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Abstract 

Two forms of dynamic transfer matrix are derived for a one-dimensional (beam-like) 

repetitive pin-jointed structure with point masses located at nodal cross-sections, the 

displacement-force transfer matrix G, and the displacement-displacement transfer matrix, H.  

Similarity matrices are introduced to relate G and H, together with their respective metrics.  

Symplectic orthogonality relationships for the eigenvectors of both G and H are derived, 

together with relationships between their respective sets of eigenvectors.  New expressions 

for the group velocity are derived.  For repetitive structures of finite length, natural frequency 

equations are derived employing both G and H, including phase-closure and the direct 

application of boundary (end) conditions.  Besides an exposition of the theory, some familiar 

but much new, the focus of the present paper is on the relationships between the two forms of 

transfer matrix, including their respective (dis)advantages.  Numerical results, together with 

further theory necessary for interpretation, are presented in companion papers. 
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Nomenclature 

A  cross-sectional area 

gc   group velocity 

d, D, D displacement vectors, components 

E  Young’s modulus of elasticity 

f, F, F  force vectors, components 

G  displacement-force transfer matrix 

H  displacement-displacement transfer matrix 

i, i, I  1 , index, identity matrix 

j, J  index, metric matrix 

k, K  bar stiffness, stiffness matrix 

L, L, L  left, bar length, similarity matrix 

m, m  mass, mass matrix 

n, N, N  index, number of cells, similarity matrix 

R, R  right, reflection matrix 

s  generic state vector 

t, T  time, generic transfer matrix 

V  (right) eigenvector of G, matrix of eigenvectors 

w , TW   wave amplitude vector, left eigenvector of G 

X  (right) eigenvector of H, matrix of eigenvectors 

TY   left eigenvector of H 

    decay rate constant 

   phase change constant, or wavenumber 

 , Λ   eigenvalue, matrix of eigenvalues 
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 , Ω   radian frequency, skew-symmetric matrix 

 

1.  Introduction 

Repetitive or periodic structures consist of a cell which spatially repeats in one-, two- or 

three-dimensions.  Each cell is connected to another in a regular pattern to form the complete 

structure.  Such constructions are widely employed in engineering, and include rail track, 

turbine blade assemblies (bladed discs), building frameworks, cranes, aircraft fuselages, 

trusses and honeycomb panels.  Since the manufacture and construction of such structures 

can also be a repetitive process, they represent a cost effective design solution for many 

engineering applications.  Early contributions are described in references [1-7].  The joints 

between the structural members can be designed so that they allow additional degrees of 

freedom, providing the possibility of a change in structural shape [8], or to become a 

deployable mechanism/structure [9].  Furthermore, repetitive structures portray symmetrical 

features and often have an aesthetically pleasing appearance.   

The present work is concerned with one-dimensional (beam-like) repetitive structures.  When 

periodicity is taken into account, the static and dynamic analysis of an entire structure can be 

reduced to the analysis of a single repeating cell, together with boundary (end) conditions if 

the structure is not of infinite extent; equivalent continuum properties can be determined for 

segmented structures such as trusses [10].  The primary approach is through the use of a 

transfer matrix T , which relates state vector components on the right-hand side to those on 

the left-hand side of the cell, i.e. R Ls Ts .  (Alternative analytical approaches, including the 

receptance method, are described in Mead’s 1996 review paper [7].)  An eigenvector of the 

transfer matrix describes a pattern of state vector components which is unique to within a 

scalar multiplier,  .  Translational symmetry demands that this pattern is preserved as one 

moves from the left-hand to the right-hand side of the cell, allowing one to write R Ls s ; 

this immediately leads to the standard eigenvalue problem L LTs s , or   L T I s 0 .  

There are two forms of the transfer matrix T  in frequent use: the first and more common 

[3,10-18,23-25] relates a state vector s  of displacement and force components on either side 

of the cell, here presented as transfer matrix G ; the second and less common form [8,19-22] 

relates state vectors s  of displacements at three consecutive nodal cross-sections of the 

complete structure, here presented as H .   
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Both G  and H  can be determined from the stiffness matrix K ; the latter is symmetric for 

linear elastic displacements and, in turn, both transfer matrices are symplectic, that is they 

satisfy a relationship of the form 
T T ΩT Ω , where TT denotes the transpose of T, and Ω  is 

a skew-symmetric matrix, known as the metric.  For transfer matrix G, the metric takes its 

simplest, canonical, form, and is written as 
 

  
 

0 I
J

I 0
.  The significance of the metric is 

rooted in Hamiltonian mechanics.  The metric in a Euclidean vector space is the length of a 

vector, calculated as the square root of the dot product of the vector with itself, an inner 

product.  However, in a symplectic vector space, where the state vector consists of both 

displacement and force components, such an inner-product has no physical meaning.  Instead, 

a symplectic inner product, employing J as the metric, multiplies displacement with force 

which is work or energy; rather than length, it is an area, which is preserved during (here 

spatial) evolution.  Ultimately, it implies conservation of energy. 

For the static problem, the force-displacement transfer matrix G is perhaps the more 

appropriate, as one can readily identify force resultants; thus the decay modes associated with 

self-equilibrated loading (as anticipated by Saint-Venant’s principle), the rigid body modes 

associated with zero force components, and the transmission modes associated with the force 

resultants of tension, bending moment and shearing force can be easily recognised.  This 

static problem is characterised by multiple unity eigenvalues for the rigid body and 

transmission modes.  In turn the transfer matrix cannot be diagonalised, but can only be 

reduced to a Jordan canonical block form; e.g. the principal vector describing tension is 

coupled with the eigenvector for a rigid-body displacement in the axial x-direction within a 

2 2  block [10]. 

For wave propagation, the displacement-displacement transfer matrix H is perhaps the more 

appropriate, as waves are naturally described in terms of their displacement characteristics, 

e.g. extensional, flexural, thickness-shear, rather than force resultants.   

For the dynamic problem considered here, irrespective of whether one employs G or H, 

repeating eigenvalues are unusual for a given frequency; it generally implies a crossing of 

branches on a dispersion diagram, when the eigenvectors are distinct.  The exception is a so-

called Krein collision [31], which occurs when one has equal eigenvalues at the same 

frequency, and one of the propagation modes displays anomalous dispersion, the other 

normal; this is considered in detail in a companion paper. 
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Each formulation has advantages and disadvantages: for example, symplectic orthogonality 

of the eigenvectors of G  is seen to be a special case of the Reciprocal Theorem of Betti-

Maxwell [26], whereas the weighted symplectic orthogonality of the eigenvectors of H  is not 

so obviously related.  On the other hand, a new expression for the group velocity 

[15,16,27,28] is much more succinct when one employs H .  For a repetitive structure having 

finite length, boundary conditions are generally expressed in terms of zero force or zero 

displacement so transfer matrix G is the more appropriate.  If the number of repeating cells N 

is small, then the natural frequencies can be determined from a zero value determinant of a 

partition of NG ; if one employs transfer matrix H , then since the force vector does not 

naturally feature it has to be introduced at a free end, which leads to a frequency equation 

which involves 
1N

H .  However, both of these methods become inaccurate when the number 

of cells is large, and natural frequencies are then most accurately found using phase-closure 

for G . 

This paper presents relationships between the two forms of transfer matrix, G and H, between 

their respective eigenvectors and also orthogonality relationships.  Some of the results are not 

new but re-derived in a concise formulation and provided here as a convenient resource for 

comparison with new results.  The results are formulated for the dynamic problem, but apply 

equally for the static case, 0  . 

The example structure consists of an (in)finite planar framework of pin-jointed members with 

a point mass m located at each pin-joint, as shown in Figure 1(a).  The indices  1n , n  and 

 1n   denote three consecutive nodal cross-sections of the framework, and numbers 1, 2 and 

3 denote tiers of the masses.  Horizontal and vertical rods, assumed massless, have stiffness 

k EA L  where E  is the Young’s modulus, A  is the cross-sectional area and L  is the rod’s 

length.  The cross-sectional area of the diagonal members, also assumed massless, is taken to 

be one-half of the horizontal and vertical members, so their stiffness is  2 2k .  The 

diagonal members are not pinned where they cross.  The structure is, in fact, identical to that 

which has been subject to extensive elastostatic eigenanalysis by Stephen and co-workers 

[10,23-25], but with the addition of point masses at the nodal cross-sections. 

The complete structure can be regarded as a repetition of two possible forms of repeating 

entity, as shown in Figure 1(b) and 1(c).  In Figure 1(b), the vertical members and the cross-

sectional masses are regarded as being shared between adjacent cells, therefore their stiffness 
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and mass must be halved; for a pin-jointed rod, this is accomplished by taking the cross-

sectional area as 2A .  Similarly, the masses are drawn as semi-circles, to denote the fact that 

each has mass 2m .  This repeating cell is the more appropriate for the construction of 

transfer matrix G .  On the other hand, the structure can be regarded as a repetition of nodal 

cross-sections, Figure 1(c), and this is the more appropriate for the construction of transfer 

matrix H ; the vertical members are no longer shared, so the full stiffness (cross-sectional 

area) is now employed.    

 

 

Figure 1.  Segment of the example framework, (a), and two possible repeating entities; (b) 

shows the complete thn  repeating cell, whereas (c) shows a repeating nodal cross-section 

with attached pin-jointed rods.  For (b), the sections  1n  and n  can also be represented by 

left (L) and right (R), respectively. 

 

2.  Formulation of the dynamic transfer matrices 

2.1  Displacement-force transfer matrix, G 

First consider the repeating cell shown in Figure 1(b); the governing equations of motion for 

the half-masses on sections  1n  and  n  are 

        LL LR1 1 1
2

n n n n      
m

f d K d K d , (1) 

        RL RR1
2

n n n n   
m

f d K d K d ,  (2) 

respectively, where f  is the nodal force vector, m  is the mass matrix, d  is the displacement 

vector, and dot denotes differentiation with respect to time.  The matrices LLK , LRK , RLK  

and RRK  are presented explicitly in Appendix A.  The mass matrix m  is equal to m times a 

n n + 1th sectionn – 1 

1

2

3

n nn – 1 

x

y

(a) (b) (c)
(L) (R)
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6 6  identity matrix.  Following transfer matrix sign convention, the negative sign before 

 1nf  is introduced to indicate that it acts in the opposite direction to  nf , that is, it acts 

in the negative x-direction.  A factor of one-half for the mass matrix takes into account the 

halved point masses on both sides of the cell.  For harmonic motion, one can write 

     exp in n tf F  and      exp in n td D  where F  and D  are force and 

displacement amplitudes, respectively, i 1  ,   is frequency and t  is time.  The 

acceleration vector can then be expressed as      2 exp in n t  d D  which upon 

substitution into Eqs. (1) and (2) yields the dynamic stiffness matrix in partitioned form 

 
 

 

 

 

2

LL LR

2

RL RR

21 1
.

2

n n

n n





  
  

                 
   

m
K K

F D

F Dm
K K

  (3) 

Eq. (3) can be rearranged into transfer matrix form as 

 
 

 

 

 

1

1

n n

n n

   
   

   

D D
G

F F
, (4) 

where  

 

2
1 1

LR LL LR

2 2 2
1 1

RL RR LR LL RR LR

2

2 2 2



  

 

 

  
    

  
      
          
       

m
K K K

G
m m m

K K K K K K

  

or more compactly    1n n V GV , with      
T

T Tn n n   V D F  and 

     
T

T T1 1 1n n n     V D F . 

The matrix G  is symplectic, that is it satisfies the relationship  

 T G JG J   (5) 

where 
 

  
 

0 I
J

I 0
 is the metric for G  and has the properties T 1  J J J .  The 

determinant of G  is 1  for all values of  .  The inverse of G  is given by 
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1 1 T T   G J G J JG J .   Writing    1n n V V , leads to the frequency-dependent 

eigenvalue problem  

 
 

 

2
1 1

LR LL LR

2 2 2
1 1

RL RR LR LL RR LR

2 1

1

2 2 2

n

n




  


 

 

  
     

                         
       

m
K K I K

D
0

Fm m m
K K K K K K I

,  (6) 

or more compactly,    1 0n  G I V . 

 

2.2  Displacement-displacement transfer matrix, H 

Now consider the repeating nodal cross-section at an arbitrary station n , as shown in 

Figure 1(c).  The governing equation of motion now takes the form  

          RL LL RR LR1 1n n n n      md K d K K d K d 0 .  (7) 

(Referring to Appendix A, one sees that the term 2k , pertaining to the one-half stiffness of 

the vertical members for Figure 1(b), only appears in the partitions LLK  and RRK ; since 

these partitions are added in Eq. (7), this leads to the full stiffness of the vertical members in 

Figure 1(c).) 

Writing      exp in n td D  leads to  

      2

RL LL RR LR1 1n n n        K D K K m D K D 0 .  (8) 

Pre-multiplying by 1

LR

K  gives 

      1 1 2

LR RL LR LL RR1 1n n n          D K K D K K K m D .  (9) 

Introducing the state vectors 

      
T

T T1 1n n n    X D D  and      
T

T T 1n n n   X D D  (10a,b) 

allows one to reconstruct Eq. (9) in the difference equation form  

 
 

 

 

 1 1 2

LR RL LR LL RR

1

1

n n

n n 

     
     

           

0 ID D

D K K K K K m D
, (11) 

or more compactly    1n n X H X .  Finally, writing    1n n X X  leads to the 

frequency-dependent eigenvalue problem  
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  1 1 2

LR RL LR LL RR

1n


  

 
  

        

I I
X 0

K K K K K m I
,  (12) 

or more compactly,    1 0n  H I X .  Note that matrix H  is still symplectic, but does 

not satisfy Eq. (5), that is T H JH J ; however, the equivalent relationship, together with a 

new metric, is developed in the following section.   

3.  Relationships between transfer matrices G and H 

The relationships between the dynamic transfer matrices G  and H  can be established as 

follows: let L  and N  be the matrices  

 2

LL LR
2



 
 

         

I 0

L m
K K

 and 2

RL RR
2



 
 

       

0 I

N m
K K

   (13a,b) 

then it is straightforward to show that  

 1G NL  and 1H L N .   (14a,b) 

The inverse of matrix L  is found using the block-wise matrix inversion formula, 

Appendix B, as 

1

1 2 1

LR LL LR
2




 

 
       
   

I 0

L m
K K K

.  

Matrices L  and N  were first introduced by Zhong and Williams [19] as a means to avoid 

numerical ill-conditioning.  Now, from Eqs. (14a,b) T T TG L N  and T T TH N L , so Eq. (5) 

becomes  

    T T 1  L N J NL J ;  (15) 

now pre-multiply by TN  and post-multiply by N  to give    T T T 1 T  N L N JN L N N JN  or 

 T T TH N JN H N JN .  Write TJ N JN , then we have 
T H JH J  as the expression 

equivalent to Eq. (5) for matrix H.  The metric is 
LR

RL

 
  
 

0 K
J

K 0
, and has the skew-

symmetric property T  J J  since T

RL LRK K ; this allows one to write 1 1 T H J H J .  The 
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metric can also be expressed in terms of L : pre-multiply Eq. (15) by T
L  and post-multiply 

by L  gives T T N JN L JL J . 

Matrices G  and H  are related as follows: from Eq. (14a), pre-multiply by 1L  to give 

 1 1 1 1    L G L N L HL  and hence 1G LHL , or equally 1H L GL .  Pre-multiply 

Eq. (14b) by N  to give  1 NH NL N GN  and hence 1H N GN , or equally 

1G NHN .  Thus both L  and N  serve as similarity matrices for G  and .H   Since G  and 

H  are similar, they must have the same eigenvalues, as one would expect, although the 

eigenvectors are quite different as will be noted below; however the eigenvectors are related, 

again through matrices L  and N.  In the above, the inverse of N may be found by means of 

the Schur complement, Appendix B, as 

1 2 1

RL RR RL1
2

 



  
      
  

m
K K K

N

I 0

.  Similarly, 

1

1 RL

1

LR

.






 
  

 

0 K
J

K 0
 

 

4.  Eigenvalues and eigenvectors of transfer matrices G and H 

The frequency-dependent eigenproblems, Eqs. (6, 12), can be solved computationally using 

the eig function of MATLAB.  For a specified  , or 
2 , MATLAB returns the eigenvalues 

  in a diagonal matrix and the corresponding normalised right eigenvectors V  arranged 

accordingly in the eigenvector matrix, that is the eigenvector associated with the first 

eigenvalue will be in the first column of the eigenvector matrix, and so on. 

For a cell with 2N degrees of freedom, there are N reciprocal pairs of eigenvalues: if the 

eigenvalue i  is associated with a propagating or decaying wave from sections  1n  to 

 n , that is from left-to-right, then its reciprocal pair 
j  where 1j i   represents the same 

wave propagating or decaying from  n  to  1n , that is from right-to-left.  Usually,   is 

expressed in exponential form, i.e.  exp i     where   and   represent decay rate and 

phase change of amplitudes from one section to the next, respectively.  The eigenvalues take 

five possible forms [25]: 
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(i) The positive real unity eigenvalue  1 exp 0    must occur an even number of 

times since its inverse will also be 1. 

(ii) The negative real unity eigenvalue  1 exp iπ     must also occur an even 

number of times since its inverse will be 1.  

(iii) The real non-unity eigenvalues occur as a pair   and 1 .  If 0  , then 

 exp  , but if 0  , then  exp iπ   . 

(iv) The complex unity eigenvalues 1   occur as a unitary pair, that is ia b     

and ia b   .  If  exp i  , then  1 exp i    ; the inverse is also the 

complex conjugate. 

(v) The complex non-unity eigenvalues occur as a quartet of reciprocals and complex 

conjugates, that is ia b   , ia b   ,  
1

ia b


  ,  
1

ia b


  ; in 

exponential form,  exp i      where 0   and 0  .  For example, if 

1i  , then  exp ii     , the complex conjugate is  exp ii     , the 

inverses are  1 exp ii       and  1 exp ii      .  The minimum size of 

transfer matrix for complex non-unity eigenvalues to occur is 8 8 , because the 

quartet of eigenvalues can multiply both a minimum four degrees of cross-

sectional displacement freedom, and four force components in the case of G or an 

additional four displacements in the case of H; in turn the state-vector of both G 

or H will be 8 1 .  

 

For the model framework, the first six rows and the last six rows of the right eigenvector V  

of matrix G  represent displacement and force components, respectively, at an arbitrary 

station 1n   , i.e. 

 
T

T 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 3 3 1 1 2 2 3 31 .n n n n n n n n n n n n

x y x y x y x y x y x yn D D D D D D F F F F F F               V  

The first six rows and the last six rows of the right eigenvector X  of matrix H  represent 

displacement components at an arbitrary station  1n  and  n , respectively, i.e.  

 
T

T 1 1 1 1 1 1

1 1 2 2 3 3 1 1 2 2 3 31 n n n n n n n n n n n n

x y x y x y x y x y x yn D D D D D D D D D D D D         X . 
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These components of the eigenvectors associated with both transfer matrices are shown in 

Figure 2. 

 

  

Figure 2. (a) Nodal displacements and forces pertaining to eigenvector V of transfer matrix 

G; (b) nodal displacements pertaining to eigenvector X of transfer matrix H. 

 

Despite the obvious difference between eigenvectors V and X, they are related as follows: V 

is an eigenvector of G, that is it satisfies GV V ; X is an eigenvector of H, that is it 

satisfies HX X .  But 1G LHL , or equally 1H L GL ; employing the former, one has 

 1  LHL V V  and pre-multiplying by 
1L  gives    1 1 H L V L V  and hence 

1X L V , or V LX . 

But we also have 1H N GN , or equally 1G NHN ; employing the former, one has 

 1  N GN X X  and pre-multiplying by N  gives    G NX NX  and hence V NX . 

Employing the latter provides the equivalent 1X N V , or V = NX  . 

From the above, it has been found that V NX  and V LX , that is both L and N serve 

equally to relate X to V.  However there is a subtlety that only becomes apparent when one 

expands these expressions: write      
T

T T1 1n n n    X D D , then the former becomes  
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  

 

   

 

 
 2

RL RR

1
1

2

n
n

n n
nn n



 
  

              
  

D
D

V NX Vm
FK D K D

  (16) 

where the second row of Eq. (3) has been employed.  Thus strictly, we have 

   1n n V NX .  For the latter, 

  

 

   

 

 
 2

LL LR

1
1

1 1
11

2

n
n

n n
nn n



  
  

                 
  

D
D

V LX Vm
FK D K D

  (17) 

where the first row of Eq. (3) has been employed.  Thus strictly, we have 

   1 1n n  V LX . 

Finally, we derive expressions for the left eigenvectors of G and H, as these are required in 

subsequent analysis to obtain the group velocity.  The left eigenvector of matrix G can be 

evaluated as follows: let V  be the eigenvector associated with the eigenvalue 1 , i.e. 

1GV V  or 1  G V V ; but 1 1 T G J G J , so we have 1 T  J G JV V  or 

   T G JV JV  which upon transposition gives    
T T

JV G JV  or simply 

T TW G W  where  
T

T W JV  is the left eigenvector of G . 

The left eigenvector of matrix H  can be obtained by following a similar procedure: let X  be 

the eigenvector associated with the eigenvalue 1 , i.e. 1HX X  or 1  H X X ; but we 

know that 1 1 T H J H J , hence 1 T  J H JX X  or    T H JX JX  which upon 

transposition, gives    
T T

JX H JX  or T TY H Y  where  
T

T Y JX  is the left 

eigenvector of H . 

 

5.  Symplectic orthogonality for transfer matrices G and H 

Let iV  and 
jV  be eigenvectors of G  associated with eigenvalues i  and 

j , respectively. 

Then one has i i iGV V  and 
j j jGV V .  Transpose the former to give T T T

i i iV G V  and 

then post-multiply by 
jJGV  to give  T T T

i j i i jV G JG V V JGV  which reduces to 
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T T

i j i j i j V JV V JV .  Finally, rearrange as   T1 0i j i j  V JV  which implies that 

T 0i j V JV  for 1i j  .  This result shows that an eigenvector associated with an 

eigenvalue of the transfer matrix G is symplectic orthogonal to all other eigenvectors 

including itself with the exception of the eigenvector(s) associated with its reciprocal 

eigenvalue; the possible plurality of eigenvectors noted above can occur when one has a 

crossing of branches on a dispersion diagram, with a repeated eigenvalue and distinct 

eigenvectors.  The symplectic orthogonality is a special case of the Betti-Maxwell reciprocal 

theorem as shown by Zhong and Williams [13,26] and later by Stephen [25].  For 

completeness, an implementation of the reciprocal theorem to obtain this expression is given 

in Appendix C.  Zhong and Williams [13] have also shown that if iV  and 
jV  correspond to a 

reciprocal eigenpair, that is 1i j  ,  then one can scale the eigenvector lengths such that 

T 1i j V JV  and T 1j i  V JV ; however, as will be seen in a companion paper, this procedure 

loses information in the form of the Krein signature [31]. 

A similar procedure can be followed for matrix H .  Let iX  and 
jX  be the eigenvectors of H  

associated with eigenvalues i  and 
j , respectively. Then one has i i iHX X  and 

j j jHX X .  Transpose the former to give T T T

i i iX H X  and then post-multiply by jJHX   

to give  T T T

i j i i jX H JH X X JHX  which reduces to 
T T

i j i j i j X JX X JX .  Finally, 

rearrange as   T1 0i j i j  X JX  which implies that 
T 0i j X JX  for 1i j  ; again, for iX   

and 
jX  which corresponds to a reciprocal eigenpair, the eigenvector lengths can be scaled 

such that T 1i j X JX  and T 1j i  X JX .  In terms of the metric J , this can be expressed as 

    T
1 0i j i j NX J NX  or equivalently     T

1 0i j i j LX J LX .  This is referred 

to as weighted symplectic orthogonality. 

 

6.  Group Velocity 

The velocity at which energy flows through a dispersive structure or medium is known as the 

group velocity [15,16,27,28] and is defined as the derivative of frequency with respect to 
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wavenumber, i.e. g

d

d
c




 .  Using the chain rule g

d d d

d d d
c

  

  
  , and since  exp i  , 

then  
d

iexp i i
d


 


  ; and one finds 

g

d
i

d
c





 .  We now write matrix H  in the form  

 
 

2

1 1 1

LR RL LR LL RR LR

  

   
         

0 I 0 0
H

K K K K K 0 K m
  (18) 

or more compactly, 2

0 2 H H H .  The eigenvalue problem    1n  H I X 0 , where 

     
T

T T1 1n n n    X D D , can then be written as  2

0 2 1n      H H I X 0 .   

Differentiating with respect to   gives 

 2

2 0 2

d d
2

d d


  

 

 
       

 

X
H I X H H I 0   (19) 

where the index  1n  has been omitted.  Let 
TY  be the left-eigenvector of matrix H ,  

pertaining to the same eigenvalue  , then Y  satisfies 
T

2

0 2     H H I Y 0  or by 

transposing 
T 2

0 2     Y H H I 0 .  So if we pre-multiply Eq. (19) by 
TY , the second 

term will disappear to give T

2

d
2 0

d






 
  

 
Y H I X  or 

T

T

2

d

d 2



 


Y X

Y H X
.  The group 

velocity is then 

 
T

g T

2

i
2

c 



Y X

Y H X
. (20) 

A similar approach can be adopted for the matrix G , which may be decomposed as 
2 4

0 2 4   G G G G  where  

1 1

LR LL LR

0 1 1

RL RR LR LL RR LR

 

 

  
  

  

K K K
G

K K K K K K
, 

1

LR

2

1 1 1

LR LL RR LR LR

2

2 2



  

 
 

  
     

m
K 0

G
m m

K K K K K

 and 

2
4 1

LR
4



 
 
 
  

0 0

G m
K 0

; proceeding as above for the eigenvalue problem   0 G I V  one 

finds 
T

T 3 T

2 4

d

d 2 4



  




W V

W G V W G V
 and hence group velocity  
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T

g T 3 T

2 4

i
2 4

c 
 




W V

W G V W G V
,  (21) 

where TW  is the left-eigenvector of matrix G .  For both Eqs. (20) and (21), we note that 
gc   

is real because the product of   and d d   is purely imaginary. 

Clearly, the expression for group velocity involving transfer matrix H is the more succinct, 

and since the  12 12  matrix 2H  contains three  6 6  zero partitions, the structure of 

expression (20) can be revealed, as follows: since      
T

T T1 1n n n    X D D , the 

product in the denominator  
T

1 T

2 LRm n   H X 0 K D  is a column vector, while from 

section 4 one has  
T

T Y JX , or written in full 

       T T T T T T T

LR RL RL LR1 1n n n n           Y D K D K D K D K  since T

RL LRK K .  In 

turn, the denominator reduces to the scalar    T T

2 1m n n Y H X D D .  The numerator is the 

scalar        T T T

LR RL1 1n n n n   Y X D K D D K D .  If we now express all of the 

displacement vectors in term of cross-section index  1n , that is    1n n D D  and 

   1 1n n  D D , the expression for the group velocity becomes 

 
 T 1

LR RL

g T

i

2
c

m

 






D K K D

D D
,  (22) 

where the  1n  index has been omitted.  While not as succinct as Eq. (20), this form is 

suggestive of possible opposing contributions which could lead to both positive and negative 

group velocity, this signifying normal and anomalous dispersion, respectively.  For the 

example structure, such anomalous dispersion does indeed occur as will be seen in a 

companion paper where it is explored in detail. 

 

7.  Natural frequencies of finite length structures 

Finite length repetitive structures inevitably have boundary conditions, typically of zero 

displacement (fixed) or zero force (free), and for this reason the formulation employing 

transfer matrix G seems the more appropriate.  For example, for a structure having N cells, at 
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a fixed left-hand end one immediately has        
T T

T T T0 0 0 0       V D F 0 F , whilst 

for a free right-hand end one has        
T T

T T TN N N N       V D F D 0 .  It is also 

possible to have mixed end conditions, for example some but not all of the nodal masses at 

either end could be fixed, the remaining free; for such cases, one can always re-cast the state 

vector column so that the first six elements are zero and the following six are unknown, and 

re-order the rows of the transfer matrix G accordingly.  We now present three approaches to 

derive the frequency equation. 

7.1  Phase closure 

Phase closure [29,30] is based upon the idea that for a standing wave, the total phase change 

for a complete circumnavigation of the structure is an integer multiple of 2π .  The state 

vector    
T

T Tn n  D F  at any given cross-section n can only consist of the eigenvectors; 

how much of each is defined by participation coefficients, also known as the wave 

amplitudes  nw , and since some waves are propagating while others are decaying, the 

amount of each will be different at each cross-section.  Thus we may write 

     
T

T Tn n n   D F Vw   where V  is now an ordered 12 12  matrix containing the 

twelve eigenvectors of G ; in partitioned form  

 
 

 
 

 

 

 

 
R,D L,DR R

R L

R,F L,FL L

n n n

n n n

      
       

      

V VD w w
V V

V VF w w
  (23) 

where the subscripts R and L refer to right- and left-going waves, respectively, while 

subscripts D and F refer to the displacement and force vectors, respectively.  The order of 

columns of RV  and LV  must correspond to their eigenvalue pairs. 

Now introduce reflection matrices R  which describe the effect of the end-condition on each 

of the impinging wave amplitudes.  Consider a finite length structure of N cells.  For a free 

left-hand end, the force vector is  0 F 0 ; from the second row of Eq. (23) one has 

   R,F R L,F L0 0 V w V w 0 , which may be arranged in the form      R L0 0 0w R w , 

where   1

R,F L,F0  R V V  is the reflection matrix at the free left-hand end.  Similarly, for a 

free right-hand end, the force vector is  N F 0 .  Following the same procedure gives 
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     L RN N Nw R w , where   1

L,F R,FN  R V V  is the reflection matrix at the free right-

hand end.  Note that    1 0N R R , which can be attributed to symmetry. 

To apply the phase closure principle, consider right-going waves impinging upon the right-

hand end, station N,  R Nw  which can be written in terms of  R 0w  as 

   R R R 0NN w Λ w  where RΛ  is a diagonal eigenvalue matrix associated with right-going 

waves.  By repeated substitution,  

 

   

   

   

     

R R R

R L

R R L

R R R

0

0 0

0

0 ,

N

N

N N

N N

N

N

N N









w Λ w

Λ R w

Λ R Λ w

Λ R Λ R w

  (24) 

or      R R R0N N N N   Λ R Λ R I w 0 .  For a standing wave to occur, one must have 

    R Rdet 0 0N N N   Λ R Λ R I .  (25) 

Note that the determinant is complex, and the natural frequencies are found when the real and 

imaginary parts vanish simultaneously.   

The formulation, Eq. (25), is unchanged for structures with different end conditions; what do 

change are the reflection matrices.  These are summarised as follows: 

Free left-hand end      R L0 0 0w R w  where   1

R,F L,F0  R V V  

Fixed left-hand end      R L0 0 0w R w  where   1

R,D L,D0  R V V  

Free right-hand end      L RN N Nw R w  where   1

L,F R,FN  R V V  

Fixed right-hand end      L RN N Nw R w  where   1

L,D R,DN  R V V  

Two comments should be made: first, the  R Nw  on the left-hand side of Eq. (24) is the 

same as that on the right-hand side only by virtue of a spatial phase change of an integer 

multiple of 2π .  For the fundamental natural frequency, this phase change will be 2π , for the 

second 4π , and so on.  Second, for a free vibration, right-going waves can only propagate, 

1  , or decay, 1  , as one moves from left to right along the structure; thus each of the 

eigenvalues within matrix RΛ  has modulus equal to or less than unity, and powers of RΛ  
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will in turn only lead to terms whose modulus is equal to or less than unity.  Similarly, left-

going waves after reflection from the right-hand end can only propagate or decay as one 

moves from right to left along the structure, so one must still employ those eigenvalues 

whose modulus is equal to or less than unity, that is RΛ , which is why one has employed 

   L R L0 N N w w  in the development of Eq. (24).  The reciprocal eigenvalue matrix, LΛ , 

which contains eigenvalues with modulus equal to or greater than unity, does not therefore 

feature in the formulation, and this exclusion ensures numerical stability however large the 

value of N.  The Riccati transfer matrix method, previously employed for the static analysis 

of the present structure [24], also excludes eigenvalues greater than unity, again ensuring 

numerical stability.  

 

7.2  Direct application of boundary conditions for matrix G 

Again for a finite length structure of N cells, the state vector at station N is related to that at 

station 0 by 

 
 

 

 

 

0

0

N
N

N

   
   

   

D D
G

F F
; (26) 

powers of G are computed most efficiently by noting that 1G VΛV , so that 

1N N G VΛ V .  However, since the diagonal Λ  contains both LΛ  and RΛ , powers of the 

former will become large for large N, leading to numerical instability.  Introduce the notation 

DD DF

FD FF

ˆ ˆ
ˆ

ˆ ˆ
N

 
   

  

G G
G G

G G
.   

For free-free ends,    0 N F F 0 , and from the second row of Eq. (26) one has 

 FD
ˆ 0 G D 0  and hence the frequency equation  FD

ˆdet 0G .  For fixed-fixed ends, 

   0 N D D 0  and from the first row of Eq. (26), one has  DF
ˆ 0 G F 0  and hence the 

frequency equation  DF
ˆdet 0G .  Finally, for fixed-free and free-fixed ends, the frequency 

equations are  FF
ˆdet 0G  and  DD

ˆdet 0G , respectively.  Unlike phase-closure, these 

determinantal frequency equations employing transfer matrix G  are real. 
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7.3  Direct application of boundary conditions for matrix H 

Consider, again, a free-free structure of N cells.  Since the force vector does not naturally 

feature within this formulation, it has to be introduced at either end.  For a free vibration, the 

equations of motion at the left- and right-hand ends are, respectively 

     
2

LL LR0 0 1
2

 
    

 

m
F K D K D , and      

2

RL RR1
2

N N N
 

    
 

m
F K D K D . 

From the boundary condition  0 F 0  one has    
2

1

LR LL1 0
2

  
   

 

m
D K K D , and 

hence for the first cell 

 
 

 
 2

1

LR LL

0
0 0

1
2



 
   

             

I
D

X Dm
D K K

.                 (27) 

From the boundary condition  N F 0  one has for the thN  cell 

  
2

RL RR 1
2

N
  

    
  

m
K K X 0 ,  (28) 

where      
T

T T1 1N N N    X D D .  Since  

    11 0NN  X H X ,  (29) 

one immediately has 

  
2

1 2
RL RR 1

LR LL

0
2

2

N






 
    

               

I
m

K K H D 0m
K K

,  (30) 

and for a natural frequency  

 
2

1 2
RL RR 1

LR LL

det 0
2

2

N






  
    

                

I
m

K K H m
K K

,  (31) 

where 1N   must be satisfied. 
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For fixed-fixed ends, the left- and right-hand boundary conditions are    0 N D D 0 , or 

in state vector form  

  
 

 
 

0
0 1

1

   
    

  

D 0
X D

D I
 and  (32) 

    1N  0 I X 0 , (33) 

where      
T

T T1 1N N N    X D D , respectively.  Substitute Eq. (32) into Eq. (29) and 

the resulting expression into Eq. (33) gives      
T1 1N 0 I H 0 I D 0 , where 1N   must 

be satisfied (if 1N  , then all the point masses are fixed, and vibration is impossible as the 

bars themselves are considered massless).  For a natural frequency, one must have 

    T1det 0N 0 I H 0 I .  If we mimic the notation employed in the previous section, 

that is write 
11 121

21 22

ˆ ˆ
ˆ

ˆ ˆ
N

 
   

  

H H
H H

H H
, then the determinantal frequency equation above 

reduces to the more succinct form  22
ˆdet 0H .   

 

For fixed-free ends, the fixed left-hand end satisfies Eq. (32), while the free right-hand end 

satisfies Eq. (28); following the same procedures leads to  

  
2

1

RL RR 1
2

N 
    

     
   

0m
K K H D 0

I
,                             (34) 

and for a natural frequency one has 

 
2

1

RL RRdet 0
2

N 
     

       
    

0m
K K H

I
.                                (35) 

For free-fixed ends, the free left-hand end satisfies Eq. (27) while the fixed right-hand end 

satisfies Eq. (33).  Again, following the same procedures gives 

    1 2
1

LR LL

0

2

N






 
 

       

I

0 I H D 0m
K K

,                              (36) 

and for a natural frequency one has 
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   1 2
1

LR LL

det 0

2

N






  
  

          

I

0 I H m
K K

.                             (37) 

Again, these determinantal equations employing transfer matrix H are real. 

As with G, powers of H are computed most efficiently by noting that 1H XΛX , so that 

1 1 1N N  H XΛ X , but again one can expect numerical instability as N becomes large.   

 

9.  Conclusions  

Two forms of dynamic transfer matrix have been derived for a one-dimensional (beam-like) 

repetitive pin-jointed structure with point masses located at nodal cross-sections, the 

displacement-force transfer matrix G, and the displacement-displacement transfer matrix, H.  

Wave propagation through the structure is described by the eigenvalues of either transfer 

matrix, expressed as  exp i    , where the real part   is the decay constant, and   is 

the phase constant as one moves from one cross-section to the next.  The emphasis of the 

present paper has been the relationship between G and H, and their respective properties, and 

also between their respective eigenvectors.  Orthogonality relationships are derived for both 

sets of eigenvectors, allowing an arbitrary disturbance to be resolved into propagating and 

decaying waves.  Both G and H can be employed to determine new expressions for the group 

velocity, but that which employs H is the more succinct.   

For structures of finite length, the determination of natural frequencies of standing waves 

requires the application of boundary conditions, normally in terms of zero force (free-end), 

and/or zero displacement (fixed-end); accordingly, the displacement-force transfer matrix G 

is the more natural choice.  Direct application of boundary conditions leads to very succinct 

frequency determinants based on partitions of 
NG .  This approach is suitable for short beam-

like structures, where the number of cells N is small; however, since some of the eigenvalues 

are greater than unity, it becomes numerically unstable when N is large.  The displacement-

displacement transfer matrix H approach does not feature a force vector, so this needs to be 

introduced into the formulation, leading to less succinct frequency determinants; the 

exception is for the fixed-fixed beam.  Again, this approach is numerically unstable when N 

is large.  Instead, phase-closure – the idea that for a standing wave, the total phase change for 

a complete circumnavigation of the structure is an integer multiple of 2π  – has been 
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developed in terms of reflection matrices, and features only those eigenvalues less than or 

equal to unity; this ensures numerical stability whatever the magnitude of N.  Both these 

approaches require the search for zero-values of a determinant; this can be done by evaluating 

and plotting the determinant over a frequency range, and noting where the value changes 

sign.  For the direct method, the determinant is real, whereas for phase-closure, the 

determinant is complex, so both real and imaginary parts must be zero simultaneously. 

Dispersion diagrams and numerical results for the example structure are considered in a 

companion paper. 

Appendix A 

   

   

 

 

   

   

LL

1 1 4 2 1 4 2 0 0 0 0

1 4 2 1 2 1 4 2 0 1 2 0 0

0 0 1 1 2 2 0 0 0

0 1 2 0 1 1 2 2 0 1 2

0 0 0 0 1 1 4 2 1 4 2

0 0 0 1 2 1 4 2 1 2 1 4 2

k

  
 
 
  

 
 

 
  

   
 
 
 
    

K   

   

   

 

 

   

   

RR

1 1 4 2 1 4 2 0 0 0 0

1 4 2 1 2 1 4 2 0 1 2 0 0

0 0 1 1 2 2 0 0 0

0 1 2 0 1 1 2 2 0 1 2

0 0 0 0 1 1 4 2 1 4 2

0 0 0 1 2 1 4 2 1 2 1 4 2

k
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 
 

 
 
 

 
  

   
 
  
 
     

K   
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   

   

       

       

   

   

LR

1 0 1 4 2 1 4 2 0 0

0 0 1 4 2 1 4 2 0 0

1 4 2 1 4 2 1 0 1 4 2 1 4 2

1 4 2 1 4 2 0 0 1 4 2 1 4 2

0 0 1 4 2 1 4 2 1 0

0 0 1 4 2 1 4 2 0 0

k

  
 
 


 
 
    

  
   
 
   
 
    

K   

where k EA L  and T

RL LRK K .  Note that LLK  and RRK  are symmetric, but LRK  is not. 

 

Appendix B 

If A , B , C  and D  are an n n , an n m , an m n  and an m m  matrix, respectively, then 

 
   

   

1 1
1 1 11

1 1
1 1 1

 
  

 
  

               

A BD C A B D CA BA B

C D D C A BD C D CA B

  

provided 0A  and 
1 0 D CA B , [32].  When 0A , as with similarity matrix N, one 

may use the Schur complement to give 

 
   

   

1 1
1 1 11

1 1
1 1 1 1 1 1

 
  

 
     

                

A BD C A BD C BDA B

C D D C A BD C D D C A BD C BD

. 

 

Appendix C 

Consider a cell as shown in Figure 2(a).  The cell is subjected to two different load systems 

denoted by subscripts 1 and 2.  The Betti-Maxwell reciprocal theorem requires that the work 

done by forces 1F  acting through displacements 2D  is equal to the work done by forces 2F   

acting through displacements 1D ; however, we specialise load system 1 as the eigenvector 

iV  associated with eigenvalue i , and load system 2 as the eigenvector 
jV  associated with 

eigenvalue 
j , and the reciprocal theorem becomes  
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                T T T T1 1 1 1i j i j j i j in n n n n n n n      D F D F D F D F   

where  1n  and  n  are the LHS and RHS of the cell, respectively.  Express the RHS 

vectors in terms of LHS vectors as follows 

            1 ,  1 ,  1i i i j j j i i in n n n n n        D D D D F F  and    1j j jn n  F F  

and the above simplifies to  

            T T1 1 1 1 1 1i j i j i j j in n n n         D F D F  

or  

          T T1 1 1 1 1 0i j i j j in n n n          D F D F . 

But the term  

        T T T1 1 1 1i j j i i jn n n n       D F D F V JV , 

which indicates that the symplectic orthogonality relation   T1 0i j i j  V J V  is a special 

case of the reciprocal theorem.  Note that there is no equivalent direct link between the 

reciprocal theorem and the weighted symplectic orthogonality of the eigenvectors X of 

transfer matrix H. 
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