Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections
Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.
Differential and Algebraic Geometry, Perturbative QCD, Scattering Amplitudes
Böhm, Janko
50e25a6a-b3c8-40a7-96cd-ad37111d1c00
Georgoudis, Alessandro
8df046a2-987e-4b85-a5ed-e1db0e66c4fa
Larsen, Kasper J.
49008353-d8ca-4de6-a377-e34ba737a3e7
Schönemann, Hans
03f9dcdc-33f9-4dae-84ef-42c5b7c8f2b3
Zhang, Yang
b165d56f-015b-4295-bbf4-72438baec173
September 2018
Böhm, Janko
50e25a6a-b3c8-40a7-96cd-ad37111d1c00
Georgoudis, Alessandro
8df046a2-987e-4b85-a5ed-e1db0e66c4fa
Larsen, Kasper J.
49008353-d8ca-4de6-a377-e34ba737a3e7
Schönemann, Hans
03f9dcdc-33f9-4dae-84ef-42c5b7c8f2b3
Zhang, Yang
b165d56f-015b-4295-bbf4-72438baec173
Böhm, Janko, Georgoudis, Alessandro, Larsen, Kasper J., Schönemann, Hans and Zhang, Yang
(2018)
Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections.
Journal of High Energy Physics, 2018 (9), [24].
(doi:10.1007/JHEP09(2018)024).
Abstract
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.
Text
Böhm2018_Article_CompleteIntegration-by-partsRe
- Version of Record
More information
Accepted/In Press date: 31 August 2018
e-pub ahead of print date: 5 September 2018
Published date: September 2018
Keywords:
Differential and Algebraic Geometry, Perturbative QCD, Scattering Amplitudes
Identifiers
Local EPrints ID: 423127
URI: http://eprints.soton.ac.uk/id/eprint/423127
ISSN: 1126-6708
PURE UUID: 69e8bdbe-1817-4adc-ac79-f7e09cbf6190
Catalogue record
Date deposited: 19 Sep 2018 11:04
Last modified: 17 Mar 2024 12:10
Export record
Altmetrics
Contributors
Author:
Janko Böhm
Author:
Alessandro Georgoudis
Author:
Kasper J. Larsen
Author:
Hans Schönemann
Author:
Yang Zhang
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics