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An improved finite element method for predicting sound propagation in non-uniform
flows is proposed. Sound waves are described by the linearised potential theory solved
in the frequency domain. Solutions are calculated using the p-FEM method with high-
order, hierarchic shape functions which results in a drastic improvement in computational
efficiency. The memory and time requirements for solving large-scale problems are sig-
nificantly reduced compared to standard finite element methods. An additional feature
presented in this paper is an adaptive scheme to select the optimal interpolation order in
each element so as to achieve a prescribed accuracy. This greatly simplifies the preparation
of the numerical model. When performing a series of calculations at different frequencies
there is no need to adjust the mesh to maintain a sufficient resolution. Instead the adaptive
p-FEM method adjusts the interpolation order automatically to ensure an accurate solution
is obtained. The performance of the method is demonstrated for three-dimensional test
cases for noise radiation from a turbofan intake. Guidelines for preparing models using
this adaptive, high-order approach are also discussed.

I. Introduction

Computational models predicting the propagation and radiation of noise from aero-engines remain a
crucial tool to support the acoustic design of various components of turbofan engines, a good example being
the optimisation of acoustic liners on the nacelle of the engine Arguably the most widespread scheme
for this purpose is the linearised potential equation solved in the frequency domain with standard finite
elements. This approach forms the basis for commercial codes routinely used in industry. One of the main
limitations of this approach is the computational resources required since the size of the problem and the
upper frequency limit that can be considered are dictated by the memory available. In practice a range of
frequencies are considered and a separate simulation has to be performed for each of these. In addition,
for automated design optimisation it is necessary to perform a large number of calculations to explore the
design space, multiplying even further the resources required22 Improvements in the efficiency of current
computational schemes are required if these tools are to be used more systematically to tackle large problems
at high frequencies.

The present paper proposes an improved finite element method delivering a significant reduction in
computational cost (both memory and time) and discusses its use for realistic, large-scale problems in an
industrial context. The first feature of the proposed method is the use of high-order shape functions (in this
work from order 1 to 10), which lead to a drastic reduction in the dispersion error in the numerical model,
thus allowing the use of much larger elements. The second feature is to use a hierarchic family of Lobatto
shape functions. In this way it is possible to re-use the same element matrices for a number of calculations
at different frequencies. The third feature of the proposed method is to adapt the order of interpolation in
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each element so as to achieve a target error using a simple error estimator. This greatly simplifies the use of
this method for non-uniform flows and for calculations over multiple frequencies.

While high-order methods have been used for time-domain models of flow acoustics, mainly with the
finite-difference or discontinuous Galerkin methods, they bring about stability issues associated with non-
uniform flows? and impedance conditions®® The frequency-domain approach is more robust but its use
with high-order techniques has been limited” and adaptive schemes have yet to be proposed and validated
for this approach.

The propagation model for waves in a potential base flow is introduced in the next section, followed
by a description of the high-order finite element methods in section [Tl including the adaptive scheme. A
generic turbofan test case and the corresponding mean flow configurations and source models are introduced
in section [[V] Finally, examples of results are presented in section [V] to illustrate the benefit of the proposed
method compared to the standard finite element method and to discuss best practice for this high-order
approach.

II. Sound Propagation Model

We model the propagation of sound waves in a steady, potential base flow using the linearised potential
equation:
Do (1 Doo

e (2 ) = V- (Vo) =0, )

where Do/Dt = 9/0t + ug - V represents the material derivative in the mean flow uy. The mean sound
speed and density are denoted by ¢y and pg. With this scalar equation the sound field is described by the
potential ¢ from which the acoustic velocity is derived (u = V¢). The acoustic pressure and density can
also be calculated from ¢ using the relations p = —pgDo¢/Dt and p = p/c2.

The wave equation is solved in the frequency domain by assuming an implicit time dependence e
This model represents the convective effect of the flow on the sound field, but does not include the refraction
effect that would be induced by a sheared mean flow. It is however well suited for applications such as the
radiation of sound from turbofan intakes.

For the purpose of predicting noise radiation from aeroengines various boundary conditions should be
considered. For hard-wall surfaces the normal acoustic velocity vanishes: u-n = d¢/0n = 0 where n is the
unit normal pointing into the surface.

Surfaces that are acoustically treated are characterised by their acoustic impedance Z(w), assuming a
locally reacting liner. In the presence of a base flow we use the Myers® impedance condition to describe the
coupling between the liner and the sound waves in the presence of an infinitely thin boundary layer above
the liner. This boundary condition reads:

@ o ;po (DO 8uo> D0¢

+iwt

on  iwZ \ Dt " on ) Dt - 2)

To represent sound radiation to the far field, Perfectly Matched Layers (PML) are implemented around
the boundary of the domain to absorb any outgoing waves and remove spurious reflections 1% The PML can
also be used to generate a sound field entering the computational domain 12 This so-called ‘active’ PML
is used to define the source of sound radiating from the engine, typically from the fan. These sources are
generally described in terms of acoustic duct modes. Although not required for this particular application,
another possibility is to extract the aerodynamic noise sources from an unsteady CFD calculation, using
an appropriate acoustic analogy. The source models can either be based on flow wall pressure, which is
used to define equivalent acoustic boundary conditions,*¥ or on volume flow velocity fluctuations, to define
equivalent quadrupole sources. 4

The calculation of the sound radiated to the far field is performed using a Kirchhoff surface that allows
to extrapolate the near-field solution to the far field. This Kirchhoff formulation includes the effects of a
uniform mean flow outside of the control surface, through the use of the Lorentz tranformation 12
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III. Adaptive High-Order Finite Elements

III.A. High-order FEM formulation

A variational formulation for the scalar wave equation is obtained by applying the standard Galerkin
approach and requiring that the residual of is orthogonal to a test function 1. After integration by parts
the following weak formulation is obtained:

2 o Doy Dog 7PoDod 90 o _
/onvw Vo BastieCan s [ G n s <0, (3)

where  is the computational domain and 912 its boundary. The overbar denotes the complex conjugate.

The various boundary conditions described in the previous section are implemented by modifying the
boundary integral accordingly. The implementation of the Myers condition proposed by Eversman? is
used.

The variational formulation is discretised using the high-order finite element method %18 The
so-called p-FEM approach leads to a drastic reduction of memory requirements and run times for two-
dimensional as well as three-dimensional Helmholtz problems when compared to conventional FEM %20
The p-FEM method has also shown to deliver comparable, and in some cases even superior, performance
compared to a high-order Trefftz method?!. The key benefits of p-FEM (e.g. low dispersion error, exponential
p-convergence) are also retained in the presence of background mean flows %

The domain §2 is approximated in the usual way with a tessellation of non-overlapping elements. On
each element the approximation of the solution ¢ is constructed as a linear combination of high-order shape
functions ¥, (x) and the Lobatto shape functions are used in this work™ In three dimensions, they combine
four different types of shape functions and the solution is written:

Ne(p) Nt (p) Ny (p)

Z Bn W (x Z G5 (x)+ > LT Z PP (x (4)
n=1

where the degrees of freedom ¢, are the complex amplitudes of each shape function. p is the overall
polynomial order of the approximation. The nodal shape functions U2 (x) are the standard linear shape
functions whose associated degrees of freedom are the values of the solution at the nodes of the elements.
The edge and face shape functions, W€ (x) and Wf (x), are defined on the corresponding geometric entities.
The fourth category are the so-called ‘bubble’ shape functions WP (x) which vanish on the boundary of
each element. For instance for a tetrahedron, the numbers of shape functions are N, = 4, N, = 6(p — 1),
Ne=2(p—2)(p—1)and Np, = (p—3)(p — 2)(p — 1)/6.

A key property of the high-order FEM is that it is possible to eliminate the degrees of freedom associated
with the bubble shape functions since these degrees of freedom do not interact with neighboring elements.
This technique, called condensation, allows to reduce the size of the global linear system before it is assembled
and solved, hence reducing the memory requirements*¥ The Lobatto shape functions provide a number
of additional benefits. They exhibit good performance and conditioning for Helmholtz problems® Their
‘hierarchic’ nature implies that the shape functions at order p form a subset of the shape functions at order
p+ 1. This key property implies that p-FEM can easily handle local order variations: two adjacent elements
can coexist with different polynomial orders. This is in contrast with high-order Lagrange interpolation
functions which cannot handle easily different orders for two contiguous elements. To ensure the continuity
of the numerical solution the order p for a given edge or face shared by several elements is chosen based on
a so-called conformity rule™ From the polynomial orders defined for each element, one can assign a unique
interpolation order to each edge and to each face of the mesh, based on a given conformity rule” In this
work the so-called ‘maximum rule’ is used: the polynomial order assigned to a given face or edge in the
mesh is equal to the maximum order of all elements sharing this face or edge. This approach guarantees
that the polynomial order of any shape function associated with a given element is consistent with its order
of approximation. This approach has been shown to yield robust approximations, even in the presence of
highly non uniform meshes2%

These features of p-FEM with Lobatto shape functions are particularly useful when simulating aero-
engine noise propagation. Firstly, when applying the standard finite element method for problems with
strongly non-uniform flows it is necessary to refine the mesh in the regions where the mean flow velocity
is high since in these regions the acoustic wavelength can be significantly reduced by the flow convective
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Figure 1. Relative error ¢, 2(kh, p) measured on a single 1D element with the polynomial order p varying from 1 to 10.

effect ! In practice this is addressed by manually refining the mesh in these regions. Secondly, typical use
cases of these methods involves performing not one but several calculations for every frequency of interest
(typically the center frequencies of the third-octave bands). The requirements in terms of mesh resolution
can vary significantly between these frequencies. One has to generate several meshes to maintain a sufficient
accuracy at all frequencies while minimising the computational cost, which is time consuming for the user.
Another option is to generate a single fine mesh capable of resolving the complete range of frequencies, which
drastically increases the time and computational resources needed for the analysis. The use of a variable
polynomial order in each element provides a way to address these two issues. Using an adaptivity rule to
define the polynomial order in each element it is possible to ensure that the numerical error on each element
is controlled locally in terms of the element size, frequency and flow properties.

Calculating and assembling the matrices from every element yield a sparse linear system of equations
which is solved using the fast, parallel multi-frontal solver MUMPS 23124

ITI.B. A-priori error indicator

Bériot et al. introduced an a priori error indicator for the p-FEM method applied to the Helmholtz equa-
tion.2¥ Despite its apparent simplicity, this indicator was shown to efficiently control the global numerical
error in realistic two-dimensional and three-dimensional problems with strong mesh non-uniformities.

With this approach, the numerical error incurred on a given element is estimated a priori, based on the
numerical error measured on a single, one-dimensional element with equivalent wavenumber k£ and length h.
For this single element, appropriate Robin boundary conditions are applied so that a single wave of the form
ewt—ikz ig generated and leaves the computational domain without spurious reflection. The one-dimensional
Helmholtz variational formulation is solved and the relative L? error, denoted €2, is measured. This error
is a function of only the polynomial order p and the mesh resolution kh, as shown in Figure [f}

The adaptive approach consists in selecting the interpolation order p in each element so as to remain
below a target L? error Et in the 1D element. In practice, one does not need to solve the 1D model for every
element of the mesh, since the order p(kh, Et) required to have er2 < Et can be tabulated in terms of the
mesh resolution kh and error level Ex. This is illustrated in Table [1] for three levels of accuracy Er = 15%,
5% and 0.5%. This table can be used to directly determine the element order based on the local values of k
and h.

Note that different definitions of Et have been considered (using the L? or H! norms), as well as different
definitions of the equivalent length h for the 1D model (minimum, maximum or average values of the edge
lengths). Based on the detailed comparisons in Reference 3|, the length h of the 1D element is defined as the
average edge length of the actual element and the target error is specified in terms of the L? error on the
1D element.

The proposed error indicator was originally designed for Helmholtz problems?? We show here that it
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oderp | 1] 23|45 6| 7] 8] 9 |10]
Er=15% | 15|29 |46 | 6481|101 | 11.8 | 13.7 | 155 | 174
Er=5% |08 |20 345066 84 |10.1|11.9 | 13.7 | 154
Er=05% 0209|1931 |45 59 | 74 | 89 | 106 | 12.2

Table 1. Values of kh required to achieve a given accuracy at a given order p.

can be extended to the convected Helmholtz equation by generalizing the definition of the mesh resolution
kh used in Table [II When a base flow is present, the effective acoustic wavelength varies with the angle of
propagation relative to the flow direction. For problems of practical relevance, upstream and downstream
waves can coexist in the solution and the choice of a grid resolution should rely on the shortest possible
wavelength, i.e. the upstream wave. The mesh resolution is therefore measured using

w

kh= — 3" ()
where M = |jugl| /co is the local Mach number of the base flow. This definition can lead to over-resolved
solutions in areas where only waves propagating downstream are present. However, previous analysis?2>
indicates that a sufficient resolution for the upstream wave is required in order to ensure the accuracy of the
discrete model, even when only downstream waves are present. Otherwise, the FEM solutions are likely to
suffer from strong aliasing effects.

III.C. Efficient multi-frequency calculations

As mentioned above, a hierarchical set of shape functions is particularly useful when solutions are required
over a range of frequencies. It is possible to compute the element matrices only once for the highest order
and then for each frequency one can extract the required portion of these matrices to assemble the global
matrix. This is crucial as the cost of calculating high-order element matrices is significant due to the large
number of quadrature points involved.

This approach, combined with the error indicator presented in Section [[IL.B] leads to an efficient high-
order adaptive strategy, which is outlined below. In what follows, the superscript 7 denotes the quantity
computed at a given frequency f;.

1. For each frequency f; the a priori error indicator allows to identify the order p! required in each
element e to achieve the user-defined error target Er.

max

max required across the frequency range is identified.

2. For each element e the highest polynomial order p

3. Using the maximum conformity rule described above, the highest polynomial orders used for each edge
and face in the mesh is determined.

max

4. For each element e, the element matrices for the highest order p2'®* are evaluated and stored. Thanks
to the hierarchical structure of the Lobatto basis, these matrices also contain the smaller matrices that
will be used for the lowest orders.

5. At each frequency i, the submatrices corresponding to the local order p are recovered and assembled.
The resulting global linear system is solved and the solution is post-processed.

With this simple approach, all the element matrices are evaluated only once, which renders the construc-
tion of the discrete system negligible for problems involving a large number of frequencies.
ITII.D. Mesh requirements

As explained above the use of an adaptive high-order scheme changes significantly the requirements and best
practice associated with the finite-element meshes. When using standard, fixed-order FEM methods for flow
acoustics (typically with quadratic elements), the mesh resolution is dictated by the frequency, the mean
flow velocity which influences the effective wavelength, and the geometry of the problem at hand. In practice
this implies generating several meshes to cater for different mesh resolution at different frequencies, based
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on a guideline such as 8 or 10 points per wavelength. One also has to adjust the local mesh size to the local
mean flow properties to ensure that the sound field is sufficiently resolved throughout the computational
domain. This is why generating meshes is often the most time consuming part of the simulation process.

With the proposed high-order approach the increase in resolution required for higher frequencies and flow
speed is automatically provided by the adaptive change of interpolation order in each element. There are
still constraints on the element size associated with the maximum order available (in this work ppa.x = 10).
The mesh resolution should be sufficient to obtain accurate results at the highest frequency and for the
highest flow speed when using p = ppnax. Based on the definition of the mesh resolution , for a maximum
frequency fiax, the following guideline for the element size can be inferred

co(l — M)

)
fmax

where the constant Cp, is adjusted according to the required accuracy and the maximum order available.
From the tabulated values in Table 1| for ppax = 10 one finds that Csg = 15.4/27 = 2.44 and Cy 59 =
12.2/21 = 1.94. Following this guideline, a single mesh can be generated for a range of calculations at
different frequencies.

Another constraint is to maintain an accurate representation of the problem geometry. For this purpose,
using standard, linear shape functions for the geometry of the elements should be avoided. For the examples
shown in this paper, elements with quadratic geometries proved sufficient to use coarse meshes while still
representing the problem geometry accurately. The generation of finite-element meshes with high-order
geometries is currently the subject of active research2%27 An alternative approach is to incorporate the
exact geometric description, based on B-splines for instance, directly into the finite element model2®22,

h < Cg, (6)

IV. Application to a Generic Turbofan Intake

IV.A. Description of the test case

A generic turbofan intake is used as a test case to benchmark the proposed numerical method. This section
provides the relevant information concerning this test case and more details are available in Prinn® and
Mustafi

The geometry of the axi-symmetric intake is shown in Figure [2] The main components are the spinner
and the nacelle which have been positioned and scaled so that the fan radius is R = 1.2m and the notional
fan face is located at z = 0. The outer radius of the nacelle is 1.5m. For the purpose of the mean flow
calculation and the acoustic simulations a straight, annular ‘fan duct’ is added downstream of the fan face.
For the flow calculation this duct is used to obtain a uniform flow on the outflow condition.

1.6 T T T T T T T T T T

06|

04

0.2F

0 1 1 1 L L B L 1 1

)
04 02 0 02 04 06 08 1 12 14 18
z[m]

Figure 2. Axi-symmetric geometry of the intake with the spinner (blue), nacelle (red), fan face (dashed line), fan duct
(green), source plane (magenta), extension of the nacelle (cyan). The end points of the liner are shown by the black
symbols

Three standard flow configurations are considered: sideline (at take-off when the engines are at full power),
cutback (at take-off with reduced rate of climb and engine power) and approach (low speed condition before
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Figure 3. Mean flow Mach number for the different flow configurations.

landing). The three flow configurations differ only by the Mach number at the fan face with My = 0.55,
0.45 and 0.22 for the sideline, cutback and approach conditions, respectively. For simplicity, the conditions
at infinity are as follows: sound speed co, = 340m/s, density ps = 1.2kg/m3 and Mach number M., =
Uso/Coo = 0.25. The local flow Mach number for these three configurations is shown in Figure These have
been obtained using a potential, compressible, inviscid flow model.

Tonal noise is present at the Blade Passing Frequency (BPF) and its harmonics. The Blade Passing
Frequencies for the approach, cutback and sideline cases are 700 Hz, 1050 Hz and 1300 Hz, respectively. The
BPF tones consist of a multi-mode component and a single-mode component. The multi-mode component
consists of all the cut on modes at that frequency, while the single mode component consists of a single
rotor-locked mode which is the first radial mode of the azimuthal order nB with B = 24 the number of fan
blades and n the harmonic of the BPF.

The inner wall of the nacelle is acoustically lined with a locally reacting treatment. The end points
of the liner are shown in Figure [2 and are defined by the axial positions z = 0.08R = 0.096m and z =
0.98R = 1.176 m, corresponding to an axial length of 0.9R = 1.08 m. The impedance function used for this
liner is that of the standard single-degree-of-freedom perforate liner, see equation 5 in reference The
non-dimensional resistance and mass reactance of the perforate are R, = 2 and M, = 0.023. The cavity
depth is 0.02m.

IV.B. Numerical model

The computational domains used for the simulations are shown in Figure [f] where the different boundary
conditions are also highlighted. The noise source is introduced through a duct mode boundary condition
which is defined on the source plane located at z = —0.4m. The unbounded region in front of the intake is
truncated at a boundary I. On this boundary, an Automatically Matched Layer®! (AML) is used, resulting
in the automatic addition of a PML region outside T.

For this particular application, the location of the truncation surface I' is of particular importance as
it influences the accuracy of the solution in two different ways. Firstly the performance of the PML as a
non-reflecting region improves when it is located farther away from the source. Placing the absorbing region
too close to the nacelle lips may lead to spurious reflections inside the domain. Secondly, the surface I is
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Control line #2

Control line #1

A

Figure 5. Two examples of truncation surface I' defining
the short domain (red) and large domain (green).

Figure 4. Computational domain and boundary condi-
tions: duct modes (red), liner (yellow), AML surface
(blue). Two control lines are also shown.

Sideline Cutback Approach
Co Po (ol €0 Po [ €0 Po [[uo]
short domain || 333.7 | 1.09 | 79.82 | 335.4 | 1.12 | 79.29 | 340.5 | 1.21 | 82.49
large domain || 338.4 | 1.17 | 83.82 | 339.0 | 1.18 | 83.98 | 340.5 | 1.21 | 84.50

Table 2. Flow properties obtained by averaging on the truncation surface. These should be compared against the
far-field values coo = 340m/s, poo = 1.2 kg/rn3 and us = 85m/s.

used as a control surface to apply the Kirchhoff integral and calculate the solution in the far field 18 This
integral formulation is based on the assumption that the waves propagate in a uniform flow. Ideally, the
mean flow should be uniform on the surface I and equal to the far field, but in practice this is not the case
and the variation of mean flow properties on I' can change slightly the far-field predictions. There is therefore
a trade-off between reducing the size of the domain to minimise the computational cost while maintaining
an sufficient level of accuracy in the predictions.

For the results presented below, two truncation surfaces have been used, as shown in Figure [5] resulting
in two different computational domains, with volumes 14.5m3 and 30.5m?3. In practice, the mean flow
properties used in the Kirchhoff formulation are obtained by averaging the nodal values on the surface I'.
Indicative averaged mean flow properties used in the Kirchhoff integral for the short and large domains are
given in Table [2] for the three flow configurations. These results are indicative because they are based on a
nodal averaging, which may slightly vary from one mesh to the other. However, for the meshes used in this
study, the density of nodes is such that these differences are negligible.

These averaged quantities indicate that the short domain can be used for the approach mean flow config-
uration with less than 3% mismatch between uo, and the averaged value of ||ug||. However, more significant
discrepancies are observed for the short domain in the case of the cutback and sideline configurations, where
the mismatch exceeds 6%. Numerical experiments indicate that this may lead to differences in the predicted
sound directivity, and therefore, for these mean flow conditions, the larger domain should be preferred.

Once the truncation surface is created, the acoustic mesh can be generated based on the guideline given
in @ for the element size. The next step involves mapping and interpolating the mean flow values obtained
from the potential, compressible, inviscid flow model onto the acoustic mesh using the existing Virtual.Lab

interpolation procedure 3T

V. Numerical Results

The objective of this section is to examine the benefits of the high-order adaptive solver in terms of
performance (computational time and memory requirements), but also in terms of model creation process. All
computations reported in this section were performed for fully three-dimensional models using the FEMAO
solver (Finite-Element Method with Adaptive Order). This solver is an implementation of the present
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(a) FEM (b) FEMAO I (c) FEMAO II

Figure 6. Tetrahedral meshes for the short computational domain used for the approach configuration at 2 BPF.

adaptive p-FEM approach written in Fortran 2003 and using the MUMPS library to solve large, sparse
linear systems. This solver is now used in an industrial context as part of the simulation package Virtual.Lab
Acoustics®l All computations reported hereafter were performed on a Dell Poweredge R730XD equipped
with two Intel Xeon E5-2667 CPUs with 16 cores running at 3.20GHz and with 384 GB of memory.

V.A. \Verification against standard FEM

The adaptive, high-order method is first benchmarked against a standard finite-element method using
quadratic shape functions for all the elements. The approach configuration at the first harmonic of the

blade passing frequency (1400 Hz) is considered. Based on the following definition of the Helmholtz num-

ber32
wR

kR= ————
Co(l — Mf)

(7)
this corresponds to a kR of 40, which provides a representative example of challenging cases for three-
dimensional FE models. In this definition of the Helmholtz number, R and M are the fan radius and fan
face Mach number, respectively, as defined in Section IV.A.

The short computational domain shown in Figure [5|is chosen, as the mean flow properties are deemed
sufficiently uniform on the truncation surface in this case to calculate the far-field directivity. Three tetra-
hedral meshes are generated for this particular configuration. These include a refined mesh for the FEM
reference solution, and two coarser meshes for the high-order simulations. For all three meshes, the tetra-
hedral elements use quadratic shape functions for their geometries so as to represent more accurately the
curved boundaries of the computational domain.

Axial cross sections of the three meshes are shown in Figure[6] For the FEM mesh, a minimal resolution
of 8 nodes per wavelength is applied, which leads to a typical element size of h = 46 mm based on the
wave propagating upstream in the far field (M = 0.25). The resulting mesh contains 2996 168 nodes and
2208 549 quadratic tetrahedral elements. The first coarse mesh, denoted FEMAO 1, is generated from the
same surface mesh of the nacelle as the FEM model. Larger elements of typical size h = 300 mm are then
used in the bulk of the domain and on the outer AML surface. This first mesh will allow to demonstrate
the benefits of using higher-order approximation while retaining exactly the same geometric accuracy as the
FEM model. A second coarse mesh, denoted FEMAO 11, is created with a typical mesh size of A = 300 mm
on the surface boundaries and inside the volume. Mesh refinements are applied close to the hard-soft and
soft-hard lining transitions (h = 80 mm) in order to better capture the strong pressure gradients that may
appear in this region. The main properties of the three meshes are outlined in Table The high-order
coarse meshes contain far less nodes and elements than their FEM counterpart.

To assess the results of the high-order models against the standard finite element solution, two duct
modes are considered individually: namely the mode (12,1) and the mode (24,1), each with unit power.
Their cut-off frequencies are 611 Hz and 1160 Hz, which makes them representative of a well cut-on and a
close to cut-off mode at 2BPF (1400 Hz), respectively.
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Mesh Nodes Elements Rmax Rmin

FEM 2996168 | 2208549 | 46mm | 40 mm
FEMAO I 320978 215693 | 300mm | 40 mm
FEMAO II 50186 33247 300mm | 80 mm

Table 3. Properties of the meshes used for the comparison using the approach condition at 2 BPF.

il )

) FEMAO I (Er = 5%) (b) FEMAO II (E1 = 5%) ) FEM
) FEMAO I (Er = 5%) (e) FEMAO II (Er = 5%) ) FEM

Figure 7. Real part of pressure on a cross-section of the three-dimensional solutions for the approach condition at 2
BPF. Mode (12,1) (top) and mode (24,1) (bottom) with unit power.

The target accuracy for the adaptive scheme is first set to intermediate accuracy (ErT = 5% as described
in section . Figure El shows the pressure fields obtained with the high-order adaptive method using the
two coarse meshes alongside the solution from the quadratic FEM solution. The pressure distributions are
in excellent agreement for both modes. While the mode (12,1) efficiently propagates to the far field, the
mode (24,1) is strongly attenuated by the liner and does not radiate outside the duct.

In order to examine the numerical solutions in more details, Figure |8| presents the acoustic pressure along
a control line following the inner wall of the nacelle (see Figure [4] for an illustration of the position of this
control line). The pressure distributions between the FEM and the two adaptive solutions with Er = 5%
exhibit excellent visual agreement for both modes. This is confirmed by computing the relative L?-norm of
the error along this control line when considering the FEM solution as a reference. The FEMAO I relative
error is found to be 1.62% for the mode (12,1) and 1.26% for the mode (24,1). The FEMAO II relative errors
are slightly higher in comparison but still close to the target error, with respectively 2.78% and 2.21% for
the two incident modes, which could be attributed to the use of a coarser geometric description.

The impact of the liner is clearly visible on these graphs. The incoming pressure field is efficiently
attenuated with a decay rate of approximately 15dB/m for the mode (12,1) and 65dB/m for the mode
(24,1). The effect of the hard-soft wall transitions, indicated by vertical lines on the figure, can also be
observed.

The pressure field outside the duct is also examined. Figure presents the comparison of the pressure
field for the mode (12,1) on the control line #2 positioned along the truncation surface I', which is also the
control surface for the Kirchhoff integral formulation of the far-field solution (see FigureEl for an illustration
of the position of this control line). The quadratic FEM solution appears to differ from the two high-order
models. The main lobe located around 22 degrees is shifted and the pressure amplitude is slightly higher. To
confirm that it is indeed the standard FE model that is less accurate, calculations have also been performed
with the high-order scheme with a much more stringent accuracy target Er = 0.5% for the adaptive model,
resulting in higher polynomials orders used in all the elements. When compared to the results obtained with
Er = 5%, see figure it is clear that there is very little difference and that the high-order solutions
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Figure 9. Real part of pressure for the mode (12,1) along the control line #2 for the approach test case at 2 BPF.

have already converged with Er = 5%. Furthermore, the fact that the results obtained with the two coarse
meshes are in excellent agreement also indicates that, at this particular frequency, enforcing a minimum
element size of h = 80 mm is sufficient to maintain an excellent geometric accuracy. This qualitative analysis
is also confirmed by evaluating the relative difference in L?-norm along the control line #2, considering the
refined FEMAO T solution (Ep = 0.5%) as reference. This yields relative differences of 3.05% and 3.75%
for the coarser (Er = 5%) FEMAO I and II solutions respectively. In comparison, the error on the FEM
solution is found to be 18.9%.

The directivity plots in the far field are now examined for the mode (12,1), as shown in Figure The
results of the high-order solutions with Er = 5% and at Er = 0.5% are in excellent agreement, which
confirms again that the high-order solution has converged. Differences are observed between the high-order
converged solutions and the quadratic FEM solution. In the region of the main directivity lobe, close to 35°,
the typical discrepancies are close to 2dB.

For this type of applications, the numerical models should provide a sufficient dynamic range, that is
the numerical noise should be sufficiently small compared to the pressure amplitude of the source. This is
important because many of the dominant duct modes are well attenuated by the liner, and the radiated sound
field is very small compared to the initial mode amplitude. Yet it is important to capture these properly
and for this the dynamic range of the numerical model should be particularly large. The most accurate
high-order solution, computed using the mesh FEMAO I with a target accuracy Er = 0.5%, exhibits a large
dynamic range of 50 dB. This solution benefits from the combination of an accurate geometry representation
and an efficient high-order polynomial basis. The dynamic range of the solutions computed with Er = 5%
are between 40dB and 50 dB which is satisfactory. Figure illustrates how changing the accuracy target
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Accuracy 1 2 3 4 5 6 7 8 9 10
FEMAO I Er =5% 0.00 | 9.65 | 14.19 | 15.11 | 9.21 | 12.00 | 14.79 | 15.92 | 6.73 | 2.39

Er=05% | 0.00 | 0.00 | 9.24 | 11.35 | 13.73 | 9.67 9.44 | 11.22 | 15.60 | 19.74
FEMAO I Er =5% 0.00 | 0.36 | 2.32 | 12.10 | 26.72 | 21.42 | 18.55 | 16.65 | 1.87 | 0.00

Er =0.5% | 0.00 | 0.00 | 0.33 1.40 7.74 | 18.31 | 25.05 | 16.04 | 18.76 | 12.37

Table 4. Element order repartition, in percentage of the total volume, for the different high-order models.

Er allows to control the dynamic range of the numerical model.

As explained above the proposed adaptive approach automatically adjusts the polynomial order across
the mesh, based on the target accuracy Er, the local mean flow properties and the element size. This
mechanism can be clearly seen in Table [4] where the orders used for each high-order model are given. The
values reported in this table do not refer to the proportion of elements with a given order, but indicate
the relative predominance of each order measured in terms of volume (that is the volume occupied by all
elements of order p compared to the total volume). This is a convenient metric for highly inhomogeneous
meshes where a small number of elements can represent a large portion of the computational domain 2
With the mesh FEMAO I, the range of orders contributing to the solution is larger than with the mesh
FEMAO II. This is expected since there is a wider range of sizes h for the element in the mesh FEMAO I
(from h = 40 to 300 mm).

It can be noted that setting the more stringent accuracy target Er = 0.5% leads to a significant increase
in the polynomials orders used in the elements, with a significant portion of the mesh using orders 9 and 10.

V.B. Comparison of performance

The computational cost of the different numerical models is now investigated. The different metrics used to
assess the cost are outlined in Table [5] The factorization of the sparse matrix was performed in-core using
the MUMPS library 2324

It is clear that the high-order models outperform the conventional quadratic FEM approach by an order
of magnitude. The solution computed from the coarse mesh FEMAO II with a target accuracy of Er = 5% is
16 times faster and requires less than a tenth of the memory needed for the standard finite element method.
This drastic improvement does not come at the price of a loss in accuracy, since the results in Figures [9] and
[IQ show that this solution is in fact more accurate than the FEM solution. The benefits obtained from the
high-order model based on the mesh FEMAO I are lower but it is still 8 times faster and requires 1/6" of
the memory. With this mesh, the model does not fully exploit the accuracy of the high-order approximation
basis. This is because a significant portion of the mesh still relies on small elements where a low polynomial
order is used.
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Model Accuracy Number of DOFs” | Factorization time | Factorization memory
FEM 2996 168 24 min 302Gb
FEMAO I Er =0.5% 2219597 11 min 44 sec 153 Gb

Er =5% 1012894 2 min 58 sec 50 Gb
FEMAO II Er =0.5% 985493 4 min 45 sec 76 Gb

Er =5% 547276 1min 30sec 30Gb

Table 5. Computational costs of the different finite-element models for the approach condition at 2 BPF. " After static
condensation of the internal degrees of freedoms.

(a) Short domain

(b) Large domain

Figure 11. High-order acoustic meshes used for the sideline condition, generated from the short and large computational
domains defined in Figure

As expected, solutions with the high accuracy target of Er = 0.5% are more computationally intensive.
However, they still significantly outperform the FEM model, with speed up factors of 2 and 5, and a memory
reduction of a half and a quarter, for the meshes FEMAO I and FEMAO 11, respectively.

The CPU time for the creation of the mass, stiffness and damping matrices are also monitored. With the
mesh FEMAO 1 this required up to 2min 58 sec and up to 49 sec with the mesh FEMAO II. In comparison,
the FEM quadratic solution required only 23 sec. These results illustrate the fact that evaluating the element
matrices represents a larger proportion of the overall computational time for higher-order solutions. But this
cost is completely offset by the large reduction in time and memory required for the solution of the linear
system. In addition this cost can also be factored out of the frequency loop through the use of hierarchical
shape functions, as explained in Section [[IT.C] allowing the matrix evaluation to be performed only once.

V.C. Efficient use of the model

In the previous section, the high-order adaptive approach has been benchmarked against a reference quadratic
FEM model for the approach configuration at 2 BPF. In this section, we examine the ability of the high-order
method to tackle more challenging configurations at higher frequencies.

For this purpose we first consider the most challenging flow configuration, namely the sideline condition
with the aim to reach the second harmonic of the BPF (i.e. a frequency of 2600 Hz). Given the high frequency
and the Mach number at the fan face (M = 0.55), this corresponds to a very challenging Helmholtz number
of kR = 128. Following the meshing guideline in equation @7 with a target accuracy Er = 5%, this requires
a maximum element size of 0.14m at the fan plane and h = 0.24m in the far field. A small refinement
h = 0.075m is also applied in the region of the strongest geometric curvature, i.e. close to the nacelle lips
and at the spinner tip. Finally, a refinement of h = 0.04m is applied at the hard-soft impedance transition,
where large gradients are typically observed for the velocity potential.

Figure presents cross-sections of the short and large domain quadratic meshes generated from these
requirements. They differ only in the positioning of the truncation surface, as discussed in Section IV.B.
It should be emphasized again that, compared to conventional FEM, no particular mesh refinement is
required inside the discretization volume. Besides, the resulting meshes contain only 178834 and 213 707
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(a) Mode (24,1) at 1 BPF (b) Mode (24,1) at 1 BPF

(c) Mode (48,1) at 2 BPF (d) Mode (48,1) at 2 BPF

Figure 12. Real part of pressure on a cross-section of the three-dimensional solutions obtained for the tonal noise for
the sideline condition.

nodes respectively, compared to several million nodes for classical FEM, which facilitates the pre- and post-
processing of the model.

Solutions are calculated for the rotor-alone tonal noise: namely the first radial modes (24,1) and (48,1),
respectively at 1BPF (kR = 64) and 2BPF (kR = 128). Figure [12| shows the corresponding pressure fields.
The results for the large domain and short domain are in close agreement. No noticeable spurious reflections
can be seen, confirming the accuracy of the AML method. The mean flow is characterized by a localised
region of high speed flow near the throat of the inlet where, for the sideline condition, the Mach number
exceeds 0.8 (see Figure . The effect of the mean flow in this region on the sound field is well captured
by the high-order model. This region of high velocity in the mean flow has a significant impact on the
propagation and radiation of sound from the intake, as well as on the sound attenuation by the liner 33
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Figure 13. Real part of pressure obtained along the control line #1 for the sideline condition.

In order to better assess the quality of the predictions, the acoustic pressure along the inner wall is
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plotted in linear scale in Figure Again, the pressure distributions between the two high-order models
with Er = 5% are in good agreement: the relative difference in L2-norm is found to be 1.95% for the
mode (24,1) and 4.01% for the mode (48,1) respectively on this graph, taking the large domain solution as
reference. The change in wavelength induced by the mean flow is also clearly visible: the wavelength varies
from A = 0.08 m close to the fan, down to 0.025 m near the throat where the flow velocity is high.

Let us now examine the results obtained in the far field. The tones radiate at a similar angle at 1BPF and
2BPF, but the sound radiation pattern of the mode (48,1) is characterized by the presence of two secondary
lobes at higher angles instead of one for the mode (24,1), see Figure Larger differences are observed
between the large domain and the short domain on these graphs. Typical mismatch in the main lobes is
of the order of 1dB, however, it can reach up to 2.5dB for the mode (48,1) at 2 BPF. This difference can
be explained by the fact that the mean flow properties computed on the surface I' of the short domain
deviates significantly from the far-field properties, as illustrated in Table[2] For the sideline case, if accurate
predictions are required in the far field, the use of the large domain is therefore advocated.

Figure [I5] shows the repartition of the element orders in a cross section of the short domain mesh at
1BPF and 2BPF (with Ep = 5%). The high-order adaptive approach automatically adapts the polynomial
order based on the frequency, the local element size and the local mean flow properties. At 1BPF with a
standard accuracy, the typical order is p = 5. In the region close to the hard-soft wall transition, where the
mesh is refined, mostly cubic elements are used. At 2BPF, the mesh approaches its maximum frequency
limit, the typical order is p = 9, 10.

BPF | kR | Nr of DOFs" | Solving Memory | % in-core | Computational time
. 1 64 2 285 111 182 Gb 100% 17min
Short domain
2 128 7217171 1410 Gb 18.1% 4h58min
. 1 64 2423 871 202 Gb 100% 20min
Large domain )
2 128 7 452 959 1620 Gb 16.9% 5h30min
Table 6. Computational costs for the short and large domain meshes with Er = 5% for the sideline configuration.

" After static condensation of the internal degrees of freedoms.

The computational costs for the two different meshes are reported in Table [ For the large domain
mesh, solving at the blade passing frequency (kR = 64) with the MUMPS in-core solver required 20 minutes
using 202Gb of memory. The corresponding linear system involved over 2.4 million DOFs (after static
condensation) and contained over 333 million non-zero entries. This represents a memory requirement of
5.3Gb for the storage of the matrix. The second BPF is much more demanding in comparison. The total
size of the linear system, including the bubble shape functions, exceeds 13.5 million DOFs. After static
condensation of the internal DOFs, the matrix size is reduced to 7.45 million. The resulting profile contains
2.4 billion terms, hence requiring 39Gb of memory available solely for the matrix storage. The factorization
would have required 1620Gb to solve in-core and was solved using the MUMPS out-of-core capabilities
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Figure 15. Element order repartition p. as obtained from the a-priori error estimator on the short domain mesh for
the sideline mean flow configuration.

in around 5h30min. Note finally that the element matrix evaluation was performed only once using the
multi-frequency algorithm described in [[I.C] in approximately 17min. Expectedly, limiting the size of the
domain by moving the truncation surface closer to the nacelle allows reducing the computational cost. The
reported timings and memory footprints for the short domain mesh are around 15% lower in comparison.
An appropriate trade-off should therefore be found when defining the fictitious truncation surface, in order
to obtain accurate far-field predictions without compromising the model performance.

It is also worth commenting on the scalability of the high-order adaptive solver with respect to the
frequency. Numerical experiments indicate that the cost scales roughly like w?, which amounts to multiplying
the cost by 8 when the frequency is doubled. This is the expected behaviour 22 Note that a standard FEM
approach in which a separate input mesh is designed for each frequency by keeping kh constant would yield
a similar frequency dependency. In essence, the adaptive approach does not modify the complexity of the
standard finite element model with respect to model size or frequency, but it renders the computational
process more efficient and robust.

The same meshes are now used for the cutback configuration using the rotor-alone mode (24,1) at 1BPF
and the mode (48,1) at 2 BPF. The pressure field is plotted along the control line #1 on the inner walls
of the nacelle in Figure for both modes. The BPF tone modes are strongly attenuated by the liner
only a small portion of the initial acoustic power is radiated to the far field. Note that a logarithmic scale
was preferred here in order to better examine the decay of the solution along the liner. An attenuation
rate of around 120dB/m is found for both modes. The short and large domain high-order solutions are in
good agreement and exhibit a dynamic range superior to 80dB. In terms of computational cost, solving for
the large domain at 2BPF (kR = 84) involved 3.9 million DOFs and required 543 Gb of memory. It was
solved using the MUMPS out-of-core libraries in 1h25min. In comparison, on the same mesh, the first BPF
(kR = 42) required only 72Gb and was factorized in-core in only 5min 30sec.

Finally, the high-order adaptive solver has been used to predict the tonal noise radiated at the approach
condition. The noise source at the fan plane is modelled as an equal energy ensemble of uncorrelated cut-on
modes, as explained in Section Results are presented for all the tones from the BPF (kR = 20) up to
4BPF (kR = 80) in Figure |17 and the computational costs are reported in Table
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Figure 16. Pressure obtained along the control line #1 of the tonal noise single mode contribution for the cutback test
case. Dotted line: 120 dB/m attenuation rate.

‘ Number of rhs | Number of DOFs” | Factorization Memory ‘ % in-core ‘ Factorization time

1 BPF (kR = 20) 68 318 418 8.4Gb 100% 1min30sec

2 BPF (kR = 40) 250 1035 415 52Gb 100% 2min3lsec

3 BPF (kR = 60) 549 2 029 883 160Gb 16.8% 39min

4 BPF (kR = 80) 963 3 322 557 377Gb 16.7% 1h37min
Table 7. Computational costs of the short domain mesh with Er = 5% for the multi-mode tonal noise prediction at

approach. " After static condensation of the internal degrees of freedoms.

A very large number of modes need to be considered particularly at higher frequencies, with up to 963
cut-on modes at 4BPF. The total computation for the four frequencies took a total of 60 hours, most of the
time being spent in the forward-backward substitutions and in the post-processing of each individual modes.
Each mode being computed as an independent right-hand-side, the challenge here lies in the way the solver
handles a large number of right-hand sides.

Another aspect to consider would be the conditioning of the linear system as this has an impact on the
robustness of the direct solver. Unfortunately, for such large matrices, it is extremely resource intensive to
accurately calculate the condition number. Instead we point to Reference [21] where a detailed analysis of
p-FEM is reported for 2D models, including the link between accuracy and conditioning. It was found that,
even for very accurate solutions, the conditioning remained acceptable, see Figure 9 in Ref. [21]
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Figure 17. Pressure amplitude obtained for the multi-mode component of the tonal noise for the approach condition.
“Number of cut-on modes included for the multi-mode source.
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VI. Conclusions

A high-order, adaptive finite-element method has been described to predict sound propagation in potential
base flows. With frequency domain methods, the main limitation is the memory required to solve the large,
sparse systems of linear equations resulting from the finite element models. This is addressed in the present
method by resorting to high-order shape functions (up to order 10 in this work), instead of the standard
quadratic FE models currently in use, so as to reduce of the dispersion error in the numerical model. The
benefits in terms of computational costs compared to a traditional quadratic FEM model are very significant,
in some cases more than an order of magnitude in memory and runtime. As an indication of the potential
of the proposed method for nacelle acoustics, a fully three-dimensional analysis at a Helmholtz number kR
of 40 can be solved in a little more than a minute compared to 20 minutes with the standard approach.
Analyses were performed for frequencies corresponding to kR = 128 within acceptable CPU timings.

Calculating the element matrices when using high-order shape functions represents only a small increase in
computational cost compared to the overall computational cost, and it is completely offset by the significant
reduction in cost for the linear system solution. Moreover the use of hierarchic shape functions (Lobatto
polynomials) allows to render the element matrix calculations negligible. When a number of frequencies are
considered, it is possible to calculate the element matrices only once for the highest order and then reuse
these for the other frequencies.

A key aspect of the proposed method is the use of an a priori adaptive technique to automatically
select the order in each element individually. This technique simplifies the preparation of the computational
models in several ways. The mesh does not need to be locally refined by the user in the areas with high speed
flow (although the geometry still has to be represented accurately, see below). With a uniform mesh, the
polynomial order will be automatically increased in regions where the flow velocity is high. When performing
several calculations for a number of frequencies, there is no need to prepare several meshes because the
adaptive scheme will progressively increase the polynomial order for high frequencies, thus ensuring that a
comparable level of accuracy is achieved at each frequency. This changes some of the best practice for the
preparation of the models in order to obtain the best performance, and these have been discussed in this
paper.

A direction for further work is the description of highly curved elements to allow the use of large elements
while still providing an accurate representation of the problem geometry. Preliminary results®4 show there
is potential in using curved elements with p-FEM but one of the issues remaining is the untangling of these
curved elements.
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