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Abstract
Bayesian analysis often concerns an evaluation of models with different dimensionality as is necessary in, for example, model
selection or mixture models. To facilitate this evaluation, transdimensional Markov chain Monte Carlo (MCMC) relies on
sampling a discrete indexing variable to estimate the posterior model probabilities. However, little attention has been paid
to the precision of these estimates. If only few switches occur between the models in the transdimensional MCMC output,
precision may be low and assessment based on the assumption of independent samples misleading. Here, we propose a
new method to estimate the precision based on the observed transition matrix of the model-indexing variable. Assuming a
first-order Markov model, the method samples from the posterior of the stationary distribution. This allows assessment of the
uncertainty in the estimated posterior model probabilities, model ranks, and Bayes factors. Moreover, the method provides
an estimate for the effective sample size of the MCMC output. In two model selection examples, we show that the proposed
approach provides a good assessment of the uncertainty associated with the estimated posterior model probabilities.
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Bayes factor

Daniel W. Heck, Statistical Modeling in Psychology, University of
Mannheim, Germany, heck@uni-mannheim.de. R code for all
simulations is available at the Open Science Framework at https://osf.
io/kjrkz, and the R package MCMCprecision is available at https://
CRAN.R-project.org/package=MCMCprecision.

B Daniel W. Heck
heck@uni-mannheim.de

Antony M. Overstall
A.M.Overstall@soton.ac.uk

Quentin F. Gronau
quentingronau@web.de

Eric-Jan Wagenmakers
ej.wagenmakers@gmail.com

1 Statistical Modeling in Psychology, University of Mannheim,
Mannheim, Germany

2 School of Mathematical Sciences and Southampton Statistical
Sciences Research Institute, University of Southampton,
Southampton, UK

3 Department of Psychology, University of Amsterdam,
Amsterdam, The Netherlands

1 Introduction

Transdimensional Markov chain Monte Carlo (MCMC)
methods provide an indispensable tool for the Bayesian anal-
ysis of models with varying dimensionality (Sisson 2005).
An important application is Bayesianmodel selection, where
the aim is to estimate posterior model probabilities p(Mi |
y) for a set of models Mi , i = 1, . . . , I given the data
y (Kass and Raftery 1995). In order to ensure that the
Markov chain converges to the correct stationary distribu-
tion, transdimensional MCMC methods such as reversible
jump MCMC (Green 1995) or the product space approach
(Carlin and Chib 1995) match the dimensionality of parame-
ter spaces across differentmodels (e.g., by adding parameters
and link functions). TransdimensionalMCMCmethods have
proven to be very useful for the analysis of many statistical
models including capture–recapture models (Arnold et al.
2010), generalized linear models (Forster et al. 2012), fac-
tor models (Lopes and West 2004), and mixture models
(Frühwirth-Schnatter 2001), and are widely used in sub-
stantive applications such as selection of phylogenetic trees
(Opgen-Rhein et al. 2005), gravitational wave detection in
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Fig. 1 Illustration of T = 100 iterations of a discrete model-indexing
variable z(t) that were sampled from a independent categorical distribu-
tions and b a Markov model with positive autocorrelation (cf. Sect. 3).

Using the method proposed in Sect. 2.3, the estimated effective sample
sizes were ̂Teff = 96 and ̂Teff = 8, respectively

physics (Karnesis 2014), or cognitive models in psychology
(Lodewyckx et al. 2011; Heck et al. 2017).

Crucially, transdimensional MCMC methods always in-
clude a discrete parameter z with values in 1, . . . , I indexing
the competing models. At iteration t = 1, . . . , T , posterior
samples are obtained for the indexing variable z(t) and the
model parameters, which are usually continuous and differ in
dimensionality (for a review, see Sisson 2005). For instance,
a Gibbs sampling scheme can be adopted (Barker and Link
2013), in which the indexing variable z and the continu-
ous model parameters are updated in alternating order. Such
a sampler switches between models depending on the cur-
rent values of the continuous parameters, and then updates
these parameters in light of the current model Mi condi-
tionally on the value of z(t) = i (Barker and Link 2013).
Given convergence of the MCMC chain, the sequence z(t)

follows a discrete stationary distribution with probabilities
π = (π1, . . . , πI )

�. Due to the design of the sampler, these
probabilities are identical to the posteriormodel probabilities
of interest, πi = p(Mi | y) and, given uniformmodel priors
p(Mi ) = 1/I , also proportional to the marginal likelihoods
p( y | Mi ). Hence, transdimensional MCMC samplers can
be used to directly estimate these posterior probabilities as
the relative frequencies of samples z(t) falling into the I cat-
egories, π̂i = 1/T

∑

t I(z
(t) = i), where I is the indicator

function. Due to the ergodicity of theMarkov chain, this esti-
mator is ensured to be asymptotically unbiased (Green 1995;
Carlin and Chib 1995).

Usually, dependencies due to MCMC sampling are taken
into account for continuous parameters (Jones et al. 2006;
Flegal and Gong 2015; Doss et al. 2014). In contrast, how-
ever, the estimate π̂ = (π̂1, . . . , π̂I )

� based on the sequence
of discrete samples z(t) is usually reported without quantify-
ing estimation uncertainty due to MCMC sampling. Often,
the samples z(t) are correlated to a substantial, but unknown,
degree because of infrequent switching between models.

This is illustrated in Fig. 1, which shows a sequence of
independent and correlated samples z(t) in Panels A and
B, respectively. Inference about the stationary distribution
π is more reliable in the first case compared to the sec-
ond case, in which the autocorrelation reduces the amount
of information available about π (cf. Sect. 3). The standard
error SE(π̂i ) = √

π̂i (1 − π̂i )/T that assumes independent
sampling will obviously underestimate the true variability of
the estimate π̂ if samples are correlated (Green 1995; Sis-
son 2005). To obtain a measure of precision, Green (1995)
proposed running several independent MCMC chains c =
1, . . . ,C and computing the standard deviation of the esti-
mates π̂

(c) across these independent replications. However,
for complex models, this method might require a substantial
amount of additional computing time for burn-in and adap-
tion and thus can be infeasible in practice.

Assessing the precision of the estimate π̂ , which depends
on the autocorrelation of the sequence of discrete MCMC
samples z(t), is of major importance. In case of model
selection, it must be ensured that the estimated posterior
probabilities p(Mi | y) are sufficiently precise for drawing
substantive conclusions. This issue is especially important
when estimating a ratio of marginal probabilities, that is,
the Bayes factor Bi j = p( y | Mi )/p( y | M j ) (Jef-
freys 1961). Moreover, it is often of interest to compute the
effective sample size defined as the number of independent
samples that would provide the same amount of informa-
tion as the given MCMC output for estimating π with π̂ .
Besides providing an intuitive measure of precision, a min-
imum effective sample size can serve as a principled and
theoretically justified stopping rule for MCMC sampling
(Gong and Flegal 2016). However, standard methods of esti-
mating the effective sample size (e.g., computing the spectral
density at zero; Plummer et al. 2006;Heidelberger andWelch
1981) are tailored to continuous parameters. When applied
to the model-indexing variable z(t) of a transdimensional
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MCMC method, these methods neglect the discreteness of
z(t). Depending on the specific numerical labels used for the
different models (e.g., (1, 2, 3, 4) vs. (1, 4, 2, 3)), spectral
decomposition can lead to widely varying and arbitrary esti-
mates for the effective sample size (see Sect. 4).

In summary, transdimensional MCMC is a very important
and popular method for Bayesian inference (Sisson 2005).
However, little attention has been paid to the analysis of the
resulting MCMC output, which requires that one takes into
account the autocorrelation as well as the discrete nature of
the model-indexing variable. As a solution, we propose to
fit a discrete, first-order Markov model to the MCMC out-
put z(t) to assess the precision of the estimated stationary
distribution π̂ . Whereas several diagnostics have previously
been proposed to assess the convergence of transdimensional
MCMC samplers (e.g., Brooks and Giudici 2000; Castelloe
and Zimmerman 2002; Brooks et al. 2003a; Sisson and Fan
2007), we are unaware of any methods that quantify the pre-
cision of the point estimate π̂ .

2 Method

2.1 A discrete Markovmodel for transdimensional
MCMC output

The proposed method approximates the output of a trans-
dimensional MCMC method (i.e., the sampled iterations
z(t)) by a discrete Markov model MMarkov with transition
matrix P . This model explicitly accounts for autocorrela-
tion, which in turn allows quantifying estimation uncertainty
for the discrete stationary distribution π . The entries of P
are defined as the transition probabilities pi j = P(z(t+1) =
j | z(t) = i) for all i, j = 1, . . . , I , with rows sum-
ming to one,

∑I
j=1 pi j = 1. According to the discrete

Markov model, the probability distribution of the indexing
variable z(t) at iteration t is given by multiplying the trans-
posed initial distribution π�

0 by the transition matrix t times,
P(z(t) = i) = [π�

0 P t ]i . The proposed method estimates the
transition matrix P as a free parameter based on the suffi-
cient statistic N , the matrix of frequencies ni j counting the
observed transitions from z(t) = i to z(t+1) = j (Anderson
and Goodman 1957).

Due to the construction of the transdimensional MCMC
sampler, the discrete indexing variable z(t) follows a station-
ary distribution with a constant probability vector π (i.e.,
the posterior model probabilities of interest). Hence, when
modeling the sequence z(t) with the discrete Markov model
MMarkov, this implies that the transition matrix P must sat-
isfy the condition for stationarity

π�P = 1 · π�, (1)

meaning that the probability vectorπ is the left eigenvector of
the matrix P with eigenvalue one (with π normalized to sum
to one; Anderson and Goodman 1957). Based on the model
MMarkov, an estimator for π is thus obtained by computing
the eigenvector of P with eigenvalue one (Barker and Link
2013).

However, we are less interested in a new estimator π̂

of the stationary distribution but rather in the precision of
this estimate. To quantify estimation uncertainty, we thus
fit the model MMarkov with P as a free parameter in a
Bayesian framework by drawing posterior samples P (r)

(r = 1, . . . , R). Similar to a parametric bootstrap, this
Bayesian sampling approach has the advantage that we can
easily quantify estimation uncertainty (i.e., the dispersion
of the posterior distribution of P) by computing descriptive
statistics of the samples P (r) (e.g., the standard deviation
or credibility intervals). Moreover, we can directly quantify
the estimation uncertainty of derived quantities such as the
posterior model probabilities, model ranks, or Bayes factors
(see Sect. 2.2). In the following, it is important to distinguish
between the posterior distribution of P given the sufficient
statistic N , which quantifies the uncertainty of P due to esti-
mation error of the transdimensionalMCMCmethod, and the
posterior distribution of the models given the empirical data,
which is represented by the constant vector of probabilities
π for a specific data set.

Next, we define a prior distribution for the parameter P
of the model MMarkov. Given that the transition matrix P
includes one probability vector pi for each row i , we assume
independent Dirichlet distributions with parameter ε ≥ 0 for
each row,

pi ≡ (pi1, . . . , pi I ) ∼ D(ε, . . . , ε). (2)

Conditional on the MCMC output N , the estimation uncer-
tainty of P is approximated by drawing R posterior samples
P (r). Since the Dirichlet prior is conjugate to the multino-
mial distribution, independent samples P (r) can efficiently
be drawn from the Dirichlet distribution with parameters

p(r)
i ∼ D(ni1 + ε, . . . , ni I + ε). (3)

Based on these samples, the estimation uncertainty of the
stationary probabilities π is assessed by computing the (nor-
malized) eigenvector with eigenvalue one for each sample
P (r) (Eq. 1). Algorithm 1 provides an overview of the com-
putational steps of the proposed method as pseudo-code.

With regard to the prior parameter ε, small values should
be chosen to reduce its influence on the estimation of P .
In principle, the improper prior ε = 0 can be used, which
minimizes the impact of the prior on the estimated stationary
distribution. This improper prior also ensures that the results
do not hinge on the set of models that could possibly be
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Algorithm 1 Quantify uncertainty of π̂ due to transdimen-
sional MCMC sampling.

1: procedure Markov Model
2: Sampling z(t): T iterations of model-indexing variable

z via transdimensional MCMC
3: Compute N: Observed I × I transition matrix of z(t)

with elements ni j
4: Set prior parameter ε (default: ε = 1/I ∗ for the I ∗

models observed in z(t), ε = 0 otherwise)
5: for r = 1, . . . , R do
6: Initialize posterior sample P (r): I × I transition

matrix with rows p(r)
i

7: for i = 1, . . . , I do
8: Sampling p(r)

i ∼Dirichlet(ni1 + ε, . . . , ni I + ε)

9: Initialize posterior sample π (r): Posterior model
probabilities

10: π (r) ← (normalized) eigenvector of P (r) with
eigenvalue one

11: if (quantify uncertainty) then
12: Compute summary statistic for all samples π (r)

13: Example: SDMarkov(π̂i ) ← SD(π
(r)
i )

14: if (compute effective sample size) then
15: Using all π (r): Fit Dirichlet parameters α̂1, . . . , α̂I

(Minka 2000)
16: Compute effect sample size ̂Teff ← ∑I

i=1 α̂i −
(I ∗)2ε

sampled, but were never actually observed in the sequence
z(t). For such unsampledmodels, the corresponding rows and
columns of the observed transition matrix N are filled with
zeros. With ε = 0, the relevant eigenvector of the transition
matrix P | N is thus identical to that of a reduced matrix
P∗ | N∗ that includes only the transitions for the subset of
models sampled in z(t). However, in our simulations, this
improper Dirichlet prior proved to be numerically unstable
and resulted in more variable point estimates than the stan-
dard i.i.d. estimate or the proper prior discussed next.

Here, we use the weakly informative prior ε = 1/I as
a default, which has an impact equivalent to one obser-
vation for each row of the observed transition matrix N .
By putting a small weight on all values of the transition
matrix P , this prior serves as a regularization of the pos-
terior (Alvares et al. 2018). However, in scenarios where the
number of models exceeds the number of iterations of the
transdimensional MCMC method (i.e., I � T ), such a reg-
ularization assigns substantial probability weight to models
that are never observed in z(t). To limit the effect of the prior,
we thus set ε = 1/I ∗ only for those I ∗ models that were
observed in z(t) and ε = 0 for the remaining models. Besides
reducing the impact of the prior, this choice has the compu-
tational advantage that one can draw posterior samples and

compute eigenvectors for the reduced matrix P∗ | N∗ that
includes only the sampled models. In the two examples in
Sects. 4 and 5, this prior has proved to be numerically robust
and resulted in point estimates close to the standard i.i.d.
estimates.

As a third alternative, the prior can be adapted to the struc-
ture of specific transdimensional MCMC implementations,
which only implement switches to a small subset of the com-
peting models. For instance, in variable selection, regression
parameters are often added or removed one at a time, result-
ing in a birth-death process (Stephens 2000). For these kinds
of samplers, the Dirichlet parameters εi j can be set to zero
selectively. However, such adjustments will be dependent on
the chosen MCMC sampling scheme. The default choice of
ε = 1/I ∗ for sampled models and ε = 0 for nonsampled
models provides a good compromise of being very general
and numerically robust, while having a small effect on the
posterior. However, in general, the choice of ε becomes less
influential as the number ofMCMC samples increases (espe-
cially if the row sums of N are large).

2.2 Estimation uncertainty

Based on the posterior samples P (r) of the transition matrix
and the derived model probabilities π (r), it is straightfor-
ward to estimate the stationary distribution by the posterior
mean π̂ (alternatively, the median or mode may be used).
More importantly, however, estimation uncertainty due to the
transdimensional MCMC method can directly be assessed
by plotting the estimated posterior densities for each πi .
To quantify the precision of the estimate π̂ , one can report
posterior standard deviations or credibility intervals for the
components π̂i . These component-wise summary statistics
are most useful if the number of models I is relatively small.

An important advantage of drawing posterior samples
π (r) in a Bayesian framework (instead of using asymptotic
approximations for the standard error of π̂ ) is that one can
directly quantify estimation uncertainty for other quantities
of interest. For very large numbers of sampled models, the
assessment of estimation uncertainty can be focused on the
subset of k models with the highest posterior model probabil-
ities. Within the sampling approach, estimation uncertainty
for the k best-performing models can easily be assessed by
computing ranks for each of the posterior samplesπ (r). Then,
the variability of these model ranks across the R samples can
be summarized, for instance, by the percentage of identical
rank orders for the k best-performing models, or the percent-
ages of how often each model is included within the subset
of the k best-performing models (i.e., has a rank smaller or
equal to k).

In case of model selection, dispersion statistics such as
the posterior standard deviation are also of interest with
respect to the Bayes factor Bi j (Kass and Raftery 1995). To
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judge the estimation uncertainty for the Bayes factor, one can
evaluate the corresponding posterior distribution by comput-
ing the derived quantities B(r)

i j = π
(r)
i /π

(r)
j (given uniform

prior model probabilities). Precision can also be assessed for
model-averaging contexts when comparing subsets of mod-
els against each other (e.g., regression models including a
specific effect vs. those not including it). Given such dis-
joint sets of model indices Ms ⊂ {1, . . . , I }, the posterior
probability for each subset of models is directly obtained by
summing the posterior samples π

(r)
i for all i ∈ Ms . Note that

it is invalid to aggregate across model subsets or to drop sam-
pled models before applying the proposed Markov approach
because functions of discrete Markov chains (e.g., collaps-
ing the I original states into a subset of S states) are not
Markovian in general (Burke and Rosenblatt 1958).

2.3 Effective sample size

Besides quantifying estimation uncertainty, the posterior
samples π (r) can be used to estimate the effective sample
size for the transdimensional MCMC output. For this pur-
pose, we consider the benchmarkmodelMiid under the ideal
scenario of drawing independent samples z̃(t) from the cate-
gorical distribution with probabilities π̃ . For this model, we
assume an improperDirichlet prior on the stationary distribu-
tion, π̃ ∼ D(0, . . . , 0) (whereas the Markov model assumes
a Dirichlet prior on the transition probabilities). Since this
prior is conjugate to the multinomial distribution, the poste-
rior for the stationary distribution π̃ is given by

π̃ | ñ ∼ D(ñ1, . . . , ñ I ), (4)

conditional on the observed frequencies ñi = ∑T
t=1 I(z̃

(t) =
i). Note that the transition frequencies are rendered irrelevant
in this i.i.d. model, since there are no dependencies in the
sampled iterations z̃(t).

Given the dependent samples z(t) of a transdimensional
MCMC chain, we can now compare the empirical posterior
distribution of π estimated with the modelMMarkov against
the theoretically expected posterior distribution of π̃ under
the hypothetical model Miid. Essentially, we match the lat-
ter distribution to the former to estimate the effective sample
size as the total number of independent samples Tiid = ∑

i ñi
that would result in a similar dispersion as that estimated
by the Markov model. To estimate the ñi , the i.i.d. poste-
rior distribution in Eq. 4 is fitted to the posterior distribution
of the Markov model by estimating the shape parameters
α1, . . . , αI of a Dirichlet distribution given the sampled π (r)

(which can be achieved by an efficient maximum-likelihood
algorithm by Minka 2000, see Appendix). Next, a com-
parison of the estimated Dirichlet parameters α̂i with the
conjugate posterior in Eq. 4 yields ̂ñ = α̂i , which implies
that the dispersion of the posterior model probabilities π (r)

is equivalent to having observed ̂Tiid = ∑

i α̂i independent
samples. However, the samples π (r) are not only informed
by the samples z(t) of the transdimensional MCMC sampler,
but also by the prior distribution of theMarkovmodel, which
is irrelevant for estimating the effective sample size. Hence,
to estimate the effective sample size for the transdimensional
MCMC sampler, it is necessary to subtract the prior sample
size I 2ε of the Markov model (cf. Eq. 2), which reflects the
relative weight of the prior, since the Dirichlet shape parame-
ter ε occurs I times in each row of the I × I transition matrix
P (Alvares et al. 2018). Overall, it follows that the effective
sample size under the assumption of independent sampling
from a multinomial distribution is estimated as

̂Teff =
I

∑

i=1

α̂i − I 2ε. (5)

Note that it is necessary to replace I by I ∗ in Eq. 5 if the
Markov model uses only those I ∗ models that were actu-
ally sampled in z(t). Importantly, the estimate ̂Teff takes the
discreteness of the indexing variable z into account and does
not depend on specific (but arbitrary) numerical values of the
model indices.

2.4 Remarks

The proposed method quantifies estimation uncertainty by
fitting a discrete Markov model to transdimensional MCMC
output. For this purpose, a simplifying assumption is made
that is not guaranteed to hold. Whereas samples of the full
model space (z(t), θ (t)) necessarily follow a Markov pro-
cess by construction, this does not imply that the samples
z(t) follow a Markov chain marginally (Brooks et al. 2003b;
Lodewyckx et al. 2011). In practice, the iterations of the
model-indexing variable z(t) might have higher-order depen-
dencies since transition probabilities depend on the exact
state of theMCMC sampler in each of the models’ parameter
spaces. However, in Sects. 4 and 5 we show in two empir-
ical examples that the proposed simplification (i.e., fitting
a Markov chain of order one) is sufficient to account for
autocorrelations in the samples z(t) in practice. Moreover,
the approximation by a first-order Markov chain provides
a trade-off between ignoring dependencies completely (i.e.,
assuming i.i.d. samples) and accounting for any higher-order
dependencies (which will likely increase the computational
burden especially for large numbers of models). Note that
it is a common practice to rely on simplifying assumptions
for the analysis of simulation output; for instance, a standard
approach of estimating the effective sample size for contin-
uous parameters assumes that the output sequence can be
modeled as a covariance stationary process with a smooth
log spectrum (Heidelberger and Welch 1981).
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The proposedmethod of fitting a discreteMarkovmodel is
very general and can be applied irrespective of specific trans-
dimensional MCMC implementations. Moreover, it requires
only the sampled sequence z(t) of the discrete parameter or
the matrix N with the observed frequency of transitions. If
output from multiple independent chains c = 1, . . . ,C is
available, the transition frequency matrices N(1), . . . , N(C)

can simply be summed before applying the method. This
follows directly from Bayesian updating of the stationary
distribution π . Essentially, each chain provides independent
evidence for the posterior of the transitionmatrix P , which is
reflected by using the sums

∑

c n
(c)
i j for the conjugate Dirich-

let prior in Eq. 3.Note that this feature can be used to compare
the efficiency of many short versus few long MCMC chains.

In the R package MCMCprecision (Heck et al. 2018),
we provide an implementation that relies on the efficient
computation of eigenvectors in the C++ libraryArmadillo
(Sanderson and Curtin 2016), accessible in R via the pack-
age RcppArmadillo (Eddelbuettel and Sanderson 2014).
On a notebook with an Intel® i7-7700HQ processing unit,
drawing R = 5000 samples from the posterior distribu-
tion for 10 (100) sampled models requires approximately
150ms (28s). Similar to any MCMC or bootstrap approach,
the choice of the number of samples R depends on the sum-
mary statistic used to quantify uncertainty. Whereas more
samples are required to approximate the density distribution
(e.g., R ≥ 5000), less samples (e.g., R ≈ 1000) are sufficient
to approximate the SD of the estimated posteriormodel prob-
abilities. Since the samplesπ (r) are independently drawn and
SDs are usually sufficient to quantify uncertainty, the choice
R = 1000 is often sufficient in practice (however, for the
simulations below, we use R = 5000).

3 Illustration: effect of autocorrelation

Before applying the proposed method to actual output of
transdimensional MCMC samplers, we first illustrate its use
in an idealized setting, where the interest is in approximating
the posterior model probabilities π = (0.85, 0.13, 0.02)�
by drawing random samples z(t). To investigate the effect
of independent versus dependent sampling, we generated
sequences z(t) from theMarkovmodelMMarkov with the sta-
tionary distribution π . To induce autocorrelation, we defined
a mixture process for each iteration t . With probability β,
the discrete indexing variable was identical to the current
model, zt+1 = zt . In contrast, with probability 1 − β, the
value zt+1 was sampled from the given stationary distribu-
tion π . Thereby, increasing values of β resulted in a larger
autocorrelation of the sequence z(t) as illustrated for β = 0
and β = 0.8 in Fig. 1a, b, respectively.

For varying levels of β = 0, 0.1, . . . , 0.8, we sampled
500 replications with T = 1000 iterations each, applied the

proposed method (with R = 5000) and computed the preci-
sion of the estimate π̂ . The main interest is in the posterior
SD and in the coverage probability, defined as the probability
that the data-generating values π are in the 90% credibility
interval defined by the 5% and 95% quantiles. As a bench-
mark, we also computed these summary statistics under the
(false) assumption that the samples z(t) were independently
drawn by fitting the modelMiid with the Dirichlet posterior
distribution in Eq. 4. Note that the latter uncertainty estimate
is equivalent to the standard Monte Carlo error that assumes
independent sampling.

Figure 2 shows the results of this simulation. In Fig. 2a,
the three panels correspond to the estimation uncertainty
(i.e., the posterior SD) of the three posterior model prob-
abilities π = (π1, π2, π3)

�. The estimated posterior SD of
theMarkovmodel indicated increasing uncertainty for larger
values of β, thus taking the increasing autocorrelation into
account. In contrast, the modelMiid assumes independence
a priori, and thus, the posterior uncertainty was independent
of β. As a result of this, the corresponding 90% credibil-
ity interval was less likely to include the data-generating
value π for increasing values of β (see Fig. 2b), whereas
the Markov model provided an accurate description of the
estimation uncertainty for any degree of dependence.

4 Variable selection in logistic regression

In the following, we apply the proposed method to the prob-
lem of selecting variables in a logistic regression, an example
introduced byDellaportas et al. (2000) to highlight the imple-
mentation of transdimensional MCMC in BUGS (see also
Dellaportas et al. 2002; Ntzoufras 2002). Table 1 shows the
frequencies of deaths and survivals conditional on sever-
ity and whether patients received treatment (i.e., antitoxin
medication; Healy 1988). To emphasize the importance of
considering estimation uncertainty for the posterior model
probabilities, we compare the efficiency of two transdimen-
sional MCMC approaches, which can both be implemented
in JAGS (Plummer 2003).

The full logistic regressionmodel assumes a binomial dis-
tribution B of the survival frequencies y jl and a linear model
on the logit-transformed survival probabilities p jl ,

y jl ∼ B(p jl , n jl) (6)

log

(

p jl

1 − p jl

)

= β0 + β1a j + β2bl + β3(ab) jl , j, l = 1, 2

(7)

where n jl are the total number of patients in condition jl and
β the regression coefficient for the effect-coded variables
a j , bl , and (ab) jl . Variable selection is required to choose
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Fig. 2 Estimation uncertainty for the stationary distribution π . a The
Markov method (black dots) correctly indicated that estimation error of
the posteriormodel probabilities increased as autocorrelation increased.
When assuming i.i.d. sampling (gray triangles), the estimated precision

did not depend on the autocorrelation. b Proportion of 500 replications
for which the 90% CI intervals included the data-generating stationary
distribution π

Table 1 Logistic regression data set by Healy (1988)

Condition (A) Antitoxin (B) Death Survival

More severe Yes 15 6

No 22 4

Less severe Yes 5 15

No 7 5

between I = 5 models: the intercept-only model I, the three
main effect models A, B, and A+B, and the model AB that
includes the interaction. For comparability, we use the same
priors as Dellaportas et al. (2000) and assume a centered
Gaussian prior with variance σ 2 = 8 for each regression
parameter, βk ∼ N (0, 8). Moreover, the model probabilities
were set to be uniform, p(Mi ) = 1/5. Note that nonuniform
prior probabilities might be used to protect against multi-
ple testing issues (i.e., Bayes multiplicity; Scott and Berger
2010).

One of the two implemented transdimensional MCMC
approaches uses unconditional priors (Kuo andMallick 1998,
KM98) and includes indicator variables γik ∈ {0, 1} for
each regression coefficient βk in model Mi . The parame-
ter γ i determines which regression coefficients are included
by removing some of the additive terms of the linear model
in Eq. 7. Details about the full and conditional posterior dis-
tributions are provided by Dellaportas et al. (2000, p. 7).

As a second transdimensional MCMC approach, we
implemented the method of Carlin and Chib (1995; CC95),
which stacks up all model parameters into a new parameter
θ = (z,β1, . . . ,β I ), where β i is the vector of regression
parameters of model Mi . Thereby, this approach samples
a total of 12 regression parameters along with the index-
ing variable z. Note that the method of Carlin and Chib
(1995) uses pseudo-priors p(β i | M j ), i �= j , that do
not influence the statistical inference about p( y | Mi ) and
p(β i | y,Mi ). However, these pseudo-priors determine the
conditional proposal probabilities p(z | y,β1, . . . ,β I ) of
switching between the models and thereby affect the effi-
ciency of the MCMC chain. In substantive applications,
these pseudo-priors should be chosen to match the posterior
p(β i | Mi ) in order to ensure high probabilities of switching
between the models (cf. Carlin and Chib 1995; Barker and
Link 2013). Here, however, we did not optimize the sampling
scheme and used β ik | M j ∼ N (0, 8) for the pseudo-priors
to illustrate that our method can correctly detect the lower
precision resulting from this suboptimal choice.

Figure 3 shows the estimated posterior distribution (R =
5000) of the posterior model probabilities using one Markov
chain with 11,000 iterations (including 1000 burn-in sam-
ples). The vertical black lines show the reference values
for π , approximated with very high accuracy by the KM98
approach using eight independent chains and one million
samples each. As expected, the (incorrect) assumption that
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Fig. 3 Five panels show the estimation uncertainty of the posterior
model probabilities π = (π1, . . . , π5)

� for the five logistic regres-
sion models I (intercept only), A, B, and A+B (only main effects),
and AB (two main effects and interaction). For both transdimensional
MCMC samplers (CC95=Carlin and Chib 1995; KM98=Kuo and

Mallick 1998), the posterior distribution of the Markov model included
the correct reference values (vertical black lines) with high probabil-
ity. In contrast, the i.i.d. model underestimated estimation uncertainty
and posterior distributions did not include the target values with high
probability

z(t) are sampled independently resulted in overconfidence in
the point estimates of the CC95 approach. For all models,
the corresponding posterior distributions missed the correct
value and did not identify this estimation uncertainty. This
shows the importance of assessing the dependency in the
samples z(t) in order to judge the estimation uncertainty
for the estimated posterior model probabilities. As a rem-
edy, the proposed Markov approach resulted in a posterior
distribution that covered the target values with high probabil-
ity. Moreover, the novel estimation method revealed that the
KM98 implementation had a higher precision compared to
the CC95 approach, which was likely due to the (intention-
ally not optimized) choice of the pseudo-priors in the latter
method. Hence, the Markov model allows comparison of the
estimation uncertainty of different transdimensional MCMC
methods for the model probabilities π .

To test the validity of the proposed method more rigor-
ously,we replicated the previous analysis 500 times.Thereby,
the estimated precision can be compared against the actual
sampling variability of the estimated model probabilities.
For both transdimensional MCMC methods, Table 2 shows
the mean estimated model probabilities in percent. Across
replications, the point estimates (posterior means) from the
Markov and the i.i.d. approach were very similar with a
median absolute difference of 0.03% and 0.31% for the

KM98 and CC95 implementations, respectively. To judge
whether the estimated precision (i.e., themean posterior stan-
dard deviations SDiid and SDMarkov) is valid, Table 2 shows
the empirical SD of the estimates π̂ across replications. The
results show that the assumption of independent samples z(t)

leads to an overconfident assessment of the precision for the
estimated model probabilities, SDiid  SD(π̂), which is
especially severe for the less efficient CC95 implementation.
In contrast, theMarkov approach provided good estimates of
the actual estimation uncertainty, SDMarkov ≈ SD(π̂). More-
over, for the MCMC method by Carlin and Chib (1995),
the larger SDs indicate a smaller efficiency compared to the
unconditional prior approach by Kuo and Mallick (1998).
This theoretically expected result is due to the suboptimal
choice of pseudo-priors. However, note that this difference
in efficiency may be overlooked whenmerely computing rel-
ative proportions based on the sampled indexing variable z(t)

(i.e., when implicitly assuming independent samples).
The higher efficiency of the KM98 approach becomes

even clearer when assessing the median of the estimated
effective sample size, which was 2043 for the KM98
approach compared to only 65 for the CC95 method. As dis-
cussed above, commonly used estimators of effective sample
size for continuous parameters (e.g., Plummer et al. 2006)
should not be applied to the discrete model-indexing vari-
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Table 2 Estimated posterior
model probabilities in percent Model Kuo and Mallick (1998) Carlin and Chib (1995)

Mean(π̂) SD(π̂) SDiid SDMarkov Mean(π̂) SD(π̂) SDiid SDMarkov

1 0.51 0.24 0.07 0.16 0.57 0.35 0.06 0.39

A 49.28 1.38 0.50 1.22 48.55 7.14 0.49 6.92

B 1.14 0.44 0.10 0.26 1.26 0.63 0.10 0.73

A+B 43.85 1.25 0.50 1.10 43.61 7.41 0.49 7.19

AB 5.22 0.37 0.22 0.34 6.00 3.38 0.21 3.82

Posterior model probability estimates π̂ are shown in percent. Mean(π̂) and SD(π̂) were
computed across 500 replications. As a measure for the estimated precision, means of the
posterior SD are shown (SDiid assumes independent sampling; SDMarkov assumes a Markov
chain model)

Fig. 4 Effective sample size as
estimated by the spectral density
at zero (Plummer et al. 2006) for
all permutations of the model
indices for a given MCMC
output z(t) (based on 10,000
samples of the method by Kuo
and Mallick 1998)

Markov approach
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able z because they depend on the arbitrary numerical labels
used for themodels. If suchmethods are applied nevertheless,
the resulting estimate for the effective sample size cannot be
interpreted because it is not invariant under permutations of
the arbitrary model indices used for the discrete parameter z.
To illustrate this, Fig. 4 shows thedistributionof the estimated
effective sample size when applying the spectral decomposi-
tion available in the R package coda (Plummer et al. 2006)
to all 120 permutations of the model indices (1, . . . , 5) for
a fixed sequence z(t). Since this method incorrectly assumes
that the discrete variable z is continuous, the estimated effec-
tive sample size was not invariant, but varied considerably
depending on the specific labeling of the models (gray his-
togram). In contrast, the proposedMarkov approach resulted
in a well-defined, invariant estimate ̂Teff = 1921 (vertical
black line) by explicitly accounting for the discreteness of z.

Finally, we show that the posterior samples π (t) of the
model MMarkov can directly be used to assess the uncer-
tainty of Bayes factor estimates. For instance, substantive
applications could be interested in testing whether to include
the interaction term of condition (A) and treatment (B) in
a logistic regression model. Given the output of a single

MCMC run with 10,000 samples, Fig. 5 shows the resulting
posterior distribution of the Bayes factor BA+B,AB in favor
for the absence of an interaction. Similar to the posterior
model probabilities, the i.i.d. approach resulted in overcon-
fidence regarding the estimate and most of the probability
mass excluded the correct value 8.51 (approximated with a
precision of SD = 0.020). In contrast, the Markov approach
corrected for dependencies in the samples z(t) and included
the correct value. The same pattern emerged across the 500
replications, that is, the mean estimated SD of the Bayes
factor approximated the corresponding empirical SD of the
Bayes factor estimates (KM98: 0.56 vs. 0.60; CC95: 74.7 vs.
114.3). When using transdimensional MCMC, Bayes fac-
tors cannot be expected to be reliably estimated if models
are never or very infrequently sampled (e.g., Model 1 in
Table 2). For instance, theBayes factor BA,B ≈ 43.8was esti-
mated very imprecisely even in the KM98 approach (mean
SD = 13.0; empirical SD = 24.3). To obtain more precise
Bayes factor estimates in the presence of infrequently sam-
pledmodels, it is recommended to rerun the transdimensional
MCMCchain including only the two relevantmodels of inter-
est (Lodewyckx et al. 2011).
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Fig. 5 Posterior distribution for the Bayes factor in favor of Model
A+B (only main effects) versus AB (two main effects and interaction).
The vertical black line shows the target value estimated using two differ-
ent transdimensional MCMC samplers (CC95=Carlin and Chib 1995;
KM98=Kuo and Mallick 1998). In contrast to the Markov model, the
i.i.d. model incorrectly assumes independence and thus overestimated
estimation uncertainty

5 Log-linear models for a 26 contingency
table

The application of the proposed method is also feasible in
realistic scenarioswith hundreds of sampledmodels. To illus-
trate this, we reanalyzed the 26 complete contingency table
by Edwards and Havránek (1985), which includes six risk
factors for coronary heart disease (i.e., smoking, strenuous
mental work, strenuous physical work, systolic blood pres-
sure, ratio of α and β lipoproteins, and family anamnesis
of coronary heart disease). We are interested in finding the
most parsimonious log-linear model, which accounts for the
cell frequencies y j of cell j ( j = 1, . . . , 26) by assuming a
Poisson distribution with mean μ j and

logμ j = φ + x�
j β, (8)

where φ is the intercept, β the vector of regression param-
eters, and x�

j the (transposed) design vector, which selects
the elements of β included for modeling cell j . Here, we
consider the class of hierarchical log-linear models that only
allow the inclusion of an interaction if the corresponding
marginal effects and lower interaction terms are included in
the model as well (e.g., Overstall and King 2014b).

To select between all 7.8million possible hierarchical log-
linear models (Dellaportas and Forster 1999), we used the
reversible jump algorithm proposed by Forster et al. (2012),
which is implemented in the R package conting (Over-
stall and King 2014a). Assuming a unit information prior
(Ntzoufras et al. 2003), we sampled 100,000 iterations, dis-
carded 10,000 as burn-in, and applied the proposed Markov

chain method by drawing R = 5000 samples for the pos-
terior model probabilities of the I ∗ sampled models. To
assess whether the estimated uncertainty accurately quan-
tifies sampling variability, we ran 200 replications initialized
with randomly chosen models.

Across replications, 5805 models were sampled (on aver-
age, 562.7 per replication). Table 3 shows the results for the
10 models with the highest posterior probabilities. All of
these 10 models included the six main effects (A: smok-
ing, B: strenuous mental work, C: strenuous physical work,
D: systolic blood pressure, E: ratio of α and β lipoproteins,
F: family anamnesis of coronary heart disease) and the first-
order interactionsAC,AD,AE,BC, andDE, but differedwith
respect to including the remaining interactions. Despite the
large number of iterations, the estimation uncertainty (i.e.,
the posterior SD) of the posterior model probabilities was
relatively large, indicating that the samples z(t) were auto-
correlated to a substantial degree. This is also reflected by the
effective sample size, which was estimated to be ̂Teff = 4259
on average (SD = 181), approximately 5% of the number of
iterations after burn-in.

Table 3 also shows means and standard deviations of the
sampled model rank τ for the models with the highest poste-
rior probability, indicating that estimation uncertainty (i.e.,
the posterior SD) increased for models with smaller poste-
rior probabilities. Moreover, the proportion of replications
is shown for which the sampled rank τ was identical to the
model index (τ = #) and smaller thanor equal to 10 (τ ≤ 10).
According to these proportions, exact ranks were estimated
precisely only for the two best models, whereas the set of the
10 models with highest posterior probabilities was relatively
stable across posterior samples (with the exception of model
10). Importantly, the Markov approach provided mean esti-
mated probabilities P(τ = #) and P(τ ≤ 10) that matched
the corresponding empirical proportions across replications.

Note that these results regarding estimation uncertainty
are in line with our expectations—if models have small pos-
terior probabilities, they are also sampled infrequently,which
in turn results in estimation uncertainty. To quantify this vari-
ability, the proposed Markov chain approach provides an
estimate for the achieved precision to assess the quality of the
results and to find an appropriate stopping rule for MCMC
sampling.

6 Conclusion

We proposed a novel approach for estimating the pre-
cision of transdimensional MCMC output. Essentially, a
first-order Markov model is fitted to the observed model-
indexing variable z(t) to quantify estimation uncertainty of
the corresponding stationary distribution.We showed that the
method accounts for autocorrelation in a given sequence z(t)
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Table 3 Models with the highest posterior probability for the 26 contingency table

# Model Posterior model probabilities π Rank τ

Mean(π̂) SD(π̂) SDiid SDMarkov Mean(τ ) SD(τ ) SD(τ ) τ = # P(τ = #) τ ≤ 10 P(τ ≤ 10)

1 CE 18.78 1.34 0.13 1.02 1.00 0.00 0.03 1.00 1.00 1.00 1.00

2 BE 11.92 0.94 0.11 0.84 2.00 0.00 0.04 1.00 1.00 1.00 1.00

3 BE + CE 7.12 1.11 0.09 0.43 3.34 0.61 0.37 0.72 0.78 1.00 1.00

4 BF + CE 6.57 1.20 0.08 0.52 3.94 0.84 0.42 0.71 0.75 1.00 1.00

5 BE + BF 4.20 0.85 0.07 0.41 5.42 1.59 0.21 0.92 0.93 0.96 0.99

6 CE + EF 2.77 0.50 0.06 0.33 6.80 1.71 0.58 0.62 0.65 0.94 1.00

7 BE + BF + CE 2.53 0.60 0.05 0.24 8.24 5.64 0.54 0.58 0.66 0.92 1.00

8 CE + ADE 1.88 0.30 0.05 0.25 8.72 1.35 0.80 0.47 0.56 0.95 0.95

9 BE + EF 1.76 0.38 0.04 0.26 9.43 3.21 0.88 0.45 0.54 0.92 0.93

10 BE + ADE 1.19 0.22 0.04 0.19 12.05 3.11 1.40 0.32 0.39 0.39 0.56

All of the 10 models include the six main effects, A: smoking, B: strenuous mental work, C: strenuous physical work, D:
systolic blood pressure, E: ratio of α and β lipoproteins, F: family anamnesis of coronary heart disease, and the first-order
interactions AC, AD, AE, BC, and DE. Posterior model probabilities π are shown in percent. Mean(π̂), SD(π̂), Mean(τ ),
and SD(τ ) were computed across 200 replications. The columns τ = # and τ ≤ 10 refer to the proportion of replications for
which the model rank τ was (a) equal to the model index # or (b) smaller than or equal to 10

and provides a good assessment of estimation uncertainty.
Importantly, the method does not require output of multiple
independent MCMC chains and thus reduces the computa-
tional costs for adaption and burn-in. Besides being useful
for transdimensional MCMC output, the method provides an
estimate of the precision and effective sample size of dis-
crete parameters in MCMC samplers in general. Thereby,
researchers can easily decide whether the obtained precision
is sufficiently high for substantive applications of interest.
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Appendix: Estimating the shape parameters
of a Dirichlet distribution

In the following, we outline the fixed-point algorithm pro-
posed by Minka (2000) to estimate the vector of shape
parameters α = (α1, . . . , αI )

� of a Dirichlet distribution.
Given a set of R probability vectors π (r) (in the proposed
method, these are the derived samples of the posterior model
probabilities), the likelihood function of the shape parame-

ters α is

L (α) =
R

∏

r=1

[



(∑

i αi
)

∏

i 
(αi )

∏

i

(

π
(r)
i

)αi−1
]

. (9)

To maximize this likelihood function, Minka (2000) devel-
oped an efficient fixed-point algorithm and proved its con-
vergence to the unique maximum likelihood estimate α̂. The
computational steps are outlined in Algorithm 2. At its core,
the current estimates αi are updated in line 8 by using the
digamma function � and its inverse �−1. As remarked by
Minka (2000), the algorithm converges very fast even for a
large number of shape parameters I (e.g., 80ms on an Intel®

i7-7700HQ for I = 1000).

Algorithm2Estimating the shapeparametersα of aDirichlet
distribution.
1: procedure Dirichlet Estimation (Minka 2000)
2: Compute μ: μi ← 1

R

∑R
r=1 logπ

(r)
i

3: Set starting values α with αi > 0 for all i = 1, . . . , I
4: Set absolute tolerance ε > 0 and δ ← ∞
5: while δ > ε do
6: α′ ← α

7: for i = 1, . . . , I do
8: αi ← �−1

(

�(
∑

j α
′
j ) + μi

)

9: δ ← ||α′ − α||
10: return α
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