
Dpq(tM)

]−1
1∫

0

up(1− u)q etM(1−u) du (5.7)

Diagonal approximants, where p = q, are more accurate than when p 6= q and are
preferred in practice because Rrr(M), with r = max(p, q), has the same computa-
tional cost as when p 6= q [127].

As it stands in Eq.(5.7), the Padé approximant is only a good approximation of the
matrix exponential near the origin, when ‖M‖ is small [106,211,212] (although the
Chebyshev rational approximation can perform well in some circumstance §5.1.3)
– requiring the scaling and squaring technique in §5.1.4 to overcome the problem.

It should be noted that calculation of the “perilous inverse” matrix
[
Dpq(M)

]−1
is

required, which can be an undesirable calculation [196].
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§ 5.1.3 Chebyshev rational approximation

If M is a Hermitian matrix, then approximating its exponential amounts to ap-
proximating the exponential function on the spectrum of eigenvalues of M [127].
The Chebyshev rational approximation{I}, like the Padé approximant of §5.1.2
above, is based on the rational function approximation of Eq. (5.4).

Cqq(M) =
[
Dqq(M)

]−1
Nqq(M) (5.8)

where only the diagonal approximants are considered. The polynomials, Dqq(M)
and Nqq(M), of order-q are those defined in Eqs. (5.5), (5.6). A minimiser for
‖Cqq(M)− eM ‖ can be found from coefficients determined in [38,42], where M is
Hermitian with negative eigenvalues. This is a useful method for sparse matrices.
Unlike the Padé approximation of the matrix exponential, which is only valid near
the origin, the Chebyshev rational approximation is valid for the whole negative
real axis (or the whole positive real axis for e−M).

A success of this approximation is, when considering eM∆t with a time step ∆t,
that the Chebyshev approximation allows much larger time steps compared to the
Padé approximant [91]. However, Chebyshev series diverge with non-Hermitian
matrices [219], where the error bounds for the scalar problem do not translate
to matrices [127] – the method is expected to fail when considering dissipative
dynamics.

§ 5.1.4 Scaling and squaring

The scaling and squaring technique [180,325] exploits the relationship

etM =
(

e tM
s

)s
, M ∈ C(n×n) (5.9)

This can be used to control the round-off errors associated with the Taylor and
Padé approximants: as t‖M‖ or the spread of eigenvalues increases [211,212]. The
choice of s to be the smallest power of 2 for which ‖M‖/s 6 1 [196,211]:

etM =
(

e
tM
2m

)2m

(5.10)

{I}The Chebyshev rational approximation is also known at the Best L∞ approximation, or the
minimax approximation [127].
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Further efficiencies and error tolerance have been developed, the Padé approxim-
ants with scaling and squaring is the method of matrix exponential used in both
Matlab and Mathematica [3, 126]. An attraction of its use with the Taylor series
is that only approximate scaling is required [132,219].

The next section §5.2 will use a block triangular form [235] of the matrix M, for
the calculation of directional derivatives:

M =

A B

0 D


 (5.11)

The method of Padé approximants with scaling and squaring shows weakness when
exponentiating block triangular matrices when ‖B‖ � max

(
‖A‖, ‖D‖

)
[127]: the

result is that the diagonal blocks are over-scaled [54,149].

§ 5.2 Directional derivatives

Derivatives of functions of matrices are called directional derivatives, or Gâteaux
derivatives. which are defined in [127] as

DB(f(A)) , lim
h→0

f(A + hB)− f(A)
h

= d
dh

∣∣∣∣∣
h=0
f(A + hB) (5.12)

This has a similar form to the finite difference equation in Eq. (3.12a) and the
Taylor series truncated to first order in Eq. (3.3), and should be considered the
formal definition of the derivative of the function of a matrix{I}. The interpretation
of DB(f(A)) is: the derivative of the function f at A in the direction B [127,218].

{I}A directional derivative has a stronger notion of differentiability when it is a Frechét deriv-
ative. This is true if ∃DB(f(A)) is a linear function of B and continuous in A [127]. Assuming
these qualifications are met, which is the case in this thesis, the terms directional derivative and
Frechét derivative are equivalent. The remainder of this thesis will use the more descriptive term
directional derivative.
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§ 5.2.1 Directional derivatives of the matrix
exponential

The directional derivative of the matrix exponential, etA, is then

DB(etA) = lim
h→0

et(A+hB)− etA
h

= d
dh

∣∣∣∣∣
h=0

et(A+hB) (5.13)

which can also be expanded as a Taylor series [127]:

DB(etA) = et(A+B)− etA

= t

1!B + t2

2!
(
AB + BA

)
+ t3

3!
(
A2B + ABA + BA2

)
+ · · · (5.14)

This relates to the power directional derivatives [218] by

DB(etA) =
∞∑

r=0

tr

r!
dr

dtrDB(etA)
∣∣∣∣∣
t=0

=
∞∑

r=1

tr

r!DB(eAr) (5.15)

which leads to the Magnus expansions [116,203].

An alternative, and more useful representation than Eqs. (5.13), (5.14) [218] is
the integral representation [74,144]:

DB(etA) =
t∫

0

e(t−s)AB esA ds (5.16)

This will become a useful representation in the following sections. It is useful to
note that rearranging this formula [218] leads to a commutator series [120,203]

DB(etA) =



t∫

0

esA B e−sA ds

 etA

=
{

B,
t∫

0

esA ds
}

etA =
{

B, etA−1
A

}
etA

=


∞∑

r=0

tr+1

(r + 1)!
{
B,Ar

}

 etA (5.17)
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where the notation for the commutator power series relates to the commutator by{
B,Ar

}
=
[{

B,Ar−1
}
,A
]
.

§ 5.2.2 Block triangular auxiliary matrix
exponential

A method for computing these chained exponential integrals was proposed by Van
Loan in 1978 [196]. While investigating the sensitivity of the matrix exponential
[195], he noted that the integrals in question are solutions to linear block matrix
differential equations and suggested that block matrix exponentials are used to
compute them. In the simplest case of a single integral [143], a block triangular
auxiliary matrix [235] is exponentiated:

M =

A B

0 A


 =⇒





eM =




eA
1∫
0
e(1−s)A B esA ds

0 eA




etM =




etA
t∫

0
e(t−s)A B esA ds

0 etA




(5.18a)

(5.18b)

where the above-diagonal block is easily identified as directional derivative in the
integral representation of Eq. (5.16) [74,144]. Now Eq. (5.18b) can be recast in a
form to show explicitly the first directional derivative of the matrix exponential:

M =

A B

0 A


 =⇒ etM =


etA DB(etA)

0 etA


 (5.19)

Further to Eq.(5.16), the rth directional derivative can be defined recursively [218]
by

Dr
B(etA) = r

t∫

0

eA(t−s) BDr−1
B (esA) ds (5.20)

It is useful to see the pattern when using larger block-bidiagonal, semi-circulant
auxiliary matrices. Higher order directional derivatives of the matrix exponen-
tial can be calculated by constructing and exponentiating sparse block-bidiagonal
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semi-circulant matrices [218]:

M =




A B 0 0 0
0 A B 0 0
0 0 A . . . 0
0 0 0 . . . B
0 0 0 0 A




=⇒ etM =




1
0!D

0
B

1
1!D

1
B

1
2!D

2
B · · · 1

r!D
r
B

0 1
0!D

0
B

1
1!D

1
B · · · 1

(r−1)!D
r−1
B

0 0 1
0!D

0
B

. . . ...
0 0 0 . . . 1

1!D
1
B

0 0 0 0 1
0!D

0
B




(5.21)

This is set out in a general way in [218], and for this specific case of the first
directional derivative in [81]; derivation of the latter and for that of the second
directional derivative is set out in the next section §5.3.

Van Loan’s method was subsequently refined by Carbonell et. al. [37], deriving a
convenient expression using the exponential of a block-bidiagonal semi-circulant
auxiliary matrix:

M =




A1 B1 0 0 0
0 A2 B2 0 0
0 0 A3

. . . 0
0 0 0 . . . Br−1

0 0 0 0 Ar




=⇒ eMt =




D11 D12 D13 · · · D1r

0 D22 D23 · · · D2r

0 0 D33
. . . ...

0 0 0 . . . Dr−1,r

0 0 0 0 Drr




(5.22)

The integrals in question populate the rows of the resulting block matrix, having
the chained integral form of Eq. (5.1), e.g.

D1r =
t∫

0

dt1
t1∫

0

dt2 · · ·
tr−2∫

0

dtr−1

{
e(t−t1)A1 B1 e(t1−t2)A2 B2 · · ·Br−1 etrAr

}
(5.23)
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§ 5.3 Directional derivatives
of the Propagator

Fidelity functional derivatives of optimal control [86, 311] are a form of chained
exponential integrals which have expensive matrix factorization in their evalu-
ation [1, 73, 103]. A solution to this problem is the observation that matrix
exponentiation does not require factorisations and preserves the spin operator
sparsity [130,166] and the use of an auxiliary matrix technique [37,81,196,218].

The grape method was shown in §§3, 4 to discretise time and solve Eq. (3.60)
using thin slice propagators. From the computational efficiency point of view,
the central problem is therefore the calculation of first derivatives of the fidelity
functional in Eqs. (3.79a)–(3.79c) and mixed second derivatives in Eqs. (4.7a)–
(4.7c), e.g.

∂J0

∂ ck,n

=
〈
χn+1

∣∣∣∣DHk

(
Pn
)∣∣∣∣ρn−1

〉
(5.24a)

∂ 2J0

∂ck,n∂cj,m

=
〈
χn+1

∣∣∣∣DHk

(
Pn
)
Pn−1 · · ·Pm+1DHj

(
Pm
)∣∣∣∣ρm−1

〉
(5.24b)

where time slice propagators (assuming a fixed time grid step ∆t) are defined in
Eq. (3.75) as

Pn = exp
[
− iHn∆t

]
= exp

[
− i

(
H0 +

K∑

k=1
ck,nHk

)
∆t
]

(5.25)

where the relaxation term is removed and the double-hat superoperator notation
is replaced by a matrix representation bold-font for notational brevity.

In addition to the first derivative of the propagators, the second derivatives are
required for the construction of the Hessian block diagonal. After separating the
cases where efficiencies can be made with communing control operators, discussed
in §4.1.3, the remaining calculations from Eqs. (4.5a)–(4.5c), (4.6a)–(4.6c) are

∂ 2J0
∂c 2

k,n

=
〈
χn+1

∣∣∣∣D
2
Hk

(
Pn
)∣∣∣∣ρn−1

〉
(5.26a)

∂ 2J0

∂ck,n∂cj,n

=
〈
χn+1

∣∣∣∣D
2
HkHj

(
Pn
)∣∣∣∣ρn−1

〉
(5.26b)
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The primary task therefore is to calculate first and second directional derivatives
of the slice propagators.

§ 5.3.1 First directional derivatives

The original derivation of the first propagator directional derivative from [154]
follows by considering a small perturbation to the control amplitude δck,n on the
control operator to derive the change in the propagator, δPn, then to form a
derivative from δPn/δck,n. Using Eqs. (5.12), (5.25) this can be written as

δPn
δcn

= DHk

(
Pn
)

=

 lim{

ck,n→ 0
}
exp

[
− iHn∆t

]
− exp

[
− iH0∆t

]

ck,n


 (5.27)

The procedure in [154] then finds solution by truncating Eq. (5.17) to first order
in ∆t, giving

DHk

(
Pn
)

= ∆t
[
Hk,Pn

]
, ∆t�

∥∥∥∥H0 +
K∑

k=1
ck,nHk

∥∥∥∥
−1

(5.28)

An alternative representation of Eq. (5.27) is the integral form of Eq. (5.16):

DHk

(
Pn
)

=
−i∆t∫

0

e(−i∆t−τ)Hn Hk eτHn dτ (5.29)

Using Eq. (5.18b) and setting A← Hn, B← Hk, and t← −i∆t, gives the block
triangular auxiliary matrix exponential as [81]

L2 =

Hn Hk

0 Hn


 =⇒ e−iL2∆t =


Pn DHk

(
Pn
)

0 Pn


 (5.30)

where the above-diagonal is the first directional derivative required for gradient
element calculation in Eqs. (5.24a), (5.24b).
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§ 5.3.2 Second directional derivatives

The integral representation of the second directional derivatives form a chained
integral as in Eq. (5.1):

D2
Hk

(
Pn
)

=
−i∆t∫

0

τ∫

0

e(−i∆t−τ)Hn Hk e(τ−υ)Hn Hk eυHn dυ dτ (5.31a)

D2
HkHj

(
Pn
)

=
−i∆t∫

0

τ∫

0

e(−i∆t−τ)Hn Hk e(τ−υ)Hn Hj eυHn dυ dτ (5.31b)

Just as in the previous calculation of first directional derivatives in Eq. (5.30),
Eq. (5.21) shows a similar auxiliary matrix technique can be used to calculate
higher order directional derivatives. Calculation of the second directional derivat-
ives requires a 3× 3 bidiagonal block matrix auxiliary matrix from Eq. (5.21),

L3 =




Hn Hk 0
0 Hn Hj

0 0 Hn


 (5.32)

where the upper-diagonal blocks contain the two control operators needed for
the mixed second directional derivatives. Following from Eqs. (5.22), (5.23), the
exponential of the auxiliary matrix L3 is

=⇒ e−iL3∆t =








Pn DHk

(
Pn
)

1
2D

2
Hk

(
Pn
)

0 Pn DHk

(
Pn
)

0 0 Pn


, j = k




Pn DHk

(
Pn
)

1
2D

2
HkHj

(
Pn
)

0 Pn DHj

(
Pn
)

0 0 Pn


, j 6= k

(5.33a)

(5.33b)

where the upper-right blocks are the second directional derivatives required for
Hessian element calculation in Eqs. (5.26a), (5.26b).

§ 5.4 Krylov subspace techniques

There is an important efficiency to be made when considering the propagator
derivatives of in that only the resulting vector

∣∣∣ ∂2ρn+1

∂c
k,n

∂cj,n

〉
is required in Eqs.(5.24a),
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(5.26a), (5.26b). The solutions to these equations are of the form f(M)b – the
action of f(M) on the vector b is required [321]. This type of problem is readily
solved with Krylov subspace methods, such as the Arnoldi process [9] or the Lanczos
process [173], avoiding explicit calculation of the matrix exponential [106,127,128,
256].

The Arnoldi process is implemented in Spinach to efficiently calculate [165, 170]
the exponential of a Liouvillian multiplied by a state vector. The effect is that
forward and backward propagation can be calculated in this way. Furthermore,
the effect of first and second derivatives on the forward propagated state vector
can be calculated with their auxiliary matrices:

Forward propagation:
[

exp
(
−i∆tHn

)] ∣∣∣∣ρn
〉

=
∣∣∣∣ρn+1

〉
(5.34a)

Backward propagation:
[

exp
(
+i∆tHn

)] ∣∣∣∣χn
〉

=
∣∣∣∣χn−1

〉
(5.34b)

Propagated first directional derivative:

exp


−i∆t


Hn Hk

0 Hn













0∣∣∣∣ρn
〉

 =




∣∣∣∣
∂ρn+1

∂c
k,n

〉

0


 (5.34c)

Propagated second directional derivative:



exp



−i∆t




Hn Hk 0
0 Hn Hj

0 0 Hn













0
0∣∣∣∣ρn
〉




=




1
2

∣∣∣∣
∂2ρn+1

∂c
k,n

∂cj,n

〉

0
0




(5.34d)

§ 5.5 Propagator recycling

Two computational efficiencies should be taken into account when calculating the
full Hessian matrix of Fig.4.1. Firstly, the first propagator direction derivatives do
not need to be calculated with Eq.(5.30) when a Hessian calculation is made: these
directional derivatives are already contained in the above-diagonal of Eq. (5.33b).
Secondly, Krylov subspace techniques can be used to calculate the effect of the
propagator directional derivative on the state

∣∣∣ρn
〉
in some of Eqs.(5.24a), (5.24b),
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(5.26a), (5.26b). The following lists outline the type of calculation recommended
to construct fidelity derivatives. There are two cases:

1 A fidelity and gradient vector calculation for a gradient ascent method, quasi-
Newton method, or a line search method.

2 The simultaneous calculation of the fidelity, gradient vector and Hessian
matrix for a Newton step calculation.

§ 5.5.1 Fidelity and gradient calculation

1 Forward and backward propagation
Number of matrix exponential calculations = 2×K ×N .

I. Calculate and store forward propagated states with a Krylov subspace
technique in Eq. (5.34a).

II. Calculate and store backward propagated states with a Krylov subspace
technique in Eq. (5.34b).

III. Calculate fidelity as the overlap of the forward propagated state of
step 1 .I at the time step n = N , and the desired target state using
one of Eqs. (3.67)–(3.69).

2 Gradient elements
Number of matrix exponential calculations = K ×N .

I. Use an auxiliary matrix in Eq. (5.30) and forward propagated state
from step 1 .I with a Krylov subspace technique in Eq. (5.34c) and
store the resulting vector.

II. Calculate the gradient elements as the overlap of the propagated gradi-
ent from step 2 .I and the backward propagated state from step 1 .II
using one of Eqs. (3.79a)–(3.79c).
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§ 5.5.2 Fidelity, gradient and Hessian
calculation

1 Forward and backward propagation
Number of matrix exponential calculations = 2×K ×N .

I. Calculate and store forward propagated states with a Krylov subspace
technique in Eq. (5.34a).

II. Calculate and store backward propagated states with a Krylov subspace
technique in Eq. (5.34b).

III. Calculate fidelity as the overlap of the forward propagated state of
step 1 .I at the time step n = N , and the desired target state using
one of Eqs. (3.67)–(3.69).

2 Diagonal Hessian elements – Fig. 4.1 a
Number of matrix exponential calculations = K ×N .

I. Calculate explicit propagators with Eq. (5.33b), exponentiated using a
sparsity preserving Taylor series of §5.1.1 with scaling and squaring of
§5.1.4.

II. Store the propagator from block (1, 1) .

III. Store first directional derivatives from block (1, 2) .

IV. Store second directional derivatives from block (1, 3).

V. Calculate diagonal Hessian elements with Eq. (5.26a) using the stored
states from steps 1 .I, 1 .II.

3 Off-diagonal elements of the Hessian block diagonal – Fig. 4.1
b
Needed when K > 1.
Control operator commutativity must be considered from §4.1.3.
(K−1)!×N < Number of matrix exponential calculations < K(K−1)×N .

I. Use an auxiliary matrix in Eq.(5.33b) with a Krylov subspace technique
as in Eq. (5.34d) and store the resulting vector.



126 Propagator Directional Derivatives

II. Calculate off-diagonal elements of the Hessian block diagonal with the
backward propagated states from step 1 .II subject commutativity
conditions in Eqs. (4.8)–(4.10).

4 Block off-diagonal Hessian elements – Fig. 4.1 c
Requires only matrix-matrix and matrix-vector multiplications.

I. Retrieve the two required first directional derivatives from step 2 .III.

II. Calculate off-diagonal Hessian elements with Eq. (5.24b), using the
stored states from steps 1 .I, 1 .II and the stored propagators in
step 2 .II.

5 Gradient elements
Requires only matrix-matrix and matrix-vector multiplications.

I. Use the first directional derivative from step 2 .III and forward propag-
ated state from step 1 .I and store the resulting vector.

II. Calculate the gradient elements as the overlap of the propagated gradi-
ent from step 5 .I and the backward propagated state from step 1 .II
using one of Eqs. (3.79a)–(3.79c).

§ 5.5.3 Parallelisation

The numerical implementations of gradient and Hessian calculations should be
parallelised with respect to the number of time slices in Eq. (4.5c). Gradient
calculation uses 2×2 augmented exponentials Eq. (5.34c) and Hessian calculation
uses the 3×3 augmented exponentials shown in Eq.(5.33b). The Hessian function
has a further parallel loop when calculating n 6= m blocks in Equation Eq. (4.7c).
At that stage, the first derivatives have already been calculated when solving
Eq. (5.33b); they are recycled.

Parallelisation efficiency analysis is given in Fig. 5.1. The scaling depends on the
number of time slices in the control sequence and the parallelisation is efficient all
the way to the number of cpu cores being half the number of time slices (over
which the parallel loop is running). Given the same computing resources, a Hessian
calculation takes approximately five-ten times longer than a gradient calculation.
Because propagator derivatives are recycled during Hessian calculation, significant
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Figure 5.1: Amdahl’s law [4] parallelisation efficiency analysis for the Hessian
calculation compared to the gradient calculation within Spinach implementa-
tion of grape [86, 130]. The optimal control problem involves N = 24 time
slices and K = 6 control channels, yielding a fidelity functional gradient vector
with 144 elements and a 144× 144 Hessian matrix.

efficiency gains may be made by optimising their storage and indexing, which is
outlined in [108].

Using Amdahl’s law, the parallelism of code from Fig. 4.7 was computed to be
just less than 70% parallel. This indicates that a maximum of about 3× speed
increase to the code can be achieved using about 16 cores for parallel computation,
although using only 8 cores will give a speed increase of over 2.5×.





§ 6

Constrained Optimal Control

In the end, man is not entirely guilty – he did not start history. Nor is
he wholly innocent – he continues it.

– Albert Camus, The Rebel

The Pontryagin maximum principle of §3.2.3 set out a control problem with a
terminal cost and a running cost. The terminal cost was investigated fully as
fidelity measures in Eqs. (3.67)–(3.69). This chapter will set out a number of
running costs in the form of penalty functions K.

The idea of a penalty function is one borne from constrained optimisation [23,
79, 229]. The constraint may be in the form of an inequality in addition to the
objective function e.g. in the context of control operators; the control amplitudes
may have a maximum allowed value corresponding to a maximum amount of power
the control pulse may have – in this case the constraint would be an experimental
constraint.

The traditional area of constrained optimisation is to define an allowable region
of the objective function; then only to allow the objective function evaluations
that fall within this region. In the penalty functions that follow in this chapter,
the idea of a penalty function from constrained optimisation is relaxed to allow
objective function evaluations outside the constrained area, but at a cost.

This chapter outlines penalty functions as strategies to push solutions to the ob-
jective function into a desired region of its space. The scalar function to maximise
is (using the fidelity measure of Eq. (3.68));

J1 , Re
〈
σ
∣∣∣ρ(T )

〉
−K

(
ρ(t), c(t)

)
(6.1)
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where K is a penalty functional enforcing the experimental constraints on the
optimisation e.g. a maximum amplitude of control pulses. The task to include
penalties is now to design the penalty measure, and then to find its associated
gradient and Hessian.

The simplest method, but maybe affecting convergence the most, is to change the
variables so that controls more strictly defined in §6.1, or more elegantly defined
in §6.1.1. Penalties to pulse power are set out in §6.2, with the simplest favouring
lower power penalties in §6.2.1 and a more calibrated penalty that only penalises
excursions outside a desired bound §6.2.2. An interesting penalty function is set
out in § 6.3, designed to find smooth solutions by penalising rapid changes in
controls over their time period.

This smoothing penalty is investigated in §6.3.1 with the problem of transferring
magnetisation to a singlet state. Although the analytical solution is the optimal
solution, it is not robust to B1 miscalibration or B0 resonance offsets. These type of
optimal pulses are reproduced from [178] in §6.3.2, then the optimisation problem
is extended to attempt to find similar, but also smooth optimal, robust solutions
in §6.3.3.

§ 6.1 Change of variables

There exists a situation in which all solutions must be bounded i.e. a waveform
must not exceed power levels which hardware cannot handle. To constrain all
possible solutions to the feasible region R [23], and to guarantee a minimiser
resides within the region R, more is required than a method of weighted penalties.
To constrain all solutions to the feasible region, a transform can be made to the
objective function, where the transform maps the objective function to a similar
one which only contains feasible points.

The variables forming the shape can be designed to form a repeating, mirrored
structure; allowing all real numbers to be evaluated by an objective function in a
continuous manner. The transform of a waveform, x, to include these constraints
is

c̃ =
∣∣∣∣∣∣
c− 4

⌊
c− 1

4

⌋
− 3

∣∣∣∣∣∣
− 1 (6.2)

where c is the unbounded waveform and c−nbc/nc is the remainder from dividing
c by n.
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§ 6.1.1 Transforms between Cartesian & Polar
Coordinates

It is normal to represent control pulses as operators of Cartesian space i.e. ˆ̂Hx

and ˆ̂Hy, However, it is common for spectrometer hardware to implement control
pulses in polar coordinate space, with amplitude and phase. Furthermore, the most
simple way to enforce an equality constraint on either the phase or amplitude is
to allow only one of these as the optimisation variables. This was implemented
in §§4.3.2, 4.3.3, where only the phase was allowed to vary, ensuring that the
amplitude of the pulse stayed at a constant level.

To use this type of optimisation, the control pulses, the fidelity gradient, and the
fidelity Hessian must be transformed between a Cartesian representation and a
spherical polar coordinate system. The definitions of these transformed control
pulses are

r =
√
x2 + y2 (6.3)

ϕ = atan2
(
y

x

)
(6.4)

with atan2 defined as the four quadrant inverse tangent, and (x, y) are the com-
ponents of the control pulse corresponding to ˆ̂Hx and ˆ̂Hy. From this, the inverse
transform is

x =r cosϕ (6.5)
y =r sinϕ (6.6)

These definitions are from basic Pythagorean theorem. However, the gradient and
Hessian transformations are not so obvious, and it is useful to explicitly show their
transformations here.

The gradient transform from polar to Cartesian coordinates is

d

dx
= cosϕ d

dr
− 1
r

sinϕ d

dr
(6.7)

d

dy
= sinϕ d

dr
+ 1
r

cosϕ d

dr
(6.8)
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and the inverse of these transforms are

d

dr
= sinϕ d

dy
+ cosϕ d

dx
(6.9)

d

dϕ
=x d

dy
− y d

dx
(6.10)

The transform of the Cartesian Hessian element to a polar Hessian element is

d2

dr2 = cos2 (ϕ) · d
2

dx2 + 2 cos (ϕ) · sin (ϕ) d2

dxdy
+ sin2 (ϕ) · d

2

dy2 (6.11)

d2

dϕ2 = −r ·
(

cos (ϕ) · d
dx

+ sin (ϕ) · d
dy

)

+ r · r ·
(

cos2 (ϕ) · d
2

dy2 − 2 cos (ϕ) · sin (ϕ) d2

dxdy
+ sin2 (ϕ) · d

2

dx2

)
(6.12)

d2

drdϕ
= cos (ϕ) · d

dy
− sin (ϕ) · d

dx

+ r · cos (ϕ) · sin (ϕ) d
2

dy2 + r · cos2 (ϕ) · d2

dxdy

− r · sin2 (ϕ) · d2

dxdy
− r · cos (ϕ) · sin (ϕ) d

2

dx2 (6.13)

The transform of the polar Hessian elements back to Cartesian Hessian elements
is

d2

dx2 = +2x · y · d
dϕ
· 1
r·4 + y · y · d

2

dϕ2 ·
1
r·4 + d

dr
· 1
r

− x · x · d
dr
· 1
r·3 − 2x · y · d2

drdϕ
· 1
r·3 + x · x · d

2

dr2 ·
1
r·2 (6.14)

d2

dy2 = −2x · y · d
dϕ
· 1
r·4 + x · x · d

2

dϕ2 ·
1
r·4 + d

dr
· 1
r

− y · y · d
dr
· 1
r·3 + 2x · y · d2

drdϕ
· 1
r·3 + y · y · d

2

dr2 ·
1
r·2 (6.15)
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Figure 6.1: Norm square penalty and its derivatives

d2

dxdy
= − d

dϕ
· 1
r·2 + 2y · y · d

dϕ
· 1
r·4 − x · y ·

d2

dϕ2 ·
1
r·4 − x · y ·

d

dr
· 1
r·3

+ x · x · d2

drdϕ
· 1
r·3 − y · y ·

d2

drdϕ
· 1
r·3 + x · y · d

2

dr2 ·
1
r·2 (6.16)

These transforms for the Hessian elements are basic mathematics, but at the
same time they are laborious algebraic differentiation using the chain rule. They
are presented here to as convenient relations to enable optimisation of phase or
amplitude pulses using the Newton-grape method. Amplitude penalties can be
implemented with these transforms and the power penalties set out below.

§ 6.2 Power penalties

Magnetic resonance pulses may not have an infinite power, they must be bounded
by that which the magnetic resonance experiment can handle. A simple strategy
is to penalise the vector of control pulses based on the amplitude of each pulse in
the pulse set.

§ 6.2.1 Norm-square penalty

First consider a normalised set of control pulses; normalised by a bound set by the
experiment being a nominal “maximum amplitude level” that a control channel
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can experimentally implement. This maximum amplitude level, measured in Hz,
can be arbitrarily set by an experienced experimenter or set by strict experimental
constraints{I}.

Assuming that the vector of control pulses is normalised with a maximum power
amplitude, a penalty functional can be based on the square of the control pulse
vector c. This will give a very small penalty for low power control pulses, compared
to the bound, and will give very high penalties for those above the bound. A form
for this penalty is

K = 1
N

∑

k

ck
2 =⇒ K = 1

N
‖c‖2 (6.17)

where the scalar product of the vector with itself, c · c, implies the square of the
euclidean norm of the control vector, ‖c‖2, Here, ck denotes an element of the
vector c – the penalty is simply the sum of the squares of each element of the
control pulse vector. The normalisation factor for this penalty, N , is the length of
each control channel i.e. the number of discrete time slices. Essentially, the penalty
K is the average of the square of each control pulse, for each control channel.

Mentioned previously, for the use of a penalty in a gradient based optimisation
scheme, we must also penalise the derivative of the penalty. Additionally, if the op-
timisation method calculates an explicit Hessian i.e. the Newton-Raphson method,
then we must also penalise this Hessian. These derivatives of the penalty func-
tional are with respect to the control pulse vector, just as the derivative of the
fidelity functional is performed with respect to the same control pulse vector.

d

dck
K = 1

N

∑

k

2ck =⇒ ∇K = 2
N
c (6.18)

d2

dck2K = 2
N

=⇒ ∇2K = 2
N
1 (6.19)

The Hessian penalty is only ever a diagonal matrix because mixed derivatives of
the penalty functional are zero. A graphical representation of this norm-squared
penalty and its derivatives is shown in Fig. 6.1.
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Figure 6.2: Spillout norm square penalty and its derivatives

§ 6.2.2 Spillout-norm-square penalty

The problem with the norm-squared penalty of Eq. (6.17) is that it penalises the
objective function even when within the set bounds. This is undesirable because an
optimisation will never truly converge unless there is zero amplitude on the control
pulses - clearly an unrealistic solution. One way to remedy this is to introduce a
level of zero penalty when within the maximum amplitude interval [−1,+1], The
graphical representation of this modified norm-squared penalty, penalising only
that which spills out of the amplitude bounds, is shown in Fig. 6.2.

The aim of this spillout-norm-squared penalty is to only penalise the control amp-
litudes that exceed the set bounds of the normalised control pulses, eventually
constraining solutions to the set bounds. This method also allows a quadratic
convergence, assuming a solution does exist within the set bounds. The form of

{I}a reasonable estimate for a non-specific nmr spectrometer can set this bound as 10 kHz;
giving a normalisation constant of 10× 2π × 103
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Figure 6.3: Spillout norm cube penalty and its derivatives

this fidelity functional and the corresponding derivatives are:

K =
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

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(6.20c)

This penalty type has a discontinuity in the Hessian penalty, which is not expected
to cause too much problem, but if this is the case a modification could be to use
the a cubic penalty, shown in Fig. 6.3.

§ 6.3 Smoothed Controls

A smoothing penalty is designed to penalise non-smooth pulse shape, which would
be all except flat pulses. However, the metric to penalise will do so more to rapidly
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varying pulse shapes – those with a derivatives that have large changes near the
vicinity of the point at which the derivative is evaluated.

Called smoothing regularisation in [23], a penalty of the following form is useful:

K = 1
N

∥∥∥∆̂c
∥∥∥

2
(6.21)

where ∆̂ is an approximate differentiation, or second order differentiation operator
of a suitable type and order, or any other appropriate transformation matrix. This
penalty is based on Eq. (6.17) by replacing c with ∆̂c and penalising the “high
frequency” roughness instead of the high power.

The first and second derivatives of the penalty in Eq. (6.21) are

∇K = 2
N

(
∆̂†∆̂c

)
(6.22)

∇2K = 2
N

(
∆̂†∆̂⊗ 1

)
(6.23)

where the identity matrix is of size K.

§ 6.3.1 Magnetisation-to-singlet transfer

The aim of examples presented here is to transfer polarisation to a singlet state, fol-
lowing the lead of the magnetisation-to-singlet (m2s) [190] and slic pulses [53,304],
and improving this method with the use of optimal control pulses. Although ro-
bust optimal control pulses have already achieved this [178], the use of a quadratic
smoothing penalty with a Newton-grape method has not yet been realised.

Singlet states for a pair of mutually coupled spin-1/2 nuclei when the scalar coupling
� difference in chemical shift resonances. The maximum fidelity of a system in a
singlet state is

max
[
J1
]

= max
[

Re
〈
singlet state

∣∣∣ρ(t)
〉]

= 1√
2

max
[
J2
]

= max
[∣∣∣∣
〈
singlet state

∣∣∣ρ(t)
〉∣∣∣∣

2
]

= 1
2

The slic pulse is essentially a hard pulse of an exact amplitude on either the x or
y channel. The system consists of two 13C spins with a chemical shift difference
of 0.1 ppm and a J-coupling of 60 Hz. The magnetic field is set at 11.7434 tesla
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Figure 6.4: A plot of fidelity indicating the robustness of the slic pulse used
as a direct comparison to optimal control pulses later in this section. The
robustness is measured as a function of the nominal power level of the pulse
amplitude in Hz on the y-axis, and the B0 resonance offsets in Hz on the x-axis.

and the total pulse duration was calculated to be 56.25 ms. The aim of the slic
pulse is to take longitudinal polarization→ 2-spin singlet state. Given these exact
parameters, a Newton optimisation will find the slic pulse as the optimum.

The robustness of the slic pulses is shown in Fig. 6.4. Good pulses should be
tolerant to power miscalibration and resonance offsets and large fidelities should
be realised over a range of power levels and offsets. This is not really the case
with the slic pulse – showing a band of robustness, but only a small area of high
fidelity.

§ 6.3.2 Robust magnetisation-to-singlet transfer

Optimal control offers high fidelity state-to-state transfer and gives a shaped pulse
which can be designed to be robust to B0 resonance offsets and B1 power miscalib-
ration [178]. Simulation of this robustness involves running the grape algorithm
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Figure 6.5: ˆ̂Hx and ˆ̂Hy components of an optimised, robust `-bfgs-grape
pulse for a magnetisation-to-singlet transfer.
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Figure 6.6: ˆ̂Hx and ˆ̂Hy components of an optimised, robust, smoothed `-
bfgs-grape pulse for a magnetisation-to-singlet transfer.

over a grid of nominal power levels and offsets{I} and averaged fidelities and gradi-
ents are then used by the `-bfgs optimisation method.

This was done in [178], and is repeated here for comparison. To ensure there are no
excursions from the power envelope, the optimisation is performed at a constant
amplitude and variable phase, although the pulses shown in Fig. 6.5 have been
transformed back to a Cartesian representation.

The robustness of these pulses is shown in Fig.6.7, and it is quite clear that these
pulses are far more robust to range of B1 power and B0 offsets than the slic pulse
of Fig. 6.4. Not only is the pulse shape robust, it has near maximum fidelity
over the robust range. A note should be made that the pulse duration is twice
that of the slic pulse – testing shows that too short a duration too critical for
optimisation – the slic pulse is the optimum for its calculated duration.

{I}The resonance offset is simulated with an extra ˆ̂Hz control at the offset power level in Hz.
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Figure 6.7: A plot of fidelity indicating the robustness of the optimised m2s
pulses from Fig. 6.5. The robustness is measured as a function of the nominal
power level of the pulse amplitude in Hz on the y-axis, and the B0 resonance
offsets in Hz on the x-axis.

§ 6.3.3 Smooth, robust magnetisation-to-singlet
transfer

With the assumption that non-smooth pulses will suffer amplifier non-linearity,
smoothed pulse shapes should perform better experimentally.

As was set out in §§4, 5, optimisation with a Newton-grape method converges
to a local maximum. The optimisation strategy is to first gain a quick solution
to the state-transfer problem with a `-bfgs-grape method [86], robust to B0

inhomogeneity, then to feed this solution into a quadratically convergent Newton-
grape method with a quadratic smoothing penalty of Eq. (6.21).

The pulses produced by this two-step optimisation are shown in Fig. 6.6 and are
evidently smooth, much more smooth than in Fig. 6.5. As in Fig. 6.5, the pulse
duration is twice that of the slic pulse for the same reason.
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Figure 6.8: A plot of fidelity indicating the robustness of the smoothed op-
timised m2s pulses from Fig. 6.6. The robustness is measured as a function of
the nominal power level of the pulse amplitude in Hz on the y-axis, and the B0

resonance offsets in Hz on the x-axis.

The robustness of the pulse shape from Fig.6.6 is shown in Fig.6.8, showing very
similar robustness to that of Fig. 6.7. It is expected that these pulses perform
much better in experiments than both the slic pulse and the non-smoothed robust
optimal pulses of Fig. 6.7.

The point of using the Newton-grape method is that similar smoothed pulses are
not converged to in the `-bfgs-grape method – the penalty competes with the
fidelity measure during a line search and a pulse is found that is neither robust, as
designed, nor smooth: finding a solution that is a trade-off between the two. The
Newton-grape method seems to be able to cope with this trade-off, identifying a
place where the maximum fidelity and the minimum penalty coexist. One reason
for this is that the Newton method uses regularisation and conditioning of §4.2.4,
and is able to avoid saddle-points.





§ 7

Solid State
Nuclear Magnetic Resonance

“I must not fear. Fear is the mind-killer. Fear is the little-death that
brings total obliteration. I will face my fear. I will permit it to pass over
me and through me. And when it has gone past I will turn the inner eye
to see its path. Where the fear has gone there will be nothing. Only I will
remain.”

– Frank Herbert, Dune

Solid-state-nmr can be thought of as an ensemble of systems at different orient-
ations, rotating relative to a laboratory frame. The rotation gives a periodically
time-dependent Hamiltonian. A Lebedev quadrature [181, 182] can be used to
characterise a surface integral over a 3D sphere, with weighted values at particu-
lar points on the surface (§7.1.1). This surface integral can be used to characterise
an ensemble in the rotating frame in a Floquet space, [82,282].

This chapter is divided into two sections. The first section is a comparison of
the convergence of the Newton-grape and `-bfgs-grape methods, simulating
the optimal control problem over a Floquet space describing the crystalline ori-
entations of a solid-state-nmr sample (§7.1). The success of the Newton-grape
method comes with a large expense and is set out in §7.1.2. The second out-
lines the description of the solid-state-nmr sample by a Fokker-Planck formalism
from [68, 168] (§7.2), for a magic-angle-spinning experiment [231] §7.1.3 – using
optimal control to excite the overtone transition in §7.2.1.
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§ 7.1 Floquet Theory

The different orientation rotating relative to a laboratory frame gives periodically
time-dependent coefficients of the Schrödinger equation [73,188]:

d

dt
Û(t) = −i ˆ̂H(t)Û(t) (7.1)

suggesting the time evolution operator as a Fourier series expansion of the Hamilto-
nian [187]:

ˆ̂H(t) =
∑

n

Hne
inωt (7.2)

where Hn are Hermitian matrices of periodic time-dependent functions. The solu-
tion to Eq. (7.1) is given in the following form [82,282]:

Û(t) = P̂(t)e−iQtP̂−1(t), P̂(t) =
∑

n

P̂neinωt (7.3)

This formulation allows a similar representation to be used when expanding the
density matrix [320] from Eq. (2.52)

ρ(t) = Û(t)ρ(0)Û−1(t) =
∑

n

ρn(t)einωt (7.4)

It is easy to see that ˆ̂H(t + τ) = ˆ̂H(t)einωτ , defining the periodic nature of the
system. The diagonal elements of the diagonal matrix, Q, are called character-
istic exponents [282]. Subtracting multiples of ω from the diagonal of Q can be
compensated by multiplying P̂(t) by eikωt.

The direct product of the basis states
{
|ρi〉

}
with an infinite set of Fourier states{

|n〉
}
, resulting from the Fourier expansion in Eq. (7.2), give the full basis set of

states: {∣∣∣ρi, n
〉}

=
{∣∣∣ρi

〉}
⊗
{∣∣∣n

〉}
(7.5)

In Fourier space, the Hamiltonian and density matrix can be written as [320]

ˆ̂Hr(t) =
∑

n

HnF̂ne
inωt = eiωN̂t

{∑

n

HnF̂n

}
e−iωN̂t (7.6a)

ρr(t) =
∑

n

ρn(t)F̂neinωt = eiωN̂t
{∑

n

ρn(t)F̂n
}
e−iωN̂t (7.6b)

where F̂n are ladder operators in the Fourier space; 〈v + n|F̂n|v〉 = 1, and N̂ is
the number operator; 〈v|N̂ |v′〉 = vδvv′1, and their commutation is

[
N̂, F̂n

]
= nF̂n.
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The Liouville-von Neumann equation Eq. (2.56) in Fourier space is

d

dt
ρr(t) = −i

[
ˆ̂Hr(t), ρr(t)

]
(7.7)

Using this Fourier representation of the Liouville-von Neumann equation, the in-
teraction Hamiltonian becomes time independent [320]. This time independent
Hamiltonian in Floquet space, ˆ̂Hf is

ˆ̂Hq =
∑

n

HnF̂n + ωN̂ (7.8)

giving the Floquet representation of the Liouville-von Neumann equation. This
defines the evolution of the density operator;

d

dt
ρq(t) = −i

[
ˆ̂Hq, ρq(t)

]
(7.9)

The Floquet density matrix can be evaluated with propagation over a time t using

ρq(t) = Uq(t)ρq(0)U−1
q (t), Uq(t) = e−iĤqt (7.10)

Floquet theory has been successfully applied to describe solid-state-nmr [11,268,
270]. It should be noted that Kuprov pointed out in [107] that the auxiliary matrix
exponential formalism in Eq.(5.21) can be used to find solutions to rotating frame
transformations without the usual method of nested commutators.

§ 7.1.1 Powder average

Various methods exist to discretise a sphere emulating the crystalline orientations
of a powder average [12, 64, 245]; a grid uniformly distributed over a unit sphere
used in solid-state-nmr simulations:

1 A spiral circling the z-axis of a unit sphere [213].

2 Finite triangular elements partitioning a unit sphere [323] (sophe).

3 Simulating many subspectra, then averaged to give the powder pattern [315]
(sums).
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α β w
0.000000 1.570796 0.066667
3.141593 1.570796 0.066667
1.570796 1.570796 0.066667
-1.570796 1.570796 0.066667
1.570796 0.000000 0.066667
1.570796 3.141593 0.066667
0.785398 0.955317 0.075000
0.785398 2.186276 0.075000
-0.785398 0.955317 0.075000
-0.785398 2.186276 0.075000
2.356194 0.955317 0.075000
2.356194 2.186276 0.075000
-2.356194 0.955317 0.075000
-2.356194 2.186276 0.075000

Figure 7.1: Orientations, α and β (radians), and weights w of the Lebedev
grid quadrature.

4 Iteratively moving particles on the surface of a sphere under the influence
of a repulsive force from other particles on the surface of a sphere [12]
(repulsion).

5 The use of Gaussian spherical quadrature [181,182] to weight the distribution
over the surface of the sphere [65]

The following work uses the Lebedev quadrature to weight a distribution over the
spherical grid [64,65]; the Euler angles and weights are shown in Fig. 7.1.

§ 7.1.2 Optimal control of a
static powder average

With the Newton-grape developed in §§4, 5, it seems a good place to start to
test the method on a large system. As set out above, an optimisation problem
involving an average over large grid will take many Hessian matrix evaluations,
magnifying computational efficiency.

The system set out to test this is similar to the one in §4.3.2, except that the system
is averaged over crystalline orientations. Optimal control of the powder average
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Figure 7.2: Comparison of optimisation methods for a 14N quadrupolar over-
tone signal in static glycine powder. Two methods are compared: Newton-
grape method using a bracketing and sectioning line search; `-bfgs-grape
using a bracketing and sectioning line search.

has a fidelity, gradients, and Hessians weighted over the crystalline orientations –
rank 17 Lebedev grid with 110 points.

The optimal control problem is to excite 14N from a state T̂1,0 to T̂2,2 (§A) through
the nuclear quadrupolar interaction with appropriate control operators. The op-
timisation if performed over 400 time points for total pulse duration of 40 µs at a
power level of 40 kHz.

At a particularly short total pulse duration, the optimal solution is not at a max-
imum fidelity = 1. The comparison of results for the convergence of `-bfgs-grape
and Newton-grape is shown in Fig.7.2{I}. Newton-grape is quicker in the initial
stages of the optimisation, as is expected compared to a quasi-Newton method,
and has a similar convergence characteristic to the universal rotation pulses over
a power miscalibration grid in §4.3.3. The terminal fidelity is also slightly better
than that of the quasi-Newton method, again similar to the results of §4.3.3.

However, Newton-grape took much longer (wall clock time) to reach a fidelity
only a few percent better than the quasi-Newton approach – a couple of hours for

{I}One convergence profile is shown – but convergence over the averaged grid gives very similar
convergence from random starting pulses. It should be noted that the averaging has dictated a
smooth convergence profile.
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`-bfgs-grape to reach 100 iterations, and half a day for Newton-grape to reach
100 iterations{I}.

§ 7.1.3 Optimal control under
magic angle spinning

Using Floquet space to describe the states of the solid-state-nmr system with a
powder average, then to spin the system at the magic angle{II}, is the test of
optimal control set out in this section.

The powder average should be modelled by an appropriate Lebedev grid describing
the crystalline orientations in the power. The local fidelity and the local gradient of
the fidelity at each orientation of the grid to produce a global value of the fidelity
and its gradient – the global measure is a weighted average over the crystalline
grid. The local optimal control problem is performed with the `-bfgs-grape
method.

Using the parameters set out in [136] for the overtone excitation in a glycine mo-
lecule, the optimal control problem here is a cross-polarisation experiment between
13)C and the quadrupolar 14N. A spinning rate of frequency f = 25×103 Hz is used
to simulate the magic angle spinning experiment of [136], and the Fourier rank
at which the Floquet matrix is truncated is 5 and the crystalline grid is averaged
over a Lebedev grid rank 5 (α, β, γ) relative to the rotor frame (as in Fig. 7.1).

The initial state and final states of the system are the direct products with the
identity matrix of size (2×max-rank) + 1, where max-rank = 5 in this case. This
gives the optimal control boundaries as

ρ(0) =
(
1⊗ L(C)

z

)
(7.11a)

σ =
(
1⊗ L(N)

z

)
(7.11b)

where both states should be normalised. Control operators are in the Floquet
formalism irradiating the resonant frequencies of 13C and 14N, again as a direct
product with the identity matrix:

ˆ̂H1 = 1⊗ ˆ̂H(C)
x , ˆ̂H2 = 1⊗ ˆ̂H(C)

y , ˆ̂H3 = 1⊗ ˆ̂H(N)
x , ˆ̂H4 = 1⊗ ˆ̂H(N)

y (7.12)

{I}Both methods used a 32 core computer parallelised calculations over the time steps.
{II}the magic angle is θmagic = arccos 1√

3 = 54.7◦
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Figure 7.3: The four channel control pulse sequences producing the traject-
ories in Fig. 7.4. The pulses are a result of the `-bfgs-grape optimisation,
which reached high fidelity, state-to-state transfer from 13C to 14N of glycine in
a solid-state-nmr simulation.

with the nominal power of 10 kHz. Time steps are integer multiples of the charac-
teristic time from the spinning rate, 5000 in this case, and the total pulse duration
is 20 ms.

The `-bfgs-grape method is used; following from the long wall clock time of the
Newton-grape, the limited memory quasi-Newton method is more appropriate
considering the large number of optimisation variables, 4×5000. The optimisation
was run for 256 iterations, although the optimisation had not fully converged at
this point, a good set of results were obtained without waiting for super-linear
convergence to find small gains.

The control pulses produced at the end of the 256 iterations are shown in Fig.7.3
– looking like noise, apart from the 14N pulses generally needing less power.

The trajectory analysis [167] of the pulses shows more useful information. As
intended, the local population of the magnetisation is transferred from 13C to 14N
in Fig.7.4 a , with a smooth transfer except for a small amplitude, high frequency
oscillation on the 14N trajectory.

The correlation orders in Fig. 7.4 b clearly show a 1-spin order giving way to
the 2-spin order, to mediate the 13C and 14N coupling, then after about half of
the pulse duration, the 2-spin order is transferred back to 1-spin order. There is
an initial ramp in the 2-spin order and then a linear decay to zero at time = T .
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Figure 7.4: Trajectories analysis for a state-to-state transfer from 13C to
14N of glycine in a solid-state-nmr simulation. Averaged over the crystalline
orientations using a Lebedev quadrature. 10 kHz power level of control pulses
and 14.1 MHz magnet. a Local spin population. b Spin correlation order
amplitude.

Again, the correlation orders develop a small amplitude, high frequency oscillation
in the trajectories, this time after a maximum 2-spin order has been reached.

§ 7.2 The Fokker-Planck formalism

Kuprov [168] set out a review of the Fokker-Planck [83, 241] formalism used in
magnetic resonance simulations, finding the very general formulation that should
be preferred to the Liouville-von Neumann equation. For this reason, the optimal
control methods set out in this thesis should be constructed to be compatible with
the Fokker-Planck equation of motion. As pointed out in [168], there is a close
relation between the Fokker-Planck equation and Floquet theory of the previous
section [188] – the latter is a special case of the former.
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Figure 7.5: Trajectory analysis an hmqc-type experiment to indirectly ex-
cite the overtone transition in glycine with hard pulses. Coherence orders are
represented as the effect of a constant amplitude and zero phase. Magnified
section of the plot shows higher coherence orders populated near the end of the
control pulse trajectory (upper)

§ 7.2.1 Optimal Control in HMQC-type
experiment

The testing set out in this section is an hmqc-type experiment (Hetronuclear
Multiple Quantum Coherence) to indirectly excite the overtone transition in gly-
cine [118] (results from hard pulses alone shown in Fig.7.5). Grape calculations
of optimal control in the Fokker-Planck formalism are used to find efficient pulses
for an excitation of the +2 coherence order of 14N in the hmqc-type experiment.
Optimal pulses are designed to be resilient to radiofrequency pulse miscalibration
of ±2.5%. The total pulse length of the optimal set is investigated with respect
to numerical convergence, maximum fidelity after 200 iterations, and coherence
order trajectories.

The aim is to find optimal control pulses that spy on 14N through echoes on a
connected 1H by exciting high coherence orders of 14N. The optimal control pulses
form part of a larger pulse sequence, shown in Fig. 7.6, where the second section
of the optimal control pulses is the time reversed version of the first section.
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Figure 7.6: Pulse set including optimal control pulse. Pulses vary in phase
only, and the amplitude should be considered constant. The second section of
optimal pulses is the time-reversed version of the first section.

The spinning rate of the system is 35 kHz at the magic angle, in a 14.1 tesla
magnet. Relaxation is included in the form of a diagonal approximation with a
rate of 300 Hz, and the pulse duration is varied with different integer values of the
rotor period. Optimal control of the initial state to a target state is performed as
a sum of states picking out the +2 coherence excitation on the 14N. The initial to
target states are set out as

L
(H)
+

grape−−−−−−−−→ L
(H)
+ I

(N)
+ + L

(H)
− I

(N)
+

Control operators are defined in the Cartesian representation, allowing pulses on
both 14N and 1H to work in the rotor frame at each of the weighted crystalline
orientations in the rank-5 powder average:
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2× 50 114.286 400 92 15.86 %√
2× 50 171.429 600 140 18.67 %√
2× 50 228.571 800 189 21.57 %

Figure 7.7: Simulation performance of each of four test optimisations: 2, 4,
6, and 8 rotor periods, each with 100 time slices per rotor period. Note: results
are not converged and a greater fidelity would be achieved if the optimisation
were allowed to run for more than 200 iterations, particularly for the longer
pulse sets (see Fig. 7.10)
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Figure 7.8: Phase profile resulting from the `-bfgs-grape method with 2,
4, 6, and 8 rotor period for total pulse duration (left to right). The amplitude
profile is constant in all cases, A =

√
2 · 50 kHz, and the phase pulses on 14N

and 1H (upper and middle) should be tolerant to a ±2.5% miscalibration on the
pulse amplitudes (when translated to a Cartesian representation). The total
density of magnetisation at each spin is shown as an effect of the pulses (lower).

where θ is the magic angle of the rotor spinning axis and 1 is the identity operator
of size d, being the size of the spatial dimension of the Fokker-Planck formalism.
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Figure 7.9: Trajectory analysis of an l-bfgs optimisation with 2, 4, 6, and 8
rotor periods for the total pulse duration (left to right). Coherence orders are
represented as the effect of phase profiles shown in Fig. 7.8. Magnified section
of the plot shows higher coherence orders populated near the end of the control
pulse trajectory (upper). NOTE: Trajectories are the last trajectory calculated
i.e. that at +2.5% pulse miscalibration and for the target state L(H)
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Normalised initial states and target states are similarly defined via the Kronecker
product:

ρ(0) = 1√
d

(
1⊗ L(H)

+
)

(7.14a)
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ρ2(T ) = 1√
d

(
1⊗ L(H)

− L
(N)
+
)

(7.14c)

where 1 a unity vector of length d, ρ(0) is the initial state at time t = 0, ρ1(T )
and ρ2(T ) are the two target states at the time t = T . The `-bfgs-grape method
is used, and performs two fidelity and gradient calculations from the initial state
to the two final states, then to average the two fidelities and two gradients. The
full experimental state transfer problem can be envisaged as the pulse set being
part of the whole experimental pulse sequence in Fig. 7.6.

Four optimisation tests were performed with the only difference being the total
pulse time allowed for the control pulses. The time step remained equal in all
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Figure 7.10: Convergence characteristics. Note that the optimisations have
not yet achieved convergence to a maximum (apart from the optimisation with
2 rotor periods).

cases, having 100 time steps per rotor period (35 kHz spinning rate). The resulting
fidelity from each test is shown in the Fig. 7.7 (final column).

The polar amplitude was kept to a constant,
√

2 · 50 kHz {I}, and only the phase
profiles of pulses on each spin were varied. The phase profiles resulting from the
optimisation are shown in Fig.7.8. In addition, the coherence pathways for these
pulses are shown in Fig. 7.9 – this is the main indication of the success of the
simulations in comparison to the hard pulses of Fig. 7.5.

The four tests were run to 200 iterations, rather than a converged set of solutions.
Fig. 7.10 shows how far each of the test optimisations converged. In addition to
showing the final fidelity reached at 200 iterations, the norm of the gradient, ‖∇‖2,
is shown at each iteration – the norm of the gradient is a measure of how optimal
the solution is {II}.

{I}corresponding to ±50 kHz maximum/minimum pulse amplitude in the Cartesian represent-
ation
{II}a maximum or minimum proper would have ∇ = 0 and hence ‖∇‖2 = 0 – the main point is
the smaller this number, the more optimal the solution





§ 8

Feedback Control

“Most men will not swim before they are able to. Is that not witty?
Naturally, they won’t swim! They are born for the solid earth, not for the
water. And naturally they won’t think. They are made for life, not for
thought. Yes, and he who thinks, what’s more, he who makes thought his
business, he may go far in it, but he has bartered the solid earth for the
water all the same, and one day he will drown.”

– Hermann Hesse, Steppenwolf

A significant current problem in high-field electron spin resonance (esr) spectro-
scopy is the difficulty of achieving uniform and quantitative signal excitation using
microwave pulses [33,279]. The greatest instrumentally available microwave power,
in terms of the electron spin nutation frequency, is about 50 MHz; the shortest
realistic π/2 pulse is therefore 5 ns long [44], corresponding to the excitation band-
width of 200 MHz – enough to affect a significant portion of many solid state esr
signals, but insufficient to excite such signals uniformly and quantitatively. The
consequences of partial excitation of the spectrum include useful orientation selec-
tion effects [19, 242, 265], but also reduced sensitivity and diminished modulation
depth in two-electron dipolar spectroscopy [258,299,305].

The time resolution of the best available microwave pulse shaping equipment is
of the order of 30 ps {II}. This work uses Bruker SpinJet awg (Arbitrary Wave-
form Generator) with 0.625 ns time resolution §B.1 – in combination with non-
resonant cavities it enables generation of shaped pulses with the bandwidth of
about 1 GHz [44] and allows many broadband excitation schemes originally de-
veloped for nuclear magnetic resonance (nmr) spectroscopy [331] to be used with
{II}Keysight M8196A 92 GSa/s Arbitrary Waveform Generator
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only minor modifications [57,58,137,272,292]. Numerically designed “optimal con-
trol” microwave pulses [86,108,154] are also possible [145,293], but a complication
specific to esr is that the waveforms received by the sample are very different
from those sent by the awg – the response function of the esr instrument cannot
be ignored [293].

One way around this is to construct a transfer matrix or a response function
that connects, under the linear response approximation, the ideal pulse emitted
by the computer to the real pulse seen by the sample. The transfer matrix may
be measured either by adding an antenna to the resonator [293], or by using a
sample with a narrow esr line to pick up the intensity of each spectral component
[145]. Quasi-linear responses, such as the phase variation across the excitation
bandwidth in nutation frequency experiments, can be described with additional
transfer matrices [58].

The transfer matrix approach is not perfect – different samples alter the dynamical
properties of the resonator in different ways, as does the antenna – but the linear
and quasi-linear models work well in practice. The standard procedure is to take
the desired pulse, reverse-distort it through the transfer matrices, send the result
out of the waveform generator and hope that a good rendering of the intended
pulse shape arrives at the sample point. It usually does [145,293], but the logistical
overhead of measuring the transfer matrix is significant. Accurate measurement of
the instrument response function in the ways described above is time-consuming
(hours), and esr resonators, particularly at high frequencies, tend to have strongly
sample-dependent response functions.

In this chapter, a different microwave pulse shape refinement strategy is explored,
which does not require explicit knowledge of the transfer matrix §8.1. It relies
instead on the possibility of repeating an esr experiment hundreds of times per
second, and recognises the fact, discussed in detail below, that microwave pulses
in esr need very few discretisation points due to the significant width of the
instrument response function. Further details of this work are in §B, including
software code and experimental results.

Numerically optimised microwave pulses are used to increase excitation efficiency
and modulation depth in electron spin resonance experiments performed on a spec-
trometer equipped with an arbitrary waveform generator (§8.1.1). The optimisa-
tion procedure is sample-specific and reminiscent of the magnet shimming process
used in the early days of nuclear magnetic resonance – an objective function (for
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example, echo integral in a spin echo experiment) is defined and optimised numer-
ically as a function of the pulse waveform vector using noise-resilient gradient-free
methods (§8.1.2). The resulting shaped microwave pulses achieve higher excita-
tion bandwidth and better echo modulation depth than hard pulses. Although
the method is theoretically less sophisticated than quantum optimal control tech-
niques, the rapid electron relaxation means that the optimisation takes only a
few seconds, and the knowledge of either the instrument response function or spin
system ensemble parameters is not required. This makes the procedure fast, con-
venient, and easy to use. Improvements in broadband excitation efficiency, spin
echo intensity [117] in §8.2.1 and modulation depth are demonstrated with op-
timal conditions of oop-eseem [306] in §8.2.2, at the instrument time cost not
exceeding the time it used to take to auto-shim an nmr magnet.

The method is known as “feedback control” [60,87,290]; in its electron spin reson-
ance adaptation it is similar in principle to the well known (in the nmr circles) task
of maximising a deuterium lock signal during the magnet shimming process [52]
– a target variable is chosen and maximised, using a noise-resilient optimisation
algorithm, with respect to the variables of interest. In the esr case, these variables
are amplitudes of the microwave field at each waveform discretisation point.

§ 8.1 Feedback Control Optimisation

One simple way to iteratively improve the result of experimental measurements
is to use feedback control [60, 87, 290]. The idea is to modify inputs to the ex-
periment according to the result of an experimental measurement: controlling the
experiment “on the fly”. The Bruker SpinJet arbitrary waveform generator (awg)
has the ability to shape pulses of the esr experiment – giving a flexible control
method. However, distortions to the pulse shape are expected in two forms –
constant distortions that are the same for repeated measurements, such as shape
pulse interpolation, and those associated with non-linear effects such as noise from
electronic components and sample specific miscalibration. Fig.8.1 sets out a block
diagram of a closed-loop feedback control using an awg.
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a Initial
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c Distortions
to pulse shape

e Modified
waveform

Figure 8.1: Block diagram of awg closed-loop feedback control. a An initial,
random, pulse set sent to the awg. b Pulse-set is processed and interpolated,
then sent to the sample (resonator). c The pulse-set arriving at the sample
experiences shape distortions from system noise and hardware limitations. d
The effect of pulse-set induced excitations on the sample is measured as a signal.
e The optimisation algorithm calculates a new, modified set of pulses that are
the sent back to the awg.

§ 8.1.1 Hardware and Software

The Bruker SpinJet awg is a two channel arbitrary waveform generator, allowing
the input of in-phase and quadrature components of shaped pulses to a spectro-
meter (Fig.B.1). The Bruker SpinJet awg used in this work has a time resolution
of 0.625 ns, 14-bit amplitude resolution, 1.6 GS/s sampling rate, and ±400 MHz
bandwidth around the carrier frequency. The Bruker EleXSys E580 esr spectro-
meter has a 2 ns time base and, in combination with the awg, resolves the time
resolution mismatch by downsampling the pulse waveform onto a 1 ns increment
time grid.

The software used in this work was written in-house, and has a flow of communic-
ation between Spinach [130] and Xepr Python libraries, shown in Fig. 8.2. The
master process runs in Matlab and calls Xepr Python functions as necessary to
control the instrument. Experimental data is written by Xepr into plain text files
and subsequently parsed by Matlab. Optimisation restart capability is implemen-
ted using an md5 hash table of the previously submitted experimental settings
and outcomes [108] – an interrupted optimisation can therefore retrace its steps
quickly without re-running previously executed experiments.
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◦ pulse-shapes.shp
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◦ experiment.exp

◦ Run experiment
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Convergence or
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yes:= Matlab + Spinach
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Figure 8.2: Software flow diagram. a Set initial pulses. A good guess of
an ideal pulse set based on prior knowledge of the sample. b 1) Send this
pulse-set to the awg using PulseSPEL: Load, show, and compile shape file. 2)
Modify PulseSPEL variables and compile. 3) Validate and compile PulseSPEL
program. c Run experiment and wait for experiment completion, then read
signal data. d Interpret data in optimiser. e If the optimisation algorithm
hasn’t converged, calculate a new, modified set of pulses that are the sent back
to the awg. Python code is detailed in §B.2.

The simplex optimiser allows both Nelder-Mead [171, 220] and multidirectional
search [50,308] methods, with the option of evaluating independent sets of object-
ive variables in parallel [125].

Many shapes can be stored within the awg in the form of a plain-text shape-
file, limited to 262, 144 bytes of physical disk size. A limit of 115 consecutive
shape-file compile events must be enforced to avoid overload of the awg/console
shared memory. Considering this last point, and that there may be many inde-
pendent shapes involved in performing an optimisation iteration – it will become
advantageous to perform a 2D experiment with these pre-calculated, shapes.
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Two primary sources of waveform distortions may be identified: the static ones,
introduced by the instrument electronics (pulse shape interpolation, hardware re-
sponse function, etc.), and those associated with transient effects, e.g. electrical
noise and sample-specific magnetic susceptibility effects. The presence and the
transient nature of these distortions makes common esr objective functions (sig-
nal integral, modulation depth, etc.) impossible to differentiate numerically and
necessitates the use of gradient-free noise-resilient optimisation methods.

§ 8.1.2 Optimisation Method

An optimisation problem usually attempts to find extrema of an objective function
[79, 96, 229] – in financial terms these extrema could be the minimum of a cost
function, or a maximum of a profit function. This function should map a set of
variables to a scalar number designed as a convenient metric characterising the
“performance” of a solution formed from those variables.

The intensity of an echo makes a good echo experiment [33, 279] and the integral
of the in-phase part of the echo signal makes a convenient metric to maximise.
This is defined as the 1-norm of the signal plot vector [60]:

‖~s ‖1 :=
T∫

0

∣∣∣s(t)
∣∣∣dt (8.1)

Any optimisation should be properly scaled [79], and scaling for these experiments
simply involves normalising the objective metric with the signal produced by a
reference experiment; in this case, an experiment with conventional hard pulses.
This gives the metric of the quality of an echo as

J(c) = ‖~s ‖1
‖~r ‖1

(8.2)

where J(c) is the objective measure to maximise, ~s is the signal measured within
an objective function and ~r is the reference signal measured from an experiment
with hard pulses. J(c) > 1 is defined as a good echo, better than that from hard
pulses alone, and 0 < J(c) < 1 is defined as a bad echo, worse than that from
hard pulses.

There is no obvious gradient with respect to the control parameters when consid-
ering an experimental measurement. Gradient-free optimisation strategies [26,79,
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Figure 8.3: Different simplex steps for the Nelder-Mead and multidirectional
search algorithms, each simplex has n + 1 vertices where n is the number of
variables. Faces of the initial simplex are scaled to

∣∣c0
∣∣
∞, and form an equi-

lateral simplex. Expansion and contraction factors set to β = 2 and γ = 0.5
respectively. The best/worst vertex and the centroid cc = ∑n

0 cj of the simplex
are used when reflecting, expanding, and contracting.
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96, 229, 297] are the only choice for this real-time optimisation. A simple Nelder-
Mead algorithm [171,220] (a member of a family of direct search methods termed
simplex methods [297], polytope methods [96] and ad-hoc methods [79]) has the
benefit of a relatively small number of experimental evaluations for a single iter-
ation compared to other popular algorithms e.g. genetic algorithms [28, 142] or
simulated annealing [210]. However, convergence is not guaranteed and is linear
at best [51]. A desirable benefit of the Nelder-Mead algorithm is its tolerance to
random noise (on a smooth function) [22,97]. In addition; a restart step has been
shown to alleviate stagnation of simplex algorithms [148].

The shape file characterising the optimisation variables has the constraint that it
can only contain values in the range

[
−1,+1

]
and these constraints can complicate

the formulation considered in the optimisation problem. However, gradients are
not considered in for the optimisation problem stated in this work, and a transform
can easily classify the bounded pulse-shape variables [79]: a repeating, mirrored
transform can allow all real numbers to be evaluated by the objective function in
a continuous manner. This waveform constraint transform can be classified as in
Eq. (6.2):

c̃ =
∣∣∣∣∣∣
c− 4

⌊
c− 1

4

⌋
− 3

∣∣∣∣∣∣
− 1

where c is the unbounded waveform and c−nbc/nc is the remainder from dividing
c by n.

A modified Nelder-Mead simplex algorithm, the multidirectional search simplex
method [50, 125, 308], has an efficient characteristic in that it can be used as a
partially parallel simplex method, essentially creating a search grid of simplices.
The added computational cost is that many more function evaluations must be
made per simplex, depicted in Fig.8.3. This multidirectional search algorithm has
a comparable performance to finite-difference gradient algorithms and is designed
to be tolerant to problems with many local minima [97]. A further useful property
of the multidirectional search algorithm is that is has guaranteed convergence [307],
similar to gradient following algorithms. The common algorithmic steps of the
Nelder-Mead and multidirectional search algorithms are shown in Fig. 8.3.

To improve stability of the optimisation process, the pulse shape variables are
stored in a database using an md5 hash function during the optimisation iterations
[108] – in the event of the optimisation algorithm halting mid-algorithm due to
unexpected hardware incidents, the optimisation can effectively be resumed from
the same stage after hardware problems have been resolved.
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§ 8.2 Experimental Application

§ 8.2.1 Feedback Optimised Hahn Echo

A two-pulse Hahn echo [117,254] is a good test for this closed-loop feedback control,
using the 1-norm of the echo signal as a figure of merit, as in Eq. (8.1). An
optimised 32 ns π-pulse is the objective of the test, using discretised in-phase and
quadrature components of a shaped waveform. In emulating the time resolution
of the spectrometer, a shape with 33 discrete points should be used as the finest
grid; one point at the start of every time point plus one point at the end of the
last time point.

The optimisation starts at a random guess within the allowed bounds, and proceeds
to search for shapes that produce better echoes. This first test of the feedback
control methods uses the Nelder-Mead simplex algorithm, with termination con-
ditions of a simplex size less than 0.05, or more than 100 consecutive contraction
steps without finding a better solution (indicative of stagnation of the algorithm).
The echoes produced at each of the optimisation iterations are shown in Fig. 8.4.

The results of the feedback control optimisation are not encouraging for these
pulse shapes §B.3. The most obvious failure is that the integral of the in-phase
part of the echo does not improve on that from hard pulses. The optimisation is
considered converged to a local maximum, evident in Figs.B.2, B.3, the latter part
of the optimisation makes many functional evaluations with very little gain. This
is typical of a simplex optimisation which tries many contraction steps before an
improved solution can be found (see Fig.8.3). There are two other characteristics
of the optimisation:

1 The quadrature part of the spin echo indicates an echo without the correct
phase calibration.

2 The pulse shape does not change by an appreciable amount during the op-
timisation.

The first of these characteristics is not so much of a concern: a phase calibration
can be performed after the optimisation and can only give a larger in-phase part
of the echo integral than that shown in Fig. 8.4 a . The second characteristic
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may have two possible reasons: either the variables for the optimisation are not
normalised for an effective optimisation, making too small steps at each iteration,
or there are just too many variables for the optimiser to effectively handle. The
Nelder-Mead algorithm is known to be effective only for low dimensional problems
[171] – there is no gradient to direct the algorithm and it can only be a sophisticated
ad-hoc search [79]. Directed by the limits of the Nelder-Mead algorithm, further
tests of lower dimension are required.

Two further tests are performed, one with approximately 2/3 of the number of time
points and one with approximately 1/3 of the time points. In both cases the total
pulse duration remains the same. The first of these is a 21 point shape and the
results at each iteration of the Nelder-Mead algorithm are shown in Fig. 8.5.

Results are more encouraging for a pulse shape using 21 discrete points §B.3 –
achieving an echo integral 27% better than that of hard pulses (see Fig. B.3).
However, this optimisation makes many function evaluations giving a total op-
timisation time of more than 20 minutes (much longer than an experienced spec-
troscopist would take to find a good echo signal). The majority of the function
evaluations are from inner contraction steps of the simplex algorithm – making
smaller and smaller simplices with little gain. In fact, this optimisation termin-
ates because the relative simplex size was less than the defined numerical tolerance.
This optimisation can be considered stagnated within the noise level of the signal.

The final feedback controlled spin echo experiment shows a further insight into
a hidden sophistication of the optimisation algorithm, when used within its lim-
its. Again reducing the amount of dimensions of the optimisation problem, to
approximately 1/3 of the time points, a shape with 11 discrete points is used as
the variables to the Nelder-Mead algorithm.

These results, shown in Fig. 8.6 and Fig.B.3, produce a good echo integral in a
reasonable amount of time (6-7 minutes). They are considered converged for the
same reason as the 22 point pulse shape – indicating that this number a variables
is low enough for the Nelder-Mead algorithm to function effectively.

A final note, which leads indirectly to the next section of results, is that the
variation of the quadrature part of the echo in Fig. 8.6 covers all phase from
positive to negative offset, finishing at a zero phase offset. Investigating further –
it is evident from the large variation in the quadrature channel of the pulse shape
that the feedback control optimisation is trying to compensate for the ineffective
initial phase calibration (calibrated to that for hard pulses without a quadrature
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Figure 8.5: a In-phase, b quadrature, and c phase parts of the pulse
shape at each iteration. The spin echo experiment performed on a nitroxide
radical and the optimisation variables are 21 discrete shape points of a 32 ns
π pulse. d Real, e imaginary, and f magnitude of the measured signal at
each iteration.
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Figure 8.6: a In-phase, b quadrature, and c phase parts of the pulse
shape at each iteration. The spin echo experiment performed on a nitroxide
radical and the optimisation variables are 11 discrete shape points of a 32 ns
π pulse. d Real, e imaginary, and f magnitude of the measured signal at
each iteration.
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element). This is also evident to a lesser degree from the 22 point pulse shape in
Fig. 8.5.

In effect, these feedback control optimisations are giving better echo signals by
being able to utilise the quadrature pulse channel at the same time as the in-phase
channel, and the only real optimisation is to find the correct signal phase offset to
give the largest echo integral. An important conclusion is that the development
of the waveform shaping equipment in esr spectroscopy must at this point focus
on improving the instrument response function – there is little to gain by seeking
faster arbitrary waveform generators until the width of the convolution kernel is
reduced. The convolution of the 11 point optimum pulse from Fig. 8.6 with the
experimentally measured response function for our EleXSys II E580 spectrometer
is shown in Fig. 8.7.

§ 8.2.2 Feedback Optimised OOP-ESEEM

As an application of optimised spin echoes the oop-eseem experiment, shown in
Fig.8.8, would need to optimise two echoes, one being a maximum echo at a delay
time in the expected maximum modulation, and the other a minimum at the first
minimum of the modulated signal. The objective metric to optimise would reflect
that of a full oop-eseem experiment, but only at these two delays:

J(c) = ‖~sd1 |(g)1

‖~rd1‖(g)
1
− ‖~sd2‖(g)

1

‖~rd2‖(g)
1

(8.3)

where ~sd1 is the echo with a delay d1, corresponding to the first modulation max-
imum, ~sd2 is the echo with a delay d2, corresponding to the first modulation min-
imum, and similarly for the hard pulse reference ~r. The first maximum is placed
at 16 ns and the second at 144 ns (approximate values are found from an oop-
eseem experiment with hard pulses, shown in Fig. 8.9). The superscript (g) on
the 1-norm indicates that the integral is only performed over the integrator gate
width (as would be done for a full oop-eseem experiment, set to 32 ns for these
experiments). The time stepping of the oop-eseem experiments is set to a coarse
6 ns, and only 22 shots-per-point/transient averages are used. In these feedback
controlled optimisations, the initial π/2-pulse is optimised and the π-pulse is left
as a hard pulse. The reason for investigating the initial pulse character is that it
has previously been investigated [306] and found to be important for oop-eseem
experiments.
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Figure 8.8: Out-of-phase ESEEM pulse sequence diagram, showing feedback
control pulse (adapted from [33])

Considering the observation that results from the spin echo optimisation are find-
ing an appropriate signal phase within their quadrature pulse channel, and that
the in-phase pulse channel does not change appreciably from its initial shape; this
should be defined explicitly as part of the optimisation variables.

Chirped pulses [57,58,151] and wurst pulse [292,293] have an easily controllable
phase and will be used as the basis of pulse shapes in this section of work. A
wurst-type chirped pulse can be characterised by its amplitude and phase as

cr = 2π
√
ωbw

T

(
1−

∣∣∣∣sina
(
πt

T

)∣∣∣∣
)

cϕ = π
ωbw

T
t2 (8.4)

where T is the total pulse duration, ωbw is the pulse excitation bandwidth, a is
the sine power used for the amplitude envelope (set to 25% in these experiments),
and t is a time grid from −T/2 to +T/2. The variables of these shapes used for
the objective function are the pulse excitation bandwidth, ωbw, the total pulse
duration, T , the phase offset of the pulse shape, cϕ0, and the nominal pulse amp-
litude of the waveform shape, crmax (defined as a percentage of the maximum pulse
amplitude in the spectrometer configuration). These shapes are characterised by
few variables, which should enable simplex methods to perform effectively after
appropriate scaling.

A first test of this optimisation using the Nelder-Mead algorithm proved unstable –
the discontinuity of the objective variables forced the optimiser into local maxima,
either contracting onto the pulse shape, the pulse length or the phase offset. This
should be expected with discontinuous variables in the Nelder-Mead algorithm [79].



Experimental Application 173

0ns 10ns 20ns
0

+1

π
/ 2

-P
ul

se
Sh

ap
e

M
ag

ni
tu

de
a Amplitude, cr

0ns 10ns 20ns

−π

0

π

2π

P
ha

se
(r

ad
)

b Phase, cϕ

0 0.25 0.50 0.75 1.00
−1.5

−1.0

−0.5

0

+0.5

+1.0

+1.5

+2.0

Si
gn

al
In

te
ns

it
y

(a
rb

.
un

its
)

c Real s(t)

0 0.25 0.50 0.75 1.00

d Imaginary s(t)

1

2

3

4

5

It
er

at
io

n

Delay Time (µs)

Hard Pulse Reference, r(t)
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Now that the dimensionality of the problem has reduced substantially by using
chirped pulses, the multidirectional search algorithm can now become less expens-
ive. Furthermore, the pattern-search type nature of the algorithm allows it to deal
effectively with the discontinuous variables of this optimisation. The results of
using this optimisation method are shown in Fig. 8.9.

The use of a phase offset with chirped-wurst pulses as variables of a multidirec-
tional search optimisation can be considered quite successful in increasing the
modulation depth of the oop-eseem experiment compared to a similar experi-
ment with hard pulses alone. The number of iterations is very low and utilising
a partially parallel version of the simplex method reduces the total time taken to
less than 2 minutes §B.3.

The optimisation can be considered converged because the simplex size reduces to
less than the defined tolerance, which is a feature of the multidirectional search
convergence [307]. These solutions should not be considered unique: the optim-
isation was started from a chirped pulse with a very small bandwidth, almost a
hard pulse. When the optimisation is started from other random starts, it will find
other solutions that give a good modulation depth – these optimisation methods
are not global searches.

It should be noted that the results shown in Fig. 8.9 are explicit oop-eseem
experiments performed at each improved solution. This is for display in this thesis
rather than a need of the optimisation – this only needs two of the 256 echo
experiments needed for an oop-eseem experiment. This extra time to perform
the oop-eseem experiment is not included in the timing of Fig.B.2. Furthermore,
only 22 transient averages were used in the echo signal - because this method takes
a very short amount of time, a much larger number of transient averages could be
used, removing much of the noise in the raw data of Fig. 8.9 at very little cost
compared to increasing the shots-per-point by a similar amount in the oop-eseem
experiment.

Using a simple feedback control with a gradient-free optimisation algorithm of
a shaped pulse can improve the signal intensity of a spin echo esr experiment.
The simplicity, almost naïvety, of this feedback controlled optimisation is that
experiment and sample specific pulse distortions need not be classified, which could
be time-consuming and require rare expertise. Furthermore, this blind method of
finding broadband pulses does not need to be time-consuming and can become a
useful tool, similar to the convenience of an auto-shim.
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This work may be considered an extra tool in the esr optimisation toolbox. Code
to produce examples within this manuscript are a combination of Matlab functions
of the Spinach libraries [130] to parse data, optimise an objective function, and
invoke Python scripts to communicate with the awg using the XeprAPI libraries.
The function of Matlab in this context is a triviality, and code is not shown here.
However, using Python scripts to communicate with the awg in ways set out
in this manuscript is not well documented. These communications scripts are
bundled with Spinach. A user may implement these methods with relative ease
and very little specialist knowledge of the hardware electronics or optimisation
methods. Furthermore, this feedback control can be used in conjunction with
transfer function methods as a fine-tuning of the numerical method [69,123].





§ 9

Summary

Finally, from so little sleeping and so much reading, his brain dried up
and he went completely out of his mind.

– Miguel de Cervantes Saavedra, Don Quixote

A Newton-grape method was developed using efficient calculation of analytical
second directional derivatives. The method was developed to scale with the same
complexity as methods that use only first directional derivatives. Algorithms to
ensure a well-conditioned and positive definite matrix of second directional derivat-
ives are used so the sufficient conditions of gradient-based numerical optimisation
are met.
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§B

The Arbitrary Waveform
Generator in Optimisation

§B.1 AWG Schematics

A schematic block diagram of an awg is shown in Fig.B.1 and has the following
function:

1 A set of pulses, in the form of a specified code, is sent to the awg through
an Ethernet port, processed by on-board computation hardware.
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Figure B.1: The Bruker SpinJet Schematics.
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2 Pulses are formed on an in-phase channel (I channel) and an 90◦ out-of-phase,
quadrature channel (Q channel).

awgI = cosωat
awgQ = sinωat

3 Two awg channels are connected to the I and Q ports of an IQ-mixer.

4 The IQ-mixer takes the amplified signal from a microwave source, then split-
ting this into an in-phase channel and its quadrature channel

LOI = cosωot
LOQ = sinωot

where ωo is the angular frequency of the carrier, microwave signal (local
oscillator).

5 Separately for the I and Q channels, the awg channel and corresponding
microwave channel are mixed.

I = cos (ωo − ωa)t+ cos (ωo + ωa)t,
Q = sin (ωo − ωa)t− sin (ωo + ωa)t

6 These two mixed signals are then recombined at the final stage of the IQ-
mixer.

§B.2 Xepr Python code

To programme a feedback loop on to the combination of awg and spectrometer,
Python interpreted XeprAPI scripting can be used for operation of the Xepr ap-
plication by Bruker BioSpin. XeprAPI can be easily combined with the language
ProDeL{I} used in PulseSPEL files as a back-end to the Xepr console software.

{I}PROcedure DEscription Language embedded within the Xepr software
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Load current experiment

A header script must be invoked at the start of every Xepr Python script, to
import libraries needed and to locate and load the Xepr API module. After the
header, XeprAPI.Xepr() creates the Xepr object and connects to the Xepr soft-
ware, the API has to be enabled within the Xepr GUI menu{I} API. Also common
to Xepr scripts is the command to create/access an experiment object of the Xepr
application, invoked with cur_exp = Xepr.XeprExperiment(), to access the cur-
rent Xepr experiment or config = Xepr.XeprExperiment(“AcqHidden”) to ac-
cess Xepr’s hidden experiment object.

The current experiment object must be imported to the current workspace, as-
suming there is a current experiment on the spectrometer. The hidden experiment
object will become useful in modifying some parts of the experiment.

1 # load the Xepr API module into Xepr structure
2 Xepr = XeprAPI .Xepr ()
3

4 # define the current and hidden experiments
5 currentExp = Xepr. XeprExperiment ()
6 hiddenExp = Xepr. XeprExperiment (" AcqHidden ")

Acquire signal data

Measure the 1D or 2D signal as an array of real numbers, corresponding to relative
intensity of the measured signal. The current experiment object should already
be imported to the workspace. The signal data should be stored in a plain text
file to be used later, within Matlab.

Having established a connection to Xepr through the XeprAPI module, and
accessed a current experiment within the Xepr GUI{II}, the next task is to modify
values of variables that will become the variables of the objective function.

1 # run compiled experiment , wait until finished
2 currentExp . aqExpRunAndWait ()
3

4 # acquire current signal dataset
5 dset = Xepr. XeprDataset ()

{I}Processing → XeprAPI → Enable Xepr
{II}An initial experiment should be set up within the Xepr GUI before these scripts are invoked;
the intention is to modify values of variables already set within the Xepr GUI.
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6

7 # separate data into x, real(y), and imag(y)
8 ordinate = dset.O
9 x_signal = dset.X

10 rY_signal = ordinate .real
11 iy_signal = ordinate .imag

Modify PulseSPEL variables

PulseSPEL definitions from the definition file can be modified by initially parsing
all PulseSPEL parameters contained in the experiment and then matching them
with inputs to the Python script, the matched parameters can then be modified
as instructed. The first input to the Python script is the variable name and the
second is the new value.

1 # get current PulseSPEL variables
2 Defs = currentExp . getParam (" PlsSPELGlbTxt "). value
3 Defs = Defs.split("\n")
4

5 # replace matched PulseSPEL variables
6 for value in Defs:
7 if str(sys.argv [1]) in value:
8 new = str(sys.argv [1])+" = "+str(sys.argv [2])
9 currentExp ["ftEPR. PlsSPELSetVar "]. value = new

The script will read comma-separated variable names stored in the first line of
the text file data_varsfile.txt, which can be created from within Matlab, then
match them to similarly ordered comma-separated variable values in the second
line of the text file. Although it is not ideal to pass variables from one script to
another in this way, it is a simple way which works given a waiting time between
commands. The script also contains an error handling for variables defined in
data_varsfile.txt which have not been previously defined in the Xepr exper-
iment. The command cur_exp[“ftesr.PlsSPELSetVar”].value = cmdStr sets
the current experiment’s PulseSPEL variables to those scraped from the externally
created data_varsfile.txt file to the string cmdStr.

Load shape file

Assuming a plain text shape file has already been created, the code to send this
shape to the experiment involves loading this shape file to the workspace, then
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compiling it. The argument of the Python script is the name of the shape file.
When a maximum number of uploads is reached, 115, the current experiment
should be reset (not shown here).

1 # Load shapefile into PulseSPEL
2 Xepr. XeprCmds . aqPgShpLoad (str(sys.argv [1]))
3

4 # Show shapefile in PulseSPEL window
5 Xepr. XeprCmds . aqPgShowShp ()
6

7 # Compile shapefile into experiment
8 Xepr. XeprCmds . aqPgCompile ()

The final step is to run the current experiment with the modified variables with
the command cur_exp.aqExpRunAndWait() and wait for the experiment to finish.

Within an objective function, a Matlab optimisation should modify the values of
the variables in the file data_varsfile.txt at each iteration, then to call the
Python script to send these modified values to the spectrometer. The result of
the modified experiment should pass a metric to be maximised/minimised back to
Matlab’s optimisation; the objective of the objective function. A simple metric to
use would be that which gives the best echo signal i.e. maximising the echo.

The echo signal data must be read from the Xepr software, again, this is achieved
with the XeprAPI. Script that acquires the Xepr data with the command dset
= Xepr.XeprDataset(), then to sort and store relevant data in three text files to
be read by Matlab’s objective function an interpreted as an echo. A simple echo
signal maximisation would maximise the integral of the echo shape.

The optimal control strategy set out so far is no more than an automatic calibra-
tion, which a moderately experienced experimenter can achieve in very little time
through the Xepr GUI. In fact, with error handling and waiting times included in
the Python scripts outlined so far, each experimental modification will take a num-
ber of seconds: a simplex method would take a long time to search through this
variable space to its optimal experimental settings. However, this is just a simple
example to text the two-way communication between an optimisation algorithm
and its “hardware objective function”.
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Experiment: oop-eseem
Pulse sequence: hν → π

2 → π → s(t)
Optimised Pulse: π

2 -pulse
π
2 pulse length: 2ns≤variable≤160ns
π pulse length: 32ns
Phase cycling: 16-step

Transient averages: 22
Algorithm: NM MDS

Pulse shape: wurst wurst
Phase offset: nome −π

2 <variable≤ +π
2

Iteration X #f(c) J(c) X #f(c) J(c)
1: I 4 0.20 I 5 1.25
2: E 2 0.39 R 8 1.29
3: C 2 0.56 C 16 1.46
4: R 2 0.79 C 8 1.63
5: C 2 1.03
6: S 7 1.20
7: S 7 1.20
8: S 7 1.20
9: C 2 1.20

Total experiments: 2×42 2×37
Total time: 218s 99s

Average f(x) time: 5.2s 2.7s

Figure B.2: Results of the feedback control optimisation of oop-eseem exper-
iments using Nelder-Mead (NM) and multidirectional search (MDS) algorithms.
J(c) is the quality of the echo signal. #f(c) is the number of functional eval-
uations (2 experiments for oop-eseem). The step is the type of simplex X =
at that iteration – I = initial, R = reflect, E = expand, C = contract, S =
shrink. The termination condition of the algorithms was a simplex size < 0.05
or no progress was made after 150 experiment evaluations were made during
the contraction steps. In each case the objective vale was normalised to the
same measure from the same experiments using conventional hard pulses.

§B.3 Feedback Control Results Tables

Figs. B.2, B.3 outline the results obtained in §8.2 for the feedback control of
2-pulse Hahn echo experiments and oop-eseem experiments. The variables of
optimisation are the piecewise triangular shape increments of a π-pulse in the echo
experiments, and the wurst pulse shape parameters (pulse length, amplitude,
phase offset, and pulse excitation bandwidth from Eq. (8.4)) in the oop-eseem
experiments.
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Experiment: 2-pulse echo
Pulse sequence: π

2 → π → s(t)
Optimised Pulse: π-pulse
π
2 pulse length: 16ns
π pulse length: 32ns
Phase cycling: none

Transient averages: 200
Algorithm: NM NM NM

Pulse shape: 33 point 21 point 11 point
Phase offset: none none none

Iteration X #f(c) J(c) X #f(c) J(c) X #f(c) J(c)
1: I 67 0.43 I 43 0.75 I 23 0.71
2: R 2 0.44 E 24 0.83 E 4 0.71
3: E 20 0.47 E 16 0.89 E 2 0.80
4: E 20 0.52 E 18 1.09 E 6 0.84
5: E 16 0.59 E 40 1.09 E 2 1.02
6: E 26 0.72 E 58 1.16 E 10 1.03
7: E 60 0.93 E 58 1.21 E 2 1.23
8: E 104 0.98 E 20 1.21 E 28 1.27
9: R 24 0.98 R 2 1.22 R 14 1.28

10: R 2 0.98 E 36 1.24 C 26 1.28
11: R 14 1.24
12: E 16 1.24
13: R 18 1.25
14: R 16 1.27

Total experiments: 341 389 119
Total time: 1030s 1273s 380s

Average f(x) time: 3.0s 3.3s 3.2s

Figure B.3: Results of the feedback control optimisation of 2-pulse echo exper-
iments using the Nelder-Mead (NM) algorithm. A number of contraction steps
are omitted from the 2-pulse echo experiments, where no objective improve-
ment was made. J(c) is the quality of the echo signal. #f(c) is the number
of functional evaluations (1 experiment for the 2-pulse echoes). The step is the
type of simplex X = at that iteration – I = initial, R = reflect, E = expand,
C = contract, S = shrink. The termination condition of the algorithms was a
simplex size < 0.05 or no progress was made after 150 experiment evaluations
were made during the contraction steps. In each case the objective vale was
normalised to the same measure from the same experiments using conventional
hard pulses.
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Echo experiments all start from a random π-pulse shape and oop-eseem experi-
ments start with random parameters of the wurst pulse at 32 ns, seeded from the
same random number. All wurst pulse shapes have a amplitude envelope of 25%
rise/fall time. Convergence characteristics of these feedback control experiments
are shown in Fig.B.4.
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